Seam - Contextual Components

A Framework for Java EE 5

Version: 1.0.CR3

Table of Contents

INtrOdUCEION T0 JBOSS SEAIMuvviiiiiiieees i ittt et e e e s s s sttt e e e eee e s s st aeeeaaeessasssataaeeeaeeesssasssnsneeeaaeesaannes Vi
OS2 T o T N o = | PSS PPRSRR 1
L1 Try the @XaMPIESoveeeiiie e e e e e e e e e e e e s e et e e e e e e e e s e aennenees 1
1.1.1. Running the exampleS 0N JBOSSASooiiiiiiiiiieiee e 1
1.1.2. Running the exampleS 0n TOMCALc.uveiiiiieiiiiiiiiiee e s e e e e e e 1
1.1.3. RUNNING the @XamMPIE TESESceeiiiiiie ettt 1

1.2. Your first Seam application: the registration eXamplecccccoviiiiieiiiei e 2
1.2.1. Understanding the COOEeuiiiiiiiiiiiiiiie e 2
1.2.1.1. The entity DEaAN: USErJAVAuuuuuiiii s nnnnnnes 3

1.2.1.2. The stateless session bean class: RegisterAction.javacccccvveeveeeeeiiecnnnne, 5

1.2.1.3. The session bean local interface: RegIStEr.javacovevviieee i 6

1.2.1.4. The web deployment description: web.xml ..o, 6

1.2.1.5. The JSF configration: faces-Config.Xmlccovriiiiiiiiiiiie e 7

1.2.1.6. The EJB deployment descriptor: gjb-jar.Xmlccccccoiiiiiiiiines 8

1.2.1.7. The EJB persistence deployment descriptor: persistencexmlcccceeeviienen. 8

1.2.1.8. Theview: register.jsp and registered.jSP ...cceveee e 8

1.2.1.9. The EAR deployment descriptor: application.Xmlccccoecviiverieeeniiicnnne, 9

122 HOW IEWOIKS .ot e e e e e e e e e e e e e aeeeeeeas 10

1.3. Clickablelistsin Seam: the messages eXamplecccvviieiiee et 10
1.3.1. Understanding the COOEcooiiiiiii i 11
1.3.1.1. The entity bean; MESSAgE.JAVAuuuuurumuinininininnnrnnannnnnannnaennnnnnnnannnnnnnnnn 11

1.3.1.2. The stateful session bean: MessageManagerBean.java............cccceevvvveeeennineen. 12

1.3.1.3. The session bean local interface: MessageManager.javaccccccvveeeeeeenneeee. 13

1.3.1.4. ThE VIEW: IMESSAGES. SP ..uvvrrrrrrreeeeeiiiirrrnreeeeeeessaiistrreeeesaesssassssssseeesasessansnssnns 14

L322 HOW IEWOIKS ..ottt e e e e e e e e e e e s s e baeeeeeens 15

1.4. Seam and jBPM: the todo list €Xampleeveiiiiiiiiiiieee e e 15
1.4.1. Understanding the COOEooiiiiiiiiiiii e 16
LA2 HOW IEWOIKS ..o e e e e e s aeeeeeens 21

1.5. Seam pageflow: the NUMberguess eXxampleooooiiiiie i 21
1.5.1. Understanding the COOEuuiiiiiiee e e 21
L.5.2. HOW I WOTKS ..ttt ettt ettt e e e e e e e 25

1.6. A complete Seam application: the Hotel Booking example ..o 25
IR T0/ I 1 oo 8o o o PP 26
1.6.2. Overview of the booKing EXamPIeoeieiiiiiiieiie e 28
1.6.3. Understanding Seam CONVEISALIONScceeeiirunnn.s 28
1.6.4. The Seam Ul CONLrol lTDIarycooveeeiiiiiiiiiieeee et e s 32
1.6.5. The Seam DEDUG PagEcoviiiiiiiieiee e 33

1.7. A complete application featuring Seam and jBPM: the DVD Store examplecc........ 34
1.8. A complete application featuring Seam workspace management: the I ssue Tracker example . 35
1.9. An example of Seam with Hibernate: the Hibernate Booking exampleccccceeeeeeiiinnnee. 36
1.10. A RESTful Seam application: the Blog example ... 36
1.10.1. USING "PUI"-SEYIE MV C ...ttt e e e e e e 37
1.10.2. Bookmarkable search reSUltS Pageccvvveiiiieeeeiecieeee et 38
1.10.3. Using "push”-style MVC in aRESTful applicationccccocuvieeriiiieeeiiiiieeeee 41

2. The contextual component MOGE]cooiiiiiiiiiie e e e e s 43
2.0, SEAIM COMEEXLS ..oeiiieeeeee e 43
2. 1.1, SEAE @SS COMEEXL ...vvieiiiiiieeeiiiiie e ettt e e ettt e e e st e e e st e e e s st e e e e snbeeee s annneeeaannneeeeenees 43
212 EVENE CONMEXT ..o 43

JBoss Seam 1.0.CR3

Seam - Contextual Components

2.1.3. PAgB CONLEXL ..ottt e e e ettt e e e e e e s s et e et e e e s s s s e e e e e e s s e nrnrneeeeeas 44
2.1.4. CONVErSAION CONTEXE ...uvvieiiiiiiieeiiiiiie et e e sttt et e ettt e e et e s s e e e e e e e e enees 44
2.1.5. SESSION CONLEXLueviveeiieeeeeieiiiiteet e e e e e s s sttt e e e e ee e e s s saterareraeeeessssntaanreeaeeesannssraeereens 44
2.1.6. BUSINESS PrOCESS CONLEXLccceeeeieeee e e 45
2.1.7. APPlICELTION COMEXE ...uvveiieiiiiiie ettt e e e e e 45
2.1.8. CONLEXE VAITADIESeeeeeiiieeeeee e e e e e e e e reeeeeeas 45
2.1.9. Context SEarCh PriOritycccccuiiiiei e a e e e s eas 45

2.2. SEAM COMPONENESutireeeeieeeessiisrrre e e e e e e e s s st e e e e e eee et s aan s e rereeeaeeesaasnrrneeeeeeesssanrrrnneeeaeeesanns 46
2.2.1. StAE €SS SESSION DEANSeeeiiiiiii ettt s 46
2.2.2. Stateful SESSION DEANScce i 46
223 ENlity DEANS ..o 46
224, JAVEBBEANSoooiieie e 47
P T 1 = o= o1 o o PSSP 47
2.2.6. COMPONENE NAIMES .uutuiieieiiieeeiiir e e e e et e et e e et e e et e e e et e e e aer i a e e e e s eeeaeraaaaaeaas 47
2.2.7. Defining the COMPONENE SCOPEvvrieiiiieiee ettt e sttt e et e e 48
2.2.8. Components With MUItIPIE TOIESocooiiiieee e 48
2.2.9. BUIlT-IN COMPONENTSeeiieiiiiiie ettt e e e 49
2.2.10. Configuring COMPONENLSccceeeieieee e 49

PG T = T = () o R PESRR 50
2.4, SEAM INLENCEPIONSveeeeeiiieie e ettt e e et e e st e e e et e e e et e e e e s sb e e e e e e nb e e e e e asn e e e e e annne e e e e anneeeeeans 52
2.5, SBAIM BVENLS ... 53
2.5. 1. PAOE ACHIONS ...cuiiiiie ettt ettt ettt e et e e et e e et e e e e e 53
2.5.2. Component-driVEN EVENLSuviiiiieeeiiiiiiiee et e e e e e et e e e e e e s ssarr e e e e e e e s s e enrbreeeeaeas 54

3. Conversations and WOr KSPace ManageMENTueeeeiiereieiiiiiieeeieee e e e e e s e e s sbeeeeeans 56
3.1. Seam’'s conVersation MOAEL ..o 56
3.2. NESLEA CONVEISALIONSuveeeieiiiteie ettt s et e bt ettt e et e e e et e e e e e sbb e e e e anbbe e e e e nnbeeeeeans 58
3.3. Starting conversations With GET reqUESEScoiciiiiiiiiiiiie e 58
R B E o I 11] SRR 59
3.5, SUCCESS IMESSAGEScoiueerreeeeeeeee e it et e ee e e s s s b e et e e e e e s s s s s s e e s e et e e e e s s sann b rnn e et eeeessannrrnneeeeeas 60
3.6. WOrKSpace ManagEMENEccceiiiiiiiiriieeee e e s s ettt ee e e e e e e e st e e e e e e e e s s s satbbeaeeeeeeesesnnnsrrneeeeens 61
3.6.1. Workspace management and JSF NaVIgationcccveeeeriiieeenniieee e e ssiieee e 61
3.6.2. Workspace management and jPDL pageflow ..o 61
3.6.3. The CONVErsation SWItCHEYciiiiiiiiii i 62
3.6.4. The CONVEISALION TISEveiiiiiee et e e e e e e e e e e e e e e neeees 62
3.6.5. BreatCrumBbSeviiiiiiiiiie e 63
= g 1= o AN A SRR 63
3.8.S0AM ANA SOAP ...ttt e e et e e e et e e e et e e e e e e e e nnrreeeeans 64
4. Pageflows and DUSINESS PrOCESSESvviieiiiiiieeeiiiiee e ettt e et e ekt e e et e e et b e e e e anb e e e s anbeeeeeans 65
L =o T Lo Y 0= 65
4.1.1. Thetwo navigation MOEIScceviiiiiieiee e 65
4.1.2. Seam and the back DULLONcuviiiiii e 67

4.2. USING JPDL PAGEFIOWSviieiiiee ettt e e e e e e e et as 68
4.2.1. INSEAIING PAJEFIOWS ... 68
4.2.2. Starting PAgEflOWSooveiiiiiiiieieeeee e 68
4.2.3. Page nodes and tranSitiONSooeiiuieiieiiiiiee ittt 69
4.2.4. Controlling the TIOWeiiiiee e e 70
4.2.5. ENdiNG tNETIOW ... 70

4.3. Business process management iN SEAIMeeiiiiirrieeiiiieeeeiiee e e st e e e sire e e e e e snreeeean 70
4.4. Using jPDL business process definitionscc.uveieeiiee i 71
4.4.1. Installing process defiNItIONScuuiiiiiiiiie e 71
L 1 o V= 1o I () g T - 72
4.4.3. Initiating abUSINESSIOCESScoiiiiiiiieiiiiie e 72

JBoss Seam 1.0.CR3

Seam - Contextual Components

4.4.4. TaSK @SSIGNIMENTeeiiiiiiii ettt e s e e e e e st r e e e asbe e e e e anb e e e e s nnrreeeeans 72
AA.5. TASK TISIS ittt et et e e e e e ea e 72
4.4.6. PerfOrMING G TASKoiiiiiiiiieiiiieie ettt e et e e s e e e e e e e e e aas 73

5. INTErNALIONAIIZALIONeeiiiiiie et e e et e e e e e e e e e e e e e e e e e e neareeeeeaas 74
oI008 o SR PRSRR 74
oI o= PSS UPSRSRTRR 74
B.3 FACES IMESSAGES ...ccoi i i i e et 75
(O L= 1010111 o [P PPPP PP PP PPPRPRPPPPRPN 76
30 I @0 11 To 01 (oo USSP 76
6.2. ThE "SEAM" ODJECeeiiiiiiiii et e e e e e e an 77
6.2.1. AHeloWorldexample ... 77
6.2.2. SEAM.COMPONENTeiiiiiiei ettt e e e e et e e e e e e s s sabb e e et e e e e e s aanbbreeeeeeas 79
6.2.2.1. Seam.Component.NEWINSEANCE() «..vvveeviiiieieiieiee e e eeee e e e e e 79

6.2.2.2. Seam.Component.getiNStaNCe()ccoovvcirrieiiriee e iiiiiie e e e e e s e e e 80

6.2.2.3. Seam.Component.getComponentName()cvvvevrirreeeriiiiee e 80

6.2.3. SEAM.REMOLINGouiiiiiiiiie e e e e e e e e e e s e abbraeeeaeas 80
6.2.3.1. Seam.Remoting.Creat€TYPE()cvvveeeiierieeeiiieee ettt 80

6.2.3.2. Seam.Remoting.getTypeName()cccceeeeei 80

6.3, CHENT INTEITACES ...ttt e st e e e s s e e e e snbneeeeans 80
L N = O 1= USRS 81
6.4.1. Setting and reading the Conversation IDccooviiiiiiiiiiee e 81

6.5. BAICh REQUESES ... e e 81
6.6. WOrking With DalatyPEScoiiiiiiiieiiie et e et e e e e e e e et ba e e e e e e e e e ans 82
6.6.1. Primitives/ BaSIC TYPES ..ccoiieiiieiiiiie ettt e e 82

B.6. 1.1 SHING ccoeeeieeeeeeeee e, 82

I G o2 1011171 o PP PP PRP 82

B.6.1.3. BOOIBAN ...oiiiieiiiiiiieie ettt e e a e e e eeaaeeaaa 82

6.6.2. JAVABEANSeiiiiiiiii ettt e e e e e e e e nees 82
6.6.3. DAES AN TIIMESuuiieiiiiie e e ittt e e e e e s s st e e e e e e s e st eeraaeeessssntaaneaeaeessaansnranereens 83
B.6.4. ENUMS ... 83
T Oo 1 1= ox o] PRSP 83
B.6.5.1. BAIS ..eeiiveiiieeiiiiie e et e sttt e e e e e et e e e e nnr e e e e annaeeeeennnes 83

B.6.5.2. MaDS ..o, 83

A B L= o ¥ e o] oo PP PP PPPPPPPPPPRPN 84
6.8. TheE LOAHING MESSAGE ...eeeiiie e ettt ettt e e e e e e e e e s s st e e e e e e e e e santbaneeeeaaeeaans 84
6.8.1. Changing thE MESSATEcciueiiiiiiiii e 84
6.8.2. Hiding theloading message ... 84
6.8.3. A Custom Loading INAICALONueviiiiieieeiiiiiee et 84

B.9. IMS IMESSAGING ...eeeteiieeee e et e ettt e e e e e e e e ettt aeeeeeeeeseaaneteeeeeeaaeesaaanneeaeeeeaeeeeaaanssnnnneaaaeeaaans 85
6.9.1. SULSCIbING t0 AIMS TOPIC ...uvviiiiiiie et e e e e eeaeas 85
6.9.2. UNsubscribing from @TOPICeeoiiiiiieeiiiiiee et 85
6.9.3. Tuning the POIIING PrOCESSuuiiiiiiiii it 85

7. CONFIGQUITNG SBAIM ...ttt et e e e e e e e e s b e e e e e s bt e e e e anb et e e e annb e e e e annbnneeean 87
7.1. BasiC Seam CONfigUIalioncoooeeiiiiiii e, 87
7.1.1. Integrating Seam with JSF and your serviet CONtainNercccoovvveeeeiiiieeeiniieee e 87
7.1.2. Integrating Seam with your EJB CONLAINEScooiiiiiiiiiiiee e e e 87
7.1.3. Enabling conversation propagation With redirectsccccceeeiiiiciiiiiiee e 88

7.2. Configuring Seam iN JAVAEE Scoviiiii e 88
AN T = o 1 o [(o [PRSP 89

7.3. Configuring Seam with the JBoss Embeddable EJB3 CONtaiNercccevvveeeiviiiiviiienieaennnnns 89
7.3.1. Installing the Embeddable EJB3 containercccoeoeeiiieeee, 90
7.3.2. Configuring a datasource with the Embeddable EJB3 containercccccooveuvvvveennn. 90

JBoss Seam 1.0.CR3

Seam - Contextual Components

7.3.3. PACKAOINGeeeeiitiiie ettt ettt e e e e 91

7.4. Seam Managed tranSACLIONSvveiiiiieeiiiciiii e e e e e e e e e e e e s s st e e e e e e e s eaatbbaeeeeaaeeaan 92
7.4.1. Enabling Seam-managed tranSaCtioNScceeeeeiiirieeiniiiieee s e e 92
7.4.2. Using a Seam-managed persistence CONteXtccoeeeeeieeii e, 93

7.5. Configuring Seam with Hibernate in JAVaEE ..o 93
7.5.1. Boostrapping HIibernate in SEamoooiiiiiiiiieee e 94
7.5.2. Using a Seam-managed Hibernate SESSioNcooccviiieiiie e 9
7.5.3. PACKAOINGeeeeiitieie ettt ettt e et e e e e 95

7.6. Configuring Seam with Hibernate in JAVa SEoooiiiiieiiie e 95
7.6.1. Using Hibernate and the JBOSS MiCrOCONTAINESeeveiiiirieeiiiiiee e 96
7.6.2. PaCKagiNg ...ccooeeeeeeee e 97

7.7. Configuring JBPM IN SEAIMviiiiiiiiiie et 98
A 5 T = o o PSSP 99

7.8. Configuring SEamM iN @POrtalcooiiiiiiiiiiii e 99
oS = 0 = T o 1= o] LRSS 100
8.1. Annotations for component definitionc.veeeiii i 100
8.2. ANNOLatioNS FOr DIJECTIONcoiiiiiiiieiiiie e 101
8.3. Annotations for component lifecycle methodsccccoooe 103
8.4. Annotations for CONtEXt AEBMAICALIONeeiiiiiiiiieiiiie et sbeee e 104
8.5. Annotations for transaction demarCationcccoviiiiieiiiiiee e 106
8.6. ANNOLatioNS FOr ValidaiONeeiieiiiiiie e sraee e 107
8.7. ANNotations for SEaM REMOLINGuvviiiiiiieee et 107
8.8. ANNOtations for SEaM INTEICEPLOISccoi it e e e e 108
8.9. Annotations for use with JSF dataTablecoeviiiiiiiiiiiire e 108
8.10. Meta-annotations for databinding ... 109
9. BUIIt-iN SEAM COMPONENTS ...t e e e e e s e s r e e e e e e s s st b baaeeeaeeessananreees 110
9.1. Context iNjECtioN COMPONENLScoiuurrieeiirrreeeriereeeaarre e e et eeessbre e e s aanreeeeanrreeesanrneeeeans 110
9.2, ULIlity COMPONENESvvieieiiie e ittt e e e e e e e e e e e e s s et e e e e e e e e s e nntnrereeaaaeesaans 110
9.3. Components for internationNaliZALIONeeoiiiiriieiiiiiie e 111
9.4. Components for controlling CONVEIrSatioNScccoeiiiiiiiiiieiiee e e e e e 112
9.5. IBPM-related COMPONENTSuveiieiiiiiee ettt e e s e e e ssb e e e s nnbaeeeeans 113
9.6. Infrastructural COMPONENESccoeeiiii i, 114
9.7. Security-related COMPONENLSuuviiiieeeiiiiiiiei e e e e e e e e e e s s e e e e e e e e s s earrareeaaaeeaaaas 115
9.8. SPECial COMPONENESciiiiee ettt ettt e et e s e e e e e e e e e e s e e e e e e e e anre e e e s annneeeeans 115
10. Testing SEam aPPlICALIONSuuviiiiiiei it e e e e e e e e e e st r e e e e e e s snntbraaeeaeas 117
10.1. Unit testing SEam COMPONENTSuvveeiiierieeeiiiiieesriereeeasirreessitr e e e s aseeeeesanneeeessnneeeeaans 117
10.2. Integration testing Seam appliCalioNScccciiiiiiiiiii e 118
TS g T oo SRR 122
11.1. jBPM deSigner @nd VIEWESiiiiiiiiiii s s nnnnsnsnsnnnsnnnnnnnnnnns 122
11.1.1. BUSINESS PrOCESS UESIGNEN ...vvviiiiiie e e ittt e e e e s ettt e e e e e e e e st r e e e e e s e e ennrraaeeaeas 122
11.1.2. PaQEFIOW VIBWES ...ttt ettt e e e e 122

11.2. CRUD-PPIICatioN QENEIBEOLeiiieeeiiiiiiiieeeee e e s e eeitiiee e e e e e e e s st e e e e e e e s s santareeeeaeessennnnnees 123
11.2.1. Creating a Hibernate configuration fileccooiiiiiiiiiiic e 123
11.2.2. Creating a Hibernate Console configurationcccccoceciiiiiiinnnnnnnnnnnnnnnnnnnnnnnn. 124
11.2.3. Reverse engineering and COde generationcccueeeeiiireeeeiniieeeenniineee e e 127
11.2.3.1. Code Generation LaUNCREroociiiiiiiieee e 127

10.2.3.2. EXPOITENS ... s nnnnnnnnnnn 129

11.2.3.3. Generating and USING the COOEcuuvviiiiiiiiieeiee e 131

JBoss Seam 1.0.CR3

Introduction to JBoss Seam

Seam is an application framework for Java EE 5. It isinspired by the following principles:

Integrate JSF with EJB 3.0
JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new component model for
server side business and persistence logic. Meanwhile, JSF is a great component model for the presentation
tier. Unfortunately, neither component model is able to solve al problems in computing by itself. Indeed,
JSF and EJB3 work best used together. But the Java EE 5 specification provides no standard way to integ-
rate the two component models. Fortunately, the creators of both models foresaw this situation and
provided standard extension points to allow extension and integration of other solutions.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting the developer
think about the business problem.

One Kind of " Stuff"
Seam provides a uniform component model. A Seam component may be stateful, with the state associated
to any one of anumber of contexts, ranging from the long-running business process to a single web request.

There is no distinction between presentation tier components and business logic components in Seam. It is
possible to write Seam applications where "everything” is an EJB. This may come as a surprise if you are
used to thinking of EJBs as coarse-grained, heavyweight objects that are a pain in the backside to create!
However, EJB 3.0 completely changes the nature of EJB from the point of view of the developer. An EJB
is afine-grained object - nothing more complex than an annotated JavaBean. Seam even encourages you to
use session beans as JSF action listeners!

Unlike plain Java EE or J2EE components, Seam components may simultaneously access state associated
with the web request and state held in transactional resources (without the need to propagate web request
state manually via method parameters). You might object that the application layering imposed upon you
by the old J2EE platform was a Good Thing. Well, nothing stops you creating an equivalent layered archi-
tecture using Seam - the difference is that you get to architect your own application and decide what the
layers are and how they work together.

Declarative State Management

We are al used to the concept of declarative transaction management and J2EE declarative security from
EJB 2.x. EJB 3.0 even introduces declarative persistence context management. These are three examples of
a broader problem of managing state that is associated with a particular context, while ensuring that all
needed cleanup occurs when the context ends. Seam takes the concept of declarative state management
much further and applies it to application state. Traditionally, J2EE applications almost always implement
state management manually, by getting and setting servlet session and request attributes. This approach to
state management is the source of many bugs and memory leaks when applications fail to clean up session
attributes, or when session data associated with different workflows collides in a multi-window application.
Seam has the potential to almost entirely eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context model defined by
Seam. Seam extends the context model defined by the serviet spec—request, session, application—with
two new contexts—conversation and business process—that are more meaningful from the point of view of
the businesslogic.

Bijection
The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as well as in nu-
merous so-called "lighweight containers’. Most of these containers emphasize injection of components that

JBoss Seam 1.0.CR3 Vi

I ntroduction to JBoss Seam

implement statel ess services. Even when injection of stateful componentsis supported (such asin JSF), it is
virtually useless for handling application state because the scope of the stateful component cannot be
defined with sufficient flexibility.

Bijection differs from 1oC in that it is dynamic, contextual, and bidirectional. Y ou can think of it as a mech-
anism for aliasing contextual variables (names in the various contexts bound to the current thread) to attrib-
utes of the component. Bijection allows auto-assembly of stateful components by the container. It even al-
lows a component to safely and easily manipulate the value of a context variable, just by assigning to an at-
tribute of the component.

Workspace Management
Optionally, Seam applications may take advantage of workspace management, alowing users to freely
switch between different conversations (workspaces) in a single browser window. Seam provides not only
correct multi-window operation, but also multi-window-like operation in a single window!

Integrate Business Process as a First Class Construct
Optionally, Seam integrates transparent business process management via jBPM. You won't believe how
easy it isto implement complex workflows using jBPM and Seam.

Seam even alows definition of presentation tier conversation flow by the same means.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this model by expos-
ing jBPM's business process related events via exactly the same event handling mechanism, providing a
uniform event model for Seam's uniform component model.

Annotated POJOs Everywhere
EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to provide information
to the container in a declarative form. Unfortunately, JSF is still heavily dependent on verbose XML con-
figuration files. Seam extends the annotations provided by EJB 3.0 with a set of annotations for declarative
state management and declarative context demarcation. Thislets you eliminate the noisy JSF managed bean
declarations and reduce the required XML to just that information which truly belongs in XML (the JSF
navigation rules).

Testahility as a Core Feature

Seam components, being POJOs, are by nature unit testable. But for complex applications, unit testing
alone is insufficient. Integration testing has traditionally been a messy and difficult task for Java web ap-
plications. Therefore, Seam provides for testability of Seam applications as a core feature of the frame-
work. You can easily write JUnit or TestNG tests that reproduce a whole interaction with a user, exercising
all components of the system apart from the view (the JSP or Facelets page). Y ou can run these tests dir-
ectly inside your IDE, where Seam will automatically deploy EJB components into the JBoss Embeddable
EJB3 container.

Get started now!
Seam works in any application server that supports EJB 3.0. You can even use Seam in a servlet container
like Tomcat, or in any J2EE application server, by leveraging the new JBoss Embeddable EJB3 container.

However, we realize that not everyone is ready to make the switch to EJB 3.0. (After al, the Java EE 5
spec is not even fina yet!) So, in the interim, you can use Seam as a framework for applications that use
JSF for presentation, Hibernate (or plain JDBC) for persistence and JavaBeans for application logic. Then,
when you're ready to make the switch to EJB 3.0, migration will be straightforward.

JBoss Seam 1.0.CR3 Vii

Introduction to JBoss Seam

Presentation Tier
Request Cantroller

Context Management

State Management

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex web application
in Java. Y ou won't believe how little code is required!

JBoss Seam 1.0.CR3

viii

Chapter 1. Seam Tutorial

1.1. Try the examples

In this tutorial, we'll assume that you have downloaded JBoss AS 4.0.4 and installed the EJB 3.0 profile (using
the JBoss ASinstaller). Y ou should also have a copy of Seam downloaded and extracted to awork directory.

The directory structure of each example in Seam follows this pattern:

« Web pages, images and stylesheets may be found in exanpl es/ registration/ vi ew

* Resources such as deployment descriptors and data import scripts may be found in exanpl es/ regi stration/
resources

« Javasource code may be found in exanpl es/ registration/ src

e TheAnt build script isexanpl es/ regi stration/ bui | d. xri

1.1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOVE and $JAVA_HOME set correctly. Next, make
sure you set the location of your JBoss AS 4.0.4 installation in the bui | d. properti es filein the root folder of
your Seam installation. If you haven't already done so, start JBoss AS now by typing bi n/ run. sh or bin/
run. bat intheroot directory of your JBossinstallation.

Now, build and deploy the example by typing ant depl oy inthe exanpl es/ registration directory.

Try it out by accessing htt p: / /1 ocal host : 8080/ seam r egi strati on/ with your web browser.

1.1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $ANT_HOVE and $JAVA_HOME set correctly. Next, make
sure you set the location of your Tomcat 5.5 installation in the bui | d. properti es filein the root folder of your
Seam installation.

Now, build and deploy the example by typing ant depl oy. t ontat inthe exanpl es/ registration directory.
Finally, start Tomcat.

Try it out by accessing htt p: / /1 ocal host : 8080/ j boss- seam r egi strati on/ With your web browser.

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss Embeddable EJB3

container, a complete standalone EJB3 container environment.

1.1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the testsis to run
ant testexanpl e inside the exanpl es/ registration directory. It is also possible to run the testsinside your IDE
using the TestNG plugin.

JBoss Seam 1.0.CR3 1

http://localhost:8080/seam-registration/
http://localhost:8080/jboss-seam-registration/

Seam Tutorial

1.2. Your first Seam application: the registration example

The registration example is a fairly trivial application that lets a new user store his username, real name and
password in the database. The example isn't intended to show off al of the cool functionality of Seam.
However, it demonstrates the use of an EJB3 session bean as a JSF action listener, and basic configuration of
Seam.

WEe'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then submitting the
form. Thiswill save a user object in the database.

©) Register New User - Mozilla Firefox |:||§||X|

File Edit View Go Bookmarks Tools Help
@ - E:} - % @ |@ http://localhost:8080/seam-registration/register.seam V| ® Go |@.

| [Chapter 1. Seam Tutorial | [&] Register New User |[#380ss DVD Store

Username |gavin
Peal Name |Gavin King
Password |m'm1

1.2.1. Understanding the code

The example isimplemented with two JSP pages, one entity bean and one statel ess session bean.

JBoss Seam 1.0.CR3 2

Seam Tutorid

FF companents in 15P page J5F components in J5F page

register.jsp registered, jsp

update model values

@

Eritity Bean

®

risfehe i H e

User

@ ,

ik applicaten
raglEtec (]

Snateless Session Bean

RegisterAction

T k)

EntityManager

EJE A

Let'stake alook at the code, starting from the "bottom".

1.2.1.1. The entity bean: User. | ava

We need an EJB entity bean for user data. This class defines persistence and validation declaratively, via an-
notations. It also needs some extra annotations that define the class as a Seam component.

Example 1.1.
@ntity (1)
@\anme("user") (2)
@scope(SESSI ON) (3)
@abl e(nane="users") (4)
public class User inplenents Serializable
{

private static final |ong serial VersionU D = 1881413500711441951L;

private String usernane; (5)
private String password;

private String nane;

public User(String nane, String password, String usernane)

{
this. nane = nane;
thi s. password = passwor d;
t hi s. user nane = user nane;
}
public User() {} (6)
@Not Nul I @engt h(m n=5, nmax=15) (7)

public String getPassword()

JBoss Seam 1.0.CR3 3

Seam Tutorid

(1

(2)

(3)

(4)
(5)

(6)
(7

(8)

{

return passwor d;

}

public void setPassword(String password)

{

this. password = password;

}

@\ot Nul |
public String get Nane()

{

return nane,;

}

public void setNane(String nane)

{

thi s. nane = nane;

}

@d @botNull @ength(m n=5, nmax=15) (8)
public String getUsernane()
{

return usernane;

}

public void setUsernane(String usernane)

{

t hi s. user nane = user nane;

}

The EJB3 standard @nt i t y annotation indicates that the User classis an entity bean.

A Seam component needs a component name specified by the @ane annotation. This name must be
unique within the Seam application. When JSF asks Seam to resolve a context variable with a name that is
the same as a Seam component name, and the context variable is currently undefined (null), Seam will in-
stantiate that component, and bind the new instance to the context variable. In this case, Seam will instan-
tiate auser thefirst time JSF encounters avariable named user .

Whenever Seam instantiates a component, it binds the new instance to a context variable in the compon-
ent's default context. The default context is specified using the @cope annotation. The User bean is a ses-
sion scoped component.

The EJB standard @rabl e annotation indicates that the User classis mapped to the user s table.

name, passwor d and user nane are the persistent attributes of the entity bean. All of our persistent attrib-
utes define accessor methods. These are needed when this component is used by JSF in the render re-
sponse and update model values phases.

An empty constructor is both required by both the EJB specification and by Seam.

The @bt Nul I and @engt h annotations are part of the Hibernate Validator framework. Seam integrates
Hibernate Validator and lets you use it for data validation (even if you are not using Hibernate for persist-
ence).

The EJB standard @ d annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @wane and @cope annotations. These annotations
establish that this class is a Seam component.

WEe'll see below that the properties of our User class are bound to directly to JSF components and are popul ated
by JSF during the update model values phase. We don't need any tedious glue code to copy data back and forth
between the JSP pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't use this component
as a JSF action listener. For that we need a session bean.

JBoss Seam 1.0.CR3 4

Seam Tutorid

1.2.1.2. The stateless session bean class: Regi sterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead if you like).

We have exactly one JSF action in our application, and one session bean method attached to it. In this case,
we'll use a statel ess session bean, since all the state associated with our action is held by the User bean.

Thisisthe only redly interesting code in the exampl el

Example 1.2.

@t at el ess (1)
@ame("regi ster")
public class RegisterAction inplenents Register

{

(1
(2)

(3)

(4
(5)

(6)

@n @alid (2)(3)
private User user;

@er si st enceCont ext (4)
private EntityManager em

@f | nval i d(out come=CQut cone. REDI SPLAY) (5)
public String register() (6)

{

Li st existing = emcreateQery("sel ect usernane from User where usernane=: usernane")
. set Par anmet er ("user nane", user.getUsernane())
.getResul tList();

if (existing.size()==0)

{
em persi st (user);
return "/registered.jsp"; (7)
}
el se
{
FacesMessages. i nstance().add("User #{user.usernane} already exists"); (8)
return null;
}

The EJB standard @t at el ess annotation marks this class as statel ess session bean.

The @ n annotation marks an attribute of the bean as injected by Seam. In this case, the attribute is injec-
ted from a context variable named user (the instance variable name).

The @val i d annotation is provided by Hibernate Validator to specify that recursive validation of related
objects should occur.

The EJB standard @er si st enceCont ext annotation is used to inject the EJB3 entity manager.

The @f 1 nval i d annotation tells Seam to validate the component state using Hibernate Validator before
invoking the action listener method, and return a different JSF outcome if the state is invalid. In this ex-
ample, the user is validated when the regi st er () method is invoked, and the form is redisplayed with
messages if avalidation failure occurs.

The action listener method uses the standard EJB3 Ent i t yManager API to interact with the database, and
returns the JSF outcome. Note that, since this is a sesson bean, a transaction is automatically begun when
theregi st er () method is called, and committed when it completes.

JSF action listener methods return a string-valued outcome that determines what page will be displayed
next. A null outcome (or a void action listener method) redisplays the previous page. In plain JSF, it is
normal to always use a JSF navigation rule to determine the JSF view id from the outcome. For complex

JBoss Seam 1.0.CR3 5

Seam Tutorid

application thisindirection is useful and agood practice. However, for very simple examples like this one,
Seam lets you use the JSF view id as the outcome, eliminating the requirement for a navigation rule. Note
that when you use a view id as an outcome, Seam always performs a browser redirect.

(8) Seam provides a number of built-in components to help solve common problems. The FacesMessages
component makes it easy to display templated error or success messages. Built-in Seam components may
be obtained by injection, or by calling ani nst ance() method.

Note that we did not explicitly specify a @cope thistime. Each Seam component type has a default scope if not
explicitly specified. For stateless session beans, the default scope is the statel ess context. Actually, all stateless
session beans belong in the statel ess context.

Our session bean action listener performs the business and persistence logic for our mini-application. In more
complex applications, we might need to layer the code and refactor persistence logic into a dedicated data ac-
cess component. That's perfectly trivial to do. But notice that Seam does not force you into any particular
strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with the web request
(the form values in the user object, for example), and state held in transactional resources (the Ent i t yManager
object). Thisis abreak from traditional J2EE architectures. Again, if you are more comfortable with the tradi-
tional J2EE layering, you can certainly implement that in a Seam application. But for many applications, it's
simply not very useful.

1.2.1.3. The session bean local interface: Regi ster.java

Naturally, our session bean needs alocal interface.

Example 1.3.

@oca

public interface Register

{
}

public String register();

That's the end of the Java code. Now onto the deployment descriptors.

1.2.1.4. The web deployment description: web. xni

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web deployment
descriptor.

Example 1.4.

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="2.4"
xm ns="http://java. sun.com xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun.com xm / ns/ | 2ee
http://java. sun. com xm / ns/j 2ee/ web- app_2_4. xsd" >

<l-- Seam -->

<listener>

JBoss Seam 1.0.CR3 6

Seam Tutorid

<l i stener-class>org.jboss. seam servl et. SeanlLi stener</|i stener-cl ass>
</listener>

<I-- dobal JNDI nane pattern for JBoss EJB3 (change for other servers) -->
<cont ext - par anr

<par am nane>or g. j boss. seam core. i nit.jndi Pattern</param name>

<par am val ue>j boss- seam regi strati on/ #{ ej bNane}/| ocal </ param val ue>
</ cont ext - par an

<l-- MFaces -->

<l|istener>
<l i stener-cl ass>
or g. apache. nyf aces. webapp. St art upSer vl et Cont ext Li st ener
</listener-class>
</listener>

<cont ext - par an>
<par am nanme>j avax. f aces. STATE_SAVI NG_METHOD</ par am nane>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an»

<servl et >
<servl et - nane>Faces Servl et </servl et -nane>
<servl et - cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>
<l oad-on- startup>1</| oad- on- st art up>

</servl et>

<!-- Faces Servlet Mapping -->
<servl et - mappi ng>
<servl et - nane>Faces Servl et </servl et - nane>
<url -pattern>*. seanx/url - pattern>
</ servl et - mappi ng>

</ web- app>

Thisweb. xm file configures Seam and MyFaces. The configuration you see here is pretty much identical in all
Seam applications.

1.2.1.5. The JSF configration: faces-confi g. xm

All Seam applications use JSF views as the presentation layer. So we'll need f aces- confi g. xmi .

Example 1.5.

<?xm version="1.0" encodi ng="UTF-8""?>

<! DOCTYPE f aces-config

PUBLIC "-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.0//EN"
"http://java. sun. com dt d/ web- f acesconfig_1 0.dtd">

<f aces-config>

<I-- A phase listener is needed by all Seam applications -->
<lifecycl e>
<phase-|i stener>org.jboss. seam j sf. SeanPhaselLi st ener </ phase-|i st ener >

</lifecycl e>

</ faces-config>

Thefaces-config. xn file integrates Seam into JSF. Note that we don't need any JSF managed bean declara-
tionsl The managed beans are the Seam components. In Seam applications, the faces-config. xn is used
much less often than in plain JSF.

JBoss Seam 1.0.CR3 7

Seam Tutorid

In fact, once you have al the basic descriptors set up, the only XML you need to write as you add new func-
tionality to a Seam application is the navigation rules, and possibly jBPM process definitions. Seam takes the
view that process flow and configuration data are the only things that truly belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the view id in our ac-
tion code.

1.2.1.6. The EJB deployment descriptor: ej b-j ar. xm

Theejb-jar. xn fileintegrates Seam with EJB3, by attaching the Seam nt er cept or to all session beansin the
archive.

<ej b-j ar>
<assenbl y-descri pt or >
<i nt er cept or - bi ndi ng>
<ej b- name>* </ ej b- name>
<i nterceptor-class>org.jboss. seam ej b. Seanl nt ercept or</i nterceptor-class>
</interceptor-bindi ng>
</ assenbl y-descri pt or >
</ ejb-jar>

1.2.1.7. The EJB persistence deployment descriptor: persi st ence. xmi

The persi stence. xnl file tells the EJB persistence provider where to find the datasource, and contains some
vendor-specific settings. In this case, enables automatic schema export at startup time.

<persi st ence>
<persi st ence-unit name="user Dat abase" >
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ pr ovi der >
<j t a- dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<properties>
<property nanme="hi ber nate. hbn2ddl . aut 0" val ue="create-drop"/>
</ properties>
</ per si st ence- uni t >
</ persi stence>

1.2.1.8. The view: regi ster.jsp and regi stered. j sp

The view pages for a Seam application could be implemented using any technology that supports JSF. In this
example we use JSP, since it is familiar to most developers and since we have minimal requirements here any-
way. (But if you take our advice, you'll use Facelets for your own applications.)

Example 1.6.

"http://java.sun.com jsf/htm" prefix="h" %
"http://java.sun.conljsf/core" prefix="f" %

<Yy@taglib ur
<Y@taglib ur
<htm >
<head>
<title>Regi ster New User</title>
</ head>
<body>
<f:view>
<h: f or np
<t abl e border="0">
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user.username}"/></td>
</[tr>
<tr>
<t d>Real Nane</td>

JBoss Seam 1.0.CR3 8

Seam Tutorid

<t d><h: i nput Text val ue="#{user.nane}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h: i nput Secret val ue="#{user.password}"/></td>
</tr>
</t abl e>
<h: nessages/ >
<h: conmandBut t on type="subm t" val ue="Regi ster"” action="#{register.register}"/>
</ h: fornm
</f:view
</ body>
</htm >

Example 1.7.

<Y@taglib uri="http://java.sun.conjsf/htm" prefix="h" %
<y@taglib uri="http://java.sun.conljsf/core" prefix="f" %
<htm >
<head>
<title>Successfully Registered New User</title>
</ head>
<body>
<f:view
Wl cone, <h:out put Text val ue="#{user.nane}"/>,
you are successfully regi stered as <h: out put Text val ue="#{user. usernane}"/>.
</f:view
</ body>
</htm >

These are boring old JSP pages using standard JSF components. There is nothing specific to Seam here.

1.2.1.9. The EAR deployment descriptor: appli cati on. xm

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Example 1.8.

<appl i cati on>
<di spl ay- nane>Seanx/ di spl ay- name>

<modul e>
<web>
<web- uri >j boss- seam regi strati on. war </ web- uri >
<cont ext -r oot >/ seam r egi strati on</ cont ext - r oot >
</ web>
</ modul e>
<modul e>
<ej b>j boss-seamregi stration.jar</ejb>
</ modul e>
<nmodul e>
<j ava>j boss-seam j ar </ j ava>
</ modul e>

</ application>

This deployment descriptor links modules in the enterprise archive and binds the web application to the context
root / seamregi stration

JBoss Seam 1.0.CR3 9

Seam Tutorid

We've now seen all the filesin the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is no value already
bound to that name (in any Seam context), Seam instantiates the user component, and returns the resulting
User entity bean instance to JSF after storing it in the Seam session context. JSF binds the form input values to
properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er . Seam finds the Regi st er Act i on Stateless session
bean in the statel ess context and returnsit. JSF invokesther egi st er () action listener method.

Seam intercepts the method call, injects the user entity from the session context, before asking Hibernate Val-
idator to validate the session bean instance (and, recursively, the User entity bean instance). If the state is valid,
the invocation proceeds and the r egi st er () method is called. If not, Seam returns anul I outcome and JSF re-

displays the page.

The regi ster () method checks if a user with the entered username already exists. If so, an error message is
queued with the FacesMessages component, and a null outcome is returned, causing a page redisplay. The
FacesMessages component interpolates the JSF expression embedded in the message string and adds a JSF
FacesMessage to the view.

If no user with that username exists, the "/ regi st ered. j sp" outcome triggers a browser redirect to the re-
gi stered. j sp page. When JSF comes to render the page, it asks Seam to resolve the variable named user and
uses property values of the returned user entity from Seam's session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that Seam
provides special functionality on top of JSF to make it easier to query data using EJB-QL or HQL and display it
asaclickablelist using a JSF <h: dat aTabl e>. The messages example demonstrates this functionality.

JBoss Seam 1.0.CR3 10

Seam Tutorial

) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

@-o - & O 9 [0 htp:/focahost:8080 ¥ | © Go [[GL

L3 Latest Headlines £33 The World Clock B XE Currency Converter ' Hibernate JIRA
|[] Chapter 1. Seam Tutorial | LI Messages \

Message List

Read Title Date/Time

Greetings Earthling Feb 4, 2006 9:40 AM
Hello World Jan 2, 2006 7:00 AM

Greetings Earthling

This is another example of a message.

1.3.1. Understanding the code
The message list example has one entity bean, Message, one session bean, MessagelLi st Bean and one JSP.

1.3.1.1. The entity bean: Message. j ava

The Message entity defines the title, text, date and time of a message, and a flag indicating whether the message
has been read:

Example 1.9.

@ntity

@ane(" nessage")

@scope(EVENT)

public class Message i npl enents Serializable

{
private Long id;
private String title;
private String text;
private bool ean read;
private Date dateti ne;

@d @zener at edVal ue
public Long getld() {
return id,

JBoss Seam 1.0.CR3 11

Seam Tutorid

1.3.1.2. The stateful session bean: MessageManager Bean. j ava

}

public void setld(Long id) {
this.id =id;

}

@ot Nul | @-engt h(max=100)

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

@\ot Nul | @b

public String getText() {
return text;

}

public void setText(String text) {
this.text = text;
}

@ot Nul |

publ i c bool ean i sRead() {
return read;

}

public void setRead(bool ean read) {
this.read = read;
}

@\ot Nul |
@asi ¢ @enpor al (Tenpor al Type. TI MESTAVP)
public Date getDatetinme() {
return datetine;
}

public void setDateti me(Date datetinme) {
this.dateti me = datetine;
}

Just like in the previous example, we have a session bean, MessageManager Bean, which defines the action
listener methods for the two buttons on our form. One of the buttons selects a message from the list, and dis-
plays that message. The other button deletes a message. So far, thisis not so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we navigate to the
message list page. There are various ways the user could navigate to the page, and not all of them are preceded
by a JSF action—the user might have bookmarked the page, for example. So the job of fetching the message
list takes place in a Seam factory method, instead of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this a stateful ses-
sion bean.

Example 1.10.

@5t at ef ul
@cope(SESSI ON)
@anme(" nessageManager ")

public class MessageManager Bean i npl enents Seriali zabl e,

{

@at aMbdel

MessageManager

(1)

JBoss Seam 1.0.CR3

12

Seam Tutorid

private List<Message> nessageli st;
@at aMbdel Sel ecti on (2)

@ut (requi red=f al se) (3)
private Message nessage;

@er si st enceCont ext (t ype=EXTENDED) (4)
private EntityManager em

@act ory("messageli st") (5)
public void findMessages()

{
}

public void select() (6)
{

}

public void delete() (7)
{

nmessageli st = em createQuery("from Message nsg order by msg.dateti ne desc").getResultList();

nmessage. set Read(true);

nmessageli st.renpve(nessage) ;
em renpve(message) ;
nmessage=nul | ;

}

@Renpbve @estory (8)
public void destroy() {}

(1) The @at aModel annotation exposes an attibute of typej ava. util . Li st to the JSF page as an instance of
j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF <h: dat aTabl e> with clickable
links for each row. In this case, the Dat ambdel is made available in a session context variable named nes-
sageli st.

(2) The @at aMbdel Sel ecti on annotation tells Seam to inject the Li st element that corresponded to the
clicked link.

(3) The @ut annotation then exposes the selected value directly to the page. So ever time a row of the click-
able list is selected, the Message is injected to the attribute of the stateful bean, and the subsequently out-
jected to the event context variable named nessage.

(4) This stateful bean has an EJB3 extended persistence context. The messages retrieved in the query remain
in the managed state as long as the bean exists, so any subsequent method calls to the stateful bean can
update them without needing to make any explicit call to the Ent i t yManager .

(5) The first time we navigate to the JSP page, there will be no value in the messagelLi st context variable.
The @act ory annotation tells Seam to create an instance of MessageManager Bean and invoke the fi nd-
Messages() method toinitialize the value. We call fi ndvessages() afactory method for nessages.

(6) Theselect () action listener method marks the selected Message as read, and updates it in the database.

(7) Thedel et e() action listener method removes the selected Message from the database.

(8) All stateful session bean Seam components must have a method marked @enove @est r oy to ensure that
Seam will remove the stateful bean when the Seam context ends, and clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session, and all requests
from alogin session share the same instance of the component. (In Seam applications, we usually use session-
scoped components sparingly.)

1.3.1.3. The session bean local interface: MessageManager . j ava

All session beans have abusiness interface, of course.

JBoss Seam 1.0.CR3 13

Seam Tutorid

@oca
public interface MessageManager
{
public void findMessages();
public void select();
public void delete();
public void destroy();

From now on, we won't show local interfacesin our code examples.

Let's skip over persi stence. xnl , web. xnl , ej b-j ar. xm , faces-config. xni and appl i cation. xm since they
are much the same as the previous example, and go straight to the JSP.

1.3.1.4. The view: nessages. j sp

The JSP page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing specific to Seam.

Example 1.11.

<Y@taglib uri="http://java.sun.conmjsf/htm" prefix="h" %
<v@taglib uri="http://java.sun.conljsf/core" prefix="f" %
<htm >
<head>
<title>Messages</title>
</ head>
<body>
<f:view>
<h: f or n»
<h2>Message Li st</h2>
<h: out put Text val ue="No nessages to di splay" rendered="#{nessagelLi st.rowCount==0}"/>
<h: dat aTabl e var="nsg" val ue="#{nessagelLi st}" rendered="#{messageli st.rowCount >0}">
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Read"/>
</f:facet>
<h: sel ect Bool eanCheckbox val ue="#{nsg.read}" disabl ed="true"/>
</ h: col utm>
<h: col um>
<f:facet nane="header">
<h: out put Text val ue="Title"/>
</f:facet>
<h: conmandLi nk val ue="#{nsg.title}" action="#{nessageManager.select}"/>
</ h: col um>
<h: col um>
<f:facet nanme="header">
<h: out put Text val ue="Date/Ti me"/>
</f:facet>
<h: out put Text val ue="#{nsg. dateti ne}">
<f:convertDat eTi ne type="both" dateStyl e="nmedi uni' tinmeStyle="short"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<h: conmandBut t on val ue="Del ete" acti on="#{messageManager.del ete}"/>
</ h: col utm>
</ h: dat aTabl e>
<h3><h: out put Text val ue="#{nmessage.title}"/></h3>
<di v><h: out put Text val ue="#{ message. text}"/></div>
</ h: form
</ f:view
</ body>
</htm >

JBoss Seam 1.0.CR3 14

Seam Tutorial

1.3.2. How it works

The first time we navigate to the nessages. j sp page, whether by a JSF postback (faces request) or a direct
browser GET request (non-faces request), the page will try to resolve the messageLi st context variable. Since
this context variable is not initialized, Seam will call the factory method fi ndMessages(), which performs a
query against the database and results in a Dat aMbdel being outjected. This Dat amobdel provides the row data
needed for rendering the <h: dat aTabl e>.

When the user clicks the <h: commandLi nk>, JSF callsthe sel ect () action listener. Seam intercepts this call and
injects the selected row data into the message attribute of the messageManager component. The action listener
fires, marking the selected Message as read. At the end of the call, Seam outjects the selected Message to the
context variable named message. Next, the EJB container commits the transaction, and the change to the mes-

sage is flushed to the database. Finally, the page is re-rendered, redisplaying the message list, and displaying
the selected message below it.

If the user clicks the <h: commandBut t on>, JSF calls the del et () action listener. Seam intercepts this call and
injects the selected row datainto the message attribute of the nessageLi st component. The action listener fires,
removing the selected Message from thelist, and also calling r emove() onthe Enti t ymanager . At the end of the
call, Seam refreshes the nessages context variable and clears the context variable named nessage. The EJB
container commits the transaction, and deletes the Message from the database. Finally, the page is re-rendered,

redisplaying the message list.

1.4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste of how
jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing lists of tasks is
such core functionality for jBPM, thereis hardly any Java code at al in this example.

©) Todo List - Mozilla Firefox
Fle Edit View Go Bookmarks Tools Help

@-o -8 ©3) | http://iocahost:8080/seam-todo/todo.seam v| 0o &

|| Chapter 1. Seam Tutoril '[E Todo List |[#3Boss DVD Store

Todo List

Description Created Priority Due Date
|Bookﬁightto Isreal |Jan 13, 2006
|Getme stupid Seam release finished! |Jan 13, 2006
Haircut Jan 13, 2006
|Review Hibernate in Action second edition |Jan 13, 2006
|I(ic|< Roy out of my office |Jan 13, 2006
|Blog aboutworkspace management |Jan 13, 2006

Update ltems

| |[Create New ltem]

JBoss Seam 1.0.CR3 15

Seam Tutorid

1.4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSPs and two trivial JavaBeans
(There was no reason to use session beans, since they do not access the database, or have any other transaction-
al behavior). Let's start with the process definition:

Example 1.12.

<process-definition name="t odo">

<start-state nanme="start"> (1)
<transition to="todo"/>
</start-state>

<t ask- node nanme="t odo" > (2)
<task nane="todo" description="#{todoList.description}"> (3)
<assi gnment actor-id="#{actor.id}"/> (4)

</ task>

<transition to="done"/>
</t ask- node>

<end- st ate name="done"/> (5)

</ process-definition>

(D

(2)

(3)

(4

(5)

The <st art - st at e> nhode represents the logical start of the process. When the process starts, it immedi-
ately transitionsto the t odo node.

The <t ask- node> node represents a wait state, where business process execution pauses, waiting for one
or more tasks to be performed.

The <t ask> element defines a task to be performed by a user. Since there is only one task defined on this
node, when it is complete, execution resumes, and we transition to the end state. The task gets its descrip-
tion from a Seam component named t odoLi st (one of the JavaBeans).

Tasks need to be assigned to a user or group of users when they are created. In this case, the task is as-
signed to the current user, which we get from a built-in Seam component named act or . Any Seam com-
ponent may be used to perform task assignment.

The <end- st at e> node defines the logical end of the business process. When execution reaches this node,
the process instance is destoryed.

If we view this process definition using the process definition editor provided by JBossIDE, thisiswhat it looks

like:

JBoss Seam 1.0.CR3 16

Seam Tutorid

<<Start State==
e start

W <= [ask Node==
i todo

<=Fnd State==
]
done

This document defines our business process as a graph of nodes. Thisis the most trivial possible business pro-
cess. there is one task to be performed, and when that task is complete, the business process ends.

The first JavaBean handles the login screen | ogi n. j sp. Itsjob is just to initialize the jBPM actor id using the
act or component. (In areal application, it would also need to authenticate the user.)

Example 1.13.

@Narre("1 ogi n")

public class Login {

@n(create=true)
private Actor actor;

private String user;

public String getUser() {
return user;

}

public void setUser(String user) {
this.user = user;

}

public String I ogin()
{

actor.setld(user);
return "/todo.jsp";

}
}

Here we see the use of @ n(cr eat e=t rue) , which tells Seam to create an instance of a component, in this case
the component named act or , if none currently exists in the context.

JBoss Seam 1.0.CR3 17

Seam Tutorid

The JSPitself istrivial:

Example 1.14.

<y@taglib ur
<Y@taglib ur
<htm >
<head>
<title>Login</title>
</ head>
<body>
<hl>Logi n</ h1>
<f:view>
<h: f or m»
<di v>
<h:i nput Text val ue="#{l ogi n.user}"/>
<h: conmandBut t on val ue="Logi n" action="#{login.login}"/>
</ di v>
</ h: form
</f:view
</ body>
</htm >

"http://java.sun.com jsf/htm" prefix="h"%
"http://java.sun.com jsf/core" prefix="f"%

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.15.
@Nane("t odoList")
public class TodoLi st {
private String description

public String getDescription() (1)
{

}

return description;

public void setDescription(String description) {
this.description = description

}

@Cr eat eProcess(definition="todo") (2)
public void createTodo() {}

@t art Task @ndTask (3)
public void done() {}

(1) The description property accepts user input form the JSP page, and exposes it to the process definition, al-
lowing the task description to be set.

(2) The Seam @ eat ePr ocess annotation creates a new jBPM process instance for the named process defini-
tion.

(3) The Seam @t art Task annotation starts work on atask. The @ndTask ends the task, and allows the busi-
NEsSs process execution to resume.

In amore redlistic example, @t art Task and @ndTask would not appear on the same method, because there is
usually work to be done using the application in order to compl ete the task.

JBoss Seam 1.0.CR3 18

Seam Tutorid

Finally, the meat of the applicationisint odo. j sp:

Example 1.16.

<v@taglib uri="http://java.sun.conljsf/htm" prefix="h"%
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f"%

<htm >
<head>
<title>Todo List</title>
</ head>
<body>
<h1>Todo List</hl>
<f:view>
<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty tasklnstancelist}"/>
<h: dat aTabl e val ue="#{taskl nstanceList}" var="task" rendered="#{not enpty tasklnstanceList}":
<h: col um>
<f:facet nane="header">
<h: out put Text val ue="Descri ption"/>
</f:facet>
<h:i nput Text val ue="#{task. description}"/>
</ h: col um>
<h: col um>
<f:facet nanme="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{task.taskMnt| nst ance. processl nstance. start}">
<f:convertDat eTi ne type="date"/>
</ h: out put Text >
</ h: col um>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text val ue="#{task.priority}" style="w dth: 30"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task.dueDate}" style="wi dth: 100">
<f:convertDateTi me type="date" dateStyle="short"/>
</ h: i nput Text >
</ h: col utm>
<h: col utm>
<h: commandLi nk acti on="#{t odoLi st.done}">
<h: conmandBut t on val ue="Done"/ >
<f:param nane="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>
</ h: col um>
</ h: dat aTabl e>
</ di v>
<di v>
<h: nessages/ >
</div>
<di v>
<h: conmandBut t on val ue="Update |tens" acti on="update"/>
</ di v>
</ h: form
<h: form i d="new'>
<di v>
<h: i nput Text val ue="#{todoLi st. description}"/>
<h: conmandBut t on val ue="Create New I tent action="#{todoLi st.createTodo}"/>
</ di v>
</ h: fornmp
</f:view
</ body>

JBoss Seam 1.0.CR3 19

Seam Tutorid

</htm >

Let's take this one piece at atime.

The page renders a list of tasks, which it gets from a built-in Seam component named t askl nst ancelLi st . The
list is defined inside a JSF form.

<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty tasklnstancelList}"/>
<h: dat aTabl e val ue="#{taskl nstanceList}" var="task" rendered="#{not enpty tasklnstanceList}">

</ h: dat aTabl e>
</ di v>
</ h: fornp

Each element of the list is an instance of the jJBPM class Task! nst ance. The following code simply displays the
interesting properties of each task in the list. For the description, priority and due date, we use input controls, to
allow the user to update these values.

<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Descri ption"/>
</f:facet>
<h:i nput Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{task.taskMynt | nst ance. processl nstance. start}">
<f:convertDat eTi ne type="date"/>
</ h: out put Text >
</ h: col utm>
<h: col um>
<f:facet nane="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text value="#{task.priority}" style="wi dth: 30"/>
</ h: col utm>
<h: col um>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task.dueDate}" style="w dth: 100">
<f:convertDateTi ne type="date" dateStyl e="short"/>
</ h: i nput Text >
</ h: col utm>

This button ends the task by calling the action method annotated @t art Task @ndTask. It passes the task id to
Seam as arequest parameter.

<h: col um>
<h: commandLi nk acti on="#{t odoLi st.done}">
<h: conmandBut t on val ue="Done"/>
<f:param nane="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>
</ h: col um>

This button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM will
make any changes to the tasks persistent. There is no need for any action listener method.

<h: conmandBut t on val ue="Update |tens" acti on="update"/>

JBoss Seam 1.0.CR3 20

Seam Tutorial

A second form on the page is used to create new items, by calling the action method annotated
@cr eat ePr ocess.

<h: form i d="new'>
<di v>
<h:i nput Text val ue="#{todoLi st.description}"/>
<h: conmandBut t on val ue="Create New |l tenl' acti on="#{todoLi st.createTodo}"/>
</ di v>
</ h: fornme

There are severa other files needed for the example, but they are just standard jBPM and Seam configuration
and not very interesting.

1.4.2. How it works

TODO

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF navigation rules are a perfectly good
way to define the page flow. For applications with a more constrained style of navigation, especially for user
interfaces which are more stateful, navigation rules make it difficult to really understand the flow of the system.
To understand the flow, you need to piece it together from the view pages, the actions and the navigation rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number guessing example
shows how thisis done.

©) Guess a number... - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

QEI - E:> - @ @ | http://localhost:8080/seam-numberguess/numberGuess.seam?conversationld=1 v | ® Go [[GL

| [] Chapter 1. Seam Tutor@l |] Guess a number... }

Guess a number...

Lower!
I'm thinking of a number between 1 and 49. You have 9 guesses.
Your guess: 50 | [Guess |

1.5.1. Understanding the code

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow definition. Let's begin
with the pageflow:

Example 1.17.

<pagef | ow defi niti on name="nunber Guess" >

JBoss Seam 1.0.CR3 21

Seam Tutorid

<start-page name="di spl ayCGuess" vi ew i d="/nunber Guess. jsp">
<redirect/>
<transition name="guess" to="eval uat eGuess">
<action expressi on="#{nunber Guess. guess}" />

</transition> (1)
</start-page> (2)
(3)

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}">
<transition name="true" to="win"/>
<transition name="fal se" to="eval uat eRerai ni ngGuesses"/ >

</ deci si on> (4)

<deci si on nane="eval uat eRemai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}">
<transition name="true" to="Iose"/>
<transition name="fal se" to="displayCGuess"/>

</ deci si on>

<page nane="wi n" viewid="/win.jsp">
<redirect/>
<end- conversation />

</ page>

<page nanme="|ose" viewid="/lose.jsp">
<redirect/>
<end- conversation />

</ page>

</ pagef | ow definition>

(1) The <page> element defines a wait state where the system displays a particular JSF view and waits for
user input. The vi ewi d is the same JSF view id used in plain JSF navigation rules. Theredi rect attrib-
ute tells Seam to use post-then-redirect when navigating to the page. (This results in friendly browser
URLS)

(2) The<transition> element names a JSF outcome. The transition is triggered when a JSF action results in
that outcome. Execution will then proceed to the next node of the pageflow graph, after invocation of any
jBPM transition actions.

(3) A transition <acti on> isjust like a JSF action, except that it occurs when a jBPM transition occurs. The
transition action can invoke any Seam component.

(4) A <deci si on> node branches the pageflow, and determines the next node to execute by evaluating a JSF
EL expression.

Here iswhat the pageflow looks like in the JBossI DE pageflow editor:

JBoss Seam 1.0.CR3 22

Seam Tutorid

<< Start State>>
start

= {:{:Page:}:}
~ displayGuess

guess false
o ==Decision=> false 2 ==Decision=>
il . o
evaluateGuess evaluateRemainingGuesses
true true
ﬁ%{xpagga} ﬁ%{ﬁpageﬁ}
win ~ lose

Now that we have seen the pageflow, it isvery, very easy to understand the rest of the application!

Here is the main page of the application, nunber Guess. j sp:

Example 1.18.

<y@taglib uri="http://java.sun.confjsf/htm" prefix="h"%
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f"%

<htm >
<head>
<title>Guess a nunber...</title>
</ head>
<body>
<hl>CGuess a nunber...</hl>
<f:view>
<h: f or m»
<h: out put Text val ue="Hi gher!" rendered="#{ nunber Guess. randonmNunber >nunber Guess. current Guess}"
<h: out put Text val ue="Lower!" rendered="#{nunber Guess. randomNunber <nunber Guess. current Guess}" |

I"'mthinking of a nunber between <h:out put Text val ue="#{nunber Guess.snallest}" /> and
<h: out put Text val ue="#{nunber Guess. bi ggest}" />. You have
<h: out put Text val ue="#{nunber Guess. r enai ni ngGuesses}" /> guesses.

Your guess:
<h:i nput Text val ue="#{nunber Guess. current Guess}" id="guess" required="true">
<f:val i dat eLongRange
maxi mun¥" #{ nunber Guess. bi ggest } "
m ni mun¥"#{ nunber Guess. snmal l est}"/>
</ h:i nput Text >
<h: commandButt on type="subnit" val ue="Quess" acti on="guess" />

<h: nessage for="guess" style="color: red"/>
</ h: fornm
</f:view
</ body>
</htm >

JBoss Seam 1.0.CR3 23

Seam Tutorid

Notice how the command button names the guess transition instead of calling an action directly.

Thewi n. j sp pageis predictable:

Example 1.19.

<y@taglib ur

<Yy@taglib ur

<htm >

<head>

<title>You won!</title>

</ head>

<body>

<h1>You won! </ h1>

<f:view
Yes, the answer was <h:out put Text val ue="#{nunber Guess. current Guess}" />.
It took you <h:output Text val ue="#{nunber Guess. guessCount}" /> guesses.
Wul d you like to pl ay agai n</ a>?

</f:view
</ body>
</htm >

"http://java.sun.conljsf/htm" prefix="h"%
"http://java.sun.com jsf/core" prefix="f"%

Asislose. j sp (which | can't be bothered copy/pasting). Finally, the JavaBean Seam component:

Example 1.20.

@Nanme(" nunmber Guess")
@cope(ScopeType. CONVERSATI ON)
public class Nunmber Guess {

private int randomNunber;
private |nteger currentCQuess;
private int biggest;

private int snallest;

private int guessCount;
private int maxQuesses;

@r eat e (1)
@egi n(pagef | ow="nunber Guess") (2)
public void begin()

{

randomNunber = new Randon{). next | nt (100);
guessCount = O;

bi ggest = 100;

smal | est = 1;

}
public void setCurrent Guess(| nteger guess)
{ this.current Guess = guess;
}
public Integer getCurrentGuess()
{ return current Guess
}
public void guess()
{ i f (currentGuess>randonmNunber)
i bi ggest = current Guess - 1;

i f (currentGuess<randomNunber)

JBoss Seam 1.0.CR3

Seam Tutorid

{
smal | est = current Guess + 1;
}
guessCount ++;
}
publ i c bool ean isCorrect Guess()
{
return current GQuess==r andom\unber ;
}
public int getBiggest()
{
return biggest;
}
public int getSmallest()
{
return small est;
}
public int get@essCount ()
{
return guessCount;
}
publ i c bool ean i sLast Guess()
{
return guessCount ==maxCuesses;
}

public int getRemai ni ngGuesses() {
return maxGuesses- guessCount;
}

public void set MaxGuesses(int nmaxCQuesses) {
t hi s. maxGuesses = maxQuesses;

}

public int get MaxQuesses() {
return maxGuesses;
}

public int get RandomNunber () {
return randomNunber;

}

(1) The first time a JSP page asks for a nunber Guess component, Seam will create a new one for it, and the
@ eat e method will be invoked, allowing the component to initialize itself.

(2) The @egi n annotation starts a Seam conversation (much more about that later), and specifies the page-
flow definition to use for the conversation's page flow.

As you can see, this Seam component is pure business logic! It doesn't need to know anything at all about the
user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

TODO

1.6. A complete Seam application: the Hotel Booking example

JBoss Seam 1.0.CR3 25

Seam Tutorid

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following features:

User registration

e Login
e Logout
e Set password

» Hotel search

¢ Hotel selection

* Room reservation

¢ Reservation confirmation

» Existing reservation list

JBoss Seam 1.0.CR3

26

Seam Tutorid

jboss suites

State management in
Seam

State in Seam is confextual.
When you click "Find
Hotels", the application

seam framework demo

me Gavin King | Search | Settings | Logout

Thank you, Gavin King, your confimation number for Doubletree is 1

Find Hotels

Search Hotels

Atlanta

retrieves a list of hotels Maximum results: | 10.¥
from the database and
caches it in the session Name Address City, State Zip | Action
context. When you navigate Marriott T ol Atlanta. GA vi
arrio ower Place anta iew
to one of the hotel records ! ! ! 30305 ——
o o i Courtyard Buckhead usa Hotel
by clicking the "View Hotel' _
link, a cenversation begins. Doubletree Tower Place, Atlanta, GA, 30305 View
The conversation is Buckhead USA Hotel
attached to a particular Ritz Carlton Peachtree Rd, Atlanta, GA, 30376 WView
tab, in a particular browser Buckhead USA Hotel
window. You can navigate
to multiple hotels using Current Hotel Bookings
"open in new tab" or "open
in new window" in your web N Add City, FhECk Check Confirmation Acti
browser. Each window will ame ress state ::Inate g::e number ton
execute in the context of a
different conversation. The Tower
plication keen - Doubletree Place Atlanta, Apr 16, Apr 17, 1 Cancel
application keeps state Buck}‘:ead GA 2006 2006 ==

associated with your hotel
booking in the conversation
context, which ensures that
the concurrent
conversations do not
interfere with each other.

How does the search page

work?

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There is aso a port
of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is extremely robust.
You can play with back buttons and browser refresh and opening multiple windows and entering nonsensical
data as much as you like and you will find it very difficult to make the application crash. Y ou might think that
we spent weeks testing and fixing bugs to achive this. Actually, thisis not the case. Seam was designed to make
it very straightforward to build robust web applications and a lot of robustness that you are probably used to
having to code yourself comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works, observe how
the declarative state management and integrated validation has been used to achieve this robustness.

JBoss Seam 1.0.CR3 27

Seam Tutorid

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please refer to Sec-
tion 1.1, “Try the examples’. Once you've successfully started the application, you can access it by pointing
your browser to ht t p: / /1 ocal host : 8080/ seam booki ng/

Just ten classes (plus six session beans local interfaces and 1 annotation interface) where used to implement this
application. Six session bean action listeners contain all the business logic for the listed features.

e Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.
e ChangePasswor dAct i on updates the password of the currently logged in user.

* Hot el Booki ngAct i on implements the core functionality of the application: hotel room searching, selection,
booking and booking confirmation. This functionality is implemented as a conversation, so this is the most
interesting class in the application.

e Logi nActi on validates the login details and retrieves the logged in user.
e Logout Act i on endsthelogin session.
* Regi sterAction registersanew system user.

Three entity beans implement the application's persistent domain model.

e Hotel isan entity bean that represent a hotel
e Booki ng isan entity bean that represents an existing booking
e User isan entity bean to represents a user who can make hotel bookings

Finally, the Loggedl n annotation and the Loggedi ni nterceptor are used to protect actions that require a
logged in user.

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate upon one particular
piece of functionality: hotel search, selection, booking and confirmation. From the point of view of the user,
everything from selecting a hotel to confirming a booking is one continuous unit of work, a conversation.
Searching, however, is not part of the conversation. The user can select multiple hotels from the same search
results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This causes enorm-
ous problems managing state associated with the conversation. Usually, Java web applications use a combina-
tion of two techniques: first, some state is thrown into the Ht t pSessi on; second, persistable state is flushed to
the database after every request, and reconstructed from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of scalability. Ad-
ded latency is aso a problem, due to the extra traffic to and from the database on every request. To reduce this
redundant traffic, Java applications often introduce a data (second-level) cache that keeps commonly accessed
data between requests. This cache is necessarily inefficient, because invalidation is based upon an LRU policy
instead of being based upon when the user has finished working with the data. Furthermore, because the cache
is shared between many concurrent transactions, we've introduced a whole raft of problem's associated with

JBoss Seam 1.0.CR3 28

http://localhost:8080/seam-booking/

Seam Tutorid

keeping the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. By very careful programming, we might be able to control the
size of the session data. Thisis alot more difficult than it sounds, since web browsers permit ad hoc non-linear
navigation. But suppose we suddenly discover a system requirement that says that a user is allowed to have mu-
tiple concurrent conversations, halfway through the development of the system (this has happened to me). De-
vel oping mechanisms to isolate session state associated with different concurrent conversations, and incorporat-
ing failsafes to ensure that conversation state is destroyed when the user aborts one of the conversations by
closing a browser window or tab is not for the faint hearted (I've implemented this stuff twice so far, once for a
client application, once for Seam, but I'm famously psychotic).

Now thereis a better way.

Seam introduces the conversation context as afirst class construct. Y ou can safely keep conversational state in
this context, and be assured that it will have a well-defined lifecycle. Even better, you won't need to be continu-
ally pushing data back and forth between the application server and the database, since the conversation context
isanatura cache of datathat the user is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We can also keep en-
tity beans and JavaBeans in the conversation context.) There is an ancient canard in the Java community that
stateful session beans are a scalability killer. This may have been true in 1998 when WebFoobar 1.0 was re-
leased. It is no longer true today. Application servers like JBoss 4.0 have extremely sophisticated mechanisms
for stateful session bean state replication. (For example, the JBoss EJB3 container performs fine-grained replic-
ation, replicating only those bean attribute values which actually changed.) Note that all the traditional technic-
al arguments for why stateful beans are inefficient apply equally to the H: t pSessi on, so the practice of shifting
state from business tier stateful session bean components to the web session to try and improve performance is
unbelievably misguided. It is certainly possible to write unscalable applications using stateful session beans, by
using stateful beans incorrectly, or by using them for the wrong thing. But that doesn't mean you should never
use them. Anyway, Seam guides you toward a safe usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can collaborate togeth-
er to achieve complex behaviors. The main page of the booking application allows the user to search for hotels.
The search results are kept in the Seam session scope. When the user navigates to one of these hotels, a conver-
sation begins, and a conversation scoped component calls back to the session scoped component to retrieve the
selected hotel.

The search functionality is implemented using a session-scope stateful session bean, similar to the one we saw
in the message list example above.

Example 1.21.

@t at ef ul (1)
@Nane(" hot el Search")

@cope(ScopeType. SESSI ON)

@oggedI n (2)
public class Hotel Searchi ngAction inpl ements Hot el Sear chi ng

{

@er si st enceCont ext
private EntityManager em

private String searchString;
private int pageSize = 10;

JBoss Seam 1.0.CR3 29

Seam Tutorid

@at aMbdel (3)
private List<Hotel > hotels;
@pat aModel Sel ecti on (4)

private Hotel selectedHotel;

public String find()

{
String searchPattern = searchString==null ? "% : '% + searchString.tolLowerCase().replace('*",
hotels = emcreateQuery("from Hotel where |ower(nane) |ike :search or lower(city) like :search «
. set Paranet er ("search", searchPattern)
. set MaxResul t s(pageSi ze)
.getResul tList();
return "main";
}
public Hotel getSelectedHotel ()
{
return sel ectedHot el ;
}

public int getPageSize() {
return pageSi ze;
}

public void setPageSi ze(int pageSi ze) {
t hi s. pageSi ze = pageSi ze;

}
public String getSearchString()
{
return searchString;
}
public void setSearchString(String searchString)
{
this.searchString = searchString;
}
@est roy @Renove (5)

public void destroy() {}

(1) The EJB standard @st at ef ul annotation identifies this class as a stateful session bean. Stateful session
beans are scoped to the conversation context by default.

(2) The @oggedl n annotation applies a custom Seam interceptor to the component. This works because
@.ogged! n ismarked with an @ nt er cept or meta-annotation.

(3) The @pat aMbdel annotation exposes a Li st as a JSF Li st Dat ambdel . This makes it easy to implement
clickable lists for search screens. In this case, the list of hotels is exposed to the page as a Li st Dat aMbdel
in the conversation variable named hot el s.

(4) The @at aModel Sel ecti on annotation defines a field or setter as holding the selected row for the corres-
ponding @at aMobdel property.

(5) The EJB standard @enove annotation specifies that a stateful session bean should be removed and its
state destroyed after invocation of the annotated method. In Seam, al stateful session beans should define
amethod marked @estroy @renove. Thisisthe EJB remove method that will be called when Seam des-
troys the session context. Actually, the @est r oy annotation is of more general usefulness, since it can be
used for any kind of cleanup that should happen when any Seam context ends. If you don't have an
@estroy @enove method, state will leak and you will suffer performance problems.

Now lets see how the booking example application uses a conversation-scoped stateful session bean to achieve
anatural cache of persistent data related to the conversation. The following code example is pretty long. But if

JBoss Seam 1.0.CR3 30

Seam Tutorid

you think of it asalist of scripted actions that implement the various steps of the conversation, it's understand-

able. Read the class from top to bottom, asif it were a story.

Example 1.22.

@»t at ef ul
@Nane(" hot el Booki ng")

@onver sati onal (i f Not BegunQut cone="nai n")

@.oggedl n

public class Hotel Booki ngActi on i npl enments Hot el Booki ng
{

@Per si st enceCont ext (t ype=EXTENDED)
private EntityManager em

@n(required=fal se) @ut
private Hotel hotel;

@ n(required=fal se)

@ut (requi red=f al se)
@alid

private Booki ng booki ng;

@n

private User user;

@n(create=true)
private transient FacesMessages facesMessages;

@n(required=fal se)
private Booki ngLi st booki ngLi st ;

@n

private Hot el Searchi ng hot el Sear ch;
@Begi n

public String sel ectHotel ()

{

hotel = em nmerge(hotel Search. get Sel ect edHotel ());
//hotel = emfind(Hotel.class, hotelld);
return "hotel";

}

public String bookHotel ()

{
booki ng = new Booki ng(hotel, user);
Cal endar cal endar = Cal endar. getl nstance();
booki ng. set Checki nDat e(cal endar. getTime());
cal endar . add(Cal endar . DAY_OF_MONTH, 1);
booki ng. set Checkout Dat e(cal endar. getTi me());
return "book";

}

@f 1 nval i d(out cone=REDI SPLAY)
public String setBooki ngDetails()

{
i f (booking==null || hotel==null) return "main";
i f (!booking.get Checki nDate().before(booking. get CheckoutDate()))
{
f acesMessages. add(" Check out date nust be |later than check in date");
return null;
}
el se
{
return "confirni;
}
}

(1)

(2)

(3)

(4)

JBoss Seam 1.0.CR3

31

Seam Tutorid

@nd (5)
public String confirnm()
{

i f (booking==null || hotel==null) return "main";

em per si st (booki ng) ;

i f (bookingList!=null) bookingList.refresh();

facesMessages. add(" Thank you, #{user.nane}, your confimation nunber for #{hotel.nanme} is #{booki
return "confirnmed";

}

@nd

public String cancel ()
{

}

@estroy @enove (6)
public void destroy() {}

return "min";

(1) The Seam @onversational annotation declares this as a conversational component that cannot be in-
voked outside of a long-running conversation that was started by a call to its @egi n method. If such an
invocation does occur, Seam returnsthei f Not BegunQut come to JSF.

(2) Thisbean uses an EJB3 extended persistence context, so that any entity instances remain managed for the
whole lifecycle of the stateful session bean.

(3) The @ut annotation declares that an attribute value is outjected to a context variable after method invoca
tions. In this case, the context variable named hot el will be set to the value of the hot el instance variable
after every action listener invocation completes.

(4) The @egi n annotation specifies that the annotated method begins a long-running conversation, so the
current conversation context will not be destroyed at the end of the request. Instead, it will be reassociated
with every request from the current window, and destroyed either by timeout due to conversation inactiv-
ity or invocation of a matching @nd method.

(5) The @nd annotation specifies that the annotated method ends the current long-running conversation, so
the current conversation context will be destroyed at the end of the request.

(6) This EJB remove method will be called when Seam destroys the conversation context. Don't ever forget
to define this method!

Hot el Booki ngAct i on contains al the action listener methods that implement selection, booking and booking
confirmation, and holds state related to this work in its instance variables. We think you'll agree that this code is
much cleaner and simpler than getting and setting Ht t pSessi on attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run a search, and
navigate to different hotel pages in multiple browser tabs. Y ou'll be able to work on creating two different hotel
reservations at the same time. If you leave any one conversation inactive for long enough, Seam will eventually
time out that conversation and destroy its state. If, after ending a conversation, you backbutton to a page of that
conversation and try to perform an action, Seam will detect that the conversation was aready ended, and redir-
ect you to the search page.

1.6.4. The Seam Ul control library

If you check inside the WAR file for the booking application, you'll find seam ui . j ar inthe WeB- I NF/ I'i b dir-
ectory. This package contains a number of JSF custom controls that integrate with Seam. The booking applica-
tion uses the <s: 1 i nk> control for navigation from the search screen to the hotel page:

<s:link value="View Hotel" action="#{hot el Booki ng. sel ectHotel }"/>

JBoss Seam 1.0.CR3 32

Seam Tutorid

The use of <s: 1i nk> here allows us to attach an action listener to aHTML link without breaking the browser's
"open in new window" feature. The standard JSF <h: commandLi nk> does not work with "open in new window".

1.6.5. The Seam Debug Page

The WAR aso includes seam debug. j ar . If thisjar is deployed in WeB- | NF/ | i b, along with the Facelets, and if
you set the following Seam property inweb. xm OF seam properti es:

<cont ext - par an»
<par am name>or g. j boss. seam core. i ni t. debug</ par am nanme>
<par amt val ue>t r ue</ par am val ue>
</ cont ext - par an>

Then the Seam debug page will be available. This page lets you browse and inspect the Seam components in
any of the Seam contexts associated with your current login session. Just point your browser at ht-
tp://1 ocal host: 8080/ seam booki ng/ debug. seam

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:57:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook. xhtml Select conversation context

- Component (booking)

checkinDate Fri Jan 20 20:52:20 EST 2006

checkoutDate Sat.Jan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking.Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel{Tower Place, Buckhead, Atlanta,30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context
Empty business process context

+ Session Context

+ Application Context

1.7. A complete application featuring Seam and jBPM: the DVD

JBoss Seam 1.0.CR3 33

http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

Seam Tutorial

Store example

The DVD Store demo application shows the practical usage of jBPM for both task management and pageflow.

The user screens take advantage of ajPDL pageflow to implement searching and shopping cart functionality.

Search for Movies My Orders

Search Results

m I Welcome, Harry I

Add to cart Title Actor Price Thank you for choosing
L Life is Beautiful Roberto Benini £12.00 the DVD Store
] Finding Memo Albert Brooks £22.49 Logout
F March of the Penguins Morgan Freeman $16.98
L] Indiana Jones and the Temple of Doom Harisson Ford $19.99)
F Clear and Present Danger Harisson Ford $19.99 Search for DVDs:
] Roman Holiday Audrey Hepburn $12.99
L] Breakfast at Tiffany's Audrey Hepburn $12.99
L] Sabrina Audrey Hepburn $12.99
F Sabrina Harrison Ford $19.99
F Kill Bill val. 1 Uma Thurman $19.99 R
L Kill Bill vol. 2 Uma Thurman £19.99 v |
L Lost in Translation Bill Murray £19.99 Results Per Page:
F Broken Flowers Bill Murray $19.99 b’ |
L] Better Off Dead John Cusak $8.99 Search
L Grosse Pointe Blank John Cusak £11.99
L
O High Fidelity John Cusak £14,99))
E Somewhere in Time Christopher Reeve $11.24 Shopping Cart
L] Superman - The Movie Christopher Reeve 314,99 1 Napoleon Dynamite
L] Superman II Christopher Reeve 314,99
E Superman III Christopher Reeve $14.99 Total:$14.06
Update Shopping Cart Checkout
. J
Done

The administration screens take use jBPM to manage the approval and shipping cycle for orders. The business
process may even be changed dynamically, by selecting a different process definition!

JBoss Seam 1.0.CR3 34

Seam Tutorial

Manage Orders

Order Management

I Welcome, Albus

Pending orders are shown here on the order management screen for the store
manager to process. Rather than being data-driven, order management

Thank you for choosing
5 the DVD Store
process-driven. A JBoss JBPM process assigns fulfillment tasks to the manager ‘

based on the wversion of the process loaded. The manager can change the

Logout |

version of the process at any time using the admin options box to the right.

* Order process 1 sends orders immediately to shipping, where the manager should
ship the order and record the tracking number for the user to see.

* Order process 2 adds an approval step where the manager is first given the Inventory .
. - o 28 =sold, 2473 in stock
chance to approve the order before sending it to shipping. In each case, the S

. . X !
status of the order is shown in the customer's order list. $437.63 from 7 orders

* Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.

Admin Options
Task Assignment

Process Management
Order Id Order Amount Customer Task | ordermanagement3 s |

° $12.99 Hsert ship ‘ Switch Order Process |
7 577.70 user2 ship

Order Acceptance

There are no orders to be accepted.

Shipping
Order Id Order Amount Customer
5] %94.95 userl
Done
TODO

Look in the dvdst or e directory.

1.8. A complete application featuring Seam workspace man-
agement: the Issue Tracker example

The Issue Tracker demo shows off Seam's workspace management functionality: the conversation switcher,
conversation list and breadcrumbs.

JBoss Seam 1.0.CR3 35

Seam Tutorid

Update/Delete Issue

Home | Find Issues | Create Issue | Logout | Project [HHH] | Issue [1] for Project [HHH] Issue [1] for Project [HHH] |+
—Issue Attributes
Id Reporter
Username Name
Status gavin Gavin King
Short description
My laptop does not Hibemate
Version PI'O]ECt
31 L
Name Description
Long description HHH Hibernate 3 Core
Select Project

Assigned developer

No Assigned developer

[Assign][Unassign

Created

Comments
[Update][Deleta H Done] Comment text Created Action
Go to the user forum! Jan 14, 2006

TODO

Look inthei ssues directory.

1.9. An example of Seam with Hibernate: the Hibernate Book-
ing example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative architecture that uses Hi-
bernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hi ber nat e directory.

1.10. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However, server-side
state is not always appropriate, especially in for functionality that serves up content. For this kind of problem
we often need to let the user bookmark pages and have a relatively stateless server, so that any page can be ac-
cessed at any time, via the bookmark. The Blog example shows how to aimplement RESTful application using
Seam. Every page of the application can be bookmarked, including the search results page.

JBoss Seam 1.0.CR3 36

Seam Tutorid

©) JBoss Seam Blog - Mozilla Firefox
File Edit View Go Bookmarks Tools Help delicio.us

<:I| - I_IL - @ @ Eﬁ tag | . hitp://localhost:8080/seam-blog/entry.seam?blogEntryld=i18n v | ® Go

Internationalizaetion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mallit anim id est laborum.

[Posted on 5/01/2006 17:03:00]

1Boss Seam Blog: [Al posts][Recent posts|[Vvrite new post]
Total pageviews: 1007

Done (v]

The Blog example demonstrates the use of "pull"-style MV C, where instead of using action listener methods to
retrieve data and prepare the data for the view, the view pulls data from components asit is being rendered.

1.10.1. Using "pull"-style MVC

This snippet from thei ndex. xht m facelets page displays alist of recent blog entries:

Example 1.23.

<h: dat aTabl e val ue="#{bl og. recent Bl ogEntri es}" var="bl ogEntry" rows="3">
<h: col utm>
<di v cl ass="bl ogEntry">
<h3>#{bl ogEntry.title}</h3>
<di v>
<h: out put Text escape="fal se"
val ue="#{bl ogEntry. excerpt==null ? bl ogEntry.body : bl ogEntry. excerpt}"/>
</ di v>
<p>
<h: out put Li nk val ue="entry. seant’ rendered="#{bl ogEntry. excerpt!=null}">
<f:param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
Read nore. ..
</ h: out put Li nk>
</ p>
<p>
[Posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDat eTi ne ti meZone="#{bl og. ti nezone}" | ocal e="#{bl og.|ocal e}" type="both"/>

JBoss Seam 1.0.CR3 37

Seam Tutorid

</ h: out put Text >]

<h: out put Li nk val ue="entry. seant >[Li nk]
<f: param nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ h: out put Li nk>
</ p>
</ di v>
</ h: col utm>
</ h: dat aTabl e>

If we navigate to this page from a bookmark, how does the data used by the <h: dat aTabl e> actually get initial-
ized? Well, what happens is that the Bl og is retrieved lazily—"pulled"—when needed, by a Seam component
named bl og. Thisis the opposite flow of control that is usual in traditional web action-based frameworks like
Struts.

Example 1.24.

@Nane(" bl og")
@cope(ScopeType. STATELESS)
public class Bl ogService

{

@n(create=true) (1)
private EntityManager entityManager;

@Jnwr ap (2)
public Bl og getBl og()

{
return (Blog) entityManager.createQuery("fromBlog b left join fetch b. bl ogEntries")

.set Hi nt ("org. hi bernate. cacheabl e", true)
.get Si ngl eResul t();

(1) This component uses a seam-managed persistence context. Unlike the other examples we've seen, this
persistence context is managed by Seam, instead of by the EJB3 container. The persistence context spans
the entire web request, allowing us to avoid any exceptions that occur when accessing unfetched associ-
ationsin the view.

(2) The @nw ap annotation tells Seam to provide the return value of the method—the Bl og—instead of the
actual Bl ogSer vi ce component to clients. Thisisthe Seam manager component pattern.

Thisisgood so far, but what about bookmarking the result of form submissions, such as a search results page?

1.10.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog entries.
Thisisdefined in the facelets template, t enpl at e. xht mi :

Example 1.25.

<div id="search">
<h: f or m»
<h: i nput Text val ue="#{searchActi on. searchPattern}"/>
<h: conmandBut t on val ue="Sear ch" acti on="#{searchAction.search}"/>
</ h: fornmp

JBoss Seam 1.0.CR3 38

Seam Tutorid

</ di v>

To implement a bookmarkable search results page, we need to perform a browser redirect after processing the
search form submission. Seam provides a built-in component named r edi rect that makes it very easy to per-
form redirects with request parameters.

Y ou can either use atemplated outcome, with JSF EL expressions as the request parameter values:

Example 1.26.

@ame(" sear chAction")
public class SearchAction

{

Or, if that feelstoo magical, you can inject and call ther edi rect component directly:

private String searchPattern;

public String getSearchPattern()
{

}

public void setSearchPattern(String searchPattern)

{

return searchPattern;

this.searchPattern = searchPattern;

}
public String search()
{
return "/search. xht m ?sear chPatt er n=#{ sear chAct i on. searchPattern}");
}

Example 1.27.

@anme(" sear chAction")
public class SearchAction

{

@n(create=true)
private Redirect redirect;

private String searchPattern;

public String getSearchPattern()
{

}

public void setSearchPattern(String searchPattern)

{
}

public void search()

{

return searchPattern;

this.searchPattern = searchPattern;

redirect.setView d("/search. xhtm");

redirect. set Paraneter ("searchPattern", searchPattern);

redirect. execute();

JBoss Seam 1.0.CR3

39

Seam Tutorid

The redirect takes usto the sear ch. xht M page:

Example 1.28.

<h: dat aTabl e val ue="#{searchResults}" var="bl ogEntry">
<h: col utm>
<di v>
<h: out put Li nk val ue="entry. seant' >
<f: param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
#{bl ogEntry.titl e}
</ h: out put Li nk>
post ed on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi me ti mneZone="#{bl og. ti neZone}" |ocal e="#{bl og.|ocal e}" type="both"/>
</ h: out put Text >
</div>
</ h: col utm>
</ h: dat aTabl e>

Which again uses "pull"-style MV C to retrieve the actual search results:

Example 1.29.

@Nane("searchResul ts")
public class SearchService

{
@n(create=true)
private EntityManager entityManager;
@Request Par anet er
private String searchPattern
private List<BlogEntry> searchResults;
@Cr eat e
public void initSearchResults()
{
searchResults = entityManager.createQuery("from Bl ogEntry be where | ower(be.title) Iike :searchli
.setParaneter("searchPattern", getSql SearchPattern())
. set MaxResul t s(100)
.getResul tList();
}
private String get Sql SearchPattern()
{
return searchPattern==null ? "" : '% + searchPattern.tolLowerCase().replace('*', '"%).replace(""
}
@nwr ap
publ i c List<Bl ogEntry> get SearchResul ts()
{
return searchResults;
}
}

JBoss Seam 1.0.CR3 40

Seam Tutorid

1.10.3. Using "push"-style MVC in a RESTful application

Very occasionaly, it makes more sense to use push-style MV C for processing RESTful pages, and so Seam
provides the notion of a page action. The Blog example uses a page action for the blog entry page,
entry. xht i . Note that this is a little bit contrived, it would have been easier to use pull-style MVC here as
well.

Theent ryAct i on component works much like an action classin atraditional push-MV C action-oriented frame-
work like Struts:

Example 1.30.

@Nane("entryAction")
@cope(ScopeType. STATELESS)
public class EntryAction

{

@n(create=true)
private Bl og bl og;

@Request Par anet er
private String bl ogEntryld;

@ut (scope=ScopeType. EVENT, required=fal se)
private Bl ogEntry bl ogEntry;

public void getBl ogEntry()

{
bl ogEntry = bl og. get Bl ogEntry(bl ogEntryl d);
i f (bl ogEntry==null)
{

}

Htt pError.instance().send(HtpServl et Response. SC_NOT_FOUND) ;

}

The page action must be declared afile called pages. xni :

Example 1.31.

<pages>
<page viewid="/entry.xhtm " action="#{entryAction.getBl ogEntry}"/>
<page vi ewid="/post.xhtm " action="#{l ogi nAction. chall enge}"/>
<page viewid="*" action="#{bl og. hitCount.hit}"/>

</ pages>

(Notice that the example is using page actions for some other functionality—the login challenge, and the page
counter.)

When theent ry. xht M page is requested, Seam first runs the page action, which retrieves the needed data—the
bl ogEnt r y—and placesit in the Seam event context. Next, the following is rendered:

Example 1.32.

<div class="bl ogEntry">

JBoss Seam 1.0.CR3 41

Seam Tutorid

<h3>#{bl ogEntry. titl e} </ h3>
<di v>
<h: out put Text escape="fal se" val ue="#{bl ogEntry. body}"/>
</ di v>
<p>
[Posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDat eTi ne ti mezone="#{bl og. ti nezone}" | ocal e="#{bl og.|ocal e}" type="both"/>
</ h: out put Text >]
</ p>
</div>

JBoss Seam 1.0.CR3 42

Chapter 2. The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component. Components are
stateful objects, usually EJBs, and an instance of a component is associated with a context, and given anamein
that context. Bijection provides a mechanism for aliasing internal component names (instance variables) to con-
textual names, allowing component trees to be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

2.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control context demarca-
tion via explicit Java API calls. Context are usually implicit. In some cases, however, contexts are demarcated
via annotations.

The basic Seam contexts are:

» Stateless context

e Event (or request) context
e Page context

e Conversation context

* Session context

+ Business process context

Application context

Y ou will recognize some of these contexts from servlet and related specifications. However, two of them might
be new to you: conversation context, and business process context. One reason state management in web ap-
plications is so fragile and error-prone is that the three built-in contexts (request, session and application) are
not especially meaningful from the point of view of the business logic. A user login session, for example, is a
fairly arbitrary construct in terms of the actual application work flow. Therefore, most Seam components are
scoped to the conversation or business process contexts, since they are the contexts which are most meaningful
in terms of the application.

Let'slook at each context in turn.

2.1.1. Stateless context
Components which are truly stateless (stateless session beans, primarily) always live in the stateless context

(thisis really a non-context). Stateless components are not very interesting, and are arguably not very object-
oriented. Nevertheless, they are important and often useful.

2.1.2. Event context

The event context is the "narrowest” stateful context, and is a generalization of the notion of the web request
context to cover other kinds of events. Nevertheless, the event context associated with the lifecycle of a JSF re-

JBoss Seam 1.0.CR3 43

The contextual component model

quest is the most important example of an event context, and the one you will work with most often. Compon-
ents associated with the event context are destroyed at the end of the request, but their state is available and
well-defined for at least the lifecycle of the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created and distroyed
just for the invocation.

2.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page. You can initialize
state in your event listener, or while actually rendering the page, and then have access to it from any event that
originates from that page. Thisis especially useful for functionality like clickable lists, where the list is backed
by changing data on the server side. The state is actually serialized to the client, so this construct is extremely
robust with respect to multi-window operation and the back button.

2.1.4. Conversation context

The conversation context is atruly central concept in Seam. A conversation is a unit of work from the point of
view of the user. It might span several interactions with the user, several requests, and several database transac-
tions. But to the user, a conversation solves a single problem. For example, "book hotel", "approve contract”,
"create order" are al conversations. Y ou might like to think of a conversation implementing asingle "use case”,
but the relationship is not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single user may
have multiple conversations in progress at any point in time, usually in multiple windows. The conversation
context allows us to ensure that state from the different conversations does not collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But once you get
used to it, we think you'll love the notion, and never be able to not think in terms of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must be demarcated
using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-running busi-
ness process, and has the potential to trigger a business process state transition when it is successfully com-
pleted. Seam provides a specia set of annotations for task demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation. Thisis an ad-
vanced feature.

Usually, conversation state is actually held by Seam in the servlet session between requests. Seam implements
configurable conversation timeout, automatically destroying inactive conversations, and thus ensuring that the
state held by asingle user login session does not grow without bound if the user abandons conversations.

Alternatively, Seam may be configured to keep conversational state in the client browser.

2.1.5. Session context

A session context holds state associated with the user login session. While there are some cases where it is use-
ful to share state between several conversations, we generally frown on the use of session context for holding
components other than global information about the logged in user.

JBoss Seam 1.0.CR3 44

The contextual component model

In a JSR-168 portal environment, the session context represents the portlet session.

2.1.6. Business process context

The business process context holds state associated with the long running business process. This state is man-
aged and made persistent by the BPM engine (JBoss jBPM). The business process spans multiple interactions
with multiple users, so this state is shared between multiple users, but in a well-defined manner. The current
task determines the current business process instance, and the lifecycle of the business process is defined ex-
ternally using a process definition language, so there are no specia annotations for business process demarca
tion.

2.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context is mainly use-
ful for holding static information such as configuration data, reference data or metamodels. For example, Seam
stores its own configuration and metamodel in the application context.

2.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session or request at-
tributes in the servlet spec. You may bind any value you like to a context variable, but usually we bind Seam
component instances to context variables.

So, within a context, a component instance is identified by the context variable name (thisis usualy, but not al-
ways, the same as the component name). You may programatically access a named component instance in a
particular scope viathe Cont ext s class, which provides access to several thread-bound instances of the Cont ext
interface:

User user = (User) Contexts.getSessionContext().get("user");

Y ou may also set or change the value associated with a name:

Cont ext s. get Sessi onCont ext (). set("user", user);

Usually, however, we obtain components from a context via injection, and put component instances into a con-
text via outjection.

2.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other times, all stateful
scopes are searched, in priority order. The order isasfollows:

e Event context

» Page context

» Conversation context
* Session context

» Business process context

JBoss Seam 1.0.CR3 45

The contextual component model

e Application context

Y ou can perform a priority search by calling Cont ext s. | ookupl nSt at ef ul Cont ext s() . Whenever you access a
component by name from a JSF page, a priority search occurs.

2.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or EJB 3.0 enterprise
beans. While Seam does not require that components be EJBs and can even be used without an EJB 3.0 compli-
ant container, Seam was designed with EJB 3.0 in mind and includes deep integration with EJB 3.0. Seam sup-
ports the following component types.

+ EJB 3.0 statel ess session beans
« EJB 3.0 stateful session beans
* EJB 3.0 entity beans

¢ JavaBeans

2.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations. Therefore, they usu-
aly work by operating upon the state of other components in the various Seam contexts. They may be used as
JSF action listeners, but cannot provide properties to JSF components for display.

Statel ess session beans always live in the statel ess context.

Statel ess session beans are the least interesting kind of Seam component.

2.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of the bean, but
also across multiple requests. Application state that does not belong in the database should usualy be held by
stateful session beans. This is a major difference between Seam and many other web application frameworks.
Instead of sticking information about the current conversation directly in the Ht t pSessi on, you should keep it
in instance variables of a stateful session bean that is bound to the conversation context. This allows Seam to
manage the lifecycle of this state for you, and ensure that there are no collisions between state relating to differ-
ent concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide properties to JSF
components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be bound to the page
or stateless contexts.

2.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because entities have a
persistent identity in addition to their contextual identity, entity instances are usually bound explicitly in Java

JBoss Seam 1.0.CR3 46

The contextual component model

code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of an entity bean
trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans that provide
properties to JSF components for display or form submission. In particular, it is common to use an entity as a
backing bean, together with a stateless session bean action listener to implement create/update/del ete type func-
tionality.

By default, entity beans are bound to the conversation context. They may never be bound to the stateless con-
text.

2.2.4. JavaBeans

Javabeans may be used just like a stateless or stateful session bean. However, they do not provide the function-
ality of a session bean (declarative transaction demarcation, declarative security, automatic clustered state rep-
lication, EJB 3.0 persistence, timeout methods, etc).

In alater chapter, we show you how to use Seam and Hibernate without an EJB container. In this use case,
components are JavaBeans instead of session beans.

By default, JavaBeans are bound to the conversation context.

2.2.5. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept component
invocations. For JavaBeans, Seam isin full control of instantiation of the component, and no special configura-
tion is needed. For entity beans, interception is not required since bijection and context demarcation are not
defined. For session beans, we must register an EJB interceptor for the session bean component. We could use
an annotation, as follows:

@t at el ess
@ nt er cept or s(Seam nt er cept or. cl ass)
public class LoginAction inplenments Login {

}

But a much better way isto define the interceptor inej b-j ar. xni .

2.2.6. Component names

Almost all seam components need a name. We assigh a name to a component using the @ane annotation:

@ame("| ogi nAction")
@5t at el ess
public class LoginAction inplenments Login {

}
This name is the seam component name and is not related to any other name defined by the EJB specification.

However, seam component names work just like JSF managed bean hames and you can think of the two con-
ceptsasidentical.

JBoss Seam 1.0.CR3 47

The contextual component model

Just like in JSF, a seam component instance is usually bound to a context variable with the same name as the
component name. So, for example, we would access the LoginAction using Con-

texts. get St at el essCont ext (). get ("1 ogi nAction"). In particular, whenever Seam itself instantiates a com-
ponent, it binds the new instance to a variable with the component name. However, again like JSF, it is possible
for the application to bind a component to some other context variable by programmatic APl call. Thisis only
useful if a particular component serves more than one role in the system. For example, the currently logged in
User might be bound to the current User session context variable, while a User that is the subject of some ad-
ministration functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Nane("com j boss. nyapp. | ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenents Login {

}

Unfortunately, JSF's expression language interprets a period as a property dereference. So, inside a JSF expres-
sion, we use $ to indicate a qualified component name:

<h: conmandButt on type="subm t" val ue="Logi n"
acti on="#{ con®j boss$nyapp$l ogi nAction.login}"/>

2.2.7. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This lets us define
what context a component instance is bound to, when it isinstantiated by Seam.

@Nane("user")
@ntity

@cope(SESSI ON)
public class User {

}

org.j boss. seam ScopeType defines an enumeration of possible scopes.

2.2.8. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we often have a User
class which is usually used as a session-scoped component representing the current user but is used in user ad-
ministration screens as a conversation-scoped component. The @rol e annotation lets us define an additional
named role for a component, with a different scope—it lets us bind the same component class to different con-
text variables. (Any Seam component instance may be bound to multiple context variables, but this lets us do it
at the class level, and take advantage of auto-instantiation.)

@anme("user")

@ntity

@cope(CONVERSATI ON)

@Rol e(name="current User", scope=SESSI ON)
public class User {

}

The @ol es annotation lets us specify as many additional roles aswe like.

JBoss Seam 1.0.CR3 48

The contextual component model

@Nane("user")

@ntity

@cope(CONVERSATI ON)

@Rol es({ @Rol e(nane="current User", scope=SESSI ON)
@Rol e(nane="t enpUser", scope=EVENT)})

public class User {

}

2.2.9. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of built-in Seam
interceptors (see later) and Seam components. This makes it easy for applications to interact with built-in com-
ponents at runtime or even customize the basic functionality of Seam by replacing the built-in components with
custom implementations. The built-in components are defined in the Seam namespace or g. j boss. seam core
and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide convenient
statici nst ance() methods:

FacesMessages. i nstance() . add(" Wl cone back, #{user.nanme}!");

Seam was designed to integrate tightly in a Java EE 5 environment. However, we understand that there are
many projects which are not running in a full EE environment, and at the time of writing, Java EE 5 is not yet
final. We also realize the critical importance of easy unit and integration testing using frameworks such as
TestNG and JUnit. So, we've made it easy to run Seam in Java SE environments by allowing you to boostrap
certain critical infrastructure normally only found in EE environments by installing built-in Seam components.

For example, you can run your EJB3 components in Tomcat or an integration test suite just by installing the
built-in component or g. j boss. seam core. ej b, which automatically bootstraps the JBoss Embeddable EJB3
container and deploys your EJB components.

Or, if you're not quite ready for the Brave New World of EJB 3.0, you can write a Seam application that uses
only JavaBean components, together with Hibernate3 for persistence, by instaling the built-in component
org.j boss. seam cor e. hi ber nat e. When using Hibernate outside of a J2EE environment, you will also prob-
ably need a JTA transaction manager and JNDI server, which are available via the built-in component
org.j boss. seam core. ni crocont ai ner . This lets you use the bulletproof JTA/JCA pooling datasource from
JBoss application server in an SE environment like Tomcat!

2.2.10. Configuring components

Seam components may be provided with configuration data either via servlet context parameters, or via a prop-
erties file named seam properti es in the root of the classpath.

The configurable Seam component must expose a JavaBeans-style property setter methods for the configurable
attributes. If a seam component hamed com j boss. nyapp. setti ngs has a setter method named set Local e(),
we can provide a property named com j boss. nyapp. setti ngs. | ocal e intheseam properties fileor asaser-
vlet context parameter, and Seam will set the value of the | ocal e attribute whenever it instantiates the compon-
ent.

Note that it is not possible to configure statel ess session beans or entity beans.

The same mechanism is used to configure Seam itself. For example, to set the conversation timeout, we provide
avalue for org. j boss. seam cor e. manager . conver sat i onTi meout iNweb. xml OF seam properties. (Thereis

JBoss Seam 1.0.CR3 49

The contextual component model

a built-in Seam component named or g. j boss. seam cor e. manager With a setter method named set Conver sa-
tionTi meout () .)

2.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers. Depend-
ency injection allows a component to obtain a reference to another component by having the container "inject"
the other component to a setter method or instance variable. In all dependency injection implementations that
we have seen, injection occurs when the component is constructed, and the reference does not subsequently
change for the lifetime of the component instance. For statel ess components, this is reasonable. From the point
of view of aclient, all instances of a particular stateless component are interchangeable. On the other hand,
Seam emphasizes the use of stateful components. So traditional dependency injection is no longer a very useful
construct. Seam introduces the notion of bijection as a generalization of injection. In contrast to injection, bijec-
tionis:

e contextual - bijection is used to assemble stateful components from various different contexts (a component
from a"wider" context may even have areference to a component from a"narrower" context)

« bidirectional - values are injected from context variables into attributes of the component being invoked,
and also outjected from the component attributes back out to the context, allowing the component being in-
voked to manipulate the values of contextual variables simply by setting its own instance variables

e dynamic - since the value of contextual variables changes over time, and since Seam components are state-
ful, bijection takes place every time a component is invoked

In essence, hijection lets you alias a context variable to a component instance variable, by specifying that the
value of the instance variableisinjected, outjected, or both. Of course, we use annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@Nane("| ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenents Login {
@n User user;

or into a setter method:

@ame("| ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or . cl ass)

public class LoginAction inplenents Login {
User user;

@n
public void setUser(User user) {
t hi s. user=user;

}

By default, Seam will do a priority search of all contexts, using the name of the property or instance variable
that is being injected. You may wish to specify the context variable name explicitly, using, for example,
@n("currentUser").

JBoss Seam 1.0.CR3 50

The contextual component model

If you want Seam to create an instance of the component when there is no existing component instance bound
to the named context variable, you should specify @ n(creat e=t rue) . If the value is optional (it can be null),
specify @ n(requi red=f al se).

Y ou can even inject the value of an expression:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
@n("#{user.usernane}") String usernane;

(There is much more information about component lifecycle and injection in the next chapter.)
The @ut annotation specifies that an attribute should be outjected, either from an instance variable:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
@ut User user;

or from a getter method:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenents Login {
User user;

@ut
public User getUser() {
return user;

}

An attribute may be both injected and outjected:

@Nane ("l ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {
@n @ut User user;

or:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenents Login {
User user;

@n
public void setUser(User user) {
t hi s. user=user;

}

JBoss Seam 1.0.CR3 51

The contextual component model

@out

public User getUser() {
return user;

}

2.4. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an interceptor to a bean,
you need to write a class with a method annotated @ oundi nvoke and annotate the bean with an
@nt ercept ors annotation that specifies the name of the interceptor class. For example, the following inter-
ceptor checks that the user islogged in before allowing invoking an action listener method:

public class Loggedlnlnterceptor {

@\r ound! nvoke
publ i c Object checkLoggedl n(l nvocati onCont ext invocation) throws Exception {

bool ean i sLoggedl n = Cont exts. get Sessi onContext().get ("l oggedln")!=null;
if (isLoggedln) {

//the user is already |ogged in

return invocation. proceed();

}

el se {
//the user is not logged in, fwd to | ogin page
return "l ogin";

}

To apply this interceptor to a session bean which acts as an action listener, we must annotate the session bean
@ nt er cept or s(Logged! nl nt er cept or . cl ass) . Thisis a somewhat ugly annotation. Seam builds upon the in-
terceptor framework in EJB3 by allowing you to use @ nt er cept or s as a meta-annotation. In our example, we
would create an @ogged! n annotation, as follows:

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

@ nt er cept or s(LoggedlI nl nt er cept or. cl ass)
public @nterface Loggedlin {}

We can now simply annotate our action listener bean with @ oggedi n to apply the interceptor.

@5t at el ess
@ame(" changePasswor dActi on")

@.oggedl n
@ nt er cept or s(Seam nt ercept or. cl ass)
public class ChangePasswor dAction inpl ements ChangePassword {

public String changePassword() { ... }

If interceptor ordering is important (it usually is), you can add @V t hi n and @vr ound annotations to your inter-
ceptor classes to specify apartial order of interceptors.

JBoss Seam 1.0.CR3 52

The contextual component model

@\ ound({Bijectionlnterceptor.class,
Val i dati onl nt erceptor. cl ass,
Conver sationl nterceptor.class})
@N' t hi n(Renovel nt er cept or. cl ass)
public class Loggedl nl nterceptor

{
}

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including the inter-
ceptors named in the previous example. You don't have to explicitly specify these interceptors by annotating
your components; they exist for all interceptable Seam components.

Y ou can even use Seam interceptors with JavaBean components, not just EJB3 beans!

2.5. Seam events

The Seam component model was developed for use with event-driven applications, specifically to enable the
development of fine-grained, loosely-coupled components in a fine-grained eventing model. Events in Seam
come in several types, most of which we have already seen:

» JSFevents

* jBPM transition events

e Seam page actions

e Seam component-driven events

All of these various kinds of events are mapped to Seam components via JSF EL method binding expressions.
For a JSF event, thisis defined in the JSF template:

<h: commandBut t on val ue="Cick ne!" action="#{hell oWrl d. sayHel |l 0o}"/>

For ajBPM transition event, it is specified in the JBPM process definition or pageflow definition:

<start-page nane="hell 0" viewid="/hello.jsp">
<transition to="hello0">
<action expressi on="#{hel | oWrl| d. sayHel | 0} "/ >
</trasition>
</start - page>

You can find out more information about JSF events and jBPM events elsewhere. Lets concentrate for now
upon the two additional kinds of events defined by Seam.

2.5.1. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions in WeB-
I NF/ pages. xni . We can define a page action for either a particular JSF view id:

<pages>
<page viewid="/hello.jsp" action="#{hell oWrld.sayHel | o}"/>
<pages>

Or we can use awildcard to specify an action that appliesto all view ids that match the pattern:

JBoss Seam 1.0.CR3 53

The contextual component model

<pages>
<page viewid="/hello/*" action="#{hell oWrl d. sayHel | 0}"/>
<pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in order of least-
specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will delegate to the defined
JSF navigation rules and a different view may end up being rendered.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or Facelets page!
So, we can reproduce the functionality of atraditional action-oriented framework like Struts or WebWork using
page actions. For example:

TODO. translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for example, HTTP
GET requests).

2.5.2. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components may even imple-
ment the observer/observable pattern. But to enable components to interact in a more loosely-coupled fashion
than is possible when the components call each others methods directly, Seam provides component-driven
events.

We specify event listeners (observers) in VEB- | NF/ event s. xni .

<event s>
<event type="hello">
<action expressi on="#{hel | oLi st ener. sayHel | oBack}"/ >
<action expression="#{l ogger.|ogHello}"/>
</ event >
<event s>

Where the event typeisjust an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear in
event s. xnl . How does a component raise an event? Seam provides a built-in component for this.

@ame("hel | oVorl d")
public class Hell oWrld {
public void sayHell o() {
FacesMessages. i nstance().add("Hello Wrld!");
Events.instance().rai seEvent ("hello");

Notice that this event producer has no dependency upon event consumers. The event listener may now be im-
plemented with absolutely no dependency upon the producer:

@ame(" hel | oLi stener™)
public class HelloListener {
public void sayHel | oBack() {
FacesMessages. i nstance().add("Hello to you too!");

}

JBoss Seam 1.0.CR3 54

The contextual component model

If you don't liketheevents. xn file, we can use an annotation instead:

@Nane(" hel | oLi st ener")
public class HelloListener {
@server ("hel | 0")
public void sayHel | oBack() {
FacesMessages. i nstance().add("Hello to you too!");
}

Y ou might wonder why |'ve not mentioned anything about event objects in this discussion. In Seam, thereis no
need for an event object to propagate state between event producer and listener. All state is held in the Seam
contexts, and is shared between components.

JBoss Seam 1.0.CR3 55

Chapter 3. Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation™ came about as a merger of three different ideas:

e The idea of a workspace, which | encountered in a project for the Victorian government in 2002. In this
project | was forced to implement workspace management on top of Struts, an experience | pray never to
repeat.

» The idea of an application transaction with optimistic semantics, and the realization that existing frame-
works based around a statel ess architecture could not provide effective management of extended persistence
contexts. (The Hibernate team is truly fed up with copping the blame for Lazy! niti al i zati onExcept i onS,
which are not really Hibernate's fault, but rather the fault of the extremely limiting persistence context mod-
e supported by stateless architectures such as the Spring framework or the traditional stateless session
facade (anti)pattern in J2EE.)

¢ Theideaof aworkflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct that lets us
build richer and more efficient applications with less code than before.

3.1. Seam's conversation model

The examples we have seen so far make use of avery simple conversation model that follows these rules:

« There is always a conversation context active during the apply request values, process validations, update
model values, invoke application and render response phases of the JSF request lifecycle.

e At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore any previous
long-running conversation context. If none exists, Seam creates a new temporary conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to a long running
conversation.

« When an @nd method is encountered, any long-running conversation context is demoted to a temporary
conversation.

« At theend of the render response phase of the JSF request lifecycle, Seam stores the contents of a long run-
ning conversation context or destroys the contents of atemporary conversation context.

e Any faces request (a JSF postback) will propagate the conversation context. By default, non-faces requests
(GET requests, for example) do not propagate the conversation context, but see below for more information
on this.

« If the JSF request lifecycle is foreshortened by aredirect, Seam transparently stores and restores the current
conversation context.

Seam transparently propagates the conversation context across JSF postbacks and redirects. If you don't do any-
thing special, a non-faces request (a GET request for example) will not propagate the conversation context and

JBoss Seam 1.0.CR3 56

Conversations and workspace management

will be processed in a new temporary conversation. Thisis usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly code the Seam
conversation id as arequest parameter:

Conti nue

Or, the more JSF-ish:

<h: out put Li nk val ue="main. jsf">
<f: param nane="conversati onl d" val ue="#{conversation.id}"/>
<h: out put Text val ue="Conti nue"/>

</ h: out put Li nk>

If you use the Seam tag library, thisis equivalent:

<h: out put Li nk val ue="main.jsf">
<s:conversationl d/>
<h: out put Text val ue="Conti nue"/>
</ h: out put Li nk>

If you wish to disable propagation of the conversation context for a postback, asimilar trick is used:

<h: commandLi nk action="mai n" val ue="Exit">
<f: param nane="conver sati onPropagati on" val ue="none"/>
</ h: commandLi nk>

If you use the Seam tag library, thisis equivalent:

<h: commandLi nk action="mai n" val ue="Exit">
<s:conversati onPropagati on type="none"/>
</ h: commandLi nk>

Note that disabling conversation context propagation is absolutely not the same thing as ending the conversa-
tion.

The conversat i onPropagat i on request parameter, or the <s: conversat i onPropagat i on> tag may even be
used to begin and end conversation, or begin a nested conversation.

<h: commandLi nk acti on="nmai n" val ue="Exit">
<s: conver sationPropagati on type="end"/>
</ h: commandLi nk>

<h: conmandLi nk acti on="mai n* val ue="Sel ect Child">
<s: conversationPropagation type="nested"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="begi n"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="join"/>
</ h: commandLi nk>

This conversation model makes it easy to build applications which behave correctly with respect to multi-
window operation. For many applications, thisis al that is needed. Some complex applications have either or
both of the following additional requirements:

JBoss Seam 1.0.CR3 57

Conversations and workspace management

* A conversation spans many smaller units of user interaction, which execute serialy or even concurrently.
The smaller nested conversations have their own isolated set of conversation state, and also have access to
the state of the outer conversation.

e The user is able to switch between many conversations within the same browser window. This feature is
called workspace management.

3.2. Nested conversations

A nested conversation is created by invoking a method marked @egi n(nest ed=t rue) inside the scope of an
existing conversation. A nested conversation has its own conversation context, and aso has read-only access to
the context of the outer conversation. (It can read the outer conversation's context variables, but not write to
them.) When an @nd is subsequently encountered, the nested conversation will be destroyed, and the outer
conversation will resume, by "popping” the conversation stack. Conversations may be nested to any arbitrary
depth.

Certain user activity (workspace management, or the back button) can cause the outer conversation to be re-
sumed before the inner conversation is ended. In this case it is possible to have multiple concurrent nested con-
versations belonging to the same outer conversation. If the outer conversation ends before a nested conversation
ends, Seam destroys all nested conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the application to capture
a consistent continuable state at various points in a user interaction, thus insuring truly correct behavior in the
face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you backbutton.

3.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a non-faces request
(for example, a HTTP GET request). This can occur if the user bookmarks the page, or if we navigate to the
page viaan <h: out put Li nk>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is no JSF action
method, we can't solve the problem in the usual way, by annotating the action with @egi n.

A further problem arises if the page needs some state to be fetched into a context variable. We've already seen
two ways to solve this problem. If that state is held in a Seam component, we can fetch the state in a @ eat e
method. If not, we can define a @act ory method for the context variable.

If none of these options works for you, Seam lets you define a page action in the pages. xni file.

<pages>
<page vi ewid="/nessagelist.jsp" action="#{nessageManager.list}"/>

</pa§é§>
This action method is called at the beginning of the render response phase, any time the page is about to be

rendered. If a page action returns a non-null outcome, Seam will process any appropriat JSF navigation rules,
possibly resulting in a completely different page being rendered.

If all you want to do before rendering the page is begin a conversation, you can use a built-in action method

JBoss Seam 1.0.CR3 58

Conversations and workspace management

that does just that:

<pages>
<page vi ewid="/nessagelist.jsp" action="#{conversation. begin}"/>

</ pa:qé.s>
Note that you can aso cal this built-in action from a JSF control, and, similarly, you can use

#{ conver sati on. end} to end conversations.

To solve the first problem, we now have four options:

* Annotate the @r eat e method with @egi n
* Annotate the @act or y method with @egi n
¢ Annotate the Seam page action method with @egi n

e Use#{conversati on. begi n} asthe Seam page action method

3.4. Using <s: | i nk>

JSF command links always perform a form submission via JavaScript, which breaks the web browser's "open in
new window" or "open in new tab" feature. In plain JSF, you need to use an <h: out put Li nk> if you need this
functionality. But there are two major limitations to <h: out put Li nk>.

» JSF provides no way to attach an action listener to an <h: out put Li nk>.
» JSF does not propagate the selected row of a bat aMbdel since there is no actual form submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing to help us with
the second problem. We could work around this by using the RESTful approach of passing a request parameter
and requerying for the selected object on the server side. In some cases—such as the Seam blog example ap-
plication—this is indeed the best approach. The RESTful style supports bookmarking, since it does not require
server-side state. In other cases, where we don't care about bookmarks, the use of @pataMbdel and
@at aModel Sel ecti on iSjust so convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to manage, Seam
providesthe <s: I i nk> JSF tag.

The link may specify just the JSF view id:
<s:link viewid=*/login.xhtm " val ue=*Login"/>
Or, it may specify an action method (in which case the action outcome determines the page that results):

<s:link action="#{l ogin.|ogout}” val ue="Logout”/>

If you specify both a JSF view id and an action method, the view-id will be used unless the action method re-
turns a non-null outcome:

<s:link viewid="/|oggedQut.xhtm " action="#{login.logout}” val ue="Logout”/>

The link may be rendered as a button:

JBoss Seam 1.0.CR3 59

Conversations and workspace management

<s:link action="#{login.logout}” value="Logout” style="button”/>

The link automatically propagates the selected row of abat aModel using inside <h: dat aTabl e>:

<s:link viewid="/hotel.xhtm " action="#{hotel Search. sel ectHotel }" val ue="#{hotel . nane}"/>

Y ou can leave the scope of an existing conversation:

<s:link viewid="/min.xhtm” propagati on="none”/>

Y ou can begin, end, or nest conversations:

<s:link action="#{i ssueEditor.vi ewCorment}” propagati on="nest”/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{docunent Edi t or. get Docunent}” propagati on="begi n”
pagef | ow=" Edi t Docunent "/ >

Thet askl nst ance attribute if for usein jBPM task lists:

<s:link action="#{docunent Approval . approveOr Rej ect}” tasklnstance="#{task}"/>

(Seethe DVD Store demo application for examples of this.)

3.5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It is convenient to
use a JSF FacesMessage for this. Unfortunately, a successful action often requires a browser redirect, and JSF
does not propagate faces messages across redirects. This makes it quite difficult to display success messagesin
plain JSF.

The built in conversation-scoped Seam component named f acesMessages Solves this problem. (Y ou must have
the Seam redirect filter installed.)

@ame(" edi t Docunent Acti on")

@t at el ess

public class EditDocunentBean inplenents EditDocunent {
@n(create=true) EntityManager em
@n Docunent docunent;
@n(create=true) FacesMessages facesMessages;

public String update() {

em ner ge(docunent) ;
f acesMessages. add(" Docunment updat ed");

Any message added to f acesMessages is used in the very next render response phase for the current conversa
tion. This even works when there is no long-running conversation since Seam preserves even temporary con-
versation contexts across redirects.

Y ou can even include JSF EL expressions in afaces message summary:

facesMessages. add(" Docunent #{docunent.title} was updated");

JBoss Seam 1.0.CR3 60

Conversations and workspace management

Y ou may display the messages in the usual way, for example:

<h: messages gl obal Onl y="true"/>

3.6. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam makes workspace
management completely transparent at the level of the Java code. To enable workspace management, al you
needto sois:

» Provide description text for each view id (when using JSF navigation rules) or page node (when using jPDL
pageflows). This description text is displayed to the user by the workspace switchers.

* Include one or more of the standard workspace switcher JSP or facel ets fragments in your pages. The stand-
ard fragments support workspace management via a drop down menu, a list of conversations, or bread-
crumbs.

3.6.1. Workspace management and JSF navigation

When you use JSF navigation rules, Seam switches to a conversation by restoring the current vi ewi d for that
conversation. The descriptive text for the workspace is defined in afile called pages. xm that Seam expects to
find in the VeB- | NF directory, right next to f aces- confi g. xni :

<pages>
<page vi ewid="/main.xhtm ">Search hotels: #{hotel Booking.searchString}</page>
<page viewid="/hotel.xhtm ">View hotel: #{hotel.name}</page>
<page vi ew i d="/book. xht ml ">Book hotel: #{hotel.name}</page>
<page viewid="/confirmxhtm ">Confirm #{booking.description}</page>
</ pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only missing func-
tionality will be the ability to switch workspaces.

3.6.2. Workspace management and jPDL pageflow

When you use ajPDL pageflow definition, Seam switches to a conversation by restoring the current jBPM pro-
cess state. Thisisamore flexible model since it allows the same vi ewi d to have different descriptions depend-
ing upon the current <page> node. The description text is defined by the <page> node:

<pagef | ow defi ni ti on name="shoppi ng" >

<start-state nanme="start">
<transition to="browse"/>
</start-state>

<page nane="browse" viewid="/browse.xhtm ">
<descri pti on>DVD Sear ch: #{search. searchPattern}</description>
<transition to="browse"/>
<transiti on name="checkout" to="checkout"/>

</ page>

<page nane="checkout" viewi d="/checkout.xhtm ">
<descri pti on>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="conplete" to="conplete"/>

</ page>

JBoss Seam 1.0.CR3 61

Conversations and workspace management

<page nane="conpl ete" viewid="/conplete.xhtm ">
<end-conversation />
</ page>

</ pagef | owdefinition>

3.6.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets you switch to
any current conversation, or to any other page of the application:

<h: sel ect OneMenu val ue="#{swi t cher. conversati onl dOr Qut cone}" >
<f:selectltemitenlLabel ="Find | ssues" itenVal ue="findl ssue"/>
<f:selectltemitenliabel ="Create |ssue" itenValue="editlssue"/>
<f:selectltens value="#{switcher.selectltens}"/>

</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{swi tcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two additional items
that let the user begin a new conversation.

Cnmmentnnlssue['I]fDrF"rDJEt:t[HHH] =

Find Issues
Create Issue
Browse Projects
Create Project
Me | |55ue [1] for Project [HHH]

an K Project [HHH
Comment on Issue [1] for Project [HHH]

3.6.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as atable:

<h: dat aTabl e val ue="#{conversationList}" var="entry"
render ed="#{not enpty conversationList}">
<h: col utm>
<f:facet name="header">Wr kspace</f:facet>
<h: conmandLi nk action="#{entry.select}" value="#{entry.description}"/>
<h: out put Text value="[current]" rendered="#{entry.current}"/>

</ h: col um>
<h: col um>
<f:facet nanme="header">Activity</f:facet>
<h: out put Text val ue="#{entry.startDateti ne}">
<f:convertDateTine type="time" pattern="hh: mm a"/>
</ h: out put Text >
<h: out put Text val ue=" - "/>
<h: out put Text val ue="#{entry. | astDatetine}">
<f:convertDateTine type="time" pattern="hh: mm a"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<f:facet nane="header">Action</f:facet>
<h: conmandBut t on acti on="#{entry.sel ect}" val ue="#{nsg. Switch}"/>
<h: commandButton acti on="#{entry. destroy}" val ue="#{nsg. Destroy}"/>

JBoss Seam 1.0.CR3 62

Conversations and workspace management

</ h: col um>
</ h: dat aTabl e>

We imagine that you will want to customize this for your own application.

Workspace Workspace activity Action

Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | Switch || Destroy |
|ssue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |

The conversation list is nice, but it takes up a lot of space on the page, so you probably don't want to put it on
every page.

Notice that the conversation list |ets the user destroy workspaces.

3.6.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs are a list of
links to conversationsin the current conversation stack:

<t:dataLi st val ue="#{conversati onStack}" var="entry">

<h: out put Text val ue=" | "/>

<h: conmandLi nk val ue="#{entry. description}" action="#{entry.select}"/>
</t:dataList>

Notice that here we are using the MyFaces <t : dat aLi st > component, since JSF amazingly does not provide
any standard component for looping.

Home | Find |Issues | Create Issue | Project [HHH] | |ssue [1] for Project [HHH]
—Issue Attributes ,

Please refer to the Seam Issue Tracker demo to see all this functionality in action!

3.7. Seam and AJAX

AJAX requests from a JSF page are not processed by the JSF servlet, so Seam provides a servlet filter that can
be applied to the servlet processing your AJAX calls (or, in fact, to any servlet at all).

<filter>
<filter-nane>Seam Servl et Filter</filter-nanme>
<filter-class>org.jboss.seam servl et. SeanServletFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>Seam Servlet Filter</filter-name>
<url - pattern>*.ajax</url-pattern>
</filter-mappi ng>

This servlet filter isresponsible for initializing all Seam contexts before passing control to the servlet. It expects
to find the conversation id of any conversation context in a request parameter named conver sati onl d. You are
responsible for ensuring that it gets sent in the request.

JBoss Seam 1.0.CR3 63

Conversations and workspace management

Y ou are also responsible for ensuring propagation of any new conversation id back to the client. Seam exposes
the conversation id as a property of the built in component conver sat i on.

Seam also provides the Seam Remoting framework, a simple way to expose any method of a Seam component
for invocation by an asynchronous JavaScript request simply by annotating the methods that should be access-
ible in the client. See the Seam Remoting chapter for further information.

3.8. Seam and SOAP

TODO

JBoss Seam 1.0.CR3 64

Chapter 4. Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM lets you rep-
resent a business process or user interaction as a graph of nodes representing wait states, decisions, tasks, web
pages, etc. The graph is defined using asimple, very readable, XML dialect caled jPDL, and may be edited and
visualised graphically using an eclipse plugin. jPDL is an extensible language, and is suitable for a range of
problems, from defining web application page flow, to traditional workflow management, al the way up to or-
chestration of servicesin a SOA environment.

Seam applications use jBPM for two different problems:

» Defining the pageflow involved in complex user interactions. A jPDL process definition defines the page
flow for a single conversation. A Seam conversation is considered to be a relatively short-running interac-
tion with asingle user.

« Defining the overarching business process. The business process may span multiple conversations with
multiple users. Its state is persistent in the jJBPM database, so it is considered long-running. Coordination of
the activities of multiple users is a much more complex problem than scripting an interaction with a single
user, so jBPM offers sophisticated facilities for task management and dealing with multiple concurrent
paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity. Pageflow, conversa-
tion and task all refer to a single interaction with a single user. A business process spans many tasks. Futher-
more, the two applications of jBPM are totally orthogonal. Y ou can use them together or independently or not
at all.

Y ou don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using JSF's navigation
rules, and if your application is more data-driven that process-driven, you probably don't need jBPM. But we're
finding that thinking of user interaction in terms of a well-defined graphical representation is helping us build
more robust applications.

4.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

e Using JSF navigation rules - the statel ess navigation model
e Using jPDL - the stateful navigation model
Very simple applications will only need the stateless navigation model. Very complex applications will use

both models in different places. Each model hasits strengths and weaknesses!

4.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly to the result-
ing page of the view. The navigation rules are entirely oblivious to any state held by the application other than
what page was the source of the event. This means that your action listener methods must sometimes make de-
cisions about the page flow, since only they have access to the current state of the application.

Here is an example page flow definition using JSF navigation rules:

JBoss Seam 1.0.CR3 65

Pageflows and business processes

<navi gati on-rul e>
<fromvi ew i d>/ nunber Guess. j sp</fromvi ewid>

<navi gati on- case>
<f r om out cone>guess</from out come>
<t 0-vi ew i d>/ nunber Quess. j sp</to-vi ewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f r om out conme>w n</ f r om out cone>
<to-viewid>wn.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f rom out cone>| ose</from out cone>
<to-viewid>/|ose.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

</ navi gati on-rul e>

If you find navigation rules overly verbose, you can return view ids directly from your action listener methods:

public String guess() {
i f (guess==randomNunber) return "/w n.jsp";
i f (++guessCount ==maxQ@uesses) return "/l ose.jsp";
return null;

Note that this resultsin aredirect. Y ou can even specify parameters to be used in the redirect:

public String search() {
return "/searchResul ts.]sp?searchPattern=#{searchActi on. searchPattern}";
}

The stateful model defines a set of transitions between a set of named, logical application states. In this model,
it is possible to express the flow of any user interaction entirely in the jPDL pageflow definition, and write ac-
tion listener methods that are completely unaware of the flow of the interaction.

Here is an example page flow definition using jPDL:

<pagef | ow defi niti on name="nunber Guess" >

<start-page name="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<redirect/>
<transition name="guess" to="eval uateGuess">
<action expression="#{nunber Guess. guess}" />
</transition>
</start - page>

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}">
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRerai ni ngGuesses"/>

</ deci si on>

<deci si on nane="eval uat eRenai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}" >
<transition name="true" to="|ose"/>
<transition nane="fal se" to="di spl ayGuess"/>

</ deci si on>

<page name="wi n" viewid="/wn.jsp">
<redirect/>
<end- conversation />

</ page>

JBoss Seam 1.0.CR3 66

Pageflows and business processes

<page nane="|ose" viewid="/|ose.jsp">
<redirect/>
<end-conversation />

</ page>

</ pagef | ow defi niti on>

B seam.test X = O 5% outline 33 =0
[Select B
£, Maroues (p i e +-@ rumberGuess

i3 Start start

ChDecision

Erage .

—+ Transition = displayGuess

gquess falze

o ==Decisionss= false i ==Decision==
4 . _—
"" evaluateGuess evaluateRemainingGuesses

rue frue
= ==Page== = ==Fage==
~ win ~ lose

Ciagram | Design | Source

There are two things we notice immediately here:

e The JSF navigation rules are much simpler. (However, this obscures the fact that the underlying Java code
is more complex.)

e The jPDL makes the user interaction immediately understandable, without us needing to even look at the
JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the page flow), there are
aconstrained set of possible transitions to other states. The stateless model is an ad hoc model which is suitable
to relatively unconstrained, freeform navigation where the user decides where he/she wants to go next, not the
application.

The stateful/statel ess navigation distinction is quite similar to the traditional view of modal/modeless interac-
tion. Now, Seam applications are not usually modal in the simple sense of the word - indeed, avoiding applica
tion modal behavior is one of the main reasons for having conversations! However, Seam applications can be,
and often are, modal at the level of a particular conversation. It is well-known that modal behavior is something
to avoid as much as possible; it is very difficult to predict the order in which your users are going to want to do
things! However, there is no doubt that the stateful model hasits place.

The biggest contrast between the two models is the back-button behavior.

4.1.2. Seam and the back button

JBoss Seam 1.0.CR3 67

Pageflows and business processes

When JSF navigation rules are used, Seam lets the user freely navigate via the back, forward and refresh but-
tons. It is the responsibility of the application to ensure that conversational state remains internally consistent
when this occurs. Experience with the combination of web application frameworks like Struts or WebWork -
that do not support a conversational model - and statel ess component models like EJB statel ess session beans or
the Spring framework has taught many developers that this is close to impossible to do! However, our experi-
ence is that in the context of Seam, where there is a well-defined conversational model, backed by stateful ses-
sion beans, it is actualy quite straightforward. Usualy it is as simple as combining the use of the
@onver sati onal annotation with null checks at the beginning of action listener methods. We consider support
for freeform navigation to be almost always desirable.

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition back to a previ-
ous state. Since the stateful model enforces a defined set of transitions from the current state, back buttoning is
be default disallowed in the stateful model! Seam transparently detects the use of the back button, and blocks
any attempt to perform an action from a previous, "stale" page, and simply redirects the user to the "current"
page (and displays a faces message). Whether you consider this a feature or a limitation of the stateful model
depends upon your point of view: as an application developer, it is a feature; as a user, it might be frustrating!
Y ou can enable backbutton navigation from a particular page node by setting back="enabl ed".

<page nane="checkout" viewid="/checkout.xhtm " back="enabl ed">
<redirect/>
<transition to="checkout"/>
<transition name="conpl ete" to="conpl ete"/>

</ page>

This allows backbuttoning from the checkout State to any previous state!

In practice, both navigation models have their place, and you'll quickly learn to recognize when to prefer one
model over the other.

4.2. Using jPDL pageflows

4.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and tell them where to find our pageflow definition. As
usual, we can specify Seam configuration in either web. xm Or seam properti es:

org.j boss.seam core.init.conponent Cl asses org.j boss. seam core. Jbpm
org. j boss. seam core. j bpm pagef | owDefi ni ti ons pagefl ow. j pdl . xm

Thefirst lineinstalls jJBPM, the second pointsto a jPDL-based pageflow definition.

4.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a @segin,
@Begi nTask Or @t ar t Task annotation:

@Begi n(pagef | ow="nunber guess")
public void begin() { ... }

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @act ory Or @ eat e method,
for example—we consider ourselves to be aready at the page being rendered, and use a <st ar t - page> node as
the first node in the pageflow, asin the example above.

JBoss Seam 1.0.CR3 68

Pageflows and business processes

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action listener de-
termines which is the first page to be rendered. In this case, we use a<start - st at e> as the first node in the
pageflow, and declare atransition for each possible outcome:

<pagef | ow defi ni ti on name="vi ewkdi t Docunent " >

<start-state name="start">
<transi tion name="docunent Found" to="di spl ayDocunment"/>
<transiti on name="docunent Not Found" to="not Found"/>
</start-state>

<page nane="di spl ayDocunent" vi ewi d="/docunent.jsp">
<transition nanme="edit" to="editDocunent"/>
<transition nane="done" to="nain"/>

</ page>

<page nane="not Found" view i d="/404.]sp">
<end- conversati on/ >
</ page>

</ pagef | ow definition>

4.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess.jsp">
<redirect/>
<transition name="guess" to="eval uat eGuess">
<action expression="#{nunber Guess. guess}" />
</transition>
</ page>

Thevi ewi d isthe JSF view id. The <redi r ect / > element has the same effect as <r edi rect / > in a JSF naviga
tion rule: namely, a post-then-redirect behavior, to overcome problems with the browser's refresh button. (Note
that Seam propagates conversation contexts over these browser redirects. So there is no need for a Ruby on
Rails style "flash" construct in Seam!)

The transition hame is the name of a JSF outcome triggered by clicking a command button or command link in
nunber Guess. j sp.

<h: commandButt on type="submit" val ue="CGuess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action by calling the
guess() method of the nunber Guess component. Notice that the syntax used for specifying actionsin the jPDL
isjust afamiliar JSF EL expression, and that the transition action handler is just a method of a Seam compon-
ent in the current Seam contexts. So we have exactly the same event model for jBPM events that we already
have for JSF events! (The One Kind of Stuff principle.)

In the case of a null outcome (for example, a command button with no acti on defined), Seam will signal the
transition with no name if one exists, or else simply redisplay the page if all transitions have names. So we
could dlightly simplify our example pageflow and this button:

<h: conmandBut t on type="submt" val ue="CGuess"/>

Would fire the following un-named transition:

JBoss Seam 1.0.CR3 69

Pageflows and business processes

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess.jsp">
<redirect/>
<transition to="eval uat eCuess" >
<action expressi on="#{nunber Guess. guess}" />
</transition>
</ page>

It is even possible to have the button call an action method, in which case the action outcome will determine the
transition to be taken:

<h: conmandBut t on type="subm t" val ue="CGuess" acti on="#{nunber Guess. guess}"/>

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess. jsp">
<transition name="correct Guess" to="win"/>
<transition name="incorrect Guess" to="eval uat eGuess"/>
</ page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow out of the
pageflow definition and back into the other components. It is much better to centralize this concern in the page-
flow itself.

4.2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do need the
<deci si on> node, however:

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}">
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRenui ni ngGuesses"/ >

</ deci si on>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

4.2.5. Ending the flow

We end the conversation using <end- conver sati on> or @nd. (In fact, for readability, use of both is encour-
aged.)

<page nanme="wi n" viewid="/win.jsp">
<redirect/>
<end- conver sati on/ >

</ page>

Optionaly, we can specify atransi ti on name. In this case, Seam will signal the end of the current task in the
overarching business process.

<page name="wi n" viewid="/wn.jsp">
<redirect/>
<end- conversation transition="success"/>
</ page>

4.3. Business process management in Seam

A business processis awell-defined set of tasks that must be performed by users or software systems according
to well-defined rules about who can perform atask, and when it should be performed. Seam's jBPM integration

JBoss Seam 1.0.CR3 70

Pageflows and business processes

makes it easy to display lists of tasks to users and let them manage their tasks. Seam aso lets the application
store state associated with the business process in the BUsl NESS_PROCESS context, and have that state made per-

sistent viajBPM variables.

A simple business process definition looks much the same as a page flow definition (One Kind of Stuff), except
that instead of <page> nodes, we have <t ask- node> nodes. In a long-running business process, the wait states
are where the system is waiting for some user to log in and perform a task.

<process-definition nane="t odo" >

<start-state nane="start">
<transition to="todo"/>
</start-state>

<t ask- node name="t odo" >
<task name="todo" description="#{todoLi st.description}">
<assi gnment actor-id="#{actor.id}"/>
</ task>
<transition to="done"/>
</t ask- node>

<end- st at e nane="done"/ >

</ process-definition>

B resources X = O || = properties £ ™3 =0
=+ =

[:3 Select 5| %
71, Marquee =
. <<Start State>> Property Value
LI start Mame
s 1 Source start
= End i Target todo
of}2 Fork
dIrn v <<Task Node>>
7 Decision : todo
MNode
¥ Task Node
— Transition
==<fnd State=>=
=
done
Diagram | Swimlanes Design | Source

It is perfectly possible that we might have both jPDL business process definitions and jPDL pageflow defini-
tions in the same project. If so, the relationship between the two is that a single <t ask> in a business process
corresponds to a whole pageflow <pr ocess- defi niti on>

4.4. Using jPDL business process definitions

4.4.1. Installing process definitions

We need to ingtall jBPM, and tell it where to find the business process definitions:

org.j boss.seaminit.conponent C asses org.jboss. seam core. Jbpm
org. j boss. seam core. j bpm processDefinitions todo.jpdl.xm

JBoss Seam 1.0.CR3 71

Pageflows and business processes

4.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and group act-
or ids. We specify the current actor ids using the built in Seam component named act or :

@n(create=true) Actor actor
public String login() {

actor.setld(user.getUserName());
actor.get G oupActorlds().addAl | (user.get G oupNames());

4.4.3. Initiating a business brocess

To initiate a business process instance, we use the @r eat ePr ocess annotation:

@Cr eat eProcess(definition="todo")
public void createTodo() { ... }

4.4.4. Task assignment

When a process starts, task instances are created. These must be assigned to users or user groups. We can either
hardcode our actor ids, or delegate to a Seam component:

<task name="t odo" description="#{todoLi st.description}">
<assi gnment actor-id="#{actor.id}"/>
</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to a pool:

<task nane="todo" description="#{todoLi st.description}">
<assi gnment pool ed- act or s="enpl oyees"/ >
</ task>

4.45. Task lists

Several built-in Seam components make it easy to display task lists. The pool edTaskl nst ancelLi st isalist of
pooled tasks that users may assign to themselves:

<h: dat aTabl e val ue="#{pool edTaskl nstanceLi st}" var="task">
<h: col utm>
<f:facet nane="header">Description</f:facet>
<h: out put Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<h: commandLi nk acti on="#{ pool edTask. assi gnToCurrent Actor}">
<h: commandBut t on val ue="Assi gn"/>
<f: param nanme="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>
</ h: col utm>
</ h: dat aTabl e>

The pool edTask component is a built-in component that simply assigns the task to the current user.

The t askl nst anceli st ByType component includes tasks of a particular type that are assigned to the current

JBoss Seam 1.0.CR3 72

Pageflows and business processes

user:

<h: dat aTabl e val ue="#{t askl nst ancelLi st ByType['todo']}" var="task">
<h: col utm>
<f:facet name="header">Description</f:facet>
<h: out put Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<h: conmandLi nk acti on="#{todoLi st.start}">
<h: conmandBut t on val ue="Start Wrk"/>
<f:param nane="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>
</ h: col utm>
</ h: dat aTabl e>

4.4.6. Performing a task

To begin work on atask, we use either @t art Task Or @egi nTask on the listener method:

@t art Task
public String start() { ... }

These annotations begin a specia kind of conversation that has significance in terms of the overarching busi-
ness process. Work done by this conversation has access to state held in the business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@ndTask(transition="conpl eted")
public String conpleted() { ... }

(Alternatively, we could have used <end- conver sat i on> as shown above.)

At this point, jBPM takes over and continues executing the business process definition. (In more complex pro-
cesses, several tasks might need to be completed before process execution can resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features that jBPM
provides for managing complex business processes.

JBoss Seam 1.0.CR3 73

Chapter 5. Internationalization

Seam makes it easy to build internationalized applications by providing several built-in components for hand-
ling multi-language Ul messages.

5.1. Locales

Each user login session has an associated instance of j ava. uti | . Local e (available to the application as a ses-
sion-scoped component named | ocal e). Under normal circumstances, you won't need to do any special config-
uration to set the locale. Seam just delegates to JSF to determine the active locale:

e If thereis alocale associated with the HTTP request (the browser locale), and that locale is in the list of
supported locales from f aces- confi g. xm , use that locale for the rest of the session.

e Otherwise, if adefault locale was specified in the f aces- confi g. xm , use that locale for the rest of the ses-
sion.

¢ Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam configuration properties| ocal eSel ect or . | anguage, | oc-
al eSel ector. country and| ocal eSel ect or. vari ant , but we can't think of any good reason to ever do this.

It is, however, useful to allow the user to set the locale manually via the application user interface. Seam
provides built-in functionality for overriding the locale determined by the algorithm above. All you have to do
is add the following fragment to aform in your JSP or Facelets page:

<h: sel ect OneMenu val ue="#{l ocal eSel ect or. | anguage}" >
<f:selectltemitenlabel ="English" itenVal ue="en"/>
<f:selectltemitenlLabel ="Deutsch" itenVal ue="de"/>
<f:selectltemitenlabel ="Francais" itenvalue="fr"/>
</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangeLanguage']}"/>

Or, if you want alist of all supported localesfromj sf - confi g. xm , just use:

<h: sel ect OneMenu val ue="#{l ocal eSel ector.| ocal eString}">
<f:selectltens val ue="#{l ocal eSel ect or. support edLocal es}"/>
</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{l| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangeLanguage']}"/>

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF locales will be
overridden for the rest of the session.

5.2. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of <f : | oadBundl e />.
You can use this approach in Seam applications. Alternatively, you can take advantage of the Seam nessages
component to display templated labels with embedded EL expressions.

Each login session has an associated instance of j ava. uti | . Resour ceBundl e (available to the application as a
session-scoped component hamed r esour ceBundl €). You'll need to make your internationalized labels avail-
able via this special resource bundle. By default, the resource bundle used by Seam is named nessages and so

JBoss Seam 1.0.CR3 74

I nternationalization

you'll need to define your labels in files named nessages. properties, nessages_en. properties, mes-
sages_en_AU. properti es, etc. These files usually belong in the WeB- | NF/ cl asses directory.

S0, innessages_en. properties:

Hel | o=Hel | o

And inmessages_en_AU. properti es:

Hel | 0=G day

Y ou can select a different name for the resource bundle by setting the Seam configuration property named r e-
sour ceBundl e. bundl eNane.

If you define your labels in this special resource bundle, you'll be able to use them without having to type
<f:loadBundl e ... /> o0nevery page. Instead, you can smply type:

<h: out put Text val ue="#{nmessages['Hello']}"/>

or:

<h: out put Text val ue="#{messages. Hel | 0}"/>

Even better, the messages themselves may contain EL expressions:

Hel | o=Hel | o, #{user.firstNanme} #{user.| astNane}
Hel | 0=G day, #{user.firstNane}

Y ou can even use the messagesin your code:

@n(create=true) private Map<String, String> nessages;

@n("#{nessages['Hello']}") private String hel | oMessage;

5.3. Faces messages

The f acesMessages component is a super-convenient way to display success or failure messages to the user.
The functionality we just described also works for faces messages:

@ame("hel | 0")

@t at el ess

public class HelloBean inplenents Hello {
@n(create=true)
FacesMessages facesMessages;

public String saylt() {
f acesMessages. addFr onmResour ceBundl e(" Hel | 0") ;
}

Thiswill display Hel | o, Gavin KingOr G day, Gavin, depending upon the user'slocale.

JBoss Seam 1.0.CR3 75

Chapter 6. Remoting

Seam provides a convenient method of remotely accessing components from a web page, using AJAX
(Asynchronous Javascript and XML). The framework for this functionality is provided with amaost no up-front
development effort - your components only require simple annotating to become accessible via AJAX. This
chapter describes the steps required to build an AJAX-enabled web page, then goes on to explain the features of
the Seam Remoting framework in more detail.

6.1. Configuration

To use remoting, the Seam Remoting servliet must first be configured in your web. xni file:

<servl et >

<servl et - name>Seam Renot i ng</ ser vl et - name>

<servl et-class>org. | boss. seam renoti ng. SeanRenot i ngSer vl et </ servl et - cl ass>
</servl et>

<servl et - mappi ng>
<servl et - name>Seam Renot i ng</ ser vl et - name>
<url-pattern>/seanrenmoting/*</url-pattern>
</ servl et - mappi ng>

The next step isto import the necessary Javascript into your web page. There are a minimum of two scripts that
must be imported. The first one contains all the client-side framework code that enables remoting functionality:

<script type="text/javascript" src="seam renoting/resource/renote.js">
<l--
/1 This space intentionally |eft blank
[]-->

</script>

The second script contains the stubs and type definitions for the components you wish to call. It is generated
dynamically based on the local interface of your components, and includes type definitions for al of the classes
that can be used to call the remotable methods of the interface. The name of the script reflects the name of your
component. For example, if you have a stateless session bean annotated with @ianme(" cust oner Acti on"), then
your script tag should look like this:

<script type="text/javascript" src="seam renoting/interface.js?custonerAction">
<l--
/1 This space intentionally |eft blank
[]-->

</scri pt>

If you wish to access more than one component from the same page, then include them all as parameters of
your script tag:

JBoss Seam 1.0.CR3 76

Remoting

<script type="text/javascript" src="seam renoting/interface.js?custonerActi on&ccount Acti on">
<l--
/1 This space intentionally |left blank
[]-->

</scri pt>

6.2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object. This object is
defined inremot e. j s, and you'll be using it to make asynchronous calls against your component. It is split into
two areas of functionality; Seam Conponent contains methods for working with components and
Seam Renot i ng contains methods for executing remote requests. The easiest way to become familiar with this
object isto start with a simple example.

6.2.1. A Hello World example

Let's step through a simple example to see how the seamobject works. First of al, let's create a new Seam com-
ponent called hel | oActi on

@t at el ess
@anme(" hel | oAction")
@scope(SESSI ON)
public class HelloAction inplenments HelloLocal ({
public String sayHel | o(String nanme) {
return "Hello, " + nane;
}
}

Y ou also need to create alocal interface for our new component - take specia note of the @ebRenot e annota-
tion, asit's required to make our method accessible viaremoting:

@oca
public interface HelloLocal {
@\¥bRenot e
public String sayHello(String nane);
}

That's al the server-side code we need to write. Now for our web page - create a new page and import the fol-
lowing scripts:

<script type="text/javascript" src="seam renoting/resource/renote.js">
<l--
[l This space intentionally left blank
[l-->

</scri pt>

<script type="text/javascript" src="seanlrenoting/interface.js?helloAction">

JBoss Seam 1.0.CR3 77

Remoting

<l--
/1 This space intentionally |eft blank
[]-->

</scri pt>

To make this afully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hel | o</ button>

WEe'll also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">
/] <!'[CDATA[

function sayHel l o() {

var name = pronpt("Wat is your name?");

Seam Conponent . get | nst ance(" hel | oActi on") . sayHel | o(name, sayHel | oCal | back) ;
}

functi on sayHel | oCal | back(result) {
alert(result);
}

11 11>
</script>

We're done! Deploy your application and browse to your page. Click the button, and enter a name when promp-
ted. A message box will display the hello message confirming that the call was successful. If you want to save
some time, youll find the full source code for this Hello World example in Seam's /ex-
anpl es/ renot i ng/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start with, you can
see from the Javascript code listing that we have implemented two methods - the first method is responsible for
prompting the user for their name and then making a remote request. Take alook at the following line:

Seam Conponent . get I nst ance("hel | oActi on"). sayHel | o(nane, sayHel | oCal | back) ;

The first section of thisline, Seam Conponent . get | nst ance(" hel | oActi on") returnsaproxy, or "stub" for our
hel | oAct i on component. We can invoke the methods of our component against this stub, which is exactly what
happens with the remainder of theline: sayHel | o(name, sayHel | oCal | back) ; .

What this line of code in its completeness does, is invoke the sayHel | o method of our component, passing in
name as a parameter. The second parameter, sayHel | oCal | back isn't a parameter of our component's sayHel | o
method, instead it tells the Seam Remoting framework that once it receives the response to our request, it
should passit to the sayHel | oCal | back Javascript method. This callback parameter is entirely optional, so feel
freetoleaveit out if you're calling a method with avoi d return type or if you don't care about the resullt.

The sayHel 1 oCal | back method, once receiving the response to our remote request then pops up an aert mes-

JBoss Seam 1.0.CR3 78

Remoting

sage displaying the result of our method call.

6.2.2. Seam.Component

The seam Conponent Javascript object provides a number of client-side methods for working with your Seam
components. The two main methods, newl nst ance() and get | nst ance() are documented in the following sec-
tions however their main difference is that newl nst ance() will always create a new instance of a component
type, and get I nst ance() will return a singleton instance.

Seam.Component.newlinstance()

Use this method to create a new instance of an entity or Javabean component. The object returned by this meth-
od will have the same getter/setter methods as its server-side counterpart, or alternatively if you wish you can

accessitsfields directly. Take the following Seam entity component for example:

@Nane("cust omer")
@ntity

public class Custoner inplenents Serializable

{

}

private | nteger custonerld;
private String firstName;
private String |astName;

@ol umm public Integer getCustonerld() ({
return custonerld;

}

public void setCustonerld(lnteger custonerld} {
this.custonerld = custonerld;

}

@ol um public String getFirstNane() {
return firstNaneg;

}

public void setFirstName(String firstName) {
this.firstName = firstNang;

}

@Col utm public String getlLastNane() {
return | astNaneg;

}

public void setlLastNane(String | astName) {
this.lastName = | ast Nane;

}

To create a client-side Customer you would write the following code:

var customer = Seam Conponent.new nstance("customer");

Then from here you can set the fields of the customer object:

cust oner. set Fi r st Nane(" John") ;
/1l O you can set the fields directly
custoner.|lastNane = "Snmith";

JBoss Seam 1.0.CR3

79

Remoting

Seam.Component.getinstance()

The get I nst ance() method is used to get a reference to a Seam session bean component stub, which can then
be used to remotely execute methods against your component. This method returns a singleton for the specified
component, so calling it twice in a row with the same component name will return the same instance of the
component.

To continue our example from before, if we have created a new cust omer and we now wish to save it, we
would passit to the saveCust omer () method of our cust oner Act i on component:

Seam Conponent . get | nst ance(" cust oner Acti on") . saveCust oner (cust oner);

Seam.Component.getComponentName()

Passing an object into this method will return its component nameiif it is acomponent, or nul | if it isnot.

i f (Seam Conponent . get Conponent Nanme(i nstance) == "custoner")
alert("Custoner");
el se if (Seam Conponent. get Conponent Nane(i nstance) == "staff")

alert("Staff menber");

6.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam Renot i ng object. While
you shouldn't need to directly call most of its methods, there are a couple of important ones worth mentioning.

Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may need to create these
types on the client side to pass as parameters into your component method. Use the creat eType() method to
create an instance of your type. Passin the fully qualified Java class name as a parameter:

var wi dget = Seam Renoti ng. createType("com acrme. w dgets. MyW dget ") ;

Seam.Remoting.getTypeName()

This method is the equivalent of Seam Conponent . get Conponent Name() but for non-component types. It will
return the name of the type for an object instance, or nul | if the type is not known. The name is the fully quali-
fied name of the type's Java class.

6.3. Client Interfaces

In the configuration section above, the interface, or "stub" for our component is imported into our page via
seam renoting/interface.js:

<script type="text/javascript" src="seamrenoting/interface.js?custonerAction">

JBoss Seam 1.0.CR3 80

Remoting

<l--
/1 This space intentionally |eft blank
[]-->

</scri pt>

By including this script in our page, the interface definitions for our component, plus any other components or
types that are required to execute the methods of our component are generated and made available for the re-
moting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs. Executable stubs
are behavioural, and are used to execute methods against your session bean components, while type stubs con-
tain state and represent the types that can be passed in as parameters or returned as aresullt.

The type of client stub that is generated depends on the type of your Seam component. If the component is a
session bean, then an executable stub will be generated, otherwise if it's an entity or JavaBean, then atype stub
will be generated. There is one exception to this rule; if your component is a JavaBean (ie it is not a session
bean nor an entity bean) and any of its methods are annotated with @WebRemote, then an executable stub will
be generated for it instead of a type stub. This allows you to use remoting to call methods of your JavaBean
components in a non-EJB environment where you don't have access to session beans.

6.4. The Context

The Seam Remoting Context contains additional information which is sent and received as part of a remoting
reguest/response cycle. At this stage it only contains the conversation ID but may be expanded in the future.

6.4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to read or set the
conversation 1D in the Seam Remoting Context. To read the conversation ID after making a remote request call
Seam Rent i ng. get Cont ext (). get Conversationld(). To set the conversation 1D before making a request,
call Seam Renot i ng. get Cont ext () . set Conversationl d() .

6.5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is recommended that
this feature is used wherever it is appropriate to reduce network traffic.

The method Seam Renoti ng. startBat ch() will start a new batch, and any component calls executed after
starting a batch are queued, rather than being sent immediately. When all the desired component calls have
been added to the batch, the Seam Renmt i ng. execut eBat ch() method will send a single request containing all
of the queued calls to the server, where they will be executed in order. After the calls have been executed, a
single response containining all return values will be returned to the client and the callback functions (if
provided) triggered in the same order as execution.

If you start a new batch via the startBatch() method but then decide you don't want to send it, the
Seam Renot i ng. cancel Bat ch() method will discard any calls that were queued and exit the batch mode.

To see an example of a batch being used, take alook at / exanpl es/ r enot i ng/ chat r oom

JBoss Seam 1.0.CR3 81

Remoting

6.6. Working with Data types

6.6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are generally compatible
with either their primitive type or their corresponding wrapper class.

String

Simply use Javascript String objects when setting String parameter values.

Number

There is support for all number types supported by Java. On the client side, number values are always serialized
astheir String representation and then on the server side they are converted to the correct destination type. Con-
version into either a primitive or wrapper type is supported for Byt e, Doubl e, Fl oat, | nt eger, Long and Shor t

types.
Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java boolean.

6.6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-component class. Use
the appropriate method (either Seam Conponent.new nstance() for Seam components or
Seam Renot i ng. creat eType() for everything else) to create a new instance of the object.

It isimportant to note that only objects that are created by either of these two methods should be used as para-
meter values, where the parameter is not one of the other valid types mentioned anywhere else in this section.
In some situations you may have a component method where the exact parameter type cannot be determined,
such as:

@Nane(" nyAction")
public class M/Action inplenents MyActionLocal {
public void doSonet hi ngWthCObj ect (Obj ect obj) {
/1 code
}
}

In this case you might want to pass in an instance of your nyw dget component, however the interface for ny-
Act i on won't include myw dget asit isnot directly referenced by any of its methods. To get around this, Myw d-
get needsto be explicitly imported:

<script type="text/javascript" src="seam renoting/interface.js?nmyActi on&ryW dget ">
<l--
/1 This space intentionally |eft blank
[l-->

</scri pt>

JBoss Seam 1.0.CR3 82

Remoting

This will then alow anmyw dget object to be created with Seam Conponent . new nst ance(" myW dget "), which
can then be passed to nyAct i on. doSonet hi ngW t hQbj ect () .

6.6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the client side, use
a Javascript Date object to work with date values. On the server side, use any j ava. uti | . Dat e (or descendent,
such asj ava. sql . Dat e Or j ava. sql . Ti mest anp class.

6.6.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum parameter, simply
use the String representation of the enum. Take the following component as an example:

@Name(" pai nt Action")
public class paintAction inplenents paintLocal {
public enum Col or {red, green, blue, yellow orange, purple};

public void paint(Color color) {
/] code

}
}

To call the pai nt () method with the color r ed, pass the parameter value as a String literal:

Seam Conponent . get | nst ance(" pai nt Action").paint("red");

Theinverseis also true - that is, if a component method returns an enum parameter (or contains an enum field
anywherein the returned object graph) then on the client-side it will be represented as a String.

6.6.5. Collections

Bags

Bags cover al collection types including arrays, collections, lists, sets, (but excluding Maps - see the next sec-
tion for those), and are implemented client-side as a Javascript array. When calling a component method that
accepts one of these types as a parameter, your parameter should be a Javascript array. If a component method
returns one of these types, then the return value will also be a Javascript array. The remoting framework is clev-
er enough on the server side to convert the bag to an appropriate type for the component method call.

Maps

As there is no native support for Maps within Javascript, a simple Map implementation is provided with the
Seam Remoting framework. To create a Map which can be used as a parameter to a remote call, create a new
Seam Renot i ng. Map object:

var map = new Seam Renoti ng. Map();

JBoss Seam 1.0.CR3 83

Remoting

This Javascript implementation provides basic methods for working with Maps: si ze(), i sEnpty(), keySet (),
val ues(), get (key), put (key, val ue), remove(key) and cont ai ns(key) . Each of these methods are equival-
ent to their Java counterpart. Where the method returns a collection, such as keySet () and val ues(), a Javas-
cript Array object will be returned that contains the key or value objects (respectively).

6.7. Debugging
To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents of al the

packets send back and forth between the client and server in a popup window. To enable debug mode, execute
the set Debug() method:

Seam Renot i ng. set Debug(true);

To turn off debugging, call set Debug(f al se). If you want to write your own messages to the debug log, call
Seam Renot i ng. | og(message) .

6.8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified, its rendering
customised or even turned off completely.

6.8.1. Changing the message

n

To change the message from the default "Please Wait...
Seam Renot i ng. | oadi ngMessage:

to something different, set the vaue of

Seam Renot i ng. | oadi ngMessage = "Loadi ng...";

6.8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of di spl ayLoad-
i ngMessage() and hi deLoadi ngMessage() with functions that instead do nothing:

/1 don't display the |oading indicator
Seam Renot i ng. di spl ayLoadi ngMessage = function() {};
Seam Renoti ng. hi deLoadi ngMessage = function() {};

6.8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else that you want.
To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage() messages with your own im-
plementation:

JBoss Seam 1.0.CR3 84

Remoting

Seam Renot i ng. di spl ayLoadi ngMessage = function() ({
/1l Wite code here to display the indicator

}H

Seam Renot i ng. hi deLoadi ngMessage = function() {
// Wite code here to hide the indicator

H

6.9. JMS Messaging

Seam Remoting provides experimental support for IMS Messaging. This section describes the IMS support that
is currently implemented, but please note that this may change in the future. It is currently not recommended
that this feature is used within a production environment.

6.9.1. Subscribing to a JMS Topic

The following example demonstrates how to subscribeto a JIMS Topic:

function subscriptionCall back(nmessage)

{

i f (message i nstanceof Seam Renoting. Text Message)
al ert ("Recei ved nessage: " + nessage. getText());

}

Seam Renot i ng. subscri be("topi cNanme", subscriptionCall back);

The seam Renot i ng. subscri be() method accepts two parameters, the first being the name of the IMS Topic to
subscribe to, the second being the callback function to invoke when a message is received.

There are two types of messages supported, Text messages and Object messages. If you need to test for the type
of message that is passed to your callback function you can use the i nst anceof operator to test whether the
message iS a Seam Renot i ng. Text Message OF Seam Renpt i ng. bj ect Message. A Text Message contains the
text value in itstext field (or aternatively call get Text () on it), while an ovj ect Message contains its object
valueinitsobj ect field (or call itsget bj ect () method).

6.9.2. Unsubscribing from a Topic

To unsubscribe from atopic, call Seam Renot i ng. unsubscri be() and passin the topic name:

Seam Renot i ng. unsubscri be("t opi cNane");

6.9.3. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam Renot i ng. pol | I nterval , which controls how long to wait between subsequent polls for new messages.
This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam Renot i ng. pol | Ti meout , and is also expressed as seconds. It controls how long a

JBoss Seam 1.0.CR3 85

Remoting

request to the server should wait for a new message before timing out and sending an empty response. Its de-
fault is 0 seconds, which means that when the server is polled, if there are no messages ready for delivery then
an empty response will be immediately returned.

The following example demonstrates how to configure the polling to occur much more aggressively. You
should set these parameters to suitable values for your application:

/1 Only wait 1 second between receiving a poll response and sending the next poll request.
Seam Renoting. pol | I nterval = 1;

/1 Wit up to 5 seconds on the server for new nessages
Seam Renoti ng. pol | Ti neout = 5;

JBoss Seam 1.0.CR3 86

Chapter 7. Configuring Seam

Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several lines of XML are
required to integrate Seam into your JSF implementation and servlet container. There's no need to be too put off
by the following sections; you'll never need to type any of this stuff yourself, since you can just copy and paste
from the example applications!

7.1. Basic Seam configuration

First, let'slook at the basic configuration that is needed whenever we use Seam with JSF.

7.1.1. Integrating Seam with JSF and your servlet container

Seam requires the following entry in your web. xm file:

<li stener>
<l istener-class>org.jboss. seam servl et. SeanlLi stener</|i stener-cl ass>
</listener>

Thislistener isresponsible for bootstrapping Seam, and for destroying session and application contexts.

If you are using Seam in Apache MyFaces (and possibly some other JSF implementations), you must use client-
side state saving. So you'll also need thisin web. xni :

<cont ext - par anr
<par am nane>j avax. f aces. STATE_SAVI NG_METHOD</ par am name>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an>

To integrate with the JSF request lifecycle, we also need a JSF PhaseLi st ener registered in in the f aces- con-
fig.xnl file

<lifecycl e>
<phase-|i stener>org.jboss. seam j sf. SeanPhaselLi st ener </ phase-|i st ener >
</lifecycl e>

The actual listener class here varies depending upon how you want to manage transaction demarcation (more
on this below).

7.1.2. Integrating Seam with your EJB container

We need to apply the Seam nt er cept or to our Seam components. The simplest way to do thisis to add the fol-
lowing interceptor binding to the <assenbl y-descriptor>inejb-jar. xm :

<i nt er cept or - bi ndi ng>

<ej b- name>* </ ej b- name>

<i nterceptor-class>org.j boss. seam ej b. Seam nt ercept or</i nt erceptor - cl ass>
</i nt er cept or - bi ndi ng>

Seam needs to know where to go to find session beans in INDI. One way to do this is specify the @ndi Namre
annotation on every session bean Seam component. However, thisis quite tedious. A better approach isto spe-
cify a pattern that Seam can use to calculate the INDI name from the EJB name. Unfortunately, there is no
standard mapping to global JNDI defined in the EJB3 specification, so this mapping is vendor-specific. We

JBoss Seam 1.0.CR3 87

Configuring Seam

must specify a pattern using the configuration property named or g. j boss. seam core. i ni t.j ndi Pattern.
For JBoss AS, the following pattern is correct:

<cont ext - par anr
<par am nane>or g. j boss. seam core. i nit.jndi Pattern</param name>
<par am val ue>myEar Nanme/ #{ ej bNane}/ | ocal </ par am val ue>

</ cont ext - par an>

Where nyEar Narre is the name of the EAR in which the bean is deployed. Outside the context of an EAR (when
using the JBoss Embeddable EJB3 container), the following pattern is the one to use:

<cont ext - par an»
<par am nane>or g. j boss. seam core. i ni t.ndi Pattern</param nanme>
<par am val ue>#{ ej bNanme}/ | ocal </ par am val ue>

</ cont ext - par an>

Note that this configuration setting may be specified in either web. xn Or in seam properti es.

org.j boss.seamcore.init.jndi Pattern #{ej bNane}/| ocal </ param val ue>

7.1.3. Enabling conversation propagation with redirects

If you want to use post-then-redirect in JSF, and you want Seam to propagate the conversation context across
the browser redirects, you need to register a servlet filter:

<filter>
<filter-nane>Seam Redirect Filter</filter-name>
<filter-class>org.jboss.seam servl et. SeanRedirectFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>Seam Redirect Filter</filter-name>
<url-pattern>*.jsf</url-pattern>

</filter-mappi ng>

This filter intercepts any browser redirects and adds a request parameter that specifies the Seam conversation
id.

7.2. Configuring Seam in Java EE 5

J5P [Facelets

JSF

Seam

EJB 3

JavaEE S

JBoss Seam 1.0.CR3 88

Configuring Seam

If you're running in a Java EE 5 environment, this is all the configuration required to start using Seam! But
there is one final item you need to know about. You must place a seam properties file in the root of any
archive in which your Seam components are deployed (even an empty properties file will do). At startup, Seam
will scan any archives with seam properti es filesfor seam components. If that doesn't work for you, you can
aso add components by listing them explicitty in the configuration property named
org.j boss.seam core.init.conponent Cl asses.

7.2.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something like this:

ny- appl i cati on. ear/
j boss-seam j ar
VETA- | NF/
MANI FEST. MF
application. xm
my-appl i cati on. war/
META- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
faces-config. xn
| ogin.jsp
register.jsp
nmy-application.jar/
MVETA- | NF/
MANI FEST. MF
per si st ence. xn
seam properties
org/
j boss/
nyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster.cl ass
Regi st er Bean. cl ass

Make sure you referencej boss- seam j ar from manifests of the EJB-JAR and WAR.

Seam ships with several example applications that are deployable in any Java EE container that supports EJB
3.0.

| really wish that was al there was to say on the topic of configuration but unfortunately we're only about a
third of the way there. If you're too overwhelmed by all this tedious configuration stuff, feel free to skip over
the rest of this section and come back to it later.

7.3. Configuring Seam with the JBoss Embeddable EJB3 con-
tainer

The JBoss Embeddable EJB3 container lets you run EJB3 components outside the context of the Java EE 5 ap-
plication server. Thisis especialy, but not only, useful for testing.

The Seam booking example application includes a TestNG integration test suite that runs on the Embeddable
EJB3 container.

JBoss Seam 1.0.CR3 89

Configuring Seam

Seam

JBoss Embeddable EJB 3

TestNG

The booking exampl e application may even be deployed to Tomcat.

ISP / Facelets

J5F

Seam

JBoss Embeddable EJB 3

Tomcat

7.3.1. Installing the Embeddable EJB3 container

Seam ships with a build of the Embeddable EJB3 container in the enbedded- ej b directory. To use the Embed-
dable EJB3 container with Seam, add the embedded- ej b/ conf directory, and all jarsinthelib and enbedded-
ej b/ i b directories to your classpath. Then, add the following line to seam properti es:

org.j boss.seam core.init.conmponent Cl asses org.j boss.seam core. Ejb

Or, dternatively, add the following entry to web. xm :

<cont ext - par an>
<par am nane>or g. j boss. seam core. i ni t.conponent Cl asses</ par am nanme>
<par am val ue>or g. j boss. seam cor e. Ej b</ par am val ue>

</ cont ext - par an>

This setting installs the built-in component named or g. j boss. seam core. ej b. This component is responsible
for bootstrapping the EJB container when Seam is started, and shutting it down when the web application is un-
deployed.

7.3.2. Configuring a datasource with the Embeddable EJB3 container

Y ou should refer to the Embeddable EJB3 container documentation for more information about configuring the
container. You'll probably at least need to set up your own datasource. Embeddable EJB3 is implemented using
the JBoss Microcontainer, so it's very easy to add new services to the minimal set of services provided by de-
fault. For example, | can add a new datasource by putting thisj boss- beans. xni filein my classpath:

<?xm version="1.0" encodi ng="UTF-8""?>

JBoss Seam 1.0.CR3 90

Configuring Seam

<depl oynent xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="urn: j boss: bean- depl oyer bean-depl oyer _1 0. xsd"
xm ns="ur n: j boss: bean- depl oyer" >

<bean name="booki ngDat asour ceBoot st r ap"
cl ass="org.j boss. resource. adapt er. j dbc. | ocal . Local TxDat aSour ce" >
<property nane="driverd ass">org. hsql db. j dbcDri ver </ property>
<property nanme="connecti onURL">j dbc: hsql db: . </ property>
<property nane="user Nane">sa</ property>
<property nane="j ndi Nane">j ava: / booki ngDat asour ce</ pr operty>
<property nanme="m nSi ze" >0</ property>
<property name="maxSi ze">10</ property>
<property nane="bl ocki ngTi neout " >1000</ pr operty>
<property nanme="idl eTi meout " >100000</ pr operty>
<property nane="transacti onManager" >
<i nj ect bean="Transacti onManager"/>
</ property>
<property nane="cachedConnecti onManager">
<i nj ect bean="CachedConnecti onManager"/>
</ property>
<property nane="initi al ContextProperties">
<i nject bean="Initial ContextProperties"/>
</ property>
</ bean>

<bean name="booki ngDat asour ce" cl ass="j ava. |l ang. Obj ect" >
<constructor factoryMethod="get Dat asource">
<factory bean="booki ngDat asour ceBoot strap"/ >
</ constructor>
</ bean>

</ depl oynent >

7.3.3. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look something like
this:

ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
VEB- | NF/
web. xm
faces-config. xmn
l'i b/
j boss-seam j ar
nyfaces-api.jar
myf aces-inpl.jar
j boss-ej b3.jar
j boss-jca.jar
j boss-j 2ee. jar

nc-conf.jar/
ej b3-interceptors-aop. xn
enbedded- j boss- beans. xni
def aul t. persi stence. properties
j ndi . properties
| ogi n-config. xn
security-beans. xn

| 0g4j . xm
nmy-application.jar/

VETA- | NF/
MANI FEST. MF

per si st ence. xn
j boss- beans. xni
| 0og4j . xn
seam properties

JBoss Seam 1.0.CR3 91

Configuring Seam

org/
j boss/
myappl i cati on/

User. cl ass
Logi n. cl ass

Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

I ogin.jsp
register.jsp

The nc-conf. jar just contains the standard JBoss Microcontainer configuration files for Embeddable EJB3.
Y ou won't usually need to edit these files yoursalf.

Most of the Seam example applications may be deployed to Tomcat by running ant depl oy. t oncat .

7.4. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start a transaction
transparently when the bean is invoked, and end it when the invocation ends. If we write a session bean method
that acts as a JSF action listener, we can do al the work associated with that action in one transaction, and be
surethat it is committed or rolled back when we finish processing the action. Thisis a great feature, and all that
is needed by many Seam applications.

There is just one problem with this approach. ORM solutions like Hibernate and EJB 3.0 persistence support
lazy fetching of entity associations inside a transaction context, but throw Lazyl ni tial i zati onExcept i onS if
you try to access an unfetched association outside the context of a transaction. This is a problem if your view
page tries to access data that was not fetched during the transaction. Hibernate users devel oped the open session
in view pattern to work around this problem. This pattern is usually implemented as a transaction which spans
the entire request. There are several problems with this idea, the most serious being that we can't be sure that a
transaction has been successful until we commit it, but by the time we commit the transaction, we have already
rendered the view. Furthermore, thisis at best a partial solution to the problem, because we can still meet the
dreaded Lazyl ni ti al i zati onExcept i on if we try to re-use the entity object in the next request.

Seam completely solves the problem of unwanted Lazyl ni ti al i zati onExcepti ons, while working around the
biggest problem in the open session in view pattern. The solution comesin two parts:

* use an extended persistence context that is scoped to the conversation, instead of to the request

e use two transactions per request; the first spans the beginning of the update model values phase until the
end of the invoke application phase; the second spans the render response phase

7.4.1. Enabling Seam-managed transactions

To make use of Seam managed transactions, you need to use SeanExt endedManagedPer si st encePhaseL-
i st ener in place of SeanPhaseli st ener.

<lifecycl e>
<phase-|i stener>
org.j boss. seam j sf. SeanExt endedManagedPer si st encePhaselLi st ener
</ phase-1i st ener >
</lifecycl e>

JBoss Seam 1.0.CR3 92

Configuring Seam

It's also a good idea to add a servlet filter to rollback uncommitted transactions when uncaught exceptions oc-
cur.

<filter>
<filter-name>Seam Exception Filter</filter-name>
<filter-class>org.jboss. seam servl et. SeanExceptionFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>Seam Exception Filter</filter-name>
<url-pattern>*.jsf</url-pattern>

</filter-mappi ng>

7.4.2. Using a Seam-managed persistence context

You'll need to use a managed persistence context (for EJB3) or managed session (for Hibernate) in your com-
ponents. We'll see how to use a managed session later. Configuring a managed persistence context is easy. In
seam properties, We can write:

org. j boss. seam core. i nit. managedPer si st enceCont ext s booki ngDat abase
booki ngDat abase. per si st enceUni t Jndi Nane j ava:/EntityManager Fact ori es/ booki ngDat a

Or, inweb. xni :

<cont ext - par an»
<par am nane>or g. j boss. seam core. i ni t. managedPer si st enceCont ext s</ par am nanme>
<par am val ue>booki ngDat abase</ par am val ue>

</ cont ext - par an>

<cont ext - par an>
<par am nane>booki ngDat abase. per si st enceUni t Jndi Name</ par am nane>
<par am val ue>j ava: / Enti t yManager Fact or i es/ booki ngDat a</ par am val ue>
</ cont ext - par an>

This configuration creates a conversation-scoped Seam component named booki ngDat abase that manages the
lifecycle of EntityManager instances for the persistence unit (Entit yManager Fact ory instance) with JNDI
namej ava: / Enti t yManager Fact or i es/ booki ngDat a.

Of course, you need to make sure that you have bound the Enti t yManager Fact ory into JNDI. In JBoss, you
can do this by adding the following property setting to per si st ence. xm .

<property nanme="j boss. entity. manager.factory.jndi.nane"
val ue="j ava:/ Enti t yManager Fact or i es/ booki ngDat a"/ >

Now we can have our Ent i t yManager injected using:

@n(create=true) EntityManager booki ngDat abase;

7.5. Configuring Seam with Hibernate in Java EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you would use Hibern-
ate3 instead of EJB 3.0 persistence, and plain JavaBeans instead of session beans. You'll miss out on some of
the nice features of session beans but it will be very easy to migrate to EJB 3.0 when you're ready and, in the
meantime, you'll be able to take advantage of Seam's unique declarative state management architecture.

JBoss Seam 1.0.CR3 93

Configuring Seam

J5P / Facelets

JSF

Seam

Hibernate

JavaEE S5/ J2EE

Seam JavaBean components do not provide declarative transaction demarcation like session beans do. You
could manage your transactions manually using the JTA User Transacti on (you could even implement your
own declarative transaction management in a Seam interceptor). But most applications will use Seam managed
transactions when using Hibernate with JavaBeans. Follow the instructions above to enable SeanExt endedMan-
agedPer si st encePhaseli st ener.

The Seam distribution includes a version of the booking example application that uses Hibernate and Java-
Beansinstead of EJB3. This example application is ready to deploy into any J2EE application server.

7.5.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate Sessi onFact ory from your hi ber nate. cfg. xm fileif you install the built-in
component named or g. j boss. seam cor e. hi ber nat e.

7.5.2. Using a Seam-managed Hibernate Session

We will also need to configure a managed session if we want a Seam managed Hibernate Sessi on to be avail-
ableviainjection.

To configure our Seam components, as usual, we have a choice between seam properti es and web. xm . Let's
show just the properties file thistime:

org.j boss.seam core.init.conmponent Cl asses org.j boss. seam core. Hi bernate
org. j boss. seam core. i nit. nanagedSessi ons booki ngDat abase
booki ngDat abase. sessi onFact or yJndi Nanme j ava: / booki ngSessi onFact ory

Wherej ava: / booki ngSessi onFact ory isthe name of the session factory specified in hi ber nate. cf g. xm .
<session-factory name="j ava: / booki ngSessi onFact ory" >

</ sessi on-factory>

We can now have a managed Hibernate Sessi on injected into our JavaBean components using the following
code:

@n(create=true) Session booki ngDat abase;

JBoss Seam 1.0.CR3 94

Configuring Seam

7.5.3. Packaging
We can package our application asa WAR, in the following structure:

ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
faces-config. xmn
l'i b/
j boss-seam j ar
hi bernat e3.j ar

nmy-application.jar/
MVETA- | NF/
MANI FEST. MF
seam properties
hi ber nat e. cf g. xm
org/
j boss/
nyappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

I ogin.jsp
register.jsp

If we want to deploy Hibernate in a non-J2EE environment like Tomcat or TestNG, we need to do a little bit
more work.

7.6. Configuring Seam with Hibernate in Java SE

The Seam support for Hibernate requires JTA and a JCA datasource. If you are running in a non-EE environ-
ment like Tomcat or TestNG, you can run these services, and Hibernate itself, in the JBoss Microcontainer.

Y ou can even deploy the Hibernate version of the booking example in Tomcat.

JBoss Seam 1.0.CR3 95

Configuring Seam

JSP / Facelets

JSF

Seam

Hibernate

JBoss JTA JBoss JCA

JBoss Microcontainer

Tomcat

Seam ships with an example Microcontainer configuration in ni crocont ai ner/ conf/j boss-beans. xm that
provides al the things you need to run Seam with Hibernate in any non-EE environment. Just add the ni cr o-
cont ai ner/ conf directory, and all jarsinthe!ib and mi crocont ai ner/1i b directories to your classpath. Refer
to the documentation for the JBoss Microcontainer for more information.

7.6.1. Using Hibernate and the JBoss Microcontainer

The built-in Seam component named or g. j boss. seam cor e. ni crocont ai ner bootstraps the microcontainer.
As before, we probably want to use a Seam managed session.

org.j boss.seam core.init.conmponent Cl asses org.j boss. seam core. M crocont ai ner
org. j boss. seam core. i nit. nanagedSessi ons booki ngDat abase
booki ngDat abase. sessi onFact or yJndi Nanme j ava: / booki ngSessi onFact ory

Where j ava: / booki ngSessi onFact ory is the name of the Hibernate session factory specified in hi ber n-
ate.cfg.xm .

You'll need to provide aj boss. beans. xni file that installs INDI, JTA, and your JCA datasource into the mi-
crocontainer:

<?xm version="1.0" encodi ng="UTF-8"?>

<depl oynment xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schenalLocati on="ur n: j boss: bean- depl oyer bean- depl oyer _1_0. xsd"
xm ns="ur n: j boss: bean- depl oyer" >

<bean nane="Nam ng" cl ass="org.jnp.server. Si ngl et onNam ngServer"/>

<bean nane="Transacti onManager Fact ory" cl ass="org. | boss. seam ni crocont ai ner. Transact i onManager Fact
<bean name="Transacti onManager" cl ass="j ava.l ang. Obj ect">
<constructor factoryMethod="get Transacti onManager" >
<factory bean="Transacti onManager Fact ory"/ >
</ const ructor >
</ bean>

<bean name="booki ngDat asour ceFact ory" cl ass="org.jboss. seam mi crocont ai ner. Dat aSour ceFact ory" >

JBoss Seam 1.0.CR3 96

Configuring Seam

<property nane="driverd ass">org. hsql db. j dbcDri ver </ property>
<property nane="connecti onUrl">j dbc: hsql db: . </ property>
<property name="user Nanme">sa</ property>
<property nane="j ndi Nane" >j ava: / hi ber nat eDat asour ce</ pr operty>
<property nane="ni nSi ze" >0</ property>
<property name="maxSi ze">10</ property>
<property nane="Dbl ocki ngTi neout " >1000</ pr operty>
<property nane="idl eTi neout " >100000</ pr operty>
<property nane="transacti onManager" ><i nj ect bean="Transacti onManager"/ ></ property>
</ bean>
<bean nane="booki ngDat asource" cl ass="java. | ang. Obj ect">
<constructor factoryMethod="get Dat aSource" >
<factory bean="booki ngDat asour ceFactory"/>
</ constructor >
</ bean>

<bean nane="booki ngDat abaseFact ory" cl ass="org. | boss. seam ni crocont ai ner. H ber nat eFact ory"/ >
<bean nane="booki ngDat abase" cl ass="j ava. | ang. Cbj ect" >
<constructor factoryMethod="get Sessi onFactory">
<factory bean="booki ngDat abaseFactory"/>
</ constructor>
<depends>booki ngDat asour ce</ depends>
</ bean>

</ depl oynent >

7.6.2. Packaging

The WAR could have the following structure:

nmy-appl i cati on. war/
META- | NF/
MANI FEST. MF
\EB- | NF/
web. xm
faces-config. xm
l'i b/
j boss-seam j ar
hi ber nat e3. j ar

j boss-m crocont ai ner. jar
jboss-jca.jar

nyfaces-api.jar

myf aces-inpl.jar

nc-conf.jar/
jndi.properties

| og4j . xm
my-application.jar/
MVETA- | NF/
MANI FEST. MF

j boss- beans. xni
seam properties
hi ber nat e. cf g. xm

| 0g4j . xm
org/
j boss/
myappl i cati on/

User. cl ass
Logi n. cl ass
Regi ster.cl ass

l ogin.jsp
register.jsp

JBoss Seam 1.0.CR3 97

Configuring Seam

7.7. Configuring jBPM in Seam

Seam’'s jBPM integration is not installed by default, so you'll need to enable jBPM by adding a built-in compon-
ent to the list of installed components. In seam properti es:

org.j boss. seam core.init.conmponent Cl asses org.j boss. seam core. Jbpm

Or inweb. xm ;

<cont ext - par anr
<par am nane>or g. j boss. seam core. i ni t.conponent Cl asses</ par am nanme>
<par am val ue>or g. j boss. seam cor e. Jbpnx/ par am val ue>

</ cont ext - par an>

You'll also need to explicitly list your process and pageflow definitions:

<cont ext - par an»
<par am nane>or g. j boss. seam cor e. j bpm pagef | owDef i ni ti ons</ par am nanme>
<par am val ue>
creat eDocunent . j pdl . xm
edi t Docunent . j pdl . xm
appr oveDocunent . j pdl . xm
</ par am val ue>
</ cont ext - par an>

<cont ext - par anr
<par am nane>or g. j boss. seam cor e. j bpm processDef i ni ti ons</ par am nanme>
<par am val ue>
docunent Li f ecycl e. j pdl . xm
</ param val ue>
</ cont ext - par an>

Or:

org.j boss. seam core. j bpm pagef |l owDefi ni ti ons createDocunent.jpdl.xm editDocunent.jpdl.xm approveDoci
org.j boss. seam core. j bpm processDefinitions docunentLifecycle.jpdl.xm

No further special configuration is needed if you only have pageflows. If you do have business process defini-
tions, you need to provide a jBPM configuration, and a Hibernate configuration for jBPM. The Seam DVD
Store demo includes examplej bpm cf g. xml and hi ber nat e. cf g. xnl filesthat will work with Seam:

<j bpm confi gurati on>

<j bpm cont ext >
<servi ce nanme="persistence">
<factory>
<bean cl ass="org.j bpm persi stence. db. DbPer si st enceSer vi ceFact ory" >
<field name="isTransacti onEnabl ed" ><f al se/ ></fi el d>
</ bean>
</factory>
</ service>
<servi ce nane="nessage" factory="org.jbpm nsg. db. DbMessageServi ceFactory" />
<servi ce nanme="schedul er" factory="org.jbpm schedul er. db. DbSchedul er Servi ceFactory" />
<servi ce nane="| oggi ng" factory="org.jbpm | oggi ng. db. DbLoggi ngServi ceFactory" />
<servi ce nanme="aut hentication" factory="org.jbpm security.authenticati on. Defaul t Aut henti cati onSer
</ j bpm cont ext >

</ j bpm confi gur ati on>

The most important thing to notice here is that jBPM transaction control is disabled. Seam or EJB3 should con-
trol the JTA transactions.

JBoss Seam 1.0.CR3 98

Configuring Seam

7.7.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow definition
files. In the Seam examples we've decided to simply package al these files into the root of the EAR. In future,
we will probably design some other standard packaging format. So the EAR looks something like this:

ny- appl i cati on. ear/
j boss-seam j ar
jbpm3.1.jar
META- | NF/
MANI FEST. MF
appl i cation. xm
ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
faces-config. xmn
I ogin.jsp
register.jsp

my-application.jar/
META- | NF/
MANI FEST. MF
per si st ence. xn
seam properties
org/
j boss/
nmyappl i cati on/
User . cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

j bpm cf g. xm

hi ber nat e. cf g. xm

creat eDocunent . j pdl . xm
edi t Docunent . j pdl . xn

appr oveDocunent . j pdl . xm
docunent Li fecycl e. j pdl . xm

Remember to add j bpm 3. 1. j ar to the manifest of your EJB-JAR and WAR.

7.8. Configuring Seam in a Portal

To run a Seam application as a portlet, you'll need to provide certain portlet metadata (port | et . xni , €tc) in ad-
dition to the usual Java EE metadata. See the exanpl es/ port al directory for an example of the booking demo
preconfigured to run on JBoss Portal.

In addition, you'll need to use a portlet-specific phase listener instead of SeanPhaseLi st ener Or SeanExt ended-
ManagedPer si st encePhaseLi st ener. The SeanPort | et PhaseLi st ener and SeanExt endedManagedPer si st en-
cePort| et PhaseLi st ener are adapted to the portlet lifecycle.

JBoss Seam 1.0.CR3 99

Chapter 8. Seam annotations

When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations to achieve a
declarative style of programming. Most of the annotations you'll use are defined by the EJB 3.0 specification.
The annotations for data validation are defined by the Hibernate Validator package. Finally, Seam defines its
own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package or g. j boss. seam annot at i ons.

8.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on the component
class.

@Nane

@ame(" conponent Nanme")

Defines the Seam component name for a class. This annotation is required for all Seam components.
@scope

@scope(ScopeType. CONVERSATI ON)

Defines the default context of the component. The possible values are defined by the ScopeType enumera-
tion: EVENT, PAGE, CONVERSATI ON, SESSI ON, BUSI NESS_PROCESS, APPLI CATI ON, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For stateless session
beans, the default is STATELESS. For entity beans and stateful session beans, the default is CONVERSATI ON.
For JavaBeans, the default is EVENT.

@Rol e

@Rol e(name="r ol eNane", scope=ScopeType. SESSI ON)

Allows a Seam component to be bound to multiple contexts variables. The @ame/@cope annotations
define a"default role". Each @rol e annotation defines an additional role.

* name — the context variable name.

* scope — the context variable scope. When no scope is explicitly specified, the default depends upon
the component type, as above.

@Rol es

@Rol es({
@Rol e(name="user", scope=ScopeType. CONVERSATI ON),
@Rol e(name="current User", scope=ScopeType. SESSI ON)
b

Allows specification of multiple additional roles.

JBoss Seam 1.0.CR3 100

Seam annotations

@ nt er cept

@ntercept (I ntercepti onType. ALWAYS)

Determines when Seam interceptors are active. The possible values are defined by the I nt er cept i onType
enumeration: ALWAYS, | NVOKE_APPLI CATI ON, NEVER.

When no interception type is explicitly specified, the default depends upon the component type. For entity
beans, the default is NEVER. For session beans and JavaBeans, the default is | NVOKE_APPLI CATI ON
(interception only enabled during the JSF invoke application phase).

@ndi Nane

@ndi Nane(" nmy/ j ndi / nane")

Specifies the INDI name that Seam will use to look up the EJB component. If no JNDI name is explicitly
specified, Seam will use the INDI pattern specified by or g. j boss. seam core.init.jndi Pattern.

@conver sat i onal

@Conver sati onal (i f Not BegunQut cone="error")

Specifies that a conversation scope component is conversational, meaning that no method of the component
can be called unless a long-running conversation started by this component is active (unless the method
would begin a new long-running conversation).

e i fNot BegunQut cone — specifies a JSF outcome for the action when the component is invoked and no
long-running conversation is active.

@5t artup

@bt art up(depends={"org.j boss.core.jndi", "org.jboss.core.jta"})

Specifies that an application scope component is started immediately at initialization time. This is mainly
used for certain built-in components that bootstrap critical infrastructure such as JINDI, datasources, etc.

@t art up

Specifies that a session scope component is started immediately at session creation time.

* depends — specifies that the named components must be started first, if they areinstalled.

8.2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance variables or property
accessor methods.

@n

@n

JBoss Seam 1.0.CR3 101

Seam annotations

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an exception will be thrown.

@n(required=fal se)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. The context variable may be null.

@n(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an instance of the component is instantiated by Seam.

@ n(val ue="cont ext Var i abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

@ n(val ue="#{cust oner. addresses["' shipping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at the beginning of
each component invocation.

* val ue — specifies the name of the context variable. Default to the name of the component attribute. Al-
ternatively, specifies a JSF EL expression, surrounded by #{. . .}.

e creat e — specifies that Seam should instantiate the component with the same name as the context vari-
ableif the context variable is undefined (null) in all contexts. Default to false.

* required — specifies Seam should throw an exception if the context variable is undefined in al con-
texts.

@ut

@ut

Specifies that a component attribute that is a Seam component is to be outjected to a context variable at the
end of the invocation. If the attribute is null, an exception is thrown.

@ut (requi red=f al se)

Specifies that a component attribute that is a Seam component is to be outjected to a context variable at the
end of the invocation. The attribute may be null.

@ut (scope=ScopeType. SESSI ON)

Specifies that a component attribute that is not a Seam component is to be outjected to a specific scope at
the end of the invocation.

@ut (val ue="cont ext Vari abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

» val ue — specifies the name of the context variable. Default to the name of the component attribute.

JBoss Seam 1.0.CR3 102

Seam annotations

e required — specifies Seam should throw an exception if the component attribute is null during outjec-
tion.

Note that it is quite common for these annotations to occur together, for example:

@n(create=true) @ut private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that manages the life-
cycle of an instance of some other class that isto be injected. It appears on a component getter method.

@Jnwr ap

@Jnwr ap

Specifies that the object returned by the annotated getter method is the thing that is injected instead of the
component instance itself.

The next annotation supports the factory component pattern, where a Seam component is responsible for initial-

izing the value of a context variable. Thisis especially useful for initializing any state needed for rendering the
response to a non-faces request. It appears on a component method.

@-actory

@act ory("processlnstance")

Specifies that the method of the component is used to initialize the value of the named context variable,
when the context variable has no value.

The last annotation lets you inject arequest parameter value:
@Request Par anet er
@Request Par anet er (" par amet er Nanme")

Specifies that a component attribute is to be injected with the value of a request parameter. Basic type con-
versions are performed automatically.

» val ue — specifies the name of the request parameter. Default to the name of the component attribute.

8.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods of the com-
ponent. There may be only one of each per component class.

@Cr eat e

@r eat e

Specifies that the method should be called when an instance of the component is instantiated by Seam.

JBoss Seam 1.0.CR3 103

Seam annotations

@est r oy

@pest r oy

Specifies that the method should be called when the context ends and its context variables are destroyed.

Note that all stateful session bean components must define a method annotated @est r oy @renove in order
to guarantee destruction of the stateful bean when a context ends.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any exception that
propagates out of a destroy method.

@ser ver

@ser ver (" somet hi ngChanged")

Specifies that the method should be called when a component-driven event of the specified type occurs.

8.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of Seam compon-
ents, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations end at the end of
the request. If you want a conversation that span multiple requests, you must "promote" the current conversa
tion to along-running conversation by calling a method marked with @egi n.

@egi n

@egi n

Specifies that along-running conversation begins when this method returns a non-null outcome without ex-
ception.

@egi n(i f Qut cone={"success", "continue"})

Specifies that a long-running conversation begins when this action listener method returns with one of the
given outcomes.

@Begi n(j oi n=true)

Specifies that if a long-running conversation is already in progress, the conversation context is simply
propagated.

@Begi n(nest ed=true)

Specifies that if along-running conversation is already in progress, a new nested conversation context be-
gins. The nested conversation will end when the next @nd is encountered, and the outer conversation will
resume. It is perfectly legal for multiple nested conversations to exist concurrently in the same outer con-
versation.

@egi n(pagef | ow="process definition name")

JBoss Seam 1.0.CR3 104

Seam annotations

Specifies ajBPM process definition name that defines the pageflow for this conversation.

* ifoutcome — gpecifies the JSF outcome or outcomes that result in a new long-running conversation
context.

¢ joi n — determines the behavior when a long-running conversation is already in progress. If t r ue, the
context is propagated. If f al se, an exception is thrown. Default to f al se. This setting is ignored when
nest ed=t r ue is specified

* nested — gpecifies that a nested conversation should be started if a long-running conversation is
aready in progress.

* pageflow — a process definition name of a jBPM process definition deployed via
org. j boss. seam core. j bpm pagef | owDefi ni ti ons.

@nd

@:nd

Specifies that a long-running conversation ends when this method returns a non-null outcome without ex-
ception.

@End(i f Qut come={"success", "error"}, evenlfExcepti on={SoneException.cl ass, O herException. cl ass})

Specifies that a long-running conversation ends when this action listener method returns with one of the
given outcomes or throws one of the specified classes of exception.

e ifoutcome — specifies the JSF outcome or outcomes that result in the end of the current long-running
conversation.

@t art Task

@bt art Task(t askl dPar anet er ="t askl d")

"Starts' a jBPM task. Specifies that a long-running conversation begins when this method returns a non-
null outcome without exception. This conversation is associated with the jJBPM task specified in the named
request parameter. Within the context of this conversation, a business process context is also defined, for
the business process instance of the task instance.

The jBPM Taskl nst ance will be available in a request context variable named t ask! nst ance. The jPBM
Processl nstance Will be available in a request context variable hamed processl nst ance. (Of course,
these objects are available for injection via@n.)

e taskldParameter — the name of a request parameter which holds the id of the task. Default to
"taskl d", which is also the default used by the Seam t askLi st JSF component.

@egi nTask

@Begi nTask(t askl dPar anet er ="t askl d")

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation begins when this

JBoss Seam 1.0.CR3 105

Seam annotations

method returns a non-null outcome without exception. This conversation is associated with the jBPM task
specified in the named request parameter. Within the context of this conversation, a business process con-
text is aso defined, for the business process instance of the task instance.

The jBPM Taskl nst ance will be available in a request context variable named t ask! nst ance. The |PBM
Processl nst ance Will be available in arequest context variable named pr ocessl nst ance.

e taskldParameter — the name of a request parameter which holds the id of the task. Default to
"taskl d", which is also the default used by the Seam t askLi st JSF component.

@ndTask

@ndTask

"Ends' ajBPM task. Specifies that a long-running conversation ends when this method returns a non-null
outcome, and that the current task is complete. Triggers a jBPM transition. The actual transition triggered
will be the default transition unless the application has called Tr ansi ti on. set Nane() on the built-in com-
ponent named t r ansi ti on.

@ndTask(transition="transiti onName")

Triggers the given jBPM transition.
@ndTask(i f Qut come={"success", "continue"})
Specifies that the task ends when this method returns one of the listed outcomes.
@Cr eat ePr ocess

@Cr eat eProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without exception. The
Processl nst ance object will be available in a context variable named pr ocessl nst ance.

* definition — the name of the JBPM process definition deployed via
org. j boss. seam core. j bpm processDefinitions.

@ResunePr ocess

@ResumrrePr ocess(processl dPar anet er =" processl d")

Re-enters the scope of an existing jBPM process instance when the method returns a non-null outcome
without exception. The Process! nst ance object will be available in a context variable named pr ocessl n-
st ance.

e processl dPar anet er — the name arequest parameter holding the process id. Default to " process! d".

8.5. Annotations for transaction demarcation

Seam provides an annotation that lets you force arollback of the JTA transaction for certain action listener out-
comes.

JBoss Seam 1.0.CR3 106

Seam annotations

@Rol | back

@Rol | back(i fQutcone={"failure", "not-found"})

If the outcome of the method matches any of the listed outcomes, or if no outcomes are listed, set the trans-
action to rollback only when the method compl etes.

e ifoutcome — the JSF outcomes that cause a transaction rollback (no outcomes is interpreted to mean
any outcome).

@r ansact i onal

@r ansact i onal

Specifies that a JavaBean component should have a similar transactional behavior to the default behavior of
a session bean component. ie. method invocations should take place in a transaction, and if no transaction
exists when the method is called, a transaction will be started just for that method. This annotation may be
applied at either class or method level.

Seam applications usually use the standard EJB3 annotations for all other transaction demarcation needs.

8.6. Annotations for validation

This annotation triggers Hibernate Validator. It appears on a method of a Seam component, almost always an
action listener method.

Please refer to the documentation for the Hibernate Annotations package for information about the annotations
defined by the Hibernate Validator framework.

@flnvalid

@flnvalid(outcome="invalid", refreshEntities=true)
Specifies that Hibernate Validator should validate the component before the method is invoked. If the in-

vocation fails, the specified outcome will be returned, and the validation failure messages returned by Hi-
bernate Validator will be added to the FacesCont ext . Otherwise, the invocation will proceed.

* out come — the JSF outcome when validation fails.

e refreshEntities — specifiesthat any invalid entity in the managed state should be refreshed from the
database when validation fails. Default to f al se. (Useful with extended persistence contexts.)

8.7. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following annotation:

@+¥bRenot e

@\ébRenot e

JBoss Seam 1.0.CR3 107

Seam annotations

Indicates that the annotated method may be called from client-side JavaScript.

8.8. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the annotations required
for EJB interceptor definition.

@\r ound
@ ound({ Sonel nterceptor.class, OQherlnterceptor.class})
Specifies that thisinterceptor is positioned higher in the stack than the given interceptors.
@V thin
@\t hi n({Sonel nterceptor.class, Oherlnterceptor.class})

Specifies that thisinterceptor is positioned deeper in the stack than the given interceptors.

8.9. Annotations for use with JSF dat aTabl e

The following annotations make it easy to implement clickable lists backed by a stateful session bean. They ap-
pear on attributes.

@at aMbdel

@at aMbdel ("vari abl eNane")

Exposes an attribute of type Li st as a JSF Dat ambdel into the scope of the owning component (or the
EVENT scope if the owning component iS STATELESS).

* val ue — name of the conversation context variable. Default to the attribute name.

e scope — if scope=ScopeType. PAGE is explicitly specified, the Dat ambdel will be kept in the PAGE con-
text.

@at aMbdel Sel ecti on

@pat aModel Sel ecti on

Injects the selected value from the JSF Dat amodel .

* val ue — name of the conversation context variable. Not needed if there is exactly one @at avbdel in
the component.

@at aMbdel Sel ecti onl ndex

@at aModel Sel ecti onl ndex

JBoss Seam 1.0.CR3 108

Seam annotations

Exposes the selection index of the JSF Dat avbdel as an attribute of the component.

e val ue — name of the conversation context variable. Not needed if there is exactly one @at ambdel in
the component.

8.10. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @atambdel and
@at aMbdel Sel ect i on for other datastructures apart from lists.

@at aBi nder Cl ass

@pat aBi nder Cl ass(Dat avbdel Bi nder. cl ass)

Specifies that an annotation is a databinding annotation.
@at aSel ect or C ass

@pat aSel ect or O ass(Dat aMbdel Sel ect or. cl ass)

Specifies that an annotation is a datasel ection annotation.

JBoss Seam 1.0.CR3 109

Chapter 9. Built-in Seam components

This chapter describes Seam'’s built-in components, and their configuration properties.

Note that you can replace any of the built in components with your own implementations simply by specifying
the name of one of the built in components on your own class using @ane.

9.1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects. For example,
the following component instance variable would have the Seam session context object injected:

@n private Context sessionContext;

event Cont ext
Manager component for the event context object

pageCont ext
Manager component for the page context object

conver sat i onCont ext
Manager component for the conversation context object

sessi onCont ext
Manager component for the session context object

appl i cati onCont ext
Manager component for the appication context object

busi nessProcessCont ext
Manager component for the business process context object

st at el essCont ext
Manager component for the statel ess context object

f acesCont ext
Manager component for the FacesCont ext context object (not a true Seam context)

ui Conponent
Allows access to a JSF U Cormponent by its id from the EL. For example, we can write
@ n("#{ui Conponent [' nyFor m address'].value}").

All of these components are aways installed.

9.2. Utility components

These components are merely useful.

f acesMessages
Allows faces success messages to propagate across a browser redirect.

JBoss Seam 1.0.CR3 110

Built-in Seam components

e add(FacesMessage facesMessage) — add a faces message, which will be displayed during the next

render response phase that occursin the current conversation.

e add(String nessageTenpl ate) — add a faces message, rendered from the given message template

which may contain EL expressions.

e add(Severity severity, String nessageTenpl at e) — add afaces message, rendered from the giv-

en message template which may contain EL expressions.

e addFronResourceBundl e(String key) — add a faces message, rendered from a message template

defined in the Seam resource bundle which may contain EL expressions.

e addFronResourceBundl e(Severity severity, String key) — add afaces message, rendered from a

message templ ate defined in the Seam resource bundle which may contain EL expressions.
e clear() — clear all messages.

redirect

A convenient API for performing redirects with paramaters (this is especially useful for bookmarkable

search results screens).

e redirect.view d —the JSF view id to redirect to.

e redirect.parameters — amap of request parameter name to value, to be passed in the redirect re-

quest.

e execut e() — perform the redirect immediately.

e captureCurrent Request () — storesthe view id and request parameters of the current GET request (in

the conversation context), for later use by calling execut e() .

htt pError
A convenient API for sending HTTP errors.

i nterpol at or
An API for interpolating the values of JSF EL expressionsin Strings.

* interpolate(String tenplate) — scan the template for JSF EL expressions of the form #{. .

replace them with their evaluated values.

All of these components are aways installed.

9.3. Components for internationalization

The next group of components make it easy to build internationalized user interfaces using Seam.

| ocal e

The Seam locale. Thelocale is session scoped.

resour ceBundl e
The Seam resource bundle. The resource bundle is session scoped.

.} and

JBoss Seam 1.0.CR3

111

Built-in Seam components

resour ceBundl e. bundl eName — the name of the bundle. Default to messages.

| ocal eSel ect or
Supports selection of the locale either at configuration time, or by the user at runtime.

sel ect () — select the specified locale.

| ocal eSel ector. | ocal e — the actual j ava. util . Local e.

| ocal eSel ector. | ocal eStri ng — the stringified representation of the locale.
| ocal eSel ect or . | anguage — the language for the specified locale.

| ocal eSel ect or . count ry — the country for the specified locale.

| ocal eSel ector. vari ant — the variant for the specified locale.

| ocal eSel ect or . support edLocal es — a list of Sel ect | t ens representing the supported locales listed
injsf-config. xm .

nessages
A map containing internationalized messages rendered from message templates defined in the Seam re-
source bundle.

All of these components are always installed.

9.4. Components for controlling conversations

The next group of components allow control of conversations by the application or user interface.

conversation
API for application control of attributes of the current Seam conversation.

get 1 d() — returnsthe current conversation id

get Parent | d() — returns the conversation id of the parent conversation
get Root | d() — returns the conversation id of the root conversation

set Ti meout (i nt timeout) — setsthe timeout for the current conversation

set View d(String out cone) — setsthe view id to be used when switching back to the current conver-
sation from the conversation switcher, conversation list, or breadcrumbs.

set Description(String description) — sets the description of the current conversation to be dis-
played in the conversation switcher, conversation list, or breadcrumbs.

redirect () — redirect to the last well-defined view id for this conversation (useful after login chal-
lenges).

| eave() — exit the scope of this conversation, without actually ending the conversation.

begi n() — begin along-running conversation (equivalent to @egi n).

JBoss Seam 1.0.CR3 112

Built-in Seam components

e end() — end along-running conversation (equivalent to @nd).
e pop() — pop the conversation stack, returning to the parent conversation.
* root () — return to the root conversation of the conversation stack.

conversati onLi st
Manager component for the conversation list.

conver sati onSt ack
Manager component for the conversation stack (breadcrumbs).

sw t cher
The conversation switcher.

All of these components are aways installed.

9.5. BPM-related components

These components are for use with jBPM.

act or
API for application control of attributes of the jBPM actor associated with the current session.

e setld(String actorld) — setsthejBPM actor id of the current user.

e getGoupActorlds() — returnsaset to which jBPM actor ids for the current users groups may be ad-
ded.

transition
API for application control of the jBPM transition for the current task.

e setName(String transitionNane) — setsthe jBPM transition name to be used when the current task
isended via @ndTask.

taskl nst ance
Manager component for the jBPM Task! nst ance.

processlnstance
Manager component for the jJBPM Pr ocessl nst ance.

j bpntCont ext
Manager component for an event-scoped JbpnCont ext .

t askl nst ancelLi st
Manager component for the jBPM task list.

pool edTaskl nst ancelLi st

Manager component for the jBPM pooled task list.

t askl nst anceli st For Type
Manager component for the jBPM task lists.

JBoss Seam 1.0.CR3 113

Built-in Seam components

pool edTask
Action handler for pooled task assignment.

All of these components are installed whenever the component or g. j boss. seam core. j bpmisinstalled.

9.6. Infrastructural components

These components provide critical platform infrastructure. You can install a component by including its class
nameintheorg. j boss. seam core. i ni t. conponent d asses configuration property.

org.j boss.seamcore.init
Initialization settings for Seam. Alwaysinstalled.

e org.jboss.seamcore.init.conmponent d asses — alist of class names of Seam components to be in-
stalled. (The class name, not the component name!)

e org.jboss.seamcore.init.mnagedPersistenceContexts — a list of component names of Seam
managed persistence contexts to be installed.

e org.jboss.seamcore.init.mnagedSessi ons — a list of component names of Seam managed Hi-
bernate sessions to be installed.

* org.jboss.seamcore.init.jbpnBessi onFact or yName — the name of the jBPM session factory

* org.jboss.seamcore.init.clientSideConversations —if settotrue, Seam will save conversation
context variables in the client instead of in the Ht t pSessi on.

org. j boss. seam cor e. manager
Internal component for Seam page and conversation context management. Always installed.

* org.jboss. seam core. manager. conver sati onTi meout — the conversation context timeout in milli-
seconds.

org. j boss. seam core. process
Internal component for Seam process management. Installed whenever or g. j boss. seam core. j bpmisin-
staled.

org.j boss. seam cor e. pagef | ow
Internal component for Seam pageflow management. Installed whenever or g. j boss. seam core. j bpmisin-
stalled.

org.j boss. seam cor e. pages
Internal component for Seam workspace management. Always installed.

org.j boss.seamcore.ejb
Bootstraps the JBoss Embeddable EJB3 container. Install as class or g. j boss. seam core. Ej b. Thisis use-
ful when using Seam with EJB components outside the context of a Java EE 5 application server.

The basic Embedded EJB configuration is defined in j boss- enbedded- beans. xni . Additional microcon-
tainer configuration (for example, extra datasources) may be specified by j boss-beans. xnl OF META-
I NF/ j boss- beans. xni in the classpath.

JBoss Seam 1.0.CR3 114

Built-in Seam components

org. j boss. seam core. m crocont ai ner
Bootstraps the JBoss microcontainer. Install as class or g. j boss. seam core. M crocont ai ner. Thisis use-
ful when using Seam with Hibernate and no EJB components outside the context of a Java EE application
server. The microcontainer can provide a partial EE environment with JNDI, JTA, a JCA datasource and
Hibernate.

The microcontainer configuration may be specified by j boss- beans. xni Or META- | NF/ j boss- beans. xnl in
the classpath.

org.j boss. seam core. hi bernate
Bootstraps a Hibernate Sessi onFactory. Install as class org. j boss. seam core. Hi bernate. This is most
useful when using Seam with Hibernate inside a Java EE application server.

e org.jboss. seam core. hi ber nat e. cf gResour ceNane — the path to the configuration file. Default to
hi bernate. cfg. xm .

See the API JavaDoc for further configuration properties.

org.j boss.seam core.j bpm
Bootstraps a JbpnConfi gurati on. Install asclassor g. j boss. seam core. Jbpm

e org.jboss.seam core.jbpm processDefiniti ons — alist of resource names of jPDL filesto be used
for orchestration of business processes.

e org.jboss.seam core.j bpm pagefl owDefinitions — a list of resource names of jPDL files to be
used for orchestration of conversation page flows.

org. j boss. seam debug. i ntrospect or

Support for the Seam Debug Page.

org. j boss. seam debug. cont ext s

Support for the Seam Debug Page.

9.7. Security-related components

These components relate to web-tier security.

<varlistentry>user Pri nci pal

Manager component for the current user Pri nci pal .

</varlistentry>

<varlistentry>i sUser I nRol e

Allows JSF pages to choose to render a control, depending upon the roles available to the current principal.
<h: commandBut t on val ue="edit" rendered="#{isUserlnRole['admn']}"/>.

</varlistentry>

9.8. Special components

Certain special Seam component classes are installable multiple times under names specified in the Seam con-
figuration. For example, the following linesin seam properti es instal and configure two Seam components:

org.j boss. seam core.init.mnagedPersi st enceCont exts booki ngDat abase, user Dat abase
booki ngDat abase. per si st enceUni t Jndi Nane j ava:/ conp/ enf/ booki ngPer si st ence

JBoss Seam 1.0.CR3 115

Built-in Seam components

user Dat abase. per si st enceUni t Jndi Nane j ava:/ conp/ enf/ user Per si st ence

The Seam component names are booki ngbat abase and user Dat abase.

<managedPer si st enceCont ext >
Manager component for a conversation scoped managed Ent i t yManager With an extended persistence con-
text. Installed viaor g. j boss. seam core. i ni t. managedPer si st enceCont ext s.

e <nmmnagedPer si st enceCont ext >. per si st enceUni t Jndi Name — the JNDI name of the entity manager
factory, default to j ava: / <managedPer si st enceCont ext >.

<managedSessi on>
Manager component for a conversation scoped managed Hibernate Session. Installed via
org.j boss.seam core.init.mnagedSessi ons.

e <nmnagedSessi on>. sessi onFact or yJndi Name — the JNDI name of the session factory, default to
j ava: / <managedSessi on>.

JBoss Seam 1.0.CR3 116

Chapter 10. Testing Seam applications

Most Seam applications will need at least two kinds of automated tests: unit tests, which test a particular Seam
component in isolation, and scripted integration tests which exercise al Java layers of the application (that is,
everything except the view pages).

Both kinds of tests are very easy to write.

10.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing. And since Seam
emphasises the use of bijection for inter-component interactions and access to contextual objects, it's very easy
to test a Seam component outside of its normal runtime environment.

Consider the following Seam component:

@t at el ess
@scope(EVENT)
@Nane("register")
public class RegisterAction inplenents Register
{
private User user;
private EntityManager em

@n
public void setUser(User user) {
this.user = user;

}

@er si st enceCont ext

public voi d set Booki ngDat abase(User em) {
this.em= em

}

@flnval i d(out come=Qut cone. REDI SPLAY)
public String register()

{
Li st existing = emcreateQuery("sel ect usernane from User where username=: usernane")
. set Paranet er ("usernane", user.getUsernane())
.getResul tList();
if (existing.size()==0)
{
em per si st (user);
return "success";
}
el se
{
return null;
}
}

We could write a TestNG test for this component as follows:

public class Regi sterActionTest

{

@est
public testRegisterAction()

{

JBoss Seam 1.0.CR3 117

Testing Seam applications

EntityManager em = get EntityManager Factory().creat eEntityManager();
em get Transacti on() . begi n();

User gavin = new User();

gavi n. set Nane(" Gavi n Ki ng");
gavi n. set User Nanme(" lovt haf ew') ;
gavi n. set Password("secret");

Regi ster Acti on action = new Regi sterAction();
action. set User (gavi n);
acti on. set Booki ngDat abase(emn ;

assert "success".equal s(action.register());

em get Transaction().commit();
em cl ose();

private EntityManager Factory enf;

public EntityManagerFactory getEntityManager Factory()
{

}

@onfi gurati on(beforeTest Cl ass=true)
public void init()
{

}

@onfiguration(afterTestCl ass=true)
public void destroy()

{
}

return enf;

enf = Persistence. createEntityManager Factory("myResourcelLocal EntityManager");

enf. close();

Seam components don't usually depend directly upon container infrastructure, so most unit testing as as easy as
that!

10.2. Integration testing Seam applications

Integration testing is slightly more difficult. In this case, we can't eliminate the container infrastructure; indeed,
that is part of what is being tested! At the same time, we don't want to be forced to deploy our application to an
application server to run the automated tests. We need to be able to reproduce just enough of the container in-
frastructure inside our testing environment to be able to exercise the whole application, without hurting per-
formance too much.

A second problem is emulating user interactions. A third problem is where to put our assertions. Some test
frameworks let us test the whole application by reproducing user interactions with the web browser. These
frameworks have their place, but they are not appropriate for use at development time.

The approach taken by Seam isto let you write tests that script your components while running inside a pruned
down container environment (Seam, together with the JBoss Embeddable EJB container). The role of the test
script is basicaly to reproduce the interaction between the view and the Seam components. In other words, you
get to pretend you are the JSF implementation!

This approach tests everything except the view.

JBoss Seam 1.0.CR3 118

Testing Seam applications

Let's consider a JSP view for the component we unit tested above:

<htm >
<head>
<title>Register New User</title>
</ head>
<body>
<f:vi ew>
<h: f or m»
<t abl e border="0">
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user. username}"/></td>
</tr>
<tr>
<t d>Real Nanme</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h: i nput Secret val ue="#{user.password}"/></td>
</tr>
</tabl e>

<h: nessages/ >
<h: conmandBut t on type="subm t" val ue="Regi ster" action="#{register.register}"/>
</ h: fornm>
</f:view
</ body>
</htm >

We want to test the registration functionality of our application (the stuff that happens when the user clicks the
Register button). We'll reproduce the JSF request lifecycle in an automated TestNG test:

public class RegisterTest extends SeanTest

{

@est

public void testRegister() throws Exception

{

new Script () {

@verride
protected voi d updat eModel Val ues() throws Exception
{

User user = (User) Conponent.getlnstance("user", true);
assert user!=null;

user. set User name(" 1ovt haf ew") ;

user. set Password("secret");

user. set Nane(" Gavin King");

}
@verride
protected void i nvokeApplication()
{
Regi ster register = (Register) Conponent. getlnstance("register", true);
String outconme = register.register();
assert "success".equal s(outcone);
}
@verride
protected void render Response()
{
User user = (User) Conmponent.getlnstance("user", false);
assert user!=null;
assert user.getName().equal s("Gavin King");
assert user.getUsernane().equal s("1ovthafew');
assert user.getPassword().equal s("secret");
}

JBoss Seam 1.0.CR3 119

Testing Seam applications

}.run();

Notice that we've extended SeanTest , which provides a Seam environment for our components, and written our
test script as an anonymous class that extends Seantest . Scri pt , which provides an emulated JSF request life-
cycle. We've written our code in methods which are named for the various JSF phases, to emulate the calls that
JSF would make to our components. Then we've thrown in various assertions.

You'l find plenty of integration tests for the Seam example applications which demonstrate more complex
cases. There are instructions for running these tests using Ant, or using the TestNG plugin for eclipse:

JBoss Seam 1.0.CR3 120

Testing Seam applications

=

3 fnutline JUnitm o | QBY =8

IResults of running suite

Suites: 1/1 Tests: 1/1

Methods: 2/2

Passed: 2 B Failed: 0 8 Skipped: 0

% All Tests| o Failed Tests|
= He Registration (2/0/0/0)
=gl Register (2/0/0/0)
----- rel org.jboss.seam.example.numberguess.test. \umberGues
- org.jboss.seam.example.numberguess.test. NumberGues

< | 111

Failure Exception

7 v

JBoss Seam 1.0.CR3

121

Chapter 11. Seam tools

11.1. jBPM designer and viewer

The |BPM designer and viewer will let you design and view in a nice way your business processes and your
pageflows. This convenient tool is part of JBoss Eclipse IDE and more details can be found in the jJBPM's doc-

umentation (http://docs.jboss.com/jbpm/v3/gpd/)

11.1.1. Business process designer

Thistool lets you design your own business process in a graphical way.

2 start
o7 State

B End

[}3 Fork

g]-o Jein

L:?J Decision
Mode

\" Task Made
1% Process State
3% Super State

Marques

—+ Transition

Diagram | Swimlanes | Design | Source

Wt <<Task Node>>
= process

G =<Start State==

wt <<Task Node==
= approval

approve
reject

shipped

] ==End States>
complete

11.1.2. Pageflow viewer

This tool let you design to some extend your pageflows and let you build graphical views of them so you can
easily share and compare ideas on how it should be designed.

JBoss Seam 1.0.CR3

122

Seam tools

—
) start

L:?J Decision

Margues O ==Start State==
start

E FPage

— Transition
= =<=fages=>

BZ| ,.
=l displayGuess

guess false
islan B
lv'.?_l eblEb false L:?J ==lecision==
ERRINIFETEN evaluateRemainingGues
true true
L'=_' <<Page=> L'='__ ==fage=>=
— win = Jose

Diagrarm | Design | Source

11.2. CRUD-application generator

This chapter, will give you a short overview of the support for Seam that is available in the Hibernate Tools.
Hibernate Tools is a set of tools for working with Hibernate and related technologies, such as JBoss Seam and
EJB3. Thetools are available as a set of eclipse plugins and Ant tasks. Y ou can download the Hibernate Tools
from the JBoss Eclipse IDE or Hibernate Tools websites.

The specific support for Seam that is currently available is generation of a fully functional Seam based CRUD-
application. The CRUD-application can be generated based on your existing Hibernate mapping files or EJB3
annotated POJO's or even fully reverse engineered from your existing database schema.

The following sections is focused on the features required to understand for usage with Seam. The content is
derived from the the Hibernate Tools reference documentation. Thus if you need more detailed information
please refer to the Hibernate Tools documentation.

11.2.1. Creating a Hibernate configuration file

To be able to reverse engineer and generate code a hibernate.properties or hibernate.cfg.xml file is needed. The
Hibernate Tools provide awizard for generating the hibernate.cfg.xml fileif you do not already have such file.

Start the wizard by clicking "New Wizard" (Ctrl+N), select the Hibernate/Hibernate Configuration file
(cfg.xml) wizard and press "Next". After selecting the wanted location for the hibernate.cfg.xml file, you will
see the following page:

JBoss Seam 1.0.CR3 123

Seam tools

¢ x
Hibernate Configuration File {cfg.xml) ‘ ’

This wizard creates a new configuratien file to use with Hibemate,

Container: Jhibernatetook-demo/src

File name: hibernate.cig.xmi

Session factory name: |

Database dialect: | HSQL |
Driver dass: | org.hsgidb.jdbcDriver -
Connection LRL: | jdbe:hsgidb:hsqk:/flocalhost -]
Default Schema: |

Default Catalog: |

Lisermarme: |sa

Password: |

[v Create a consoke configuration

=y

< Back Hext = Cancel

Tip: The contents in the combo boxes for the JIDBC driver class and JDBC URL change automatically, depend-
ing on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can be found in Hi-
bernate reference documentation.

Press "Finish" to create the configuration file, after optionaly creating a Console onfiguration, the hibern-
ate.cfg.xml will be automatically opened in an editor. The last option "Create Console Configuration™” is en-
abled by default and when enabled i will automatically use the hibernate.cfg.xml for the basis of a "Console
Configuration”

11.2.2. Creating a Hibernate Console configuration

A Console Configuration describes to the Hibernate plugin which configuration files should be used to config-
ure hibernate, including which classpath is needed to load the POJO's, JDBC drivers etc. It is required to make
usage of query prototyping, reverse engineering and code generation. Y ou can have multiple named console
configurations. Normally you would just need one per project, but more (or less) is definitly possible.

You create a console configuration by running the Console Configuration wizard, shown in the following
screenshot. The same wizard will also be used if you are coming from the hibernate.cfg.xml wizard and had en-
abled " Create Console Configuration”.

JBoss Seam 1.0.CR3 124

Seam tools

f

X

Create Hibernate Console Configuration

This wizard allows you to create a configuration for Hibernate Console,

@
&>

Name: | hibernatetools-demo

Property fle: | Browse... |
Configuration fie: | Browse...|
Entity resoiver: | Browse...

[Enable hibernate ejb3/annotations (requires running eclipse with a Java 5 runtime)

Mapping files
Name Add.
REMovE
up

Classpath (onby add path for POIO and driver - No Hibernate jars!)
Hame

Add JARSDr...
Shibernatetools-demay/buid/ecipse
Jhibernatetoolks-demoyib/jdbc/hsqgldb.jar Add External JARS. .
Remove
Up
< 3 Drowm
........... ‘: BE"'"I" [Einish Cancel

The following table describes the relevant settings. The wizard can automatically detect default values for most
of these if you started the Wizard with the relevant java project selected

Table11.1. Hibernate Console Configuration Parameters

Parameter Description Auto detected
value
Name The unique name of the configuration Name of the selec-
ted project

JBoss Seam 1.0.CR3 125

Seam tools

Parameter Description Auto detected
value

Property file Path to a hibernate.propertiesfile First hibern-

ate.properties file
found in the selec-
ted project

Configuration file | Path to ahibernate.cfg.xml file First hibern-

ate.cfg.xml file
found in the selec-
ted project

Enable Hibernate Selecting this option enables usage of annotated classes. Not enabled

€jb3/annotations hbm.xml files are of course till possible to use too. This feature
requires running the Eclipse IDE with a JDK 5 runtime, other-
wise you will get classloading and/or version errors.

Mapping files List of additional mapping files that should be loaded. Note: A | If no hibern-
hibernate.cfg.xml can also contain mappings. Thus if these adu- ate.cfg.xml file is
plicated here, you will get "Duplicate mapping" errors when us- found, al hbm.xml
ing the consol e configuration. filesfound in the se-

lected project

Classpath The classpath for loading POJO and JDBC drivers. Do not add The default build

Hibernate core libraries or dependencies, they are already in-
cluded. If you get ClassNotFound errors then check this list for
possible missing or redundant directories/jars.

output directory and
any JARs with a
class implementing

javasgl.Driver in
the selected project
Clicking "Finish" creates the configuration and shows it in the "Hibernate Configurations' view
JBoss Seam 1.0.CR3 126

Seam tools

= Hibernate Configu... X =0

=S8 hibernatetools-demo

[#, Configuration

- Database

=85 [YBLIC

+- [CUSTOMER

T CUSTOMERORDER
= LINEITEM
3 PRODUCT
3 SIMPLECUSTOMERORDER
=] SIMPLELINEITEM

+

+

+

+

+

11.2.3. Reverse engineering and code generation

A very simple "click-and-generate” reverse engineering and code generation facility is available. It is this facil-
ity that allows you to generate the skeleton for afull Seam CRUD application.

To start working with this process, start the "Hibernate Code Generation" which is available in the toolbar via
the Hibernate icon or viathe "Run/Hibernate Code Generation" menu item.

11.2.3.1. Code Generation Launcher

When you click on "Hibernate Code Generation™" the standard Eclipse launcher dialog will appear. In this dia-
log you can create, edit and delete named Hibernate code generation "launchers’.

avigate Search Project Run XML Wi

LRl | -F oo
Run As s
¥4 Hibernate Code Generation...... !
Lﬂrganize Favorites... - f{
] "http:/

B = TR 1

The dialog has the standard tabs "Refresh” and "Common" that can be used to configure which directories
should be automatically refreshed and various general settings launchers, such as saving them in a project for
sharing the launcher within a team.

JBoss Seam 1.0.CR3 127

Seam tools

 Hibernate Code Generation... g|
Create, manage, and run configurations ‘
& [Exporters]: Al least one exporter option must be selected ’

Configurations: Name: | New_configuration

=- ¥4 Hibernate Code Generation

Fs New_configuration o i |q. Expnrters| 7S Refnsh| o Eﬂﬂmﬂﬂ|

Console configuralsgn: |hibernatetook-demo -

Output directory: | \hibernatetook-demalsrc Browse... |

[+ Reverse engineer from JDBC Connection

Package: | com.bz.model
reveng.xmi: I Setup...
reveng. strategy: | Browse... |

[+ Generate basic typed composite ids

s

Uise custom templates

Negy Delete | Apply | Reyert

|

The first time you create a code generation launcher you should give it a meaningfull name, otherwise the de-
fault prefix "New_Generation” will be used.

Note: The "At least one exporter option must be selected" is just a warning stating that for this launch to work
you heed to select an exporter on the Exporter tab. When an exporter has been selected the warning will disap-
pear.

On the "Main" tab you the following fields:

Table11.2. Code generation "Main" tab fields

Field Description

Console Configuration The name of the console configuration which should be used when code generat-
ing.

Output directory Path to a directory into where all output will be written by default. Be aware that
existing fileswill be overwritten, so be sure to specify the correct directory.

Reverse engineer from If enabled the tools will reverse engineer the database available via the connec-
JDBC Connection tion information in the selected Hibernate Console Configuration and generate
code based on the database schema. If not enabled the code generation will just
be based on the mappings already specified in the Hibernate Console configura-
tion.

JBoss Seam 1.0.CR3 128

Seam tools

Field

Package

reveng.xmi

reveng. strategy

Generate basic typed
composite ids

Description

The package name here is used as the default package name for any entities found
when reverse engineering.

Path to areveng.xml file. A reveng.xml file allows you to control certain aspects
of the reverse engineering. e.g. how jdbc types are mapped to hibernate types and
especially important which tables are included/excluded from the process. Click-
ing "setup” allows you to select an existing reveng.xml file or create a new one..

If reveng.xml does not provide enough customization you can provide your own
implementation of an ReverseEngineeringStrategy. The class need to be in the
claspath of the Console Configuration, otherwise you will get class not found ex-
ceptions.

This field should aways be enabled when generating the Seam CRUD applica
tion. A table that has a multi-colum primary key a <composite-id> mapping will
always be created. If this option is enabled and there are matching foreign-keys
each key column is still considered a 'basic' scalar (string, long, etc.) instead of a
reference to an entity. If you disable this option a <key-many-to-one> instead.
Note: a <many-to-one> property is still created, but is ssmply marked as non-
updatable and non-insertable.

Use custom templ ates

If enabled, the Template directory will be searched first when looking up the ve-
locity templates, allowing you to redefine how the individual templates process
the hibernate mapping model.

Template directory

11.2.3.2. Exporters

A path to adirectory with custom vel ocity templates.

The exporters tab is used to specify which type of code that should be generated. Each selection represents an
"Exporter” that are responsible for generating the code, hence the name.

JBoss Seam 1.0.CR3

129

Seam tools

Hibernate Code Generation...

Create, manage, and run configurations ‘ ’

Select or configure a code generation

Confiqurations: Mame: lflew_l:unflgurarmn ---
= "4 Hibernate Code Generation
T New_configuration

* Main % Expurtersg i Refresh | [Common

[Generate domain code (.java)

r

r

[T Generate DAO code (.java)

[Generate mappings (hbm.xml)

| Generate hibernate configuration (hibernate.cfig.xml)
[Generate schema htmkdocumentation

— pelete | Apply | Revert |
Bun ; Close |

The following table describes in short the various exporters. The most relevant for Seam is of course the "JBoss
Seam Skeleton app".

Table 11.3. Code generation " Exporter” tab fields

Field Description

Generate domain code Generates POJO's for all the persistent classes and components found in the given
Hibernate configuration.

JDK 1.5 constructs When enabled the POJO's will use JDK 1.5 constructs.

EJB3/ISR-220 annota- When enabled the POJO's will be annotated according to the EJB3/JSR-220 per-
tions sistency specification.

Generate DAO code Generates a set of DAO's for each entity found.

Generate Mappings Generate mapping (hbm.xml) files for each entity

Generate hibernate con- Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml uptodate
figuration file with any new found mapping files.

Generate schema html- Generates set of html pages that documents the database schema and some of the

JBoss Seam 1.0.CR3 130

Seam tools

Field Description

documentation mappings.

Generate JBoss Seam Generates a complete JBoss Seam skeleton app. The generation will include an-
skeleton app (beta) notated POJO's, Seam controller beans and a JSP for the presentation layer. See
the generated readme.txt for how to useiit.

Note: this exporter generates a full application, including a build.xml thus you
will get the best results if you use an output directory which is the root of your
project.

11.2.3.3. Generating and using the code

When you have finished filling out the settings, simply press "Run" to start the generation of code. This might
take alittle while if you are reverse engineering from a database.

When the generation have finished you should now have a complete skeleton Seam application in the output

directory. In the output directory there is areadne. t xt file describing the steps needed to deploy and run the
example.

If you want to regenerate/update the skeleton code then simply run the code generation again by selecting the
"Hibernate Code Generation" in the toolbar or "Run" menu. Enjoy.

JBoss Seam 1.0.CR3 131

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	Chapter 1. Seam Tutorial
	1.1. Try the examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the examples on Tomcat
	1.1.3. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The web deployment description: web.xml
	1.2.1.5. The JSF configration: faces-config.xml
	1.2.1.6. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.7. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.8. The view: register.jsp and registered.jsp
	1.2.1.9. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.jsp

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam UI control library
	1.6.5. The Seam Debug Page

	1.7. A complete application featuring Seam and jBPM: the DVD Store example
	1.8. A complete application featuring Seam workspace management: the Issue Tracker example
	1.9. An example of Seam with Hibernate: the Hibernate Booking example
	1.10. A RESTful Seam application: the Blog example
	1.10.1. Using "pull"-style MVC
	1.10.2. Bookmarkable search results page
	1.10.3. Using "push"-style MVC in a RESTful application

	Chapter 2. The contextual component model
	2.1. Seam contexts
	2.1.1. Stateless context
	2.1.2. Event context
	2.1.3. Page context
	2.1.4. Conversation context
	2.1.5. Session context
	2.1.6. Business process context
	2.1.7. Application context
	2.1.8. Context variables
	2.1.9. Context search priority

	2.2. Seam components
	2.2.1. Stateless session beans
	2.2.2. Stateful session beans
	2.2.3. Entity beans
	2.2.4. JavaBeans
	2.2.5. Interception
	2.2.6. Component names
	2.2.7. Defining the component scope
	2.2.8. Components with multiple roles
	2.2.9. Built-in components
	2.2.10. Configuring components

	2.3. Bijection
	2.4. Seam interceptors
	2.5. Seam events
	2.5.1. Page actions
	2.5.2. Component-driven events

	Chapter 3. Conversations and workspace management
	3.1. Seam's conversation model
	3.2. Nested conversations
	3.3. Starting conversations with GET requests
	3.4. Using <s:link>
	3.5. Success messages
	3.6. Workspace management
	3.6.1. Workspace management and JSF navigation
	3.6.2. Workspace management and jPDL pageflow
	3.6.3. The conversation switcher
	3.6.4. The conversation list
	3.6.5. Breadcrumbs

	3.7. Seam and AJAX
	3.8. Seam and SOAP

	Chapter 4. Pageflows and business processes
	4.1. Pageflow in Seam
	4.1.1. The two navigation models
	4.1.2. Seam and the back button

	4.2. Using jPDL pageflows
	4.2.1. Installing pageflows
	4.2.2. Starting pageflows
	4.2.3. Page nodes and transitions
	4.2.4. Controlling the flow
	4.2.5. Ending the flow

	4.3. Business process management in Seam
	4.4. Using jPDL business process definitions
	4.4.1. Installing process definitions
	4.4.2. Initializing actor ids
	4.4.3. Initiating a business brocess
	4.4.4. Task assignment
	4.4.5. Task lists
	4.4.6. Performing a task

	Chapter 5. Internationalization
	5.1. Locales
	5.2. Labels
	5.3. Faces messages

	Chapter 6. Remoting
	6.1. Configuration
	6.2. The "Seam" object
	6.2.1. A Hello World example
	6.2.2. Seam.Component
	Seam.Component.newInstance()
	Seam.Component.getInstance()
	Seam.Component.getComponentName()

	6.2.3. Seam.Remoting
	Seam.Remoting.createType()
	Seam.Remoting.getTypeName()

	6.3. Client Interfaces
	6.4. The Context
	6.4.1. Setting and reading the Conversation ID

	6.5. Batch Requests
	6.6. Working with Data types
	6.6.1. Primitives / Basic Types
	String
	Number
	Boolean

	6.6.2. JavaBeans
	6.6.3. Dates and Times
	6.6.4. Enums
	6.6.5. Collections
	Bags
	Maps

	6.7. Debugging
	6.8. The Loading Message
	6.8.1. Changing the message
	6.8.2. Hiding the loading message
	6.8.3. A Custom Loading Indicator

	6.9. JMS Messaging
	6.9.1. Subscribing to a JMS Topic
	6.9.2. Unsubscribing from a Topic
	6.9.3. Tuning the Polling Process

	Chapter 7. Configuring Seam
	7.1. Basic Seam configuration
	7.1.1. Integrating Seam with JSF and your servlet container
	7.1.2. Integrating Seam with your EJB container
	7.1.3. Enabling conversation propagation with redirects

	7.2. Configuring Seam in Java EE 5
	7.2.1. Packaging

	7.3. Configuring Seam with the JBoss Embeddable EJB3 container
	7.3.1. Installing the Embeddable EJB3 container
	7.3.2. Configuring a datasource with the Embeddable EJB3 container
	7.3.3. Packaging

	7.4. Seam managed transactions
	7.4.1. Enabling Seam-managed transactions
	7.4.2. Using a Seam-managed persistence context

	7.5. Configuring Seam with Hibernate in Java EE
	7.5.1. Boostrapping Hibernate in Seam
	7.5.2. Using a Seam-managed Hibernate Session
	7.5.3. Packaging

	7.6. Configuring Seam with Hibernate in Java SE
	7.6.1. Using Hibernate and the JBoss Microcontainer
	7.6.2. Packaging

	7.7. Configuring jBPM in Seam
	7.7.1. Packaging

	7.8. Configuring Seam in a Portal

	Chapter 8. Seam annotations
	8.1. Annotations for component definition
	8.2. Annotations for bijection
	8.3. Annotations for component lifecycle methods
	8.4. Annotations for context demarcation
	8.5. Annotations for transaction demarcation
	8.6. Annotations for validation
	8.7. Annotations for Seam Remoting
	8.8. Annotations for Seam interceptors
	8.9. Annotations for use with JSF dataTable
	8.10. Meta-annotations for databinding

	Chapter 9. Built-in Seam components
	9.1. Context injection components
	9.2. Utility components
	9.3. Components for internationalization
	9.4. Components for controlling conversations
	9.5. jBPM-related components
	9.6. Infrastructural components
	9.7. Security-related components
	9.8. Special components

	Chapter 10. Testing Seam applications
	10.1. Unit testing Seam components
	10.2. Integration testing Seam applications

	Chapter 11. Seam tools
	11.1. jBPM designer and viewer
	11.1.1. Business process designer
	11.1.2. Pageflow viewer

	11.2. CRUD-application generator
	11.2.1. Creating a Hibernate configuration file
	11.2.2. Creating a Hibernate Console configuration
	11.2.3. Reverse engineering and code generation
	11.2.3.1. Code Generation Launcher
	11.2.3.2. Exporters
	11.2.3.3. Generating and using the code

