
Seam - Contextual Components

A Framework for Java EE 5

Version: 1.1.1.GA

Table of Contents
Introduction to JBoss Seam .. ix
1. Seam Tutorial ... 1

1.1. Try the examples .. 1
1.1.1. Running the examples on JBoss AS .. 1
1.1.2. Running the examples on Tomcat ... 1
1.1.3. Running the example tests .. 1

1.2. Your first Seam application: the registration example ... 2
1.2.1. Understanding the code .. 2

1.2.1.1. The entity bean: User.java ... 3
1.2.1.2. The stateless session bean class: RegisterAction.java 5
1.2.1.3. The session bean local interface: Register.java .. 6
1.2.1.4. The Seam component deployment descriptor: components.xml 6
1.2.1.5. The web deployment description: web.xml ... 7
1.2.1.6. The JSF configration: faces-config.xml .. 7
1.2.1.7. The EJB deployment descriptor: ejb-jar.xml ... 8
1.2.1.8. The EJB persistence deployment descriptor: persistence.xml 8
1.2.1.9. The view: register.jsp and registered.jsp ... 9
1.2.1.10. The EAR deployment descriptor: application.xml 10

1.2.2. How it works .. 10
1.3. Clickable lists in Seam: the messages example ... 11

1.3.1. Understanding the code .. 11
1.3.1.1. The entity bean: Message.java ... 12
1.3.1.2. The stateful session bean: MessageManagerBean.java 12
1.3.1.3. The session bean local interface: MessageManager.java 14
1.3.1.4. The view: messages.jsp ... 14

1.3.2. How it works .. 15
1.4. Seam and jBPM: the todo list example ... 15

1.4.1. Understanding the code .. 16
1.4.2. How it works .. 21

1.5. Seam pageflow: the numberguess example .. 21
1.5.1. Understanding the code .. 21
1.5.2. How it works .. 25

1.6. A complete Seam application: the Hotel Booking example .. 25
1.6.1. Introduction .. 26
1.6.2. Overview of the booking example .. 28
1.6.3. Understanding Seam conversations ... 28
1.6.4. The Seam UI control library ... 34
1.6.5. The Seam Debug Page ... 34

1.7. A complete application featuring Seam and jBPM: the DVD Store example 35
1.8. A complete application featuring Seam workspace management: the Issue Tracker example . 37
1.9. An example of Seam with Hibernate: the Hibernate Booking example 38
1.10. A RESTful Seam application: the Blog example ... 38

1.10.1. Using "pull"-style MVC ... 39
1.10.2. Bookmarkable search results page .. 40
1.10.3. Using "push"-style MVC in a RESTful application .. 42

2. Getting started with Seam, using seam-gen ... 45
2.1. Before you start .. 45
2.2. Setting up a new Eclipse project .. 45

JBoss Seam 1.1.1.GA ii

2.3. Creating a new action ... 47
2.4. Creating a form with an action .. 48
2.5. Generating an application from an existing database ... 48
2.6. Deploying the application as an EAR .. 49

3. The contextual component model .. 50
3.1. Seam contexts .. 50

3.1.1. Stateless context .. 50
3.1.2. Event context .. 50
3.1.3. Page context .. 51
3.1.4. Conversation context ... 51
3.1.5. Session context .. 51
3.1.6. Business process context .. 52
3.1.7. Application context ... 52
3.1.8. Context variables ... 52
3.1.9. Context search priority ... 52
3.1.10. Concurrency model .. 53

3.2. Seam components .. 53
3.2.1. Stateless session beans ... 54
3.2.2. Stateful session beans .. 54
3.2.3. Entity beans .. 54
3.2.4. JavaBeans ... 54
3.2.5. Message-driven beans .. 55
3.2.6. Interception ... 55
3.2.7. Component names ... 55
3.2.8. Defining the component scope .. 56
3.2.9. Components with multiple roles ... 56
3.2.10. Built-in components ... 57

3.3. Bijection .. 58
3.4. Lifecycle methods .. 60
3.5. Logging ... 60
3.6. The Mutable interface and @ReadOnly ... 61
3.7. Factory and manager components .. 62

4. Configuring Seam components .. 64
4.1. Configuring components via property settings .. 64
4.2. Configuring components via components.xml .. 64
4.3. Fine-grained configuration files ... 66
4.4. Configurable property types .. 67
4.5. Using XML Namespaces .. 67

5. Events, interceptors and exception handling ... 71
5.1. Seam events ... 71

5.1.1. Page actions .. 71
5.1.1.1. Page parameters .. 72
5.1.1.2. Navigation ... 73
5.1.1.3. Fine-grained files for definition of page actions and parameters 75

5.1.2. Component-driven events .. 75
5.1.3. Contextual events .. 77

5.2. Seam interceptors ... 78
5.3. Managing exceptions .. 79

6. Conversations and workspace management .. 81
6.1. Seam's conversation model ... 81
6.2. Nested conversations .. 83
6.3. Starting conversations with GET requests .. 83

Seam - Contextual Components

JBoss Seam 1.1.1.GA iii

6.4. Using <s:link> and <s:button> .. 84
6.5. Success messages ... 85
6.6. Using an "explicit" conversation id .. 86
6.7. Workspace management ... 87

6.7.1. Workspace management and JSF navigation ... 87
6.7.2. Workspace management and jPDL pageflow ... 87
6.7.3. The conversation switcher .. 88
6.7.4. The conversation list .. 88
6.7.5. Breadcrumbs ... 89

6.8. Seam-managed persistence contexts and atomic conversations .. 89
6.9. Seam and Servlets .. 90
6.10. Seam and SOAP ... 90

7. Pageflows and business processes .. 91
7.1. Pageflow in Seam .. 91

7.1.1. The two navigation models .. 91
7.1.2. Seam and the back button ... 94

7.2. Using jPDL pageflows .. 95
7.2.1. Installing pageflows ... 95
7.2.2. Starting pageflows ... 95
7.2.3. Page nodes and transitions ... 96
7.2.4. Controlling the flow .. 97
7.2.5. Ending the flow ... 97

7.3. Business process management in Seam .. 97
7.4. Using jPDL business process definitions .. 98

7.4.1. Installing process definitions .. 98
7.4.2. Initializing actor ids ... 98
7.4.3. Initiating a business process ... 99
7.4.4. Task assignment .. 99
7.4.5. Task lists .. 99
7.4.6. Performing a task .. 100

8. Internationalization and themes .. 101
8.1. Locales .. 101
8.2. Labels ... 101

8.2.1. Defining labels .. 101
8.2.2. Displaying labels ... 102
8.2.3. Faces messages ... 103

8.3. Timezones ... 103
8.4. Themes .. 103
8.5. Persisting locale and theme preferences via cookies .. 104

9. Asynchronicity and messaging .. 105
9.1. Asynchronicity ... 105

9.1.1. Asynchronous methods .. 105
9.1.2. Asynchronous events ... 107

9.2. Messaging in Seam .. 107
9.2.1. Configuration .. 107
9.2.2. Sending messages .. 107
9.2.3. Receiving messages using a message-driven bean .. 108
9.2.4. Receiving messages in the client ... 108

10. Remoting ... 109
10.1. Configuration ... 109
10.2. The "Seam" object .. 110

10.2.1. A Hello World example ... 110

Seam - Contextual Components

JBoss Seam 1.1.1.GA iv

10.2.2. Seam.Component .. 111
10.2.2.1. Seam.Component.newInstance() .. 111
10.2.2.2. Seam.Component.getInstance() .. 112
10.2.2.3. Seam.Component.getComponentName() .. 113

10.2.3. Seam.Remoting ... 113
10.2.3.1. Seam.Remoting.createType() ... 113
10.2.3.2. Seam.Remoting.getTypeName() .. 113

10.3. Client Interfaces ... 113
10.4. The Context ... 114

10.4.1. Setting and reading the Conversation ID ... 114
10.5. Batch Requests ... 114
10.6. Working with Data types .. 114

10.6.1. Primitives / Basic Types ... 114
10.6.1.1. String ... 114
10.6.1.2. Number .. 115
10.6.1.3. Boolean .. 115

10.6.2. JavaBeans ... 115
10.6.3. Dates and Times .. 115
10.6.4. Enums .. 115
10.6.5. Collections .. 116

10.6.5.1. Bags ... 116
10.6.5.2. Maps .. 116

10.7. Debugging ... 116
10.8. The Loading Message ... 117

10.8.1. Changing the message .. 117
10.8.2. Hiding the loading message .. 117
10.8.3. A Custom Loading Indicator .. 117

10.9. Controlling what data is returned ... 117
10.9.1. Constraining normal fields ... 118
10.9.2. Constraining Maps and Collections ... 118
10.9.3. Constraining objects of a specific type .. 119
10.9.4. Combining Constraints .. 119

10.10. JMS Messaging .. 119
10.10.1. Configuration .. 119
10.10.2. Subscribing to a JMS Topic .. 119
10.10.3. Unsubscribing from a Topic ... 120
10.10.4. Tuning the Polling Process ... 120

11. Seam and JBoss Rules ... 122
11.1. Installing rules ... 122
11.2. Using rules from a Seam component .. 122
11.3. Using rules from a jBPM process definition ... 123

12. JSF form validation in Seam ... 125
13. Configuring Seam and packaging Seam applications .. 129

13.1. Basic Seam configuration ... 129
13.1.1. Integrating Seam with JSF and your servlet container .. 129
13.1.2. Integrating Seam with your EJB container ... 129
13.1.3. Enabling conversation propagation with redirects .. 130
13.1.4. Using facelets .. 131

13.2. Configuring Seam in Java EE 5 ... 131
13.2.1. Packaging ... 131

13.3. Configuring Seam with the JBoss Embeddable EJB3 container 132
13.3.1. Installing the Embeddable EJB3 container ... 133

Seam - Contextual Components

JBoss Seam 1.1.1.GA v

13.3.2. Configuring a datasource with the Embeddable EJB3 container 133
13.3.3. Packaging ... 134

13.4. Seam managed transactions ... 135
13.4.1. Enabling Seam-managed transactions ... 135
13.4.2. Using a Seam-managed persistence context ... 136

13.5. Configuring Seam with Hibernate in Java EE ... 136
13.5.1. Boostrapping Hibernate in Seam ... 137
13.5.2. Using a Seam-managed Hibernate Session .. 137
13.5.3. Packaging ... 137

13.6. Configuring Seam with Hibernate in Java SE ... 138
13.6.1. Using Hibernate and the JBoss Microcontainer .. 139
13.6.2. Packaging ... 139

13.7. Configuring jBPM in Seam ... 140
13.7.1. Packaging ... 141

13.8. Configuring Seam in a Portal .. 142
14. The Seam Application Framework .. 143

14.1. Introduction ... 143
14.2. Home objects ... 144
14.3. Query objects ... 147
14.4. Using Hibernate filters .. 148

15. Seam Text ... 150
15.1. Basic fomatting .. 150
15.2. Entering code and text with special characters .. 151
15.3. Entering HTML ... 152

16. Seam annotations .. 153
16.1. Annotations for component definition .. 153
16.2. Annotations for bijection .. 155
16.3. Annotations for component lifecycle methods .. 158
16.4. Annotations for context demarcation ... 158
16.5. Annotations for transaction demarcation .. 161
16.6. Annotations for exceptions .. 162
16.7. Annotations for validation ... 163
16.8. Annotations for Seam Remoting .. 163
16.9. Annotations for Seam interceptors ... 163
16.10. Annotations for asynchronicity .. 164
16.11. Annotations for use with JSF dataTable ... 165
16.12. Meta-annotations for databinding .. 165
16.13. Annotations for packaging .. 166

17. Built-in Seam components ... 167
17.1. Context injection components ... 167
17.2. Utility components ... 167
17.3. Components for internationalization and themes ... 169
17.4. Components for controlling conversations .. 170
17.5. jBPM-related components ... 171
17.6. Security-related components ... 173
17.7. JMS-related components ... 173
17.8. Infrastructural components .. 173
17.9. Special components .. 175

18. Seam JSF controls ... 178
19. iText PDF generation .. 181

19.1. Using PDF Support .. 181
19.2. Creating a document ... 181

Seam - Contextual Components

JBoss Seam 1.1.1.GA vi

19.2.1. p:document ... 181
19.3. Headers and Footers ... 182

19.3.1. p:header and p:footer ... 182
19.3.2. p:pageNumber ... 183

19.4. Chapters and Sections ... 183
19.4.1. p:chapter and p:section ... 183
19.4.2. p:title .. 183

19.5. Lists .. 183
19.5.1. p:list ... 183
19.5.2. p:listItem ... 184

19.6. Tables .. 184
19.6.1. p:table ... 184
19.6.2. p:cell> .. 185

19.7. Basic Text Elements ... 186
19.7.1. p:paragraph ... 186
19.7.2. p:font .. 186
19.7.3. p:newPage .. 187
19.7.4. p:image ... 187
19.7.5. p:anchor> .. 187

19.8. Document Constants ... 188
19.8.1. Color Values ... 188
19.8.2. Alignment Values .. 188

19.9. iText links .. 188
20. Expression language enhancements ... 189

20.1. Configuration ... 189
20.2. Usage .. 189
20.3. Limitations .. 189

20.3.1. Incompatibility with JSP 2.1 ... 190
20.3.2. Calling a MethodExpression from Java code ... 190

21. Testing Seam applications ... 191
21.1. Unit testing Seam components .. 191
21.2. Integration testing Seam applications ... 192

22. Seam tools ... 196
22.1. jBPM designer and viewer .. 196

22.1.1. Business process designer .. 196
22.1.2. Pageflow viewer .. 196

22.2. CRUD-application generator ... 197
22.2.1. Creating a Hibernate configuration file .. 197
22.2.2. Creating a Hibernate Console configuration .. 198
22.2.3. Reverse engineering and code generation .. 201

22.2.3.1. Code Generation Launcher .. 201
22.2.3.2. Exporters .. 203
22.2.3.3. Generating and using the code ... 205

23. Security ... 206
23.1. Overview ... 206

23.1.1. JAAS-based Authentication .. 206
23.1.2. Page Security .. 206
23.1.3. EL Integration ... 206
23.1.4. Rule-based Authorization ... 206

23.2. Configuration ... 206
23.2.1. security-config.xml .. 207

23.2.1.1. Explicit Permissions .. 208

Seam - Contextual Components

JBoss Seam 1.1.1.GA vii

23.2.1.2. Role memberships .. 208
23.2.1.3. Page security .. 209

23.2.2. Seam Security Filter .. 209
23.2.3. security-rules.drl .. 210

23.3. Authentication .. 210
23.3.1. Using SeamLoginModule to authenticate .. 211
23.3.2. Logging in the user .. 212
23.3.3. Customising the Authentication process .. 213

23.4. Authorization ... 215
23.4.1. Types of authorization checks .. 215
23.4.2. The Security Context ... 216
23.4.3. How do permission checks work? ... 217
23.4.4. Establishing a default security policy .. 217

Seam - Contextual Components

JBoss Seam 1.1.1.GA viii

Introduction to JBoss Seam
Seam is an application framework for Java EE 5. It is inspired by the following principles:

Integrate JSF with EJB 3.0
JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new component model for
server side business and persistence logic. Meanwhile, JSF is a great component model for the presentation
tier. Unfortunately, neither component model is able to solve all problems in computing by itself. Indeed,
JSF and EJB3 work best used together. But the Java EE 5 specification provides no standard way to integ-
rate the two component models. Fortunately, the creators of both models foresaw this situation and
provided standard extension points to allow extension and integration of other solutions.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting the developer
think about the business problem.

Integrated AJAX
Seam supports two open source JSF-based AJAX solutions: ICEfaces and Ajax4JSF. These solutions let
you add AJAX capability to your user interface without the need to write any JavaScript code.

Seam also provides a built-in JavaScript remoting layer for EJB3 components. AJAX clients can easily call
server-side components and subscribe to JMS topics, without the need for an intermediate action layer.

Neither of these approaches would work well, were it not for Seam's built-in concurrency and state man-
agement, which ensures that many concurrent fine-grained, asynchronous AJAX requests are handled
safely and efficiently on the server side.

Integrate Business Process as a First Class Construct
Optionally, Seam integrates transparent business process management via jBPM. You won't believe how
easy it is to implement complex workflows using jBPM and Seam.

Seam even allows definition of presentation tier conversation flow by the same means.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this model by expos-
ing jBPM's business process related events via exactly the same event handling mechanism, providing a
uniform event model for Seam's uniform component model.

One Kind of "Stuff"
Seam provides a uniform component model. A Seam component may be stateful, with the state associated
to any one of a number of contexts, ranging from the long-running business process to a single web request.

There is no distinction between presentation tier components and business logic components in Seam. It is
possible to write Seam applications where "everything" is an EJB. This may come as a surprise if you are
used to thinking of EJBs as coarse-grained, heavyweight objects that are a pain in the backside to create!
However, EJB 3.0 completely changes the nature of EJB from the point of view of the developer. An EJB
is a fine-grained object - nothing more complex than an annotated JavaBean. Seam even encourages you to
use session beans as JSF action listeners!

Unlike plain Java EE or J2EE components, Seam components may simultaneously access state associated
with the web request and state held in transactional resources (without the need to propagate web request
state manually via method parameters). You might object that the application layering imposed upon you
by the old J2EE platform was a Good Thing. Well, nothing stops you creating an equivalent layered archi-
tecture using Seam - the difference is that you get to architect your own application and decide what the

JBoss Seam 1.1.1.GA ix

layers are and how they work together.

Declarative State Management
We are all used to the concept of declarative transaction management and J2EE declarative security from
EJB 2.x. EJB 3.0 even introduces declarative persistence context management. These are three examples of
a broader problem of managing state that is associated with a particular context, while ensuring that all
needed cleanup occurs when the context ends. Seam takes the concept of declarative state management
much further and applies it to application state. Traditionally, J2EE applications almost always implement
state management manually, by getting and setting servlet session and request attributes. This approach to
state management is the source of many bugs and memory leaks when applications fail to clean up session
attributes, or when session data associated with different workflows collides in a multi-window application.
Seam has the potential to almost entirely eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context model defined by
Seam. Seam extends the context model defined by the servlet spec—request, session, application—with
two new contexts—conversation and business process—that are more meaningful from the point of view of
the business logic.

Bijection
The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as well as in nu-
merous so-called "lighweight containers". Most of these containers emphasize injection of components that
implement stateless services. Even when injection of stateful components is supported (such as in JSF), it is
virtually useless for handling application state because the scope of the stateful component cannot be
defined with sufficient flexibility.

Bijection differs from IoC in that it is dynamic, contextual, and bidirectional. You can think of it as a mech-
anism for aliasing contextual variables (names in the various contexts bound to the current thread) to attrib-
utes of the component. Bijection allows auto-assembly of stateful components by the container. It even al-
lows a component to safely and easily manipulate the value of a context variable, just by assigning to an at-
tribute of the component.

Workspace Management
Optionally, Seam applications may take advantage of workspace management, allowing users to freely
switch between different conversations (workspaces) in a single browser window. Seam provides not only
correct multi-window operation, but also multi-window-like operation in a single window!

Annotated POJOs Everywhere
EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to provide information
to the container in a declarative form. Unfortunately, JSF is still heavily dependent on verbose XML con-
figuration files. Seam extends the annotations provided by EJB 3.0 with a set of annotations for declarative
state management and declarative context demarcation. This lets you eliminate the noisy JSF managed bean
declarations and reduce the required XML to just that information which truly belongs in XML (the JSF
navigation rules).

Testability as a Core Feature
Seam components, being POJOs, are by nature unit testable. But for complex applications, unit testing
alone is insufficient. Integration testing has traditionally been a messy and difficult task for Java web ap-
plications. Therefore, Seam provides for testability of Seam applications as a core feature of the frame-
work. You can easily write JUnit or TestNG tests that reproduce a whole interaction with a user, exercising
all components of the system apart from the view (the JSP or Facelets page). You can run these tests dir-
ectly inside your IDE, where Seam will automatically deploy EJB components into the JBoss Embeddable
EJB3 container.

Get started now!

Introduction to JBoss Seam

JBoss Seam 1.1.1.GA x

Seam works in any application server that supports EJB 3.0. You can even use Seam in a servlet container
like Tomcat, or in any J2EE application server, by leveraging the new JBoss Embeddable EJB3 container.

However, we realize that not everyone is ready to make the switch to EJB 3.0. So, in the interim, you can
use Seam as a framework for applications that use JSF for presentation, Hibernate (or plain JDBC) for per-
sistence and JavaBeans for application logic. Then, when you're ready to make the switch to EJB 3.0, mi-
gration will be straightforward.

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex web application
in Java. You won't believe how little code is required!

Introduction to JBoss Seam

JBoss Seam 1.1.1.GA xi

Chapter 1. Seam Tutorial

1.1. Try the examples

In this tutorial, we'll assume that you have downloaded JBoss AS 4.0.5 and installed the EJB 3.0 profile (using
the JBoss AS installer). You should also have a copy of Seam downloaded and extracted to a work directory.

The directory structure of each example in Seam follows this pattern:

• Web pages, images and stylesheets may be found in examples/registration/view

• Resources such as deployment descriptors and data import scripts may be found in examples/registration/

resources

• Java source code may be found in examples/registration/src

• The Ant build script is examples/registration/build.xml

1.1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOME and $JAVA_HOME set correctly. Next, make
sure you set the location of your JBoss AS 4.0.5 installation in the build.properties file in the root folder of
your Seam installation. If you haven't already done so, start JBoss AS now by typing bin/run.sh or bin/

run.bat in the root directory of your JBoss installation.

Now, build and deploy the example by typing ant deploy in the examples/registration directory.

Try it out by accessing http://localhost:8080/seam-registration/ with your web browser.

1.1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $ANT_HOME and $JAVA_HOME set correctly. Next, make
sure you set the location of your Tomcat 5.5 installation in the build.properties file in the root folder of your
Seam installation.

Now, build and deploy the example by typing ant deploy.tomcat in the examples/registration directory.

Finally, start Tomcat.

Try it out by accessing http://localhost:8080/jboss-seam-registration/ with your web browser.

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss Embeddable EJB3
container, a complete standalone EJB3 container environment.

1.1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the tests is to run
ant testexample inside the examples/registration directory. It is also possible to run the tests inside your IDE
using the TestNG plugin.

JBoss Seam 1.1.1.GA 1

http://localhost:8080/seam-registration/
http://localhost:8080/jboss-seam-registration/

1.2. Your first Seam application: the registration example

The registration example is a fairly trivial application that lets a new user store his username, real name and
password in the database. The example isn't intended to show off all of the cool functionality of Seam.
However, it demonstrates the use of an EJB3 session bean as a JSF action listener, and basic configuration of
Seam.

We'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then submitting the
form. This will save a user object in the database.

1.2.1. Understanding the code

The example is implemented with two JSP pages, one entity bean and one stateless session bean.

Seam Tutorial

JBoss Seam 1.1.1.GA 2

Let's take a look at the code, starting from the "bottom".

1.2.1.1. The entity bean: User.java

We need an EJB entity bean for user data. This class defines persistence and validation declaratively, via an-
notations. It also needs some extra annotations that define the class as a Seam component.

Example 1.1.

@Entity (1)
@Name("user") (2)
@Scope(SESSION) (3)
@Table(name="users") (4)
public class User implements Serializable
{

private static final long serialVersionUID = 1881413500711441951L;

private String username; (5)
private String password;
private String name;

public User(String name, String password, String username)
{

this.name = name;
this.password = password;
this.username = username;

}

public User() {} (6)

@NotNull @Length(min=5, max=15) (7)
public String getPassword()

Seam Tutorial

JBoss Seam 1.1.1.GA 3

{
return password;

}

public void setPassword(String password)
{

this.password = password;
}

@NotNull
public String getName()
{

return name;
}

public void setName(String name)
{

this.name = name;
}

@Id @NotNull @Length(min=5, max=15) (8)
public String getUsername()
{

return username;
}

public void setUsername(String username)
{

this.username = username;
}

}

(1) The EJB3 standard @Entity annotation indicates that the User class is an entity bean.
(2) A Seam component needs a component name specified by the @Name annotation. This name must be

unique within the Seam application. When JSF asks Seam to resolve a context variable with a name that is
the same as a Seam component name, and the context variable is currently undefined (null), Seam will in-
stantiate that component, and bind the new instance to the context variable. In this case, Seam will instan-
tiate a User the first time JSF encounters a variable named user.

(3) Whenever Seam instantiates a component, it binds the new instance to a context variable in the compon-
ent's default context. The default context is specified using the @Scope annotation. The User bean is a ses-
sion scoped component.

(4) The EJB standard @Table annotation indicates that the User class is mapped to the users table.
(5) name, password and username are the persistent attributes of the entity bean. All of our persistent attrib-

utes define accessor methods. These are needed when this component is used by JSF in the render re-
sponse and update model values phases.

(6) An empty constructor is both required by both the EJB specification and by Seam.
(7) The @NotNull and @Length annotations are part of the Hibernate Validator framework. Seam integrates

Hibernate Validator and lets you use it for data validation (even if you are not using Hibernate for persist-
ence).

(8) The EJB standard @Id annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @Name and @Scope annotations. These annotations
establish that this class is a Seam component.

We'll see below that the properties of our User class are bound to directly to JSF components and are populated
by JSF during the update model values phase. We don't need any tedious glue code to copy data back and forth
between the JSP pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't use this component
as a JSF action listener. For that we need a session bean.

Seam Tutorial

JBoss Seam 1.1.1.GA 4

1.2.1.2. The stateless session bean class: RegisterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead if you like).

We have exactly one JSF action in our application, and one session bean method attached to it. In this case,
we'll use a stateless session bean, since all the state associated with our action is held by the User bean.

This is the only really interesting code in the example!

Example 1.2.

@Stateless (1)
@Name("register")
public class RegisterAction implements Register
{

@In (2)
private User user;

@PersistenceContext (3)
private EntityManager em;

@Logger (4)
private Log log;

public String register() (5)
{

List existing = em.createQuery("select username from User where username=:username")
.setParameter("username", user.getUsername())
.getResultList();

if (existing.size()==0)
{

em.persist(user);
log.info("Registered new user #{user.username}"); (6)
return "/registered.jsp"; (7)

}
else
{

FacesMessages.instance().add("User #{user.username} already exists"); (8)
return null;

}
}

}

(1) The EJB standard @Stateless annotation marks this class as stateless session bean.
(2) The @In annotation marks an attribute of the bean as injected by Seam. In this case, the attribute is injec-

ted from a context variable named user (the instance variable name).
(3) The EJB standard @PersistenceContext annotation is used to inject the EJB3 entity manager.
(4) The Seam @Logger annotation is used to inject the component's Log instance.
(5) The action listener method uses the standard EJB3 EntityManager API to interact with the database, and

returns the JSF outcome. Note that, since this is a sesson bean, a transaction is automatically begun when
the register() method is called, and committed when it completes.

(6) The Log API lets us easily display templated log messages.
(7) JSF action listener methods return a string-valued outcome that determines what page will be displayed

next. A null outcome (or a void action listener method) redisplays the previous page. In plain JSF, it is
normal to always use a JSF navigation rule to determine the JSF view id from the outcome. For complex
application this indirection is useful and a good practice. However, for very simple examples like this one,
Seam lets you use the JSF view id as the outcome, eliminating the requirement for a navigation rule. Note

Seam Tutorial

JBoss Seam 1.1.1.GA 5

that when you use a view id as an outcome, Seam always performs a browser redirect.
(8) Seam provides a number of built-in components to help solve common problems. The FacesMessages

component makes it easy to display templated error or success messages. Built-in Seam components may
be obtained by injection, or by calling an instance() method.

Note that we did not explicitly specify a @Scope this time. Each Seam component type has a default scope if not
explicitly specified. For stateless session beans, the default scope is the stateless context. Actually, all stateless
session beans belong in the stateless context.

Our session bean action listener performs the business and persistence logic for our mini-application. In more
complex applications, we might need to layer the code and refactor persistence logic into a dedicated data ac-
cess component. That's perfectly trivial to do. But notice that Seam does not force you into any particular
strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with the web request
(the form values in the User object, for example), and state held in transactional resources (the EntityManager

object). This is a break from traditional J2EE architectures. Again, if you are more comfortable with the tradi-
tional J2EE layering, you can certainly implement that in a Seam application. But for many applications, it's
simply not very useful.

1.2.1.3. The session bean local interface: Register.java

Naturally, our session bean needs a local interface.

Example 1.3.

@Local
public interface Register
{

public String register();
}

That's the end of the Java code. Now onto the deployment descriptors.

1.2.1.4. The Seam component deployment descriptor: components.xml

If you've used many Java frameworks before, you'll be used to having to declate all your component classes in
some kind of XML file that gradually grows more and more unmanageable as your project matures. You'll be
relieved to know that Seam does not require that application components be accompanied by XML. Most Seam
applications require a very small amount of XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some components
(particularly the components built in to Seam). You have a couple of options here, but the most flexible option
is to provide this configuration in a file called components.xml, located in the WEB-INF directory. We'll use the
components.xml file to tell Seam how to find our EJB components in JNDI:

Example 1.4.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core">

<core:init jndi-pattern="@jndiPattern@"/>
</components>

Seam Tutorial

JBoss Seam 1.1.1.GA 6

This code configures a property named jndiPattern of a built-in Seam component named
org.jboss.seam.core.init.

1.2.1.5. The web deployment description: web.xml

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web deployment
descriptor.

Example 1.5.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<!-- Seam -->

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

</listener>

<!-- MyFaces -->

<listener>
<listener-class>

org.apache.myfaces.webapp.StartupServletContextListener
</listener-class>

</listener>

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!-- Faces Servlet Mapping -->
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>

</servlet-mapping>

</web-app>

This web.xml file configures Seam and MyFaces. The configuration you see here is pretty much identical in all
Seam applications.

1.2.1.6. The JSF configration: faces-config.xml

All Seam applications use JSF views as the presentation layer. So we'll need faces-config.xml.

Example 1.6.

<?xml version="1.0" encoding="UTF-8"?>

Seam Tutorial

JBoss Seam 1.1.1.GA 7

<!DOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"

"http://java.sun.com/dtd/web-facesconfig_1_0.dtd">
<faces-config>

<!-- A phase listener is needed by all Seam applications -->

<lifecycle>
<phase-listener>org.jboss.seam.jsf.SeamPhaseListener</phase-listener>

</lifecycle>

</faces-config>

The faces-config.xml file integrates Seam into JSF. Note that we don't need any JSF managed bean declara-
tions! The managed beans are the Seam components. In Seam applications, the faces-config.xml is used
much less often than in plain JSF.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you add new func-
tionality to a Seam application is the navigation rules, and possibly jBPM process definitions. Seam takes the
view that process flow and configuration data are the only things that truly belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the view id in our ac-
tion code.

1.2.1.7. The EJB deployment descriptor: ejb-jar.xml

The ejb-jar.xml file integrates Seam with EJB3, by attaching the SeamInterceptor to all session beans in the
archive.

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">

<interceptors>
<interceptor>

<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>
</interceptor>

</interceptors>

<assembly-descriptor>
<interceptor-binding>

<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

</ejb-jar>

1.2.1.8. The EJB persistence deployment descriptor: persistence.xml

The persistence.xml file tells the EJB persistence provider where to find the datasource, and contains some
vendor-specific settings. In this case, enables automatic schema export at startup time.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="userDatabase">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>

Seam Tutorial

JBoss Seam 1.1.1.GA 8

<properties>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>

</properties>
</persistence-unit>

</persistence>

1.2.1.9. The view: register.jsp and registered.jsp

The view pages for a Seam application could be implemented using any technology that supports JSF. In this
example we use JSP, since it is familiar to most developers and since we have minimal requirements here any-
way. (But if you take our advice, you'll use Facelets for your own applications.)

Example 1.7.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>
<html>
<head>
<title>Register New User</title>
</head>
<body>
<f:view>
<h:form>
<table border="0">

<s:validateAll>
<tr>
<td>Username</td>
<td><h:inputText value="#{user.username}"/></td>

</tr>
<tr>
<td>Real Name</td>
<td><h:inputText value="#{user.name}"/></td>

</tr>
<tr>
<td>Password</td>
<td><h:inputSecret value="#{user.password}"/></td>

</tr>
</s:validateAll>

</table>
<h:messages/>
<h:commandButton type="submit" value="Register" action="#{register.register}"/>

</h:form>
</f:view>
</body>

</html>

The only thing here that is specific to Seam is the <s:validateAll> tag. This JSF component tells JSF to valid-
ate all the contained input fields against the Hibernate Validator annotations specified on the entity bean.

Example 1.8.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<html>
<head>
<title>Successfully Registered New User</title>
</head>
<body>
<f:view>
Welcome, <h:outputText value="#{user.name}"/>,

Seam Tutorial

JBoss Seam 1.1.1.GA 9

you are successfully registered as <h:outputText value="#{user.username}"/>.
</f:view>
</body>

</html>

This is a boring old JSP pages using standard JSF components. There is nothing specific to Seam here.

1.2.1.10. The EAR deployment descriptor: application.xml

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Example 1.9.

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/application_5.xsd"
version="5">

<display-name>Seam Registration</display-name>

<module>
<web>

<web-uri>jboss-seam-registration.war</web-uri>
<context-root>/seam-registration</context-root>

</web>
</module>
<module>

<ejb>jboss-seam-registration.jar</ejb>
</module>
<module>

<java>jboss-seam.jar</java>
</module>
<module>

<java>el-api.jar</java>
</module>
<module>

<java>el-ri.jar</java>
</module>

</application>

This deployment descriptor links modules in the enterprise archive and binds the web application to the context
root /seam-registration.

We've now seen all the files in the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user. Since there is no value already
bound to that name (in any Seam context), Seam instantiates the user component, and returns the resulting
User entity bean instance to JSF after storing it in the Seam session context.

The form input values are now validated against the Hibernate Validator constraints specified on the User en-
tity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the form input values to prop-
erties of the User entity bean.

Next, JSF asks Seam to resolve the variable named register. Seam finds the RegisterAction stateless session

Seam Tutorial

JBoss Seam 1.1.1.GA 10

bean in the stateless context and returns it. JSF invokes the register() action listener method.

Seam intercepts the method call and injects the User entity from the Seam session context, before continuing
the invocation.

The register() method checks if a user with the entered username already exists. If so, an error message is
queued with the FacesMessages component, and a null outcome is returned, causing a page redisplay. The
FacesMessages component interpolates the JSF expression embedded in the message string and adds a JSF
FacesMessage to the view.

If no user with that username exists, the "/registered.jsp" outcome triggers a browser redirect to the re-

gistered.jsp page. When JSF comes to render the page, it asks Seam to resolve the variable named user and
uses property values of the returned User entity from Seam's session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that Seam
provides special functionality on top of JSF to make it easier to query data using EJB-QL or HQL and display it
as a clickable list using a JSF <h:dataTable>. The messages example demonstrates this functionality.

1.3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessageListBean and one JSP.

Seam Tutorial

JBoss Seam 1.1.1.GA 11

1.3.1.1. The entity bean: Message.java

The Message entity defines the title, text, date and time of a message, and a flag indicating whether the message
has been read:

Example 1.10.

@Entity
@Name("message")
@Scope(EVENT)
public class Message implements Serializable
{

private Long id;
private String title;
private String text;
private boolean read;
private Date datetime;

@Id @GeneratedValue
public Long getId() {

return id;
}
public void setId(Long id) {

this.id = id;
}

@NotNull @Length(max=100)
public String getTitle() {

return title;
}
public void setTitle(String title) {

this.title = title;
}

@NotNull @Lob
public String getText() {

return text;
}
public void setText(String text) {

this.text = text;
}

@NotNull
public boolean isRead() {

return read;
}
public void setRead(boolean read) {

this.read = read;
}

@NotNull
@Basic @Temporal(TemporalType.TIMESTAMP)
public Date getDatetime() {

return datetime;
}
public void setDatetime(Date datetime) {

this.datetime = datetime;
}

}

1.3.1.2. The stateful session bean: MessageManagerBean.java

Just like in the previous example, we have a session bean, MessageManagerBean, which defines the action

Seam Tutorial

JBoss Seam 1.1.1.GA 12

listener methods for the two buttons on our form. One of the buttons selects a message from the list, and dis-
plays that message. The other button deletes a message. So far, this is not so different to the previous example.

But MessageManagerBean is also responsible for fetching the list of messages the first time we navigate to the
message list page. There are various ways the user could navigate to the page, and not all of them are preceded
by a JSF action—the user might have bookmarked the page, for example. So the job of fetching the message
list takes place in a Seam factory method, instead of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this a stateful ses-
sion bean.

Example 1.11.

@Stateful
@Scope(SESSION)
@Name("messageManager")
public class MessageManagerBean implements Serializable, MessageManager
{

@DataModel (1)
private List<Message> messageList;

@DataModelSelection (2)
@Out(required=false) (3)
private Message message;

@PersistenceContext(type=EXTENDED) (4)
private EntityManager em;

@Factory("messageList") (5)
public void findMessages()
{

messageList = em.createQuery("from Message msg order by msg.datetime desc").getResultList();
}

public void select() (6)
{

message.setRead(true);
}

public void delete() (7)
{

messageList.remove(message);
em.remove(message);
message=null;

}

@Remove @Destroy (8)
public void destroy() {}

}

(1) The @DataModel annotation exposes an attibute of type java.util.List to the JSF page as an instance of
javax.faces.model.DataModel. This allows us to use the list in a JSF <h:dataTable> with clickable
links for each row. In this case, the DataModel is made available in a session context variable named mes-

sageList.
(2) The @DataModelSelection annotation tells Seam to inject the List element that corresponded to the

clicked link.
(3) The @Out annotation then exposes the selected value directly to the page. So ever time a row of the click-

able list is selected, the Message is injected to the attribute of the stateful bean, and the subsequently out-
jected to the event context variable named message.

(4) This stateful bean has an EJB3 extended persistence context. The messages retrieved in the query remain

Seam Tutorial

JBoss Seam 1.1.1.GA 13

in the managed state as long as the bean exists, so any subsequent method calls to the stateful bean can
update them without needing to make any explicit call to the EntityManager.

(5) The first time we navigate to the JSP page, there will be no value in the messageList context variable.
The @Factory annotation tells Seam to create an instance of MessageManagerBean and invoke the find-

Messages() method to initialize the value. We call findMessages() a factory method for messages.
(6) The select() action listener method marks the selected Message as read, and updates it in the database.
(7) The delete() action listener method removes the selected Message from the database.
(8) All stateful session bean Seam components must have a method marked @Remove @Destroy to ensure that

Seam will remove the stateful bean when the Seam context ends, and clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session, and all requests
from a login session share the same instance of the component. (In Seam applications, we usually use session-
scoped components sparingly.)

1.3.1.3. The session bean local interface: MessageManager.java

All session beans have a business interface, of course.

@Local
public interface MessageManager
{

public void findMessages();
public void select();
public void delete();
public void destroy();

}

From now on, we won't show local interfaces in our code examples.

Let's skip over components.xml, persistence.xml, web.xml, ejb-jar.xml, faces-config.xml and applica-

tion.xml since they are much the same as the previous example, and go straight to the JSP.

1.3.1.4. The view: messages.jsp

The JSP page is a straightforward use of the JSF <h:dataTable> component. Again, nothing specific to Seam.

Example 1.12.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<html>
<head>
<title>Messages</title>
</head>
<body>
<f:view>
<h:form>
<h2>Message List</h2>
<h:outputText value="No messages to display" rendered="#{messageList.rowCount==0}"/>
<h:dataTable var="msg" value="#{messageList}" rendered="#{messageList.rowCount>0}">

<h:column>
<f:facet name="header">

<h:outputText value="Read"/>
</f:facet>
<h:selectBooleanCheckbox value="#{msg.read}" disabled="true"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Title"/>

</f:facet>

Seam Tutorial

JBoss Seam 1.1.1.GA 14

<h:commandLink value="#{msg.title}" action="#{messageManager.select}"/>
</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Date/Time"/>

</f:facet>
<h:outputText value="#{msg.datetime}">

<f:convertDateTime type="both" dateStyle="medium" timeStyle="short"/>
</h:outputText>

</h:column>
<h:column>

<h:commandButton value="Delete" action="#{messageManager.delete}"/>
</h:column>

</h:dataTable>
<h3><h:outputText value="#{message.title}"/></h3>
<div><h:outputText value="#{message.text}"/></div>

</h:form>
</f:view>
</body>

</html>

1.3.2. How it works

The first time we navigate to the messages.jsp page, whether by a JSF postback (faces request) or a direct
browser GET request (non-faces request), the page will try to resolve the messageList context variable. Since
this context variable is not initialized, Seam will call the factory method findMessages(), which performs a
query against the database and results in a DataModel being outjected. This DataModel provides the row data
needed for rendering the <h:dataTable>.

When the user clicks the <h:commandLink>, JSF calls the select() action listener. Seam intercepts this call and
injects the selected row data into the message attribute of the messageManager component. The action listener
fires, marking the selected Message as read. At the end of the call, Seam outjects the selected Message to the
context variable named message. Next, the EJB container commits the transaction, and the change to the Mes-

sage is flushed to the database. Finally, the page is re-rendered, redisplaying the message list, and displaying
the selected message below it.

If the user clicks the <h:commandButton>, JSF calls the delete() action listener. Seam intercepts this call and
injects the selected row data into the message attribute of the messageList component. The action listener fires,
removing the selected Message from the list, and also calling remove() on the EntityManager. At the end of the
call, Seam refreshes the messageList context variable and clears the context variable named message. The EJB
container commits the transaction, and deletes the Message from the database. Finally, the page is re-rendered,
redisplaying the message list.

1.4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste of how
jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing lists of tasks is
such core functionality for jBPM, there is hardly any Java code at all in this example.

Seam Tutorial

JBoss Seam 1.1.1.GA 15

1.4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSPs and two trivial JavaBeans
(There was no reason to use session beans, since they do not access the database, or have any other transaction-
al behavior). Let's start with the process definition:

Example 1.13.

<process-definition name="todo">

<start-state name="start"> (1)
<transition to="todo"/>

</start-state>

<task-node name="todo"> (2)
<task name="todo" description="#{todoList.description}"> (3)

<assignment actor-id="#{actor.id}"/> (4)
</task>
<transition to="done"/>

</task-node>

<end-state name="done"/> (5)

</process-definition>

(1) The <start-state> node represents the logical start of the process. When the process starts, it immedi-
ately transitions to the todo node.

(2) The <task-node> node represents a wait state, where business process execution pauses, waiting for one
or more tasks to be performed.

(3) The <task> element defines a task to be performed by a user. Since there is only one task defined on this
node, when it is complete, execution resumes, and we transition to the end state. The task gets its descrip-

Seam Tutorial

JBoss Seam 1.1.1.GA 16

tion from a Seam component named todoList (one of the JavaBeans).
(4) Tasks need to be assigned to a user or group of users when they are created. In this case, the task is as-

signed to the current user, which we get from a built-in Seam component named actor. Any Seam com-
ponent may be used to perform task assignment.

(5) The <end-state> node defines the logical end of the business process. When execution reaches this node,
the process instance is destroyed.

If we view this process definition using the process definition editor provided by JBossIDE, this is what it looks
like:

This document defines our business process as a graph of nodes. This is the most trivial possible business pro-
cess: there is one task to be performed, and when that task is complete, the business process ends.

The first JavaBean handles the login screen login.jsp. Its job is just to initialize the jBPM actor id using the
actor component. (In a real application, it would also need to authenticate the user.)

Example 1.14.

@Name("login")
public class Login {

@In
private Actor actor;

private String user;

public String getUser() {
return user;

}

public void setUser(String user) {
this.user = user;

}

Seam Tutorial

JBoss Seam 1.1.1.GA 17

public String login()
{

actor.setId(user);
return "/todo.jsp";

}
}

Here we see the use of @In to inject the built-in Actor component.

The JSP itself is trivial:

Example 1.15.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
<head>
<title>Login</title>
</head>
<body>
<h1>Login</h1>
<f:view>

<h:form>
<div>

<h:inputText value="#{login.user}"/>
<h:commandButton value="Login" action="#{login.login}"/>

</div>
</h:form>

</f:view>
</body>
</html>

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.16.

@Name("todoList")
public class TodoList {

private String description;

public String getDescription() (1)
{

return description;
}

public void setDescription(String description) {
this.description = description;

}

@CreateProcess(definition="todo") (2)
public void createTodo() {}

@StartTask @EndTask (3)
public void done() {}

}

(1) The description property accepts user input form the JSP page, and exposes it to the process definition, al-
lowing the task description to be set.

Seam Tutorial

JBoss Seam 1.1.1.GA 18

(2) The Seam @CreateProcess annotation creates a new jBPM process instance for the named process defini-
tion.

(3) The Seam @StartTask annotation starts work on a task. The @EndTask ends the task, and allows the busi-
ness process execution to resume.

In a more realistic example, @StartTask and @EndTask would not appear on the same method, because there is
usually work to be done using the application in order to complete the task.

Finally, the meat of the application is in todo.jsp:

Example 1.17.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>
<html>
<head>
<title>Todo List</title>
</head>
<body>
<h1>Todo List</h1>
<f:view>

<h:form id="list">
<div>

<h:outputText value="There are no todo items." rendered="#{empty taskInstanceList}"/>
<h:dataTable value="#{taskInstanceList}" var="task" rendered="#{not empty taskInstanceList}">

<h:column>
<f:facet name="header">

<h:outputText value="Description"/>
</f:facet>
<h:inputText value="#{task.description}"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Created"/>

</f:facet>
<h:outputText value="#{task.taskMgmtInstance.processInstance.start}">

<f:convertDateTime type="date"/>
</h:outputText>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Priority"/>

</f:facet>
<h:inputText value="#{task.priority}" style="width: 30"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Due Date"/>

</f:facet>
<h:inputText value="#{task.dueDate}" style="width: 100">

<f:convertDateTime type="date" dateStyle="short"/>
</h:inputText>

</h:column>
<h:column>

<s:button value="Done" action="#{todoList.done}" taskInstance="#{task}"/>
</h:column>

</h:dataTable>
</div>
<div>
<h:messages/>
</div>
<div>

<h:commandButton value="Update Items" action="update"/>
</div>

</h:form>

Seam Tutorial

JBoss Seam 1.1.1.GA 19

<h:form id="new">
<div>

<h:inputText value="#{todoList.description}"/>
<h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>

</div>
</h:form>

</f:view>
</body>
</html>

Let's take this one piece at a time.

The page renders a list of tasks, which it gets from a built-in Seam component named taskInstanceList. The
list is defined inside a JSF form.

<h:form id="list">
<div>

<h:outputText value="There are no todo items." rendered="#{empty taskInstanceList}"/>
<h:dataTable value="#{taskInstanceList}" var="task" rendered="#{not empty taskInstanceList}">

...
</h:dataTable>

</div>
</h:form>

Each element of the list is an instance of the jBPM class TaskInstance. The following code simply displays the
interesting properties of each task in the list. For the description, priority and due date, we use input controls, to
allow the user to update these values.

<h:column>
<f:facet name="header">

<h:outputText value="Description"/>
</f:facet>
<h:inputText value="#{task.description}"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Created"/>

</f:facet>
<h:outputText value="#{task.taskMgmtInstance.processInstance.start}">

<f:convertDateTime type="date"/>
</h:outputText>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Priority"/>

</f:facet>
<h:inputText value="#{task.priority}" style="width: 30"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Due Date"/>

</f:facet>
<h:inputText value="#{task.dueDate}" style="width: 100">

<f:convertDateTime type="date" dateStyle="short"/>
</h:inputText>

</h:column>

This button ends the task by calling the action method annotated @StartTask @EndTask. It passes the task id to
Seam as a request parameter:

<h:column>
<s:button value="Done" action="#{todoList.done}" taskInstance="#{task}"/>

</h:column>

Seam Tutorial

JBoss Seam 1.1.1.GA 20

(Note that this is using a Seam <s:button> JSF control from the seam-ui.jar package.)

This button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM will
make any changes to the tasks persistent. There is no need for any action listener method:

<h:commandButton value="Update Items" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated
@CreateProcess.

<h:form id="new">
<div>

<h:inputText value="#{todoList.description}"/>
<h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>

</div>
</h:form>

There are several other files needed for the example, but they are just standard jBPM and Seam configuration
and not very interesting.

1.4.2. How it works

TODO

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules are a perfectly
good way to define the page flow. For applications with a more constrained style of navigation, especially for
user interfaces which are more stateful, navigation rules make it difficult to really understand the flow of the
system. To understand the flow, you need to piece it together from the view pages, the actions and the naviga-
tion rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number guessing example
shows how this is done.

1.5.1. Understanding the code

Seam Tutorial

JBoss Seam 1.1.1.GA 21

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow definition. Let's begin
with the pageflow:

Example 1.18.

<pageflow-definition name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">

<action expression="#{numberGuess.guess}" />
</transition> (1)

</start-page> (2)
(3)

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision> (4)

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">
<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation />

</page>

<page name="lose" view-id="/lose.jsp">
<redirect/>
<end-conversation />

</page>

</pageflow-definition>

(1) The <page> element defines a wait state where the system displays a particular JSF view and waits for
user input. The view-id is the same JSF view id used in plain JSF navigation rules. The redirect attrib-
ute tells Seam to use post-then-redirect when navigating to the page. (This results in friendly browser
URLs.)

(2) The <transition> element names a JSF outcome. The transition is triggered when a JSF action results in
that outcome. Execution will then proceed to the next node of the pageflow graph, after invocation of any
jBPM transition actions.

(3) A transition <action> is just like a JSF action, except that it occurs when a jBPM transition occurs. The
transition action can invoke any Seam component.

(4) A <decision> node branches the pageflow, and determines the next node to execute by evaluating a JSF
EL expression.

Here is what the pageflow looks like in the JBossIDE pageflow editor:

Seam Tutorial

JBoss Seam 1.1.1.GA 22

Now that we have seen the pageflow, it is very, very easy to understand the rest of the application!

Here is the main page of the application, numberGuess.jsp:

Example 1.19.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
<head>
<title>Guess a number...</title>
</head>
<body>
<h1>Guess a number...</h1>
<f:view>

<h:form>
<h:outputText value="Higher!" rendered="#{numberGuess.randomNumber>numberGuess.currentGuess}" />
<h:outputText value="Lower!" rendered="#{numberGuess.randomNumber<numberGuess.currentGuess}" />

I'm thinking of a number between <h:outputText value="#{numberGuess.smallest}" /> and
<h:outputText value="#{numberGuess.biggest}" />. You have
<h:outputText value="#{numberGuess.remainingGuesses}" /> guesses.

Your guess:
<h:inputText value="#{numberGuess.currentGuess}" id="guess" required="true">

<f:validateLongRange
maximum="#{numberGuess.biggest}"
minimum="#{numberGuess.smallest}"/>

</h:inputText>
<h:commandButton type="submit" value="Guess" action="guess" />

<h:message for="guess" style="color: red"/>

</h:form>
</f:view>
</body>
</html>

Seam Tutorial

JBoss Seam 1.1.1.GA 23

Notice how the command button names the guess transition instead of calling an action directly.

The win.jsp page is predictable:

Example 1.20.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
<head>
<title>You won!</title>
</head>
<body>
<h1>You won!</h1>
<f:view>

Yes, the answer was <h:outputText value="#{numberGuess.currentGuess}" />.
It took you <h:outputText value="#{numberGuess.guessCount}" /> guesses.
Would you like to play again?

</f:view>
</body>
</html>

As is lose.jsp (which I can't be bothered copy/pasting). Finally, the JavaBean Seam component:

Example 1.21.

@Name("numberGuess")
@Scope(ScopeType.CONVERSATION)
public class NumberGuess {

private int randomNumber;
private Integer currentGuess;
private int biggest;
private int smallest;
private int guessCount;
private int maxGuesses;

@Create (1)
@Begin(pageflow="numberGuess") (2)
public void begin()
{

randomNumber = new Random().nextInt(100);
guessCount = 0;
biggest = 100;
smallest = 1;

}

public void setCurrentGuess(Integer guess)
{

this.currentGuess = guess;
}

public Integer getCurrentGuess()
{

return currentGuess;
}

public void guess()
{

if (currentGuess>randomNumber)
{

biggest = currentGuess - 1;
}
if (currentGuess<randomNumber)

Seam Tutorial

JBoss Seam 1.1.1.GA 24

{
smallest = currentGuess + 1;

}
guessCount ++;

}

public boolean isCorrectGuess()
{

return currentGuess==randomNumber;
}

public int getBiggest()
{

return biggest;
}

public int getSmallest()
{

return smallest;
}

public int getGuessCount()
{

return guessCount;
}

public boolean isLastGuess()
{

return guessCount==maxGuesses;
}

public int getRemainingGuesses() {
return maxGuesses-guessCount;

}

public void setMaxGuesses(int maxGuesses) {
this.maxGuesses = maxGuesses;

}

public int getMaxGuesses() {
return maxGuesses;

}

public int getRandomNumber() {
return randomNumber;

}
}

(1) The first time a JSP page asks for a numberGuess component, Seam will create a new one for it, and the
@Create method will be invoked, allowing the component to initialize itself.

(2) The @Begin annotation starts a Seam conversation (much more about that later), and specifies the page-
flow definition to use for the conversation's page flow.

As you can see, this Seam component is pure business logic! It doesn't need to know anything at all about the
user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

TODO

1.6. A complete Seam application: the Hotel Booking example

Seam Tutorial

JBoss Seam 1.1.1.GA 25

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following features:

• User registration

• Login

• Logout

• Set password

• Hotel search

• Hotel selection

• Room reservation

• Reservation confirmation

• Existing reservation list

Seam Tutorial

JBoss Seam 1.1.1.GA 26

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There is also a port
of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is extremely robust.
You can play with back buttons and browser refresh and opening multiple windows and entering nonsensical
data as much as you like and you will find it very difficult to make the application crash. You might think that
we spent weeks testing and fixing bugs to achive this. Actually, this is not the case. Seam was designed to make
it very straightforward to build robust web applications and a lot of robustness that you are probably used to
having to code yourself comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works, observe how
the declarative state management and integrated validation has been used to achieve this robustness.

Seam Tutorial

JBoss Seam 1.1.1.GA 27

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please refer to Sec-
tion 1.1, “Try the examples”. Once you've successfully started the application, you can access it by pointing
your browser to http://localhost:8080/seam-booking/

Just ten classes (plus six session beans local interfaces and 1 annotation interface) where used to implement this
application. Six session bean action listeners contain all the business logic for the listed features.

• BookingListAction retrieves existing bookings for the currently logged in user.

• ChangePasswordAction updates the password of the currently logged in user.

• HotelBookingAction implements the core functionality of the application: hotel room searching, selection,
booking and booking confirmation. This functionality is implemented as a conversation, so this is the most
interesting class in the application.

• LoginAction validates the login details and retrieves the logged in user.

• LogoutAction ends the login session.

• RegisterAction registers a new system user.

Three entity beans implement the application's persistent domain model.

• Hotel is an entity bean that represent a hotel

• Booking is an entity bean that represents an existing booking

• User is an entity bean to represents a user who can make hotel bookings

Finally, the LoggedIn annotation and the LoggedInInterceptor are used to protect actions that require a
logged in user.

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate upon one particular
piece of functionality: hotel search, selection, booking and confirmation. From the point of view of the user,
everything from selecting a hotel to confirming a booking is one continuous unit of work, a conversation.
Searching, however, is not part of the conversation. The user can select multiple hotels from the same search
results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This causes enorm-
ous problems managing state associated with the conversation. Usually, Java web applications use a combina-
tion of two techniques: first, some state is thrown into the HttpSession; second, persistable state is flushed to
the database after every request, and reconstructed from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of scalability. Ad-
ded latency is also a problem, due to the extra traffic to and from the database on every request. To reduce this
redundant traffic, Java applications often introduce a data (second-level) cache that keeps commonly accessed
data between requests. This cache is necessarily inefficient, because invalidation is based upon an LRU policy
instead of being based upon when the user has finished working with the data. Furthermore, because the cache
is shared between many concurrent transactions, we've introduced a whole raft of problem's associated with

Seam Tutorial

JBoss Seam 1.1.1.GA 28

http://localhost:8080/seam-booking/

keeping the cached state consistent with the database.

Now consider the state held in the HttpSession. By very careful programming, we might be able to control the
size of the session data. This is a lot more difficult than it sounds, since web browsers permit ad hoc non-linear
navigation. But suppose we suddenly discover a system requirement that says that a user is allowed to have mu-
tiple concurrent conversations, halfway through the development of the system (this has happened to me). De-
veloping mechanisms to isolate session state associated with different concurrent conversations, and incorporat-
ing failsafes to ensure that conversation state is destroyed when the user aborts one of the conversations by
closing a browser window or tab is not for the faint hearted (I've implemented this stuff twice so far, once for a
client application, once for Seam, but I'm famously psychotic).

Now there is a better way.

Seam introduces the conversation context as a first class construct. You can safely keep conversational state in
this context, and be assured that it will have a well-defined lifecycle. Even better, you won't need to be continu-
ally pushing data back and forth between the application server and the database, since the conversation context
is a natural cache of data that the user is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We can also keep en-
tity beans and JavaBeans in the conversation context.) There is an ancient canard in the Java community that
stateful session beans are a scalability killer. This may have been true in 1998 when WebFoobar 1.0 was re-
leased. It is no longer true today. Application servers like JBoss 4.0 have extremely sophisticated mechanisms
for stateful session bean state replication. (For example, the JBoss EJB3 container performs fine-grained replic-
ation, replicating only those bean attribute values which actually changed.) Note that all the traditional technic-
al arguments for why stateful beans are inefficient apply equally to the HttpSession, so the practice of shifting
state from business tier stateful session bean components to the web session to try and improve performance is
unbelievably misguided. It is certainly possible to write unscalable applications using stateful session beans, by
using stateful beans incorrectly, or by using them for the wrong thing. But that doesn't mean you should never
use them. Anyway, Seam guides you toward a safe usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can collaborate togeth-
er to achieve complex behaviors. The main page of the booking application allows the user to search for hotels.
The search results are kept in the Seam session scope. When the user navigates to one of these hotels, a conver-
sation begins, and a conversation scoped component calls back to the session scoped component to retrieve the
selected hotel.

The booking example also demonstrates the use of Ajax4JSF to implement rich client behavior without the use
of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to the one we saw
in the message list example above.

Example 1.22.

@Stateful (1)
@Name("hotelSearch")
@Scope(ScopeType.SESSION)
@LoggedIn (2)
@Synchronized
public class HotelSearchingAction implements HotelSearching
{

@PersistenceContext

Seam Tutorial

JBoss Seam 1.1.1.GA 29

private EntityManager em;

private String searchString;
private int pageSize = 10;
private int page;

@DataModel (3)
private List<Hotel> hotels;

public String find()
{

page = 0;
queryHotels();
return "main";

}

public String nextPage()
{

page++;
queryHotels();
return "main";

}

private void queryHotels()
{

String searchPattern = searchString==null ? "%" : '%' + searchString.toLowerCase().replace('*', '%') + '%';
hotels = em.createQuery("select h from Hotel h where lower(h.name) like :search or lower(h.city) like :search or lower(h.zip) like :search or lower(h.address) like :search")

.setParameter("search", searchPattern)

.setMaxResults(pageSize)

.setFirstResult(page * pageSize)

.getResultList();
}

public boolean isNextPageAvailable()
{

return hotels!=null && hotels.size()==pageSize;
}

public int getPageSize() {
return pageSize;

}

public void setPageSize(int pageSize) {
this.pageSize = pageSize;

}

public String getSearchString()
{

return searchString;
}

public void setSearchString(String searchString)
{

this.searchString = searchString;
}

@Destroy @Remove (4)
public void destroy() {}

}

(1) The EJB standard @Stateful annotation identifies this class as a stateful session bean. Stateful session
beans are scoped to the conversation context by default.

(2) The @LoggedIn annotation applies a custom Seam interceptor to the component. This works because
@LoggedIn is marked with an @Interceptor meta-annotation.

(3) The @DataModel annotation exposes a List as a JSF ListDataModel. This makes it easy to implement
clickable lists for search screens. In this case, the list of hotels is exposed to the page as a ListDataModel

Seam Tutorial

JBoss Seam 1.1.1.GA 30

in the conversation variable named hotels.
(4) The EJB standard @Remove annotation specifies that a stateful session bean should be removed and its

state destroyed after invocation of the annotated method. In Seam, all stateful session beans should define
a method marked @Destroy @Remove. This is the EJB remove method that will be called when Seam des-
troys the session context. Actually, the @Destroy annotation is of more general usefulness, since it can be
used for any kind of cleanup that should happen when any Seam context ends. If you don't have an
@Destroy @Remove method, state will leak and you will suffer performance problems.

The main page of the application is a Facelets page. Let's look at the fragment which relates to searching for
hotels:

Example 1.23.

<div class="section">
<h:form>

<h:messages globalOnly="true"/>

<h1>Search Hotels</h1>
<fieldset>

<h:inputText value="#{hotelSearch.searchString}" style="width: 165px;">
<a:support event="onkeyup" actionListener="#{hotelSearch.find}" (1)

reRender="searchResults" />
</h:inputText>

<a:commandButton value="Find Hotels" action="#{hotelSearch.find}"

styleClass="button" reRender="searchResults"/>

<a:status> (2)

<f:facet name="start">
<h:graphicImage value="/img/spinner.gif"/>

</f:facet>
</a:status>

<h:outputLabel for="pageSize">Maximum results:</h:outputLabel>
<h:selectOneMenu value="#{hotelSearch.pageSize}" id="pageSize">

<f:selectItem itemLabel="5" itemValue="5"/>
<f:selectItem itemLabel="10" itemValue="10"/>
<f:selectItem itemLabel="20" itemValue="20"/>

</h:selectOneMenu>
</fieldset>

</h:form>
</div>

<a:outputPanel id="searchResults"> (3)
<div class="section">
<h:outputText value="No Hotels Found"

rendered="#{hotels != null and hotels.rowCount==0}"/>
<h:dataTable value="#{hotels}" var="hot" rendered="#{hotels.rowCount>0}">
<h:column>
<f:facet name="header">Name</f:facet>
#{hot.name}

</h:column>
<h:column>
<f:facet name="header">Address</f:facet>
#{hot.address}

</h:column>
<h:column>
<f:facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}

</h:column>
<h:column>

Seam Tutorial

JBoss Seam 1.1.1.GA 31

<f:facet name="header">Zip</f:facet>
#{hot.zip}

</h:column>
<h:column>
<f:facet name="header">Action</f:facet>
<s:link value="View Hotel" action="#{hotelBooking.selectHotel(hot)}"/> (4)

</h:column>
</h:dataTable>
<s:link value="More results" action="#{hotelSearch.nextPage}"

rendered="#{hotelSearch.nextPageAvailable}"/>
</div>

</a:outputPanel>

(1) The Ajax4JSF <a:support> tag allows a JSF action event listener to be called by asynchronous XMLHt-

tpRequest when a JavaScript event like onkeyup occurs. Even better, the reRender attribute lets us render
a fragment of the JSF page and perform a partial page update when the asynchronous response is re-
ceived.

(2) The Ajax4JSF <a:status> tag lets us display a cheesy annimated image while we wait for asynchronous
requests to return.

(3) The Ajax4JSF <a:outputPanel> tag defines a region of the page which can be re-rendered by an asyn-
chronous request.

(4) The Seam <s:link> tag lets us attach a JSF action listener to an ordinary (non-JavaScript) HTML link.
The advantage of this over the standard JSF <h:commandLink> is that it preserves the operation of "open
in new window" and "open in new tab". Also notice that we use a method binding with a parameter:
#{hotelBooking.selectHotel(hot)}. This is not possible in the standard Unified EL, but Seam provides
an extension to the EL that lets you use parameters on any method binding expression.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass it to the se-

lectHotel() method of the HotelBookingAction, which is where the really interesting stuff is going to hap-
pen.

Now lets see how the booking example application uses a conversation-scoped stateful session bean to achieve
a natural cache of persistent data related to the conversation. The following code example is pretty long. But if
you think of it as a list of scripted actions that implement the various steps of the conversation, it's understand-
able. Read the class from top to bottom, as if it were a story.

Example 1.24.

@Stateful
@Name("hotelBooking")
@LoggedIn
public class HotelBookingAction implements HotelBooking
{

@PersistenceContext(type=EXTENDED) (1)
private EntityManager em;

@In (2)
private User user;

@In(required=false) @Out
private Hotel hotel;

@In(required=false)
@Out(required=false)
private Booking booking;

@In
private FacesMessages facesMessages;

Seam Tutorial

JBoss Seam 1.1.1.GA 32

@In
private Events events;

@Logger
private Log log;

@Begin (3)
public String selectHotel(Hotel selectedHotel)
{

hotel = em.merge(selectedHotel);
return "hotel";

}

public String bookHotel()
{

booking = new Booking(hotel, user);
Calendar calendar = Calendar.getInstance();
booking.setCheckinDate(calendar.getTime());
calendar.add(Calendar.DAY_OF_MONTH, 1);
booking.setCheckoutDate(calendar.getTime());

return "book";
}

public String setBookingDetails()
{

if (booking==null || hotel==null) return "main";
if (!booking.getCheckinDate().before(booking.getCheckoutDate()))
{

facesMessages.add("Check out date must be later than check in date");
return null;

}
else
{

return "confirm";
}

}

@End (4)
public String confirm()
{

if (booking==null || hotel==null) return "main";
em.persist(booking);
facesMessages.add("Thank you, #{user.name}, your confimation number for #{hotel.name} is #{booking.id}");
log.info("New booking: #{booking.id} for #{user.username}");
events.raiseEvent("bookingConfirmed");
return "confirmed";

}

@End
public String cancel()
{

return "main";
}

@Destroy @Remove (5)
public void destroy() {}

}

(1) This bean uses an EJB3 extended persistence context, so that any entity instances remain managed for the
whole lifecycle of the stateful session bean.

(2) The @Out annotation declares that an attribute value is outjected to a context variable after method invoca-
tions. In this case, the context variable named hotel will be set to the value of the hotel instance variable
after every action listener invocation completes.

(3) The @Begin annotation specifies that the annotated method begins a long-running conversation, so the
current conversation context will not be destroyed at the end of the request. Instead, it will be reassociated

Seam Tutorial

JBoss Seam 1.1.1.GA 33

with every request from the current window, and destroyed either by timeout due to conversation inactiv-
ity or invocation of a matching @End method.

(4) The @End annotation specifies that the annotated method ends the current long-running conversation, so
the current conversation context will be destroyed at the end of the request.

(5) This EJB remove method will be called when Seam destroys the conversation context. Don't ever forget
to define this method!

HotelBookingAction contains all the action listener methods that implement selection, booking and booking
confirmation, and holds state related to this work in its instance variables. We think you'll agree that this code is
much cleaner and simpler than getting and setting HttpSession attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run a search, and
navigate to different hotel pages in multiple browser tabs. You'll be able to work on creating two different hotel
reservations at the same time. If you leave any one conversation inactive for long enough, Seam will eventually
time out that conversation and destroy its state. If, after ending a conversation, you backbutton to a page of that
conversation and try to perform an action, Seam will detect that the conversation was already ended, and redir-
ect you to the search page.

1.6.4. The Seam UI control library

If you check inside the WAR file for the booking application, you'll find seam-ui.jar in the WEB-INF/lib dir-
ectory. This package contains a number of JSF custom controls that integrate with Seam. The booking applica-
tion uses the <s:link> control for navigation from the search screen to the hotel page:

<s:link value="View Hotel" action="#{hotelBooking.selectHotel}"/>

The use of <s:link> here allows us to attach an action listener to a HTML link without breaking the browser's
"open in new window" feature. The standard JSF <h:commandLink> does not work with "open in new window".
We'll see later that <s:link> also offers a number of other useful features, including conversation propagation
rules.

The booking application uses some other Seam and Ajax4JSF controls, especially on the /book.xhtml page.
We won't get into the details of those controls here, but if you want to understand this code, please refer to the
chapter covering Seam's functionality for JSF form validation.

1.6.5. The Seam Debug Page

The WAR also includes seam-debug.jar. If this jar is deployed in WEB-INF/lib, along with the Facelets, and if
you set the following Seam property in web.xml or seam.properties:

<context-param>
<param-name>org.jboss.seam.core.init.debug</param-name>
<param-value>true</param-value>

</context-param>

Then the Seam debug page will be available. This page lets you browse and inspect the Seam components in
any of the Seam contexts associated with your current login session. Just point your browser at ht-

tp://localhost:8080/seam-booking/debug.seam.

Seam Tutorial

JBoss Seam 1.1.1.GA 34

http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

1.7. A complete application featuring Seam and jBPM: the DVD
Store example

The DVD Store demo application shows the practical usage of jBPM for both task management and pageflow.

The user screens take advantage of a jPDL pageflow to implement searching and shopping cart functionality.

Seam Tutorial

JBoss Seam 1.1.1.GA 35

The administration screens take use jBPM to manage the approval and shipping cycle for orders. The business
process may even be changed dynamically, by selecting a different process definition!

Seam Tutorial

JBoss Seam 1.1.1.GA 36

TODO

Look in the dvdstore directory.

1.8. A complete application featuring Seam workspace man-
agement: the Issue Tracker example

The Issue Tracker demo shows off Seam's workspace management functionality: the conversation switcher,
conversation list and breadcrumbs.

Seam Tutorial

JBoss Seam 1.1.1.GA 37

TODO

Look in the issues directory.

1.9. An example of Seam with Hibernate: the Hibernate Book-
ing example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative architecture that uses Hi-
bernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hibernate directory.

1.10. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However, server-side
state is not always appropriate, especially in for functionality that serves up content. For this kind of problem
we often need to let the user bookmark pages and have a relatively stateless server, so that any page can be ac-
cessed at any time, via the bookmark. The Blog example shows how to a implement RESTful application using
Seam. Every page of the application can be bookmarked, including the search results page.

Seam Tutorial

JBoss Seam 1.1.1.GA 38

The Blog example demonstrates the use of "pull"-style MVC, where instead of using action listener methods to
retrieve data and prepare the data for the view, the view pulls data from components as it is being rendered.

1.10.1. Using "pull"-style MVC

This snippet from the index.xhtml facelets page displays a list of recent blog entries:

Example 1.25.

<h:dataTable value="#{blog.recentBlogEntries}" var="blogEntry" rows="3">
<h:column>

<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>

<h:outputText escape="false"
value="#{blogEntry.excerpt==null ? blogEntry.body : blogEntry.excerpt}"/>

</div>
<p>

<h:outputLink value="entry.seam" rendered="#{blogEntry.excerpt!=null}">
<f:param name="blogEntryId" value="#{blogEntry.id}"/>
Read more...

</h:outputLink>
</p>
<p>

[Posted on
<h:outputText value="#{blogEntry.date}">

<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>

Seam Tutorial

JBoss Seam 1.1.1.GA 39

</h:outputText>]

<h:outputLink value="entry.seam">[Link]

<f:param name="blogEntryId" value="#{blogEntry.id}"/>
</h:outputLink>

</p>
</div>

</h:column>
</h:dataTable>

If we navigate to this page from a bookmark, how does the data used by the <h:dataTable> actually get initial-
ized? Well, what happens is that the Blog is retrieved lazily—"pulled"—when needed, by a Seam component
named blog. This is the opposite flow of control to what is usual in traditional web action-based frameworks
like Struts.

Example 1.26.

@Name("blog")
@Scope(ScopeType.STATELESS)
public class BlogService
{

@In (1)
private EntityManager entityManager;

@Unwrap (2)
public Blog getBlog()
{

return (Blog) entityManager.createQuery("from Blog b left join fetch b.blogEntries")
.setHint("org.hibernate.cacheable", true)
.getSingleResult();

}

}

(1) This component uses a seam-managed persistence context. Unlike the other examples we've seen, this
persistence context is managed by Seam, instead of by the EJB3 container. The persistence context spans
the entire web request, allowing us to avoid any exceptions that occur when accessing unfetched associ-
ations in the view.

(2) The @Unwrap annotation tells Seam to provide the return value of the method—the Blog—instead of the
actual BlogService component to clients. This is the Seam manager component pattern.

This is good so far, but what about bookmarking the result of form submissions, such as a search results page?

1.10.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog entries.
This is defined in a file, menu.xhtml, included by the facelets template, template.xhtml:

Example 1.27.

<div id="search">
<h:form>

<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="/search.xhtml"/>

</h:form>

Seam Tutorial

JBoss Seam 1.1.1.GA 40

</div>

To implement a bookmarkable search results page, we need to perform a browser redirect after processing the
search form submission. Because we used the JSF view id as the action outcome, Seam automatically redirects
to the view id when the form is submitted. Alternatively, we could have defined a navigation rule like this:

Example 1.28.

<navigation-rule>
<navigation-case>

<from-outcome>searchResults</from-outcome>
<to-view-id>/search.xhtml</to-view-id>
<redirect/>

</navigation-case>
</navigation-rule>

Then the form would have looked like this:

Example 1.29.

<div id="search">
<h:form>

<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="searchResults"/>

</h:form>
</div>

But when we redirect, we need to include the values submitted with the form as request parameters, to get a
bookmarkable URL like http://localhost:8080/seam-blog/search.seam?searchPattern=seam. JSF does
not provide an easy way to do this, but Seam does. We use a Seam page parameter, defined in WEB-

INF/pages.xml:

Example 1.30.

<pages>
<page view-id="/search.xhtml">

<param name="searchPattern" value="#{searchService.searchPattern}"/>
</page>
...

</pages>

This tells Seam to include the value of #{searchService.searchPattern} as a request parameter named
searchPattern when redirecting to the page, and then re-apply the value of that parameter to the model before
rendering the page.

The redirect takes us to the search.xhtml page:

Example 1.31.

<h:dataTable value="#{searchResults}" var="blogEntry">
<h:column>

Seam Tutorial

JBoss Seam 1.1.1.GA 41

<div>
<h:outputLink value="entry.seam">

<f:param name="blogEntryId" value="#{blogEntry.id}"/>
#{blogEntry.title}

</h:outputLink>
posted on
<h:outputText value="#{blogEntry.date}">

<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>

</div>
</h:column>

</h:dataTable>

Which again uses "pull"-style MVC to retrieve the actual search results:

Example 1.32.

@Name("searchService")
public class SearchService
{

@In
private EntityManager entityManager;

private String searchPattern;

@Factory("searchResults")
public List<BlogEntry> getSearchResults()
{

if (searchPattern==null)
{

return null;
}
else
{

return entityManager.createQuery("select be from BlogEntry be where lower(be.title) like :searchPattern or lower(be.body) like :searchPattern order by be.date desc")
.setParameter("searchPattern", getSqlSearchPattern())
.setMaxResults(100)
.getResultList();

}
}

private String getSqlSearchPattern()
{

return searchPattern==null ? "" : '%' + searchPattern.toLowerCase().replace('*', '%').replace('?', '_') + '%';
}

public String getSearchPattern()
{

return searchPattern;
}

public void setSearchPattern(String searchPattern)
{

this.searchPattern = searchPattern;
}

}

1.10.3. Using "push"-style MVC in a RESTful application

Very occasionally, it makes more sense to use push-style MVC for processing RESTful pages, and so Seam

Seam Tutorial

JBoss Seam 1.1.1.GA 42

provides the notion of a page action. The Blog example uses a page action for the blog entry page,
entry.xhtml. Note that this is a little bit contrived, it would have been easier to use pull-style MVC here as
well.

The entryAction component works much like an action class in a traditional push-MVC action-oriented frame-
work like Struts:

Example 1.33.

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction
{

@In(create=true)
private Blog blog;

@Out
private BlogEntry blogEntry;

public void loadBlogEntry(String id) throws EntryNotFoundException
{

blogEntry = blog.getBlogEntry(id);
if (blogEntry==null) throw new EntryNotFoundException(id);

}

}

Page actions are also declared in pages.xml:

Example 1.34.

<pages>
...

<page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry(blogEntry.id)}">
<param name="blogEntryId" value="#{blogEntry.id}"/>

</page>

<page view-id="/post.xhtml" action="#{loginAction.challenge}"/>

<page view-id="*" action="#{blog.hitCount.hit}"/>

</pages>

Notice that the example is using page actions for some other functionality—the login challenge, and the
pageview counter. Also notice the use of a parameter in the page action method binding. This is not a standard
feature of JSF EL, but Seam lets you use it, not just for page actions, but also in JSF method bindings.

When the entry.xhtml page is requested, Seam first binds the page parameter blogEntryId to the model, then
runs the page action, which retrieves the needed data—the blogEntry—and places it in the Seam event context.
Finally, the following is rendered:

Example 1.35.

<div class="blogEntry">
<h3>#{blogEntry.title}</h3>

Seam Tutorial

JBoss Seam 1.1.1.GA 43

<div>
<h:outputText escape="false" value="#{blogEntry.body}"/>

</div>
<p>

[Posted on
<h:outputText value="#{blogEntry.date}">

<f:convertDateTime timezone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>]

</p>
</div>

If the blog entry is not found in the database, the EntryNotFoundException exception is thrown. We want this
exception to result in a 404 error, not a 505, so we annotate the exception class:

Example 1.36.

@ApplicationException(rollback=true)
@HttpError(errorCode=HttpServletResponse.SC_NOT_FOUND)
public class EntryNotFoundException extends Exception
{

EntryNotFoundException(String id)
{

super("entry not found: " + id);
}

}

An alternative implementation of the example does not use the parameter in the method binding:

Example 1.37.

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction
{

@In(create=true)
private Blog blog;

@In @Out
private BlogEntry blogEntry;

public void loadBlogEntry() throws EntryNotFoundException
{

blogEntry = blog.getBlogEntry(blogEntry.getId());
if (blogEntry==null) throw new EntryNotFoundException(id);

}

}

<pages>
...

<page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry}">
<param name="blogEntryId" value="#{blogEntry.id}"/>

</page>

...
</pages>

It is a matter of taste which implementation you prefer.

Seam Tutorial

JBoss Seam 1.1.1.GA 44

Chapter 2. Getting started with Seam, using
seam-gen
The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse project,
generate some simple Seam skeleton code, and reverse engineer an application from a pre-existing database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next time you find
yourself trapped in an elevator with one of those tedious Ruby guys ranting about how great and wonderful his
new toy is for building totally trivial applications that put things in databases.

In this release, seam-gen only works for people who want to use Seam with EJB 3.0 in JBoss AS. Future ver-
sions will support other deployment environments.

You can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in conjunction
with Eclipse for debugging and integration testing. If you don't want to install Eclipse, you can still follow
along with this tutorial—all steps can be peformed from the command line.

Seam-gen is basically just a big ugly Ant script wrapped around Hibernate Tools, together with some templates.
Which means it is easy to customize if you need to.

2.1. Before you start

Make sure you have JDK 5 or JDK 6, JBoss AS 4.0.5 and Ant 1.6, along with recent versions of Eclipse, the
JBoss IDE plugin for Eclipse and the TestNG plugin for Eclipse correctly installed before starting. Add your
JBoss installation to the JBoss Server View in Eclipse. Start JBoss in debug mode. Finally, start a command
prompt in the directory where you unzipped the Seam distribution.

2.2. Setting up a new Eclipse project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation directory, Ec-
lipse workspace, and database connection. It's easy, just type:

cd jboss-seam-1.1.x
seam setup

And you will be prompted for the needed information:

C:\Projects\jboss-seam>seam setup
Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

setup:
[echo] Welcome to seam-gen :-)
[input] Enter your Java project workspace [C:/Projects]

[input] Enter your JBoss home directory [C:/Program Files/jboss-4.0.5.GA]

[input] Enter the project name [myproject]
helloworld

[input] Enter the Java package name for your session beans [com.mydomain.helloworld]
org.jboss.helloworld

[input] Enter the Java package name for your entity beans [org.jboss.helloworld]

[input] Enter the Java package name for your test cases [org.jboss.helloworld.test]

[input] What kind of database are you using? [hsql] (hsql,mysql,oracle,postgres,mssql,db2,sybase,)

JBoss Seam 1.1.1.GA 45

mysql
[input] Enter the Hibernate dialect for your database [org.hibernate.dialect.MySQLDialect]

[input] Enter the filesystem path to the JDBC driver jar [lib/hsqldb.jar]
../../mysql-connector.jar

[input] Enter JDBC driver class for your database [com.mysql.jdbc.Driver]

[input] Enter the JDBC URL for your database [jdbc:mysql:///test]

[input] Enter database username [sa]
gavin

[input] Enter database password []

[input] Are you working with tables that already exist in the database? [n] (y,n,)
y
[propertyfile] Creating new property file: C:\Projects\jboss-seam\seam-gen\build.properties

[echo] Installing JDBC driver jar to JBoss server
[echo] Type 'seam new-project' to create the new project

BUILD SUCCESSFUL
Total time: 1 minute 17 seconds
C:\Projects\jboss-seam>

The tool provides sensible defaults, which you can accept by just pressing enter at the prompt.

The settings are stored in seam-gen/build.properties, but you can also modify them simply by running seam

setup a second time.

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new-project

C:\Projects\jboss-seam>seam new-project
Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

validate-project:

copy-lib:
[echo] Copying project jars ...
[copy] Copying 32 files to C:\Projects\helloworld\lib
[copy] Copying 9 files to C:\Projects\helloworld\embedded-ejb

file-copy-wtp:

file-copy:
[echo] Copying project resources ...
[copy] Copying 12 files to C:\Projects\helloworld\resources
[copy] Copying 1 file to C:\Projects\helloworld\resources
[copy] Copying 5 files to C:\Projects\helloworld\view
[copy] Copying 5 files to C:\Projects\helloworld
[mkdir] Created dir: C:\Projects\helloworld\src

new-project:
[echo] A new Seam project was created in the C:/Projects directory
[echo] Add the project from inside Eclipse (or type 'seam explode') and go to http://localhost:

8080/helloworld

BUILD SUCCESSFUL
Total time: 7 seconds
C:\Projects\jboss-seam>

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and generates all
needed resources and configuration files, a facelets template file and stylesheet, along with Eclipse metadata
and an Ant build script. The Eclipse project will be automatically deployed to an exploded directory structure in

Getting started with Seam, using seam-gen

JBoss Seam 1.1.1.GA 46

JBoss AS as soon as you add the project using New -> Project... -> Java Project -> Next, typing the
Project name (myproject in this case), selecting your Java SE 5 or Java SE 6 JRE and then clicking Finish.
Do not select Create new project from existing source. Alternatively, you can deploy the project from
outside Eclipse by typing seam explode.

Go to http://localhost:8080/helloworld to see a welcome page. This is a facelets page, view/home.xhtml,
using the template view/layout/template.xhtml. You can edit this page, or the template, in eclipse, and see
the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project directory. They are
mostly standard Java EE stuff, the stuff you need to create once and then never look at again, and they are 90%
the same between all Seam projects. (They are so easy to write that even seam-gen can do it.)

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can create a
simple webpage with a stateless action method in Java. If you type:

seam new-action

Seam will prompt for some information, and generate a new facelets page and Seam component for your
project.

C:\Projects\jboss-seam>seam new-action ping
Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

validate-project:

action-input:
[input] Enter the Seam component name

ping
[input] Enter the local interface name [Ping]

[input] Enter the bean class name [PingBean]

[input] Enter the action method name [ping]

[input] Enter the page name [ping]

setup-filters:

new-action:
[echo] Creating a new stateless session bean component with an action method
[copy] Copying 1 file to C:\Projects\hello\src\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\com\hello\test
[copy] Copying 1 file to C:\Projects\hello\src\com\hello\test
[copy] Copying 1 file to C:\Projects\hello\view
[echo] Type 'seam restart' and go to http://localhost:8080/helloworld/ping.seam

BUILD SUCCESSFUL
Total time: 13 seconds
C:\Projects\jboss-seam>

Because we've added a new Seam component, we need to restart the exploded directory deployment. You can
do this by typing seam restart, or by running the restart target in the generated project build.xml file from
inside Eclipse. You do not need to restart JBoss each time you change the application.

Getting started with Seam, using seam-gen

JBoss Seam 1.1.1.GA 47

Now go to http://localhost:8080/helloworld/ping.seam and click the button. You can see the code behind
this action by looking in the project src directory. Put a breakpoint in the ping() method, and click the button
again. Finally, locate the PingTest.xml file in the test package and run the integration tests using the TestNG
plugin.

2.4. Creating a form with an action

The next step is to create a form. Type:

seam new-form

C:\Projects\jboss-seam>seam new-form
Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

validate-project:

action-input:
[input] Enter the Seam component name

hello
[input] Enter the local interface name [Hello]

[input] Enter the bean class name [HelloBean]

[input] Enter the action method name [hello]

[input] Enter the page name [hello]

setup-filters:

new-form:
[echo] Creating a new stateful session bean component with an action method
[copy] Copying 1 file to C:\Projects\hello\src\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\com\hello\test
[copy] Copying 1 file to C:\Projects\hello\view
[copy] Copying 1 file to C:\Projects\hello\src\com\hello\test
[echo] Type 'seam restart' and go to http://localhost:8080/hello/hello.seam

BUILD SUCCESSFUL
Total time: 5 seconds
C:\Projects\jboss-seam>

Restart the application again, and go to http://localhost:8080/helloworld/hello.seam. Then take a look at
the generated code. Run the test. Try adding some new fields to the form and Seam component (remember to
restart the deploment each time you change the Java code).

2.5. Generating an application from an existing database

Manually create some tables in your database. (If you need to switch to a different database, just run seam

setup again.) Now type:

seam generate-entities

Restart the deployment, and go to http://localhost:8080/helloworld. You can browse the database, edit ex-
isting objects, and create new objects. If you look at the generated code, you'll probably be amazed how simple

Getting started with Seam, using seam-gen

JBoss Seam 1.1.1.GA 48

it is! Seam was designed so that data access code is easy to write by hand, even for people who don't want to
cheat using seam-gen.

2.6. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First, we need to re-
move the exploded directory by running seam unexplode. To deploy the EAR, we can type seam deploy at the
command prompt, or run the deploy target of the generated project build script. You can undeploy using seam

undeploy or the undeploy target.

Getting started with Seam, using seam-gen

JBoss Seam 1.1.1.GA 49

Chapter 3. The contextual component model
The two core concepts in Seam are the notion of a context and the notion of a component. Components are
stateful objects, usually EJBs, and an instance of a component is associated with a context, and given a name in
that context. Bijection provides a mechanism for aliasing internal component names (instance variables) to con-
textual names, allowing component trees to be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

3.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control context demarca-
tion via explicit Java API calls. Context are usually implicit. In some cases, however, contexts are demarcated
via annotations.

The basic Seam contexts are:

• Stateless context

• Event (or request) context

• Page context

• Conversation context

• Session context

• Business process context

• Application context

You will recognize some of these contexts from servlet and related specifications. However, two of them might
be new to you: conversation context, and business process context. One reason state management in web ap-
plications is so fragile and error-prone is that the three built-in contexts (request, session and application) are
not especially meaningful from the point of view of the business logic. A user login session, for example, is a
fairly arbitrary construct in terms of the actual application work flow. Therefore, most Seam components are
scoped to the conversation or business process contexts, since they are the contexts which are most meaningful
in terms of the application.

Let's look at each context in turn.

3.1.1. Stateless context

Components which are truly stateless (stateless session beans, primarily) always live in the stateless context
(this is really a non-context). Stateless components are not very interesting, and are arguably not very object-
oriented. Nevertheless, they are important and often useful.

3.1.2. Event context

The event context is the "narrowest" stateful context, and is a generalization of the notion of the web request
context to cover other kinds of events. Nevertheless, the event context associated with the lifecycle of a JSF re-

JBoss Seam 1.1.1.GA 50

quest is the most important example of an event context, and the one you will work with most often. Compon-
ents associated with the event context are destroyed at the end of the request, but their state is available and
well-defined for at least the lifecycle of the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created and destroyed
just for the invocation.

3.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page. You can initialize
state in your event listener, or while actually rendering the page, and then have access to it from any event that
originates from that page. This is especially useful for functionality like clickable lists, where the list is backed
by changing data on the server side. The state is actually serialized to the client, so this construct is extremely
robust with respect to multi-window operation and the back button.

3.1.4. Conversation context

The conversation context is a truly central concept in Seam. A conversation is a unit of work from the point of
view of the user. It might span several interactions with the user, several requests, and several database transac-
tions. But to the user, a conversation solves a single problem. For example, "book hotel", "approve contract",
"create order" are all conversations. You might like to think of a conversation implementing a single "use case"
or "user story", but the relationship is not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single user may
have multiple conversations in progress at any point in time, usually in multiple windows. The conversation
context allows us to ensure that state from the different conversations does not collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But once you get
used to it, we think you'll love the notion, and never be able to not think in terms of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must be demarcated
using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-running busi-
ness process, and has the potential to trigger a business process state transition when it is successfully com-
pleted. Seam provides a special set of annotations for task demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation. This is an ad-
vanced feature.

Usually, conversation state is actually held by Seam in the servlet session between requests. Seam implements
configurable conversation timeout, automatically destroying inactive conversations, and thus ensuring that the
state held by a single user login session does not grow without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running conversation con-
text, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

3.1.5. Session context

A session context holds state associated with the user login session. While there are some cases where it is use-

The contextual component model

JBoss Seam 1.1.1.GA 51

ful to share state between several conversations, we generally frown on the use of session context for holding
components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

3.1.6. Business process context

The business process context holds state associated with the long running business process. This state is man-
aged and made persistent by the BPM engine (JBoss jBPM). The business process spans multiple interactions
with multiple users, so this state is shared between multiple users, but in a well-defined manner. The current
task determines the current business process instance, and the lifecycle of the business process is defined ex-
ternally using a process definition language, so there are no special annotations for business process demarca-
tion.

3.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context is mainly use-
ful for holding static information such as configuration data, reference data or metamodels. For example, Seam
stores its own configuration and metamodel in the application context.

3.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session or request at-
tributes in the servlet spec. You may bind any value you like to a context variable, but usually we bind Seam
component instances to context variables.

So, within a context, a component instance is identified by the context variable name (this is usually, but not al-
ways, the same as the component name). You may programatically access a named component instance in a
particular scope via the Contexts class, which provides access to several thread-bound instances of the Context

interface:

User user = (User) Contexts.getSessionContext().get("user");

You may also set or change the value associated with a name:

Contexts.getSessionContext().set("user", user);

Usually, however, we obtain components from a context via injection, and put component instances into a con-
text via outjection.

3.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other times, all stateful
scopes are searched, in priority order. The order is as follows:

• Event context

• Page context

• Conversation context

The contextual component model

JBoss Seam 1.1.1.GA 52

• Session context

• Business process context

• Application context

You can perform a priority search by calling Contexts.lookupInStatefulContexts(). Whenever you access a
component by name from a JSF page, a priority search occurs.

3.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests originating
from the same client. The servlet container simply lets all threads run concurrently and leaves enforcing thread-
safeness to application code. The EJB container allows stateless components to be accessed concurrently, and
throws an exception if multiple threads access a stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-grained, syn-
chronous requests. But for modern applications which make heavy use of many fine-grained, asynchronous
(AJAX) requests, concurrency is a fact of life, and must be supported by the programming model. Seam weaves
a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent requests in a context
to be processed concurrently. The event and page contexts are by nature single threaded. The business process
context is strictly speaking multi-threaded, but in practice concurrency is sufficiently rare that this fact may be
disregarded most of the time. Finally, Seam enforces a single thread per conversation per process model for
the conversation context by serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope components are al-
ways protected by Seam from concurrent access. Seam serializes requests to session scope session beans and
JavaBeans by default (and detects and breaks any deadlocks that occur). This is not the default behaviour for
application scoped components however, since application scoped components do not usually hold volatile
state and because synchronization at the global level is extremely expensive. However, you can force a serial-
ized threading model on any session bean or JavaBean component by adding the @Synchronized annotation.

This concurrency model means that AJAX clients can safely use volatile session and conversational state,
without the need for any special work on the part of the developer.

3.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or EJB 3.0 enterprise
beans. While Seam does not require that components be EJBs and can even be used without an EJB 3.0 compli-
ant container, Seam was designed with EJB 3.0 in mind and includes deep integration with EJB 3.0. Seam sup-
ports the following component types.

• EJB 3.0 stateless session beans

• EJB 3.0 stateful session beans

• EJB 3.0 entity beans

• JavaBeans

The contextual component model

JBoss Seam 1.1.1.GA 53

• EJB 3.0 message-driven beans

3.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations. Therefore, they usu-
ally work by operating upon the state of other components in the various Seam contexts. They may be used as
JSF action listeners, but cannot provide properties to JSF components for display.

Stateless session beans always live in the stateless context.

Stateless session beans are the least interesting kind of Seam component.

3.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of the bean, but
also across multiple requests. Application state that does not belong in the database should usually be held by
stateful session beans. This is a major difference between Seam and many other web application frameworks.
Instead of sticking information about the current conversation directly in the HttpSession, you should keep it
in instance variables of a stateful session bean that is bound to the conversation context. This allows Seam to
manage the lifecycle of this state for you, and ensure that there are no collisions between state relating to differ-
ent concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide properties to JSF
components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be bound to the page
or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam.

3.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because entities have a
persistent identity in addition to their contextual identity, entity instances are usually bound explicitly in Java
code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of an entity bean
trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans that provide
properties to JSF components for display or form submission. In particular, it is common to use an entity as a
backing bean, together with a stateless session bean action listener to implement create/update/delete type func-
tionality.

By default, entity beans are bound to the conversation context. They may never be bound to the stateless con-
text.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to a conversa-
tion or session scoped Seam context variable than it would be to hold a reference to the entity bean in a stateful
session bean. For this reason, not all Seam applications define entity beans to be Seam components.

3.2.4. JavaBeans

The contextual component model

JBoss Seam 1.1.1.GA 54

Javabeans may be used just like a stateless or stateful session bean. However, they do not provide the function-
ality of a session bean (declarative transaction demarcation, declarative security, efficient clustered state replic-
ation, EJB 3.0 persistence, timeout methods, etc).

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In this use case,
components are JavaBeans instead of session beans. Note, however, that in many application servers it is some-
what less efficient to cluster conversation or session scoped Seam JavaBean components than it is to cluster
stateful session bean components.

By default, JavaBeans are bound to the event context.

Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

3.2.5. Message-driven beans

Message-driven beans may function as a seam component. However, message-driven beans are called quite dif-
ferently to other Seam components - instead of invoking them via the context variable, they listen for messages
sent to a JMS queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the session or conversa-
tion state of their "caller". However, they do support bijection and some other Seam functionality.

3.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept component
invocations. For JavaBeans, Seam is in full control of instantiation of the component, and no special configura-
tion is needed. For entity beans, interception is not required since bijection and context demarcation are not
defined. For session beans, we must register an EJB interceptor for the session bean component. We could use
an annotation, as follows:

@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

...
}

But a much better way is to define the interceptor in ejb-jar.xml.

<interceptors>
<interceptor>

<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>
</interceptor>

</interceptors>

<assembly-descriptor>
<interceptor-binding>

<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

3.2.7. Component names

Almost all seam components need a name. We assign a name to a component using the @Name annotation:

@Name("loginAction")

The contextual component model

JBoss Seam 1.1.1.GA 55

@Stateless
public class LoginAction implements Login {

...
}

This name is the seam component name and is not related to any other name defined by the EJB specification.
However, seam component names work just like JSF managed bean names and you can think of the two con-
cepts as identical.

Just like in JSF, a seam component instance is usually bound to a context variable with the same name as the
component name. So, for example, we would access the LoginAction using Con-

texts.getStatelessContext().get("loginAction"). In particular, whenever Seam itself instantiates a com-
ponent, it binds the new instance to a variable with the component name. However, again like JSF, it is possible
for the application to bind a component to some other context variable by programmatic API call. This is only
useful if a particular component serves more than one role in the system. For example, the currently logged in
User might be bound to the currentUser session context variable, while a User that is the subject of some ad-
ministration functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Name("com.jboss.myapp.loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

...
}

We may use the qualified component name both in Java code and in JSF's expression language:

<h:commandButton type="submit" value="Login"
action="#{com.jboss.myapp.loginAction.login}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name. Add a line like
this to the components.xml file:

<factory name="loginAction" scope="STATELESS" value="#{com.jboss.myapp.loginAction}"/>

All of the built-in Seam components have qualified names, but most of them are aliased to a simple name by
the components.xml file included in the Seam jar.

3.2.8. Defining the component scope

We can override the default scope (context) of a component using the @Scope annotation. This lets us define
what context a component instance is bound to, when it is instantiated by Seam.

@Name("user")
@Entity
@Scope(SESSION)
public class User {

...
}

org.jboss.seam.ScopeType defines an enumeration of possible scopes.

3.2.9. Components with multiple roles

The contextual component model

JBoss Seam 1.1.1.GA 56

Some Seam component classes can fulfill more than one role in the system. For example, we often have a User

class which is usually used as a session-scoped component representing the current user but is used in user ad-
ministration screens as a conversation-scoped component. The @Role annotation lets us define an additional
named role for a component, with a different scope—it lets us bind the same component class to different con-
text variables. (Any Seam component instance may be bound to multiple context variables, but this lets us do it
at the class level, and take advantage of auto-instantiation.)

@Name("user")
@Entity
@Scope(CONVERSATION)
@Role(name="currentUser", scope=SESSION)
public class User {

...
}

The @Roles annotation lets us specify as many additional roles as we like.

@Name("user")
@Entity
@Scope(CONVERSATION)
@Roles({@Role(name="currentUser", scope=SESSION)

@Role(name="tempUser", scope=EVENT)})
public class User {

...
}

3.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of built-in Seam
interceptors (see later) and Seam components. This makes it easy for applications to interact with built-in com-
ponents at runtime or even customize the basic functionality of Seam by replacing the built-in components with
custom implementations. The built-in components are defined in the Seam namespace org.jboss.seam.core

and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide convenient
static instance() methods:

FacesMessages.instance().add("Welcome back, #{user.name}!");

Seam was designed to integrate tightly in a Java EE 5 environment. However, we understand that there are
many projects which are not running in a full EE environment. We also realize the critical importance of easy
unit and integration testing using frameworks such as TestNG and JUnit. So, we've made it easy to run Seam in
Java SE environments by allowing you to boostrap certain critical infrastructure normally only found in EE en-
vironments by installing built-in Seam components.

For example, you can run your EJB3 components in Tomcat or an integration test suite just by installing the
built-in component org.jboss.seam.core.ejb, which automatically bootstraps the JBoss Embeddable EJB3
container and deploys your EJB components.

Or, if you're not quite ready for the Brave New World of EJB 3.0, you can write a Seam application that uses
only JavaBean components, together with Hibernate3 for persistence, by installing a built-in component that
manages a Hibernate SessionFactory. When using Hibernate outside of a J2EE environment, you will also
probably need a JTA transaction manager and JNDI server, which are available via the built-in component
org.jboss.seam.core.microcontainer. This lets you use the bulletproof JTA/JCA pooling datasource from
JBoss application server in an SE environment like Tomcat!

The contextual component model

JBoss Seam 1.1.1.GA 57

3.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers. Depend-
ency injection allows a component to obtain a reference to another component by having the container "inject"
the other component to a setter method or instance variable. In all dependency injection implementations that
we have seen, injection occurs when the component is constructed, and the reference does not subsequently
change for the lifetime of the component instance. For stateless components, this is reasonable. From the point
of view of a client, all instances of a particular stateless component are interchangeable. On the other hand,
Seam emphasizes the use of stateful components. So traditional dependency injection is no longer a very useful
construct. Seam introduces the notion of bijection as a generalization of injection. In contrast to injection, bijec-
tion is:

• contextual - bijection is used to assemble stateful components from various different contexts (a component
from a "wider" context may even have a reference to a component from a "narrower" context)

• bidirectional - values are injected from context variables into attributes of the component being invoked,
and also outjected from the component attributes back out to the context, allowing the component being in-
voked to manipulate the values of contextual variables simply by setting its own instance variables

• dynamic - since the value of contextual variables changes over time, and since Seam components are state-
ful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by specifying that the
value of the instance variable is injected, outjected, or both. Of course, we use annotations to enable bijection.

The @In annotation specifies that a value should be injected, either into an instance variable:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

@In User user;
...

}

or into a setter method:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

User user;

@In
public void setUser(User user) {

this.user=user;
}

...
}

By default, Seam will do a priority search of all contexts, using the name of the property or instance variable
that is being injected. You may wish to specify the context variable name explicitly, using, for example,
@In("currentUser").

If you want Seam to create an instance of the component when there is no existing component instance bound
to the named context variable, you should specify @In(create=true). If the value is optional (it can be null),

The contextual component model

JBoss Seam 1.1.1.GA 58

specify @In(required=false).

You can even inject the value of an expression:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

@In("#{user.username}") String username;
...

}

(There is much more information about component lifecycle and injection in the next chapter.)

The @Out annotation specifies that an attribute should be outjected, either from an instance variable:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

@Out User user;
...

}

or from a getter method:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

User user;

@Out
public User getUser() {

return user;
}

...
}

An attribute may be both injected and outjected:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

@In @Out User user;
...

}

or:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

User user;

@In
public void setUser(User user) {

this.user=user;
}

@Out
public User getUser() {

return user;

The contextual component model

JBoss Seam 1.1.1.GA 59

}

...
}

3.4. Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle callback
(@PostConstruct, @PreDestroy, etc). Seam extends all of these callbacks except @PreDestroy to JavaBean
components. But Seam also defines its own component lifecycle callbacks.

The @Create method is called every time Seam instantiates a component. Unlike the @PostConstruct method,
this method is called after the component is fully constructed by the EJB container, and has access to all the
usual Seam functionality (bijection, etc). Components may define only one @Create method.

The @Destroy method is called when the context that the Seam component is bound to ends. Components may
define only one @Destroy method. Stateful session bean components must define a method annotated @Destroy

@Remove.

Finally, a related annotation is the @Startup annotation, which may be applied to any application or session
scoped component. The @Startup annotation tells Seam to instantiate the component immediately, when the
context begins, instead of waiting until it is first referenced by a client. It is possible to control the order of in-
stantiation of startup components by specifying @Startup(depends={....}).

3.5. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

public Order createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled()) {

log.debug("Creating new order for user: " + user.username() +
" product: " + product.name()
+ " quantity: " + quantity);

}
return new Order(user, product, quantity);

}

It is difficult to imagine how the code for a simple log message could possibly be more verbose. There is more
lines of code tied up in logging than in the actual business logic! I remain totally astonished that the Java com-
munity has not come up with anything better in 10 years.

Seam provides a logging API built on top of Apache commons-logging that simplifies this code significantly:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
log.debug("Creating new order for user: #0 product: #1 quantity: #2", user.username(), product.name(), quantity);
return new Order(user, product, quantity);

}

Note that we don't need the noisy if (log.isDebugEnabled()) guard, since string concatenation happens
inside the debug() method. Note also that we don't usually need to specify the log category explicitly, since
Seam knows what component it is injecting the Log into.

The contextual component model

JBoss Seam 1.1.1.GA 60

If User and Product are Seam components available in the current contexts, it gets even better:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
log.debug("Creating new order for user: #{user.username} product: #{product.name} quantity: #0", quantity);
return new Order(user, product, quantity);

}

3.6. The Mutable interface and @ReadOnly

Many application servers feature an amazingly broken implementation of HttpSession clustering, where
changes to the state of mutable objects bound to the session are only replicated when the application calls
setAttribute() explicitly. This is a source of bugs that can not effectively be tested for at development time,
since they will only manifest when failover occurs. Furthermore, the actual replication message contains the en-
tire serialized object graph bound to the session attribute, which inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of mutable state
and a sophisticated EJB container can introduce optimizations such as attribute-level replication. Unfortunately,
not all Seam users have the good fortune to be working in an environment that supports EJB 3.0. So, for session
and conversation scoped JavaBean and entity bean components, Seam provides an extra layer of cluster-safe
state management over the top of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication to occur by
calling setAttribute() once in every request that the component was invoked by the application. Of course,
this strategy is inefficient for read-mostly components. You can control this behavior by implementing the
org.jboss.seam.core.Mutable interface, or by extending org.jboss.seam.core.AbstractMutable, and writ-
ing your own dirty-checking logic inside the component. For example,

@Name("account")
public class Account extends AbstractMutable
{

private BigDecimal balance;

public void setBalance(BigDecimal balance)
{

setDirty(this.balance, balance);
this.balance = balance;

}

public BigDecimal getBalance()
{

return balance;
}

...

}

Or, you can use the @ReadOnly annotation to achieve a similar effect:

@Name("account")
public class Account
{

private BigDecimal balance;

public void setBalance(BigDecimal balance)
{

setDirty(this.balance, balance);
this.balance = balance;

The contextual component model

JBoss Seam 1.1.1.GA 61

}

@ReadOnly
public BigDecimal getBalance()
{

return balance;
}

...

}

For session or conversation scoped entity bean components, Seam automatically forces replication to occur by
calling setAttribute() once in every request, unless the (conversation-scoped) entity is currently associated
with a Seam-managed persistence context, in which case no replication is needed. This strategy is not necessar-
ily efficient, so session or conversation scope entity beans should be used with care. You can always write a
stateful session bean or JavaBean component to "manage" the entity bean instance. For example,

@Stateful
@Name("account")
public class AccountManager extends AbstractMutable
{

private Account account; // an entity bean

@Unwrap
public void getAccount()
{

return account;
}

...

}

Note that the EntityHome class in the Seam Application Framework provides a great example of this pattern.

3.7. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to inject them
into our components using @In and use them in value and method binding expressions, etc. Sometimes, we
even need to tie them into the Seam context lifecycle (@Destroy, for example). So the Seam contexts can con-
tain objects which are not Seam components, and Seam provides a couple of nice features that make it easier to
work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component object. A
factory method will be called when a context variable is referenced but has no value bound to it. We define
factory methods using the @Factory annotation. The factory method binds a value to the context variable, and
determines the scope of the bound value. There are two styles of factory method. The first style returns a value,
which is bound to the context by Seam:

@Factory(scope=CONVERSATION)
public List<Customer> getCustomerList() {

return ... ;
}

The second style is a method of type void which binds the value to the context variable itself:

@DataModel List<Customer> customerList;

The contextual component model

JBoss Seam 1.1.1.GA 62

@Factory("customerList")
public void initCustomerList() {

customerList = ... ;
}

In both cases, the factory method is called when we reference the customerList context variable and its value
is null, and then has no further part to play in the lifecycle of the value. An even more powerful pattern is the
manager component pattern. In this case, we have a Seam component that is bound to a context variable, that
manages the value of the context variable, while remaining invisible to clients.

A manager component is any component with an @Unwrap method. This method returns the value that will be
visable to clients, and is called every time a context variable is referenced.

@Name("customerList")
@Scope(CONVERSATION)
public class CustomerListManager
{

...

@Unwrap
public List<Customer> getCustomerList() {

return ... ;
}

}

This pattern is especially useful if we have some heavyweight object that needs a cleanup operation when the
context ends. In this case, the manager component may perform cleanup in the @Destroy method.

The contextual component model

JBoss Seam 1.1.1.GA 63

Chapter 4. Configuring Seam components
The philosophy of minimizing XML-based configuration is extremely strong in Seam. Nevertheless, there are
various reasons why we might want to configure a Seam component using XML: to isolate deployment-specific
information from the Java code, to enable the creation of re-usable frameworks, to configure Seam's built-in
functionality, etc. Seam provides two basic approaches to configuring components: configuration via property
settings in a properties file or web.xml, and configuration via components.xml.

4.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context parameters, or via a
properties file named seam.properties in the root of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods for the configurable
attributes. If a seam component named com.jboss.myapp.settings has a setter method named setLocale(),
we can provide a property named com.jboss.myapp.settings.locale in the seam.properties file or as a ser-
vlet context parameter, and Seam will set the value of the locale attribute whenever it instantiates the compon-
ent.

The same mechanism is used to configure Seam itself. For example, to set the conversation timeout, we provide
a value for org.jboss.seam.core.manager.conversationTimeout in web.xml or seam.properties. (There is
a built-in Seam component named org.jboss.seam.core.manager with a setter method named setConversa-

tionTimeout().)

4.2. Configuring components via components.xml

The components.xml file is a bit more powerful than property settings. It lets you:

• Configure components that have been installed automatically—including both built-in components, and ap-
plication components that have been annotated with the @Name annotation and picked up by Seam's deploy-
ment scanner.

• Install classes with no @Name annotation as Seam components—this is most useful for certain kinds of infra-
structural components which can be installed multiple times different names (for example Seam-managed
persistence contexts).

• Install components that do have a @Name annotation but are not installed by default because of an @Install

annotation that indicates the component should not be installed.

• Override the scope of a component.

A components.xml file may appear in one of three different places:

• The WEB-INF directory of a war.

• The META-INF directory of a jar.

• Any directory of a jar that contains classes with an @Name annotation.

Usually, Seam components are installed when the deployment scanner discovers a class with a @Name annota-

JBoss Seam 1.1.1.GA 64

tion sitting in an archive with a seam.properties file or a META-INF/components.xml file. (Unless the com-
ponent has an @Install annotation indicating it should not be installed by default.) The components.xml file
lets us handle special cases where we need to override the annotations.

For example, the following components.xml file installs the JBoss Embeddable EJB3 container:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core">

<core:ejb/>
</components>

This example does the same thing:

<components>
<component class="org.jboss.seam.core.Ejb"/>

</components>

This one installs and configures two different Seam-managed persistence contexts:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"

<core:managed-persistence-context name="customerDatabase"
persistence-unit-jndi-name="java:/customerEntityManagerFactory"/>

<core:managed-persistence-context name="accountingDatabase"
persistence-unit-jndi-name="java:/accountingEntityManagerFactory"/>

</components>

As does this one:

<components>
<component name="customerDatabase"

class="org.jboss.seam.core.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/customerEntityManagerFactory</property>

</component>

<component name="accountingDatabase"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property name="persistenceUnitJndiName">java:/accountingEntityManagerFactory</property>
</component>

</components>

This example creates a session-scoped Seam-managed persistence context (this is not recommended in prac-
tice):

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"

<core:managed-persistence-context name="productDatabase" scope="session"
persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

<component name="productDatabase"
scope="session"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>
</component>

</components>

Configuring Seam components

JBoss Seam 1.1.1.GA 65

The <factory> declaration lets you specify a value or method binding expression that will be evaluated to ini-
tialize the value of a context variable when it is first referenced.

<components>

<factory name="contact" method="#{contactManager.loadContact}" scope="CONVERSATION"/>

</components>

You can create an "alias" (a second name) for a Seam component like so:

<components>

<factory name="user" value="#{actor}" scope="STATELESS"/>

</components>

You can even create an "alias" for a commonly used expression:

<components>

<factory name="contact" value="#{contactManager.contact}" scope="STATELESS"/>

</components>

Sometimes we want to reuse the same components.xml file with minor changes during both deployment and
testing. Seam lets you place wildcards of the form @wildcard@ in the components.xml file which can be re-
placed either by your Ant build script (at deployment time) or by providing a file named compon-

ents.properties in the classpath (at development time). You'll see this approach used in the Seam examples.

4.3. Fine-grained configuration files

If you have a large number of components that need to be configured in XML, it makes much more sense to
split up the information in components.xml into many small files. Seam lets you put configuration for a class
named, for example, com.helloworld.Hello in a resource named com/helloworld/Hello.component.xml.
(You might be familiar with this pattern, since it is the same one we use in Hibernate.) The root element of the
file may be either a <components> or <component> element.

The first option lets you define multiple components in the file:

<components>
<component class="com.helloworld.Hello" name="hello">

<property name="name">#{user.name}</property>
</component>
<factory name="message" value="#{hello.message}"/>

</components>

The second option only lets you define or configure one component, but is less noisy:

<component name="hello">
<property name="name">#{user.name}</property>

</component>

In the second option, the class name is implied by the file in which the component definition appears.

Alternatively, you may put configuration for all classes in the com.helloworld package in com/hello-

world/components.xml.

Configuring Seam components

JBoss Seam 1.1.1.GA 66

4.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org.jboss.seam.core.manager.conversationTimeout 60000

<core:manager conversation-timeout="60000"/>

<component name="org.jboss.seam.core.manager">
<property name="conversationTimeout">60000</property>

</component>

Arrays, sets and lists of strings or primitives are also supported:

org.jboss.seam.core.jbpm.processDefinitions order.jpdl.xml, return.jpdl.xml, inventory.jpdl.xml

<core:jbpm>
<core:process-definitions>

<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>

</core:process-definitions>
</core:jbpm>

<component name="org.jboss.seam.core.jbpm">
<property name="processDefinitions">

<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>

</property>
</component>

Even maps with String-valued keys and string or primitive values are supported:

<component name="issueEditor">
<property name="issueStatuses">

<key>open</key> <value>open issue</value>
<key>resolved</key> <value>issue resolved by developer</value>
<key>closed</key> <value>resolution accepted by user</value>

</property>
</component>

Finally, you may wire together components using a value-binding expression. Note that this is quite different to
injection using @In, since it happens at component instantiation time instead of invocation time. It is therefore
much more similar to the dependency injection facilities offered by traditional IoC containers like JSF or
Spring.

<drools:managed-working-memory name="policyPricingWorkingMemory" rule-base="#{policyPricingRules}"/>

<component name="policyPricingWorkingMemory"
class="org.jboss.seam.drools.ManagedWorkingMemory">

<property name="ruleBase">#{policyPricingRules}</property>
</component>

4.5. Using XML Namespaces

Configuring Seam components

JBoss Seam 1.1.1.GA 67

Throughout the examples, there have been two competing ways of declaring components: with and without the
use of XML namespaces. The following shows a typical components.xml file without namespaces. It uses the
Seam Components DTD:

<?xml version="1.0" encoding="UTF-8">
<!DOCTYPE components PUBLIC "-//JBoss/Seam Component Configuration DTD 1.1//EN"

"http://jboss.com/products/seam/components-1.1.dtd">
<components>

<component class="org.jboss.seam.core.init">
<property name="debug">true</property>
<property name="jndiPattern">@jndiPattern@</property>

</component>

<component name="org.jboss.sean.core.ejb" installed="@embeddedEjb@" />

</components>

As you can see, this is somewhat verbose. Even worse, the component and attribute names cannot be validated
at development time.

The namespaced version looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"

xmlns:core="http://jboss.com/products/seam/core"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://jboss.com/products/seam/core http://jboss.com/products/seam/core-1.1.xsd
http://jboss.com/products/seam/components http://jboss.com/products/seam/components-1.1.xsd">

<core:init debug="true" jndi-pattern="@jndiPattern@"/>

<core:ejb installed="@embeddedEjb@"/>

</components>

Even though the schema declarations are verbose, the actual XML content is lean and easy to understand. The
schemas provide detailed information about each component and the attributes available, allowing XML editors
to offer intelligent autocomplete. The use of namespaced elements makes generating and maintaining correct
components.xml files much simpler.

Now, this works great for the built-in Seam components, but what about user components? There are two op-
tions. First, Seam supports mixing the two models, allowing the use of the generic <component> declarations
for user components, along with namespaced declarations for built-in components. But even better, Seam al-
lows you to quickly declare namespaces for your own components.

Any Java package can be associated with an XML namespace by annotating the package with the @Namespace

annotation. (Package-level annotations are declared in a file named package-info.java in the package direct-
ory.) Here is an example from the seampay demo:

@Namespace(value="http://jboss.com/products/seam/examples/seampay")
package org.jboss.seam.example.seampay;

import org.jboss.seam.annotations.Namespace;

That is all you need to do to use the namespaced style in components.xml! Now we can write:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pay="http://jboss.com/products/seam/examples/seampay"
... >

Configuring Seam components

JBoss Seam 1.1.1.GA 68

<pay:payment-home new-instance="#{newPayment}"
created-message="Created a new payment to #{newPayment.payee}" />

<pay:payment name="newPayment"
payee="Somebody"
account="#{selectedAccount}"
payment-date="#{currentDatetime}"
created-date="#{currentDatetime}" />

...
</components>

Or:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pay="http://jboss.com/products/seam/examples/seampay"
... >

<pay:payment-home>
<pay:new-instance>"#{newPayment}"</pay:new-instance>
<pay:created-message>Created a new payment to #{newPayment.payee}</pay:created-message>

</pay:payment-home>

<pay:payment name="newPayment">
<pay:payee>Somebody"</pay:payee>
<pay:account>#{selectedAccount}</pay:account>
<pay:payment-date>#{currentDatetime}</pay:payment-date>
<pay:created-date>#{currentDatetime}</pay:created-date>

</pay:payment>
...

</components>

These examples illustrate the two usage models of a namespaced element. In the first declaration, the
<pay:payment-home> references the paymentHome component:

package org.jboss.seam.example.seampay;
...
@Name("paymentHome")
public class PaymentController

extends EntityHome<Payment>
{

...
}

The element name is the hyphenated form of the component name. The attributes of the element are the hy-
phenated form of the property names.

In the second declaration, the <pay:payment> element refers to the Payment class in the
org.jboss.seam.example.seampay package. In this case Payment is an entity that is being declared as a Seam
component:

package org.jboss.seam.example.seampay;
...
@Entity
public class Payment

implements Serializable
{

...
}

If we want validation and autocompletion to work for user-defined components, we will need a schema. Seam
does not yet provide a mechanism to automatically generate a schema for a set of components, so it is necessary
to generate one manually. The schema definitions for the standard Seam packages can be used for guidance.

Configuring Seam components

JBoss Seam 1.1.1.GA 69

The following are the the namespaces used by Seam:

• components — http://jboss.com/products/seam/components

• core — http://jboss.com/products/seam/core

• drools — http://jboss.com/products/seam/drools

• framework — http://jboss.com/products/seam/framework

• jms — http://jboss.com/products/seam/jms

• remoting — http://jboss.com/products/seam/remoting

• theme — http://jboss.com/products/seam/theme

Configuring Seam components

JBoss Seam 1.1.1.GA 70

Chapter 5. Events, interceptors and exception
handling
Complementing the contextual component model, there are two further basic concepts that facilitate the ex-
treme loose-coupling that is the distinctive feature of Seam applications. The first is a strong event model where
events may be mapped to event listeners via JSF-like method binding expressions. The second is the pervasive
use of annotations and interceptors to apply cross-cutting concerns to components which implement business
logic.

5.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to enable the
development of fine-grained, loosely-coupled components in a fine-grained eventing model. Events in Seam
come in several types, most of which we have already seen:

• JSF events

• jBPM transition events

• Seam page actions

• Seam component-driven events

• Seam contextual events

All of these various kinds of events are mapped to Seam components via JSF EL method binding expressions.
For a JSF event, this is defined in the JSF template:

<h:commandButton value="Click me!" action="#{helloWorld.sayHello}"/>

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

<start-page name="hello" view-id="/hello.jsp">
<transition to="hello">

<action expression="#{helloWorld.sayHello}"/>
</transition>

</start-page>

You can find out more information about JSF events and jBPM events elsewhere. Lets concentrate for now
upon the two additional kinds of events defined by Seam.

5.1.1. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions in WEB-

INF/pages.xml. We can define a page action for either a particular JSF view id:

<pages>
<page view-id="/hello.jsp" action="#{helloWorld.sayHello}"/>

<pages>

Or we can use a wildcard to specify an action that applies to all view ids that match the pattern:

JBoss Seam 1.1.1.GA 71

<pages>
<page view-id="/hello/*" action="#{helloWorld.sayHello}"/>

<pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in order of least-
specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will delegate to the defined
JSFadn Seam navigation rules and a different view may end up being rendered.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or Facelets page!
So, we can reproduce the functionality of a traditional action-oriented framework like Struts or WebWork using
page actions. For example:

TODO: translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for example, HTTP
GET requests).

Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and "parameters"
(input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request parameters.
(Unlike JSF form inputs, which are anything but!)

Seam lets us provide a value binding that maps a named request parameter to an attribute of a model object.

<pages>
<page view-id="/hello.jsp" action="#{helloWorld.sayHello}">

<param name="firstName" value="#{person.firstName}"/>
<param name="lastName" value="#{person.lastName}"/>

</page>
<pages>

The <param> declaration is bidirectional, just like a value binding for a JSF input:

• When a non-faces (GET) request for the view id occurs, Seam sets the value of the named request paramet-
er onto the model object, after performing appropriate type conversions.

• Any <s:link> or <s:button> transparently includes the request parameter. The value of the parameter is
determined by evaluating the value binding during the render phase (when the <s:link> is rendered).

• Any navigation rule with a <redirect/> to the view id transparently includes the request parameter. The
value of the parameter is determined by evaluating the value binding at the end of the invoke application
phase.

• The value is transparently propagated with any JSF form submission for the page with the given view id.
(This means that view parameters behave like PAGE-scoped context variables for faces requests.

The essential idea behind all this is that however we get from any other page to /hello.jsp (or from /

hello.jsp back to /hello.jsp), the value of the model attribute referred to in the value binding is "re-
membered", without the need for a conversation (or other server-side state).

This all sounds pretty complex, and you're probably wondering if such an exotic construct is really worth the

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 72

effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the time to understand
this stuff. Page parameters are the most elegant way to propagate state across a non-faces request. They are es-
pecially cool for problems like search screens with bookmarkable results pages, where we would like to be able
to write our application code to handle both POST and GET requests with the same code. Page parameters
eliminate repetitive listing of request parameters in the view definition and make redirects much easier to code.

Note that you don't need an actual page action method binding to use a page parameter. The following is per-
fectly valid:

<pages>
<page view-id="/hello.jsp">

<param name="firstName" value="#{person.firstName}"/>
<param name="lastName" value="#{person.lastName}"/>

</page>
<pages>

You can even specify a JSF converter:

<pages>
<page view-id="/calculator.jsp" action="#{calculator.calculate}">

<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converterId="com.my.calculator.OperatorConverter" value="#{calculator.op}"/>

</page>
<pages>

<pages>
<page view-id="/calculator.jsp" action="#{calculator.calculate}">

<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>

</page>
</pages>

Navigation

You can use standard JSF navigation rules defined in faces-config.xml in a Seam application. However, JSF
navigation rules have a number of annoying limitations:

• It is not possible to specify request parameters to be used when redirecting.

• It is not possible to begin or end conversations from a rule.

• Rules work by evaluating the return value of the action method; it is not possible to evaluate an arbitrary EL
expression.

A further problem is that "orchestration" logic gets scattered between pages.xml and faces-config.xml. It's
better to unify this logic into pages.xml.

This JSF navigation rule:

<navigation-rule>
<from-view-id>/editDocument.xhtml</from-view-id>

<navigation-case>
<from-action>#{documentEditor.update}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/viewDocument.xhtml</to-view-id>
<redirect/>

</navigation-case>

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 73

</navigation-rule>

Can be rewritten as follows:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if-outcome="success">

<redirect view-id="/viewDocument.xhtml"/>
<rule/>

</navigation-case>

</navigation-rule>

But it would be even nicer if we didn't have to pollute our DocumentEditor component with string-valued re-
turn values (the JSF outcomes). So Seam lets us write:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}"
evaluate="#{documentEditor.errors.size}">

<rule if-outcome="0">
<redirect view-id="/viewDocument.xhtml"/>

<rule/>
</navigation-case>

</navigation-rule>

Or even:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<redirect view-id="/viewDocument.xhtml"/>
<rule/>

</navigation-case>

</navigation-rule>

The first form evaluates a value binding to determine the outcome value to be used by the subsequent rules. The
second approach ignores the outcome and evaluates a value binding for each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We can do that like
this:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<end-conversation/>
<redirect view-id="/viewDocument.xhtml"/>

<rule/>
</navigation-case>

</navigation-rule>

But ending the conversation loses any state associated with the conversation, including the document we are
currently interested in! One solution would be to use an immediate render instead of a redirect:

<page view-id="/editDocument.xhtml">

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 74

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<end-conversation/>
<render view-id="/viewDocument.xhtml"/>

<rule/>
</navigation-case>

</navigation-rule>

But the correct solution is to pass the document id as a request parameter:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<end-conversation/>
<redirect view-id="/viewDocument.xhtml">

<param name="documentId" value="#{documentEditor.documentId}"/>
</redirect>

<rule/>
</navigation-case>

</navigation-rule>

Null outcomes are a special case in JSF. The null outcome is interpreted to mean "redisplay the page". The fol-
lowing navigation rule matches any non-null outcome, but not the null outcome:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule>

<render view-id="/viewDocument.xhtml"/>
<rule/>

</navigation-case>

</navigation-rule>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<render view-id="/viewDocument.xhtml"/>

</navigation-case>

</navigation-rule>

Fine-grained files for definition of page actions and parameters

If you have a lot of different page actions and page parameters, you will almost certainly want to split the de-
clarations up over multiple files. You can define actions and parameters for a page with the view id /

calc/calculator.jsp in a resource named calc/calculator.page.xml. The root element in this case is the
<page> element, and the view id is implied:

<page action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>

</page>

5.1.2. Component-driven events

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 75

Seam components can interact by simply calling each others methods. Stateful components may even imple-
ment the observer/observable pattern. But to enable components to interact in a more loosely-coupled fashion
than is possible when the components call each others methods directly, Seam provides component-driven
events.

We specify event listeners (observers) in WEB-INF/events.xml.

<events>
<event type="hello">

<action expression="#{helloListener.sayHelloBack}"/>
<action expression="#{logger.logHello}"/>

</event>
<events>

Where the event type is just an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear in
events.xml. How does a component raise an event? Seam provides a built-in component for this.

@Name("helloWorld")
public class HelloWorld {

public void sayHello() {
FacesMessages.instance().add("Hello World!");
Events.instance().raiseEvent("hello");

}
}

Notice that this event producer has no dependency upon event consumers. The event listener may now be im-
plemented with absolutely no dependency upon the producer:

@Name("helloListener")
public class HelloListener {

public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

}
}

If you don't like the events.xml file, we can use an annotation instead:

@Name("helloListener")
public class HelloListener {

@Observer("hello")
public void sayHelloBack() {

FacesMessages.instance().add("Hello to you too!");
}

}

You might wonder why I've not mentioned anything about event objects in this discussion. In Seam, there is no
need for an event object to propagate state between event producer and listener. State is held in the Seam con-
texts, and is shared between components. However, if you really want to pass an event object, you can:

@Name("helloWorld")
public class HelloWorld {

private String name;
public void sayHello() {

FacesMessages.instance().add("Hello World, my name is #0.", name);
Events.instance().raiseEvent("hello", name);

}
}

@Name("helloListener")

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 76

public class HelloListener {
@Observer("hello")
public void sayHelloBack(String name) {

FacesMessages.instance().add("Hello #0!", name);
}

}

5.1.3. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds of framework in-
tegration. The events are:

• org.jboss.seam.preSetVariable.<name> — called when the context variable <name> is set

• org.jboss.seam.postSetVariable.<name> — called when the context variable <name> is set

• org.jboss.seam.preRemoveVariable.<name> — called when the context variable <name> is unset

• org.jboss.seam.postRemoveVariable.<name> — called when the context variable <name> is unset

• org.jboss.seam.preDestroyContext.<SCOPE> — called before the <SCOPE> context is destroyed

• org.jboss.seam.postDestroyContext.<SCOPE> — called after the <SCOPE> context is destroyed

• org.jboss.seam.beginConversation — called whenever a long-running conversation begins

• org.jboss.seam.endConversation — called whenever a long-running conversation ends

• org.jboss.seam.beginPageflow.<name> — called when the pageflow <name> begins

• org.jboss.seam.endPageflow.<name> — called when the pageflow <name> ends

• org.jboss.seam.createProcess.<name> — called when the process <name> is created

• org.jboss.seam.endProcess.<name> — called when the process <name> ends

• org.jboss.seam.initProcess.<name> — called when the process <name> is associated with the conver-
sation

• org.jboss.seam.initTask.<name> — called when the task <name> is associated with the conversation

• org.jboss.seam.startTask.<name> — called when the task <name> is started

• org.jboss.seam.endTask.<name> — called when the task <name> is ended

• org.jboss.seam.postCreate.<name> — called when the component <name> is created

• org.jboss.seam.preDestroy.<name> — called when the component <name> is destroyed

• org.jboss.seam.beforePhase — called before the start of a JSF phase

• org.jboss.seam.afterPhase — called after the end of a JSF phase

Seam components may observe any of these events in just the same way they observe component-driven
events.

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 77

5.2. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an interceptor to a bean,
you need to write a class with a method annotated @AroundInvoke and annotate the bean with an
@Interceptors annotation that specifies the name of the interceptor class. For example, the following inter-
ceptor checks that the user is logged in before allowing invoking an action listener method:

public class LoggedInInterceptor {

@AroundInvoke
public Object checkLoggedIn(InvocationContext invocation) throws Exception {

boolean isLoggedIn = Contexts.getSessionContext().get("loggedIn")!=null;
if (isLoggedIn) {

//the user is already logged in
return invocation.proceed();

}
else {

//the user is not logged in, fwd to login page
return "login";

}
}

}

To apply this interceptor to a session bean which acts as an action listener, we must annotate the session bean
@Interceptors(LoggedInInterceptor.class). This is a somewhat ugly annotation. Seam builds upon the in-
terceptor framework in EJB3 by allowing you to use @Interceptors as a meta-annotation. In our example, we
would create an @LoggedIn annotation, as follows:

@Target(TYPE)
@Retention(RUNTIME)
@Interceptors(LoggedInInterceptor.class)
public @interface LoggedIn {}

We can now simply annotate our action listener bean with @LoggedIn to apply the interceptor.

@Stateless
@Name("changePasswordAction")
@LoggedIn
@Interceptors(SeamInterceptor.class)
public class ChangePasswordAction implements ChangePassword {

...

public String changePassword() { ... }

}

If interceptor ordering is important (it usually is), you can add @Interceptor annotations to your interceptor
classes to specify a partial order of interceptors.

@Interceptor(around={BijectionInterceptor.class,
ValidationInterceptor.class,
ConversationInterceptor.class},

within=RemoveInterceptor.class)
public class LoggedInInterceptor
{

...
}

You can even have a "client-side" interceptor, that runs around any of the built-in functionality of EJB3:

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 78

@Interceptor(type=CLIENT)
public class LoggedInInterceptor
{

...
}

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept. For interceptors
which do not need to maintain state, Seam lets you get a performance optimization by specifying
@Interceptor(stateless=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including the inter-
ceptors named in the previous example. You don't have to explicitly specify these interceptors by annotating
your components; they exist for all interceptable Seam components.

You can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @AroundInvoke), but also for the lifecycle meth-
ods @PostConstruct, @PreDestroy, @PrePassivate and @PostActive. Seam supports all these lifecycle meth-
ods on both component and interceptor not only for EJB3 beans, but also for JavaBean components (except
@PreDestroy which is not meaningful for JavaBean components).

5.3. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this problem,
Seam lets you define how a particular class of exception is to be treated by annotating the exception class, or
declaring the exception class in an XML file. This facility is meant to be combined with the EJB 3.0-standard
@ApplicationException annotation which specifies whether the exception should cause a transaction rollback.

Note that Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components: system excep-
tions always cause a transaction rollback, application exceptions do not cause a rollback by default, but do if
@ApplicationException(rollback=true) is specified. (An application exception is any checked exception, or
any unchecked exception annotated @ApplicationException. A system exception is any unchecked exception
without an @ApplicationException annotation.)

This exception results in a HTTP 404 error whenever it propagates out of the Seam component layer. It does
not roll back the current transaction.

@HttpError(errorCode=404)
public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component layer. It also
ends the current conversation. It also rolls back the current transaction.

@Redirect(viewId="/failure.xhtml", end=true)
@ApplicationException(rollback=true)
public class UnrecoverableApplicationException extends RuntimeException { ... }

Note that @Redirect does not work for exceptions which occur during the render phase of the JSF lifecycle.

This exception results in immediate rendering of the view, along with a message to the user, when it propagates
out of the Seam component layer. It also rolls back the current transaction.

@Render(viewId="/error.xhtml", message="Unexpected error")
public class SystemException extends RuntimeException { ... }

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 79

Note that @Render only works when the exception occurs during the INVOKE_APPLICATION phase.

Since we can't add annotations to all the exception classes we are interested in, Seam also lets us specify this
functionality in WEB-INF/exceptions.xml.

<exceptions>

<exception class="javax.persistence.EntityNotFoundException">
<http-error error-code="404"/>

</exception>

<exception class="javax.persistence.PersistenceException">
<render>Database access failed</render>
<end-conversation/>

</exception>

<exception>
<redirect view-id="/search.xhtml">Unexpected failure</redirect>
<end-conversation/>

</exception>

</exceptions>

The last <exception> declaration does not specify a class, and is a catch-all for any exception for which hand-
ling is not otherwise specified via annotations or in exceptions.xml.

Events, interceptors and exception handling

JBoss Seam 1.1.1.GA 80

Chapter 6. Conversations and workspace
management
It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation" came about as a merger of three different ideas:

• The idea of a workspace, which I encountered in a project for the Victorian government in 2002. In this
project I was forced to implement workspace management on top of Struts, an experience I pray never to
repeat.

• The idea of an application transaction with optimistic semantics, and the realization that existing frame-
works based around a stateless architecture could not provide effective management of extended persistence
contexts. (The Hibernate team is truly fed up with copping the blame for LazyInitializationExceptions,
which are not really Hibernate's fault, but rather the fault of the extremely limiting persistence context mod-
el supported by stateless architectures such as the Spring framework or the traditional stateless session
facade (anti)pattern in J2EE.)

• The idea of a workflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct that lets us
build richer and more efficient applications with less code than before.

6.1. Seam's conversation model

The examples we have seen so far make use of a very simple conversation model that follows these rules:

• There is always a conversation context active during the apply request values, process validations, update
model values, invoke application and render response phases of the JSF request lifecycle.

• At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore any previous
long-running conversation context. If none exists, Seam creates a new temporary conversation context.

• When an @Begin method is encountered, the temporary conversation context is promoted to a long running
conversation.

• When an @End method is encountered, any long-running conversation context is demoted to a temporary
conversation.

• At the end of the render response phase of the JSF request lifecycle, Seam stores the contents of a long run-
ning conversation context or destroys the contents of a temporary conversation context.

• Any faces request (a JSF postback) will propagate the conversation context. By default, non-faces requests
(GET requests, for example) do not propagate the conversation context, but see below for more information
on this.

• If the JSF request lifecycle is foreshortened by a redirect, Seam transparently stores and restores the current
conversation context—unless the conversation was already ended via @End(beforeRedirect=true).

Seam transparently propagates the conversation context across JSF postbacks and redirects. If you don't do any-
thing special, a non-faces request (a GET request for example) will not propagate the conversation context and

JBoss Seam 1.1.1.GA 81

will be processed in a new temporary conversation. This is usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly code the Seam
conversation id as a request parameter:

Continue

Or, the more JSF-ish:

<h:outputLink value="main.jsf">
<f:param name="conversationId" value="#{conversation.id}"/>
<h:outputText value="Continue"/>

</h:outputLink>

If you use the Seam tag library, this is equivalent:

<h:outputLink value="main.jsf">
<s:conversationId/>
<h:outputText value="Continue"/>

</h:outputLink>

If you wish to disable propagation of the conversation context for a postback, a similar trick is used:

<h:commandLink action="main" value="Exit">
<f:param name="conversationPropagation" value="none"/>

</h:commandLink>

If you use the Seam tag library, this is equivalent:

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="none"/>

</h:commandLink>

Note that disabling conversation context propagation is absolutely not the same thing as ending the conversa-
tion.

The conversationPropagation request parameter, or the <s:conversationPropagation> tag may even be
used to begin and end conversation, or begin a nested conversation.

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="end"/>

</h:commandLink>

<h:commandLink action="main" value="Select Child">
<s:conversationPropagation type="nested"/>

</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="begin"/>

</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="join"/>

</h:commandLink>

This conversation model makes it easy to build applications which behave correctly with respect to multi-
window operation. For many applications, this is all that is needed. Some complex applications have either or
both of the following additional requirements:

Conversations and workspace management

JBoss Seam 1.1.1.GA 82

• A conversation spans many smaller units of user interaction, which execute serially or even concurrently.
The smaller nested conversations have their own isolated set of conversation state, and also have access to
the state of the outer conversation.

• The user is able to switch between many conversations within the same browser window. This feature is
called workspace management.

6.2. Nested conversations

A nested conversation is created by invoking a method marked @Begin(nested=true) inside the scope of an
existing conversation. A nested conversation has its own conversation context, and also has read-only access to
the context of the outer conversation. (It can read the outer conversation's context variables, but not write to
them.) When an @End is subsequently encountered, the nested conversation will be destroyed, and the outer
conversation will resume, by "popping" the conversation stack. Conversations may be nested to any arbitrary
depth.

Certain user activity (workspace management, or the back button) can cause the outer conversation to be re-
sumed before the inner conversation is ended. In this case it is possible to have multiple concurrent nested con-
versations belonging to the same outer conversation. If the outer conversation ends before a nested conversation
ends, Seam destroys all nested conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the application to capture
a consistent continuable state at various points in a user interaction, thus insuring truly correct behavior in the
face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you backbutton.

6.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a non-faces request
(for example, a HTTP GET request). This can occur if the user bookmarks the page, or if we navigate to the
page via an <h:outputLink>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is no JSF action
method, we can't solve the problem in the usual way, by annotating the action with @Begin.

A further problem arises if the page needs some state to be fetched into a context variable. We've already seen
two ways to solve this problem. If that state is held in a Seam component, we can fetch the state in a @Create

method. If not, we can define a @Factory method for the context variable.

If none of these options works for you, Seam lets you define a page action in the pages.xml file.

<pages>
<page view-id="/messageList.jsp" action="#{messageManager.list}"/>
...

</pages>

This action method is called at the beginning of the render response phase, any time the page is about to be
rendered. If a page action returns a non-null outcome, Seam will process any appropriate JSF and Seam naviga-
tion rules, possibly resulting in a completely different page being rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in action method

Conversations and workspace management

JBoss Seam 1.1.1.GA 83

that does just that:

<pages>
<page view-id="/messageList.jsp" action="#{conversation.begin}"/>
...

</pages>

Note that you can also call this built-in action from a JSF control, and, similarly, you can use
#{conversation.end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a pageflow or an
atomic conversation, you should use the <begin-conversation> element.

<pages>
<page view-id="/messageList.jsp">

<begin-conversation nested="true" pageflow="AddItem"/>
<page>
...

</pages>

There is also an <end-conversation> element.

<pages>
<page view-id="/home.jsp">

<end-conversation/>
<page>
...

</pages>

To solve the first problem, we now have five options:

• Annotate the @Create method with @Begin

• Annotate the @Factory method with @Begin

• Annotate the Seam page action method with @Begin

• Use <begin-conversation> in pages.xml.

• Use #{conversation.begin} as the Seam page action method

6.4. Using <s:link> and <s:button>

JSF command links always perform a form submission via JavaScript, which breaks the web browser's "open in
new window" or "open in new tab" feature. In plain JSF, you need to use an <h:outputLink> if you need this
functionality. But there are two major limitations to <h:outputLink>.

• JSF provides no way to attach an action listener to an <h:outputLink>.

• JSF does not propagate the selected row of a DataModel since there is no actual form submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing to help us with
the second problem. We could work around this by using the RESTful approach of passing a request parameter
and requerying for the selected object on the server side. In some cases—such as the Seam blog example ap-
plication—this is indeed the best approach. The RESTful style supports bookmarking, since it does not require
server-side state. In other cases, where we don't care about bookmarks, the use of @DataModel and

Conversations and workspace management

JBoss Seam 1.1.1.GA 84

@DataModelSelection is just so convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to manage, Seam
provides the <s:link> JSF tag.

The link may specify just the JSF view id:

<s:link view=“/login.xhtml” value=“Login”/>

Or, it may specify an action method (in which case the action outcome determines the page that results):

<s:link action=“#{login.logout}” value=“Logout”/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action method returns
a non-null outcome:

<s:link view="/loggedOut.xhtml" action=“#{login.logout}” value=“Logout”/>

The link automatically propagates the selected row of a DataModel using inside <h:dataTable>:

<s:link view=“/hotel.xhtml” action=“#{hotelSearch.selectHotel}” value=“#{hotel.name}”/>

You can leave the scope of an existing conversation:

<s:link view=“/main.xhtml” propagation=“none”/>

You can begin, end, or nest conversations:

<s:link action=“#{issueEditor.viewComment}” propagation=“nest”/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action=“#{documentEditor.getDocument}” propagation=“begin”
pageflow=“EditDocument”/>

The taskInstance attribute if for use in jBPM task lists:

<s:link action=“#{documentApproval.approveOrReject}” taskInstance=“#{task}”/>

(See the DVD Store demo application for examples of this.)

Finally, if you need the "link" to be rendered as a button, use <s:button>:

<s:button action=“#{login.logout}” value=“Logout”/>

6.5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It is convenient to
use a JSF FacesMessage for this. Unfortunately, a successful action often requires a browser redirect, and JSF
does not propagate faces messages across redirects. This makes it quite difficult to display success messages in
plain JSF.

The built in conversation-scoped Seam component named facesMessages solves this problem. (You must have
the Seam redirect filter installed.)

Conversations and workspace management

JBoss Seam 1.1.1.GA 85

@Name("editDocumentAction")
@Stateless
public class EditDocumentBean implements EditDocument {

@In EntityManager em;
@In Document document;
@In FacesMessages facesMessages;

public String update() {
em.merge(document);
facesMessages.add("Document updated");

}
}

Any message added to facesMessages is used in the very next render response phase for the current conversa-
tion. This even works when there is no long-running conversation since Seam preserves even temporary con-
versation contexts across redirects.

You can even include JSF EL expressions in a faces message summary:

facesMessages.add("Document #{document.title} was updated");

You may display the messages in the usual way, for example:

<h:messages globalOnly="true"/>

6.6. Using an "explicit" conversation id

Ordinarily, Seam generates a meaningless unique id for each conversation in each session. You can customize
the id value when you begin the conversation.

This feature can be used to customize the conversation id generation algorithm like so:

@Begin(id="#{myConversationIdGenerator.nextId}")
public void editHotel() { ... }

Or it can be used to assign a meaningful conversation id:

@Begin(id="hotel#{hotel.id}")
public String editHotel() { ... }

@Begin(id="hotel#{hotelsDataModel.rowData.id}")
public String selectHotel() { ... }

@Begin(id="entry#{params['blogId']}")
public String viewBlogEntry() { ... }

@BeginTask(id="task#{taskInstance.id}")
public String approveDocument() { ... }

Clearly, these example result in the same conversation id every time a particular hotel, blog or task is selected.
So what happens if a conversation with the same conversation id already exists when the new conversation be-
gins? Well, Seam detects the existing conversation and redirects to that conversation without running the
@Begin method again. This feature helps control the number of workspaces that are created when using work-
space management.

Conversations and workspace management

JBoss Seam 1.1.1.GA 86

6.7. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam makes workspace
management completely transparent at the level of the Java code. To enable workspace management, all you
need to do is:

• Provide description text for each view id (when using JSF or Seam navigation rules) or page node (when
using jPDL pageflows). This description text is displayed to the user by the workspace switchers.

• Include one or more of the standard workspace switcher JSP or facelets fragments in your pages. The stand-
ard fragments support workspace management via a drop down menu, a list of conversations, or bread-
crumbs.

6.7.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring the current view-id
for that conversation. The descriptive text for the workspace is defined in a file called pages.xml that Seam ex-
pects to find in the WEB-INF directory, right next to faces-config.xml:

<pages>
<page view-id="/main.xhtml">Search hotels: #{hotelBooking.searchString}</page>
<page view-id="/hotel.xhtml">View hotel: #{hotel.name}</page>
<page view-id="/book.xhtml">Book hotel: #{hotel.name}</page>
<page view-id="/confirm.xhtml">Confirm: #{booking.description}</page>

</pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only missing func-
tionality will be the ability to switch workspaces.

6.7.2. Workspace management and jPDL pageflow

When you use a jPDL pageflow definition, Seam switches to a conversation by restoring the current jBPM pro-
cess state. This is a more flexible model since it allows the same view-id to have different descriptions depend-
ing upon the current <page> node. The description text is defined by the <page> node:

<pageflow-definition name="shopping">

<start-state name="start">
<transition to="browse"/>

</start-state>

<page name="browse" view-id="/browse.xhtml">
<description>DVD Search: #{search.searchPattern}</description>
<transition to="browse"/>
<transition name="checkout" to="checkout"/>

</page>

<page name="checkout" view-id="/checkout.xhtml">
<description>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="complete" to="complete"/>

</page>

<page name="complete" view-id="/complete.xhtml">
<end-conversation />

</page>

</pageflow-definition>

Conversations and workspace management

JBoss Seam 1.1.1.GA 87

6.7.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets you switch to
any current conversation, or to any other page of the application:

<h:selectOneMenu value="#{switcher.conversationIdOrOutcome}">
<f:selectItem itemLabel="Find Issues" itemValue="findIssue"/>
<f:selectItem itemLabel="Create Issue" itemValue="editIssue"/>
<f:selectItems value="#{switcher.selectItems}"/>

</h:selectOneMenu>
<h:commandButton action="#{switcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two additional items
that let the user begin a new conversation.

6.7.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as a table:

<h:dataTable value="#{conversationList}" var="entry"
rendered="#{not empty conversationList}">

<h:column>
<f:facet name="header">Workspace</f:facet>
<h:commandLink action="#{entry.select}" value="#{entry.description}"/>
<h:outputText value="[current]" rendered="#{entry.current}"/>

</h:column>
<h:column>

<f:facet name="header">Activity</f:facet>
<h:outputText value="#{entry.startDatetime}">

<f:convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>
<h:outputText value=" - "/>
<h:outputText value="#{entry.lastDatetime}">

<f:convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>

</h:column>
<h:column>

<f:facet name="header">Action</f:facet>
<h:commandButton action="#{entry.select}" value="#{msg.Switch}"/>
<h:commandButton action="#{entry.destroy}" value="#{msg.Destroy}"/>

</h:column>
</h:dataTable>

We imagine that you will want to customize this for your own application.

Conversations and workspace management

JBoss Seam 1.1.1.GA 88

The conversation list is nice, but it takes up a lot of space on the page, so you probably don't want to put it on
every page.

Notice that the conversation list lets the user destroy workspaces.

6.7.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs are a list of
links to conversations in the current conversation stack:

<t:dataList value="#{conversationStack}" var="entry">
<h:outputText value=" | "/>
<h:commandLink value="#{entry.description}" action="#{entry.select}"/>

</t:dataList>

Notice that here we are using the MyFaces <t:dataList> component, since JSF amazingly does not provide
any standard component for looping.

Please refer to the Seam Issue Tracker demo to see all this functionality in action!

6.8. Seam-managed persistence contexts and atomic conver-
sations

Seam provides built-in components for EJB 3.0 and Hibernate persistence context management that support the
use of persistence contexts scoped to the conversation. This useful feature allows you to program optimistic
transactions that span multiple requests to the server without the need to use the merge() operation or to re-load
data at the beginning of each request, and without the need to wrestle with the dreaded LazyInitializa-

tionException or NonUniqueObjectException. Please see the configuration chapter for information about
configuring Seam-managed persistence contexts and Seam-managed transactions.

As with any optimistic transaction management, transaction isolation and consistency can be achieved via use
of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy to use optimistic locking, by
providing the @Version annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of each transaction.
This is sometimes the desired behavior. But very often, we would prefer that all changes are held in memory
and only written to the database when the conversation ends successfully. This allows for truly atomic conver-
sations. As the result of a truly stupid and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase
members of the EJB 3.0 expert group, there is currently no simple, usable and portable way to implement atom-
ic conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor extension to
the FlushModeTypes defined by the specification, and it is our expectation that other vendors will soon provide

Conversations and workspace management

JBoss Seam 1.1.1.GA 89

a similar extension.

Seam lets you specify FlushModeType.MANUAL when beginning a conversation. Currently, this works only when
Hibernate is the underlying persistence provider, but we plan to support other equivalent vendor extensions.

@In EntityManager em; //a Seam-managed persistence context

@Begin(flushMode=MANUAL)
public void beginClaimWizard() {

claim = em.find(Claim.class, claimId);
}

Now, the claim object remains managed by the persistence context for the rest ot the conversation. We can
make changes to the claim:

public void addPartyToClaim() {
Party party =;
claim.addParty(party);

}

But these changes will not be flushed to the database until we explicitly force the flush to occur:

@End
public void commitClaim() {

em.flush();
}

6.9. Seam and Servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the JSF lifecycle, so
Seam provides a servlet filter that can be applied to any servlet that needs access to Seam components.

<filter>
<filter-name>Seam Servlet Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamServletFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Seam Servlet Filter</filter-name>
<url-pattern>*.ajax</url-pattern>

</filter-mapping>

This servlet filter is responsible for initializing all Seam contexts before passing control to the servlet. It expects
to find the conversation id of any conversation context in a request parameter named conversationId. You are
responsible for ensuring that it gets sent in the request.

You are also responsible for ensuring propagation of any new conversation id back to the client. Seam exposes
the conversation id as a property of the built in component conversation.

Seam also provides the Seam Remoting framework, a simple way to expose any method of a Seam component
for invocation by an asynchronous JavaScript request simply by annotating the methods that should be access-
ible in the client. See the Seam Remoting chapter for further information.

6.10. Seam and SOAP

TODO

Conversations and workspace management

JBoss Seam 1.1.1.GA 90

Chapter 7. Pageflows and business processes
JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM lets you rep-
resent a business process or user interaction as a graph of nodes representing wait states, decisions, tasks, web
pages, etc. The graph is defined using a simple, very readable, XML dialect called jPDL, and may be edited and
visualised graphically using an eclipse plugin. jPDL is an extensible language, and is suitable for a range of
problems, from defining web application page flow, to traditional workflow management, all the way up to or-
chestration of services in a SOA environment.

Seam applications use jBPM for two different problems:

• Defining the pageflow involved in complex user interactions. A jPDL process definition defines the page
flow for a single conversation. A Seam conversation is considered to be a relatively short-running interac-
tion with a single user.

• Defining the overarching business process. The business process may span multiple conversations with
multiple users. Its state is persistent in the jBPM database, so it is considered long-running. Coordination of
the activities of multiple users is a much more complex problem than scripting an interaction with a single
user, so jBPM offers sophisticated facilities for task management and dealing with multiple concurrent
paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity. Pageflow, conversa-
tion and task all refer to a single interaction with a single user. A business process spans many tasks. Futher-
more, the two applications of jBPM are totally orthogonal. You can use them together or independently or not
at all.

You don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using JSF or Seam nav-
igation rules, and if your application is more data-driven that process-driven, you probably don't need jBPM.
But we're finding that thinking of user interaction in terms of a well-defined graphical representation is helping
us build more robust applications.

7.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

• Using JSF or Seam navigation rules - the stateless navigation model

• Using jPDL - the stateful navigation model

Very simple applications will only need the stateless navigation model. Very complex applications will use
both models in different places. Each model has its strengths and weaknesses!

7.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly to the result-
ing page of the view. The navigation rules are entirely oblivious to any state held by the application other than
what page was the source of the event. This means that your action listener methods must sometimes make de-
cisions about the page flow, since only they have access to the current state of the application.

Here is an example page flow definition using JSF navigation rules:

JBoss Seam 1.1.1.GA 91

<navigation-rule>
<from-view-id>/numberGuess.jsp</from-view-id>

<navigation-case>
<from-outcome>guess</from-outcome>
<to-view-id>/numberGuess.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>win</from-outcome>
<to-view-id>/win.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>lose</from-outcome>
<to-view-id>/lose.jsp</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Here is the same example page flow definition using Seam navigation rules:

<page view-id="/numberGuess.jsp">

<navigation>
<rule if-outcome="guess">

<redirect view-id="/numberGuess.jsp"/>
</rule>
<rule if-outcome="win">

<redirect view-id="/win.jsp"/>
</rule>
<rule if-outcome="lose">

<redirect view-id="/lose.jsp"/>
</rule>

</navigation-case>

</navigation-rule>

If you find navigation rules overly verbose, you can return view ids directly from your action listener methods:

public String guess() {
if (guess==randomNumber) return "/win.jsp";
if (++guessCount==maxGuesses) return "/lose.jsp";
return null;

}

Note that this results in a redirect. You can even specify parameters to be used in the redirect:

public String search() {
return "/searchResults.jsp?searchPattern=#{searchAction.searchPattern}";

}

The stateful model defines a set of transitions between a set of named, logical application states. In this model,
it is possible to express the flow of any user interaction entirely in the jPDL pageflow definition, and write ac-
tion listener methods that are completely unaware of the flow of the interaction.

Here is an example page flow definition using jPDL:

<pageflow-definition name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>

Pageflows and business processes

JBoss Seam 1.1.1.GA 92

<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}" />

</transition>
</start-page>

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">
<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation />

</page>

<page name="lose" view-id="/lose.jsp">
<redirect/>
<end-conversation />

</page>

</pageflow-definition>

There are two things we notice immediately here:

• The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the underlying Java
code is more complex.)

• The jPDL makes the user interaction immediately understandable, without us needing to even look at the
JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the page flow), there are

Pageflows and business processes

JBoss Seam 1.1.1.GA 93

a constrained set of possible transitions to other states. The stateless model is an ad hoc model which is suitable
to relatively unconstrained, freeform navigation where the user decides where he/she wants to go next, not the
application.

The stateful/stateless navigation distinction is quite similar to the traditional view of modal/modeless interac-
tion. Now, Seam applications are not usually modal in the simple sense of the word - indeed, avoiding applica-
tion modal behavior is one of the main reasons for having conversations! However, Seam applications can be,
and often are, modal at the level of a particular conversation. It is well-known that modal behavior is something
to avoid as much as possible; it is very difficult to predict the order in which your users are going to want to do
things! However, there is no doubt that the stateful model has its place.

The biggest contrast between the two models is the back-button behavior.

7.1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back, forward and re-
fresh buttons. It is the responsibility of the application to ensure that conversational state remains internally
consistent when this occurs. Experience with the combination of web application frameworks like Struts or
WebWork - that do not support a conversational model - and stateless component models like EJB stateless ses-
sion beans or the Spring framework has taught many developers that this is close to impossible to do! However,
our experience is that in the context of Seam, where there is a well-defined conversational model, backed by
stateful session beans, it is actually quite straightforward. Usually it is as simple as combining the use of no-
conversation-view-id with null checks at the beginning of action listener methods. We consider support for
freeform navigation to be almost always desirable.

In this case, the no-conversation-view-id declaration goes in pages.xml. It tells Seam to redirect to a differ-
ent page if a request originates from a page rendered during a conversation, and that conversation no longer ex-
ists:

<page view-id="/checkout.xhtml"
no-conversation-view-id="/main.xhtml"/>

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition back to a previ-
ous state. Since the stateful model enforces a defined set of transitions from the current state, back buttoning is
be default disallowed in the stateful model! Seam transparently detects the use of the back button, and blocks
any attempt to perform an action from a previous, "stale" page, and simply redirects the user to the "current"
page (and displays a faces message). Whether you consider this a feature or a limitation of the stateful model
depends upon your point of view: as an application developer, it is a feature; as a user, it might be frustrating!
You can enable backbutton navigation from a particular page node by setting back="enabled".

<page name="checkout"
view-id="/checkout.xhtml"
back="enabled">

<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>

</page>

This allows backbuttoning from the checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered during a pageflow,
and the conversation with the pageflow no longer exists. In this case, the no-conversation-view-id declara-
tion goes into the pageflow definition:

<page name="checkout"
view-id="/checkout.xhtml"

Pageflows and business processes

JBoss Seam 1.1.1.GA 94

back="enabled"
no-conversation-view-id="/main.xhtml">

<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>

</page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when to prefer one
model over the other.

7.2. Using jPDL pageflows

7.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and tell them where to find our pageflow definition.
We can specify this Seam configuration in components.xml.

<component class="org.jboss.seam.core.Jbpm">
<property name="pageflowDefinitions">pageflow.jpdl.xml</property>

</component>

The first line installs jBPM, the second points to a jPDL-based pageflow definition.

7.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a @Begin,
@BeginTask or @StartTask annotation:

@Begin(pageflow="numberguess")
public void begin() { ... }

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @Factory or @Create method,
for example—we consider ourselves to be already at the page being rendered, and use a <start-page> node as
the first node in the pageflow, as in the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action listener de-
termines which is the first page to be rendered. In this case, we use a <start-state> as the first node in the
pageflow, and declare a transition for each possible outcome:

<pageflow-definition name="viewEditDocument">

<start-state name="start">
<transition name="documentFound" to="displayDocument"/>
<transition name="documentNotFound" to="notFound"/>

</start-state>

<page name="displayDocument" view-id="/document.jsp">
<transition name="edit" to="editDocument"/>
<transition name="done" to="main"/>

</page>

...

<page name="notFound" view-id="/404.jsp">
<end-conversation/>

</page>

Pageflows and business processes

JBoss Seam 1.1.1.GA 95

</pageflow-definition>

7.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">

<action expression="#{numberGuess.guess}" />
</transition>

</page>

The view-id is the JSF view id. The <redirect/> element has the same effect as <redirect/> in a JSF naviga-
tion rule: namely, a post-then-redirect behavior, to overcome problems with the browser's refresh button. (Note
that Seam propagates conversation contexts over these browser redirects. So there is no need for a Ruby on
Rails style "flash" construct in Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or command link in
numberGuess.jsp.

<h:commandButton type="submit" value="Guess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action by calling the
guess() method of the numberGuess component. Notice that the syntax used for specifying actions in the jPDL
is just a familiar JSF EL expression, and that the transition action handler is just a method of a Seam compon-
ent in the current Seam contexts. So we have exactly the same event model for jBPM events that we already
have for JSF events! (The One Kind of Stuff principle.)

In the case of a null outcome (for example, a command button with no action defined), Seam will signal the
transition with no name if one exists, or else simply redisplay the page if all transitions have names. So we
could slightly simplify our example pageflow and this button:

<h:commandButton type="submit" value="Guess"/>

Would fire the following un-named transition:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition to="evaluateGuess">

<action expression="#{numberGuess.guess}" />
</transition>

</page>

It is even possible to have the button call an action method, in which case the action outcome will determine the
transition to be taken:

<h:commandButton type="submit" value="Guess" action="#{numberGuess.guess}"/>

<page name="displayGuess" view-id="/numberGuess.jsp">
<transition name="correctGuess" to="win"/>
<transition name="incorrectGuess" to="evaluateGuess"/>

</page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow out of the
pageflow definition and back into the other components. It is much better to centralize this concern in the page-

Pageflows and business processes

JBoss Seam 1.1.1.GA 96

flow itself.

7.2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do need the
<decision> node, however:

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

7.2.5. Ending the flow

We end the conversation using <end-conversation> or @End. (In fact, for readability, use of both is encour-
aged.)

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation/>

</page>

Optionally, we can end a task, specify a jBPM transition name. In this case, Seam will signal the end of the
current task in the overarching business process.

<page name="win" view-id="/win.jsp">
<redirect/>
<end-task transition="success"/>

</page>

7.3. Business process management in Seam

A business process is a well-defined set of tasks that must be performed by users or software systems according
to well-defined rules about who can perform a task, and when it should be performed. Seam's jBPM integration
makes it easy to display lists of tasks to users and let them manage their tasks. Seam also lets the application
store state associated with the business process in the BUSINESS_PROCESS context, and have that state made per-
sistent via jBPM variables.

A simple business process definition looks much the same as a page flow definition (One Kind of Stuff), except
that instead of <page> nodes, we have <task-node> nodes. In a long-running business process, the wait states
are where the system is waiting for some user to log in and perform a task.

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>

</start-state>

<task-node name="todo">
<task name="todo" description="#{todoList.description}">

<assignment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>

</task-node>

Pageflows and business processes

JBoss Seam 1.1.1.GA 97

<end-state name="done"/>

</process-definition>

It is perfectly possible that we might have both jPDL business process definitions and jPDL pageflow defini-
tions in the same project. If so, the relationship between the two is that a single <task> in a business process
corresponds to a whole pageflow <pageflow-definition>

7.4. Using jPDL business process definitions

7.4.1. Installing process definitions

We need to install jBPM, and tell it where to find the business process definitions:

<component class="org.jboss.seam.core.Jbpm">
<property name="processDefinitions">todo.jpdl.xml</property>

</component>

7.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and group act-
or ids. We specify the current actor ids using the built in Seam component named actor:

@In Actor actor;

public String login() {
...
actor.setId(user.getUserName());
actor.getGroupActorIds().addAll(user.getGroupNames());
...

}

Pageflows and business processes

JBoss Seam 1.1.1.GA 98

7.4.3. Initiating a business process

To initiate a business process instance, we use the @CreateProcess annotation:

@CreateProcess(definition="todo")
public void createTodo() { ... }

7.4.4. Task assignment

When a process starts, task instances are created. These must be assigned to users or user groups. We can either
hardcode our actor ids, or delegate to a Seam component:

<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>

</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to a pool:

<task name="todo" description="#{todoList.description}">
<assignment pooled-actors="employees"/>

</task>

7.4.5. Task lists

Several built-in Seam components make it easy to display task lists. The pooledTaskInstanceList is a list of
pooled tasks that users may assign to themselves:

<h:dataTable value="#{pooledTaskInstanceList}" var="task">
<h:column>

<f:facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>

</h:column>
<h:column>

<s:link action="#{pooledTask.assignToCurrentActor}" value="Assign" taskInstance="#{task}"/>
</h:column>

</h:dataTable>

Note that instead of <s:link> we could have used a plain JSF <h:commandLink>:

<h:commandLink action="#{pooledTask.assignToCurrentActor}">
<f:param name="taskId" value="#{task.id}"/>

</h:commandLink>

The pooledTask component is a built-in component that simply assigns the task to the current user.

The taskInstanceListByType component includes tasks of a particular type that are assigned to the current
user:

<h:dataTable value="#{taskInstanceListByType['todo']}" var="task">
<h:column>

<f:facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>

</h:column>
<h:column>

<s:link action="#{todoList.start}" value="Start Work" taskInstance="#{task}"/>
</h:column>

</h:dataTable>

Pageflows and business processes

JBoss Seam 1.1.1.GA 99

7.4.6. Performing a task

To begin work on a task, we use either @StartTask or @BeginTask on the listener method:

@StartTask
public String start() { ... }

These annotations begin a special kind of conversation that has significance in terms of the overarching busi-
ness process. Work done by this conversation has access to state held in the business process context.

If we end the conversation using @EndTask, Seam will signal the completion of the task:

@EndTask(transition="completed")
public String completed() { ... }

(Alternatively, we could have used <end-conversation> as shown above.)

At this point, jBPM takes over and continues executing the business process definition. (In more complex pro-
cesses, several tasks might need to be completed before process execution can resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features that jBPM
provides for managing complex business processes.

Pageflows and business processes

JBoss Seam 1.1.1.GA 100

Chapter 8. Internationalization and themes
Seam makes it easy to build internationalized applications by providing several built-in components for hand-
ling multi-language UI messages.

8.1. Locales

Each user login session has an associated instance of java.util.Locale (available to the application as a ses-
sion-scoped component named locale). Under normal circumstances, you won't need to do any special config-
uration to set the locale. Seam just delegates to JSF to determine the active locale:

• If there is a locale associated with the HTTP request (the browser locale), and that locale is in the list of
supported locales from faces-config.xml, use that locale for the rest of the session.

• Otherwise, if a default locale was specified in the faces-config.xml, use that locale for the rest of the ses-
sion.

• Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam configuration properties
org.jboss.seam.core.localeSelector.language, org.jboss.seam.core.localeSelector.country and
org.jboss.seam.core.localeSelector.variant, but we can't think of any good reason to ever do this.

It is, however, useful to allow the user to set the locale manually via the application user interface. Seam
provides built-in functionality for overriding the locale determined by the algorithm above. All you have to do
is add the following fragment to a form in your JSP or Facelets page:

<h:selectOneMenu value="#{localeSelector.language}">
<f:selectItem itemLabel="English" itemValue="en"/>
<f:selectItem itemLabel="Deutsch" itemValue="de"/>
<f:selectItem itemLabel="Francais" itemValue="fr"/>

</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}" value="#{messages['ChangeLanguage']}"/>

Or, if you want a list of all supported locales from faces-config.xml, just use:

<h:selectOneMenu value="#{localeSelector.localeString}">
<f:selectItems value="#{localeSelector.supportedLocales}"/>

</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}" value="#{messages['ChangeLanguage']}"/>

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF locales will be
overridden for the rest of the session.

8.2. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of <f:loadBundle />.
You can use this approach in Seam applications. Alternatively, you can take advantage of the Seam messages

component to display templated labels with embedded EL expressions.

8.2.1. Defining labels

JBoss Seam 1.1.1.GA 101

Each login session has an associated instance of java.util.ResourceBundle (available to the application as a
session-scoped component named org.jboss.seam.core.resourceBundle). You'll need to make your interna-
tionalized labels available via this special resource bundle. By default, the resource bundle used by Seam is
named messages and so you'll need to define your labels in files named messages.properties, mes-

sages_en.properties, messages_en_AU.properties, etc. These files usually belong in the WEB-INF/classes

directory.

So, in messages_en.properties:

Hello=Hello

And in messages_en_AU.properties:

Hello=G'day

You can select a different name for the resource bundle by setting the Seam configuration property named
org.jboss.seam.core.resourceBundle.bundleNames. You can even specify a list of resource bundle names
to be searched (depth first) for messages.

<core:resource-bundle>
<core:bundle-names>

<value>mycompany_messages</value>
<value>standard_messages</value>

</core:bundle-names>
</core:resource-bundle>

If you want to define a message just for a particular page, you can specify it in a resource bundle with the same
name as the JSF view id, with the leading / and trailing file extension removed. So we could put our message in
welcome/hello_en.properties if we only needed to display the message on /welcome/hello.jsp.

You can even specify an explicit bundle name in pages.xml:

<page view-id="/welcome/hello.jsp" bundle="HelloMessages"/>

Then we could use messages defined in HelloMessages.properties on /welcome/hello.jsp.

8.2.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without having to type
<f:loadBundle ... /> on every page. Instead, you can simply type:

<h:outputText value="#{messages['Hello']}"/>

or:

<h:outputText value="#{messages.Hello}"/>

Even better, the messages themselves may contain EL expressions:

Hello=Hello, #{user.firstName} #{user.lastName}

Hello=G'day, #{user.firstName}

You can even use the messages in your code:

Internationalization and themes

JBoss Seam 1.1.1.GA 102

@In private Map<String, String> messages;

@In("#{messages['Hello']}") private String helloMessage;

8.2.3. Faces messages

The facesMessages component is a super-convenient way to display success or failure messages to the user.
The functionality we just described also works for faces messages:

@Name("hello")
@Stateless
public class HelloBean implements Hello {

@In FacesMessages facesMessages;

public String sayIt() {
facesMessages.addFromResourceBundle("Hello");

}
}

This will display Hello, Gavin King or G'day, Gavin, depending upon the user's locale.

8.3. Timezones

There is also a session-scoped instance of java.util.Timezone, named org.jboss.seam.core.timezone, and
a Seam component for changing the timezone named org.jboss.seam.core.timezoneSelector. By default,
the timezone is the default timezone of the server. Unfortunately, the JSF specification says that all dates and
times should be assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified using
<f:convertDateTime>. This is an extremely inconvenient default behavior.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In addition, Seam provides
the <s:convertDateTime> tag which always performs conversions in the Seam timezone.

8.4. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the localization API, but of
course these two concerns are orthogonal, and some applications support both localization and themes.

First, configure the set of supported themes:

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>

<value>default</value>
<value>accessible</value>
<value>printable</value>

</theme:available-themes>
</theme:theme-selector>

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example, the default theme is
defined as a set of entries in default.properties. For example, default.properties might define:

css ../screen.css
template template.xhtml

Internationalization and themes

JBoss Seam 1.1.1.GA 103

Usually the entries in a theme resource bundle will be paths to CSS styles or images and names of facelets tem-
plates (unlike localization resource bundles which are usually text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the stylesheet in a facelets
page:

<link href="#{theme.css}" rel="stylesheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a <ui:composition>:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
template="#{theme.template}">

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch themes:

<h:selectOneMenu value="#{themeSelector.theme}">
<f:selectItems value="#{themeSelector.themes}"/>

</h:selectOneMenu>
<h:commandButton action="#{themeSelector.select}" value="Select Theme"/>

8.5. Persisting locale and theme preferences via cookies

The locale selector, theme selector and timezone selector all support persistence of locale and theme preference
to a cookie. Simply set the cookie-enabled configuration property:

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>

<value>default</value>
<value>accessible</value>
<value>printable</value>

</theme:available-themes>
</theme:theme-selector>

<core:locale-selector cookie-enabled="true"/>

Internationalization and themes

JBoss Seam 1.1.1.GA 104

Chapter 9. Asynchronicity and messaging
Seam makes it very easy to perform work asynchronously from a web request. When most people think of
asynchronicity in Java EE, they think of using JMS. This is certainly one way to approach the problem in Seam,
and is the right way when you have strict and well-defined quality of service requirements. Seam makes it easy
to send and recieve JMS messages using Seam components.

But for many usecases, JMS is overkill. Seam layers a simple asynchronous method and event facility over the
EJB 3.0 timer service.

9.1. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations as the container's EJB
timer service. If you're not familiar with the Timer service, don't worry, you don't need to interact with it dir-
ectly if you want to use asynchronous methods in Seam.

To use asynchronous methods and events, you need to add the following line to components.xml:

<core:dispatcher/>

Note that this functionality is not available in environments which do not support EJB 3.0.

9.1.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in a different
thread) from the caller. We usually use an asynchronous call when we want to return an immediate response to
the client, and let some expensive work be processed in the background. This pattern works very well in applic-
ations which use AJAX, where the client can automatically poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed asynchronously.

@Local
public interface PaymentHandler
{

@Asynchronous
public void processPayment(Payment payment);

}

(For JavaBean components we can annotate the component implementation class if we like.)

The use of asynchronicity is transparent to the bean class:

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler
{

public void processPayment(Payment payment)
{

//do some work!
}

}

And also transparent to the client:

@Stateful

JBoss Seam 1.1.1.GA 105

@Name("paymentAction")
public class CreatePaymentAction
{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String pay()
{

paymentHandler.processPayment(new Payment(bill));
return "success";

}
}

The asynchronous method is processed in a completely new event context and does not have access to the ses-
sion or conversation context state of the caller. However, the business process context is propagated.

Asynchronous method calls may be scheduled for later execution using the @Duration, @Expiration and
@IntervalDuration annotations.

@Local
public interface PaymentHandler
{

@Asynchronous
public void processScheduledPayment(Payment payment, @Expiration Date date);

@Asynchronous
public void processRecurringPayment(Payment payment, @Expiration Date date, @IntervalDuration Date interval)'

}

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String schedulePayment()
{

paymentHandler.processScheduledPayment(new Payment(bill), bill.getDueDate());
return "success";

}

public String scheduleRecurringPayment()
{

paymentHandler.processRecurringPayment(new Payment(bill), bill.getDueDate(), ONE_MONTH);
return "success";

}
}

Both client and server may access the Timer object associated with the invocation.

@Local
public interface PaymentHandler
{

@Asynchronous
public Timer processScheduledPayment(Payment payment, @Expiration Date date);

}

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler
{

@In Timer timer;

public Timer processScheduledPayment(Payment payment, @Expiration Date date)
{

Asynchronicity and messaging

JBoss Seam 1.1.1.GA 106

//do some work!

return timer; //note that return value is completely ignored
}

}

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String schedulePayment()
{

Timer timer = paymentHandler.processScheduledPayment(new Payment(bill), bill.getDueDate());
return "success";

}
}

Asynchronous methods cannot return any other value to the caller.

9.1.2. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous processing, simply
call the raiseAsynchronousEvent() methods of the Events class. To schedule a timed event, call one of the
raiseTimedEvent() methods. Components may observe asynchronous events in the usual way, but remember
that only the business process context is propagated to the asynchronous thread.

9.2. Messaging in Seam

Seam makes it easy to send and receive JMS messages to and from Seam components.

9.2.1. Configuration

To configure Seam's infrastructure for sending JMS messages, you need to tell Seam about any topics and
queues you want to send messages to, and also tell Seam where to find the QueueConnectionFactory and/or
TopicConnectionFactory.

Seam defaults to using UIL2ConnectionFactory which is the usual connection factory for use with JBossMQ.
If you are using some other JMS provider, you need to set one or both of queueConnec-

tion.queueConnectionFactoryJndiName and topicConnection.topicConnectionFactoryJndiName in
seam.properties, web.xml or components.xml.

You also need to list topics and queues in components.xml to install Seam managed TopicPublishers and
QueueSenders:

<jms:managed-topic-publisher name="stockTickerPublisher" auto-create="true" topic-jndi-name="topic/stockTickerTopic"/>

<jms:managed-queue-sender name="paymentQueueSender" auto-create="true" queue-jndi-name="queue/paymentQueue"/>

9.2.2. Sending messages

Now, you can inject a JMS TopicPublisher and TopicSession into any component:

Asynchronicity and messaging

JBoss Seam 1.1.1.GA 107

@In
private TopicPublisher stockTickerPublisher;
@In
private TopicSession topicSession;

public void publish(StockPrice price) {
try
{

topicPublisher.publish(topicSession.createObjectMessage(price));
}
catch (Exception ex)
{

throw new RuntimeException(ex);
}

}

Or, for working with a queue:

@In
private QueueSender paymentQueueSender;
@In
private QueueSession queueSession;

public void publish(Payment payment) {
try
{

paymentQueueSender.publish(queueSession.createObjectMessage(payment));
}
catch (Exception ex)
{

throw new RuntimeException(ex);
}

}

9.2.3. Receiving messages using a message-driven bean

You can process messages using any EJB3 message driven bean. Message-driven beans may even be Seam
components, in which case it is possible to inject other event and application scoped Seam components.

9.2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described in the next
chapter.

Asynchronicity and messaging

JBoss Seam 1.1.1.GA 108

Chapter 10. Remoting
Seam provides a convenient method of remotely accessing components from a web page, using AJAX
(Asynchronous Javascript and XML). The framework for this functionality is provided with almost no up-front
development effort - your components only require simple annotating to become accessible via AJAX. This
chapter describes the steps required to build an AJAX-enabled web page, then goes on to explain the features of
the Seam Remoting framework in more detail.

10.1. Configuration

To use remoting, the Seam Remoting servlet must first be configured in your web.xml file:

<servlet>
<servlet-name>Seam Remoting</servlet-name>
<servlet-class>org.jboss.seam.remoting.SeamRemotingServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Seam Remoting</servlet-name>
<url-pattern>/seam/remoting/*</url-pattern>

</servlet-mapping>

The next step is to import the necessary Javascript into your web page. There are a minimum of two scripts that
must be imported. The first one contains all the client-side framework code that enables remoting functionality:

<script type="text/javascript" src="seam/remoting/resource/remote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call. It is generated
dynamically based on the local interface of your components, and includes type definitions for all of the classes
that can be used to call the remotable methods of the interface. The name of the script reflects the name of your
component. For example, if you have a stateless session bean annotated with @Name("customerAction"), then
your script tag should look like this:

<script type="text/javascript" src="seam/remoting/interface.js?customerAction"></script>

If you wish to access more than one component from the same page, then include them all as parameters of
your script tag:

<script type="text/javascript" src="seam/remoting/interface.js?customerAction&accountAction"></script>

JBoss Seam 1.1.1.GA 109

10.2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object. This object is
defined in remote.js, and you'll be using it to make asynchronous calls against your component. It is split into
two areas of functionality; Seam.Component contains methods for working with components and
Seam.Remoting contains methods for executing remote requests. The easiest way to become familiar with this
object is to start with a simple example.

10.2.1. A Hello World example

Let's step through a simple example to see how the Seam object works. First of all, let's create a new Seam com-
ponent called helloAction.

@Stateless
@Name("helloAction")
public class HelloAction implements HelloLocal {
public String sayHello(String name) {
return "Hello, " + name;

}
}

You also need to create a local interface for our new component - take special note of the @WebRemote annota-
tion, as it's required to make our method accessible via remoting:

@Local
public interface HelloLocal {
@WebRemote
public String sayHello(String name);

}

That's all the server-side code we need to write. Now for our web page - create a new page and import the fol-
lowing scripts:

<script type="text/javascript" src="seam/remoting/resource/remote.js"></script>
<script type="text/javascript" src="seam/remoting/interface.js?helloAction"></script>

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something when it's clicked:

Remoting

JBoss Seam 1.1.1.GA 110

<script type="text/javascript">
//<![CDATA[

function sayHello() {
var name = prompt("What is your name?");
Seam.Component.getInstance("helloAction").sayHello(name, sayHelloCallback);

}

function sayHelloCallback(result) {
alert(result);

}

//]]>
</script>

We're done! Deploy your application and browse to your page. Click the button, and enter a name when promp-
ted. A message box will display the hello message confirming that the call was successful. If you want to save
some time, you'll find the full source code for this Hello World example in Seam's /ex-

amples/remoting/helloworld directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start with, you can
see from the Javascript code listing that we have implemented two methods - the first method is responsible for
prompting the user for their name and then making a remote request. Take a look at the following line:

Seam.Component.getInstance("helloAction").sayHello(name, sayHelloCallback);

The first section of this line, Seam.Component.getInstance("helloAction") returns a proxy, or "stub" for our
helloAction component. We can invoke the methods of our component against this stub, which is exactly what
happens with the remainder of the line: sayHello(name, sayHelloCallback);.

What this line of code in its completeness does, is invoke the sayHello method of our component, passing in
name as a parameter. The second parameter, sayHelloCallback isn't a parameter of our component's sayHello

method, instead it tells the Seam Remoting framework that once it receives the response to our request, it
should pass it to the sayHelloCallback Javascript method. This callback parameter is entirely optional, so feel
free to leave it out if you're calling a method with a void return type or if you don't care about the result.

The sayHelloCallback method, once receiving the response to our remote request then pops up an alert mes-
sage displaying the result of our method call.

10.2.2. Seam.Component

The Seam.Component Javascript object provides a number of client-side methods for working with your Seam
components. The two main methods, newInstance() and getInstance() are documented in the following sec-
tions however their main difference is that newInstance() will always create a new instance of a component
type, and getInstance() will return a singleton instance.

Seam.Component.newInstance()

Use this method to create a new instance of an entity or Javabean component. The object returned by this meth-
od will have the same getter/setter methods as its server-side counterpart, or alternatively if you wish you can
access its fields directly. Take the following Seam entity component for example:

Remoting

JBoss Seam 1.1.1.GA 111

@Name("customer")
@Entity
public class Customer implements Serializable
{
private Integer customerId;
private String firstName;
private String lastName;

@Column public Integer getCustomerId() {
return customerId;

}

public void setCustomerId(Integer customerId} {
this.customerId = customerId;

}

@Column public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

@Column public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}
}

To create a client-side Customer you would write the following code:

var customer = Seam.Component.newInstance("customer");

Then from here you can set the fields of the customer object:

customer.setFirstName("John");
// Or you can set the fields directly
customer.lastName = "Smith";

Seam.Component.getInstance()

The getInstance() method is used to get a reference to a Seam session bean component stub, which can then
be used to remotely execute methods against your component. This method returns a singleton for the specified
component, so calling it twice in a row with the same component name will return the same instance of the
component.

To continue our example from before, if we have created a new customer and we now wish to save it, we
would pass it to the saveCustomer() method of our customerAction component:

Seam.Component.getInstance("customerAction").saveCustomer(customer);

Remoting

JBoss Seam 1.1.1.GA 112

Seam.Component.getComponentName()

Passing an object into this method will return its component name if it is a component, or null if it is not.

if (Seam.Component.getComponentName(instance) == "customer")
alert("Customer");

else if (Seam.Component.getComponentName(instance) == "staff")
alert("Staff member");

10.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam.Remoting object. While
you shouldn't need to directly call most of its methods, there are a couple of important ones worth mentioning.

Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may need to create these
types on the client side to pass as parameters into your component method. Use the createType() method to
create an instance of your type. Pass in the fully qualified Java class name as a parameter:

var widget = Seam.Remoting.createType("com.acme.widgets.MyWidget");

Seam.Remoting.getTypeName()

This method is the equivalent of Seam.Component.getComponentName() but for non-component types. It will
return the name of the type for an object instance, or null if the type is not known. The name is the fully quali-
fied name of the type's Java class.

10.3. Client Interfaces

In the configuration section above, the interface, or "stub" for our component is imported into our page via
seam/remoting/interface.js:

<script type="text/javascript" src="seam/remoting/interface.js?customerAction"></script>

By including this script in our page, the interface definitions for our component, plus any other components or
types that are required to execute the methods of our component are generated and made available for the re-
moting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs. Executable stubs
are behavioural, and are used to execute methods against your session bean components, while type stubs con-
tain state and represent the types that can be passed in as parameters or returned as a result.

The type of client stub that is generated depends on the type of your Seam component. If the component is a
session bean, then an executable stub will be generated, otherwise if it's an entity or JavaBean, then a type stub

Remoting

JBoss Seam 1.1.1.GA 113

will be generated. There is one exception to this rule; if your component is a JavaBean (ie it is not a session
bean nor an entity bean) and any of its methods are annotated with @WebRemote, then an executable stub will
be generated for it instead of a type stub. This allows you to use remoting to call methods of your JavaBean
components in a non-EJB environment where you don't have access to session beans.

10.4. The Context

The Seam Remoting Context contains additional information which is sent and received as part of a remoting
request/response cycle. At this stage it only contains the conversation ID but may be expanded in the future.

10.4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to read or set the
conversation ID in the Seam Remoting Context. To read the conversation ID after making a remote request call
Seam.Remoting.getContext().getConversationId(). To set the conversation ID before making a request,
call Seam.Remoting.getContext().setConversationId().

If the conversation ID hasn't been explicitly set with Seam.Remoting.getContext().setConversationId(),
then it will be automatically assigned the first valid conversation ID that is returned by any remoting call. If you
are working with multiple conversations within your page, then you may need to explicitly set the conversation
ID before each call. If you are working with just a single conversation, then you don't need to do anything spe-
cial.

10.5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is recommended that
this feature is used wherever it is appropriate to reduce network traffic.

The method Seam.Remoting.startBatch() will start a new batch, and any component calls executed after
starting a batch are queued, rather than being sent immediately. When all the desired component calls have
been added to the batch, the Seam.Remoting.executeBatch() method will send a single request containing all
of the queued calls to the server, where they will be executed in order. After the calls have been executed, a
single response containining all return values will be returned to the client and the callback functions (if
provided) triggered in the same order as execution.

If you start a new batch via the startBatch() method but then decide you don't want to send it, the
Seam.Remoting.cancelBatch() method will discard any calls that were queued and exit the batch mode.

To see an example of a batch being used, take a look at /examples/remoting/chatroom.

10.6. Working with Data types

10.6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are generally compatible
with either their primitive type or their corresponding wrapper class.

String

Remoting

JBoss Seam 1.1.1.GA 114

Simply use Javascript String objects when setting String parameter values.

Number

There is support for all number types supported by Java. On the client side, number values are always serialized
as their String representation and then on the server side they are converted to the correct destination type. Con-
version into either a primitive or wrapper type is supported for Byte, Double, Float, Integer, Long and Short

types.

Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java boolean.

10.6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-component class. Use
the appropriate method (either Seam.Component.newInstance() for Seam components or
Seam.Remoting.createType() for everything else) to create a new instance of the object.

It is important to note that only objects that are created by either of these two methods should be used as para-
meter values, where the parameter is not one of the other valid types mentioned anywhere else in this section.
In some situations you may have a component method where the exact parameter type cannot be determined,
such as:

@Name("myAction")
public class MyAction implements MyActionLocal {
public void doSomethingWithObject(Object obj) {
// code

}
}

In this case you might want to pass in an instance of your myWidget component, however the interface for my-
Action won't include myWidget as it is not directly referenced by any of its methods. To get around this, MyWid-
get needs to be explicitly imported:

<script type="text/javascript" src="seam/remoting/interface.js?myAction&myWidget"></script>

This will then allow a myWidget object to be created with Seam.Component.newInstance("myWidget"), which
can then be passed to myAction.doSomethingWithObject().

10.6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the client side, use
a Javascript Date object to work with date values. On the server side, use any java.util.Date (or descendent,
such as java.sql.Date or java.sql.Timestamp class.

10.6.4. Enums

Remoting

JBoss Seam 1.1.1.GA 115

On the client side, enums are treated the same as Strings. When setting the value for an enum parameter, simply
use the String representation of the enum. Take the following component as an example:

@Name("paintAction")
public class paintAction implements paintLocal {
public enum Color {red, green, blue, yellow, orange, purple};

public void paint(Color color) {
// code

}
}

To call the paint() method with the color red, pass the parameter value as a String literal:

Seam.Component.getInstance("paintAction").paint("red");

The inverse is also true - that is, if a component method returns an enum parameter (or contains an enum field
anywhere in the returned object graph) then on the client-side it will be represented as a String.

10.6.5. Collections

Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see the next sec-
tion for those), and are implemented client-side as a Javascript array. When calling a component method that
accepts one of these types as a parameter, your parameter should be a Javascript array. If a component method
returns one of these types, then the return value will also be a Javascript array. The remoting framework is clev-
er enough on the server side to convert the bag to an appropriate type for the component method call.

Maps

As there is no native support for Maps within Javascript, a simple Map implementation is provided with the
Seam Remoting framework. To create a Map which can be used as a parameter to a remote call, create a new
Seam.Remoting.Map object:

var map = new Seam.Remoting.Map();

This Javascript implementation provides basic methods for working with Maps: size(), isEmpty(), keySet(),
values(), get(key), put(key, value), remove(key) and contains(key). Each of these methods are equival-
ent to their Java counterpart. Where the method returns a collection, such as keySet() and values(), a Javas-
cript Array object will be returned that contains the key or value objects (respectively).

10.7. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents of all the
packets send back and forth between the client and server in a popup window. To enable debug mode, either
execute the setDebug() method in Javascript:

Remoting

JBoss Seam 1.1.1.GA 116

Seam.Remoting.setDebug(true);

Or configure it via components.xml:

<remoting:remoting-config debug="true"/>

To turn off debugging, call setDebug(false). If you want to write your own messages to the debug log, call
Seam.Remoting.log(message).

10.8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified, its rendering
customised or even turned off completely.

10.8.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of
Seam.Remoting.loadingMessage:

Seam.Remoting.loadingMessage = "Loading...";

10.8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of displayLoad-

ingMessage() and hideLoadingMessage() with functions that instead do nothing:

// don't display the loading indicator
Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

10.8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else that you want.
To do this override the displayLoadingMessage() and hideLoadingMessage() messages with your own im-
plementation:

Seam.Remoting.displayLoadingMessage = function() {
// Write code here to display the indicator

};

Seam.Remoting.hideLoadingMessage = function() {
// Write code here to hide the indicator

};

10.9. Controlling what data is returned

Remoting

JBoss Seam 1.1.1.GA 117

When a remote method is executed, the result is serialized into an XML response that is returned to the client.
This response is then unmarshaled by the client into a Javascript object. For complex types (i.e. Javabeans) that
include references to other objects, all of these referenced objects are also serialized as part of the response.
These objects may reference other objects, which may reference other objects, and so forth. If left unchecked,
this object "graph" could potentially be enormous, depending on what relationships exist between your objects.
And as a side issue (besides the potential verbosity of the response), you might also wish to prevent sensitive
information from being exposed to the client.

Seam Remoting provides a simple means to "constrain" the object graph, by specifying the exclude field of the
remote method's @WebRemote annotation. This field accepts a String array containing one or more paths spe-
cified using dot notation. When invoking a remote method, the objects in the result's object graph that match
these paths are excluded from the serialized result packet.

For all our examples, we'll use the following Widget class:

@Name("widget")
public class Widget
{

private String value;
private String secret;
private Widget child;
private Map<String,Widget> widgetMap;
private List<Widget> widgetList;

// getters and setters for all fields
}

10.9.1. Constraining normal fields

If your remote method returns an instance of Widget, but you don't want to expose the secret field because it
contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})
public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't care about ex-
posing this particular field to the client. Instead, notice that the Widget value that is returned has a field child

that is also a Widget. What if we want to hide the child's secret value instead? We can do this by using dot
notation to specify this field's path within the result's object graph:

@WebRemote(exclude = {"child.secret"})
public Widget getWidget();

10.9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of collection (List,
Set, Array, etc). Collections are easy, and are treated like any other field. For example, if our Widget contained
a list of other Widgets in its widgetList field, to constrain the secret field of the Widgets in this list the an-
notation would look like this:

Remoting

JBoss Seam 1.1.1.GA 118

@WebRemote(exclude = {"widgetList.secret"})
public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's field name
will constrain the Map's key object values, while [value] will constrain the value object values. The following
example demonstrates how the values of the widgetMap field have their secret field constrained:

@WebRemote(exclude = {"widgetMap[value].secret"})
public Widget getWidget();

10.9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter where in the res-
ult's object graph it appears. This notation uses either the name of the component (if the object is a Seam com-
ponent) or the fully qualified class name (only if the object is not a Seam component) and is expressed using
square brackets:

@WebRemote(exclude = {"[widget].secret"})
public Widget getWidget();

10.9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})
public Widget getWidget();

10.10. JMS Messaging

Seam Remoting provides experimental support for JMS Messaging. This section describes the JMS support that
is currently implemented, but please note that this may change in the future. It is currently not recommended
that this feature is used within a production environment.

10.10.1. Configuration

Before you can subscribe to a JMS topic, you must first configure a list of the topics that can be subscribed to
by Seam Remoting. List the topics under
org.jboss.seam.remoting.messaging.subscriptionRegistry.allowedTopics in seam.properties,
web.xml or components.xml.

<remoting:remoting-config poll-timeout="5" poll-interval="1"/>

10.10.2. Subscribing to a JMS Topic

Remoting

JBoss Seam 1.1.1.GA 119

The following example demonstrates how to subscribe to a JMS Topic:

function subscriptionCallback(message)
{
if (message instanceof Seam.Remoting.TextMessage)
alert("Received message: " + message.getText());

}

Seam.Remoting.subscribe("topicName", subscriptionCallback);

The Seam.Remoting.subscribe() method accepts two parameters, the first being the name of the JMS Topic to
subscribe to, the second being the callback function to invoke when a message is received.

There are two types of messages supported, Text messages and Object messages. If you need to test for the type
of message that is passed to your callback function you can use the instanceof operator to test whether the
message is a Seam.Remoting.TextMessage or Seam.Remoting.ObjectMessage. A TextMessage contains the
text value in its text field (or alternatively call getText() on it), while an ObjectMessage contains its object
value in its object field (or call its getObject() method).

10.10.3. Unsubscribing from a Topic

To unsubscribe from a topic, call Seam.Remoting.unsubscribe() and pass in the topic name:

Seam.Remoting.unsubscribe("topicName");

10.10.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam.Remoting.pollInterval, which controls how long to wait between subsequent polls for new messages.
This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam.Remoting.pollTimeout, and is also expressed as seconds. It controls how long a
request to the server should wait for a new message before timing out and sending an empty response. Its de-
fault is 0 seconds, which means that when the server is polled, if there are no messages ready for delivery then
an empty response will be immediately returned.

Caution should be used when setting a high pollTimeout value; each request that has to wait for a message
means that a server thread is tied up until a message is received, or until the request times out. If many such re-
quests are being served simultaneously, it could mean a large number of threads become tied up because of this
reason.

It is recommended that you set these options via components.xml, however they can be overridden via Javas-
cript if desired. The following example demonstrates how to configure the polling to occur much more aggress-
ively. You should set these parameters to suitable values for your application:

Via components.xml:

<component name="org.jboss.seam.remoting.remotingConfig">
<property name="pollTimeout">5</property>
<property name="pollInterval">1</property>

</component>

Remoting

JBoss Seam 1.1.1.GA 120

Via JavaScript:

// Only wait 1 second between receiving a poll response and sending the next poll request.
Seam.Remoting.pollInterval = 1;

// Wait up to 5 seconds on the server for new messages
Seam.Remoting.pollTimeout = 5;

Remoting

JBoss Seam 1.1.1.GA 121

Chapter 11. Seam and JBoss Rules
Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM process definitions.

11.1. Installing rules

The first step is to make an instance of org.drools.RuleBase available in a Seam context variable. In most
rules-driven applications, rules need to be dynamically deployable, so you will need to implement some solu-
tion that allows you to deploy rules and make them available to Seam (a future release of Drools will provide a
Rule Server that solves this problem). For testing purposes, Seam provides a built-in component that compiles a
static set of rules from the classpath. You can install this component via components.xml:

<drools:rule-base name="policyPricingRules">
<drools:rule-files>

<value>policyPricingRules</value>
</drools:rule-files>

</drools:rule-base>

This component compiles rules from a set of .drl files and caches an instance of org.drools.RuleBase in the
Seam APPLICATION context. Note that it is quite likely that you will need to install multiple rule bases in a rule-
driven application.

If you want to use a Drools DSL, you alse need to specify the DSL definition:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl">
<drools:rule-files>

<value>policyPricingRules</value>
</drools:rule-files>

</drools:rule-base>

Next, we need to make an instance of org.drools.WorkingMemory available to each conversation. (Each Work-

ingMemory accumulates facts relating to the current conversation.)

<drools:managed-working-memory name="policyPricingWorkingMemory" auto-create="true" rule-base="#{policyPricingRules}"/>

Notice that we gave the policyPricingWorkingMemory a reference back to our rule base via the ruleBase con-
figuration property.

11.2. Using rules from a Seam component

We can now inject our WorkingMemory into any Seam component, assert facts, and fire rules:

@In WorkingMemory policyPricingWorkingMemory;

@In Policy policy;
@In Customer customer;

public void pricePolicy() throws FactException
{

policyPricingWorkingMemory.assertObject(policy);
policyPricingWorkingMemory.assertObject(customer);
policyPricingWorkingMemory.fireAllRules();

}

JBoss Seam 1.1.1.GA 122

11.3. Using rules from a jBPM process definition

You can even allow a rule base to act as a jBPM action handler, decision handler, or assignment handler—in
either a pageflow or business process definition.

<decision name="approval">

<handler class="org.jboss.seam.drools.DroolsDecisionHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
<assertObjects>

<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineItems}</element>

</assertObjects>
</handler>

<transition name="approved" to="ship">
<action class="org.jboss.seam.drools.DroolsActionHandler">

<workingMemoryName>shippingRulesWorkingMemory</workingMemoryName>
<assertObjects>

<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineItems}</element>

</assertObjects>
</action>

</transition>

<transition name="rejected" to="cancelled"/>

</decision>

The <assertObjects> element specifies EL expressions that return an object or collection of objects to be as-
serted as facts into the WorkingMemory.

There is also support for using Drools for jBPM task assignments:

<task-node name="review">
<task name="review" description="Review Order">

<assignment handler="org.jboss.seam.drools.DroolsAssignmentHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
<assertObjects>

<element>#{actor}</element>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineItems}</element>

</assertObjects>
</assignment>

</task>
<transition name="rejected" to="cancelled"/>
<transition name="approved" to="approved"/>

</task-node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assignable, as assignable and a
Seam Decision object, as decision. Rules which handle decisions should call de-

cision.setOutcome("result") to determine the result of the decision. Rules which perform assignments
should set the actor id using the Assignable.

package org.jboss.seam.examples.shop

import org.jboss.seam.drools.Decision

global Decision decision

rule "Approve Order For Loyal Customer"

Seam and JBoss Rules

JBoss Seam 1.1.1.GA 123

when
Customer(loyaltyStatus == "GOLD")
Order(totalAmount <= 10000)

then
decision.setOutcome("approved");

end

package org.jboss.seam.examples.shop

import org.jbpm.taskmgmt.exe.Assignable

global Assignable assignable

rule "Assign Review For Small Order"
when
Order(totalAmount <= 100)

then
assignable.setPooledActors(new String[] {"reviewers"});

end

Seam and JBoss Rules

JBoss Seam 1.1.1.GA 124

Chapter 12. JSF form validation in Seam
In plain JSF, validation is defined in the view:

<h:form>
<div>

<h:messages/>
</div>
<div>

Country:
<h:inputText value="#{location.country}" required="true">

<my:validateCountry/>
</h:inputText>

</div>
<div>

Zip code:
<h:inputText value="#{location.zip}" required="true">

<my:validateZip/>
</h:inputText>

</div>
<div>

<h:commandButton/>
</div>

</h:form>

In practice, this approach usually violates DRY, since most "validation" actually enforces constraints that are
part of the data model, and exist all the way down to the database schema definition. Seam provides support for
model-based constraints defined using Hibernate Validator.

Let's start by defining our constraints, on our Location class:

public class Location {
private String country;
private String zip;

@NotNull
@Length(max=30)
public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@NotNull
@Length(max=6)
@Pattern("^\d*$")
public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

}

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints instead of the
ones built into Hibernate Validator:

public class Location {
private String country;
private String zip;

@NotNull
@Country
public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@NotNull
@ZipCode
public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

}

JBoss Seam 1.1.1.GA 125

Whichever route we take, we no longer need to specify the type of validation to be used in the JSF page. In-
stead, we can use <s:validate> to validate against the constraint defined on the model object.

<h:form>
<div>

<h:messages/>
</div>
<div>

Country:
<h:inputText value="#{location.country}" required="true">

<s:validate/>
</h:inputText>

</div>
<div>

Zip code:
<h:inputText value="#{location.zip}" required="true">

<s:validate/>
</h:inputText>

</div>
<div>

<h:commandButton/>
</div>

</h:form>

Note: specifying @NotNull on the model does not eliminate the requirement for required="true" to appear on
the control! This is due to a limitation of the JSF validation architecture.

This version is not much less verbose than what we started with, so let's try <s:validateAll>:

<h:form>
<div>

<h:messages/>
</div>
<s:validateAll>

<div>
Country:
<h:inputText value="#{location.country}" required="true"/>

</div>
<div>

Zip code:
<h:inputText value="#{location.zip}" required="true"/>

</div>
<div>

<h:commandButton/>
</div>

</s:validateAll>
</h:form>

This tag simply adds an <s:validate> to every input in the form. For a large form, it can save a lot of typing!

Now we need to do something about displaying feedback to the user when validation fails. Currently we are
displaying all messages at the top of the form. What we would really like to do is display the message next to
the field with the error (this is possible in plain JSF), highlight the field (this is not possible) and, for good
measure, display some image next the the field (also not possible).

Let's try out <s:decorate>:

<h:form>
<div>

<h:messages globalOnly="true"/>
</div>
<s:validateAll>

<div>
Country:
<s:decorate>

JSF form validation in Seam

JBoss Seam 1.1.1.GA 126

<f:facet name="beforeInvalidField"><h:graphicImage src="img/error.gif"/></f:facet>
<f:facet name="afterInvalidField"><s:message/></f:facet>
<f:facet name="aroundInvalidField"><s:span styleClass="error"/></f:facet>
<h:inputText value="#{location.country}" required="true"/>

</s:decorate>
</div>
<div>

Zip code:
<s:decorate>

<f:facet name="beforeInvalidField"><h:graphicImage src="img/error.gif"/></f:facet>
<f:facet name="afterInvalidField"><s:message/></f:facet>
<f:facet name="aroundInvalidField"><s:span styleClass="error"/></f:facet>
<h:inputText value="#{location.zip}" required="true"/>

</s:decorate>
</div>
<div>

<h:commandButton/>
</div>

</s:validateAll>
</h:form>

Well, that looks much better to the user, but it is extremely verbose. Fortunately, the facets of <s:decorate>

may be defined on any parent element:

<h:form>
<f:facet name="beforeInvalidField">

<h:graphicImage src="img/error.gif"/>
</f:facet>
<f:facet name="afterInvalidField">

<s:message/>
</f:facet>
<f:facet name="aroundInvalidField">

<s:span styleClass="error"/>
</f:facet>
<div>

<h:messages globalOnly="true"/>
</div>
<s:validateAll>

<div>
Country:
<s:decorate>

<h:inputText value="#{location.country}" required="true"/>
</s:decorate>

</div>
<div>

Zip code:
<s:decorate>

<h:inputText value="#{location.zip}" required="true"/>
</s:decorate>

</div>
<div>

<h:commandButton/>
</div>

</s:validateAll>
</h:form>

This approach defines constraints on the model, and presents constraint violations in the view—a significantly
better design.

Finally, we can use Ajax4JSF to display validation messages as the user is typing:

<h:form>
<f:facet name="beforeInvalidField">

<h:graphicImage src="img/error.gif"/>
</f:facet>
<f:facet name="aroundInvalidField">

<s:span styleClass="error"/>

JSF form validation in Seam

JBoss Seam 1.1.1.GA 127

</f:facet>
<div>

<h:messages globalOnly="true"/>
</div>
<s:validateAll>

<div>
Country:
<s:decorate>

<h:inputText value="#{location.country}" required="true">
<a:support event="onblur" reRender="countryError"/>

</h:inputText>
<a:outputPanel id="countryError><s:message/></a:outputPanel>

</s:decorate>
</div>
<div>

Zip code:
<s:decorate>

<h:inputText value="#{location.zip}" required="true">
<a:support event="onblur" reRender="zipError"/>

</h:inputText>
<a:outputPanel id="zipError><s:message/></a:outputPanel>

</s:decorate>
</div>
<div>

<h:commandButton/>
</div>

</s:validateAll>
</h:form>

JSF form validation in Seam

JBoss Seam 1.1.1.GA 128

Chapter 13. Configuring Seam and packaging Seam
applications
Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several lines of XML are
required to integrate Seam into your JSF implementation and servlet container. There's no need to be too put off
by the following sections; you'll never need to type any of this stuff yourself, since you can just copy and paste
from the example applications!

13.1. Basic Seam configuration

First, let's look at the basic configuration that is needed whenever we use Seam with JSF.

13.1.1. Integrating Seam with JSF and your servlet container

Seam requires the following entry in your web.xml file:

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application contexts.

To integrate with the JSF request lifecycle, we also need a JSF PhaseListener registered in in the faces-con-

fig.xml file:

<lifecycle>
<phase-listener>org.jboss.seam.jsf.SeamPhaseListener</phase-listener>

</lifecycle>

The actual listener class here varies depending upon how you want to manage transaction demarcation (more
on this below).

If you are using Sun's JSF 1.2 reference implementation, you should add this to faces-config.xml:

<application>
<el-resolver>org.jboss.seam.jsf.SeamELResolver</el-resolver>

</application>

(This line should not strictly speaking be necessary, but it works around a minor bug in the RI.)

Some JSF implementations have a broken implementation of server-side state saving that interferes with
Seam's conversation propagation. If you have problems with conversation propagation during form submis-
sions, try switching to client-side state saving. You'll need this in web.xml:

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

13.1.2. Integrating Seam with your EJB container

We need to apply the SeamInterceptor to our Seam components. The simplest way to do this is to add the fol-

JBoss Seam 1.1.1.GA 129

lowing interceptor binding to the <assembly-descriptor> in ejb-jar.xml:

<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

</interceptor-binding>

Seam needs to know where to go to find session beans in JNDI. One way to do this is specify the @JndiName

annotation on every session bean Seam component. However, this is quite tedious. A better approach is to spe-
cify a pattern that Seam can use to calculate the JNDI name from the EJB name. Unfortunately, there is no
standard mapping to global JNDI defined in the EJB3 specification, so this mapping is vendor-specific. We
must specify a pattern using the configuration property named org.jboss.seam.core.init.jndiPattern. We
may specify this using components.xml, web.xml or even seam.properties.

For JBoss AS, the following pattern is correct:

<core:init jndi-name="myEarName/#{ejbName}/local" />

Or:

<context-param>
<param-name>org.jboss.seam.core.init.jndiPattern</param-name>
<param-value>myEarName/#{ejbName}/local</param-value>

</context-param>

Where myEarName is the name of the EAR in which the bean is deployed.

Outside the context of an EAR (when using the JBoss Embeddable EJB3 container), the following pattern is the
one to use:

<core:init jndi-name="#{ejbName}/local" />

Or:

<context-param>
<param-name>org.jboss.seam.core.init.jndiPattern</param-name>
<param-value>#{ejbName}/local</param-value>

</context-param>

13.1.3. Enabling conversation propagation with redirects

If you want to use post-then-redirect in JSF, and you want Seam to propagate the conversation context across
the browser redirects, you need to register a servlet filter:

<filter>
<filter-name>Seam Redirect Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamRedirectFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Seam Redirect Filter</filter-name>
<url-pattern>*.jsf</url-pattern>

</filter-mapping>

This filter intercepts any browser redirects and adds a request parameter that specifies the Seam conversation
id.

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 130

13.1.4. Using facelets

If you want follow our advice and use facelets instead of JSP, add the following lines to faces-config.xml:

<application>
<view-handler>com.sun.facelets.FaceletViewHandler</view-handler>

</application>

And the following lines to web.xml:

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

13.2. Configuring Seam in Java EE 5

If you're running in a Java EE 5 environment, this is all the configuration required to start using Seam! But
there is one final item you need to know about. You must place a seam.properties, META-

INF/seam.properties or META-INF/components.xml file in any archive in which your Seam components are
deployed (even an empty properties file will do). At startup, Seam will scan any archives with
seam.properties files for seam components. If that doesn't work for you, you can also add components by in-
stalling them explicitly via components.xml. (We don't recommend this alternative approach.)

13.2.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something like this:

my-application.ear/
jboss-seam.jar
el-api.jar
el-ri.jar
META-INF/

MANIFEST.MF
application.xml

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 131

faces-config.xml
lib/

jsf-facelets.jar
jboss-seam-ui.jar

login.jsp
register.jsp
...

my-application.jar/
META-INF/

MANIFEST.MF
persistence.xml

seam.properties
org/

jboss/
myapplication/

User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class
...

You must include jboss-seam.jar, el-api.jar and el-ri.jar in the EAR classpath. Make sure you reference
all of these jars from application.xml.

If you want to use jBPM or Drools, you must include the needed jars in the EAR classpath. Make sure you ref-
erence all of the jars from application.xml.

If you want to use facelets (our recommendation), you must include jsf-facelets.jar in the WEB-INF/lib dir-
ectory of the WAR.

If you want to use the Seam tag library (most Seam applications do), you must include jboss-seam-ui.jar in
the WEB-INF/lib directory of the WAR.

If you want to use the Seam debug page (only works for applications using facelets), you must include jboss-

seam-debug.jar in the WEB-INF/lib directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that supports EJB
3.0.

I really wish that was all there was to say on the topic of configuration but unfortunately we're only about a
third of the way there. If you're too overwhelmed by all this tedious configuration stuff, feel free to skip over
the rest of this section and come back to it later.

13.3. Configuring Seam with the JBoss Embeddable EJB3 con-
tainer

The JBoss Embeddable EJB3 container lets you run EJB3 components outside the context of the Java EE 5 ap-
plication server. This is especially, but not only, useful for testing.

The Seam booking example application includes a TestNG integration test suite that runs on the Embeddable
EJB3 container.

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 132

The booking example application may even be deployed to Tomcat.

13.3.1. Installing the Embeddable EJB3 container

Seam ships with a build of the Embeddable EJB3 container in the embedded-ejb directory. To use the Embed-
dable EJB3 container with Seam, add the embedded-ejb/conf directory, and all jars in the lib and embedded-

ejb/lib directories to your classpath. Then, add the following line to components.xml:

<core:ejb />

This setting installs the built-in component named org.jboss.seam.core.ejb. This component is responsible
for bootstrapping the EJB container when Seam is started, and shutting it down when the web application is un-
deployed.

13.3.2. Configuring a datasource with the Embeddable EJB3 container

You should refer to the Embeddable EJB3 container documentation for more information about configuring the
container. You'll probably at least need to set up your own datasource. Embeddable EJB3 is implemented using
the JBoss Microcontainer, so it's very easy to add new services to the minimal set of services provided by de-
fault. For example, I can add a new datasource by putting this jboss-beans.xml file in my classpath:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer bean-deployer_1_0.xsd"
xmlns="urn:jboss:bean-deployer">

<bean name="bookingDatasourceBootstrap"
class="org.jboss.resource.adapter.jdbc.local.LocalTxDataSource">

<property name="driverClass">org.hsqldb.jdbcDriver</property>

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 133

<property name="connectionURL">jdbc:hsqldb:.</property>
<property name="userName">sa</property>
<property name="jndiName">java:/bookingDatasource</property>
<property name="minSize">0</property>
<property name="maxSize">10</property>
<property name="blockingTimeout">1000</property>
<property name="idleTimeout">100000</property>
<property name="transactionManager">

<inject bean="TransactionManager"/>
</property>
<property name="cachedConnectionManager">

<inject bean="CachedConnectionManager"/>
</property>
<property name="initialContextProperties">

<inject bean="InitialContextProperties"/>
</property>

</bean>

<bean name="bookingDatasource" class="java.lang.Object">
<constructor factoryMethod="getDatasource">

<factory bean="bookingDatasourceBootstrap"/>
</constructor>

</bean>

</deployment>

13.3.3. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look something like
this:

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

jboss-seam.jar
jboss-seam-ui.jar
el-api.jar
el-ri.jar
jsf-facelets.jar
myfaces-api.jar
myfaces-impl.jar
jboss-ejb3.jar
jboss-jca.jar
jboss-j2ee.jar
...
mc-conf.jar/

ejb3-interceptors-aop.xml
embedded-jboss-beans.xml
default.persistence.properties
jndi.properties
login-config.xml
security-beans.xml
log4j.xml

my-application.jar/
META-INF/

MANIFEST.MF
persistence.xml
jboss-beans.xml

log4j.xml
seam.properties
org/

jboss/
myapplication/

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 134

User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class
...

login.jsp
register.jsp
...

The mc-conf.jar just contains the standard JBoss Microcontainer configuration files for Embeddable EJB3.
You won't usually need to edit these files yourself.

Most of the Seam example applications may be deployed to Tomcat by running ant deploy.tomcat.

13.4. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start a transaction
transparently when the bean is invoked, and end it when the invocation ends. If we write a session bean method
that acts as a JSF action listener, we can do all the work associated with that action in one transaction, and be
sure that it is committed or rolled back when we finish processing the action. This is a great feature, and all that
is needed by many Seam applications.

There is just one problem with this approach. ORM solutions like Hibernate and EJB 3.0 persistence support
lazy fetching of entity associations inside a transaction context, but throw LazyInitializationExceptions if
you try to access an unfetched association outside the context of a transaction. This is a problem if your view
page tries to access data that was not fetched during the transaction. Hibernate users developed the open session
in view pattern to work around this problem. This pattern is usually implemented as a transaction which spans
the entire request. There are several problems with this idea, the most serious being that we can't be sure that a
transaction has been successful until we commit it, but by the time we commit the transaction, we have already
rendered the view. Furthermore, this is at best a partial solution to the problem, because we can still meet the
dreaded LazyInitializationException if we try to re-use the entity object in the next request.

Seam completely solves the problem of unwanted LazyInitializationExceptions, while working around the
biggest problem in the open session in view pattern. The solution comes in two parts:

• use an extended persistence context that is scoped to the conversation, instead of to the request

• use two transactions per request; the first spans the beginning of the update model values phase until the
end of the invoke application phase; the second spans the render response phase

13.4.1. Enabling Seam-managed transactions

To make use of Seam managed transactions, you need to use SeamExtendedManagedPersistencePhaseL-

istener in place of SeamPhaseListener.

<lifecycle>
<phase-listener>

org.jboss.seam.jsf.SeamExtendedManagedPersistencePhaseListener
</phase-listener>

</lifecycle>

It's also a good idea to add a servlet filter to rollback uncommitted transactions when uncaught exceptions oc-
cur.

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 135

<filter>
<filter-name>Seam Exception Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamExceptionFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Seam Exception Filter</filter-name>
<url-pattern>*.jsf</url-pattern>

</filter-mapping>

13.4.2. Using a Seam-managed persistence context

You'll need to use a managed persistence context (for EJB3) or managed session (for Hibernate) in your com-
ponents. We'll see how to use a managed session later. Configuring a managed persistence context is easy. In
components.xml, we can write:

<core:managed-persistence-context name="bookingDatabase" auto-create="true"
persistence-unit-jndi-name="java:/EntityManagerFactories/bookingData"/>

This configuration creates a conversation-scoped Seam component named bookingDatabase that manages the
lifecycle of EntityManager instances for the persistence unit (EntityManagerFactory instance) with JNDI
name java:/EntityManagerFactories/bookingData.

Of course, you need to make sure that you have bound the EntityManagerFactory into JNDI. In JBoss, you
can do this by adding the following property setting to persistence.xml.

<property name="jboss.entity.manager.factory.jndi.name"
value="java:/EntityManagerFactories/bookingData"/>

Now we can have our EntityManager injected using:

@In EntityManager bookingDatabase;

13.5. Configuring Seam with Hibernate in Java EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you would use Hibern-
ate3 instead of EJB 3.0 persistence, and plain JavaBeans instead of session beans. You'll miss out on some of
the nice features of session beans but it will be very easy to migrate to EJB 3.0 when you're ready and, in the
meantime, you'll be able to take advantage of Seam's unique declarative state management architecture.

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 136

Seam JavaBean components do not provide declarative transaction demarcation like session beans do. You
could manage your transactions manually using the JTA UserTransaction (you could even implement your
own declarative transaction management in a Seam interceptor). But most applications will use Seam managed
transactions when using Hibernate with JavaBeans. Follow the instructions above to enable SeamExtendedMan-

agedPersistencePhaseListener.

The Seam distribution includes a version of the booking example application that uses Hibernate and Java-
Beans instead of EJB3. This example application is ready to deploy into any J2EE application server.

13.5.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate SessionFactory from your hibernate.cfg.xml file if you install the built-in
component named org.jboss.seam.core.hibernate.

13.5.2. Using a Seam-managed Hibernate Session

We will also need to configure a managed session if we want a Seam managed Hibernate Session to be avail-
able via injection.

To configure our Seam component, as usual, we use components.xml:

<core:managed-hibernate-session name="hibernateSessionFactory"/>

<core:managed-hibernate-session name="bookingDatabase" auto-create="true"
session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/bookingSessionFactory is the name of the session factory specified in hibernate.cfg.xml.

<session-factory name="java:/bookingSessionFactory">
<property name="transaction.flush_before_completion">true</property>
<property name="connection.release_mode">after_statement</property>
<property name="transaction.manager_lookup_class">org.hibernate.transaction.JBossTransactionManagerLookup</property>
<property name="transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</property>
<property name="connection.datasource">java:/bookingDatasource</property>

...
</session-factory>

Note that Seam does not flush the session, so you should always enable hibern-

ate.transaction.flush_before_completion to ensure that the session is automatically flushed before the
JTA transaction commits.

We can now have a managed Hibernate Session injected into our JavaBean components using the following
code:

@In Session bookingDatabase;

13.5.3. Packaging

We can package our application as a WAR, in the following structure:

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 137

faces-config.xml
lib/

jboss-seam.jar
jboss-seam-ui.jar
el-api.jar
el-ri.jar
jsf-facelets.jar
hibernate3.jar
...
my-application.jar/

META-INF/
MANIFEST.MF

seam.properties
hibernate.cfg.xml
org/

jboss/
myapplication/

User.class
Login.class
Register.class
...

login.jsp
register.jsp
...

If we want to deploy Hibernate in a non-J2EE environment like Tomcat or TestNG, we need to do a little bit
more work.

13.6. Configuring Seam with Hibernate in Java SE

The Seam support for Hibernate requires JTA and a JCA datasource. If you are running in a non-EE environ-
ment like Tomcat or TestNG, you can run these services, and Hibernate itself, in the JBoss Microcontainer.

You can even deploy the Hibernate version of the booking example in Tomcat.

Seam ships with an example Microcontainer configuration in microcontainer/conf/jboss-beans.xml that

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 138

provides all the things you need to run Seam with Hibernate in any non-EE environment. Just add the micro-

container/conf directory, and all jars in the lib and microcontainer/lib directories to your classpath. Refer
to the documentation for the JBoss Microcontainer for more information.

13.6.1. Using Hibernate and the JBoss Microcontainer

The built-in Seam component named org.jboss.seam.core.microcontainer bootstraps the microcontainer.
As before, we probably want to use a Seam managed session.

<core:microcontainer/>

<core:managed-hibernate-session name="bookingDatabase" auto-create="true"
session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/bookingSessionFactory is the name of the Hibernate session factory specified in hibern-

ate.cfg.xml.

You'll need to provide a jboss.beans.xml file that installs JNDI, JTA, your JCA datasource and Hibernate into
the microcontainer:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer bean-deployer_1_0.xsd"
xmlns="urn:jboss:bean-deployer">

<bean name="Naming" class="org.jnp.server.SingletonNamingServer"/>

<bean name="TransactionManagerFactory" class="org.jboss.seam.microcontainer.TransactionManagerFactory"/>
<bean name="TransactionManager" class="java.lang.Object">

<constructor factoryMethod="getTransactionManager">
<factory bean="TransactionManagerFactory"/>

</constructor>
</bean>

<bean name="bookingDatasourceFactory" class="org.jboss.seam.microcontainer.DataSourceFactory">
<property name="driverClass">org.hsqldb.jdbcDriver</property>
<property name="connectionUrl">jdbc:hsqldb:.</property>
<property name="userName">sa</property>
<property name="jndiName">java:/hibernateDatasource</property>
<property name="minSize">0</property>
<property name="maxSize">10</property>
<property name="blockingTimeout">1000</property>
<property name="idleTimeout">100000</property>
<property name="transactionManager"><inject bean="TransactionManager"/></property>

</bean>
<bean name="bookingDatasource" class="java.lang.Object">

<constructor factoryMethod="getDataSource">
<factory bean="bookingDatasourceFactory"/>

</constructor>
</bean>

<bean name="bookingDatabaseFactory" class="org.jboss.seam.microcontainer.HibernateFactory"/>
<bean name="bookingDatabase" class="java.lang.Object">

<constructor factoryMethod="getSessionFactory">
<factory bean="bookingDatabaseFactory"/>

</constructor>
<depends>bookingDatasource</depends>

</bean>

</deployment>

13.6.2. Packaging

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 139

The WAR could have the following structure:

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

jboss-seam.jar
jboss-seam-ui.jar
el-api.jar
el-ri.jar
jsf-facelets.jar
hibernate3.jar
...
jboss-microcontainer.jar
jboss-jca.jar
...
myfaces-api.jar
myfaces-impl.jar
mc-conf.jar/

jndi.properties
log4j.xml

my-application.jar/
META-INF/

MANIFEST.MF
jboss-beans.xml

seam.properties
hibernate.cfg.xml
log4j.xml
org/

jboss/
myapplication/

User.class
Login.class
Register.class
...

login.jsp
register.jsp
...

13.7. Configuring jBPM in Seam

Seam's jBPM integration is not installed by default, so you'll need to enable jBPM by installing a built-in com-
ponent. You'll also need to explicitly list your process and pageflow definitions. In components.xml:

<core:jbpm>
<core:pageflow-definitions>

<value>createDocument.jpdl.xml</value>
<value>editDocument.jpdl.xml</value>
<value>approveDocument.jpdl.xml</value>

</core:pageflow-definitions>
<core:process-definitions>

<value>documentLifecycle.jpdl.xml</value>
</core:process-definitions>

</core:jbpm>

No further special configuration is needed if you only have pageflows. If you do have business process defini-
tions, you need to provide a jBPM configuration, and a Hibernate configuration for jBPM. The Seam DVD
Store demo includes example jbpm.cfg.xml and hibernate.cfg.xml files that will work with Seam:

<jbpm-configuration>

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 140

<jbpm-context>
<service name="persistence">

<factory>
<bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">

<field name="isTransactionEnabled"><false/></field>
</bean>

</factory>
</service>
<service name="message" factory="org.jbpm.msg.db.DbMessageServiceFactory" />
<service name="scheduler" factory="org.jbpm.scheduler.db.DbSchedulerServiceFactory" />
<service name="logging" factory="org.jbpm.logging.db.DbLoggingServiceFactory" />
<service name="authentication" factory="org.jbpm.security.authentication.DefaultAuthenticationServiceFactory" />

</jbpm-context>

</jbpm-configuration>

The most important thing to notice here is that jBPM transaction control is disabled. Seam or EJB3 should con-
trol the JTA transactions.

13.7.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow definition
files. In the Seam examples we've decided to simply package all these files into the root of the EAR. In future,
we will probably design some other standard packaging format. So the EAR looks something like this:

my-application.ear/
jboss-seam.jar
el-api.jar
el-ri.jar
jbpm-3.1.jar
META-INF/

MANIFEST.MF
application.xml

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

jsf-facelets.jar
jboss-seam-ui.jar

login.jsp
register.jsp
...

my-application.jar/
META-INF/

MANIFEST.MF
persistence.xml

seam.properties
org/

jboss/
myapplication/

User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class
...

jbpm.cfg.xml
hibernate.cfg.xml
createDocument.jpdl.xml
editDocument.jpdl.xml
approveDocument.jpdl.xml
documentLifecycle.jpdl.xml

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 141

Remember to add jbpm-3.1.jar to the manifest of your EJB-JAR and WAR.

13.8. Configuring Seam in a Portal

To run a Seam application as a portlet, you'll need to provide certain portlet metadata (portlet.xml, etc) in ad-
dition to the usual Java EE metadata. See the examples/portal directory for an example of the booking demo
preconfigured to run on JBoss Portal.

In addition, you'll need to use a portlet-specific phase listener instead of SeamPhaseListener or SeamExtended-
ManagedPersistencePhaseListener. The SeamPortletPhaseListener and SeamExtendedManagedPersisten-

cePortletPhaseListener are adapted to the portlet lifecycle.

Configuring Seam and packaging Seam applications

JBoss Seam 1.1.1.GA 142

Chapter 14. The Seam Application Framework
Seam makes it really easy to create applications by writing plain Java classes with annotations, which don't
need to extend any special interfaces or superclasses. But we can simplify some common programming tasks
even further, by providing a set of pre-built components which can be re-used either by configuration in com-

ponents.xml (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing basic database
access in a web application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes that are easy to
understand and extend. The "magic" is in Seam itself—the same magic you use when creating any Seam ap-
plication even without using this framework.

14.1. Introduction

The components provided by the Seam application framework may be used in one of two different approaches.
The first way is to install and configure an instance of the component in components.xml, just like we have
done with other kinds of built-in Seam components. For example, the following fragment from compon-

ents.xml installs a component which can perform basic CRUD operations for a Contact entity:

<framework:entity-home name="personHome"
entity-class="eg.Person"
entity-manager="#{personDatabase}">

<framework:id>#{param.personId}</framework:id>
</framework:entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@Stateful
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

@RequestParameter String personId;
@In EntityManager personDatabase;

public Object getId() { return personId; }
public EntityManager getEntityManager() { return personDatabase; }

}

The second approach has one huge advantage: you can easily add extra functionality, and override the built-in
functionality (the framework classes were carefully designed for extension and customization).

A second advantage is that your classes may be EJB stateful sessin beans, if you like. (They do not have to be,
they can be plain JavaBean components if you prefer.)

At this time, the Seam Application Framework provides just four built-in components: EntityHome and Hi-

bernateEntityHome for CRUD, along with EntityQuery and HibernateEntityQuery for queries.

The Home and Query components are written so that they can function with a scope of session, event or con-
versation. Which scope you use depends upon the state model you wish to use in your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By default, the com-
ponents will look for a persistence context named entityManager.

JBoss Seam 1.1.1.GA 143

14.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our trusty Person

class:

@Entity
public class Person {

@Id private Long id;
private String firstName;
private String lastName;
private Country nationality;

//getters and setters...
}

We can define a personHome component either via configuration:

<framework:entity-home name="personHome" entity-class="eg.Person" />

Or via extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: persist(), remove(), update() and getInstance(). Before
you can call the remove(), or update() operations, you must first set the identifier of the object you are inter-
ested in, using the setId() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</h1>
<h:form>

<div>First name: <h:inputText value="#{personHome.instance.firstName}"/></div>
<div>Last name: <h:inputText value="#{personHome.instance.lastName}"/></div>
<div>

<h:commandButton value="Create Person" action="#{personHome.persist}"/>
</div>

</h:form>

Usually, it is much nicer to be able to refer to the Person merely as person, so let's make that possible by
adding a line to components.xml:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person" />

(If we are using configuration.) Or by adding a @Factory method to PersonHome:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@Factory("person")
public Person initPerson() { return getInstance(); }

}

(If we are using extension.) This change simplifies our JSF page to the following:

The Seam Application Framework

JBoss Seam 1.1.1.GA 144

<h1>Create Person</h1>
<h:form>

<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>

<h:commandButton value="Create Person" action="#{personHome.persist}"/>
</div>

</h:form>

Well, that lets us create new Person entries. Yes, that is all the code that is required! Now, if we want to be able
to display, update and delete pre-existing Person entries in the database, we need to be able to pass the entry
identifier to the PersonHome. Page parameters are a great way to do that:

<pages>
<page viewid="/editPerson.jsp">

<param name="personId" value="#{personHome.id}"/>
</page>

</pages>

Now we can add the extra operations to our JSF page:

<h1>
<h:outputText rendered="#{!personHome.managed}" value="Create Person"/>
<h:outputText rendered="#{personHome.managed}" value="Edit Person"/>

</h1>
<h:form>

<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>

<h:commandButton value="Create Person" action="#{personHome.persist}" rendered="#{!personHome.managed}"/>
<h:commandButton value="Update Person" action="#{personHome.update}" rendered="#{personHome.managed}"/>
<h:commandButton value="Delete Person" action="#{personHome.remove}" rendered="#{personHome.managed}"/>

</div>
</h:form>

When we link to the page with no request parameters, the page will be displayed as a "Create Person" page.
When we provide a value for the personId request parameter, it will be an "Edit Person" page.

Suppose we need to create Person entries with their nationality initialized. We can do that easily, via configura-
tion:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}"/>

<component name="newPerson"
class="eg.Person">

<property name="nationality">#{country}</property>
</component>

Or by extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getInstance(); }

protected Person createInstance() {

The Seam Application Framework

JBoss Seam 1.1.1.GA 145

return new Person(country);
}

}

Of course, the Country could be an object managed by another Home object, for example, CountryHome.

To add more sophisticated operations (association management, etc), we can just add methods to PersonHome.

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getInstance(); }

protected Person createInstance() {
return new Person(country);

}

public void migrate()
{

getInstance().setCountry(country);
update();

}

}

The Home object automatically displays faces messages when an operation is successful. To customize these
messages we can, again, use configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}">

<framework:created-message>New person #{person.firstName} #{person.lastName} created</framework:created-message>
<framework:deleted-message>Person #{person.firstName} #{person.lastName} deleted</framework:deleted-message>
<framework:updated-message>Person #{person.firstName} #{person.lastName} updated</framework:updated-message>

</framework:entity-home>

<component name="newPerson"
class="eg.Person">

<property name="nationality">#{country}</property>
</component>

Or extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getInstance(); }

protected Person createInstance() {
return new Person(country);

}

protected String getCreatedMessage() { return "New person #{person.firstName} #{person.lastName} created"; }
protected String getUpdatedMessage() { return "Person #{person.firstName} #{person.lastName} updated"; }
protected String getDeletedMessage() { return "Person #{person.firstName} #{person.lastName} deleted"; }

}

The Seam Application Framework

JBoss Seam 1.1.1.GA 146

But the best way to specify the messages is to put them in a resource bundle known to Seam (the bundle named
messages, by default).

Person_created=New person #{person.firstName} #{person.lastName} created
Person_deleted=Person #{person.firstName} #{person.lastName} deleted
Person_updated=Person #{person.firstName} #{person.lastName} updated

This enables internationalization, and keeps your code and configuration clean of presentation concerns.

The final step is to add validation functionality to the page, using <s:validateAll> and <s:decorate>, but I'll
leave that for you to figure out.

14.3. Query objects

If we need a list of all Person instance in the database, we can use a Query object. For example:

<framework:entity-query name="people"
ejbql="select p from Person p"/>

We can use it from a JSF page:

<h1>List of people</h1>
<h:dataTable value="#{people}" var="person">

<h:column>
<s:link view-id="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">

<f:param name="personId" value="#{person.id}"/>
</s:link>

</h:column>
</h:dataTable>

We probably need to support pagination:

<framework:entity-query name="people"
ejbql="select p from Person p"
order="lastName"
max-results="20"/>

We'll use a page parameter to determine the page to display:

<pages>
<page viewid="/searchPerson.jsp">

<param name="firstResult" value="#{people.firstResult}"/>
</page>

</pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<h1>Search for people</h1>
<h:dataTable value="#{people.resultList}" var="person">

<h:column>
<s:link view-id="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">

<f:param name="personId" value="#{person.id}"/>
</s:link>

</h:column>
</h:dataTable>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="First Page">
<f:param name="firstResult" value="0"/>

</s:link>

The Seam Application Framework

JBoss Seam 1.1.1.GA 147

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="Previous Page">
<f:param name="firstResult" value="#{people.previousFirstResult}"/>

</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Next Page">
<f:param name="firstResult" value="#{people.nextFirstResult}"/>

</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Last Page">
<f:param name="firstResult" value="#{people.lastFirstResult}"/>

</s:link>

Real search screens let the user enter a bunch of optional search criteria to narrow the list of results returned.
The Query object lets you specify optional "restrictions" to support this important usecase:

<component name="examplePerson" class="Person"/>

<framework:entity-query name="people"
ejbql="select p from Person p"
order="lastName"
max-results="20">

<framework:restrictions>
<value>lower(firstName) like lower(#{examplePerson.firstName} + '%')</value>
<value>lower(lastName) like lower(#{examplePerson.lastName} + '%')</value>

</framework:restrictions>
</framework:entity-query>

Notice the use of an "example" object.

<h1>Search for people</h1>
<h:form>

<div>First name: <h:inputText value="#{examplePerson.firstName}"/></div>
<div>Last name: <h:inputText value="#{examplePerson.lastName}"/></div>
<div><h:commandButton value="Search" action="/search.jsp"/></div>

</h:form>

<h:dataTable value="#{people.resultList}" var="person">
<h:column>

<s:link view-id="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">
<f:param name="personId" value="#{person.id}"/>

</s:link>
</h:column>

</h:dataTable>

The examples in this section have all shown reuse by configuration. However, reuse by extension is equally
possible for Query objects.

14.4. Using Hibernate filters

The coolest, and most unique, feature of Hibernate is filters. Filters let you provide a restricted view of the data
in the database. You can find out more about filters in the Hibernate documentation. But we thought we'd men-
tion an easy way to incorporate filters into a Seam application, one that works especially well with the Seam
Application Framework.

Seam-managed persistence contexts may have a list of filters defined, which will be enabled whenever an En-

tityManager or Hibernate Session is first created. (Of course, they may only be used when Hibernate is the
underlying persistence provider.)

<core:filter name="regionFilter">
<core:name>region</core:name>
<core:parameters>

The Seam Application Framework

JBoss Seam 1.1.1.GA 148

<key>regionCode</key>
<value>#{region.code}</value>

</core:parameters>
</core:filter>

<core:filter name="currentFilter">
<core:name>current</core:name>
<core:parameters>

<key>date</key>
<value>#{currentDate}</value>

</core:parameters>
</core:filter>

<core:managed-persistence-context name="personDatabase"
persistence-unit-jndi-name="java:/EntityManagerFactories/personDatabase">
<core:filters>

<value>#{regionFilter}</value>
<value>#{currentFilter}</value>

</core:filters>
</core:managed-persistence-context>

The Seam Application Framework

JBoss Seam 1.1.1.GA 149

Chapter 15. Seam Text
Collaboration-oriented websites require a human-friendly markup language for easy entry of formatted text in
forum posts, wiki pages, blogs, comments, etc. Seam provides the <s:formattedText/> control for display of
formatted text that conforms to the Seam Text language. Seam Text is implemented using an ANTLR-based
parser. You don't need to know anything about ANTLR to use it, however.

15.1. Basic fomatting

Here is a simple example:

It's easy to make *bold text*, /italic text/, |monospace|,
-deleted text-, super^scripts^ or _underlines_.

If we display this using <s:formattedText/>, we will get the following HTML produced:

<p>
It's easy to make bold text, <i>italic text</i>, <tt>monospace</tt>
deleted text, super^{scripts} or <u>underlines</u>.
</p>

We can use a blank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading
You /must/ have some text following a heading!

++This is a smaller heading
This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.

This is the second paragraph.

This is the HTML that results:

<h1>This is a big heading</h1>
<p>
You <i>must</i> have some text following a heading!
</p>

<h2>This is a smaller heading</h2>
<p>
This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.
</p>

<p>
This is the second paragraph.
</p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered list:

#first item
#second item
#and even the /third/ item

An unordered list:

=an item

JBoss Seam 1.1.1.GA 150

=another item

<p>
An ordered list:
</p>

first item
second item
and even the <i>third</i> item

<p>
An unordered list:
</p>

an item
another item

Quoted sections should be surrounded in double quotes:

The other guy said:

"Nyeah nyeah-nee
/nyeah/ nyeah!"

But what do you think he means by "nyeah-nee"?

<p>
The other guy said:
</p>

<quote>Nyeah nyeah-nee
<i>nyeah</i> nyeah!</quote>

<p>
But what do you think he means by <quote>nyeah-nee</quote>?
</p>

15.2. Entering code and text with special characters

Special characters such as *, | and #, along with HTML characters such as <, > and & may be escaped using \:

You can write down equations like 2*3\=6 and HTML tags
like \<body\> using the escape character: \\.

<p>
You can write down equations like 2*3=6 and HTML tags
like <body> using the escape character: \.
</p>

And we can quote code blocks using backticks:

My code doesn't work:

`for (int i=0; i<100; i--)
{

doSomething();
}`

Seam Text

JBoss Seam 1.1.1.GA 151

Any ideas?

<p>
My code doesn't work:
</p>

<pre>for (int i=0; i<100; i--)
{

doSomething();
}</pre>

<p>
Any ideas?
</p>

15.3. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be safe from
cross-site scripting attacks). This is useful for creating links:

You might want to link to something
cool, or even include an image:

And for creating tables:

<table>
<tr><td>First name:</td><td>Gavin</td></tr>
<tr><td>Last name:</td><td>King</td></tr>

</table>

But you can do much more if you want!

Seam Text

JBoss Seam 1.1.1.GA 152

Chapter 16. Seam annotations
When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations to achieve a
declarative style of programming. Most of the annotations you'll use are defined by the EJB 3.0 specification.
The annotations for data validation are defined by the Hibernate Validator package. Finally, Seam defines its
own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package org.jboss.seam.annotations.

16.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on the component
class.

@Name

@Name("componentName")

Defines the Seam component name for a class. This annotation is required for all Seam components.

@Scope

@Scope(ScopeType.CONVERSATION)

Defines the default context of the component. The possible values are defined by the ScopeType enumera-
tion: EVENT, PAGE, CONVERSATION, SESSION, BUSINESS_PROCESS, APPLICATION, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For stateless session
beans, the default is STATELESS. For entity beans and stateful session beans, the default is CONVERSATION.
For JavaBeans, the default is EVENT.

@Role

@Role(name="roleName", scope=ScopeType.SESSION)

Allows a Seam component to be bound to multiple contexts variables. The @Name/@Scope annotations
define a "default role". Each @Role annotation defines an additional role.

• name — the context variable name.

• scope — the context variable scope. When no scope is explicitly specified, the default depends upon
the component type, as above.

@Roles

@Roles({
@Role(name="user", scope=ScopeType.CONVERSATION),
@Role(name="currentUser", scope=ScopeType.SESSION)

})

Allows specification of multiple additional roles.

JBoss Seam 1.1.1.GA 153

@Intercept

@Intercept(InterceptionType.ALWAYS)

Determines when Seam interceptors are active. The possible values are defined by the InterceptionType

enumeration: ALWAYS, AFTER_RESTORE_VIEW, AFTER_UPDATE_MODEL_VALUES, INVOKE_APPLICATION,

NEVER.

When no interception type is explicitly specified, the default depends upon the component type. For entity
beans, the default is NEVER. For session beans, message driven beans and JavaBeans, the default is ALWAYS.

@JndiName

@JndiName("my/jndi/name")

Specifies the JNDI name that Seam will use to look up the EJB component. If no JNDI name is explicitly
specified, Seam will use the JNDI pattern specified by org.jboss.seam.core.init.jndiPattern.

@Conversational

@Conversational(ifNotBegunOutcome="error")

Specifies that a conversation scope component is conversational, meaning that no method of the component
can be called unless a long-running conversation started by this component is active (unless the method
would begin a new long-running conversation).

@Startup

@Startup(depends={"org.jboss.core.jndi", "org.jboss.core.jta"})

Specifies that an application scope component is started immediately at initialization time. This is mainly
used for certain built-in components that bootstrap critical infrastructure such as JNDI, datasources, etc.

@Startup

Specifies that a session scope component is started immediately at session creation time.

• depends — specifies that the named components must be started first, if they are installed.

@Install

@Install(false)

Specifies whether or not a component should be installed by default. The lack of an @Install annotation in-
dicates a component should be installed.

@Install(dependencies="org.jboss.seam.core.jbpm")

Specifies that a component should only be stalled if the components listed as dependencies are also in-
stalled.

@Install(genericDependencies=ManagedQueueSender.class)

Specifies that a component should only be installed if a component that is implemented by a certain class is

Seam annotations

JBoss Seam 1.1.1.GA 154

installed. This is useful when the dependency doesn't have a single well-known name.

@Install(precedence=BUILT_IN)

Specifies the precedence of the component. If multiple components with the same name exist, the one with
the higher precedence will be installed. The defined precendence values are:

• BUILT_IN — Precedence of all built-in Seam components

• FRAMEWORK — Precedence to use for components of frameworks which extend Seam

• APPLICATION — Predence of application components (the default precedence)

• DEPLOYMENT — Precedence to use for components which override application components in a particu-
lar deployment

@Synchronized

@Synchronized(timeout=1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam should serialize re-
quests. If a request is not able to obtain its lock on the component in the given timeout period, an exception
will be raised.

@ReadOnly

@ReadOnly

Specifies that a JavaBean component or component method does not require state replication at the end of
the invocation.

16.2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance variables or property
accessor methods.

@In

@In

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an exception will be thrown.

@In(required=false)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. The context variable may be null.

@In(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an instance of the component is instantiated by Seam.

Seam annotations

JBoss Seam 1.1.1.GA 155

@In(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

@In(value="#{customer.addresses['shipping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at the beginning of
each component invocation.

• value — specifies the name of the context variable. Default to the name of the component attribute. Al-
ternatively, specifies a JSF EL expression, surrounded by #{...}.

• create — specifies that Seam should instantiate the component with the same name as the context vari-
able if the context variable is undefined (null) in all contexts. Default to false.

• required — specifies Seam should throw an exception if the context variable is undefined in all con-
texts.

@Out

@Out

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. If the attribute is null, an exception is thrown.

@Out(required=false)

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. The attribute may be null.

@Out(scope=ScopeType.SESSION)

Specifies that a component attribute that is not a Seam component type is to be outjected to a specific scope
at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @Out attribute is used
(or the EVENT scope if the component is stateless).

@Out(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

• value — specifies the name of the context variable. Default to the name of the component attribute.

• required — specifies Seam should throw an exception if the component attribute is null during outjec-
tion.

Note that it is quite common for these annotations to occur together, for example:

@In(create=true) @Out private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that manages the life-
cycle of an instance of some other class that is to be injected. It appears on a component getter method.

Seam annotations

JBoss Seam 1.1.1.GA 156

@Unwrap

@Unwrap

Specifies that the object returned by the annotated getter method is the thing that is injected instead of the
component instance itself.

The next annotation supports the factory component pattern, where a Seam component is responsible for initial-
izing the value of a context variable. This is especially useful for initializing any state needed for rendering the
response to a non-faces request. It appears on a component method.

@Factory

@Factory("processInstance")

Specifies that the method of the component is used to initialize the value of the named context variable,
when the context variable has no value. This style is used with methods that return void.

@Factory("processInstance", scope=CONVERSATION)

Specifies that the method returns a value that Seam should use to initialize the value of the named context
variable, when the context variable has no value. This style is used with methods that return a value. If no
scope is explicitly specified, the scope of the component with the @Factory method is used (unless the
component is stateless, in which case the EVENT context is used).

• value — specifies the name of the context variable. If the method is a getter method, default to the
JavaBeans property name.

• scope — specifies the scope that Seam should bind the returned value to. Only meaningful for factory
methods which return a value.

This annotation lets you inject a Log:

@Logger

@Logger("categoryName")

Specifies that a component field is to be injected with an instance of org.jboss.seam.log.Log.

• value — specifies the name of the log category. Default to the name of the component class.

The last annotation lets you inject a request parameter value:

@RequestParameter

@RequestParameter("parameterName")

Specifies that a component attribute is to be injected with the value of a request parameter. Basic type con-
versions are performed automatically.

Seam annotations

JBoss Seam 1.1.1.GA 157

• value — specifies the name of the request parameter. Default to the name of the component attribute.

16.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods of the com-
ponent. There may be only one of each per component class.

@Create

@Create

Specifies that the method should be called when an instance of the component is instantiated by Seam.
Note that create methods are only supported for JavaBeans and stateful session beans.

@Destroy

@Destroy

Specifies that the method should be called when the context ends and its context variables are destroyed.
Note that create methods are only supported for JavaBeans and stateful session beans.

Note that all stateful session bean components must define a method annotated @Destroy @Remove in order
to guarantee destruction of the stateful bean when a context ends.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any exception that
propagates out of a destroy method.

@Observer

@Observer("somethingChanged")

Specifies that the method should be called when a component-driven event of the specified type occurs.

16.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of Seam compon-
ents, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations end at the end of
the request. If you want a conversation that span multiple requests, you must "promote" the current conversa-
tion to a long-running conversation by calling a method marked with @Begin.

@Begin

@Begin

Specifies that a long-running conversation begins when this method returns a non-null outcome without ex-
ception.

@Begin(ifOutcome={"success", "continue"})

Seam annotations

JBoss Seam 1.1.1.GA 158

Specifies that a long-running conversation begins when this action listener method returns with one of the
given outcomes.

@Begin(join=true)

Specifies that if a long-running conversation is already in progress, the conversation context is simply
propagated.

@Begin(nested=true)

Specifies that if a long-running conversation is already in progress, a new nested conversation context be-
gins. The nested conversation will end when the next @End is encountered, and the outer conversation will
resume. It is perfectly legal for multiple nested conversations to exist concurrently in the same outer con-
versation.

@Begin(pageflow="process definition name")

Specifies a jBPM process definition name that defines the pageflow for this conversation.

@Begin(flushMode=FlushModeType.MANUAL)

Specify the flush mode of any Seam-managed persistence contexts. flushMode=FlushModeType.MANUAL

supports the use of atomic conversations where all write operations are queued in the conversation context
until an explicit call to flush() (which usually occurs at the end of the conversation).

• ifOutcome — specifies the JSF outcome or outcomes that result in a new long-running conversation
context.

• join — determines the behavior when a long-running conversation is already in progress. If true, the
context is propagated. If false, an exception is thrown. Default to false. This setting is ignored when
nested=true is specified

• nested — specifies that a nested conversation should be started if a long-running conversation is
already in progress.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

• pageflow — a process definition name of a jBPM process definition deployed via
org.jboss.seam.core.jbpm.pageflowDefinitions.

@End

@End

Specifies that a long-running conversation ends when this method returns a non-null outcome without ex-
ception.

@End(ifOutcome={"success", "error"}, evenIfException={SomeException.class, OtherException.class})

Specifies that a long-running conversation ends when this action listener method returns with one of the
given outcomes or throws one of the specified classes of exception.

Seam annotations

JBoss Seam 1.1.1.GA 159

• ifOutcome — specifies the JSF outcome or outcomes that result in the end of the current long-running
conversation.

• beforeRedirect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting beforeRedirect=true specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@StartTask

@StartTask

"Starts" a jBPM task. Specifies that a long-running conversation begins when this method returns a non-
null outcome without exception. This conversation is associated with the jBPM task specified in the named
request parameter. Within the context of this conversation, a business process context is also defined, for
the business process instance of the task instance.

The jBPM TaskInstance will be available in a request context variable named taskInstance. The jPBM
ProcessInstance will be available in a request context variable named processInstance. (Of course,
these objects are available for injection via @In.)

• taskIdParameter — the name of a request parameter which holds the id of the task. Default to
"taskId", which is also the default used by the Seam taskList JSF component.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

@BeginTask

@BeginTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation begins when this
method returns a non-null outcome without exception. This conversation is associated with the jBPM task
specified in the named request parameter. Within the context of this conversation, a business process con-
text is also defined, for the business process instance of the task instance.

The jBPM TaskInstance will be available in a request context variable named taskInstance. The jPBM
ProcessInstance will be available in a request context variable named processInstance.

• taskIdParameter — the name of a request parameter which holds the id of the task. Default to
"taskId", which is also the default used by the Seam taskList JSF component.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

@EndTask

@EndTask

"Ends" a jBPM task. Specifies that a long-running conversation ends when this method returns a non-null
outcome, and that the current task is complete. Triggers a jBPM transition. The actual transition triggered
will be the default transition unless the application has called Transition.setName() on the built-in com-
ponent named transition.

Seam annotations

JBoss Seam 1.1.1.GA 160

@EndTask(transition="transitionName")

Triggers the given jBPM transition.

@EndTask(ifOutcome={"success", "continue"})

Specifies that the task ends when this method returns one of the listed outcomes.

• transition — the name of the jBPM transition to be triggered when ending the task. Defaults to the
default transition.

• ifOutcome — specifies the JSF outcome or outcomes that result in the end of the task.

• beforeRedirect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting beforeRedirect=true specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@CreateProcess

@CreateProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without exception. The
ProcessInstance object will be available in a context variable named processInstance.

• definition — the name of the jBPM process definition deployed via
org.jboss.seam.core.jbpm.processDefinitions.

@ResumeProcess

@ResumeProcess(processIdParameter="processId")

Re-enters the scope of an existing jBPM process instance when the method returns a non-null outcome
without exception. The ProcessInstance object will be available in a context variable named processIn-

stance.

• processIdParameter — the name a request parameter holding the process id. Default to "processId".

16.5. Annotations for transaction demarcation

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain action listener out-
comes.

@Rollback

@Rollback(ifOutcome={"failure", "not-found"})

If the outcome of the method matches any of the listed outcomes, or if no outcomes are listed, set the trans-
action to rollback only when the method completes.

Seam annotations

JBoss Seam 1.1.1.GA 161

• ifOutcome — the JSF outcomes that cause a transaction rollback (no outcomes is interpreted to mean
any outcome).

@Transactional

@Transactional

Specifies that a JavaBean component should have a similar transactional behavior to the default behavior of
a session bean component. ie. method invocations should take place in a transaction, and if no transaction
exists when the method is called, a transaction will be started just for that method. This annotation may be
applied at either class or method level.

Seam applications usually use the standard EJB3 annotations for all other transaction demarcation needs.

16.6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of a Seam com-
ponent.

@Redirect

@Redirect(viewId="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.

• viewId — specifies the JSF view id to redirect to.

• message — a message to be displayed, default to the exception message.

• end — specifies that the long-running conversation should end, default to false.

@Render

@Render(viewId="error.jsp")

Specifies that the annotated exception causes immediate rendering of the view. This annotation is ignored
unless the exception is thrown during the JSF INVOKE_APPLICATION phase.

• viewId — specifies the JSF view id to redirect to.

• message — a message to be displayed, default to the exception message.

• end — specifies that the long-running conversation should end, default to false.

@HttpError

@HttpError(errorCode=404)

Specifies that the annotated exception causes a HTTP error to be sent.

• errorCode — the HTTP error code, default to 500.

Seam annotations

JBoss Seam 1.1.1.GA 162

• message — a message to be sent with the HTTP error, default to the exception message.

• end — specifies that the long-running conversation should end, default to false.

16.7. Annotations for validation

This annotation triggers Hibernate Validator. It appears on a method of a Seam component, almost always an
action listener method.

Please refer to the documentation for the Hibernate Annotations package for information about the annotations
defined by the Hibernate Validator framework.

Note that use of @IfInvalid is now semi-deprecated and <s:validateAll> is now preferred.

@IfInvalid

@IfInvalid(outcome="invalid", refreshEntities=true)

Specifies that Hibernate Validator should validate the component before the method is invoked. If the in-
vocation fails, the specified outcome will be returned, and the validation failure messages returned by Hi-
bernate Validator will be added to the FacesContext. Otherwise, the invocation will proceed.

• outcome — the JSF outcome when validation fails.

• refreshEntities — specifies that any invalid entity in the managed state should be refreshed from the
database when validation fails. Default to false. (Useful with extended persistence contexts.)

16.8. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following annotation:

@WebRemote

@WebRemote(exclude="path.to.exclude")

Indicates that the annotated method may be called from client-side JavaScript. The exclude property is op-
tional and allows objects to be excluded from the result's object graph (see the Remoting chapter for more
details).

16.9. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the annotations required
for EJB interceptor definition.

@Interceptor

Seam annotations

JBoss Seam 1.1.1.GA 163

@Interceptor(stateless=true)

Specifies that this interceptor is stateless and Seam may optimize replication.

@Interceptor(type=CLIENT)

Specifies that this interceptor is a "client-side" interceptor that is called before the EJB container.

@Interceptor(around={SomeInterceptor.class, OtherInterceptor.class})

Specifies that this interceptor is positioned higher in the stack than the given interceptors.

@Interceptor(within={SomeInterceptor.class, OtherInterceptor.class})

Specifies that this interceptor is positioned deeper in the stack than the given interceptors.

16.10. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

@Asynchronous public void scheduleAlert(Alert alert, @Expiration Date date) { ... }

@Asynchronous public Timer scheduleAlerts(Alert alert, @Expiration Date date, @IntervalDuration long interval) { ... }

@Asynchronous

@Asynchronous

Specifies that the method call is processed asynchronously.

@Duration

@Duration

Specifies that a parameter of the asynchronous call is the duration before the call is processed (or first pro-
cessed for recurring calls).

@Expiration

@Expiration

Specifies that a parameter of the asynchronous call is the datetime at which the call is processed (or first
processed for recurring calls).

@IntervalDuration

@IntervalDuration

Specifies that an asynchronous method call recurs, and that the annotationed parameter is duration between
recurrences.

Seam annotations

JBoss Seam 1.1.1.GA 164

16.11. Annotations for use with JSF dataTable

The following annotations make it easy to implement clickable lists backed by a stateful session bean. They ap-
pear on attributes.

@DataModel

@DataModel("variableName")

Exposes an attribute of type List, Map, Set or Object[] as a JSF DataModel into the scope of the owning
component (or the EVENT scope if the owning component is STATELESS). In the case of Map, each row of the
DataModel is a Map.Entry.

• value — name of the conversation context variable. Default to the attribute name.

• scope — if scope=ScopeType.PAGE is explicitly specified, the DataModel will be kept in the PAGE con-
text.

@DataModelSelection

@DataModelSelection

Injects the selected value from the JSF DataModel (this is the element of the underlying collection, or the
map value).

• value — name of the conversation context variable. Not needed if there is exactly one @DataModel in
the component.

@DataModelSelectionIndex

@DataModelSelectionIndex

Exposes the selection index of the JSF DataModel as an attribute of the component (this is the row number
of the underlying collection, or the map key).

• value — name of the conversation context variable. Not needed if there is exactly one @DataModel in
the component.

16.12. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @DataModel and
@DataModelSelection for other datastructures apart from lists.

@DataBinderClass

@DataBinderClass(DataModelBinder.class)

Specifies that an annotation is a databinding annotation.

Seam annotations

JBoss Seam 1.1.1.GA 165

@DataSelectorClass

@DataSelectorClass(DataModelSelector.class)

Specifies that an annotation is a dataselection annotation.

16.13. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that are packaged
together. It can be applied to any Java package.

@Namespace

@Namespace(value="http://jboss.com/products/seam/example/seampay")

Specifies that components in the current package are associated with the given namespace. The declared
namespace can be used as an XML namespace in a components.xml file to simplify application configura-
tion.

@Namespace(value="http://jboss.com/products/seam/core", prefix="org.jboss.seam.core")

Specifies a namespace to associate with a given package. Additionally, it specifies a component name pre-
fix to be applied to component names specified in the XML file. For example, an XML element named mi-

crocontainer that is associated with this namespace would be understood to actually refere to a compon-
ent named org.jboss.seam.core.microcontainer.

Seam annotations

JBoss Seam 1.1.1.GA 166

Chapter 17. Built-in Seam components
This chapter describes Seam's built-in components, and their configuration properties.

Note that you can replace any of the built in components with your own implementations simply by specifying
the name of one of the built in components on your own class using @Name.

Note also that even though all the built in components use a qualified name, most of them are aliased to unqual-
ified names by default. These aliases specify auto-create="true", so you do not need to use create=true

when injecting built-in components by their unqualified name.

17.1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects. For example,
the following component instance variable would have the Seam session context object injected:

@In private Context sessionContext;

org.jboss.seam.core.eventContext

Manager component for the event context object

org.jboss.seam.core.pageContext

Manager component for the page context object

org.jboss.seam.core.conversationContext

Manager component for the conversation context object

org.jboss.seam.core.sessionContext

Manager component for the session context object

org.jboss.seam.core.applicationContext

Manager component for the appication context object

org.jboss.seam.core.businessProcessContext

Manager component for the business process context object

org.jboss.seam.core.facesContext

Manager component for the FacesContext context object (not a true Seam context)

All of these components are always installed.

17.2. Utility components

These components are merely useful.

org.jboss.seam.core.facesMessages

Allows faces success messages to propagate across a browser redirect.

• add(FacesMessage facesMessage) — add a faces message, which will be displayed during the next
render response phase that occurs in the current conversation.

JBoss Seam 1.1.1.GA 167

• add(String messageTemplate) — add a faces message, rendered from the given message template
which may contain EL expressions.

• add(Severity severity, String messageTemplate) — add a faces message, rendered from the giv-
en message template which may contain EL expressions.

• addFromResourceBundle(String key) — add a faces message, rendered from a message template
defined in the Seam resource bundle which may contain EL expressions.

• addFromResourceBundle(Severity severity, String key) — add a faces message, rendered from a
message template defined in the Seam resource bundle which may contain EL expressions.

• clear() — clear all messages.

org.jboss.seam.core.redirect

A convenient API for performing redirects with parameters (this is especially useful for bookmarkable
search results screens).

• redirect.viewId — the JSF view id to redirect to.

• redirect.conversationPropagationEnabled — determines whether the conversation will propagate
across the redirect.

• redirect.parameters — a map of request parameter name to value, to be passed in the redirect re-
quest.

• execute() — perform the redirect immediately.

• captureCurrentRequest() — stores the view id and request parameters of the current GET request (in
the conversation context), for later use by calling execute().

org.jboss.seam.core.httpError

A convenient API for sending HTTP errors.

org.jboss.seam.core.events

An API for raising events that can be observed via @Observer methods, or method bindings in WEB-

INF/events.xml.

• raiseEvent(String type) — raise an event of a particular type and distribute to all observers.

• raiseAsynchronousEvent(String type) — raise an event to be processed asynchronously by the
EJB3 timer service.

• raiseTimedEvent(String type,) — schedule an event to be processed asynchronously by the
EJB3 timer service.

• addListener(String type, String methodBinding) — add an observer for a particular event type.

org.jboss.seam.core.interpolator

An API for interpolating the values of JSF EL expressions in Strings.

• interpolate(String template) — scan the template for JSF EL expressions of the form #{...} and
replace them with their evaluated values.

Built-in Seam components

JBoss Seam 1.1.1.GA 168

org.jboss.seam.core.expressions

An API for creating value and method bindings.

• createValueBinding(String expression) — create a value binding object.

• createMethodBinding(String expression) — create a method binding object.

org.jboss.seam.core.pojoCache

Manager component for a JBoss Cache PojoCache instance.

• pojoCache.cfgResourceName — the name of the configuration file. Default to treecache.xml.

org.jboss.seam.core.uiComponent

Allows access to a JSF UIComponent by its id from the EL. For example, we can write
@In("#{uiComponent['myForm:address'].value}").

All of these components are always installed.

17.3. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using Seam.

org.jboss.seam.core.locale

The Seam locale. The locale is session scoped.

org.jboss.seam.core.timezone

The Seam timezone. The timezone is session scoped.

org.jboss.seam.core.resourceBundle

The Seam resource bundle. The resource bundle is session scoped. The Seam resource bundle performs a
depth-first search for keys in a list of Java resource bundles.

• resourceBundle.bundleNames — the names of the Java resource bundles to search. Default to mes-

sages.

org.jboss.seam.core.localeSelector

Supports selection of the locale either at configuration time, or by the user at runtime.

• select() — select the specified locale.

• localeSelector.locale — the actual java.util.Locale.

• localeSelector.localeString — the stringified representation of the locale.

• localeSelector.language — the language for the specified locale.

• localeSelector.country — the country for the specified locale.

• localeSelector.variant — the variant for the specified locale.

• localeSelector.supportedLocales — a list of SelectItems representing the supported locales listed

Built-in Seam components

JBoss Seam 1.1.1.GA 169

in jsf-config.xml.

• localeSelector.cookieEnabled — specifies that the locale selection should be persisted via a cookie.

org.jboss.seam.core.timezoneSelector

Supports selection of the timezone either at configuration time, or by the user at runtime.

• select() — select the specified locale.

• timezoneSelector.timezone — the actual java.util.TimeZone.

• timezoneSelector.timeZoneId — the stringified representation of the timezone.

• timezoneSelector.cookieEnabled — specifies that the timezone selection should be persisted via a
cookie.

org.jboss.seam.core.messages

A map containing internationalized messages rendered from message templates defined in the Seam re-
source bundle.

org.jboss.seam.theme.themeSelector

Supports selection of the theme either at configuration time, or by the user at runtime.

• select() — select the specified theme.

• theme.availableThemes — the list of defined themes.

• themeSelector.theme — the selected theme.

• themeSelector.themes — a list of SelectItems representing the defined themes.

• themeSelector.cookieEnabled — specifies that the theme selection should be persisted via a cookie.

org.jboss.seam.theme.theme

A map containing theme entries.

All of these components are always installed.

17.4. Components for controlling conversations

The next group of components allow control of conversations by the application or user interface.

org.jboss.seam.core.conversation

API for application control of attributes of the current Seam conversation.

• getId() — returns the current conversation id

• isNested() — is the current conversation a nested conversation?

• isLongRunning() — is the current conversation a long-running conversation?

• getId() — returns the current conversation id

Built-in Seam components

JBoss Seam 1.1.1.GA 170

• getParentId() — returns the conversation id of the parent conversation

• getRootId() — returns the conversation id of the root conversation

• setTimeout(int timeout) — sets the timeout for the current conversation

• setViewId(String outcome) — sets the view id to be used when switching back to the current conver-
sation from the conversation switcher, conversation list, or breadcrumbs.

• setDescription(String description) — sets the description of the current conversation to be dis-
played in the conversation switcher, conversation list, or breadcrumbs.

• redirect() — redirect to the last well-defined view id for this conversation (useful after login chal-
lenges).

• leave() — exit the scope of this conversation, without actually ending the conversation.

• begin() — begin a long-running conversation (equivalent to @Begin).

• beginPageflow(String pageflowName) — begin a long-running conversation with a pageflow
(equivalent to @Begin(pageflow="...")).

• end() — end a long-running conversation (equivalent to @End).

• pop() — pop the conversation stack, returning to the parent conversation.

• root() — return to the root conversation of the conversation stack.

• changeFlushMode(FlushModeType flushMode) — change the flush mode of the conversation.

org.jboss.seam.core.conversationList

Manager component for the conversation list.

org.jboss.seam.core.conversationStack

Manager component for the conversation stack (breadcrumbs).

org.jboss.seam.core.switcher

The conversation switcher.

All of these components are always installed.

17.5. jBPM-related components

These components are for use with jBPM.

org.jboss.seam.core.pageflow

API control of Seam pageflows.

• isInProcess() — returns true if there is currently a pageflow in process

• getProcessInstance() — returns jBPM ProcessInstance for the current pageflow

• begin(String pageflowName) — begin a pageflow in the context of the current conversation

Built-in Seam components

JBoss Seam 1.1.1.GA 171

• reposition(String nodeName) — reposition the current pageflow to a particular node

org.jboss.seam.core.actor

API for application control of attributes of the jBPM actor associated with the current session.

• setId(String actorId) — sets the jBPM actor id of the current user.

• getGroupActorIds() — returns a Set to which jBPM actor ids for the current users groups may be ad-
ded.

org.jboss.seam.core.transition

API for application control of the jBPM transition for the current task.

• setName(String transitionName) — sets the jBPM transition name to be used when the current task
is ended via @EndTask.

org.jboss.seam.core.businessProcess

API for programmatic control of the association between the conversation and business process.

• businessProcess.taskId — the id of the task associated with the current conversation.

• businessProcess.processId — the id of the process associated with the current conversation.

• businessProcess.hasCurrentTask() — is a task instance associated with the current conversation?

• businessProcess.hasCurrentProcess() — is a process instance associated with the current conversa-
tion.

• createProcess(String name) — create an instance of the named process definition and associate it
with the current conversation.

• startTask() — start the task associated with the current conversation.

• endTask(String transitionName) — end the task associated with the current conversation.

• resumeTask(Long id) — associate the task with the given id with the current conversation.

• resumeProcess(Long id) — associate the process with the given id with the current conversation.

• transition(String transitionName) — trigger the transition.

org.jboss.seam.core.taskInstance

Manager component for the jBPM TaskInstance.

org.jboss.seam.core.processInstance

Manager component for the jBPM ProcessInstance.

org.jboss.seam.core.jbpmContext

Manager component for an event-scoped JbpmContext.

org.jboss.seam.core.taskInstanceList

Manager component for the jBPM task list.

org.jboss.seam.core.pooledTaskInstanceList

Built-in Seam components

JBoss Seam 1.1.1.GA 172

Manager component for the jBPM pooled task list.

org.jboss.seam.core.taskInstanceListForType

Manager component for the jBPM task lists.

org.jboss.seam.core.pooledTask

Action handler for pooled task assignment.

All of these components are installed whenever the component org.jboss.seam.core.jbpm is installed.

17.6. Security-related components

These components relate to web-tier security.

org.jboss.seam.core.userPrincipal

Manager component for the current user Principal.

org.jboss.seam.core.isUserInRole

Allows JSF pages to choose to render a control, depending upon the roles available to the current principal.
<h:commandButton value="edit" rendered="#{isUserInRole['admin']}"/>.

17.7. JMS-related components

These components are for use with managed TopicPublishers and QueueSenders (see below).

org.jboss.seam.jms.queueSession

Manager component for a JMS QueueSession .

org.jboss.seam.jms.topicSession

Manager component for a JMS TopicSession .

17.8. Infrastructural components

These components provide critical platform infrastructure. You can install a component by including its class
name in the org.jboss.seam.core.init.componentClasses configuration property.

org.jboss.seam.core.init

Initialization settings for Seam. Always installed.

• org.jboss.seam.core.init.jndiPattern — the JNDI pattern used for looking up session beans

• org.jboss.seam.core.init.debug — enable Seam debug mode

• org.jboss.seam.core.init.clientSideConversations — if set to true, Seam will save conversation
context variables in the client instead of in the HttpSession.

• org.jboss.seam.core.init.userTransactionName — the JNDI name to use when looking up the JTA
UserTransaction object.

Built-in Seam components

JBoss Seam 1.1.1.GA 173

org.jboss.seam.core.manager

Internal component for Seam page and conversation context management. Always installed.

• org.jboss.seam.core.manager.conversationTimeout — the conversation context timeout in milli-
seconds.

• org.jboss.seam.core.manager.concurrentRequestTimeout — maximum wait time for a thread at-
tempting to gain a lock on the long-running conversation context.

• org.jboss.seam.core.manager.conversationIdParameter — the request parameter used to propag-
ate the conversation id, default to conversationId.

• org.jboss.seam.core.manager.conversationIsLongRunningParameter — the request parameter
used to propagate information about whether the conversation is long-running, default to conversa-

tionIsLongRunning.

org.jboss.seam.core.pages

Internal component for Seam workspace management. Always installed.

• org.jboss.seam.core.pages.noConversationViewId — global setting for the view id to redirect to
when a conversation entry is not found on the server side.

org.jboss.seam.core.ejb

Bootstraps the JBoss Embeddable EJB3 container. Install as class org.jboss.seam.core.Ejb. This is use-
ful when using Seam with EJB components outside the context of a Java EE 5 application server.

The basic Embedded EJB configuration is defined in jboss-embedded-beans.xml. Additional microcon-
tainer configuration (for example, extra datasources) may be specified by jboss-beans.xml or META-

INF/jboss-beans.xml in the classpath.

org.jboss.seam.core.microcontainer

Bootstraps the JBoss microcontainer. Install as class org.jboss.seam.core.Microcontainer. This is use-
ful when using Seam with Hibernate and no EJB components outside the context of a Java EE application
server. The microcontainer can provide a partial EE environment with JNDI, JTA, a JCA datasource and
Hibernate.

The microcontainer configuration may be specified by jboss-beans.xml or META-INF/jboss-beans.xml in
the classpath.

org.jboss.seam.core.jbpm

Bootstraps a JbpmConfiguration. Install as class org.jboss.seam.core.Jbpm.

• org.jboss.seam.core.jbpm.processDefinitions — a list of resource names of jPDL files to be used
for orchestration of business processes.

• org.jboss.seam.core.jbpm.pageflowDefinitions — a list of resource names of jPDL files to be
used for orchestration of conversation page flows.

org.jboss.seam.core.conversationEntries

Internal session-scoped component recording the active long-running conversations between requests.

org.jboss.seam.core.facesPage

Internal page-scoped component recording the conversation context associated with a page.

Built-in Seam components

JBoss Seam 1.1.1.GA 174

org.jboss.seam.core.persistenceContexts

Internal component recording the persistence contexts which were used in the current conversation.

org.jboss.seam.jms.queueConnection

Manages a JMS QueueConnection. Installed whenever managed managed QueueSender is installed.

• org.jboss.seam.jms.queueConnection.queueConnectionFactoryJndiName — the JNDI name of a
JMS QueueConnectionFactory. Default to UIL2ConnectionFactory

org.jboss.seam.jms.topicConnection

Manages a JMS TopicConnection. Installed whenever managed managed TopicPublisher is installed.

• org.jboss.seam.jms.topicConnection.topicConnectionFactoryJndiName — the JNDI name of a
JMS TopicConnectionFactory. Default to UIL2ConnectionFactory

org.jboss.seam.persistence.persistenceProvider

Abstraction layer for non-standardized features of JPA provider.

org.jboss.seam.core.validation

Internal component for Hibernate Validator support.

org.jboss.seam.debug.introspector

Support for the Seam Debug Page.

org.jboss.seam.debug.contexts

Support for the Seam Debug Page.

17.9. Special components

Certain special Seam component classes are installable multiple times under names specified in the Seam con-
figuration. For example, the following lines in components.xml install and configure two Seam components:

<component name="bookingDatabase"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property name="persistenceUnitJndiName">java:/comp/emf/bookingPersistence</property>
</component>

<component name="userDatabase"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property name="persistenceUnitJndiName">java:/comp/emf/userPersistence</property>
</component>

The Seam component names are bookingDatabase and userDatabase.

<entityManager>, org.jboss.seam.core.ManagedPersistenceContext
Manager component for a conversation scoped managed EntityManager with an extended persistence con-
text.

• <entityManager>.entityManagerFactory — a value binding expression that evaluates to an instance
of EntityManagerFactory.

<entityManager>.persistenceUnitJndiName — the JNDI name of the entity manager factory, default
to java:/<managedPersistenceContext>.

Built-in Seam components

JBoss Seam 1.1.1.GA 175

<entityManagerFactory>, org.jboss.seam.core.EntityManagerFactory
Manages a JPA EntityManagerFactory. This is most useful when using JPA outside of an EJB 3.0 sup-
porting environment.

• entityManagerFactory.persistenceUnitName — the name of the persistence unit.

See the API JavaDoc for further configuration properties.

<session>, org.jboss.seam.core.ManagedSession
Manager component for a conversation scoped managed Hibernate Session.

• <session>.sessionFactory — a value binding expression that evaluates to an instance of Session-

Factory.

<session>.sessionFactoryJndiName — the JNDI name of the session factory, default to
java:/<managedSession>.

<sessionFactory>, org.jboss.seam.core.HibernateSessionFactory
Manages a Hibernate SessionFactory.

• <sessionFactory>.cfgResourceName — the path to the configuration file. Default to hibern-

ate.cfg.xml.

See the API JavaDoc for further configuration properties.

<managedQueueSender>, org.jboss.seam.jms.ManagedQueueSender
Manager component for an event scoped managed JMS QueueSender.

• <managedQueueSender>.queueJndiName — the JNDI name of the JMS queue.

<managedTopicPublisher>, org.jboss.seam.jms.ManagedTopicPublisher
Manager component for an event scoped managed JMS TopicPublisher.

• <managedTopicPublisher>.topicJndiName — the JNDI name of the JMS topic.

<managedWorkingMemory>, org.jboss.seam.drools.ManagedWorkingMemory
Manager component for a conversation scoped managed Drools WorkingMemory.

• <managedWorkingMemory>.ruleBase — a value expression that evaluates to an instance of RuleBase.

<ruleBase>, org.jboss.seam.drools.RuleBase
Manager component for an application scoped Drools RuleBase. Note that this is not really intended for
production usage, since it does not support dynamic installation of new rules.

• <ruleBase>.ruleFiles — a list of files containing Drools rules.

<ruleBase>.dslFile — a Drools DSL definition.

<entityHome>, org.jboss.seam.framework.EntityHome

<hibernateEntityHome>, org.jboss.seam.framework.HibernateEntityHome

Built-in Seam components

JBoss Seam 1.1.1.GA 176

<entityQuery>, org.jboss.seam.framework.EntityQuery

<hibernateEntityQuery>, org.jboss.seam.framework.HibernateEntityQuery

Built-in Seam components

JBoss Seam 1.1.1.GA 177

Chapter 18. Seam JSF controls
Seam includes a number of JSF controls that are useful for working with Seam. These are intended to comple-
ment the built-in JSF controls, and controls from other third-party libraries. We recommend the Ajax4JSF and
ADF faces (now Trinidad) tag libraries for use with Seam. We do not recommend the use of the Tomahawk tag
library.

<s:validate>

Validate a JSF input field against the bound property using Hibernate Validator.

<s:validateAll>

Validate all child JSF input fields against the bound propertys using Hibernate Validator.

<s:formattedText>

Output Seam Text.

<s:convertDateTime>

Perform date or time conversions in the Seam timezone.

<s:convertEnum>

Assigns an enum converter to the current component. This is primarily useful for radio button and drop-
down controls.

<s:enumItem>

Creates a SelectItem from an enum value.

• enumValue — the string representation of the enum value.

• label — the label to be used when rendering the SelectItem.

<s:decorate>

"Decorate" a JSF input field when validation fails.

<s:message>

"Decorate" a JSF input field with the validation error message.

<s:span>

Render a HTML .

<s:div>

Render a HTML <div>.

<s:cache>

Cache the rendered page fragment using JBoss Cache. Note that <s:cache> actually uses the instance of
JBoss Cache managed by the built-in pojoCache component.

• key — the key to cache rendered content, often a value expression. For example, if we were caching a
page fragment that displays a document, we might use key="Document-#{document.id}".

• enabled — a value expression that determines if the cache should be used.

• region — a JBoss Cache node to use (different nodes can have different expiry policies).

JBoss Seam 1.1.1.GA 178

<s:link>

A link that supports invocation of an action with control over conversation propagation. Does not submit
the form.

• value — the label.

• action — a method binding that specified the action listener.

• view — the JSF view id to link to.

• fragment — the fragment identifier to link to.

• disabled — is the link disabled?

• propagation — determines the conversation propagation style: begin, join, nest, none or end.

• pageflow — a pageflow definition to begin. (This is only useful when propagation="begin" or
propagation="join".)

<s:button>

A button that supports invocation of an action with control over conversation propagation. Does not submit
the form.

• value — the label.

• action — a method binding that specified the action listener.

• view — the JSF view id to link to.

• fragment — the fragment identifier to link to.

• disabled — is the link disabled?

• propagation — determines the conversation propagation style: begin, join, nest, none or end.

• pageflow — a pageflow definition to begin. (This is only useful when propagation="begin" or
propagation="join".)

<s:selectDate>

Displays a dynamic date picker component that selects a date for the specified input field. The body of the
selectDate element should contain HTML elements, such as text or an image, that prompt the user to click
to display the date picker.

• for — The id of the input field that the date picker will insert the selected date into.

<s:conversationPropagation>

Customize the conversation propagation for a command link or button (or similar JSF control). Facelets
only.

• propagation — determines the conversation propagation style: begin, join, nest, none or end.

• pageflow — a pageflow definition to begin. (This is only useful when propagation="begin" or
propagation="join".)

Seam JSF controls

JBoss Seam 1.1.1.GA 179

<s:conversationId>

Add the conversation id to an output link (or similar JSF control). Facelets only.

<s:taskId>

Add the task id to an output link (or similar JSF control), when the task is available via #{task}. Facelets
only.

Seam JSF controls

JBoss Seam 1.1.1.GA 180

Chapter 19. iText PDF generation
Seam now includes an optional component set for generating documents using iText. The primary focus of
Seam's iText document support is for the generation of PDF doucuments, but Seam also offers basic support for
RTF document generation.

19.1. Using PDF Support

iText support is provided by jboss-seam-pdf.jar. This JAR contains the iText JSF controls, which are used to
construct views that can render to PDF, and the DocumentStore component, which serves the rendered docu-
ments to the user. To include PDF support in your application, included jboss-seam-pdf.jar in your WEB-
INF/lib directory along with the iText JAR file. There is no further configuration needed to use Seam's iText
support.

The Seam iText module requires the use of Facelets as the view technology. Future versions of the library may
also support the use of JSP. Additionally, it requires the use of the seam-ui package.

The examples/pdf project contains an example of the PDF support in action. It demonstrates proper deployment
packaging, and it contains a number examples that demonstrate the key PDF generation features current sup-
ported.

19.2. Creating a document

Documents are generated by facelets documents using tags in the http://jboss.com/products/seam/pdf

namespace. Documents should always have the document tag at the root of the document. The document tag
prepares Seam to generate a document into the DocumentStore and renders an HTML redirect to that stored
content. The following is a a small PDF document consisting only a single line of text:

<p:document xmlns:p="http://jboss.com/products/seam/pdf">
A very tiny PDF

</p:document>

Documents should be composed entirely using Seam document components. Controls meant for HTML render-
ing are generally not supported. However, pure control structures can be used. The following document uses
the ui:repeat tag to to display a list of values retrieved from a Seam component.

<p:document xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:p="http://jboss.com/products/seam/pdf">

<p:list>
<ui:repeat value="#{lists.numbers}" var="item">

<p:listItem><p:font style="bold">#{item}</p:font>:
This is some information...</p:listItem>

</ui:repeat>
</p:list>

</p:document>

19.2.1. p:document

JBoss Seam 1.1.1.GA 181

The p:document tag supports the following attributes:

type

The type of the document to be produced. Valid values are PDF, RTF and HTML modes. Seam defaults to PDF
generation, and many of the features only work correctly when generating PDF documents.

pageSize

The size of the page to be generate. The most commonly used values would be LETTER and A4. A full list of
supported pages sizes can be found in com.lowagie.text.PageSize class.

margins

The left, right, top and bottom margin values.

marginMirroring

Indicates that margin settings should be reversed an alternating pages.

Document metadata is also set as attributes of the document tag. The following metadata fields are supported:

title

subject

keywords

author

creator

19.3. Headers and Footers

19.3.1. p:header and p:footer

The p:header and p:footer components provide the ability to place header and footer text on each page of a
generated document, with the exception of the first page. Header and footer declarations should appear near the
top of a document.

alignment

The alignment of the header/footer box section. (see Section 19.8.2, “Alignment Values” for alignment val-
ues)

backgroundColor

The background color of the header/footer box. (see Section 19.8.1, “Color Values” for color values)

borderColor

The border color of the header/footer box. Individual border sides can be set using borderColorLeft, bor-
derColorRight, borderColorTop and borderColorBottom.(see Section 19.8.1, “Color Values” for color
values)

borderWidth

The width of the border. Inidvidual border sides can be specified using borderWidthLeft, borderWid-

thRight, borderWidthTop and borderWidthBottom.

iText PDF generation

JBoss Seam 1.1.1.GA 182

19.3.2. p:pageNumber

The current page number can be placed inside of a header or footer using the p:pageNumber tag. The page num-
ber tag can only be used in the context of a header or footer and can only be used once.

19.4. Chapters and Sections

If the generated document follows a book/article structure, the p:chapter and p:section tags can be used to
provide the necessary structure. Sections can only be used inside of chapters, but they may be nested arbitrarily
deep.

19.4.1. p:chapter and p:section

number

The chapter number. Every chapter should be assigned a chapter number.

numberDepth

The depth of numbering for section. All sections are numbered relative to their surrounding chapter/sec-
tions. The fourth section of of the first section of chapter three would be section 3.1.4, if displayed at the
default number depth of three. To omit the chapter number, a number depth of 2 should be used. In that
case, the section number would be displayed as 1.4.

19.4.2. p:title

Any chapter or section can contain a p:title. The title will be displayed next to the chapter/section number.
The body of the title may contain text or may be a p:paragraph.

19.5. Lists

List structures can be displayed using the p:list and p:listItem tags. Lists may contain arbitrarily-nested
sublists. List items may not be used outside of a list.

19.5.1. p:list

p:list supports the following attributes:

style

The ordering/bulleting style of list. One of: NUMBERED, LETTERED, GREEK, ROMAN, ZAPFDINGBATS, ZAPFDING-
BATS_NUMBER. If no style is given, the list items are bulleted.

listSymbol

For bulleted lists, specifies the bullet symbol.

indent

The indentation level of the list.

lowerCase

For list styles using letters, indicates whether the letters should be lower case.

iText PDF generation

JBoss Seam 1.1.1.GA 183

charNumber

For ZAPFDINGBATS, indicates the character code of the bullet character.

numberType

For ZAPFDINGBATS_NUMBER, indicates the numbering style.

19.5.2. p:listItem

p:listItem supports the following attributes:

alignment

The alignment of the list item. (See Section 19.8.2, “Alignment Values” for possible values)

indentationLeft

The left indentation amount.

indentationRight

The right indentation amount.

listSymbol

Overrides the default list symbol for this list item.

19.6. Tables

Table structures can be created using the p:table and p:cell tags. Unlike many table structures, there is no ex-
plicit row declaration. If a table has 3 columns, then every 3 cells will automatically form a row.

19.6.1. p:table

p:table supports the following attributes.

columns

The number of columns (cells) that make up a table row.

widths

The relative widths of each column. There should be one value for each column. For example: widths="2 1
1" would indicate that there are 3 columns and the first column should be twice the size of the second and
third column.

headerRows

The initial number of rows which are considered to be headers or footer rows and should be repeated if the
table spans multiple pages.

footerRows

The number of rows that are considered to be footer rows. This value is subtracted from the headerRows

value. If document has 2 rows which make up the header and one row that makes up the footer, header-
Rows should be set to 3 and footerRows should be set to 1

widthPercentage

The percentage of the page width that the table spans.

iText PDF generation

JBoss Seam 1.1.1.GA 184

horizontalAlignment

The horizontal alignment of the table. (See Section 19.8.2, “Alignment Values” for possible values)

skipFirstHeader

runDirection

lockedWidth

splitRows

spacingBefore

The blank space to be inserted before the element.

spacingAfter

The blank space to be inserted after the element.

extendLastRow

headersInEvent

splitLate

keepTogether

19.6.2. p:cell>

p:cell supports the following attributes.

colspan

Cells can span more than one column by declaring a colspan greater than 1. Tables do not have the ability
to span across multiple rows.

horizontalAlignment

The horizontal alignment of the cell. (see Section 19.8.2, “Alignment Values” for possible values)

verticalAlignment

The vertical alignment of the cell. (see Section 19.8.2, “Alignment Values” for possible values)

padding

Padding on a given side can also be specified using paddingLeft, paddingRight, paddingTop and pad-

dingBottom.

useBorderPadding

leading

multipliedLeading

indent

verticalAlignment

extraParagraphSpace

iText PDF generation

JBoss Seam 1.1.1.GA 185

fixedHeight

noWrap

minimumHeight

followingIndent

rightIndent

spaceCharRatio

runDirection

arabicOptions

useAscender

grayFill

rotation

19.7. Basic Text Elements

19.7.1. p:paragraph

firstLineIndent

extraParagraphSpace

leading

multipliedLeading

spacingBefore

The blank space to be inserted before the element.

spacingAfter

The blank space to be inserted after the element.

indentationLeft

indentationRight

keepTogether

19.7.2. p:font

familyName

size

style

iText PDF generation

JBoss Seam 1.1.1.GA 186

19.7.3. p:newPage

p:newPage inserts a page break.

19.7.4. p:image

p:image inserts an image into the document.

resource

The location of the image resource to be included. Resources should be relative to the document root of the
web application.

rotation

The rotation of the image in degrees.

height

The height of the image.

width

The width of the image.

alignment

The alignment of the image. (see Section 19.8.2, “Alignment Values” for possible values)

alt

indentationLeft

indentationRight

spacingBefore

The blank space to be inserted before the element.

spacingAfter

The blank space to be inserted after the element.

widthPercentage

initialRotation

dpi

wrap

underlying

19.7.5. p:anchor>

p:anchor defines clickable links from a document. It supports the following attributes:

name

The name of an in-document anchor destination.

iText PDF generation

JBoss Seam 1.1.1.GA 187

reference

The destination the link refers to. Links to other points in the document should begin with a "#". For ex-
ample, "#link1" to refer to an anchor postion with a name of link1. Links may also be a full URL to point
to a resource outside of the document.

19.8. Document Constants

19.8.1. Color Values

Seam documents do not yet support a full color specification. Currently, only named colors are supported. They
are: white, gray, lightgray, darkgray, black, red, pink, yellow, green, magenta, cyan and blue.

19.8.2. Alignment Values

left, right, center, justify, justifyall, top, middle, bottom, baseline

19.9. iText links

For further information on iText, see:

• iText Home Page [http://www.lowagie.com/iText/]

• iText in Action [http://www.manning.com/lowagie/]

iText PDF generation

JBoss Seam 1.1.1.GA 188

http://www.lowagie.com/iText/
http://www.manning.com/lowagie/

Chapter 20. Expression language enhancements
The standard Unified Expression Language (EL) assumes that any parameters to a method expression will be
provided by Java code. This means that a method with parameters cannot be used as a JSF method binding.
Seam provides an enhancement to the EL that allows parameters to be included in a method expression itself.
This applies to any Seam method expression, including any JSF method binding, for example:

<s:commandButton action="#{hotelBooking.bookHotel(hotel)}" value="Book Hotel"/>

20.1. Configuration

To use this feature in Facelets, you will need to declare a special view handler, SeamFaceletViewHandler in
faces-config.xml.

<faces-config>
<application>

<view-handler>org.jboss.seam.ui.facelet.SeamFaceletViewHandler</view-handler>
</application>

</faces-config>

20.2. Usage

Parameters are surrounded by parentheses, and separated by commas:

<h:commandButton action="#{hotelBooking.bookHotel(hotel, user)}" value="Book Hotel"/>

The parameters hotel and user will be evaluated as value expressions and passed to the bookHotel() method
of the component. This gives you an alternative to the use of @In.

Any value expression may be used as a parameter:

<h:commandButton action="#{hotelBooking.bookHotel(hotel.id, user.username)}" value="Book Hotel"/>

You may even pass literal strings using single or double quotes:

<h:commandLink action=”#{printer.println(‘Hello world!’)}” value=”Hello”/>

<h:commandLink action=’#{printer.println(“Hello again”)}’ value=’Hello’/>

You might even want to use this notation for all your action methods, even when you don’t have parameters to
pass. This improves readability by making it clear that the expression is a method expression and not a value
expression:

<s:link value="Cancel" action="#{hotelBooking.cancel()}"/>

20.3. Limitations

Please be aware of the following limitations:

JBoss Seam 1.1.1.GA 189

20.3.1. Incompatibility with JSP 2.1

This extension is not currently compatible with JSP 2.1. So if you want to use this extension with JSF 1.2, you
will need to use Facelets. The extension works correctly with JSP 2.0.

20.3.2. Calling a MethodExpression from Java code

Normally, when a MethodExpression or MethodBinding is created, the parameter types are passed in by JSF. In
the case of a method binding, JSF assumes that there are no parameters to pass. With this extension, we can’t
know the parameter types until after the expression has been evaluated. This has two minor consequences:

• When you invoke a MethodExpression in Java code, parameters you pass may be ignored. Parameters
defined in the expression will take precedence.

• Ordinarily, it is safe to call methodExpression.getMethodInfo().getParamTypes() at any time. For an ex-
pression with parameters, you must first invoke the MethodExpression before calling getParamTypes().

Both of these cases are exceedingly rare and only apply when you want to invoke the MethodExpression by
hand in Java code.

Expression language enhancements

JBoss Seam 1.1.1.GA 190

Chapter 21. Testing Seam applications
Most Seam applications will need at least two kinds of automated tests: unit tests, which test a particular Seam
component in isolation, and scripted integration tests which exercise all Java layers of the application (that is,
everything except the view pages).

Both kinds of tests are very easy to write.

21.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing. And since Seam
emphasises the use of bijection for inter-component interactions and access to contextual objects, it's very easy
to test a Seam component outside of its normal runtime environment.

Consider the following Seam component:

@Stateless
@Scope(EVENT)
@Name("register")
public class RegisterAction implements Register
{

private User user;
private EntityManager em;

@In
public void setUser(User user) {

this.user = user;
}

@PersistenceContext
public void setBookingDatabase(EntityManager em) {

this.em = em;
}

public String register()
{

List existing = em.createQuery("select username from User where username=:username")
.setParameter("username", user.getUsername())
.getResultList();

if (existing.size()==0)
{

em.persist(user);
return "success";

}
else
{

return null;
}

}

}

We could write a TestNG test for this component as follows:

public class RegisterActionTest
{

@Test
public testRegisterAction()
{

EntityManager em = getEntityManagerFactory().createEntityManager();
em.getTransaction().begin();

JBoss Seam 1.1.1.GA 191

User gavin = new User();
gavin.setName("Gavin King");
gavin.setUserName("1ovthafew");
gavin.setPassword("secret");

RegisterAction action = new RegisterAction();
action.setUser(gavin);
action.setBookingDatabase(em);

assert "success".equals(action.register());

em.getTransaction().commit();
em.close();

}

private EntityManagerFactory emf;

public EntityManagerFactory getEntityManagerFactory()
{

return emf;
}

@Configuration(beforeTestClass=true)
public void init()
{

emf = Persistence.createEntityManagerFactory("myResourceLocalEntityManager");
}

@Configuration(afterTestClass=true)
public void destroy()
{

emf.close();
}

}

Seam components don't usually depend directly upon container infrastructure, so most unit testing as as easy as
that!

21.2. Integration testing Seam applications

Integration testing is slightly more difficult. In this case, we can't eliminate the container infrastructure; indeed,
that is part of what is being tested! At the same time, we don't want to be forced to deploy our application to an
application server to run the automated tests. We need to be able to reproduce just enough of the container in-
frastructure inside our testing environment to be able to exercise the whole application, without hurting per-
formance too much.

A second problem is emulating user interactions. A third problem is where to put our assertions. Some test
frameworks let us test the whole application by reproducing user interactions with the web browser. These
frameworks have their place, but they are not appropriate for use at development time.

The approach taken by Seam is to let you write tests that script your components while running inside a pruned
down container environment (Seam, together with the JBoss Embeddable EJB container). The role of the test
script is basically to reproduce the interaction between the view and the Seam components. In other words, you
get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSP view for the component we unit tested above:

Testing Seam applications

JBoss Seam 1.1.1.GA 192

<html>
<head>
<title>Register New User</title>
</head>
<body>
<f:view>
<h:form>
<table border="0">

<tr>
<td>Username</td>
<td><h:inputText value="#{user.username}"/></td>

</tr>
<tr>
<td>Real Name</td>
<td><h:inputText value="#{user.name}"/></td>

</tr>
<tr>
<td>Password</td>
<td><h:inputSecret value="#{user.password}"/></td>

</tr>
</table>
<h:messages/>
<h:commandButton type="submit" value="Register" action="#{register.register}"/>

</h:form>
</f:view>
</body>

</html>

We want to test the registration functionality of our application (the stuff that happens when the user clicks the
Register button). We'll reproduce the JSF request lifecycle in an automated TestNG test:

public class RegisterTest extends SeamTest
{

@Test
public void testRegister() throws Exception
{

new FacesRequest() {

@Override
protected void processValidations() throws Exception
{

validateValue("#{user.username}", "1ovthafew");
validateValue("#{user.name}", "Gavin King");
validateValue("#{user.password}", "secret");
assert !isValidationFailure();

}

@Override
protected void updateModelValues() throws Exception
{

setValue("#{user.username}", "1ovthafew");
setValue("#{user.name}", "Gavin King");
setValue("#{user.password}", "secret");

}

@Override
protected void invokeApplication()
{

assert invokeMethod("#{register.register}").equals("success");
}

@Override
protected void renderResponse()
{

assert getValue("#{user.username}").equals("1ovthafew");
assert getValue("#{user.name}").equals("Gavin King");
assert getValue("#{user.password}").equals("secret");

Testing Seam applications

JBoss Seam 1.1.1.GA 193

}

}.run();

}

...

}

Notice that we've extended SeamTest, which provides a Seam environment for our components, and written our
test script as an anonymous class that extends SeamTest.FacesRequest, which provides an emulated JSF re-
quest lifecycle. (There is also a SeamTest.NonFacesRequest for testing GET requests.) We've written our code
in methods which are named for the various JSF phases, to emulate the calls that JSF would make to our com-
ponents. Then we've thrown in various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate more complex
cases. There are instructions for running these tests using Ant, or using the TestNG plugin for eclipse:

Testing Seam applications

JBoss Seam 1.1.1.GA 194

Testing Seam applications

JBoss Seam 1.1.1.GA 195

Chapter 22. Seam tools

22.1. jBPM designer and viewer

The jBPM designer and viewer will let you design and view in a nice way your business processes and your
pageflows. This convenient tool is part of JBoss Eclipse IDE and more details can be found in the jBPM's doc-
umentation (http://docs.jboss.com/jbpm/v3/gpd/)

22.1.1. Business process designer

This tool lets you design your own business process in a graphical way.

22.1.2. Pageflow viewer

This tool let you design to some extend your pageflows and let you build graphical views of them so you can
easily share and compare ideas on how it should be designed.

JBoss Seam 1.1.1.GA 196

22.2. CRUD-application generator

This chapter, will give you a short overview of the support for Seam that is available in the Hibernate Tools.
Hibernate Tools is a set of tools for working with Hibernate and related technologies, such as JBoss Seam and
EJB3. The tools are available as a set of eclipse plugins and Ant tasks. You can download the Hibernate Tools
from the JBoss Eclipse IDE or Hibernate Tools websites.

The specific support for Seam that is currently available is generation of a fully functional Seam based CRUD-
application. The CRUD-application can be generated based on your existing Hibernate mapping files or EJB3
annotated POJO's or even fully reverse engineered from your existing database schema.

The following sections is focused on the features required to understand for usage with Seam. The content is
derived from the the Hibernate Tools reference documentation. Thus if you need more detailed information
please refer to the Hibernate Tools documentation.

22.2.1. Creating a Hibernate configuration file

To be able to reverse engineer and generate code a hibernate.properties or hibernate.cfg.xml file is needed. The
Hibernate Tools provide a wizard for generating the hibernate.cfg.xml file if you do not already have such file.

Start the wizard by clicking "New Wizard" (Ctrl+N), select the Hibernate/Hibernate Configuration file
(cfg.xml) wizard and press "Next". After selecting the wanted location for the hibernate.cfg.xml file, you will
see the following page:

Seam tools

JBoss Seam 1.1.1.GA 197

Tip: The contents in the combo boxes for the JDBC driver class and JDBC URL change automatically, depend-
ing on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can be found in Hi-
bernate reference documentation.

Press "Finish" to create the configuration file, after optionally creating a Console onfiguration, the hibern-
ate.cfg.xml will be automatically opened in an editor. The last option "Create Console Configuration" is en-
abled by default and when enabled i will automatically use the hibernate.cfg.xml for the basis of a "Console
Configuration"

22.2.2. Creating a Hibernate Console configuration

A Console Configuration describes to the Hibernate plugin which configuration files should be used to config-
ure hibernate, including which classpath is needed to load the POJO's, JDBC drivers etc. It is required to make
usage of query prototyping, reverse engineering and code generation. You can have multiple named console
configurations. Normally you would just need one per project, but more (or less) is definitly possible.

You create a console configuration by running the Console Configuration wizard, shown in the following
screenshot. The same wizard will also be used if you are coming from the hibernate.cfg.xml wizard and had en-
abled "Create Console Configuration".

Seam tools

JBoss Seam 1.1.1.GA 198

The following table describes the relevant settings. The wizard can automatically detect default values for most
of these if you started the Wizard with the relevant java project selected

Table 22.1. Hibernate Console Configuration Parameters

Parameter Description Auto detected
value

Name The unique name of the configuration Name of the selec-
ted project

Seam tools

JBoss Seam 1.1.1.GA 199

Parameter Description Auto detected
value

Property file Path to a hibernate.properties file First hibern-
ate.properties file
found in the selec-
ted project

Configuration file Path to a hibernate.cfg.xml file First hibern-
ate.cfg.xml file
found in the selec-
ted project

Enable Hibernate
ejb3/annotations

Selecting this option enables usage of annotated classes.
hbm.xml files are of course still possible to use too. This feature
requires running the Eclipse IDE with a JDK 5 runtime, other-
wise you will get classloading and/or version errors.

Not enabled

Mapping files List of additional mapping files that should be loaded. Note: A
hibernate.cfg.xml can also contain mappings. Thus if these a du-
plicated here, you will get "Duplicate mapping" errors when us-
ing the console configuration.

If no hibern-
ate.cfg.xml file is
found, all hbm.xml
files found in the se-
lected project

Classpath The classpath for loading POJO and JDBC drivers. Do not add
Hibernate core libraries or dependencies, they are already in-
cluded. If you get ClassNotFound errors then check this list for
possible missing or redundant directories/jars.

The default build
output directory and
any JARs with a
class implementing
java.sql.Driver in
the selected project

Clicking "Finish" creates the configuration and shows it in the "Hibernate Configurations" view

Seam tools

JBoss Seam 1.1.1.GA 200

22.2.3. Reverse engineering and code generation

A very simple "click-and-generate" reverse engineering and code generation facility is available. It is this facil-
ity that allows you to generate the skeleton for a full Seam CRUD application.

To start working with this process, start the "Hibernate Code Generation" which is available in the toolbar via
the Hibernate icon or via the "Run/Hibernate Code Generation" menu item.

22.2.3.1. Code Generation Launcher

When you click on "Hibernate Code Generation" the standard Eclipse launcher dialog will appear. In this dia-
log you can create, edit and delete named Hibernate code generation "launchers".

The dialog has the standard tabs "Refresh" and "Common" that can be used to configure which directories
should be automatically refreshed and various general settings launchers, such as saving them in a project for
sharing the launcher within a team.

Seam tools

JBoss Seam 1.1.1.GA 201

The first time you create a code generation launcher you should give it a meaningfull name, otherwise the de-
fault prefix "New_Generation" will be used.

Note: The "At least one exporter option must be selected" is just a warning stating that for this launch to work
you need to select an exporter on the Exporter tab. When an exporter has been selected the warning will disap-
pear.

On the "Main" tab you the following fields:

Table 22.2. Code generation "Main" tab fields

Field Description

Console Configuration The name of the console configuration which should be used when code generat-
ing.

Output directory Path to a directory into where all output will be written by default. Be aware that
existing files will be overwritten, so be sure to specify the correct directory.

Reverse engineer from
JDBC Connection

If enabled the tools will reverse engineer the database available via the connec-
tion information in the selected Hibernate Console Configuration and generate
code based on the database schema. If not enabled the code generation will just
be based on the mappings already specified in the Hibernate Console configura-
tion.

Seam tools

JBoss Seam 1.1.1.GA 202

Field Description

Package The package name here is used as the default package name for any entities found
when reverse engineering.

reveng.xml Path to a reveng.xml file. A reveng.xml file allows you to control certain aspects
of the reverse engineering. e.g. how jdbc types are mapped to hibernate types and
especially important which tables are included/excluded from the process. Click-
ing "setup" allows you to select an existing reveng.xml file or create a new one..

reveng. strategy If reveng.xml does not provide enough customization you can provide your own
implementation of an ReverseEngineeringStrategy. The class need to be in the
claspath of the Console Configuration, otherwise you will get class not found ex-
ceptions.

Generate basic typed
composite ids

This field should always be enabled when generating the Seam CRUD applica-
tion. A table that has a multi-colum primary key a <composite-id> mapping will
always be created. If this option is enabled and there are matching foreign-keys
each key column is still considered a 'basic' scalar (string, long, etc.) instead of a
reference to an entity. If you disable this option a <key-many-to-one> instead.
Note: a <many-to-one> property is still created, but is simply marked as non-
updatable and non-insertable.

Use custom templates If enabled, the Template directory will be searched first when looking up the ve-
locity templates, allowing you to redefine how the individual templates process
the hibernate mapping model.

Template directory A path to a directory with custom velocity templates.

22.2.3.2. Exporters

The exporters tab is used to specify which type of code that should be generated. Each selection represents an
"Exporter" that are responsible for generating the code, hence the name.

Seam tools

JBoss Seam 1.1.1.GA 203

The following table describes in short the various exporters. The most relevant for Seam is of course the "JBoss
Seam Skeleton app".

Table 22.3. Code generation "Exporter" tab fields

Field Description

Generate domain code Generates POJO's for all the persistent classes and components found in the given
Hibernate configuration.

JDK 1.5 constructs When enabled the POJO's will use JDK 1.5 constructs.

EJB3/JSR-220 annota-
tions

When enabled the POJO's will be annotated according to the EJB3/JSR-220 per-
sistency specification.

Generate DAO code Generates a set of DAO's for each entity found.

Generate Mappings Generate mapping (hbm.xml) files for each entity

Generate hibernate con-
figuration file

Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml uptodate
with any new found mapping files.

Generate schema html- Generates set of html pages that documents the database schema and some of the

Seam tools

JBoss Seam 1.1.1.GA 204

Field Description

documentation mappings.

Generate JBoss Seam
skeleton app (beta)

Generates a complete JBoss Seam skeleton app. The generation will include an-
notated POJO's, Seam controller beans and a JSP for the presentation layer. See
the generated readme.txt for how to use it.

Note: this exporter generates a full application, including a build.xml thus you
will get the best results if you use an output directory which is the root of your
project.

22.2.3.3. Generating and using the code

When you have finished filling out the settings, simply press "Run" to start the generation of code. This might
take a little while if you are reverse engineering from a database.

When the generation have finished you should now have a complete skeleton Seam application in the output
directory. In the output directory there is a readme.txt file describing the steps needed to deploy and run the
example.

If you want to regenerate/update the skeleton code then simply run the code generation again by selecting the
"Hibernate Code Generation" in the toolbar or "Run" menu. Enjoy.

Seam tools

JBoss Seam 1.1.1.GA 205

Chapter 23. Security
The Seam Security API is an optional Seam module that provides authentication and authorization features for
securing both domain and page resources within your Seam project. It supports multiple levels of security gran-
ularity, making it capable of performing either simple role-based security checks, or at the other end of the
scale complex rule-based permission checks on domain objects using JBoss Rules.

23.1. Overview

The Seam security API provides the following features for securing a Seam application.

23.1.1. JAAS-based Authentication

The authentication component of the security API is based on JAAS, allowing authentication to be carried out
against one or more configurable login modules. The security API provides a login module that delegates au-
thentication to a Seam component, making it easy to authenticate a user using the application's domain objects.

23.1.2. Page Security

This feature allows direct access to page resources to be controlled based on the set of roles granted to the re-
questing user. Using a servlet filter, each request to a protected resource is validated to ensure that the user has
the necessary roles to access the resource.

23.1.3. EL Integration

The s:hasRole() and s:hasPermission() EL functions can be used within the pages of an application to con-
trol which parts of a page are rendered based on the security level of the user. On the model side, component
classes and/or their methods can also be annotated with the very same EL expressions to restrict the execution
of methods based on the current security context.

23.1.4. Rule-based Authorization

By integrating with JBoss Rules, the security API is able to make security decisions by evaluating a set of user-
defined security rules defined at deployment time. This feature allows any security checks to carry out a de-
cision-making process which can be as simple or as complex as required, while taking into account the state of
any objects asserted into the security context for the check.

23.2. Configuration

The first step in configuring Seam Security is to install the SeamSecurityManager and SecurityConfiguration

components, as they are not installed by default. The SeamSecurityManager component is the core of the Seam
Security API, and is responsible for loading security rules, and performing role and permission checks. Secur-
ityConfiguration is used to load role and page security configuration from a configuration file (or can be ex-
tended to load this configuration from an alternative source, such as a database). The following entries in com-

ponents.xml will install these two components:

JBoss Seam 1.1.1.GA 206

<!DOCTYPE components PUBLIC "-//JBoss/Seam Component Configuration DTD 1.1//EN"
"http://jboss.com/products/seam/components-1.1.dtd">

<components>
<!-- Install a Security Configuration -->
<component class="org.jboss.seam.security.config.SecurityConfiguration"/>

<!-- Install the Seam Security Manager -->
<component class="org.jboss.seam.security.SeamSecurityManager"/>

</components>

23.2.1. security-config.xml

The next step is to configure roles. While this step is optional (it is possible for a user to belong to a role even if
it is not configured here), it is necessary if either 1) explicit permissions are required by your application, or 2)
roles require membership of other roles. Create a file called security-config.xml, which goes in the META-INF

directory of the Seam application's jar file. Here's an example security-config.xml file with a few roles
defined.

<security-config>

<roles>
<role name="admin">
<memberships>superuser</memberships>

<permissions>
<permission name="user" action="create"/>
<permission name="user" action="modify"/>
<permission name="user" action="delete"/>

</permissions>
</role>

<role name="superuser">
<memberships>user</memberships>

<permissions>
<permission name="account" action="create"/>
<permission name="account" action="delete"/>

</permissions>
</role>

<role name="user">
<permissions>

<permission name="customer" action="create"/>
<permission name="customer" action="delete"/>

</permissions>
</role>

<role name="guest">

</role>

</roles>

</security-config>

In the above example, we can see that there are four distinct roles: admin, superuser, user and guest. Strictly
speaking, the guest entry is redundant as it declares no permissions nor contains any memberships of other

Security

JBoss Seam 1.1.1.GA 207

roles. What is most of interest here are the permissions and role memberships, which are explained in further
detail as follows.

Explicit Permissions

These are permissions which are explicitly granted to members of a role. Explicit permissions are used to ad-
dress simple security concerns, such as "may this user create a new customer record?", or "may this user view
customer details?". While it is possible to perform a more complex contextual-based decision to grant a specif-
ic permission or not, explicit permissions allow simple decision-less permissions to be easily granted to certain
groups of users. How these permissions are used will be explained further on.

Role memberships

Role memberships are a simple inheritence feature designed to make it easier to build a security model from the
ground up. In the above example, it can be seen that the admin role contains a membership of the superuser

role. What this means, is that any explicit permissions that the superuser has, whether they were granted to the
superuser role directly or inherited from further up, are automatically granted to the admin user also, as a result
of its membership.

The following table illustrates this concept by showing the permissions granted to each role based on the above
security-config.xml example.

Table 23.1. Permissions granted to example roles

Role Permission Source

user customer:create Assigned directly

user customer:delete Assigned directly

superuser customer:create Inherited from user

superuser customer:delete Inherited from user

superuser account:create Assigned directly

superuser account:delete Assigned directly

admin customer:create Inherited from superuser

admin customer:delete Inherited from superuser

admin account:create Inherited from superuser

admin account:delete Inherited from superuser

admin user:create Assigned directly

Security

JBoss Seam 1.1.1.GA 208

Role Permission Source

admin user:modify Assigned directly

admin user:delete Assigned directly

Page security

Page security is used to restrict direct access to web resources based on the user's roles. It requires the Seam se-
curity filter (a servlet filter - see the next section) to be installed. To configure page security, security-con-
straint entries must be created within security-config.xml to control which web resources are accessible to
which roles. The restricted web resources are defined using a url-pattern expression. The following example
demonstrates how all of the *.seam resources in the /secure directory are restricted to users in the admin role.

<security-config>

<security-constraint>
<web-resource-collection>
<web-resource-name>Secure Page</web-resource-name>
<url-pattern>/secure/*</url-pattern>

</web-resource-collection>

<auth-constraint>
<role-name>admin</role-name>

</auth-constraint>
</security-constraint>

</security-config>

This configuration may look familiar, because it is the same format defined by the servlet specification, and as
such follows the same wildcard conventions. I.e. at the end of a pattern, /* matches any sequence of characters
from that point forward, and the pattern *.extension matches any resources ending with .extension. An as-
terisk in any other position is not a wildcard.

So what happens when a user tries to access a page that they don't have the necessary rights for? By default, the
security filter redirects these requests to the /securityError.seam page. This page can be overridden by set-
ting the securityErrorPage property of the SecurityConfiguration component in components.xml:

<component class="org.jboss.seam.security.config.SecurityConfiguration">
<property name="securityErrorPage">/security/generalSecurityError.seam</property>

</component>

23.2.2. Seam Security Filter

The Seam security filter is a servlet filter that provides page security features. It is an optional component in
that if your application does not require page security, then there is no requirement to install the security filter.
To configure which pages are secure, see the previous section on page security. To configure the security filter,
add the following entries to web.xml:

Security

JBoss Seam 1.1.1.GA 209

<!-- Seam security filter -->

<filter>
<filter-name>Seam Security Filter</filter-name>
<filter-class>org.jboss.seam.security.filter.SeamSecurityFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Seam Security Filter</filter-name>
<url-pattern>*.seam</url-pattern>

</filter-mapping>

23.2.3. security-rules.drl

This file also goes into the Seam application's META-INF directory. It contains all the rules that make up an ap-
plication's authorization policy, and is described further down in the Authorization section.

23.3. Authentication

It is a relatively straight forward process to set up authentication. The first step is to configure the login mod-
ules that are to be used within the project by adding one or more application-policy entries to security-con-

fig.xml.

<application-policy>
<authentication>
<login-module code="org.jboss.seam.security.spi.SeamLoginModule" flag="required">

<module-option name="authMethod">#{login.authenticate}</module-option>
</login-module>

</authentication>
</application-policy>

An application-policy without a specified name will be given a default name. It is possible to create multiple
application policies if required, with each one having its own set of login modules.

<application-policy> <!-- default policy -->
<authentication>
<login-module ...

</authentication>
</application-policy>

<application-policy name="special">
<authentication>
<login-module ...

</authentication>
</application-policy>

The login module configuration should look familiar if you've ever used JAAS before. Each login module
should have its own login-module entry, specifying the fully qualified class name of the login module class,

Security

JBoss Seam 1.1.1.GA 210

plus the flag for the login module. It is also possible to configure additional options for each login module, by
including module-option entries as children of the login-module entry. Flag values are found in the JSE API
documentation for javax.security.auth.login.Configuration, but are repeated here for convenience:

Table 23.2. JAAS Configuration Flags

Flag Description

Required The LoginModule is required to succeed. If it suc-
ceeds or fails, authentication still continues to pro-
ceed down the LoginModule list.

Requisite The LoginModule is required to succeed. If it suc-
ceeds, authentication continues down the LoginMod-
ule list. If it fails, control immediately returns to the
application (authentication does not proceed down the
LoginModule list).

Sufficient The LoginModule is not required to succeed. If it
does succeed, control immediately returns to the ap-
plication (authentication does not proceed down the
LoginModule list). If it fails, authentication continues
down the LoginModule list.

Optional The LoginModule is not required to succeed. If it suc-
ceeds or fails, authentication still continues to pro-
ceed down the LoginModule list.

23.3.1. Using SeamLoginModule to authenticate

One of the simplest ways to authenticate a user is to delegate the authentication to a Seam component. There is
a special login module, SeamLoginModule that allows this. Configure this login module in security-con-

fig.xml, and in its authMethod option specify an EL method expression. By default the method that you spe-
cify should accept the parameters [java.lang.String, java.lang.String, java.util.Set], however this
can be customised (see section further down). The third java.util.Set parameter is a set to which the authen-
tication method should add any roles that the authenticating user is a member of. Here's a complete example:

@Name("authenticator")
public class AuthenticatorAction
{

@In(create=true)
private EntityManager entityManager;

public boolean authenticate(String username, String password, Set<String> roles)
{
try
{

User user = (User) entityManager.createQuery(
"from User where username = :username and password = :password")
.setParameter("username", username)

Security

JBoss Seam 1.1.1.GA 211

.setParameter("password", password)

.getSingleResult();

for (UserRole r : user.getRoles())
roles.add(r.getName());

return true;
}
catch (NoResultException ex)
{

log.warn("Invalid username/password");
return false;

}
}

}

Based on the above example, the EL expression that would need to be specified in the authMethod option for
the login module would be #{authenticator.authenticate}.

23.3.2. Logging in the user

Now that the login module has been configured, and an authentication method written, all that is left is to per-
form a JAAS login. This is the easiest step, as shown by the following example:

public void login()
{

try
{

CallbackHandler cbh = SeamSecurityManager.instance().createCallbackHandler(
user.getUsername(), user.getPassword());

LoginContext lc = SeamSecurityManager.instance().createLoginContext(null, cbh);
lc.login();

}
catch (LoginException ex)
{

FacesMessages.instance().add("Invalid login");
}

}

The first thing that happens in the above code is the creation of a CallbackHandler which is going to be re-
sponsible for providing the user's credentials (their username and password) to the login module. The Call-

backHandler is created by a convenience method in SeamSecurityManager, and knows how to handle
NameCallback and PasswordCallback callback types.

The next thing that happens is the creation of a LoginContext. There is a factory method in SeamSecurityMan-

ager for creating this, as the login context doesn't use the standard configuration (it uses an application-specific
configuration). If the application policy isn't configured with a name, then it will have a default name and the
String parameter passed to createLoginContext() can be null. If your application has multiple application
policies configured, then you can specify which one to use by providing the policy name to createLoginCon-

text():

LoginContext lc = SeamSecurityManager.instance().createLoginContext("special", cbh);

Security

JBoss Seam 1.1.1.GA 212

The final step is the call to lc.login(), which calls each of the configured login modules in turn, passing in the
callback handler to each one and performing an authentication based on the configured login module flags.

Once the user is successfully authenticated, calls to Identity.loggedIn() will return true for the duration of
the session.

23.3.3. Customising the Authentication process

In some situations it may be necessary to perform authentication that isn't based on a simple username/pass-
word combination. The good news is that this is not very difficult, however it requires a few additional steps.
This section will walk through an example where authentication requires a Company ID in addition to a user-
name and password.

The first step is to subclass the SeamLoginModule class and override the getLoginParams() method to return
the appropriate parameters for the custom authentication method.

public class CustomLoginModule extends SeamLoginModule
{

@Override public Object[] getLoginParams()
throws Exception

{
CompanyCallback cbCompany = new CompanyCallback("Enter company ID");
NameCallback cbName = new NameCallback("Enter username");
PasswordCallback cbPassword = new PasswordCallback("Enter password", false);

// Get the username and password from the callback handler
callbackHandler.handle(new Callback[] { cbCompany, cbName, cbPassword });
username = cbName.getName();

return new Object[] { cbCompany.getCompanyId(), username,
new String(cbPassword.getPassword()), roles };

}
}

Since CompanyCallback is a custom callback it needs to be created also:

public class CompanyCallback implements Callback, Serializable {
private String prompt;
private int companyId;
public CompanyCallback(String prompt) {
if (prompt == null || "".equals(prompt))
throw new IllegalArgumentException();

this.prompt = prompt;
}
public String getPrompt() {
return prompt;

}
public int getCompanyId() {
return companyId;

}
public void setCompanyId(int companyId) {
this.companyId = companyId;

}
}

Security

JBoss Seam 1.1.1.GA 213

So far so good, now it's time to configure the custom login module in security-config.xml:

<loginmodules>
<loginmodule class="com.acme.security.CustomLoginModule" flag="required">
<option name="paramTypes">java.lang.Integer,java.lang.String,java.lang.String,java.util.Set</option>
<option name="authMethod">#{authenticator.authenticate}</option>

</loginmodule>
</loginmodules>

The important thing to note above is that the paramTypes option is specified, based on the customised paramet-
ers that are going to be sent to the authentication method. Now that they have been configured, it is time to
write the authentication method:

@Name("authenticator")
public class CustomAuthenticator {

@In(create=true)
private EntityManager entityManager;

public boolean authenticate(int companyId, String username, String password, Set<String> roles)
{
try
{

User user = (User) entityManager.createQuery(
"from User where companyId = :companyId and username = :username and password = :password")
.setParameter("companyId", companyId)
.setParameter("username", username)
.setParameter("password", password)
.getSingleResult();

for (UserRole r : user.getRoles())
roles.add(r.getName());

return true;
}
catch (NoResultException ex)
{

log.warn("Invalid username/password");
return false;

}
}

}

As can be seen in the above example, the customised authentication method contains the additional companyId
parameter. The last thing to do is write a login method:

@Name("loginAction")
public class LoginAction implements LoginLocal {

@In(create = true) EntityManager entityManager;
@In(required = false) User user;

public void login()
{

try
{

Security

JBoss Seam 1.1.1.GA 214

CallbackHandler cbh = createCallbackHandler(user.getCompanyId(),
user.getUsername(), user.getPassword());

LoginContext lc = SeamSecurityManager.instance().createLoginContext(cbh);
lc.login();

}
catch (LoginException ex)
{

FacesMessages.instance().add("Invalid login");
}

}

private CallbackHandler createCallbackHandler(final int companyId,
final String username, final String password)

{
return new CallbackHandler() {

public void handle(Callback[] callbacks)
throws IOException, UnsupportedCallbackException

{
for (int i = 0; i < callbacks.length; i++)
{

if (callbacks[i] instanceof CompanyCallback)
((CompanyCallback) callbacks[i]).setCompanyId(companyId);

else if (callbacks[i] instanceof NameCallback)
((NameCallback) callbacks[i]).setName(username);

else if (callbacks[i] instanceof PasswordCallback)
((PasswordCallback) callbacks[i]).setPassword(password.toCharArray());

else
throw new UnsupportedCallbackException(callbacks[i],

"Unsupported callback");
}

}
};

}

The most significant thing to note in the above code is the createCallbackHandler() method. It returns a call-
back handler that knows how to handle a CompanyCallback, in addition to the standard NameCallback and
PasswordCallback.

That wraps up the creation of a customised authentication process. Based on the above steps, it should be pos-
sible to create a customised authentication based on any combination of credentials.

23.4. Authorization

The authorization features of the Seam security API make it possible to restrict access to a Seam component
based on the roles and permissions granted to the authenticated user. Security restrictions are defined using EL
expressions, and configured by annotating either a Seam component method, or the component class itself, with
the @Restrict annotation.

23.4.1. Types of authorization checks

The Seam security API provides two types of authorization checks; role checks and permission checks. Role
checks are simple checks to determine if a user is a member of a specific role. They are equivalent in function
to the isUserInRole() method found within the servlet specification. Role checks can be performed by using
the s:hasRole() EL function. Here's a few examples of role checks.

This first example demonstrates how to restrict access to the Seam component secureAction to all users be-

Security

JBoss Seam 1.1.1.GA 215

sides those in the admin role.

@Name("secureAction")
@Restrict("#{s:hasRole('admin')}")
public class SecureAction {

// ...
}

This example demonstrates how to restrict access to a method of a Seam component to users in the superuser

role.

@Restrict("#{s:hasRole('superuser')}")
public void secureMethod {
// ...

}

This last example shows how an inline security check can be performed within the body of a method, rather
than using the @Restrict annotation.

public String changeUserPassword() {
// code here
Identity.instance().checkRestriction("#{s:hasRole('superuser')}");
// code here

}

23.4.2. The Security Context

The first time that a permission check is performed after a user is authenticated, a security context is created for
that user and placed into the user's session context. This security context (which in fact is an instance of
org.drools.WorkingMemory) is populated with all of the Principals for the authenticated user, plus all of the
explicitly granted permissions granted to the user's role/s, as instances
oforg.jboss.seam.security.SeamPermission. To make this a little clearer, here's a diagram:

Security

JBoss Seam 1.1.1.GA 216

In this diagram, the database contains a user "bob", who is a member of the "user" role. The security configura-
tion file, security-config.xml defines a role called "user" that has the explicitly assigned permissions cus-

tomer:create, account:create and invoice:create. After bob authenticates, his Security Context will con-
tain all of the permissions granted to him through his role memberships, as well as any Principals created as a
result of the authentication process. This includes his roles, which exist in a SimpleGroup principal with the
name of "roles".

23.4.3. How do permission checks work?

23.4.4. Establishing a default security policy

As mentioned previously, permissions can either be explicitly granted, or they can be granted as the result of a
rule-based decision. Strictly speaking though, all permissions must be granted via a security rule; this includes
explicit permissions also. By having all permissioning under the control of the rule engine, it is easier to config-
ure any custom security requirements for your application. So what does this mean? For starters, granting expli-
cit permissions without specifying a minimal security policy will mean that any security checks for those per-
missions will fail. What does a minimal security policy look like? Here's an example security-rules.drl file
with a default security policy defined:

package MyProjectPermissions;

import org.jboss.seam.security.Identity;
import org.jboss.seam.security.rules.PermissionCheck;
import org.jboss.seam.security.SeamPermission;

rule DefaultPolicy
salience -10
activation-group "permissions"

when
c: PermissionCheck(granted == false)
p: SeamPermission()
eval(p.getName().equals(c.getName()) && p.getAction().equals(c.getAction()))

then

Security

JBoss Seam 1.1.1.GA 217

c.grant();
end;

If you're familiar with JBoss Rules then this example should make at least some sense already. In a nutshell,
what this rule does is "catch" any permission checks that haven't already been granted by any higher priority
rules, and grant the permission if a SeamPermission instance having the same name and action as the Permis-

sionCheck exists within the security context.

A couple of notes about this rule; first of all, the salience -10 line means that this rule will have a lower prior-
ity than any other rules with a higher salience (the default salience if not specified is 0). This assigns rules for
any dynamic permissions (that don't have an explicit SeamPermission in the security context) a higher firing
priority. Secondly, the activation-group value means that once the first rule within the activation group fires,
no other rules within the same activation group will fire.

Security

JBoss Seam 1.1.1.GA 218

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	Chapter 1. Seam Tutorial
	1.1. Try the examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the examples on Tomcat
	1.1.3. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The Seam component deployment descriptor: components.xml
	1.2.1.5. The web deployment description: web.xml
	1.2.1.6. The JSF configration: faces-config.xml
	1.2.1.7. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.8. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.9. The view: register.jsp and registered.jsp
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.jsp

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam UI control library
	1.6.5. The Seam Debug Page

	1.7. A complete application featuring Seam and jBPM: the DVD Store example
	1.8. A complete application featuring Seam workspace management: the Issue Tracker example
	1.9. An example of Seam with Hibernate: the Hibernate Booking example
	1.10. A RESTful Seam application: the Blog example
	1.10.1. Using "pull"-style MVC
	1.10.2. Bookmarkable search results page
	1.10.3. Using "push"-style MVC in a RESTful application

	Chapter 2. Getting started with Seam, using seam-gen
	2.1. Before you start
	2.2. Setting up a new Eclipse project
	2.3. Creating a new action
	2.4. Creating a form with an action
	2.5. Generating an application from an existing database
	2.6. Deploying the application as an EAR

	Chapter 3. The contextual component model
	3.1. Seam contexts
	3.1.1. Stateless context
	3.1.2. Event context
	3.1.3. Page context
	3.1.4. Conversation context
	3.1.5. Session context
	3.1.6. Business process context
	3.1.7. Application context
	3.1.8. Context variables
	3.1.9. Context search priority
	3.1.10. Concurrency model

	3.2. Seam components
	3.2.1. Stateless session beans
	3.2.2. Stateful session beans
	3.2.3. Entity beans
	3.2.4. JavaBeans
	3.2.5. Message-driven beans
	3.2.6. Interception
	3.2.7. Component names
	3.2.8. Defining the component scope
	3.2.9. Components with multiple roles
	3.2.10. Built-in components

	3.3. Bijection
	3.4. Lifecycle methods
	3.5. Logging
	3.6. The Mutable interface and @ReadOnly
	3.7. Factory and manager components

	Chapter 4. Configuring Seam components
	4.1. Configuring components via property settings
	4.2. Configuring components via components.xml
	4.3. Fine-grained configuration files
	4.4. Configurable property types
	4.5. Using XML Namespaces

	Chapter 5. Events, interceptors and exception handling
	5.1. Seam events
	5.1.1. Page actions
	Page parameters
	Navigation
	Fine-grained files for definition of page actions and parameters

	5.1.2. Component-driven events
	5.1.3. Contextual events

	5.2. Seam interceptors
	5.3. Managing exceptions

	Chapter 6. Conversations and workspace management
	6.1. Seam's conversation model
	6.2. Nested conversations
	6.3. Starting conversations with GET requests
	6.4. Using <s:link> and <s:button>
	6.5. Success messages
	6.6. Using an "explicit" conversation id
	6.7. Workspace management
	6.7.1. Workspace management and JSF navigation
	6.7.2. Workspace management and jPDL pageflow
	6.7.3. The conversation switcher
	6.7.4. The conversation list
	6.7.5. Breadcrumbs

	6.8. Seam-managed persistence contexts and atomic conversations
	6.9. Seam and Servlets
	6.10. Seam and SOAP

	Chapter 7. Pageflows and business processes
	7.1. Pageflow in Seam
	7.1.1. The two navigation models
	7.1.2. Seam and the back button

	7.2. Using jPDL pageflows
	7.2.1. Installing pageflows
	7.2.2. Starting pageflows
	7.2.3. Page nodes and transitions
	7.2.4. Controlling the flow
	7.2.5. Ending the flow

	7.3. Business process management in Seam
	7.4. Using jPDL business process definitions
	7.4.1. Installing process definitions
	7.4.2. Initializing actor ids
	7.4.3. Initiating a business process
	7.4.4. Task assignment
	7.4.5. Task lists
	7.4.6. Performing a task

	Chapter 8. Internationalization and themes
	8.1. Locales
	8.2. Labels
	8.2.1. Defining labels
	8.2.2. Displaying labels
	8.2.3. Faces messages

	8.3. Timezones
	8.4. Themes
	8.5. Persisting locale and theme preferences via cookies

	Chapter 9. Asynchronicity and messaging
	9.1. Asynchronicity
	9.1.1. Asynchronous methods
	9.1.2. Asynchronous events

	9.2. Messaging in Seam
	9.2.1. Configuration
	9.2.2. Sending messages
	9.2.3. Receiving messages using a message-driven bean
	9.2.4. Receiving messages in the client

	Chapter 10. Remoting
	10.1. Configuration
	10.2. The "Seam" object
	10.2.1. A Hello World example
	10.2.2. Seam.Component
	Seam.Component.newInstance()
	Seam.Component.getInstance()
	Seam.Component.getComponentName()

	10.2.3. Seam.Remoting
	Seam.Remoting.createType()
	Seam.Remoting.getTypeName()

	10.3. Client Interfaces
	10.4. The Context
	10.4.1. Setting and reading the Conversation ID

	10.5. Batch Requests
	10.6. Working with Data types
	10.6.1. Primitives / Basic Types
	String
	Number
	Boolean

	10.6.2. JavaBeans
	10.6.3. Dates and Times
	10.6.4. Enums
	10.6.5. Collections
	Bags
	Maps

	10.7. Debugging
	10.8. The Loading Message
	10.8.1. Changing the message
	10.8.2. Hiding the loading message
	10.8.3. A Custom Loading Indicator

	10.9. Controlling what data is returned
	10.9.1. Constraining normal fields
	10.9.2. Constraining Maps and Collections
	10.9.3. Constraining objects of a specific type
	10.9.4. Combining Constraints

	10.10. JMS Messaging
	10.10.1. Configuration
	10.10.2. Subscribing to a JMS Topic
	10.10.3. Unsubscribing from a Topic
	10.10.4. Tuning the Polling Process

	Chapter 11. Seam and JBoss Rules
	11.1. Installing rules
	11.2. Using rules from a Seam component
	11.3. Using rules from a jBPM process definition

	Chapter 12. JSF form validation in Seam
	Chapter 13. Configuring Seam and packaging Seam applications
	13.1. Basic Seam configuration
	13.1.1. Integrating Seam with JSF and your servlet container
	13.1.2. Integrating Seam with your EJB container
	13.1.3. Enabling conversation propagation with redirects
	13.1.4. Using facelets

	13.2. Configuring Seam in Java EE 5
	13.2.1. Packaging

	13.3. Configuring Seam with the JBoss Embeddable EJB3 container
	13.3.1. Installing the Embeddable EJB3 container
	13.3.2. Configuring a datasource with the Embeddable EJB3 container
	13.3.3. Packaging

	13.4. Seam managed transactions
	13.4.1. Enabling Seam-managed transactions
	13.4.2. Using a Seam-managed persistence context

	13.5. Configuring Seam with Hibernate in Java EE
	13.5.1. Boostrapping Hibernate in Seam
	13.5.2. Using a Seam-managed Hibernate Session
	13.5.3. Packaging

	13.6. Configuring Seam with Hibernate in Java SE
	13.6.1. Using Hibernate and the JBoss Microcontainer
	13.6.2. Packaging

	13.7. Configuring jBPM in Seam
	13.7.1. Packaging

	13.8. Configuring Seam in a Portal

	Chapter 14. The Seam Application Framework
	14.1. Introduction
	14.2. Home objects
	14.3. Query objects
	14.4. Using Hibernate filters

	Chapter 15. Seam Text
	15.1. Basic fomatting
	15.2. Entering code and text with special characters
	15.3. Entering HTML

	Chapter 16. Seam annotations
	16.1. Annotations for component definition
	16.2. Annotations for bijection
	16.3. Annotations for component lifecycle methods
	16.4. Annotations for context demarcation
	16.5. Annotations for transaction demarcation
	16.6. Annotations for exceptions
	16.7. Annotations for validation
	16.8. Annotations for Seam Remoting
	16.9. Annotations for Seam interceptors
	16.10. Annotations for asynchronicity
	16.11. Annotations for use with JSF dataTable
	16.12. Meta-annotations for databinding
	16.13. Annotations for packaging

	Chapter 17. Built-in Seam components
	17.1. Context injection components
	17.2. Utility components
	17.3. Components for internationalization and themes
	17.4. Components for controlling conversations
	17.5. jBPM-related components
	17.6. Security-related components
	17.7. JMS-related components
	17.8. Infrastructural components
	17.9. Special components

	Chapter 18. Seam JSF controls
	Chapter 19. iText PDF generation
	19.1. Using PDF Support
	19.2. Creating a document
	19.2.1. p:document

	19.3. Headers and Footers
	19.3.1. p:header and p:footer
	19.3.2. p:pageNumber

	19.4. Chapters and Sections
	19.4.1. p:chapter and p:section
	19.4.2. p:title

	19.5. Lists
	19.5.1. p:list
	19.5.2. p:listItem

	19.6. Tables
	19.6.1. p:table
	19.6.2. p:cell>

	19.7. Basic Text Elements
	19.7.1. p:paragraph
	19.7.2. p:font
	19.7.3. p:newPage
	19.7.4. p:image
	19.7.5. p:anchor>

	19.8. Document Constants
	19.8.1. Color Values
	19.8.2. Alignment Values

	19.9. iText links

	Chapter 20. Expression language enhancements
	20.1. Configuration
	20.2. Usage
	20.3. Limitations
	20.3.1. Incompatibility with JSP 2.1
	20.3.2. Calling a MethodExpression from Java code

	Chapter 21. Testing Seam applications
	21.1. Unit testing Seam components
	21.2. Integration testing Seam applications

	Chapter 22. Seam tools
	22.1. jBPM designer and viewer
	22.1.1. Business process designer
	22.1.2. Pageflow viewer

	22.2. CRUD-application generator
	22.2.1. Creating a Hibernate configuration file
	22.2.2. Creating a Hibernate Console configuration
	22.2.3. Reverse engineering and code generation
	22.2.3.1. Code Generation Launcher
	22.2.3.2. Exporters
	22.2.3.3. Generating and using the code

	Chapter 23. Security
	23.1. Overview
	23.1.1. JAAS-based Authentication
	23.1.2. Page Security
	23.1.3. EL Integration
	23.1.4. Rule-based Authorization

	23.2. Configuration
	23.2.1. security-config.xml
	Explicit Permissions
	Role memberships
	Page security

	23.2.2. Seam Security Filter
	23.2.3. security-rules.drl

	23.3. Authentication
	23.3.1. Using SeamLoginModule to authenticate
	23.3.2. Logging in the user
	23.3.3. Customising the Authentication process

	23.4. Authorization
	23.4.1. Types of authorization checks
	23.4.2. The Security Context
	23.4.3. How do permission checks work?
	23.4.4. Establishing a default security policy

