Seam - Contextual Components

A Framework for Java EE 5

Version: 1.1.6.GA

Table of Contents

INtrOdUCEION T0 JBOSS SEAIMuvviiiiiiieees i ittt et e e e s s s sttt e e e eee e s s st aeeeaaeessasssataaeeeaeeesssasssnsneeeaaeesaannes iX
OS2 T o T N o = | PSS PPRSRR 1
L1 Try the @XaMPIESoveeeiiie e e e e e e e e e e e e s e et e e e e e e e e s e aennenees 1
1.1.1. Running the exampleS 0N JBOSSASooiiiiiiiiiieiee e 1
1.1.2. Running the exampleS 0n TOMCALc.uveiiiiieiiiiiiiiiee e s e e e e e e 1
1.1.3. RUNNING the @XamMPIE TESESceeiiiiiie ettt 1

1.2. Your first Seam application: the registration eXamplecccccoviiiiieiiiei e 2
1.2.1. Understanding the COOEeuiiiiiiiiiiiiiiie e 2
1.2.1.1. The entity DEaAN: USErJAVAuuuuuiiii s nnnnnnes 3

1.2.1.2. The stateless session bean class: RegisterAction.javacccccvveeveeeeeiiecnnnne, 5

1.2.1.3. The session bean local interface: RegIStEr.javacovevviieee i 6

1.2.1.4. The Seam component deployment descriptor: components.xml 6

1.2.1.5. The web deployment description: WebD.Xmlcooeiiiiiiiiiiiii e, 7

1.2.1.6. The JSF configration: faces-CoNfig. XMlcccccociiiiiiiii s 7

1.2.1.7. The EJB deployment descriptor: glb-jar Xmlcccccoiiiiiiiiiiiiiieee e, 8

1.2.1.8. The EJB persistence deployment descriptor: persistenceXmlcccccceevveeeee. 8

1.2.1.9. Theview: register.jsp and registered.jSP ..uveeveeeeviiiciiiieiiee e 9

1.2.1.10. The EAR deployment descriptor: application.Xmlccoccvveeiiiiiieenninnnn. 10

L1.2.2. HOW I WOTKS ..ottt ettt e et e et e e e e e e e e 10

1.3. Clickablelistsin Seam: the messages eXamPpPleccuvieiiiiiiieeiiiee e 11
1.3.1. Understanding the COUE nnnnnnnnnes 11
1.3.1.1. The entity bean: MESSAgE.JaVAcccoiuiiiiiiiiiie e 12

1.3.1.2. The stateful session bean: MessageManagerBean.java...........cccccccvveeeviinnneee 12

1.3.1.3. The session bean local interface: MessageManager.javaccccvevveeeeeecennnnee. 14

1.3.1.4. ThE VIEW: MESSATES. ISP . .-vvveeeiurrreeeanrreeeaaitrreesaitreeesanrreeesanbeeeesanneeeesannneeas 14

L1.3.2. HOW I WOTKS ..ottt ettt e et e e s e e e e e e e e 15

1.4. Seam and jJBPM: the todo list @XampPlecoooiiiiiiiiiiee e 15
1.4.1. Understanding the COUE ... nnnnnnnnes 16
LA.2. HOW IEWOIKS ..ot e e e e a e e e s s et raeeeaeas 21

1.5. Seam pageflow: the NUMbErgueSS EXamMPIEoooiiiiiiiiie e 21
1.5.1. Understanding the COOEuuimiiiiiec e 21
152 HOW IEWOIKS ..ottt e e e e e e e e e e nneaaeeeeeens 25

1.6. A complete Seam application: the Hotel Booking exampleccceeeeeeeiiiiiciiiieeeee e, 25
OG0 I 11T [T 1 o T TSP 26
1.6.2. Overview of the booking eXample ... 28
1.6.3. Understanding Seam CONVErSALIONSuuviiiieeeeiiiiiiiieieeeeeessssiiinreeeeeeessennssnneeeeens 28
1.6.4. The Seam Ul control [IBrarycoeeooiiiiieieceee e 34
1.6.5. The SEaM DEDUG PAJEcceeiiiiieiiee et e e e e 34

1.7. A complete application featuring Seam and jBPM: the DVD Store exampleccccceneee. 35
1.8. A complete application featuring Seam workspace management: the I ssue Tracker example . 37
1.9. An example of Seam with Hibernate: the Hibernate Booking exampleccccccovvivveennee. 38
1.10. A RESTful Seam application: the Blog eXamplecccocoiiiiiiiiienannens 38
1.10.2. USING "PUI™-SEYIE MV C ...ttt e st ee e 39
1.10.2. Bookmarkable search resultS Pageoevviiiiiieiiiiiiie e 40
1.10.3. Using "push”-style MVC in a RESTful applicationc.ccoecvivierieeeeiiiiiiiieeennn. 42

2. Getting started with Seam, USING SBAM-0ENcooviiiiiiiiiee e 45
2.1 BEfOreYOU Stalrt ... 45
2.2. Setting Up @ NEW ECHIPSE PIOJECTcoiuviiiieiiiiie ettt e e sbn e 45

JBoss Seam 1.1.6.GA

Seam - Contextual Components

2.3. Creating @NEW BCTTONeiiiiiiiiei ettt e e e e e e e e e e e s e e e e e e e e e e e an 47
2.4. Creating aform With @n @CtioNcooiiiiiiiiiiiiice e e e 48
2.5. Generating an application from an existing datadasecccoveiiiiiiei i 49
2.6. Deploying the application aSan EAR ..., 49
3. The contextual compPoNeNt MOUE!cooiiiiiiiiii e 50
3.1 SEAIM CONMEXES ..ottt ettt ettt ettt ettt et e et e et e et e e e eeeeeeeeeeeeeees 50
.11 SEAEIESS CONEXLEvveiieiiiiiee ettt e e e e st e e e nnbaeeeeans 50
312, BVENE CONEEXE ..ooeiiiiiiiiiiiii ittt ettt et e e e e e e eeeeeeeees 50
I G T =0 T o0 1 PSPPI 51

0 I B 00 1Y/ £ 0] oo | =>4 RS 51

IO T == o g ol 1= (S 51
3.1.6. BUSINESS PrOCESS COMEXT ...uuvereeeiittieeeaiteieessiteeeeesstse e e s sibe e e e e snbse e e s snnneeeannnneeeeenees 52
101 I AN oo [= 1 o g ol g1 1= S 52
3.1.8. CONLEXE VAITAIDIESeeiiiiiiie ittt nbaee e 52
3.1.9. CONteXt SEArCH PIIOMTYvveeeeiiiieee ettt e ettt e e e s e e s nnrneeeeaa 52
3.1.10. CoNCUITENCY MOE!uviiiiieeiiiiciiiee e e e e e s e e e e e e e s e st b r e e e e e e e e s e eanreees 53

3.2. SEAM COMPONENES ...ttt e e e ettt e e e e s st e e e e e e e s s s ab b e e et e e e e s s aanbbbe e e et e e e e s s annnrnneeeeens 53
3.2.1. StAtel €SS SESSION DEANSeeiiiee i 54
3.2.2. Stateful SESSION DEANSooiiiiiiii e 54
323 ENLIY DEANS ..o 54
324, JAVABEANSeeiiiiiiie e b e nraeee e 54
3.2.5. MeSSage-ariVEN DBANScooiiiiiie e 55
I ST 1 01 = (= o/ (o o KOS TSR 55
3.2.7. COMPONENE NAIMESeeeiieeitieeeee ettt e e e e e e st e e et e e e s s s sasnr e e eaeeesssaannbrrreeeaeeessannnnnnes 55
3.2.8. Defining the COMPONENt SCOPEcvvviiiiiiiiiiiieeeeeeeeeeeeeeee et e e e e e 56
3.2.9. Components With MUItIPIE FOIESoeeoiiiieeee e 56
3.2.10. BUIlt-IN COMPONENESceeieiiiiiie ettt e e e e e e e eeeaas 57

GG T =TT 1= ot o) o [SRR 58
3.4, LITECYCI@ MENOASooiiiiiie et e e 60
3.5. Conditional INSEATBLIONeeeeiiiiiiie e e e s e e e et e e e e snaeeeeeans 60
G o (o [oo PP P PR OUPPRTPTPPRN 61
3.7. The Mutable interface and @ReadONIYccoeviviiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 62
3.8. Factory and manager COMPONENESuvueiiieeeiiiiiiieeee e e e e e se st e e e e e e s e s e straaareeeee e s s senrraaeeeaens 63
4. Configuring Seam COMPONENTSccoiiuriieiiiiieee et e st e e r e e e e s sne e e e e s b e e e e anrreeeaannrneeeans 65
4.1. Configuring components Via property SEINGSuveeeeieeeiiiiiiiiiei e e 65
4.2. Configuring components Via COMPONENES.XIMIeviiiiiiiiieiiiiie e 65
4.3. Fine-grained configuralion TIl€Sccvvviiiiiiiiiiicece et 68
4.4. Configurable ProPertY TYPESoueieie ittt e e 68
4.5. USING XIML NBIMESPACESeeeieeeiiiiiitiiiiieaee e e e aetteeeee e e e e e s s aanntteeeeaaeeesaaanssaeeeeeaaeessaannsnneeeeaens 69
5. Events, interceptorsand exception handlingooociiiiiiie e 72
5.1 SBAIM BVENLS ... 72
TN N I o T o 1 o] SRR 72
S5.1.1.1. PAOE PArBIMELEIScceeeeeieeeeeee et 73

5112 NaVIgation ..occooeeeieiice e, 74

5.1.1.3. Fine-grained files for definition of page actions and parameters 76

5.1.2. ComPOoNent-driVEN BVENESeeiiiieeeiiiiiiiiieeeee e e e ettt eeeaeeesssanneeeeeeaaeessaanenneeeeeens 76
5.1.3. CONLEXTUBI BVENESciiiiieiie ittt et e et s s e e bb e e e e nees 78

5.2, SEAM INTEICEPIONSeeiee ettt ettt e et e ekt e e et e e e e b e e e e e aba e e e e e annne e e e e annreeeean 79
5.3. Managing EXCEPLIONSeiiieeiiiiiiiieiee e e e e e e e et e e e e e e e e e et e e e e e e e s s s eantraeeeeaeeessantbraeeeaaaeeaans 80
5.3.1. EXCEPtions and tranNSACLIONSccuurieiiiieieeeiiieie e st e et e e st e s e s e e nees 80
5.3.2. Enabling Seam exception handlingcccceo i 81
5.3.3. Using annotations for exception handlingccoooveieiiiiiiniiiiee e 81

JBoss Seam 1.1.6.GA

Seam - Contextual Components

5.3.4. Using XML for exception handlingccooiiiiiiiiiiiiieiieeceeieee e 81

6. Conversations and WOrKSpace ManNageMENTooiiiiiiieieeee e i e e e e s s esrrrr e e e e e e s e eanrreeeeeeas 83
6.1. Seam's CONVErsation MOUELouiiiiiiiei i e a e e e s e st ereaaeeeans 83

6.2. NESIEA CONVEISALIONSeeiiieeeiiiiitieiei e e e e ettt e e e e e e ettt e e e e e e e s s enbe e e e eeaeeesaantbbneeeaaaeeaaans 85

6.3. Starting conversations With GET FEQUESESccoiiuiiiiiiiiiiie et 85

6.4. Using <sIlink> and <SIDULTONSooiiiiiie e e 86

B.5. SUCCESSIMESSAGES .. oo i i i e i eeiei ettt ettt e aeaees 87

6.6. Using an "expliCit" CONVErSation idcocuiiiiiiiiiie e 88

6.7. WOrKSpace ManaQEMENLcccuiieiiieeeeeee et e e e e e e e s s eeat e e e e e e e s s s santr e e e e eaesessantrrareeaaaeeaans 89
6.7.1. Workspace management and JSF NaVIgationccceeeeeriiiereeniineeeeiieeeessieeee e 89

6.7.2. Workspace management and jPDL pageflow ... 89

6.7.3. The CONVersation SWItCHErciiiiiiiiiiiiee e 90

6.7.4. The CONVEISAliON ISteiiieeiiiieie e e e e e e e eeeeeeens 90

6.7.5. BrEaOCIUMDSviiiiiiiiiiee ettt ettt et e e s s e e e e s nbb e e e e nees 91

6.8. SEAM @NA SEIVIELS ...t e e e e e s e st e e e e e e e e e et reeeeaaaeeaans 91

6.9. SEAM ANA SOAP ...ttt e e e e e e n e e e e nnraeeeeans 92

7. Pageflows and DUSINESS PrOCESSESvviiiiiiiiiieiiiii ettt e e e e e st e e e e snb e e e anbeeeeeans 93
7.1 Pageflow iNSEaM ... 93
7.1.1. Thetwo navigation MOUEISouviiieeei i 93

7.1.2. Seam and the back DULEONoiii e 96
7.2.USING JPDL PAGEFTOWS ..eeeiieeeei ittt e e e e s s st e e e e e e e e et ba e e e e aaeeeans 97
7.2.1. INStAlliNG PAGETTOWS ...t 97

7.2.2. Starting PAJEfIOWSueeeiiie e 97

7.2.3. Page n0des and tranNSItiONSccuueieeiiiiieeiiiiiee ettt et e e e e e 98

7.2.4. Controlling theflow ... 99

7.25. ENAiNG R FIOW ...eeeiiieieeece e e 99

7.3. BUSINESS process Management iN SEAIMovveiiiirieeiiiieee e e e snreee e 99

7.4. Using jPDL business process defiNitioNSceeviieiiiiiiiiiiiiiee e 100
7.4.1. Installing Process AefiNITIONSc.uviieiiiiiee it 100

7.4.2. INItialiZiNG ACLOT 1S ..vvveiiiie e e e e eneees 100

7.4.3. INitialing @DUSINESS PIrOCESSeieiiuiiiiieiiiiiee e ettt ee ettt e et e st e e s s e e s nnbaeeeeans 101

744 TasKk @SSIGNMENTcceeeii e 101

TAD. TASK IISIS onieeiie ittt ettt e st e e s et e e e e nnbeeeeean 101

7.4.6. PerfOrming @TaSKccuveiiiiiiiiieiiiiii et 102

8. Seam and Object/Relational Mappingccccviiiiiiee e e e eneaes 103
S 300 I 1 1o L o1 o o PR PPERRR 103

8.2. Seam managed tranSaCtioNSccooeiiiii i 103
8.2.1. Enabling Seam-managed tranSaCtioNSocceeeeiiiiirieeiniiieeerieee e e e sieeee e 104

8.3. Seam-managed PersiStENCE CONEXESciiiiuriieiiieee e e e aiitieiee e e e e e s e eeneeie e e e e e e e s s aeneeeeeeeeaeeeeans 105
8.3.1. Using a Seam-managed persistence context With JPAoovveiiiiiiiiiiieeiee e, 105

8.3.2. Using a Seam-managed Hibernate SESSIONeeveiiiiiiiiiiiiiee e 105

8.3.3. Seam-managed persistence contexts and atomic conversationscccceeeeeeevnnnnee. 106

8.4, USING the JPA "EIEGAIE"oveeeceeveeeeeeeeeeee e ee e s en s en s s s nenenees 107

8.5. Using Hibernate filters ... 107

9. JSF form validation iN SEAMuuiiiiiie e e e a e e 109
10. The Seam Application FrameWOr Keeiiiiieeiiiiiiii e e e e e e e e e eeeeeeeas 113
05 g1 T [F o1 o o I PP OPPRRRPOPPRRN 113
10.2. HOME ODJECES ...ttt ettt ettt et e e e e e e s e e e e e e e e e e s anrneeeens 114

10.3. QUENY ODJECLSuuiiieiiiiee ettt e e e e e e e e e e e e st b e e e e e e e e e s santr e e e e e e e e e e ananerees 117

10.4. CONrOHEr ODJECES ..o 118

11. Seam and JBOSS RUIESt e e e e e e e e e e e e e eeeens 120
111 INSEBIING FUIES ..ottt e st e e e e e e e e nnbaeeeean 120

JBoss Seam 1.1.6.GA

Seam - Contextual Components

11.2. Using rules from a Seam COMPONENTuveeiiiieieeeiieeeeeaaieeee e st e e s s e e e e e s nnnneeeeans 120
11.3. Using rules from ajBPM process definitionccveeeeeeeiiiiiiiiiieecee e 121
L2, SBCUNTTY weeeietttee ettt ettt ookt e ookttt e e ekt e e e e R b b et e e e n et e e e et e e e e e e b bn e e e e nrneeeeans 123
12.1. REQUITEIMENLSuuuuuiiiiii e nn s anaanaasasnnannsasnnnsnsnsannsnsnsnsnsnsnnnnnsnsnsnnnsnnnnnnnsnnnn 123
2 AN U 11 01= g1 (= 1 o o SRR 123
A T o g o 10 o) o PP 123
12.2.2. Writing an authentication methodcccoeveeeiiiiiiiei e 124
12.2.3. Writing @lOgin FOMMNcooiiiiiieiiiie e 125
12.2.4. Simplified Configuration - SUMMEIYccccooiiiiiiiiieieeeeee e e e esarrreeee s 125
12.2.5. Advanced AuthentiCation FEaIUIESeuiveeeiiiiiiiiiiire e e e eereeee s 125
12.2.5.1. Using your container's JAAS configurationcccccceeecuunnnnnnnnnnnnnnnnnnnns 125

220G T AN U 1110 12 4 o] o PSPPI 126
12.3.1. COrE CONCEPLS ... 126
12.3.2. SECUINNG COMPONENLSueeiiiiiieeeeeeieiitiere e e e e e e s s st r e e e e e e s s e sanrrrereeaeessennrrraeeeeeas 126
12.3.2.1. The @RESLIHCt aNNOLELIONovvveieieeeieiieiicee e 126

12.3.2.2. INHNETESIIICLIONSvveiiiiiiiee et ee e e e 127

12.3.3. Security inthe USEr INLEITACEcooiiiiiie i 128
12.3.4. SECUIMNG PBOES ...uuuuuununnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnsnsnsnnnnnnssnsnsnsnsnsssnsnsssnsnsnsnsnsnsnnnnnnnnns 129

12.4. WIiting SECUNLY RUIESuiiiiieiiie ettt a e e e e e s r e e e e e e s ennnenees 129
12.4.1. PermiSSIONS OVEIVIEWceeeiiiiiiieeeeeaaiiieieeeae e e e e aeeiteeeaaaeeesaanneeneeeeaeessaannneeeeeeeas 129
12.4.2. Configuring arulESTIleuvviiiiiee e 129
12.4.3. Creating aSeCurity TUIESTIlEeviiiiec e 130

12.5. Handling Security EXCEPLIONScooiiiiiiiiiiee ettt ettt e e e et e e e e e anenes 131
13. Internationalization and thEMES ... 133
G 00 T I o = SRR 133
I - o= L PP PPP R OPPRRPRPPRR 133
13.2.1. DEfINING TADEIS ... 133
13.2.2. Displaying lahelSocooiiieee e 134
13.2.3. FACESIMESSAGES ...eeeiiieeeiiiiitrreeereeeeaaaas e e et e e e e s s snb e e e e e e e e s s e s nnrer e e e e e e s s s aanrrrnneeeeas 135

13,3, THIMIEZONES ...eeeeiieeiee e ettt e ettt e e e ettt e e e ettt e e ante e e e e ante e e e e e nateeeeenteeeeeansseeeeeansneeeeeansneeeeans 135
T I = 4= EREPR 135
13.5. Persisting locale and theme preferences Via COOKIESuruiurmrnininrnnnnnnnnnnnnnnnnnnnnnnnnnnes 136
L4, SEAM TEXE ittt ettt e e e oo st b et e e e e e e s e bbbt e e et e e e e e e et bbb b et e e e e e e e e nnbreeeeeeas 137
14.1. BASICFOMEILING ...veeeeeiiiiieeeeiiee ettt e e e et e e e s ase e e e s e ne e e e e anrneeeeans 137
14.2. Entering code and text with special CharaCterscceevvieiiiiiiiiie e, 138
7 T T 17 RSP 139
I o1 = 1o o 8 I Y R OPPRRPRTPRR 139
15, iTEXt PDF QENENBLIONeeiiiiiiiiieeiitiie ettt e et e et e e et e e e e et e e s abbe e e e s anbneeaeans 140
15.2. USING PDF SUDPPOIT .ceieeiiiiieeiee e e e e ettt e e e e s e sttt e e e e e e e e e msne e e e eaaeesssnnteaeeeeaeeseaannnnees 140
15.2. Creating @ UOCUMENT ...ttt e e et e e e e e e e e e et e e e e e e e e e san e e e e e e e s e ennnneees 140
15.2. 1. PIAOCUIMENE ...ttt ettt e et e et e e s e e e e e annne e e e e nnes 140
15.3. BaSIC TEXE EIBMENLSeeiiiiiiiiie ettt e e e et ee e 141
15.3. 1. PIPAAGIAPN ...t 141
ST T 4 (T SRR 142
15.3.30 PIONT e 142
15.3.4. PINEWPAOE ... e 142

G BT 0 1 4o L= PRSP 142
15.3.6. PIANCHNOT ..eiiiiiiiei ettt e e e e 143
15.4. HEAOdErS @nd FOOLESoiiiiiiiiieiiiiiee ettt ettt e et e e s st e e e e snbb e e e e nnbaeeeeans 144
15.4.1. p:header @and PifOOLESeeiiiiiieie e 144
15.4.2. P:PAOENUMIDETeeiiii s a s anasnnnnnnnnnnnnnnnnnnnnnnns 144
15.5. ChapterS and SECHIOMNSccoiuriiieiiiiie ettt et e e s st e e e s e e e e nnbaeeeean 144

JBoss Seam 1.1.6.GA

Seam - Contextual Components

15.5.1. p:chapter @and PiSECHIONvviieiiiiiie ettt 145
2 o 4 (1 1 PRSP 145
S T 1 LR 145
IS G 30 T 1 SRR 145
15.6.2. PIlISHITEM Lo 146
ST 1o =< RS SPPRRSURPRR 146
A0 T o 4 = o [PRSP 146
A5.7.2. PiCEIl oottt 147
15.8. DOCUMENE CONSLANES ... e 148
15.8.1. COlOr VEIUESovviieiiiee ettt e e e s e e e e e e e s st r e e e e e s e ennssraeeeeeas 148
15.8.2. AlIgNMENE VAIUESuuuiiii s s s s nnnnnnnnnnnnns 148

15.9. CONFIGUITNG ITEXE 1.eeeiiiiiiee ettt ettt e e et e e s sbb e e e e anbb e e e e e snbeeeeean 149
15,00, ITEXETINKS ©oeeeeieieiee ettt e e e et e e e et e e e e st e e e e snseeeeaannaeeeeennsnneeeans 149
G = 0= T P PP P PRRRRTPRRN 150
16.1. Creating @MESSAgEuvveeeiunieeeeeaiteee e e sttt e e aste e e e s asbe et e e s abe e e e e e sbe e e e s abb e e e e s annbreeeaanrneeeeans 150
G O N 7o 11 | SRR 150
16.1.2. HTML/TEXt alternNatiVe Partcoeeiireieeiiiiiie et 151
16.1.3. MUItIPIE FECIPIENESuueii e na s s nnnnnnnnnnnnnnnnnns 151
I N I 4o = o SRR 152
16.1.5. Other HEAOEISoeeiiieiee ettt e e e et e e e st e e e e e nnaeeeeennees 152
L @e 1 1To 1V (o] [PURPRR 152
T I 1= 11 =SS o RSP 153
16.2.1.1. INDI 100OKUP INJBOSSASooiieiiiictiiee ettt e 153

16.2.1.2. Seam CONfIgUIed SESSIONccoiuvviieeiiiiiie et 153

G T 1o PR OUPRRSURPRR 153
17. AsynchronicCity and MESSAGINGeeeeeiiiiiiiiiiieiee e e i sietre e e e e e s s srb e e e e e e e s s saabraereeaeessaannrraeeeaeas 156
17. 0. ASYNCIATONICITY ..eveieeeiieeie ettt e e e e e s s e e e s n e e e e s anrneeeeans 156
17.2.1. ASynchronOuS MELNOOSuviiiiiieiiiiiiiiiee e e e e e 156
17.1.2. ASYNCNIONOUS BVENLSco.uvviieeiiiiiee e ettt e e s sttt e e st e e e st e e s st e e e s annn e e e s annee e e e e nnes 158

17.2. MESSAING 1N SEAIM ...ooiiiiiiiiiiiee et e e e e e e e e e e e e et b e e e e e e e e e s saatareeeeeeeesannnerees 158
17.2. 1. CONFIQUIBLTON ...eeiiiiiieiee ettt e e st e e s e e e e nees 158
17.2.2. SENUING MESSAGES ...uuuuuuuunununnnnnunnnnnnnnnnnnnnnannnnnnnannnnnnnannnnnnnanannsasnsannsnnnnnsnsnsnnnnnnnnns 158
17.2.3. Receiving messages using a message-driven beanccccoveveiei e, 159
17.2.4. Receiving messages iNthe ClIeNteveoiiiiiiieee e 159

G (= 1 4o 1 o PRSP 160
18.1. CONFIGUILION ...ttt et e ettt e e et e e e s abb e e e e annbe e e e e anbneeeean 160
18.2. THe "SEAM" ODJECL ..ottt e e e e e st e e e e s e e e e nnrneeeean 161
18.2.1. A HElloOWOrld @Xamplecoooiiiiiiiiiiee e 161
18.2.2. SEAM.COMPONENL ... ssssnnnsnees 162
18.2.2.1. Seam.Component.NeWINStANCE()vvverereeeeiiiiiiiiiieeee e e eecirree e e e e e e 162

18.2.2.2. Seam.Component.getiNStaNCE()vvveeriirreeeeeiieee e 163

18.2.2.3. Seam.Component.getComponentName()ccccvveeeeeeeeiiiciiniereee e 164

18.2.3. SEAM.REMOING ..oiiiteiieiiiti ettt e e e e e e 164
18.2.3.1. Seam.Remoting.Creal€TYPE()uuuuuuuumumnrnnes 164

18.2.3.2. Seam.Remoting.getTYPENEME() ...coovvvveeiiiiiiie e 164

18.3. CHENE INLEITACESeeiiiieeieiiiei ettt e e e e e e e e ettt e e e e e e e e e e nneneneeeaeeeeannnnnees 164
18.4. TNE CONLEXLE ..eeiueteieeeiiteie ettt ettt e e e ettt e e st e e e e bbbt e e s abb e e e e e anbbeaeesnnbneeeean 165
18.4.1. Setting and reading the Conversation IDcoociiiiiiiiiieiiiiieee e 165

18.5. BACh REGUESESvvveiiii et e e et e e e e e e s s st rn e e e e e e e e e nanerees 165
18.6. WOrking With Da@tYPESeeeeiiiiiieiiiiiiee ettt e ettt e e e s e abb e e e snbeeee e 165
18.6.1. Primitives/ BaSIC TYPESuuuuuuiiiii s s nnnnnnnnnnnnnnns 165
G0 0 S 1] o PRSPPI PPP 165

JBoss Seam 1.1.6.GA

Vi

Seam - Contextual Components

18.6.1.2. NUIMDES ..oiiiieiiie ettt et e e e e et e e e ettt e e e et e e e s enneeeeennnneneeennees 166

RS G0 e = To o = o PP 166

18.6.2. JAVABEANS ... naaanannna 166
18.6.3. DAES AN TIMES ...oeiiiiieiiiititie ittt e e e ettt e e e e e e e e s e e e e e e e s e s enrrreeeeaeas 166
L8.6.4. ENUIMIS ... sssssnsnnnnnnnnnnns 166
18.6.5. COECLIONS ...ttt e e e e e e et r e e e e e s e e nneeeeeeeeas 167
RS G I = =0 ST PPP PP 167

18.6.5.2. MAPDS ..ottt e e e 167

T BT 0¥ e o 1 (o PSPPI 167
18.8. TNE LOBING IMESSAGEceeiiiiiieeeiitei e ettt ettt e et e s st e e s e e e e e nnbae e e e 168
18.8.1. Changing thE MESSAQEuuuuuuuuuuniunuiu e naaaararnrarnrnnannnnnnnnnnnnnnnnnnnnnns 168
18.8.2. Hiding the 10ading MESSA0Euuiiiiiiiiee et 168
18.8.3. A Custom Loading INAICALONcoiiiiiiiiiiiee et 168
18.9. Controlling what dataiSTetUrnedeeeeiieeeiiiiiieiee e e e anees 168
18.9.1. Constraining NOrMal fIElASeviiiiiiiee e 169
18.9.2. Constraining Maps and COIIECHIONSoeviiiiiiiiiiiiieiie e 169
18.9.3. Constraining objects of aSPeCITiC LY Pcovveviieiiiiiie e 170
18.9.4. CombiniNg CONSIFAINESuuiiiiiiii e nannrnnnnnnnnnnnnnnnnns 170
G O 1Y S =SS o] o SRR 170
18.10.1. CONFIGUIALTON ...eeiiiiiieeeiieiie et ettt e e e et e e e e e e e e e e e e e e 170
18.10.2. Subscribing to @M S TOPIC ..eevvieeieiiiiiiiee e e 170
18.10.3. Unsubscribing fromM @ TOPICvvveiiiiiieeiiiiiee et 171
18.10.4. Tuning the POIIING PrOCESScciiiiiiciiiiee ettt 171

19. Configuring Seam and packaging Seam appliCationsSccooviiiieeiiiiiee e 173
19.1. BasiC Seam CONfIQUIELIONiiiiiiiiiiii s nsnnnsnnnsnnnnnnnnnnns 173
19.1.1. Integrating Seam with JSF and your serviet containercccccceveveeevieciivvenennnn. 173
19.1.2. Integrating Seam with your EJB CONtAINESccccuviieiiiiiieeiiieee e 173
19.1.3. Enabling Seam exception handlingcccceeeeiiiiiiiiie e, 174
19.1.4. Enabling conversation propagation With redireCtsccccvceveeiviiineeniiieee e 174
19.1.5. USING FACEIELS ...ovviiiiiie e e e e e st r e e as 175
19.1.6. DON'TTOIGEL! ...t s e e e 175
19.2. Configuring Seam iN JAVAEE D ... 175
R N I = ot o 1 1o PRSP 176

19.3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container 177
19.3.1. Installing the Embeddable EJB3 CONtAINEYcccuvvviieiieee e 178
19.3.2. Configuring a datasource with the Embeddable EJB3 containerccccvveee.... 178
S TG T T > = 11 o 178

19.4. Configuring SEAM INJ2EEooiiiiii e 179
19.4.1. Boostrapping Hibernate in Seamc..vvviiiiioii e 180
19.4.2. BOOStrapping JPA iN SEAIMvviiiiie ittt e e e e a e e e s et raaeeeeas 180
19.4.3. PACKAOING -.cevveeeeiitete ettt e e et e et r e e s e e e e 180

19.5. Configuring Seam in Java SE, with the JBoss Microcontaingrccccoccvvvvveeeeeiiecnnnee, 181
19.5.1. Using Hibernate and the JBOSS MiCrOCONTAINEYccevieeeiiiiciiiiireeeeeseiiiiieeeeenn 182
RS T T2 o = 11 o 183

19.6. Configuring JBPM IN SEAIMcooiiiiiiiiiiiie et e e sbeee e 184
RS R = ot o 1 o S 184

19.7. Configuring SEam iN @aPOralooociiiiiiiee e 185
IO o = 0 o) = 4 o RS 186
20.1. Annctations for component definitioneeeviiiiiiiiiiie e 186
20.2. ANNOtatioNS fOr DIJECTION ... 188
20.3. Annotations for component lifecyclemethodscccc 191
20.4. Annotations for context demMarCationeeevieeeiiiiciiiiire e e e s e e e e e e srerer e e e e e e 191

JBoss Seam 1.1.6.GA Vii

Seam - Contextual Components

20.5. Annotations for transaction demarCationcoooiicieiiiieee e e e 194
20.6. ANNOLatioNS FOr EXCEPLIONSuviiiiiieeei it e e e e e e e e e e e e e e e s e s rtr e e e aaeeeans 195
20.7. ANNOtations fOr ValTIAONvviiiiieeei i e e e e e e e e e e e 196

20.8. Annotations for Seam ReMOLINGcooeeeeiieiiii i 196
20.9. ANNOtations fOr SEAM INTEICEPLOIScciiuuiree ettt e e e e e 196
20.10. Annotations for aSyNCHrONICITYcooiiiiiiiiiiiie e 197
20.11. Annotations for use with JSF dataTabIec.c.coeiiiiiiiiiiiiiee e 197
20.12. Meta-annotations for databiNdiNgc.eeeeiiiiiiiiiiii e 198
20.13. AnNOtatioNS fOr PACKAGINGvvvvrereeeeeiiiiiiiiee e e e e e e s s e e e e e s s s e e e e e e e s e s sarnrrreeeaeeeaans 199

21. BUIlt-iN SEAM COMPONENTSeiiiieiiiiiee ettt e et e e e b b e e e anbe e e e s anbneeeeans 200
21.1. Context INjeCtion COMPONENLSccceeeeieie e 200
21.2. ULIHtY COMPONENTS ...eoiuiteieeiiiiiee e ettt e e ettt ettt e et e e e st e e e s sstb e e e s nsbb e e e e ansbeeeesanbneeeeans 200
21.3. Components for internationalization and themesoevvieeiiiiiii e 202
21.4. Components for controlling CONVErSatioNSccooiiiiiiiiiriee e e e e esrrrrree e e e e 203

21.5. [BPM-related COMPONENTSoviiiiiiiieeiiie ettt e e e e e e 204

21.6. Security-related COMPONENESuvviiiieieiiiciiiiee e e e e e e e e e e e e e e e e s e s rarbrreeeeaeeaans 206
21.7. IMS-related COMPONENLSoouveeeieiiieiee ettt e ettt et et e e e st e e e s e e e e e nbr e e e s snbneeeeans 206

21.8. Mail-related COMPONENESccooeeiieee e, 206

21.9. Infrastructural COMPONENESuviiiiiieee i e e e e e s s s e e e e e s s s rnrrraeeaaeeeaaaas 207
21.10. SPECial COMPONENTSeeieiiiiieeeiair e e et e et e e e e e e s sbe e e e s e e e e anre e e e s annneeeeans 208
22..SAM JSF CONEIOIS ...eiiiiiiiiii ettt ettt e e et e e e sbe e e e e e nbb e e e e anbe e e e s annneeeeans 211
23. EXpression |anguage eNNaNCEMENTSuviiiiiiiieeeiii et e e 215
23.1. CONFIGUIBLIONiiiiieiee e e e ettt e e e et e e e e e e e s et bt e e e e e e e e s s easabbbeeeeeaeessasasarareeeaaeeaaans 215
23.2. USBHE ...ttt e e e r et e e e e e e e e et e e e e e s e n e e e e aeeaaas 215

P2 TG T I [¢ =0 P OSPPPRRRR 215
23.3.1. Incompatibility With JSP 2.1oooeiiiiiiiiceee e 216

23.3.2. Caling a MethodExpression from JaVaCodecc.eveeiiiviiiiiniiieeeiieee e 216

24, Testing Seam apPliCALIONScccuviiiiiiee e e e e e e e s e e et e e e e e e e e e eaanraees 217
24.1. Unit testing SEam COMPONENLSuvieeiirrreeeiiereeesasreeesasreeeesstrreesasssneeesannreeesannnreesans 217
24.2. Integration testing Seam appliCationsc.veeviiieii i 218

P TS o 1 o] £ RSSUR 222
25.1. [BPM designer and VIEWETcccoeeeiiie i 222
25.1.1. BUSINESS PrOCESS AESIONESvviiiiiieieeeee e s ettt e e e e e e e s s sttt e e e e e e e s s saatraarereaaeessannnnnes 222

25.1.2. PAQEfIOW VIBWET ...ttt 222

25.2. CRUD-apPIliCatiON GENEIGLOTvvveieieeeiiiiiiiieeee e e e e e eeiitieee e e e e e e s s ssntareeeeeaeesessntnrereeeaaeeaaans 223
25.2.1. Creating a Hibernate configuration filecceeeiiiiiiiiiiie e 223

25.2.2. Creating a Hibernate Console configurationcccccceeeveeii e, 224

25.2.3. Reverse engineering and COOE gENErationcoeviureeeeiniiieeeiiiieeessiiee e e sieeee e 227

25.2.3.1. Code Generation LAUNCNEYoooeiiiiiiiiiiieeeee e e eeeeee e e e 227

25.2.3.2. EXPOITEIS ..o 229

25.2.3.3. Generating and USINg the COUEocuiiiieiiiiiie e 231

JBoss Seam 1.1.6.GA

viii

Introduction to JBoss Seam

Seam is an application framework for Java EE 5. It isinspired by the following principles:

Integrate JSF with EJB 3.0
JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new component model for
server side business and persistence logic. Meanwhile, JSF is a great component model for the presentation
tier. Unfortunately, neither component model is able to solve al problems in computing by itself. Indeed,
JSF and EJB3 work best used together. But the Java EE 5 specification provides no standard way to integ-
rate the two component models. Fortunately, the creators of both models foresaw this situation and
provided standard extension points to allow extension and integration of other solutions.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting the developer
think about the business problem.

Integrated AJAX
Seam supports two open source JSF-based AJAX solutions. |CEfaces and Ajax4JSF. These solutions let
you add AJAX capability to your user interface without the need to write any JavaScript code.

Seam also provides a built-in JavaScript remoting layer for EJB3 components. AJAX clients can easily call
server-side components and subscribe to JM S topics, without the need for an intermediate action layer.

Neither of these approaches would work well, were it not for Seam's built-in concurrency and state man-
agement, which ensures that many concurrent fine-grained, asynchronous AJAX requests are handled
safely and efficiently on the server side.

Integrate Business Process as a First Class Construct
Optionally, Seam integrates transparent business process management via jBPM. Y ou won't believe how
easy it isto implement complex workflows using jBPM and Seam.

Seam even alows definition of presentation tier conversation flow by the same means.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this model by expos-
ing jBPM's business process related events via exactly the same event handling mechanism, providing a
uniform event model for Seam'’s uniform component model.

One Kind of " Stuff"
Seam provides a uniform component model. A Seam component may be stateful, with the state associated
to any one of a number of contexts, ranging from the long-running business process to a single web request.

There is no distinction between presentation tier components and business logic components in Seam. It is
possible to write Seam applications where "everything" is an EJB. This may come as a surprise if you are
used to thinking of EJBs as coarse-grained, heavyweight objects that are a pain in the backside to create!
However, EJB 3.0 completely changes the nature of EJB from the point of view of the developer. An EJB
is afine-grained object - nothing more complex than an annotated JavaBean. Seam even encourages you to
use session beans as JSF action listeners!

Unlike plain Java EE or J2EE components, Seam components may simultaneously access state associated
with the web request and state held in transactional resources (without the need to propagate web request
state manually via method parameters). You might object that the application layering imposed upon you
by the old J2EE platform was a Good Thing. Well, nothing stops you creating an equivalent layered archi-
tecture using Seam - the difference is that you get to architect your own application and decide what the

JBoss Seam 1.1.6.GA iX

I ntroduction to JBoss Seam

layers are and how they work together.

Declarative State Management

We are al used to the concept of declarative transaction management and J2EE declarative security from
EJB 2.x. EJB 3.0 even introduces declarative persistence context management. These are three examples of
a broader problem of managing state that is associated with a particular context, while ensuring that all
needed cleanup occurs when the context ends. Seam takes the concept of declarative state management
much further and applies it to application state. Traditionally, J2EE applications almost always implement
state management manually, by getting and setting servlet session and request attributes. This approach to
state management is the source of many bugs and memory leaks when applications fail to clean up session
attributes, or when session data associated with different workflows collides in a multi-window application.
Seam has the potential to almost entirely eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context model defined by
Seam. Seam extends the context model defined by the serviet spec—request, session, application—with
two new contexts—conversation and business process—that are more meaningful from the point of view of
the business logic.

Bijection
The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as well as in nu-
merous so-called "lighweight containers'. Most of these containers emphasize injection of components that
implement statel ess services. Even when injection of stateful componentsis supported (such asin JSF), it is
virtually useless for handling application state because the scope of the stateful component cannot be
defined with sufficient flexibility.

Bijection differsfrom 1oC in that it is dynamic, contextual, and bidirectional. Y ou can think of it as a mech-
anism for aliasing contextual variables (names in the various contexts bound to the current thread) to attrib-
utes of the component. Bijection allows auto-assembly of stateful components by the container. It even al-
lows a component to safely and easily manipulate the value of a context variable, just by assigning to an at-
tribute of the component.

Workspace Management
Optionaly, Seam applications may take advantage of workspace management, allowing users to freely
switch between different conversations (workspaces) in a single browser window. Seam provides not only
correct multi-window operation, but also multi-window-like operation in a single window!

Annotated POJOs Everywhere
EJB 3.0 embraces annotations and "configuration by exception™ as the easiest way to provide information
to the container in a declarative form. Unfortunately, JSF is till heavily dependent on verbose XML con-
figuration files. Seam extends the annotations provided by EJB 3.0 with a set of annotations for declarative
state management and declarative context demarcation. This lets you eliminate the noisy JSF managed bean
declarations and reduce the required XML to just that information which truly belongs in XML (the JSF
navigation rules).

Testability as a Core Feature

Seam components, being POJOs, are by nature unit testable. But for complex applications, unit testing
alone is insufficient. Integration testing has traditionally been a messy and difficult task for Java web ap-
plications. Therefore, Seam provides for testability of Seam applications as a core feature of the frame-
work. You can easily write JUnit or TestNG tests that reproduce a whole interaction with a user, exercising
all components of the system apart from the view (the JSP or Facelets page). Y ou can run these tests dir-
ectly inside your IDE, where Seam will automatically deploy EJB components into the JBoss Embeddable
EJB3 container.

Get started now!

JBoss Seam 1.1.6.GA X

I ntroduction to JBoss Seam

Seam works in any application server that supports EJB 3.0. Y ou can even use Seam in a servlet container
like Tomcat, or in any J2EE application server, by leveraging the new JBoss Embeddable EJB3 container.

However, we realize that not everyone is ready to make the switch to EJB 3.0. So, in the interim, you can
use Seam as a framework for applications that use JSF for presentation, Hibernate (or plain JDBC) for per-
sistence and JavaBeans for application logic. Then, when you're ready to make the switch to EJB 3.0, mi-
gration will be straightforward.

ISP Facelets Portal Presentation Tier
JSF Request Controller
Seam Context Management
EJE 3 JBoss |BPM || Hibernate || State Management
T

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex web application
in Java. You won't believe how little codeis required!

JBoss Seam 1.1.6.GA Xi

Chapter 1. Seam Tutorial

1.1. Try the examples

In this tutorial, we'll assume that you have downloaded JBoss AS 4.0.5 and installed the EJB 3.0 profile (using
the JBoss ASinstaller). Y ou should also have a copy of Seam downloaded and extracted to awork directory.

The directory structure of each example in Seam follows this pattern:

« Web pages, images and stylesheets may be found in exanpl es/ registration/ vi ew

* Resources such as deployment descriptors and data import scripts may be found in exanpl es/ regi stration/
resources

« Javasource code may be found in exanpl es/ registration/ src

e TheAnt build script isexanpl es/ regi stration/ bui | d. xri

1.1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOVE and $JAVA_HOME set correctly. Next, make
sure you set the location of your JBoss AS 4.0.5 installation in the bui | d. properti es filein the root folder of
your Seam installation. If you haven't already done so, start JBoss AS now by typing bi n/ run. sh or bin/
run. bat intheroot directory of your JBossinstallation.

Now, build and deploy the example by typing ant depl oy inthe exanpl es/ registration directory.

Try it out by accessing htt p: / /1 ocal host : 8080/ seam r egi strati on/ with your web browser.

1.1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $ANT_HOVE and $JAVA_HOME set correctly. Next, make
sure you set the location of your Tomcat 5.5 installation in the bui | d. properti es filein the root folder of your
Seam installation.

Now, build and deploy the example by typing ant depl oy. t ontat inthe exanpl es/ registration directory.
Finally, start Tomcat.

Try it out by accessing htt p: / /1 ocal host : 8080/ j boss- seam r egi strati on/ With your web browser.

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss Embeddable EJB3

container, a complete standalone EJB3 container environment.

1.1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the testsis to run
ant testexanpl e inside the exanpl es/ registration directory. It is also possible to run the testsinside your IDE
using the TestNG plugin.

JBoss Seam 1.1.6.GA 1

http://localhost:8080/seam-registration/
http://localhost:8080/jboss-seam-registration/

Seam Tutorial

1.2. Your first Seam application: the registration example

The registration example is a fairly trivial application that lets a new user store his username, real name and
password in the database. The example isn't intended to show off al of the cool functionality of Seam.
However, it demonstrates the use of an EJB3 session bean as a JSF action listener, and basic configuration of
Seam.

WEe'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then submitting the
form. Thiswill save a user object in the database.

©) Register New User - Mozilla Firefox |:||§||X|

File Edit View Go Bookmarks Tools Help
@ - E:} - % @ |@ http://localhost:8080/seam-registration/register.seam V| ® Go |@.

| [Chapter 1. Seam Tutorial | [&] Register New User |[#380ss DVD Store

Username |gavin
Peal Name |Gavin King
Password |m'm1

1.2.1. Understanding the code

The example isimplemented with two JSP pages, one entity bean and one statel ess session bean.

JBoss Seam 1.1.6.GA 2

Seam Tutorid

FF companents in 15P page J5F components in J5F page

register.jsp registered, jsp

update model values

@

Eritity Bean

®

risfehe i H e

User

@ ,

ik applicaten
raglEtec (]

Snateless Session Bean

RegisterAction

T k)

EntityManager

EJE A

Let'stake alook at the code, starting from the "bottom".

1.2.1.1. The entity bean: User. | ava

We need an EJB entity bean for user data. This class defines persistence and validation declaratively, via an-
notations. It also needs some extra annotations that define the class as a Seam component.

Example 1.1.
@ntity (1)
@\anme("user") (2)
@scope(SESSI ON) (3)
@abl e(nane="users") (4)
public class User inplenents Serializable
{

private static final |ong serial VersionU D = 1881413500711441951L;

private String usernane; (5)
private String password;

private String nane;

public User(String nane, String password, String usernane)

{
this. nane = nane;
thi s. password = passwor d;
t hi s. user nane = user nane;
}
public User() {} (6)
@Not Nul I @engt h(m n=5, nmax=15) (7)

public String getPassword()

JBoss Seam 1.1.6.GA 3

Seam Tutorid

(1

(2)

(3)

(4)
(5)

(6)
(7

(8)

{

return passwor d;

}

public void setPassword(String password)

{

this. password = password;

}

@\ot Nul |
public String get Nane()

{

return nane,;

}

public void setNane(String nane)

{

thi s. nane = nane;

}

@d @botNull @ength(m n=5, nmax=15) (8)
public String getUsernane()
{

return usernane;

}

public void setUsernane(String usernane)

{

t hi s. user nane = user nane;

}

The EJB3 standard @nt i t y annotation indicates that the User classis an entity bean.

A Seam component needs a component name specified by the @ane annotation. This name must be
unique within the Seam application. When JSF asks Seam to resolve a context variable with a name that is
the same as a Seam component name, and the context variable is currently undefined (null), Seam will in-
stantiate that component, and bind the new instance to the context variable. In this case, Seam will instan-
tiate auser thefirst time JSF encounters avariable named user .

Whenever Seam instantiates a component, it binds the new instance to a context variable in the compon-
ent's default context. The default context is specified using the @cope annotation. The User bean is a ses-
sion scoped component.

The EJB standard @rabl e annotation indicates that the User classis mapped to the user s table.

name, passwor d and user nane are the persistent attributes of the entity bean. All of our persistent attrib-
utes define accessor methods. These are needed when this component is used by JSF in the render re-
sponse and update model values phases.

An empty constructor is both required by both the EJB specification and by Seam.

The @bt Nul I and @engt h annotations are part of the Hibernate Validator framework. Seam integrates
Hibernate Validator and lets you use it for data validation (even if you are not using Hibernate for persist-
ence).

The EJB standard @ d annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @wane and @cope annotations. These annotations
establish that this class is a Seam component.

WEe'll see below that the properties of our User class are bound to directly to JSF components and are popul ated
by JSF during the update model values phase. We don't need any tedious glue code to copy data back and forth
between the JSP pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't use this component
as a JSF action listener. For that we need a session bean.

JBoss Seam 1.1.6.GA 4

Seam Tutorid

1.2.1.2. The stateless session bean class: Regi sterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead if you like).

We have exactly one JSF action in our application, and one session bean method attached to it. In this case,
we'll use a statel ess session bean, since all the state associated with our action is held by the User bean.

Thisisthe only redly interesting code in the exampl el

Example 1.2.

@t at el ess (1)
@ame("regi ster")
public class RegisterAction inplenents Register

{

(1)
(2)

(3)
(4
(5)

(6)
(7

@n (2)
private User user;

@er si st enceCont ext (3)
private EntityManager em

@ogger (4)
private Log | og;

public String register() (5)
{

Li st existing = emcreateQuery("sel ect usernane from User where usernane=: usernane")
. set Par anet er ("user nane", user.getUsernane())
.getResul tList();

i f (existing.size()==0)

{
em persi st (user);
| 0og.info("Registered new user #{user.usernane}"); (6)
return "/registered.jsp"; (7)
}
el se
{
FacesMessages. i nstance().add("User #{user.usernane} already exists"); (8)
return null;
}

The EJB standard @t at el ess annotation marks this class as statel ess session bean.

The @ n annotation marks an attribute of the bean as injected by Seam. In this case, the attribute is injec-
ted from a context variable named user (the instance variable name).

The EJB standard @per si st enceCont ext annotation is used to inject the EJB3 entity manager.

The Seam @ ogger annotation is used to inject the component's Log instance.

The action listener method uses the standard EJB3 Ent i t ymManager API to interact with the database, and
returns the JSF outcome. Note that, since this is a sesson bean, a transaction is automatically begun when
ther egi st er () method is called, and committed when it compl etes.

The Log API letsus easily display templated log messages.

JSF action listener methods return a string-valued outcome that determines what page will be displayed
next. A null outcome (or a void action listener method) redisplays the previous page. In plain JSF, it is
normal to always use a JSF navigation rule to determine the JSF view id from the outcome. For complex
application thisindirection is useful and a good practice. However, for very simple examples like this one,
Seam lets you use the JSF view id as the outcome, eliminating the requirement for a navigation rule. Note

JBoss Seam 1.1.6.GA 5

Seam Tutorid

that when you use a view id as an outcome, Seam always performs a browser redirect.

(8) Seam provides a number of built-in components to help solve common problems. The FacesMessages
component makes it easy to display templated error or success messages. Built-in Seam components may
be obtained by injection, or by calling ani nst ance() method.

Note that we did not explicitly specify a @cope thistime. Each Seam component type has a default scope if not
explicitly specified. For stateless session beans, the default scope is the stateless context. Actually, all stateless
session beans belong in the statel ess context.

Our session bean action listener performs the business and persistence logic for our mini-application. In more
complex applications, we might need to layer the code and refactor persistence logic into a dedicated data ac-
cess component. That's perfectly trivial to do. But notice that Seam does not force you into any particular
strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with the web request
(the form values in the user object, for example), and state held in transactional resources (the Ent i t yManager
object). Thisis abreak from traditional J2EE architectures. Again, if you are more comfortable with the tradi-
tional J2EE layering, you can certainly implement that in a Seam application. But for many applications, it's
simply not very useful.

1.2.1.3. The session bean local interface: Regi ster.java

Naturally, our session bean needs alocal interface.

Example 1.3.

@.ocal
public interface Register

{
}

public String register();

That's the end of the Java code. Now onto the deployment descriptors.

1.2.1.4. The Seam component deployment descriptor: conponent s. xn

If you've used many Java frameworks before, you'll be used to having to declate all your component classes in
some kind of XML file that gradually grows more and more unmanageable as your project matures. You'll be
relieved to know that Seam does not require that application components be accompanied by XML. Most Seam
applications require avery small amount of XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some components
(particularly the components built in to Seam). Y ou have a couple of options here, but the most flexible option
is to provide this configuration in afile caled conponent s. xni , located in the wee- | NF directory. We'l use the
conmponent s. xn fileto tell Seam how to find our EJB componentsin JNDI:

Example 1.4.

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://]jboss. conlf product s/ seani core">
<core:init jndi-pattern="@ndi Pattern@/>
</ conponent s>

JBoss Seam 1.1.6.GA 6

Seam Tutorid

This code configures a property named jndiPattern of a built-in Seam component named
org.j boss.seamcore.init.

1.2.1.5. The web deployment description: web. xni

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web deployment
descriptor.

Example 1.5.

<?xm version="1.0" encodi ng="UTF-8""?>
<web- app version="2.5"
xm ns="http://java. sun. conl xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance”
Xsi : schemaLocati on="http://java. sun. conf xm / ns/ j avaee
http://java. sun. comf xm / ns/ j avaee/ web- app_2_5. xsd" >

<l-- Seam-->

<li stener>
<l i stener-cl ass>org.jboss. seam servl et. SeanLi stener</1|i stener-cl ass>
</listener>

<l-- MFaces -->

<li stener>
<l i stener-class>
or g. apache. nyf aces. webapp. St art upSer vl et Cont ext Li st ener
</listener-class>
</listener>

<cont ext - par an>
<par am nane>j avax. f aces. STATE_SAVI NG_METHOD</ par am name>
<par am val ue>cl i ent </ param val ue>

</ cont ext - par an>

<servl et>
<servl et - nane>Faces Servl et </servl et -nane>
<servl et-cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>
<l oad- on- st art up>1</| oad- on- st art up>

</servlet>

<!-- Faces Servlet Mpping -->
<servl et - mappi ng>
<servl et - name>Faces Servl et </servl et - name>
<url - pattern>*.seanx/url - pattern>
</ servl et - mappi ng>

</ web- app>

Thisweb. xm file configures Seam and MyFaces. The configuration you see here is pretty much identical in all
Seam applications.

1.2.1.6. The JSF configration: faces- confi g. xm

All Seam applications use JSF views as the presentation layer. So we'll need f aces- confi g. xni .

Example 1.6.

<?xm version="1.0" encodi ng="UTF-8"?>

JBoss Seam 1.1.6.GA 7

Seam Tutorid

<! DOCTYPE f aces-config

PUBLIC "-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.0//EN'
"http://java. sun. com dt d/ web- f acesconfig_1 0.dtd">

<faces-config>

<I-- A phase listener is needed by all Seam applications -->

<lifecycl e>
<phase-|i stener>org.jboss. seam j sf. SeanPhaseLi st ener </ phase-|i st ener>
</lifecycl e>

</ faces-config>

Thefaces-config. xnl file integrates Seam into JSF. Note that we don't need any JSF managed bean declara-
tions! The managed beans are the Seam components. In Seam applications, the faces-config. xn is used
much less often than in plain JSF.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you add new func-
tionality to a Seam application is the navigation rules, and possibly jBPM process definitions. Seam takes the
view that process flow and configuration data are the only things that truly belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the view id in our ac-
tion code.

1.2.1.7. The EJB deployment descriptor: ej b-j ar. xm

Theejb-jar.xm fileintegrates Seam with EJB3, by attaching the Seam nt er cept or to all session beansin the
archive.

<ej b-jar xm ns="http://java.sun.conl xm /ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. comf xm / ns/javaee http://java. sun.conl xm / ns/javaee/ ej b-]j
versi on="3.0">

<i nt er cept or s>
<i nterceptor>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nterceptor-cl ass>
</interceptor>
</interceptors>

<assenbl y-descri pt or>
<i nt er cept or - bi ndi ng>
<ej b- name>* </ ej b- nane>
<i nterceptor-cl ass>org.jboss. seam ej b. Seanl nt ercept or</i nterceptor-cl ass>
</i nt er ceptor - bi ndi ng>
</ assenbl y-descri pt or >

</ ejb-jar>

1.2.1.8. The EJB persistence deployment descriptor: persi st ence. xn

The persi stence. xni file tells the EJB persistence provider where to find the datasource, and contains some
vendor-specific settings. In this case, enables automatic schema export at startup time.

<?xm version="1.0" encodi ng="UTF-8"?>
<persi stence xm ns="http://java. sun. conf xm / ns/ per si st ence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://java. sun. conf xm / ns/ persi stence http://java. sun.com xm / ns/ pel
versi on="1.0">
<persi stence-unit name="user Dat abase" >
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j ta-dat a-source>j ava: / Def aul t DS</ j t a- dat a- sour ce>

JBoss Seam 1.1.6.GA 8

Seam Tutorid

<properties>
<property nanme="hi ber nate. hbn2ddl . aut 0" val ue="creat e-drop"/>
</ properties>
</ per si st ence- uni t >
</ persi stence>

1.2.1.9. The view: regi ster.jsp and regi stered. j sp

The view pages for a Seam application could be implemented using any technology that supports JSF. In this
example we use JSP, since it is familiar to most developers and since we have minimal requirements here any-
way. (But if you take our advice, you'll use Facelets for your own applications.)

Example 1.7.

<y@taglib ur
<v@taglib ur
<Yy@taglib ur
<htm >
<head>
<title>Register New User</title>
</ head>
<body>
<f:vi ew>
<h: f or m»
<tabl e border="0">
<s:validateAll >
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user.username}"/></td>
</tr>
<tr>
<t d>Real Nane</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h:i nput Secret val ue="#{user.password}"/></td>
</tr>
</s:validateAll>
</t abl e>
<h: messages/ >
<h: commandBut t on type="subm t" val ue="Regi ster" action="#{register.register}"/>
</ h: fornme
</f:view
</ body>
</htm >

"http://java.sun.com jsf/htm" prefix="h" %
"http://java.sun.conljsf/core" prefix="f" %
"http://jboss. conf products/seanftaglib" prefix="s" %

The only thing here that is specific to Seam isthe <s: val i dat eAl | > tag. This JSF component tells JSF to valid-
ate al the contained input fields against the Hibernate Validator annotations specified on the entity bean.

Example 1.8.

<Yy@taglib ur
<v@taglib ur
<htm >

<head>

<title>Successfully Registered New User</title>
</ head>

<body>

<f:view

Wl conme, <h:out put Text val ue="#{user.nane}"/>,

"http://java.sun.comjsf/htm" prefix="h" %
"http://java.sun.conljsf/core" prefix="f" %

JBoss Seam 1.1.6.GA 9

Seam Tutorid

you are successfully regi stered as <h: out put Text val ue="#{user.usernane}"/>.
</f:view
</ body>
</htm >

Thisisaboring old JSP pages using standard JSF components. There is nothing specific to Seam here.

1.2.1.10. The EAR deployment descriptor: appl i cati on. xn

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Example 1.9.

<?xm version="1.0" encodi ng="UTF-8""?>

<application xm ns="http://java. sun. conf xm / ns/ j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun. conf xm / ns/javaee http://java. sun.conl xm /ns/javaee/
versi on="5">

<di spl ay- name>Seam Regi strati on</di spl ay- name>

<modul e>
<web>
<web- uri >j boss- seam regi stration. war </ web-uri >
<cont ext -r oot >/ seam r egi strati on</ cont ext - r oot >
</ web>
</ modul e>
<modul e>
<ej b>j boss-seamregi stration.jar</ejb>
</ modul e>
<nmodul e>
<j ava>j boss-seam j ar </ j ava>
</ modul e>
<modul e>
<j ava>el - api . j ar</java>
</ modul e>
<nmodul e>
<java>el -ri.jar</java>
</ modul e>

</ appl i cati on>

This deployment descriptor links modules in the enterprise archive and binds the web application to the context
root / seamregi stration

We've now seen all the filesin the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is no value already
bound to that name (in any Seam context), Seam instantiates the user component, and returns the resulting
User entity bean instance to JSF after storing it in the Seam session context.

The form input values are now validated against the Hibernate Validator constraints specified on the user en-
tity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the form input values to prop-
erties of the user entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er . Seam finds the Regi st er Act i on Stateless session

JBoss Seam 1.1.6.GA 10

Seam Tutorial

bean in the stateless context and returns it. JSF invokesther egi st er () action listener method.

Seam intercepts the method call and injects the user entity from the Seam session context, before continuing
the invocation.

The regi ster() method checks if a user with the entered username aready exists. If so, an error message is
queued with the FacesMessages component, and a null outcome is returned, causing a page redisplay. The
FacesMessages component interpolates the JSF expression embedded in the message string and adds a JSF
FacesMessage to the view.

If no user with that username exists, the "/ regi st ered. j sp" outcome triggers a browser redirect to the re-
gi stered. j sp page. When JSF comes to render the page, it asks Seam to resolve the variable named user and
uses property values of the returned User entity from Seam'’s session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that Seam
provides special functionality on top of JSF to make it easier to query data using EJB-QL or HQL and display it
asaclickablelist using a JSF <h: dat aTabl e>. The messages example demonstrates this functionality.

©) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

@-o -8) 9|0 htp:/focahost:s080 ¥ | @ Go [[CL

B Latest Headlines £33 The World Clock B XE Currency Converter ¥ Hibernate JIRA
|[] Chapter 1. Seam Tutorial | LI Messages \

Message List

Read Title Date/Time

Greetings Earthling Feb 4, 2006 9:40 AM
Hello World ~ Jan 2, 2006 7:00 AM

Greetings Earthling

This is another example of a message.

1.3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessagelLi st Bean and one JSP.

JBoss Seam 1.1.6.GA 11

Seam Tutorid

1.3.1.1. The entity bean: Mssage. j ava

The Message entity defines the title, text, date and time of a message, and a flag indicating whether the message
has been read:

Example 1.10.

@ntity
@Nane(" nessage")
@scope(EVENT)
public class Message inplenments Serializable
{
private Long id;
private String title;
private String text;
private bool ean read;
private Date dateti ne;

@d @zenerat edVal ue

public Long getld() {
return id;

}

public void setld(Long id) {
this.id = id;
}

@ot Nul | @.engt h(max=100)

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

@\ot Nul | @ob

public String getText() {
return text;

}

public void setText(String text) {
this.text = text;

}

@\ot Nul |

publ i c bool ean isRead() {
return read;

}

public void setRead(bool ean read) {
this.read = read;

}

@lot Nul |
@asi ¢ @enpor al (Tenpor al Type. TI MESTAVP)

public Date getDatetinme() {
return datetine;

}
public void setDateti me(Date datetinme) {

this.datetinme = datetine;
}

1.3.1.2. The stateful session bean: MessageManager Bean. j ava

Just like in the previous example, we have a session bean, MessageManager Bean, Which defines the action

JBoss Seam 1.1.6.GA 12

Seam Tutorid

listener methods for the two buttons on our form. One of the buttons selects a message from the list, and dis-
plays that message. The other button deletes a message. So far, thisis not so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we navigate to the
message list page. There are various ways the user could navigate to the page, and not all of them are preceded
by a JSF action—the user might have bookmarked the page, for example. So the job of fetching the message
list takes place in a Seam factory method, instead of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this a stateful ses-
sion bean.

Example 1.11.

@t at ef ul

@scope(SESSI ON)

@Nane(" nessageManager ")

public class MessageManager Bean i npl enents Seri al i zabl e, MessageManager

{

(1

(2)

(3)

(4)

@at aModel (1)
private List<Message> nessageli st;

@at aMbdel Sel ecti on (2)
@ut (requi red=fal se) (3)

private Message nmessage;

@er si st enceCont ext (t ype=EXTENDED) (4)
private EntityManager em

@-act ory("nessageLi st") (5)
public void findMessages()

{
}

public void select() (6)
{

}

public void del ete() (7)
{

messagelLi st = emcreateQuery("from Message nsg order by nsg.dateti ne desc").getResultlList();

message. set Read(true);

nmessageli st. renove(nmessage) ;
em r enpve(nessage) ;
message=nul | ;

}

@enpbve @estroy (8)
public void destroy() {}

The @at aMbdel annotation exposes an attibute of typej ava. util . Li st to the JSF page as an instance of
j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF <h: dat aTabl e> with clickable
links for each row. In this case, the bat ambdel is made available in a session context variable named nes-

sagelLi st .

The @at aMbdel Sel ecti on annotation tells Seam to inject the Li st element that corresponded to the
clicked link.

The @ut annotation then exposes the selected value directly to the page. So ever time arow of the click-
able list is selected, the Message isinjected to the attribute of the stateful bean, and the subsequently out-
jected to the event context variable named nessage.

This stateful bean has an EJB3 extended persistence context. The messages retrieved in the query remain

JBoss Seam 1.1.6.GA 13

Seam Tutorid

in the managed state as long as the bean exists, so any subsequent method calls to the stateful bean can
update them without needing to make any explicit call to the Ent i t yManager .

(5) The first time we navigate to the JSP page, there will be no value in the nmessagelLi st context variable.
The @act ory annotation tells Seam to create an instance of MessageManager Bean and invoke the f i nd-
Messages() method toinitialize the value. We call fi ndvessages() afactory method for messages.

(6) Theselect() action listener method marks the selected Message asread, and updates it in the database.

(7) Thedel ete() action listener method removes the selected Message from the database.

(8) All stateful session bean Seam components must have a method marked @enove @est r oy to ensure that
Seam will remove the stateful bean when the Seam context ends, and clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session, and all requests
from alogin session share the same instance of the component. (In Seam applications, we usually use session-
scoped components sparingly.)

1.3.1.3. The session bean local interface: MessageManager . j ava
All session beans have a business interface, of course.

@oca
public interface MessageManager
{
public void findMessages():
public void select();
public void delete();
public void destroy();

From now on, we won't show local interfacesin our code examples.

Let's Skip OVer conponent s. xnl , persi stence. xm , web. xm , ej b-jar. xm , faces-config. xni and appl i ca-
tion. xm sincethey are much the same as the previous example, and go straight to the JSP.

1.3.1.4. The view: nessages. j sp

The JSP page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing specific to Seam.

Example 1.12.

<Yy@taglib ur
<Y@taglib ur
<htm >
<head>
<title>Messages</title>
</ head>
<body>
<f:view>
<h: f or m>
<h2>Message Li st</h2>
<h: out put Text val ue="No nessages to display" rendered="#{nessageli st.rowCount==0}"/>
<h: dat aTabl e var="nsg" val ue="#{nessageList}" rendered="#{nmessageli st.rowCount >0}">
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Read"/>
</f:facet>
<h: sel ect Bool eanCheckbox val ue="#{nsg.read}" disabled="true"/>
</ h: col utm>
<h: col um>
<f:facet nane="header">
<h: out put Text value="Title"/>
</f:facet>

"http://java.sun.com jsf/htm" prefix="h" %
"http://java.sun.conml jsf/core" prefix="f" %

JBoss Seam 1.1.6.GA 14

Seam Tutorid

<h: conmandLi nk val ue="#{nsg.title}" acti on="#{nmessageManager.select}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Date/ Ti ne"/>
</f:facet>
<h: out put Text val ue="#{nsg. dateti ne}">
<f:convertDat eTi ne type="both" dateStyl e="nmedi uni' tinmeStyle="short"/>
</ h: out put Text >
</ h: col um>
<h: col utm>
<h: conmandBut t on val ue="Del ete" acti on="#{nmessageManager. del ete}"/>
</ h: col utm>
</ h: dat aTabl e>
<h3><h: out put Text val ue="#{nmessage.title}"/></h3>
<di v><h: out put Text val ue="#{nmessage. text}"/></div>
</ h: fornme
</f:view
</ body>
</htm >

1.3.2. How it works

The first time we navigate to the nessages. j sp page, whether by a JSF postback (faces request) or a direct
browser GET request (non-faces request), the page will try to resolve the nessageLi st context variable. Since
this context variable is not initialized, Seam will call the factory method fi ndMessages(), which performs a
query against the database and results in a Dat aMbdel being outjected. This Dat ambdel provides the row data
needed for rendering the <h: dat aTabl e>.

When the user clicks the <h: commandLi nk>, JSF callsthe sel ect () action listener. Seam intercepts this call and
injects the selected row data into the nessage attribute of the nessageManager component. The action listener
fires, marking the selected Message as read. At the end of the call, Seam outjects the selected Message to the
context variable named nessage. Next, the EJB container commits the transaction, and the change to the nes-
sage is flushed to the database. Finally, the page is re-rendered, redisplaying the message list, and displaying
the selected message below it.

If the user clicks the <h: commandBut t on>, JSF calls the del et e() action listener. Seam intercepts this call and
injects the selected row datainto the nessage attribute of the messageLi st component. The action listener fires,
removing the selected Message from thelist, and also calling r enove() ontheEenti t yManager . At the end of the
call, Seam refreshes the nessageLi st context variable and clears the context variable named nessage. The EJB
container commits the transaction, and deletes the Message from the database. Finally, the page is re-rendered,

redisplaying the message list.

1.4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste of how
jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing lists of tasks is
such core functionality for jBPM, thereis hardly any Java code at al in this example.

JBoss Seam 1.1.6.GA 15

Seam Tutorial

©) Todo List - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<&~ - &) @) [ntip:/fiocahost:8080/seam-todo/todo.seam v| @ 6o G

|[] Chapter 1. Seam Tutoral [Todo List |[#3Boss DVD Store

Todo List

Description Created Priority Due Date
|Bookﬂightto Isreal |Ja.n. 13, 2006 |
Getthe stupid Seam release finished! Jan13.20065 | [1/17/06

Haircut Jan13,20063 | |

|Review Hibernate in Action second edition |Jan 13, 2006

|
|Kick Roy out of my office |Ja.n 13, 2006 |
|Blog aboutworkspace management |Jan 13, 2006 |

Update ltems

| |[Create New ltem]

1.4.1. Understanding the code
The center of this example is the jBPM pracess definition. There are also two JSPs and two trivia JavaBeans

(There was no reason to use session beans, since they do not access the database, or have any other transaction-
a behavior). Let's start with the process definition:

Example 1.13.

<process-definition nane="t odo" >

<start-state name="start"> (1)
<transition to="todo"/>
</start-state>

<t ask- node nane="t odo"> (2)

<task name="todo" description="#{todolList.description}"> (3)

<assignment actor-id="#{actor.id}"/> (4)
</task>

<transition to="done"/>
</t ask- node>

<end- st at e nanme="done"/> (5)

</ process-definition>

(1) The<start-state> node represents the logical start of the process. When the process starts, it immedi-
ately transitionsto thet odo node.

(2) The <t ask- node> node represents a wait state, where business process execution pauses, waiting for one
or more tasks to be performed.

(3) The<task> element defines a task to be performed by a user. Since there is only one task defined on this
node, when it is complete, execution resumes, and we transition to the end state. The task gets its descrip-

JBoss Seam 1.1.6.GA 16

Seam Tutorid

tion from a Seam component named t odoLi st (one of the JavaBeans).

(4) Tasks need to be assigned to a user or group of users when they are created. In this case, the task is as-
signed to the current user, which we get from a built-in Seam component named act or . Any Seam com-
ponent may be used to perform task assignment.

(5) The<end- st at e> node defines the logical end of the business process. When execution reaches this node,
the process instance is destroyed.

If we view this process definition using the process definition editor provided by JBossl DE, thisis what it |ooks
like:

« <<olart State=>
start

W <= [ask Node==
i todo

<=fnd State==
]
done

This document defines our business process as a graph of nodes. This is the most trivial possible business pro-
cess. there is one task to be performed, and when that task is complete, the business process ends.

The first JavaBean handles the login screen | ogi n. j sp. Itsjob isjust to initialize the [BPM actor id using the
act or component. (In area application, it would also need to authenticate the user.)

Example 1.14.
@Name("1 ogi n")
public class Login {

@n
private Actor actor;

private String user;
public String getUser() {

return user;

public void setUser(String user) {
this.user = user;
}

JBoss Seam 1.1.6.GA 17

Seam Tutorid

public String Iogin()
{
actor.setld(user);
return "/todo.jsp";

Here we see the use of @ n to inject the built-in Act or component.

The JSPitself istrivial:

Example 1.15.

<y@taglib ur
<Yy@taglib ur
<htm >
<head>
<title>Login</title>
</ head>
<body>
<h1>Logi n</ h1>
<f:view>
<h: f or m»
<di v>
<h:i nput Text val ue="#{l ogi n.user}"/>
<h: conmandBut t on val ue="Logi n" action="#{login.login}"/>
</ di v>
</ h: form
</f:view
</ body>
</htm >

"http://java.sun.com jsf/htm" prefix="h"%
"http://java.sun.conm jsf/core" prefix="f"%

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.16.
@Nane("t odoList")
public class TodoList {
private String description

public String getDescription()
{

}

public void setDescription(String description) {
this.description = description
}

@Cr eat eProcess(definition="todo")
public void createTodo() {}

return description;

@t art Task @EndTask
public void done() {}

(1) The description property accepts user input form the JSP page, and exposes it to the process definition, al-

lowing the task description to be set.

JBoss Seam 1.1.6.GA

18

Seam Tutorid

(2) The Seam @ eat ePr ocess annotation creates anew jBPM process instance for the named process defini-
tion.

(3) The Seam @t ar t Task annotation starts work on atask. The @ndTask ends the task, and alows the busi-
NEsS process execution to resume.

In amore redlistic example, @t art Task and @ndTask would not appear on the same method, because there is
usually work to be done using the application in order to compl ete the task.

Finally, the mesat of the applicationisint odo. j sp:

Example 1.17.

<U@taglib uri="http://java.sun.conljsf/htm" prefix="h" %
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f" %
<v@taglib uri="http://jboss.con products/seantaglib" prefix="s" %

<htm >
<head>
<title>Todo List</title>
</ head>
<body>
<h1>Todo Li st</h1>
<f:vi ew>
<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty tasklnstancelList}"/>
<h: dat aTabl e val ue="#{t askl nstanceList}" var="task" rendered="#{not enpty tasklnstancelList}":
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Description"/>
</f:facet>
<h: i nput Text val ue="#{task.description}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{task.taskMnt | nstance. processl nstance. start}">
<f:convertDateTi ne type="date"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:input Text value="#{task.priority}" style="w dth: 30"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task.dueDate}" style="w dth: 100">
<f:convertDat eTi ne type="date" dateStyl e="short"/>
</ h:i nput Text >
</ h: col utm>
<h: col utm>
<s: button val ue="Done" action="#{todoLi st.done}" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>
</ di v>
<di v>
<h: nessages/ >
</ di v>
<di v>
<h: conmandBut t on val ue="Update |tens" acti on="update"/>
</ di v>
</ h: form

JBoss Seam 1.1.6.GA 19

Seam Tutorid

<h: form i d="new'>
<di v>
<h: i nput Text val ue="#{todoLi st.description}"/>
<h: conmandBut t on val ue="Create New |l teni' acti on="#{todoLi st.createTodo}"/>
</div>
</ h: fornme
</f:view
</ body>
</htm >

Let'stake thisone piece at atime.

The page renders a list of tasks, which it gets from a built-in Seam component named t askl nst ancelLi st . The
list is defined inside a JSF form.

<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty tasklnstancelList}"/>
<h: dat aTabl e val ue="#{taskl nstanceList}" var="task" rendered="#{not enpty tasklnstanceList}">

</ h: dat aTabl e>
</ di v>
</ h: fornp

Each element of the list is an instance of the JBPM class Task! nst ance. The following code simply displays the
interesting properties of each task in the list. For the description, priority and due date, we use input controls, to
allow the user to update these values.

<h: col um>
<f:facet nane="header">
<h: out put Text val ue="Descri ption"/>
</f:facet>
<h:i nput Text val ue="#{task. description}"/>
</ h: col utm>
<h: col um>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{t ask.taskMynt | nst ance. processl nstance. start}">
<f:convertDat eTi ne type="date"/>
</ h: out put Text >
</ h: col um>
<h: col um>
<f:facet nanme="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text val ue="#{task.priority}" style="w dth: 30"/>
</ h: col um>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h: i nput Text val ue="#{task.dueDate}" style="wi dth: 100">
<f:convertDateTi ne type="date" dateStyl e="short"/>
</ h: i nput Text >
</ h: col utm>

This button ends the task by calling the action method annotated @t art Task @ndTask. It passes the task id to
Seam as arequest parameter:

<h: col um>
<s:button val ue="Done" action="#{todoLi st.done}" tasklnstance="#{task}"/>
</ h: col utm>

JBoss Seam 1.1.6.GA 20

Seam Tutorial

(Note that thisis using a Seam <s: but t on> JSF control from the seam ui . j ar package.)

This button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM will
make any changes to the tasks persistent. There is no need for any action listener method:

<h: conmandBut t on val ue="Update Itens" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated
@@r eat ePr ocess.

<h: form i d="new'>
<di v>
<h:i nput Text val ue="#{t odoLi st. description}"/>
<h: conmandBut t on val ue="Create New | tent action="#{todolLi st.createTodo}"/>
</ di v>
</ h: form

There are severa other files needed for the example, but they are just standard jBPM and Seam configuration
and not very interesting.

1.4.2. How it works

TODO

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules are a perfectly
good way to define the page flow. For applications with a more constrained style of navigation, especially for
user interfaces which are more stateful, navigation rules make it difficult to really understand the flow of the
system. To understand the flow, you need to piece it together from the view pages, the actions and the naviga-
tion rules.

Seam alows you to use a jPDL process definition to define pageflow. The simple number guessing example
shows how thisis done.

) Guess a number-... - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

QZI - E:) - @ @ |@ http://localhost: 8080/seam-numberguess/numberGuess.seam?conversationId=1 V| D Go ||§‘,

| [} Chapter 1. Seam Tutoril | [Guess a number... }

Guess a number...

Lower!
I'm thinking of a number between 1 and 49. You have 9 guesses.
Your guess: |50 | [Guess]

1.5.1. Understanding the code

JBoss Seam 1.1.6.GA 21

Seam Tutorid

The example is implemented using one JavaBean, three JSP pages and ajPDL pageflow definition. Let's begin
with the pageflow:

Example 1.18.

<pagef | ow defi niti on name="nunber Guess" >

<start-page name="di spl ayGuess" vi ewid="/nunber Guess.jsp">
<redirect/>
<transition name="guess" to="eval uat eGuess">
<action expression="#{nunber Guess. guess}" />

</transition> (1)
</start-page> (2)
(3)

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}">
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRenai ni ngGuesses"/ >

</ deci si on> (4)

<deci si on nane="eval uat eRenmai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}" >
<transition name="true" to="|ose"/>
<transition nane="fal se" to="di spl ayGuess"/>

</ deci si on>

<page nanme="wi n" viewid="/win.jsp">
<redirect/>
<end- conversation />

</ page>

<page nane="|ose" viewid="/|ose.jsp">
<redirect/>
<end-conversation />

</ page>

</ pagef | ow definiti on>

(1) The <page> element defines a wait state where the system displays a particular JSF view and waits for
user input. The vi ew-i d is the same JSF view id used in plain JSF navigation rules. Theredi rect attrib-
ute tells Seam to use post-then-redirect when navigating to the page. (This results in friendly browser
URLS)

(2) The<transition> element names a JSF outcome. The transition is triggered when a JSF action resultsin
that outcome. Execution will then proceed to the next node of the pageflow graph, after invocation of any
jBPM transition actions.

(3) A transition <acti on> isjust like a JSF action, except that it occurs when a jBPM transition occurs. The
transition action can invoke any Seam component.

(4) A <deci si on> node branches the pageflow, and determines the next node to execute by evaluating a JSF
EL expression.

Here iswhat the pageflow looks like in the JBossI DE pageflow editor:

JBoss Seam 1.1.6.GA 22

Seam Tutorid

<< Start State>>
start

= {:{:Page:}:}
~ displayGuess

guess false
o ==Decision=> false 2 ==Decision=>
il . o
evaluateGuess evaluateRemainingGuesses
true true
ﬁ%{xpagga} ﬁ%{ﬁpageﬁ}
win ~ lose

Now that we have seen the pageflow, it isvery, very easy to understand the rest of the application!

Here is the main page of the application, nunber Guess. j sp:

Example 1.19.

<y@taglib uri="http://java.sun.confjsf/htm" prefix="h"%
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f"%

<htm >
<head>
<title>Guess a nunber...</title>
</ head>
<body>
<hl>CGuess a nunber...</hl>
<f:view>
<h: f or m»
<h: out put Text val ue="Hi gher!" rendered="#{ nunber Guess. randonmNunber >nunber Guess. current Guess}"
<h: out put Text val ue="Lower!" rendered="#{nunber Guess. randomNunber <nunber Guess. current Guess}" |

I"'mthinking of a nunber between <h:out put Text val ue="#{nunber Guess.snallest}" /> and
<h: out put Text val ue="#{nunber Guess. bi ggest}" />. You have
<h: out put Text val ue="#{nunber Guess. r enai ni ngGuesses}" /> guesses.

Your guess:
<h:i nput Text val ue="#{nunber Guess. current Guess}" id="guess" required="true">
<f:val i dat eLongRange
maxi mun¥" #{ nunber Guess. bi ggest } "
m ni mun¥"#{ nunber Guess. snmal l est}"/>
</ h:i nput Text >
<h: commandButt on type="subnit" val ue="Quess" acti on="guess" />

<h: nessage for="guess" style="color: red"/>
</ h: fornm
</f:view
</ body>
</htm >

JBoss Seam 1.1.6.GA 23

Seam Tutorid

Notice how the command button names the guess transition instead of calling an action directly.

Thewi n. j sp pageis predictable:

Example 1.20.

<y@taglib ur

<Yy@taglib ur

<htm >

<head>

<title>You won!</title>

</ head>

<body>

<h1>You won! </ h1>

<f:view
Yes, the answer was <h:out put Text val ue="#{nunber Guess. current Guess}" />.
It took you <h:output Text val ue="#{nunber Guess. guessCount}" /> guesses.
Wul d you like to pl ay agai n</ a>?

</f:view
</ body>
</htm >

"http://java.sun.conljsf/htm" prefix="h"%
"http://java.sun.com jsf/core" prefix="f"%

Asislose. j sp (which | can't be bothered copy/pasting). Finally, the JavaBean Seam component:

Example 1.21.

@Nanme(" nunmber Guess")
@cope(ScopeType. CONVERSATI ON)
public class Nunmber Guess {

private int randomNunber;
private |nteger currentCQuess;
private int biggest;

private int snallest;

private int guessCount;
private int maxQuesses;

@r eat e (1)
@egi n(pagef | ow="nunber Guess") (2)
public void begin()

{

randomNunber = new Randon{). next | nt (100);
guessCount = O;

bi ggest = 100;

smal | est = 1;

}
public void setCurrent Guess(| nteger guess)
{ this.current Guess = guess;
}
public Integer getCurrentGuess()
{ return current Guess
}
public void guess()
{ i f (currentGuess>randonmNunber)
i bi ggest = current Guess - 1;

i f (currentGuess<randomNunber)

JBoss Seam 1.1.6.GA

Seam Tutorid

{
smal | est = current Guess + 1;
}
guessCount ++;
}
publ i c bool ean isCorrect Guess()
{
return current GQuess==r andom\unber ;
}
public int getBiggest()
{
return biggest;
}
public int getSmallest()
{
return small est;
}
public int get@essCount ()
{
return guessCount;
}
publ i c bool ean i sLast Guess()
{
return guessCount ==maxCuesses;
}

public int getRemai ni ngGuesses() {
return maxGuesses- guessCount;
}

public void set MaxGuesses(int nmaxCQuesses) {
t hi s. maxGuesses = maxQuesses;

}

public int get MaxQuesses() {
return maxGuesses;
}

public int get RandomNunber () {
return randomNunber;

}

(1) The first time a JSP page asks for a nunber Guess component, Seam will create a new one for it, and the
@ eat e method will be invoked, allowing the component to initialize itself.

(2) The @egi n annotation starts a Seam conversation (much more about that later), and specifies the page-
flow definition to use for the conversation's page flow.

As you can see, this Seam component is pure business logic! It doesn't need to know anything at all about the
user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

TODO

1.6. A complete Seam application: the Hotel Booking example

JBoss Seam 1.1.6.GA 25

Seam Tutorid

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following features:

User registration

e Login
e Logout
e Set password

» Hotel search

¢ Hotel selection

* Room reservation

¢ Reservation confirmation

» Existing reservation list

JBoss Seam 1.1.6.GA

26

Seam Tutorid

jboss suites

State management in
Seam

State in Seam is confextual.
When you click "Find
Hotels", the application

seam framework demo

me Gavin King | Search | Settings | Logout

Thank you, Gavin King, your confimation number for Doubletree is 1

Find Hotels

Search Hotels

Atlanta

retrieves a list of hotels Maximum results: | 10.¥
from the database and
caches it in the session Name Address City, State Zip | Action
context. When you navigate Marriott T ol Atlanta. GA vi
arrio ower Place anta iew
to one of the hotel records ! ! ! 30305 ——
o o i Courtyard Buckhead usa Hotel
by clicking the "View Hotel' _
link, a cenversation begins. Doubletree Tower Place, Atlanta, GA, 30305 View
The conversation is Buckhead USA Hotel
attached to a particular Ritz Carlton Peachtree Rd, Atlanta, GA, 30376 WView
tab, in a particular browser Buckhead USA Hotel
window. You can navigate
to multiple hotels using Current Hotel Bookings
"open in new tab" or "open
in new window" in your web N Add City, FhECk Check Confirmation Acti
browser. Each window will ame ress state ::Inate g::e number ton
execute in the context of a
different conversation. The Tower
plication keen - Doubletree Place Atlanta, Apr 16, Apr 17, 1 Cancel
application keeps state Buck}‘:ead GA 2006 2006 ==

associated with your hotel
booking in the conversation
context, which ensures that
the concurrent
conversations do not
interfere with each other.

How does the search page

work?

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There is aso a port
of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is extremely robust.
You can play with back buttons and browser refresh and opening multiple windows and entering nonsensical
data as much as you like and you will find it very difficult to make the application crash. Y ou might think that
we spent weeks testing and fixing bugs to achive this. Actually, thisis not the case. Seam was designed to make
it very straightforward to build robust web applications and a lot of robustness that you are probably used to
having to code yourself comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works, observe how
the declarative state management and integrated validation has been used to achieve this robustness.

JBoss Seam 1.1.6.GA 27

Seam Tutorid

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please refer to Sec-
tion 1.1, “Try the examples’. Once you've successfully started the application, you can access it by pointing
your browser to ht t p: / /1 ocal host : 8080/ seam booki ng/

Just ten classes (plus six session beans local interfaces and 1 annotation interface) where used to implement this
application. Six session bean action listeners contain all the business logic for the listed features.

e Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.
e ChangePasswor dAct i on updates the password of the currently logged in user.

* Hot el Booki ngAct i on implements the core functionality of the application: hotel room searching, selection,
booking and booking confirmation. This functionality is implemented as a conversation, so this is the most
interesting class in the application.

e Logi nActi on validates the login details and retrieves the logged in user.
e Logout Act i on endsthelogin session.
* Regi sterAction registersanew system user.

Three entity beans implement the application's persistent domain model.

e Hotel isan entity bean that represent a hotel
e Booki ng isan entity bean that represents an existing booking
e User isan entity bean to represents a user who can make hotel bookings

Finally, the Loggedl n annotation and the Loggedi ni nterceptor are used to protect actions that require a
logged in user.

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate upon one particular
piece of functionality: hotel search, selection, booking and confirmation. From the point of view of the user,
everything from selecting a hotel to confirming a booking is one continuous unit of work, a conversation.
Searching, however, is not part of the conversation. The user can select multiple hotels from the same search
results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This causes enorm-
ous problems managing state associated with the conversation. Usually, Java web applications use a combina-
tion of two techniques: first, some state is thrown into the Ht t pSessi on; second, persistable state is flushed to
the database after every request, and reconstructed from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of scalability. Ad-
ded latency is aso a problem, due to the extra traffic to and from the database on every request. To reduce this
redundant traffic, Java applications often introduce a data (second-level) cache that keeps commonly accessed
data between requests. This cache is necessarily inefficient, because invalidation is based upon an LRU policy
instead of being based upon when the user has finished working with the data. Furthermore, because the cache
is shared between many concurrent transactions, we've introduced a whole raft of problem's associated with

JBoss Seam 1.1.6.GA 28

http://localhost:8080/seam-booking/

Seam Tutorid

keeping the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. By very careful programming, we might be able to control the
size of the session data. Thisis alot more difficult than it sounds, since web browsers permit ad hoc non-linear
navigation. But suppose we suddenly discover a system requirement that says that a user is allowed to have mu-
tiple concurrent conversations, halfway through the development of the system (this has happened to me). De-
vel oping mechanisms to isolate session state associated with different concurrent conversations, and incorporat-
ing failsafes to ensure that conversation state is destroyed when the user aborts one of the conversations by
closing a browser window or tab is not for the faint hearted (I've implemented this stuff twice so far, once for a
client application, once for Seam, but I'm famously psychotic).

Now thereis a better way.

Seam introduces the conversation context as afirst class construct. Y ou can safely keep conversational state in
this context, and be assured that it will have a well-defined lifecycle. Even better, you won't need to be continu-
ally pushing data back and forth between the application server and the database, since the conversation context
isanatura cache of datathat the user is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We can also keep en-
tity beans and JavaBeans in the conversation context.) There is an ancient canard in the Java community that
stateful session beans are a scalability killer. This may have been true in 1998 when WebFoobar 1.0 was re-
leased. It is no longer true today. Application servers like JBoss 4.0 have extremely sophisticated mechanisms
for stateful session bean state replication. (For example, the JBoss EJB3 container performs fine-grained replic-
ation, replicating only those bean attribute values which actually changed.) Note that all the traditional technic-
al arguments for why stateful beans are inefficient apply equally to the H: t pSessi on, so the practice of shifting
state from business tier stateful session bean components to the web session to try and improve performance is
unbelievably misguided. It is certainly possible to write unscalable applications using stateful session beans, by
using stateful beans incorrectly, or by using them for the wrong thing. But that doesn't mean you should never
use them. Anyway, Seam guides you toward a safe usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can collaborate togeth-
er to achieve complex behaviors. The main page of the booking application allows the user to search for hotels.
The search results are kept in the Seam session scope. When the user navigates to one of these hotels, a conver-
sation begins, and a conversation scoped component calls back to the session scoped component to retrieve the
selected hotel.

The booking example also demonstrates the use of Ajax4JSF to implement rich client behavior without the use
of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to the one we saw
in the message list example above.

Example 1.22.

@t at ef ul (1)
@Nane(" hot el Sear ch")

@cope(ScopeType. SESSI ON)

@oggedI n (2)
@ynchroni zed

public class Hotel Searchi ngActi on inpl enments Hot el Sear chi ng

{

@er si st enceCont ext

JBoss Seam 1.1.6.GA 29

Seam Tutorid

(1

(2)

(3)

private EntityManager em
private String searchString;
private int pageSize = 10;
private int page;

@at aMbdel (3)
private List<Hotel> hotels;

public String find()

{
page = 0;
queryHot el s();
return "main";
}
public String nextPage()
{
page++;
quer yHot el s();
return "main";
}
private void queryHotel s()
{
String searchPattern = searchString==null ? "% : '% + searchString.tolLowerCase().replace('*",
hotels = emcreateQuery("select h fromHotel h where |ower(h.nane) |like :search or |ower(h.city]
. set Paranet er ("search", searchPattern)
. set MaxResul t s(pageSi ze)
.setFirstResult(page * pageSi ze)
.getResul tList();
}
publ i ¢ bool ean i sNext PageAvai | abl e()
{
return hotels!'=null && hotels.size()==pageSi ze;
}

public int getPageSize() {
return pageSi ze;
}

public void setPageSi ze(i nt pageSi ze) {
thi s. pageSi ze = pageSi ze;

}
public String getSearchString()
{
return searchString;
}
public void setSearchString(String searchString)
{
this.searchString = searchString;
}
@estroy @Renove (4)

public void destroy() {}

The EJB standard @t at ef ul annotation identifies this class as a stateful session bean. Stateful session
beans are scoped to the conversation context by default.

The @oggedl n annotation applies a custom Seam interceptor to the component. This works because
@.ogged! n ismarked with an @ nt er cept or meta-annotation.

The @at aMbdel annotation exposes a Li st as a JSF Li st Dat aMbdel . This makes it easy to implement
clickable lists for search screens. In this case, the list of hotels is exposed to the page as a Li st Dat aMbdel

JBoss Seam 1.1.6.GA 30

Seam Tutorid

in the conversation variable named hot el s.

(4) The EJB standard @enove annotation specifies that a stateful session bean should be removed and its
state destroyed after invocation of the annotated method. In Seam, al stateful session beans should define
amethod marked @estroy @enove. Thisisthe EIB remove method that will be called when Seam des-
troys the session context. Actually, the @est r oy annotation is of more general usefulness, since it can be
used for any kind of cleanup that should happen when any Seam context ends. If you don't have an
@estroy @enove method, state will leak and you will suffer performance problems.

The main page of the application is a Facelets page. Let's look at the fragment which relates to searching for
hotels:

Example 1.23.

<di v cl ass="section">
<h: f or nmp

<h: messages gl obal Onl y="true"/>
</ span>

<hl>Search Hotel s</h1>
<fiel dset>
<h: i nput Text val ue="#{hot el Search. searchString}" style="w dth: 165px;">
<a: support event="onkeyup" acti onLi stener="#{hot el Search. find}" (1)
reRender ="searchResul ts" />
</ h:i nput Text >

<a: conmandBut t on val ue="Fi nd Hotel s" action="#{hotel Search. find}"
styl eCl ass="button" reRender="searchResults"/>

<a: st at us> (2)
<f:facet nane="start">
<h: graphi cl mage val ue="/i ng/ spi nner.gif"/>
</f:facet>
</ a:status>

<h: out put Label for="pageSi ze">Maxi mum resul ts: </ h: out put Label >
<h: sel ect OneMenu val ue="#{ hot el Sear ch. pageSi ze}" i d="pageSi ze">
<f:selectltemitenlLabel ="5" itenVval ue="5"/>
<f:selectltemitenlLabel ="10" itenVal ue="10"/>
<f:selectltemitenlLabel ="20" itenval ue="20"/>
</ h: sel ect OneMenu>
</fieldset>

</ h: fornp
</ di v>

<a: out put Panel id="searchResults"> (3)
<di v class="section">
<h: out put Text val ue="No Hotels Found"
rendered="#{hotels != null and hotel s. rowCount==0}"/>
<h: dat aTabl e val ue="#{hotel s}" var="hot" rendered="#{hotel s. rowCount >0}">
<h: col um>
<f:facet nane="header">Nane</f:facet>
#{ hot . nane}
</ h: col utm>
<h: col utm>
<f:facet nane="header">Address</f:facet>
#{ hot . addr ess}
</ h: col um>
<h: col um>
<f:.facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}
</ h: col um>
<h: col um>

JBoss Seam 1.1.6.GA 31

Seam Tutorid

<f:facet name="header">Zi p</f:facet>
#{ hot . zi p}
</ h: col um>
<h: col um>
<f:facet nanme="header">Action</f:facet>
<s:link value="Vi ew Hotel " acti on="#{hot el Booki ng. sel ect Hot el (hot)}"/> (4)
</ h: col um>
</ h: dat aTabl e>
<s:link value="Mre results" action="#{hotel Sear ch. next Page}"
render ed="#{ hot el Sear ch. next PageAvai | abl e}"/ >
</div>

</ a: out put Panel >

(D

(2)

(3)

(4

The Ajax4JSF <a: support > tag alows a JSF action event listener to be called by asynchronous XM_Ht -
t pRequest When a JavaScript event like onkeyup occurs. Even better, the r eRender attribute lets us render
a fragment of the JSF page and perform a partial page update when the asynchronous response is re-
ceived.

The Ajax4JSF <a: st at us> tag lets us display a cheesy annimated image while we wait for asynchronous
requests to return.

The Ajax4JSF <a: out put Panel > tag defines a region of the page which can be re-rendered by an asyn-
chronous request.

The Seam <s: | i nk> tag lets us attach a JSF action listener to an ordinary (non-JavaScript) HTML link.
The advantage of this over the standard JSF <h: commandLi nk> is that it preserves the operation of "open
in new window" and "open in new tab". Also notice that we use a method binding with a parameter:
#{ hot el Booki ng. sel ect Hot el (hot)}. Thisis not possible in the standard Unified EL, but Seam provides
an extension to the EL that lets you use parameters on any method binding expression.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass it to the se-
| ect Hot el () method of the Hot el Booki ngAct i on, which is where the really interesting stuff is going to hap-

pen.

Now lets see how the booking example application uses a conversation-scoped stateful session bean to achieve
anatural cache of persistent data related to the conversation. The following code example is pretty long. But if
you think of it as alist of scripted actions that implement the various steps of the conversation, it's understand-
able. Read the class from top to bottom, asif it were a story.

Example 1.24.

@5t at ef ul
@Nane(" hot el Booki ng")

@.oggedl n
public class Hotel Booki ngActi on inpl ements Hot el Booki ng

{

@Per si st enceCont ext (t ype=EXTENDED) (1)
private EntityManager em

@n (2)
private User user;

@n(requi red=fal se) @ut
private Hotel hotel;

@n(required=fal se)
@ut (requi red=fal se)
private Booki ng booki ng;

@n

private FacesMessages facesMessages;

JBoss Seam 1.1.6.GA 32

Seam Tutorid

(3)

@n
private Events events;
@ogger
private Log | og;
@egi n (3)
public String sel ect Hotel (Hotel sel ectedHotel)
{
hotel = em nerge(sel ectedHotel);
return "hotel";
}
public String bookHotel ()
{
booki ng = new Booki ng(hotel, user);
Cal endar cal endar = Cal endar. get | nstance();
booki ng. set Checki nDat e(cal endar. getTime());
cal endar . add(Cal endar. DAY_OF_MONTH, 1);
booki ng. set Checkout Dat e(cal endar. getTi me());
return "book";
}
public String setBooki ngDetails()
{
i f (booking==null || hotel==null) return "main";
i f (!booking. get Checki nDat e() . before(booki ng. get CheckoutDate()))
{
f acesMessages. add(" Check out date nust be |ater than check in date");
return null;
}
el se
{
return "confirni;
}
}
@nd (4)
public String confirm()
{
i f (booking==null || hotel==null) return "main";
em per si st (booki ng) ;
f acesMessages. add(" Thank you, #{user.nane}, your confimation nunber for #{hotel.name} is #{booki
| og. i nfo("New booki ng: #{booking.id} for #{user.usernane}");
events. rai seEvent (" booki ngConfi rned");
return "confirnmed";
}
@nd
public String cancel ()
{
return "main";
}
@estroy @Renove (5)

public void destroy() {}

This bean uses an EJB3 extended persistence context, so that any entity instances remain managed for the
whole lifecycle of the stateful session bean.

The @ut annotation declares that an attribute value is outjected to a context variable after method invoca-
tions. In this case, the context variable named hot el will be set to the value of the hot el instance variable
after every action listener invocation completes.

The @Begi n annotation specifies that the annotated method begins a long-running conversation, so the
current conversation context will not be destroyed at the end of the request. Instead, it will be reassociated

JBoss Seam 1.1.6.GA 33

Seam Tutorid

with every request from the current window, and destroyed either by timeout due to conversation inactiv-
ity or invocation of a matching @nd method.

(4) The @nd annotation specifies that the annotated method ends the current long-running conversation, so
the current conversation context will be destroyed at the end of the request.

(5) This EJB remove method will be called when Seam destroys the conversation context. Don't ever forget
to define this method!

Hot el Booki ngActi on contains all the action listener methods that implement selection, booking and booking
confirmation, and holds state related to this work in its instance variables. We think you'll agree that this codeis
much cleaner and simpler than getting and setting Ht t pSessi on attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run a search, and
navigate to different hotel pagesin multiple browser tabs. You'll be able to work on creating two different hotel
reservations at the same time. If you leave any one conversation inactive for long enough, Seam will eventually
time out that conversation and destroy its state. If, after ending a conversation, you backbutton to a page of that
conversation and try to perform an action, Seam will detect that the conversation was already ended, and redir-
ect you to the search page.

1.6.4. The Seam Ul control library

If you check inside the WAR file for the booking application, you'll find seam ui . j ar inthe WeB- I NF/ | i b dir-
ectory. This package contains a number of JSF custom controls that integrate with Seam. The booking applica-
tion uses the <s: 1 i nk> control for navigation from the search screen to the hotel page:

<s:link value="Vi ew Hotel " acti on="#{hot el Booki ng. sel ect Hotel }"/ >

The use of <s: Ii nk> here alows us to attach an action listener to aHTML link without breaking the browser's
"open in new window" feature. The standard JSF <h: commandLi nk> does not work with "open in new window".
WEelll see later that <s: | i nk> aso offers a number of other useful features, including conversation propagation
rules.

The booking application uses some other Seam and Ajax4JSF controls, especially on the / book. xht M page.
We won't get into the details of those controls here, but if you want to understand this code, please refer to the
chapter covering Seam's functionality for JSF form validation.

1.6.5. The Seam Debug Page

The WAR aso includes seam debug. j ar . If thisjar is deployed in Wee- | NF/ | i b, along with the Facelets, and if
you set the following Seam property inweb. xm Or seam properti es:

<cont ext - par an>
<par am nane>or g. j boss. seam core. i ni t. debug</ param name>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

Then the Seam debug page will be available. This page lets you browse and inspect the Seam components in
any of the Seam contexts associated with your current login session. Just point your browser at ht-
tp://1 ocal host: 8080/ seam booki ng/ debug. seam

JBoss Seam 1.1.6.GA 34

http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

Seam Tutorid

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:57:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook.xhtml Select conversation context

- Component (booking)

checkinDate Fri Jan 20 20:52:20 EST 2006

checkoutDate Sat.Jan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking.Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel{Tower Place, Buckhead, Atlanta,30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context
Empty business process context
+ Session Context

+ Application Context

1.7. A complete application featuring Seam and jBPM: the DVD

Store example

The DVD Store demo application shows the practical usage of jBPM for both task management and pageflow.

The user screens take advantage of ajPDL pageflow to implement searching and shopping cart functionality.

JBoss Seam 1.1.6.GA

35

Seam Tutorial

Search for Movies My Orders

Search Results

m I Welcome, Harry :

Add to cart Title Actor Price Thank you for choosing
L Life is Beautiful Roberto Benini £12.00 the DVD Store
L] Finding Nemo Albert Brooks $22.49 Logout
F March of the Penguins Morgan Freeman $16.98
F Indiana Jones and the Temple of Doom Harisson Ford $19.99)
F Clear and Present Danger Harisson Ford $19.99 Search for DVDs:
L] Roman Holiday Audrey Hepburn $12.99
] Breakfast at Tiffany's Audrey Hepburn $12.99
L] Sabrina Audrey Hepburn $12.99
L Sabrina Harrison Ford £19.99
F Kill Bill val. 1 Uma Thurman $19.99 R
O Kill Bill vel. 2 Uma Thurman $10.99 v |
L Lost in Translation Bill Murray £19.99 Results Per Page:
F Broken Flowers Bill Murray £$19,99 b |
] Better Off Dead John Cusak $8.99 Search
L Grosse Pointe Blank John Cusak £11.99
N——
L] High Fidelity John Cusak $14.99)
E Somewhere in Time Christopher Reeve $11.24 Shopping Cart
F Superman - The Movie Christopher Reeve $14.99 1 Napoleon Dynamite
L] Superman II Christopher Reeve 314,99
F Superman III Christopher Reeve $14.99 Total:$14.06
Update Shopping Cart Checkout
L
Done

The administration screens take use jBPM to manage the approval and shipping cycle for orders. The business
process may even be changed dynamically, by selecting a different process definition!

JBoss Seam 1.1.6.GA 36

Seam Tutorial

Manage Orders

Order Management

I Welcome, Albus

Pending orders are shown here on the order management screen for the store
manager to process. Rather than being data-driven, order management

Thank you for choosing
5 the DVD Store
process-driven. A JBoss JBPM process assigns fulfillment tasks to the manager ‘

based on the wversion of the process loaded. The manager can change the

Logout |

version of the process at any time using the admin options box to the right.

* Order process 1 sends orders immediately to shipping, where the manager should
ship the order and record the tracking number for the user to see.

* Order process 2 adds an approval step where the manager is first given the Inventory .
. - o 28 =sold, 2473 in stock
chance to approve the order before sending it to shipping. In each case, the S

. . X !
status of the order is shown in the customer's order list. $437.63 from 7 orders

* Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.

Admin Options
Task Assignment

Process Management
Order Id Order Amount Customer Task | ordermanagement3 s |

° $12.99 Hsert ship ‘ Switch Order Process |
7 577.70 user2 ship

Order Acceptance

There are no orders to be accepted.

Shipping
Order Id Order Amount Customer
5] %94.95 userl
Done
TODO

Look in the dvdst or e directory.

1.8. A complete application featuring Seam workspace man-
agement: the Issue Tracker example

The Issue Tracker demo shows off Seam's workspace management functionality: the conversation switcher,
conversation list and breadcrumbs.

JBoss Seam 1.1.6.GA 37

Seam Tutorid

Update/Delete Issue

Home | Find Issues | Create Issue | Logout | Project [HHH] | Issue [1] for Project [HHH] Issue [1] for Project [HHH] |+
—Issue Attributes
Id Reporter
Username Name
Status gavin Gavin King
Short description
My laptop does not Hibemate
Version PI'O]ECt
31 L
Name Description
Long description HHH Hibernate 3 Core
Select Project

Assigned developer

No Assigned developer

[Assign][Unassign

Created

Comments
[Update][Deleta H Done] Comment text Created Action
Go to the user forum! Jan 14, 2006

TODO

Look inthei ssues directory.

1.9. An example of Seam with Hibernate: the Hibernate Book-
ing example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative architecture that uses Hi-
bernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hi ber nat e directory.

1.10. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However, server-side
state is not always appropriate, especially in for functionality that serves up content. For this kind of problem
we often need to let the user bookmark pages and have a relatively stateless server, so that any page can be ac-
cessed at any time, via the bookmark. The Blog example shows how to aimplement RESTful application using
Seam. Every page of the application can be bookmarked, including the search results page.

JBoss Seam 1.1.6.GA 38

Seam Tutorid

©) JBoss Seam Blog - Mozilla Firefox
File Edit View Go Bookmarks Tools Help delicio.us

<:I| - I_IL - @ @ Eﬁ tag | . hitp://localhost:8080/seam-blog/entry.seam?blogEntryld=i18n v | ® Go

Internationalizaetion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mallit anim id est laborum.

[Posted on 5/01/2006 17:03:00]

1Boss Seam Blog: [Al posts][Recent posts|[Vvrite new post]
Total pageviews: 1007

Done (v]

The Blog example demonstrates the use of "pull"-style MV C, where instead of using action listener methods to
retrieve data and prepare the data for the view, the view pulls data from components asit is being rendered.

1.10.1. Using "pull"-style MVC

This snippet from thei ndex. xht m facelets page displays alist of recent blog entries:

Example 1.25.

<h: dat aTabl e val ue="#{bl og. recent Bl ogEntri es}" var="bl ogEntry" rows="3">
<h: col utm>
<di v cl ass="bl ogEntry">
<h3>#{bl ogEntry.title}</h3>
<di v>
<h: out put Text escape="fal se"
val ue="#{bl ogEntry. excerpt==null ? bl ogEntry.body : bl ogEntry. excerpt}"/>
</ di v>
<p>
<h: out put Li nk val ue="entry. seant’ rendered="#{bl ogEntry. excerpt!=null}">
<f:param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
Read nore. ..
</ h: out put Li nk>
</ p>
<p>
[Posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDat eTi ne ti meZone="#{bl og. ti nezone}" | ocal e="#{bl og.|ocal e}" type="both"/>

JBoss Seam 1.1.6.GA 39

Seam Tutorid

</ h: out put Text >]

<h: out put Li nk val ue="entry. seant >[Li nk]
<f: param nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ h: out put Li nk>
</ p>
</ di v>
</ h: col utm>
</ h: dat aTabl e>

If we navigate to this page from a bookmark, how does the data used by the <h: dat aTabl e> actually get initial-
ized? Well, what happens is that the Bl og is retrieved lazily—"pulled"—when needed, by a Seam component
named bl og. This is the opposite flow of control to what is usual in traditional web action-based frameworks
like Struts.

Example 1.26.

@Nane(" bl og")
@cope(ScopeType. STATELESS)
public class Bl ogService

{

@n (1)
private EntityManager entityManager;

@Jnwr ap (2)
public Bl og getBl og()

{
return (Blog) entityManager.createQuery("fromBlog b left join fetch b. bl ogEntries")

.set Hi nt ("org. hi bernate. cacheabl e", true)
.get Si ngl eResul t();

(1) This component uses a seam-managed persistence context. Unlike the other examples we've seen, this
persistence context is managed by Seam, instead of by the EJB3 container. The persistence context spans
the entire web request, allowing us to avoid any exceptions that occur when accessing unfetched associ-
ationsin the view.

(2) The @nw ap annotation tells Seam to provide the return value of the method—the Bl og—instead of the
actual Bl ogSer vi ce component to clients. Thisisthe Seam manager component pattern.

Thisisgood so far, but what about bookmarking the result of form submissions, such as a search results page?

1.10.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog entries.
Thisisdefined in afile, menu. xht m , included by the facelets template, t enpl at e. xht i :

Example 1.27.

<div id="search">
<h: fornp
<h: i nput Text val ue="#{searchActi on. searchPattern}"/>
<h: commandBut t on val ue="Search" action="/search. xhtm "/ >
</ h:fornp

JBoss Seam 1.1.6.GA 40

Seam Tutorid

</ di v>

To implement a bookmarkable search results page, we need to perform a browser redirect after processing the
search form submission. Because we used the JSF view id as the action outcome, Seam automatically redirects
to the view id when the form is submitted. Alternatively, we could have defined a navigation rule like this:

Example 1.28.

<navi gati on-rul e>
<navi gati on- case>
<f rom out cone>sear chResul t s</ f r om out conme>
<t o-vi ew i d>/search. xhtm </to-vi ewid>
<redirect/>
</ navi gati on- case>
</ navi gati on-rul e>

Then the form would have looked like this:

Example 1.29.

<div id="search">
<h: for >
<h:i nput Text val ue="#{searchAction. searchPattern}"/>
<h: commandBut t on val ue="Search" acti on="searchResul ts"/>
</ h: fornp
</ di v>

But when we redirect, we need to include the values submitted with the form as request parameters, to get a
bookmarkable URL like http://1 ocal host: 8080/ seam bl og/ sear ch. seanPsear chPat t er n=seam JSF does
not provide an easy way to do this, but Seam does. We use a Seam page parameter, defined in WeB-
I NF/ pages. xni :

Example 1.30.

<pages>
<page vi ewid="/search.xhtm ">
<par am nane="sear chPattern" val ue="#{searchService. searchPattern}"/>
</ page>

</ pages>

This tells Seam to include the value of #{searchService. searchPattern} as a request parameter named

sear chPat t er n when redirecting to the page, and then re-apply the value of that parameter to the model before
rendering the page.

The redirect takes usto the sear ch. xht m page:

Example 1.31.

<h: dat aTabl e val ue="#{searchResul ts}" var="bl ogEntry">
<h: col um>

JBoss Seam 1.1.6.GA 41

Seam Tutorid

<di v>
<h: out put Li nk val ue="entry. seant' >
<f:param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
#{bl ogEntry.titl e}
</ h: out put Li nk>
posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDat eTi ne ti meZone="#{bl og. ti mezone}" | ocal e="#{bl og.|ocal e}" type="both"/>
</ h: out put Text >
</div>
</ h: col utm>
</ h: dat aTabl e>

Which again uses "pull”-style MV C to retrieve the actual search results:

Example 1.32.

@Nane("sear chService")
public class SearchService

{

@n
private EntityManager entityManager;

private String searchPattern;

@-actory("searchResul ts")
public List<Bl ogEntry> get SearchResul t s()

{

if (searchPattern==null)

{
}

el se

{

return null;

return entityManager.createQuery("sel ect be from Bl ogEntry be where | ower(be.title) like :se:
.setParaneter("searchPattern", getSql SearchPattern())
. set MaxResul t s(100)
.getResul tList();

}

private String get Sql SearchPattern()
{

}

return searchPattern==null ? "" : '% + searchPattern.tolLowerCase().replace('*', '%).replace(""
public String getSearchPattern()
{
}

public void setSearchPattern(String searchPattern)

{
}

return searchPattern;

this.searchPattern = searchPattern;

1.10.3. Using "push"-style MVC in a RESTful application

Very occasionaly, it makes more sense to use push-style MV C for processing RESTful pages, and so Seam

JBoss Seam 1.1.6.GA 42

Seam Tutorid

provides the notion of a page action. The Blog example uses a page action for the blog entry page,
entry. xht mi . Note that this is a little bit contrived, it would have been easier to use pull-style MVC here as

well.

Theent ryAct i on component works much like an action class in atraditional push-MV C action-oriented frame-
work like Struts:

Example 1.33.

@anme("entryAction")
@scope(STATELESS)
public class EntryAction

{

@n(create=true)
private Bl og bl og;

@ut
private Bl ogEntry bl ogEntry;

public void | oadBl ogEntry(String id) throws EntryNot FoundException

{
bl ogEntry = bl og. get Bl ogEntry(id);
if (blogEntry==null) throw new EntryNot FoundExcepti on(id);

}

Page actions are also declared in pages. xm :

Example 1.34.
<pages>

<page viewid="/entry.xhtm " action="#{entryAction.|oadBl ogEntry(bl ogEntry.id)}">
<par am nane="bl ogEnt ryl d" val ue="#{bl ogEntry.id}"/>
</ page>

<page viewid="/post.xhtm " action="#{l ogi nAction. challenge}"/>
<page viewid="*" action="#{bl og. hitCount.hit}"/>

</ pages>

Notice that the example is using page actions for some other functionality—the login challenge, and the
pageview counter. Also notice the use of a parameter in the page action method binding. Thisis not a standard
feature of JSF EL, but Seam lets you use it, not just for page actions, but also in JSF method bindings.

When the ent ry. xht ml page is requested, Seam first binds the page parameter bl ogEnt ryI d to the model, then
runs the page action, which retrieves the needed data—the bl ogent r y—and places it in the Seam event context.
Finally, the following is rendered:

Example 1.35.

<di v cl ass="bl ogEntry">
<h3>#{bl ogEntry.title}</h3>

JBoss Seam 1.1.6.GA 43

Seam Tutorid

<di v>
<h: out put Text escape="fal se" val ue="#{bl ogEntry. body}"/>
</ div>
<p>
[Post ed oné
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi ne ti mezone="#{bl og.ti mezone}" | ocal e="#{bl og. | ocal e}" type="both"/>
</ h: out put Text >]
</ p>
</ di v>

If the blog entry is not found in the database, the Ent r yNot FoundExcept i on exception is thrown. We want this
exception to result in a404 error, not a 505, so we annotate the exception class:

Example 1.36.

@\ppl i cati onException(roll back=true)
@t t pError (errorCode=Htt pServl et Response. SC_NOT_FOUND)
public class EntryNot FoundExcepti on extends Exception

{
Ent r yNot FoundExcepti on(String id)
{
super("entry not found: " + id);
}
}

An dternative implementation of the example does not use the parameter in the method binding:

Example 1.37.

@ame("entryAction")
@cope(STATELESS)
public class EntryAction

{

@n(create=true)
private Bl og bl og;

@n @out
private Bl ogEntry bl ogEntry;

public void | oadBl ogEntry() throws EntryNot FoundException

{
bl ogEntry = bl og. get Bl ogEntry(bl ogEntry.getld());
if (blogEntry==null) throw new EntryNot FoundExcepti on(id);
}
}
<pages>
<page viewid="/entry.xhtm" action="#{entryAction.|oadBl ogEntry}">
<par am nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ page>
</ pééés>

It isamatter of taste which implementation you prefer.

JBoss Seam 1.1.6.GA 44

Chapter 2. Getting started with Seam, using
seam-gen

The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse project,
generate some simple Seam skeleton code, and reverse engineer an application from a pre-existing database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next time you find
yourself trapped in an elevator with one of those tedious Ruby guys ranting about how great and wonderful his
new toy isfor building totally trivial applications that put thingsin databases.

In this release, seam-gen works best for people with JBoss AS. You can use the generated project with other
J2EE or Java EE 5 application servers by making afew manual changes to the project configuration.

Y ou can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in conjunction
with Eclipse for debugging and integration testing. If you don't want to install Eclipse, you can till follow
along with this tutorial—all steps can be peformed from the command line.

Seam-gen is basically just abig ugly Ant script wrapped around Hibernate Tools, together with some templates.
Which meansit is easy to customize if you need to.

2.1. Before you start

Make sure you have JDK 5 or JDK 6, JBoss AS 4.0.5 and Ant 1.6, along with recent versions of Eclipse, the
JBoss IDE plugin for Eclipse and the TestNG plugin for Eclipse correctly installed before starting. Add your
JBoss ingtallation to the JBoss Server View in Eclipse. Start JBoss in debug mode. Finally, start a command
prompt in the directory where you unzipped the Seam distribution.

2.2. Setting up a new Eclipse project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation directory, Ec-
lipse workspace, and database connection. It's easy, just type:

cd j boss-seam 1. 1. x
seam set up

And you will be prompted for the needed information:

C:\ Proj ects\jboss-seanrseam set up
Bui l dfile: C. \Projects\jboss-sean seam gen\buil d. xm

set up:
[echo] Welcone to seamgen :-)
[input] Enter your Java project workspace [C:./Projects]

[input] Enter your JBoss hone directory [C /Program Fil es/jboss-4.0.5. GA]

[input] Enter the project name [myproject]
hel | owor | d

[input] Is this project deployed as an EAR (with EJB conponents) or a WAR (with no EJB support)

[input] Enter the Java package nane for your session beans [com nydonain. hel | owor| d]
org.j boss. hel l oworl d
[input] Enter the Java package nane for your entity beans [org.|boss. hel |l oworl d]

[input] Enter the Java package nane for your test cases [org.jboss. helloworld.test]

JBoss Seam 1.1.6.GA 45

Getting started with Seam, using seam-gen

[input] What kind of database are you using? [hsql] (hsql, nysql, oracl e, postgres, nssql, db2, sybase,)
nysql
[input] Enter the Hibernate dialect for your database [org. hibernate.dial ect. WwSQ.Di al ect]

[input] Enter the filesystempath to the JDBC driver jar [lib/hsqldb.jar]
..1../nysql -connector.jar
[input] Enter JDBC driver class for your database [com nysql.jdbc.Driver]

[input] Enter the JDBC URL for your database [jdbc:nysql:///test]

[input] Enter database usernane [sa]
gavin
[input] Enter database password []

[input] Are you working with tables that already exist in the database? [n] (y,n,)

y

[Input] Do you want to drop and recreate the database tables and data in inport.sqgl each tinme you
n
[propertyfile] Creating new property file: C\Projects\jboss-seam seam gen\buil d. properties

[echo] Installing JDBC driver jar to JBoss server

[echo] Type 'seam new project' to create the new project

BUI LD SUCCESSFUL
Total tinme: 1 mnute 17 seconds
C:\ Proj ects\]jboss-seanr

Thetool provides sensible defaults, which you can accept by just pressing enter at the prompt.

The most important choice you need to make is between EAR deployment and WAR deployment of your
project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support EJB 3.0, but may
be deployed to a J2EE environment. The packaging of a WAR is also ssimpler to understand. If you installed
JBoss with the b3 profile, choose ear . Otherwise, choose war . We'll assume that you've chosen an EAR de-
ployment for the rest of the tutorial, but you can follow exactly the same steps for aWAR deployment.

If you are working with an existing data model, make sure you tell seam-gen that the tables aready exist in the
database.

The settings are stored in seam gen/ bui | d. properti es, but you can also modify them simply by running seam
set up asecond time.

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new pr oj ect

C:\ Proj ect s\ boss- seanm>seam new- pr oj ect
Bui I dfile: C\Projects\jboss-sean seam gen\ bui | d. xm

val i dat e- wor kspace:
val i dat e- proj ect:

copy-lib:
[echo] Copying project jars ...
[copy] Copying 32 files to C:\Projects\helloworld\lib
[copy] Copying 9 files to C: \Projects\helloworld\enbedded-ejb

file-copy-wp:

file-copy:
[echo] Copying project resources ...
[copy] Copying 12 files to C:\Projects\hell oworld\resources
[copy] Copying 1 file to C:\Projects\helloworld\resources
[copy] Copying 5 files to C:\Projects\helloworld\view
[copy] Copying 5 files to C:\Projects\helloworld

JBoss Seam 1.1.6.GA 46

Getting started with Seam, using seam-gen

[mkdir] Created dir: C\Projects\helloworld\src

new- proj ect :

[echo] A new Seam project was created in the C./Projects directory

[echo] Add the project frominside Eclipse (or type 'seamexplode') and go to http://I ocal host:
8080/ hel | owor | d

BUI LD SUCCESSFUL
Total time: 7 seconds
C:\ Proj ects\jboss-sean

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and generates all
needed resources and configuration files, a facelets template file and stylesheet, along with Eclipse metadata
and an Ant build script. The Eclipse project will be automatically deployed to an exploded directory structurein
JBoss AS as soon as you add the project using New -> Project... -> Java Project -> Next, typing the
Proj ect name (nyproj ect in this case), selecting your Java SE 5 or Java SE 6 JRE and then clicking Fi ni sh.
Do not select Create new project from existing source. Alternatively, you can deploy the project from
outside Eclipse by typing seam expl ode.

Gotohttp:// 1 ocal host: 8080/ hel | owor | d t0 See awelcome page. Thisis afacelets page, vi ew hone. xhtni ,
using the template vi ew | ayout/ t enpl at e. xht i . You can edit this page, or the template, in eclipse, and see
the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project directory. They are
mostly standard Java EE stuff, the stuff you need to create once and then never look at again, and they are 90%
the same between all Seam projects. (They are so easy to write that even seam-gen can do it.)

The generated project includes three database and persistence configurations. The j boss- beans. xm , per si st -
ence-test.xn andinport-test.sql filesareused when running the TestNG unit tests against HSQLDB. The
database schema and the test datain i nport - test . sql is aways exported to the database before running tests.
The nypr oj ect - dev-ds. xni , persi st ence-dev. xm and i nport - dev. sql files are for use when deploying the
application to your development database. The schema might be exported automatically at deployment, de-
pending upon whether you told seam-gen that you are working with an existing database. The nypr oj ect -
prod-ds. xn , persi st ence- prod. xm and i nport - prod. sql files are for use when deploying the application to
your production database. The schemais not exported automatically at deployment.

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can create a
simple webpage with a statel ess action method in Java. If you type:

seam new acti on

Seam will prompt for some information, and generate a new facelets page and Seam component for your
project.

C:\ Proj ect s\ boss-seanrseam new acti on pi ng
Bui | dfile: C\Projects\jboss-sean seam gen\ bui | d. xm

val i dat e- wor kspace:
val i dat e- proj ect:
action-input:
[nput] Enter the Seam conmponent nane

pi ng
[input] Enter the local interface name [Ping]

JBoss Seam 1.1.6.GA 47

Getting started with Seam, using seam-gen

[input] Enter the bean class nanme [Pi ngBean]
[input] Enter the action nmethod nane [ping]

[input] Enter the page nane [ping]

setup-filters:

new acti on:
[echo] Creating a new statel ess session bean conponent with an action nethod
[copy] Copying 1 file to C:\Projects\hello\src\comhello
[copy] Copying 1 file to C.\Projects\hello\src\comhello
[copy] Copying 1 file to C:\Projects\hello\src\com hello\test
[copy] Copying 1 file to C.\Projects\hello\src\com hello\test
[copy] Copying 1 file to C:\Projects\hello\view
[echo] Type 'seamrestart' and go to http://l|ocal host: 8080/ hel | oworl d/ pi ng. seam

BU LD SUCCESSFUL

Total tine: 13 seconds
C:\ Proj ects\]jboss-seanr

Because we've added a new Seam component, we need to restart the exploded directory deployment. You can
do this by typing seam restart, or by running therest art target in the generated project bui I d. xni file from
inside Eclipse. Another way to force arestart is to edit the file r esour ces/ META- | NF/ appl i cat i on. xm in Ec-
lipse. Note that you do not need to restart JBoss each time you change the application.

Now gotohttp://1 ocal host: 8080/ hel | owor | d/ pi ng. seamand click the button. Y ou can see the code behind
this action by looking in the project sr ¢ directory. Put a breakpoint in the pi ng() method, and click the button
again. Finaly, locate the Pi ngTest . xm file in the test package and run the integration tests using the TestNG
plugin for Eclipse.

2.4. Creating a form with an action

The next step isto create aform. Type:

seam new f orm

C:\ Proj ect s\ boss-seanrseam new f orm
Bui l dfile: C. \Projects\jboss-seam seam gen\buil d. xm

val i dat e- wor kspace:

val i dat e- proj ect:

action-input:
[input] Enter the Seam conponent nane

hel |l o
[input] Enter the local interface nanme [Hell 0]
[input] Enter the bean class nane [Hel | oBean]

[Input] Enter the action nmethod nane [hell o]

[input] Enter the page nane [hell 0]

setup-filters:

new f or m
[echo] Creating a new stateful session bean conmponent with an action nethod
[copy] Copying 1 file to C.\Projects\hello\src\comhello

JBoss Seam 1.1.6.GA 48

Getting started with Seam, using seam-gen

[copy] Copying 1 file to C:\Projects\hello\src\comhello

[copy] Copying 1 file to C:\Projects\hello\src\com hello\test

[copy] Copying 1 file to C:\Projects\hello\view

[copy] Copying 1 file to C:\Projects\hello\src\com hello\test

[echo] Type 'seamrestart' and go to http://l|ocal host: 8080/ hel | o/ hel | 0. seam

BU LD SUCCESSFUL
Total time: 5 seconds
C:\ Proj ects\]jboss-seanr

Restart the application again, and go to ht t p: / /| ocal host : 8080/ hel | owor | d/ hel | 0. seam Then take alook at
the generated code. Run the test. Try adding some new fields to the form and Seam component (remember to
restart the deploment each time you change the Java code).

2.5. Generating an application from an existing database

Manually create some tables in your database. (If you need to switch to a different database, just run seam
set up again.) Now type:

seam generate-entities

Restart the deployment, and go to ht t p: / /1 ocal host : 8080/ hel | owor | d. Y 0u can browse the database, edit ex-
isting objects, and create new objects. If you look at the generated code, you'll probably be amazed how simple
it isl Seam was designed so that data access code is easy to write by hand, even for people who don't want to
cheat by using seam-gen.

2.6. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First, we need to re-
move the exploded directory by running seam unexpl ode. To deploy the EAR, we can type seam depl oy at the
command prompt, or run the depl oy target of the generated project build script. You can undeploy using seam
undepl oy or the undepl oy target.

By default, the application will be deployed with the dev profile. The EAR will include the per si st ence-
dev. xm andinport-dev. sql files, and the nyproj ect - dev-ds. xn file will be deployed. Y ou can change the
profile, and use the prod profile, by typing

seam - Dprofil e=prod depl oy

Y ou can even define new deployment profiles for your application. Just add appropriately named files to your
project—for example, per si st ence- st agi ng. xni , i nport - stagi ng. sql and
nypr oj ect - st agi ng- ds. xm —and select the name of the profile using - Dpr of i | e=st agi ng.

JBoss Seam 1.1.6.GA 49

Chapter 3. The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component. Components are
stateful objects, usually EJBs, and an instance of a component is associated with a context, and given anamein
that context. Bijection provides a mechanism for aliasing internal component names (instance variables) to con-
textual names, allowing component trees to be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

3.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control context demarca-
tion via explicit Java API calls. Context are usually implicit. In some cases, however, contexts are demarcated
via annotations.

The basic Seam contexts are:

» Stateless context

e Event (or request) context
e Page context

e Conversation context

* Session context

+ Business process context

Application context

Y ou will recognize some of these contexts from servlet and related specifications. However, two of them might
be new to you: conversation context, and business process context. One reason state management in web ap-
plications is so fragile and error-prone is that the three built-in contexts (request, session and application) are
not especially meaningful from the point of view of the business logic. A user login session, for example, is a
fairly arbitrary construct in terms of the actual application work flow. Therefore, most Seam components are
scoped to the conversation or business process contexts, since they are the contexts which are most meaningful
in terms of the application.

Let'slook at each context in turn.

3.1.1. Stateless context
Components which are truly stateless (stateless session beans, primarily) always live in the stateless context

(thisis really a non-context). Stateless components are not very interesting, and are arguably not very object-
oriented. Nevertheless, they are important and often useful.

3.1.2. Event context

The event context is the "narrowest” stateful context, and is a generalization of the notion of the web request
context to cover other kinds of events. Nevertheless, the event context associated with the lifecycle of a JSF re-

JBoss Seam 1.1.6.GA 50

The contextual component model

quest is the most important example of an event context, and the one you will work with most often. Compon-
ents associated with the event context are destroyed at the end of the request, but their state is available and
well-defined for at least the lifecycle of the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created and destroyed
just for the invocation.

3.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page. You can initialize
state in your event listener, or while actually rendering the page, and then have access to it from any event that
originates from that page. Thisis especially useful for functionality like clickable lists, where the list is backed
by changing data on the server side. The state is actually serialized to the client, so this construct is extremely
robust with respect to multi-window operation and the back button.

3.1.4. Conversation context

The conversation context is atruly central concept in Seam. A conversation is a unit of work from the point of
view of the user. It might span several interactions with the user, several requests, and several database transac-
tions. But to the user, a conversation solves a single problem. For example, "book hotel", "approve contract”,
"create order" are all conversations. Y ou might like to think of a conversation implementing a single "use case"
or "user story", but the relationship is not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single user may
have multiple conversations in progress at any point in time, usually in multiple windows. The conversation
context allows us to ensure that state from the different conversations does not collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But once you get
used to it, we think you'll love the notion, and never be able to not think in terms of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must be demarcated
using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-running busi-
ness process, and has the potential to trigger a business process state transition when it is successfully com-
pleted. Seam provides a specia set of annotations for task demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation. Thisis an ad-
vanced feature.

Usually, conversation state is actually held by Seam in the servlet session between requests. Seam implements
configurable conversation timeout, automatically destroying inactive conversations, and thus ensuring that the
state held by asingle user login session does not grow without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running conversation con-
text, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

3.1.5. Session context

A session context holds state associated with the user login session. While there are some cases where it is use-

JBoss Seam 1.1.6.GA 51

The contextual component model

ful to share state between several conversations, we generally frown on the use of session context for holding
components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

3.1.6. Business process context

The business process context holds state associated with the long running business process. This state is man-
aged and made persistent by the BPM engine (JBoss jBPM). The business pracess spans multiple interactions
with multiple users, so this state is shared between multiple users, but in a well-defined manner. The current
task determines the current business process instance, and the lifecycle of the business process is defined ex-
ternally using a process definition language, so there are no specia annotations for business process demarca
tion.

3.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context is mainly use-
ful for holding static information such as configuration data, reference data or metamodels. For example, Seam
stores its own configuration and metamodel in the application context.

3.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session or request at-
tributes in the servlet spec. You may bind any value you like to a context variable, but usually we bind Seam
component instances to context variables.

So, within a context, a component instance is identified by the context variable name (thisis usualy, but not al-
ways, the same as the component name). You may programatically access a named component instance in a
particular scope viathe Cont ext s class, which provides access to several thread-bound instances of the Cont ext
interface:

User user = (User) Contexts.getSessionContext().get("user");
Y ou may also set or change the value associated with a name:

Cont ext s. get Sessi onCont ext (). set("user", user);

Usually, however, we obtain components from a context via injection, and put component instances into a con-
text via outjection.

3.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other times, all stateful
scopes are searched, in priority order. The order isasfollows:

« Event context
¢ Page context

* Conversation context

JBoss Seam 1.1.6.GA 52

The contextual component model

e Session context
e Business process context
» Application context

Y ou can perform a priority search by calling Cont ext s. | ookupl nSt at ef ul Cont ext s() . Whenever you access a
component by name from a JSF page, a priority search occurs.

3.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests originating
from the same client. The serviet container simply lets all threads run concurrently and leaves enforcing thread-
safeness to application code. The EJB container allows stateless components to be accessed concurrently, and
throws an exception if multiple threads access a stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-grained, syn-
chronous requests. But for modern applications which make heavy use of many fine-grained, asynchronous
(AJAX) requests, concurrency isafact of life, and must be supported by the programming model. Seam weaves
a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent requests in a context
to be processed concurrently. The event and page contexts are by nature single threaded. The business process
context is strictly speaking multi-threaded, but in practice concurrency is sufficiently rare that this fact may be
disregarded most of the time. Finaly, Seam enforces a single thread per conversation per process model for
the conversation context by serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope components are al-
ways protected by Seam from concurrent access. Seam serializes requests to session scope session beans and
JavaBeans by default (and detects and breaks any deadlocks that occur). This is not the default behaviour for
application scoped components however, since application scoped components do not usualy hold volatile
state and because synchronization at the global level is extremely expensive. However, you can force a serial-
ized threading model on any session bean or JavaBean component by adding the @ynchr oni zed annotation.

This concurrency model means that AJAX clients can safely use volatile session and conversational state,
without the need for any special work on the part of the developer.

3.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or EJB 3.0 enterprise
beans. While Seam does not require that components be EJBs and can even be used without an EJB 3.0 compli-
ant container, Seam was designed with EJB 3.0 in mind and includes deep integration with EJB 3.0. Seam sup-
ports the following component types.

+ EJB 3.0 statel ess session beans
« EJB 3.0 stateful session beans
¢ EJB 3.0 entity beans

e JavaBeans

JBoss Seam 1.1.6.GA 53

The contextual component model

¢ EJB 3.0 message-driven beans

3.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations. Therefore, they usu-
aly work by operating upon the state of other components in the various Seam contexts. They may be used as
JSF action listeners, but cannot provide properties to JSF components for display.

Statel ess session beans always live in the statel ess context.

Statel ess session beans are the least interesting kind of Seam component.

3.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of the bean, but
also across multiple requests. Application state that does not belong in the database should usualy be held by
stateful session beans. This is a major difference between Seam and many other web application frameworks.
Instead of sticking information about the current conversation directly in the Ht t pSessi on, you should keep it
in instance variables of a stateful session bean that is bound to the conversation context. This alows Seam to
manage the lifecycle of this state for you, and ensure that there are no collisions between state relating to differ-
ent concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide properties to JSF
components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be bound to the page
or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam.

3.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because entities have a
persistent identity in addition to their contextual identity, entity instances are usually bound explicitly in Java
code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of an entity bean
trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans that provide
properties to JSF components for display or form submission. In particular, it is common to use an entity as a
backing bean, together with a stateless session bean action listener to implement create/update/del ete type func-
tionality.

By default, entity beans are bound to the conversation context. They may never be bound to the stateless con-
text.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to a conversa-
tion or session scoped Seam context variable than it would be to hold a reference to the entity bean in a stateful
session bean. For this reason, not all Seam applications define entity beans to be Seam components.

3.2.4. JavaBeans

JBoss Seam 1.1.6.GA 54

The contextual component model

Javabeans may be used just like a stateless or stateful session bean. However, they do not provide the function-
ality of a session bean (declarative transaction demarcation, declarative security, efficient clustered state replic-
ation, EJB 3.0 persistence, timeout methods, etc).

In alater chapter, we show you how to use Seam and Hibernate without an EJB container. In this use case,
components are JavaBeans instead of session beans. Note, however, that in many application serversit is some-
what less efficient to cluster conversation or session scoped Seam JavaBean components than it is to cluster
stateful session bean components.

By default, JavaBeans are bound to the event context.

Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

3.2.5. Message-driven beans

M essage-driven beans may function as a seam component. However, message-driven beans are called quite dif-
ferently to other Seam components - instead of invoking them via the context variable, they listen for messages
sent to a JM S queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the session or conversa
tion state of their "caller". However, they do support bijection and some other Seam functionality.

3.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept component
invocations. For JavaBeans, Seam isin full control of instantiation of the component, and no special configura-
tion is needed. For entity beans, interception is not required since bijection and context demarcation are not
defined. For session beans, we must register an EJB interceptor for the session bean component. We could use
an annotation, as follows:

@t at el ess
@ nt er cept or s(Seam nt er cept or. cl ass)
public class LoginAction inplenments Login {

}

But a much better way isto define the interceptor inej b-j ar. xni .

<i nt ercept ors>
<i nterceptor>
<interceptor-class>org.jboss. seam ej b. Seanl nt erceptor</interceptor-class>
</interceptor>
</interceptors>

<assenbl y-descri pt or>
<i nt er cept or - bi ndi ng>
<ej b- name>* </ ej b- name>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nterceptor-cl ass>
</i nt er cept or - bi ndi ng>
</ assenbl y-descri pt or >

3.2.7. Component names

Almost all seam components need a name. We assigh a name to a component using the @ane annotation:

@ame("l ogi nAction")

JBoss Seam 1.1.6.GA 55

The contextual component model

@5t at el ess
public class LoginAction inplenments Login {

}

This name is the seam component name and is not related to any other name defined by the EJB specification.
However, seam component names work just like JSF managed bean names and you can think of the two con-
cepts asidentical.

Just like in JSF, a seam component instance is usually bound to a context variable with the same name as the
component name. So, for example, we would access the LoginAction using Con-

texts. get St at el essCont ext (). get ("1 ogi nAction"). In particular, whenever Seam itself instantiates a com-
ponent, it binds the new instance to a variable with the component name. However, again like JSF, it is possible
for the application to bind a component to some other context variable by programmatic APl call. Thisis only
useful if a particular component serves more than one role in the system. For example, the currently logged in
User might be bound to the current User session context variable, while a User that is the subject of some ad-
ministration functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Nane("com j boss. nyapp. | ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {

}
We may use the qualified component name both in Java code and in JSF's expression language:

<h: commandButt on type="subm t" val ue="Logi n"
acti on="#{com j boss. myapp. | ogi nActi on. | ogi n}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name. Add aline like
thisto the conponent s. xni file:

<factory name="| ogi nActi on" scope="STATELESS" val ue="#{com j boss. nyapp. | ogi nAction}"/>

All of the built-in Seam components have qualified names, but most of them are aiased to a simple name by
the component s. xm fileincluded in the Seam jar.

3.2.8. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This lets us define
what context a component instance is bound to, when it isinstantiated by Seam.

@Nane("user")
@ntity

@cope(SESSI ON)
public class User ({

}

org.j boss. seam ScopeType defines an enumeration of possible scopes.

3.2.9. Components with multiple roles

JBoss Seam 1.1.6.GA 56

The contextual component model

Some Seam component classes can fulfill more than one role in the system. For example, we often have a User
class which is usually used as a session-scoped component representing the current user but is used in user ad-
ministration screens as a conversation-scoped component. The @ol e annotation lets us define an additional
named role for a component, with a different scope—it lets us bind the same component class to different con-
text variables. (Any Seam component instance may be bound to multiple context variables, but this lets us do it
at the classlevel, and take advantage of auto-instantiation.)

@Nane("user")

@ntity

@cope(CONVERSATI ON)

@Rol e(name="current User", scope=SESSI ON)
public class User {

}
The @ol es annotation lets us specify as many additional roles aswe like.

@Nane("user")

@ntity

@scope(CONVERSATI ON)

@Rol es({ @Rol e(name="current User", scope=SESSI ON)
@Rol e(nane="t enpUser", scope=EVENT)})

public class User {

}

3.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of built-in Seam
interceptors (see later) and Seam components. This makes it easy for applications to interact with built-in com-
ponents at runtime or even customize the basic functionality of Seam by replacing the built-in components with
custom implementations. The built-in components are defined in the Seam namespace or g. j boss. seam core
and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide convenient
statici nst ance() methods:

FacesMessages. i nst ance() . add(" Wl cone back, #{user.name}!");

Seam was designed to integrate tightly in a Java EE 5 environment. However, we understand that there are
many projects which are not running in a full EE environment. We also realize the critical importance of easy
unit and integration testing using frameworks such as TestNG and JUnit. So, we've made it easy to run Seam in
Java SE environments by allowing you to boostrap certain critical infrastructure normally only found in EE en-
vironments by installing built-in Seam components.

For example, you can run your EJB3 components in Tomcat or an integration test suite just by installing the
built-in component or g. j boss. seam core. ej b, which automatically bootstraps the JBoss Embeddable EJB3
container and deploys your EJB components.

Or, if you're not quite ready for the Brave New World of EJB 3.0, you can write a Seam application that uses
only JavaBean components, together with Hibernate3 for persistence, by installing a built-in component that
manages a Hibernate Sessi onFact ory. When using Hibernate outside of a J2EE environment, you will also
probably need a JTA transaction manager and JNDI server, which are available via the built-in component
org. j boss. seam core. m crocont ai ner. This lets you use the bulletproof JTA/JCA pooling datasource from
JBoss application server in an SE environment like Tomcat!

JBoss Seam 1.1.6.GA 57

The contextual component model

3.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers. Depend-
ency injection allows a component to obtain a reference to another component by having the container "inject"
the other component to a setter method or instance variable. In all dependency injection implementations that
we have seen, injection occurs when the component is constructed, and the reference does not subsequently
change for the lifetime of the component instance. For statel ess components, this is reasonable. From the point
of view of aclient, all instances of a particular stateless component are interchangeable. On the other hand,
Seam emphasizes the use of stateful components. So traditional dependency injection is no longer a very useful
construct. Seam introduces the notion of bijection as a generalization of injection. In contrast to injection, bijec-
tionis:

e contextual - bijection is used to assemble stateful components from various different contexts (a component
from a"wider" context may even have areference to a component from a"narrower” context)

« bidirectional - values are injected from context variables into attributes of the component being invoked,
and also outjected from the component attributes back out to the context, allowing the component being in-
voked to manipulate the values of contextual variables simply by setting its own instance variables

« dynamic - since the value of contextual variables changes over time, and since Seam components are state-
ful, bijection takes place every time a component is invoked

In essence, hijection lets you alias a context variable to a component instance variable, by specifying that the
value of the instance variable isinjected, outjected, or both. Of course, we use annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@Nane("| ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {
@n User user;

or into a setter method:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenents Login {
User user;

@n

public void setUser(User user) {
t hi s. user=user;

}

By default, Seam will do a priority search of all contexts, using the name of the property or instance variable
that is being injected. You may wish to specify the context variable name explicitly, using, for example,
@n("currentUser").

If you want Seam to create an instance of the component when there is no existing component instance bound
to the named context variable, you should specify @ n(creat e=true) . If the value is optiona (it can be null),

JBoss Seam 1.1.6.GA 58

The contextual component model

specify @ n(requi red=f al se).
Y ou can even inject the value of an expression:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
@n("#{user.usernane}") String usernane;

(There is much more information about component lifecycle and injection in the next chapter.)
The @ut annotation specifies that an attribute should be outjected, either from an instance variable:

@Nane("| ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
@ut User user;

or from a getter method:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenents Login {
User user;

@out
public User getUser() {
return user,

}

An attribute may be both injected and outjected:

@Nane("| ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {
@n @ut User user;

or:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenents Login {
User user;

@n
public void setUser(User user) {
t hi s. user=user;

}

@ut
public User getUser() {
return user;

JBoss Seam 1.1.6.GA

59

The contextual component model

3.4. Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle callback
(@Post Const ruct, @reDestroy, €tc). Seam extends all of these callbacks except @reDestroy to JavaBean
components. But Seam also defines its own component lifecycle callbacks.

The @ eat e method is called every time Seam instantiates a component. Unlike the @ost Const ruct method,
this method is called after the component is fully constructed by the EJB container, and has access to al the
usual Seam functionality (bijection, etc). Components may define only one @ eat e method.

The @est roy method is called when the context that the Seam component is bound to ends. Components may
define only one @est r oy method. Stateful session bean components must define a method annotated @est r oy
@Renpve.

Finally, a related annotation is the @t ar t up annotation, which may be applied to any application or session
scoped component. The @t art up annotation tells Seam to instantiate the component immediately, when the
context begins, instead of waiting until it is first referenced by a client. It is possible to control the order of in-
stantiation of startup components by specifying @t art up(depends={....}).

3.5. Conditional installation

The @nst al | annotation lets you control conditional installation of components that are required in some de-
ployment scenarios and not in others. Thisis useful if:

* Youwant to mock out some infrastructural component in tests.
¢ Youwant change the implementation of a component in certain deployment scenarios.

e You want to install some components only if their dependencies are available (useful for framework au-
thors).

@nstal | works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to install when there
are multiple classes with the same component name in the classpath. Seam will choose the component with the
higher precendence. There are some predefined precedence values:

1. BUILT_I N— thelowest precedece components are the components built in to Seam.

2. FRAMEWORK — components defined by third-party frameworks may override built-in components, but are
overridden by application components.

3. APPLI CATI ON— the default precedence. Thisis appropriate for most application components.
4. DEPLOYMENT — for application components which are deployment-specific.

5. mock — for mock objects used in testing.

JBoss Seam 1.1.6.GA 60

The contextual component model

Suppose we have a component named nessageSender that talksto a JM S queue.

@ame(" nessageSender ")
public class MessageSender ({
public void sendMessage() {
//do something with JMS
}

In our unit tests, we don't have a IMS queue available, so we would like to stub out this method. Well create a
mock component that exists in the classpath when unit tests are running, but is never deployed with the applica-
tion:

@Nane(" nessageSender ")
@ nst al | (pr ecedence=MOCK)
public class MbckMessageSender extends MessageSender {
public void sendMessage() {
/1 do not hi ng!
}

The pr ecedence helps Seam decide which version to use when it finds both components in the classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing a reusable
framework with many dependecies, | don't want to have to break that framework across many jars. | want to be
able to decide which components to install depending upon what other components are installed, and upon what
classes are available in the classpath. The @ nst al I annotation aso controls this functionality. Seam uses this
mechanism internally to enable conditional installation of many of the built-in components. However, you
probably won't need to use it in your application.

3.6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log | og = LogFactory. get Log(CreateO derAction. cl ass);

public Order createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled()) {
| og. debug(" Creating new order for user: " + user.usernane() +
' product: " + product.nane()
+ " quantity: " + quantity);
}

return new Order (user, product, quantity);

It is difficult to imagine how the code for a simple log message could possibly be more verbose. There is more
lines of code tied up in logging than in the actual business logic! | remain totally astonished that the Java com-
munity has not come up with anything better in 10 years.

Seam provides alogging API built on top of Apache commons-logging that simplifies this code significantly:

@ogger private Log | og;

public Order createOrder(User user, Product product, int quantity) {
| og. debug(" Creati ng new order for user: #0 product: #1 quantity: #2", user.username(), product.nat
return new Order(user, product, quantity);

JBoss Seam 1.1.6.GA 61

The contextual component model

It doesn't matter if you declarethel og variable static or not—it will work either way.

Note that we don't need the noisy i f (| og.isDebugEnabl ed()) guard, since string concatenation happens
inside the debug() method. Note also that we don't usually need to specify the log category explicitly, since
Seam knows what component it isinjecting the Log into.

If user and Product are Seam components available in the current contexts, it gets even better:

@.ogger private Log | og;

public O der createOrder(User user, Product product, int quantity) {
| og. debug(" Creati ng new order for user: #{user.usernanme} product: #{product.nanme} quantity: #0",
return new Order(user, product, quantity);

3.7. The mut abl e interface and @eadnl y

Many application servers feature an amazingly broken implementation of Htt pSessi on clustering, where
changes to the state of mutable objects bound to the session are only replicated when the application calls
setAttribute() explicitly. Thisis a source of bugs that can not effectively be tested for at development time,
since they will only manifest when failover occurs. Furthermore, the actual replication message contains the en-
tire serialized object graph bound to the session attribute, which isinefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of mutable state
and a sophisticated EJB container can introduce optimizations such as attribute-level replication. Unfortunately,
not all Seam users have the good fortune to be working in an environment that supports EJB 3.0. So, for session
and conversation scoped JavaBean and entity bean components, Seam provides an extra layer of cluster-safe
state management over the top of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication to occur by
calling set Attribute() once in every reguest that the component was invoked by the application. Of course,
this strategy is inefficient for read-mostly components. You can control this behavior by implementing the
org. j boss. seam core. Mut abl e interface, or by extending or g. j boss. seam cor e. Abst r act Miut abl e, and writ-
ing your own dirty-checking logic inside the component. For example,

@Nane("account™)
public class Account extends AbstractMitabl e

{

private Bi gDeci mal bal ance;

public voi d setBal ance(Bi gDeci mal bal ance)

{

setDirty(this. bal ance, bal ance);
t hi s. bal ance = bal ance;

}

publ i ¢ Bi gDeci mal get Bal ance()
{

}

return bal ance;

Or, you can use the @eadnl y annotation to achieve a similar effect:

@anme("account")
public class Account

JBoss Seam 1.1.6.GA 62

The contextual component model

private Bi gDeci mal bal ance;

public voi d setBal ance(Bi gDeci mal bal ance)

{
}

@ReadOnl y
publ i c Bi gDeci mal get Bal ance()

{
}

t hi s. bal ance = bal ance;

return bal ance;

For session or conversation scoped entity bean components, Seam automatically forces replication to occur by
calling set Attribute() once in every request, unless the (conversation-scoped) entity is currently associated
with a Seammanaged persistence context, in which case no replication is needed. This strategy is not necessar-
ily efficient, so session or conversation scope entity beans should be used with care. You can always write a
stateful session bean or JavaBean component to "manage” the entity bean instance. For example,

@t at ef ul
@Nane("account™)
public class Account Manager extends Abstract Miutabl e

{

private Account account; // an entity bean
@nwr ap

public void getAccount ()

{

}

return account;

Note that the Ent i t yHome class in the Seam Application Framework provides a great example of this pattern.

3.8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to inject them
into our components using @n and use them in value and method binding expressions, etc. Sometimes, we
even need to tie them into the Seam context lifecycle (@est r oy, for example). So the Seam contexts can con-
tain objects which are not Seam components, and Seam provides a couple of nice features that make it easier to
work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component object. A
factory method will be called when a context variable is referenced but has no value bound to it. We define
factory methods using the @act ory annotation. The factory method binds a value to the context variable, and
determines the scope of the bound value. There are two styles of factory method. The first style returns a value,
which is bound to the context by Seam:

@ act or y(scope=CONVERSATI ON)
publ i c List<Custoner> get CustonerList() {
return ...

}

JBoss Seam 1.1.6.GA 63

The contextual component model

The second style is a method of type voi d which binds the value to the context variable itself:

@at aModel Li st<Custoner> custoner Li st ;

@-actory("custonerlList")
public void initCustomerList() {
custonerList = ... ;

}

In both cases, the factory method is called when we reference the cust orer Li st context variable and its value
is null, and then has no further part to play in the lifecycle of the value. An even more powerful pattern is the
manager component pattern. In this case, we have a Seam component that is bound to a context variable, that
manages the value of the context variable, while remaining invisible to clients.

A manager component is any component with an @nw ap method. This method returns the value that will be
visable to clients, and is called every time a context variable is referenced.

@Nane("custonerList")
@scope(CONVERSATI ON)
public class CustonerlListManager

{

@Jnwr ap
public List<Custoner> get CustonerList() {

return ...
}

This pattern is especialy useful if we have some heavyweight object that needs a cleanup operation when the
context ends. In this case, the manager component may perform cleanup in the @est r oy method.

JBoss Seam 1.1.6.GA 64

Chapter 4. Configuring Seam components

The philosophy of minimizing XML-based configuration is extremely strong in Seam. Nevertheless, there are
various reasons why we might want to configure a Seam component using XML.: to isolate deployment-specific
information from the Java code, to enable the creation of re-usable frameworks, to configure Seam'’s built-in
functionality, etc. Seam provides two basic approaches to configuring components: configuration via property
settingsin a propertiesfile or web. xni , and configuration via conponent s. xni .

4.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context parameters, or viaa
properties file named seam properti es in theroot of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods for the configurable
attributes. If a seam component named com j boss. nyapp. setti ngs has a setter method named set Local (),
we can provide a property named com j boss. nyapp. set ti ngs. | ocal e inthe seam properti es file or asaser-
vlet context parameter, and Seam will set the value of the | ocal e attribute whenever it instantiates the compon-
ent.

The same mechanism is used to configure Seam itself. For example, to set the conversation timeout, we provide
avalue for org. j boss. seam cor e. manager . conver sat i onTi meout inweb. xm OF seam properties. (Thereis
a built-in Seam component named or g. j boss. seam cor e. manager With a setter method named set Conver sa-
tionTi meout () .)

4.2. Configuring components via conponent s. xni

The conponent s. xm fileisabit more powerful than property settings. It lets you:

e Configure components that have been installed automatically—including both built-in components, and ap-
plication components that have been annotated with the @vame annotation and picked up by Seam's deploy-
ment scanner.

e Instal classes with no @ane annotation as Seam components—thisis most useful for certain kinds of infra-
structural components which can be installed multiple times different names (for example Seam-managed
persistence contexts).

* Install components that do have a @wane annotation but are not installed by default because of an @ nst al |
annotation that indicates the component should not be installed.

* Override the scope of a component.

A conponent s. xm file may appear in one of three different places:

e TheVvEB- I NF directory of awar .
e TheMETA- I NF directory of aj ar.
* Any directory of aj ar that contains classes with an @ane annotation.

Usually, Seam components are installed when the deployment scanner discovers a class with a @same annota-

JBoss Seam 1.1.6.GA 65

Configuring Seam components

tion sitting in an archive with a seam properti es file or a META- I NF/ conponent s. xni file. (Unless the com-
ponent has an @ nstal | annotation indicating it should not be installed by default.) The conmponent s. xni file
lets us handle special cases where we need to override the annotations.

For example, the following cormponent s. xm file installs the JBoss Embeddable EJB3 container:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss.com products/seant core">
<core:ejbl/>
</ conponent s>

This example does the same thing:

<conponent s>
<conponent cl ass="org.j boss. seam core. Ej b"/>
</ conponent s>

Thisone installs and configures two different Seam-managed persistence contexts:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss. com products/sean core"

<cor e: managed- per si st ence- cont ext name="cust oner Dat abase"
persi stence-uni t-jndi-name="j ava: / cust omer Ent i t yManager Fact ory"/ >

<cor e: managed- per si st ence- cont ext nane="account i ngDat abase"
persi stence-unit-jndi -nane="j ava: / accounti ngEnti t yManager Factory"/>

</ conponent s>

As does this one:

<conponent s>
<conponent nane="cust oner Dat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nanme="persi stenceUnitJndi Name">j ava: / cust ormer Ent i t yManager Fact or y</ property>
</ conponent >

<conmponent name="accounti ngDat abase"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persistenceUnitJndi Nane">j ava: /accounti ngEntityManager Fact ory</ property>
</ conponent >
</ conponent s>

This example creates a session-scoped Seam-managed persistence context (this is not recommended in prac-
tice):

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss. com products/seanm core"

<cor e: managed- per si st ence- cont ext name="pr oduct Dat abase"
scope="sessi on"
persi st ence-unit-jndi-nanme="j ava: / product Enti t yManager Fact ory"/ >

</ conponent s>

<conponent s>

<component name="product Dat abase"
scope="sessi on"
cl ass="org.j boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persi stenceUnitJndi Nane">j ava: / product Enti t yManager Fact or y</ pr operty>
</ conponent >

JBoss Seam 1.1.6.GA 66

Configuring Seam components

</ conponent s>

It is common to use the aut o- cr eat e option for infrastructural objects like persistence contexts, which saves
you from having to explicitly specify cr eat e=t r ue when you use the @ n annotation.

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss. conl product s/ seanf core"

<cor e: managed- per si st ence- cont ext nane="pr oduct Dat abase"
aut o-create="true"
persi stence-uni t-jndi-nanme="j ava: / product Enti t yManager Factory"/>

</ conponent s>

<conponent s>
<conponent name="product Dat abase"
aut o-create="true"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nanme="persistenceUnitJndi Name">j ava: / product Enti t yManager Fact or y</ property>
</ conponent >
</ conponent s>

The <f act or y> declaration lets you specify a value or method binding expression that will be evaluated to ini-
tialize the value of a context variable when it isfirst referenced.

<conponent s>
<factory name="contact" nethod="#{contact Manager.| oadContact}" scope="CONVERSATI ON'/ >

</ conponent s>

Y ou can create an "alias" (a second name) for a Seam component like so:

<conponent s>
<factory name="user" val ue="#{actor}" scope="STATELESS'/>

</ conponent s>

Y ou can even create an "alias' for acommonly used expression:

<component s>
<factory nane="contact" val ue="#{cont act Manager.contact}" scope="STATELESS"/>

</ conponent s>

It is especialy common to see the use of aut o- cr eat e="t rue" with the <f act or y> declaration:

<conponent s>
<factory nanme="session" val ue="#{entityManager.del egate}" scope="STATELESS" auto-create="true"/>

</ conponent s>

Sometimes we want to reuse the same conponent s. xni file with minor changes during both deployment and
testing. Seam lets you place wildcards of the form @i | dcar d@in the conponent s. xm file which can be re-
placed either by your Ant build script (at deployment time) or by providing a file named conpon-
ents. properti es in the classpath (at development time). Y ou'll see this approach used in the Seam examples.

JBoss Seam 1.1.6.GA 67

Configuring Seam components

4.3. Fine-grained configuration files

If you have a large number of components that need to be configured in XML, it makes much more sense to
split up the information in conponent s. xm into many small files. Seam lets you put configuration for a class
named, for example, com hel | owor | d. Hel I o in a resource named coni hel | owor | d/ Hel | 0. conponent . xm .
(Y ou might be familiar with this pattern, since it is the same one we use in Hibernate.) The root element of the
file may be either a <conponent s> Or <conponent > element.

Thefirst option lets you define multiple componentsin the file:

<conponent s>
<conponent cl ass="com hel | oworl d. Hel | 0" nanme="hel | 0" >
<property nane="nane">#{user. nane} </ property>
</ conponent >
<factory nanme="nessage" val ue="#{hell o. mnessage}"/>
</ conponent s>

The second option only lets you define or configure one component, but is less noisy:

<conponent name="hel |l 0">
<property name="nane">#{user. nane} </ property>
</ conponent >

In the second option, the class name isimplied by the file in which the component definition appears.

Alternatively, you may put configuration for all classes in the com hel | owor| d package in cont hel | o-
wor | d/ conponent s. xm .

4.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org.j boss. seam cor e. manager . conver sati onTi meout 60000
<cor e: manager conversation-ti meout="60000"/>

<conponent nane="org.j boss. seam core. manager" >
<property nane="conversationTi neout">60000</ property>
</ conponent >

Arrays, sets and lists of strings or primitives are a so supported:

org. j boss. seam core. j bpm processDefinitions order.jpdl.xm, return.jpdl.xm, inventory.jpdl.xm

<core:j bpnp
<core: process-definitions>
<val ue>order.j pdl . xm </ val ue>
<val ue>return.jpdl.xm </ val ue>
<val ue>i nventory. j pdl . xm </ val ue>
</ core: process-definitions>
</ core:jbpnmr

<conmponent name="org.j boss. seam core. | bpni >
<property nane="processDefinitions">
<val ue>order.j pdl . xm </ val ue>
<val ue>return.jpdl.xm </val ue>
<val ue>i nventory. j pdl . xm </ val ue>

JBoss Seam 1.1.6.GA 68

Configuring Seam components

</ property>
</ conponent >

Even maps with String-valued keys and string or primitive values are supported:

<conmponent name="issuekditor">
<property nane="i ssueSt at uses" >
<key>open</ key> <val ue>open i ssue</val ue>
<key>r esol ved</ key> <val ue>i ssue resol ved by devel oper</val ue>
<key>cl osed</ key> <val ue>resol uti on accepted by user</val ue>
</ pr operty>
</ conponent >

Finally, you may wire together components using a value-binding expression. Note that thisis quite different to
injection using @ n, since it happens at component instantiation time instead of invocation time. It is therefore
much more similar to the dependency injection facilities offered by traditional 10C containers like JSF or

Spring.

<dr ool s: managed- wor ki ng- nenory nane="pol i cyPri ci ngWor ki ngMeror y" rul e- base="#{pol i cyPri ci ngRul es}"/>

<conponent name="pol i cyPrici ngWr ki ngMenor y"
cl ass="org.j boss. seam dr ool s. ManagedWr ki ngMenor y" >
<property name="rul eBase">#{pol i cyPrici ngRul es} </ property>
</ conponent >

4.5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components: with and without the
use of XML namespaces. The following shows a typical conponents. xm file without namespaces. It uses the
Seam Components DTD:

<?xm version="1.0" encodi ng="UTF-8">

<! DOCTYPE conponents PUBLIC "-//JBoss/ Seam Conponent Configuration DID 1.1//EN'
"http://]boss. conl product s/ seanf conponent s-1. 1. dtd">

<component s>

<conponent class="org.jboss.seamcore.init">

<property nane="debug">true</property>

<property nane="j ndi Pattern">@ ndi Pattern@/ property>
</ conponent >

<component name="org.]j boss. sean.core.ejb" installed="@nbeddedE b@ />

</ conponent s>

Asyou can see, thisis somewhat verbose. Even worse, the component and attribute names cannot be validated
at development time.

The namespaced version looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<conmponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss. com products/sean core"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schenalLocati on=
"http://]boss. conl products/seanicore http://jboss. cont products/seanf core-1. 1. xsd
http://jboss. conl product s/ seanf conponents http://jboss. conl product s/ seanf conponent s-

<core:init debug="true" jndi-pattern="@ndi Pattern@/>

JBoss Seam 1.1.6.GA 69

Configuring Seam components

<core:ejb install ed="@nbeddedE b@/ >

</ conponent s>

Even though the schema declarations are verbose, the actual XML content is lean and easy to understand. The
schemas provide detailed information about each component and the attributes available, allowing XML editors
to offer intelligent autocomplete. The use of hamespaced elements makes generating and maintaining correct
conponent s. xm files much simpler.

Now, this works great for the built-in Seam components, but what about user components? There are two op-
tions. First, Seam supports mixing the two models, allowing the use of the generic <conponent > declarations
for user components, along with namespaced declarations for built-in components. But even better, Seam al-
lows you to quickly declare namespaces for your own components.

Any Java package can be associated with an XML namespace by annotating the package with the @anespace
annotation. (Package-level annotations are declared in a file named package-i nf o. j ava in the package direct-
ory.) Here is an example from the seampay demo:

@Nanespace(val ue="http://jboss. conf product s/ seanf exanpl es/ seanpay")
package org.j boss. seam exanpl e. seanpay;

i mport org.jboss. seam annot ati ons. Namespace;

That isall you need to do to use the namespaced style in conponent s. xn | Now we can write:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: pay="http://jboss. conl product s/ seanl exanpl es/ seanpay"
>

<pay: paynent - hone new i nst ance="#{ newPaynent }"
creat ed- nessage="Created a new paynment to #{newPaynent.payee}" />

<pay: paynment nanme="newPaynent"
payee="Sonebody"
account =" #{ sel ect edAccount }"
paynent - dat e="#{current Dateti ne}"
created-date="#{currentDateti me}" />

</ conponent s>

Or:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: pay="http://jboss. conl product s/ seanl exanpl es/ seanpay"
>

<pay: paynent - hone>

<pay: new i nst ance>"#{ newPaynent } " </ pay: new- i nst ance>

<pay: cr eat ed- message>Created a new paynent to #{newPaynent.payee}</pay: creat ed- mressage>
</ pay: paynent - home>

<pay: paynment nanme="newPaynent" >
<pay: payee>Sonebody" </ pay: payee>
<pay: account >#{ sel ect edAccount } </ pay: account >
<pay: paynent - dat e>#{ curr ent Dat et i ne} </ pay: paynent - dat e>
<pay: cr eat ed- dat e>#{ current Dat et i me} </ pay: cr eat ed- dat e>
</ pay: paynent >

</ conponent s>

These examples illustrate the two usage models of a namespaced element. In the first declaration, the
<pay: paynent - hone> references the paynent Home component:

JBoss Seam 1.1.6.GA 70

Configuring Seam components

package org.j boss. seam exanpl e. seanpay;

@Nane(" paynent Horre")

public class Paynment Controll er
ext ends EntityHome<Paynent >

{

}

The element name is the hyphenated form of the component name. The attributes of the element are the hy-
phenated form of the property names.

In the second declaration, the <pay: payment> element refers to the Payment class in the
org. j boss. seam exanpl e. seanpay package. In this case Paynent is an entity that is being declared as a Seam
component:

package org.j boss. seam exanpl e. seanpay;
@ntity
public class Paynent
i mpl ements Serializabl e
{

}

If we want validation and autocompletion to work for user-defined components, we will need a schema. Seam
does not yet provide a mechanism to automatically generate a schemafor a set of components, so it is necessary
to generate one manually. The schema definitions for the standard Seam packages can be used for guidance.

The following are the the namespaces used by Seam:

¢ components—http://jboss. con product s/ sean conponent s
e core—nhttp://jboss. con products/seani core

e drools—http://jboss. com products/seant drool s

o framework — http://j boss. com product s/ seant f r amewor k

. jms—http://j boss. coni product s/ seani j ns

. remoting —http://jboss. com product s/ seam renoti ng

e theme— http://jboss. cont products/ sean t hene

. security —http://jboss. com product s/ seam security

e mail —http://jboss. con product s/ seam nai |

JBoss Seam 1.1.6.GA 71

Chapter 5. Events, interceptors and exception
handling

Complementing the contextual component model, there are two further basic concepts that facilitate the ex-
treme loose-coupling that is the distinctive feature of Seam applications. Thefirst is a strong event model where
events may be mapped to event listeners via JSF-like method binding expressions. The second is the pervasive
use of annotations and interceptors to apply cross-cutting concerns to components which implement business
logic.

5.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to enable the
development of fine-grained, loosely-coupled components in a fine-grained eventing model. Events in Seam
comein several types, most of which we have already seen:

« JSF events

« jBPM transition events

e Seam page actions

e Seam component-driven events

* Seam contextua events

All of these various kinds of events are mapped to Seam components via JSF EL method binding expressions.
For a JSF event, thisis defined in the JSF template:

<h: conmandBut t on val ue="Cick nme!" action="#{hell oWrl d. sayHel |l o}"/>

For ajBPM transition event, it is specified in the JBPM process definition or pageflow definition:

<start-page nane="hell 0" viewid="/hello.jsp">
<transition to="hello0">
<action expressi on="#{hel | oWr| d. sayHel | 0} "/ >
</transition>
</start - page>

You can find out more information about JSF events and jBPM events elsewhere. Lets concentrate for now
upon the two additional kinds of events defined by Seam.

5.1.1. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions in WeB-
I NF/ pages. xm . We can define a page action for either a particular JSF view id:

<pages>
<page viewid="/hello.jsp" action="#{hell oWrl d.sayHel | o}"/>
</ pages>

Or we can use awildcard to specify an action that appliesto all view ids that match the pattern:

JBoss Seam 1.1.6.GA 72

Events, interceptors and exception handling

<pages>
<page viewid="/hello/*" action="#{hell oWrl d. sayHel | 0}"/>
</ pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in order of least-
specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will delegate to the defined
JSFadn Seam navigation rules and a different view may end up being rendered.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or Facelets page!
So, we can reproduce the functionality of atraditional action-oriented framework like Struts or WebWork using
page actions. For example:

TODO. translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for example, HTTP
GET requests).

Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and "parameters’
(input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request parameters.
(Unlike JSF form inputs, which are anything but!)

Seam |ets us provide a value binding that maps a named request parameter to an attribute of a model object.

<pages>
<page viewid="/hello.jsp" action="#{hell oWrld. sayHel | 0}">
<param nanme="first Name" val ue="#{person. firstNane}"/>
<par am nane="1| ast Nane" val ue="#{person. | ast Nane}"/ >
</ page>
</ pages>

The <par ame declaration is bidirectional, just like a value binding for a JSF input:

* When a non-faces (GET) request for the view id occurs, Seam sets the value of the named request paramet-
er onto the model object, after performing appropriate type conversions.

e Any <s:link> Or <s: but t on> transparently includes the request parameter. The value of the parameter is
determined by evaluating the value binding during the render phase (when the <s: I i nk> is rendered).

* Any navigation rule with a <redi rect / > to the view id transparently includes the request parameter. The
value of the parameter is determined by evaluating the value binding at the end of the invoke application
phase.

* The value is transparently propagated with any JSF form submission for the page with the given view id.
(This means that view parameters behave like PAGE-scoped context variables for faces requests.

The essential idea behind all this is that however we get from any other page to /hello.jsp (or from /
hel l 0. jsp back to /hello.jsp), the value of the model attribute referred to in the value binding is "re-
membered"”, without the need for a conversation (or other server-side state).

This all sounds pretty complex, and you're probably wondering if such an exotic construct is really worth the

JBoss Seam 1.1.6.GA 73

Events, interceptors and exception handling

effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the time to understand
this stuff. Page parameters are the most elegant way to propagate state across a non-faces request. They are es-
pecially cool for problems like search screens with bookmarkable results pages, where we would like to be able
to write our application code to handle both POST and GET requests with the same code. Page parameters
eliminate repetitive listing of request parameters in the view definition and make redirects much easier to code.

Note that you don't need an actual page action method binding to use a page parameter. The following is per-
fectly valid:

<pages>
<page viewid="/hello.jsp">
<param nanme="first Name" val ue="#{person.firstName}"/>
<par am nane="| ast Nane" val ue="#{person. | ast Nane}"/>
</ page>
</ pages>

Y ou can even specify a JSF converter:

<pages>
<page viewid="/cal culator.jsp" action="#{cal culator.cal cul ate}">
<par am nane="x" val ue="#{cal cul ator.| hs}"/>
<param nane="y" val ue="#{cal cul ator.rhs}"/>
<par am nane="op" converterld="com ny. cal cul at or. Oper at or Converter" val ue="#{cal cul ator.op}"/>
</ page>
</ pages>

<pages>
<page viewid="/cal cul ator.jsp" action="#{cal cul ator.cal cul ate}">
<par am nane="x" val ue="#{cal cul ator. | hs}"/>
<par am nanme="y" val ue="#{cal cul ator.rhs}"/>
<par am nane="op" converter="#{operatorConverter}" value="#{cal cul ator.op}"/>
</ page>
</ pages>

Navigation

Y ou can use standard JSF navigation rules defined in f aces- confi g. xnl in a Seam application. However, JSF
navigation rules have a number of annoying limitations:

e Itisnot possible to specify request parametersto be used when redirecting.
» [tisnot possibleto begin or end conversations from arule.

* Ruleswork by evaluating the return value of the action method; it is not possible to evaluate an arbitrary EL
expression.

A further problem is that "orchestration" logic gets scattered between pages. xni and f aces- confi g. xm . It's
better to unify thislogic into pages. xni .

This JSF navigation rule:

<navi gati on-rul e>
<fromvi ewi d>/editDocunent . xhtm </ fromvi ewi d>

<navi gati on- case>
<from acti on>#{ docunent Edi t or. updat e} </ from acti on>
<f r om out conme>success</ fr om out cone>
<t 0-vi ew i d>/ vi ewDocunent . xht m </t o- vi ewi d>
<redirect/>

</ navi gati on- case>

JBoss Seam 1.1.6.GA 74

Events, interceptors and exception handling

</ navi gati on-rul e>

Can be rewritten as follows:

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromaction="#{docunent Edi t or. update}" >
<rul e if-outconme="success">
<redirect viewid="/viewbocunent.xhtm "/>
<rul e/ >
</ navi gati on- case>

</ navi gati on-rul e>

But it would be even nicer if we didn't have to pollute our Docurent Edi t or component with string-valued re-
turn values (the JSF outcomes). So Seam lets us write:

<page vi ewid="/editDocunent.xhtm ">

<navi gation from action="#{docunent Edi t or. updat e}"
eval uat e="#{docunent Edi tor. errors. si ze}">
<rule if-outcome="0">
<redirect viewid="/viewbocunent.xhtm "/>
<rul e/ >
</ navi gati on- case>

</ navi gati on-rul e>

Or even:

<page vi ew i d="/editDocunment.xhtnl ">

<navi gati on from acti on="#{docunent Edi t or. updat e} " >
<rule if="#{docunentEditor.errors.enpty}">
<redirect viewid="/viewDocunment.xhtm"/>
<rul e/>
</ navi gati on- case>

</ navi gati on-rul e>

Thefirst form evaluates a value binding to determine the outcome value to be used by the subsequent rules. The
second approach ignores the outcome and evaluates a value binding for each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We can do that like
this:

<page vi ew i d="/editDocunent.xhtn ">

<navi gation from acti on="#{docunent Edi t or. updat e}" >
<rule if="#{docunentEditor.errors.enpty}">
<end- conver sati on/ >
<redirect viewid="/viewDocunent.xhtm"/>
<rul e/ >
</ navi gati on- case>

</ navi gati on-rul e>

But ending the conversation loses any state associated with the conversation, including the document we are
currently interested in! One solution would be to use an immediate render instead of aredirect:

<page vi ewid="/editDocunment.xhtm ">

JBoss Seam 1.1.6.GA 75

Events, interceptors and exception handling

<navi gation fromaction="#{docunent Edi t or. updat e}" >
<rule if="#{docunentEditor.errors.enpty}">
<end- conversation/ >
<render viewid="/viewbocunent.xhtm "/>
<rul e/>
</ navi gati on- case>

</ navi gati on-rul e>

But the correct solution isto pass the document id as arequest parameter:

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromaction="#{docunent Edi t or. updat e}" >
<rule if="#{docunmentEditor.errors.enpty}">
<end- conver sati on/ >
<redirect viewid="/viewDocunent.xhtm ">
<par am nane="docunent | d* val ue="#{docunent Edi t or. docunent I d}"/ >
</redirect>
<rul e/>
</ navi gati on- case>

</ navi gati on-rul e>

Null outcomes are a specia case in JSF. The null outcome is interpreted to mean "redisplay the page". The fol-
lowing navigation rule matches any non-null outcome, but not the null outcome:

<page vi ewid="/editDocument.xhtm ">

<navi gati on fromacti on="#{docunent Edi t or. updat e}" >
<rul e>
<render viewid="/vi ewbDocunent.xhtm "/>
<rul e/ >
</ navi gati on- case>

</ navi gati on-rul e>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromacti on="#{docunent Edi t or. updat e}" >
<render viewid="/viewbocunent.xhtm "/>
</ navi gati on- case>

</ navi gati on-rul e>

Fine-grained files for definition of page actions and parameters

If you have alot of different page actions and page parameters, you will amost certainly want to split the de-
clarations up over multiple files. You can define actions and parameters for a page with the view id /
cal ¢/ cal cul ator.jsp in aresource named cal ¢/ cal cul at or. page. xn . The root element in this case is the
<page> element, and the view id isimplied:

<page action="#{cal cul ator.cal cul ate}">

<par am nanme="x" val ue="#{cal cul ator.| hs}"/>

<param nane="y" val ue="#{cal cul ator.rhs}"/>

<par am nanme="op" converter="#{operatorConverter}" val ue="#{cal cul ator.op}"/>
</ page>

5.1.2. Component-driven events

JBoss Seam 1.1.6.GA 76

Events, interceptors and exception handling

Seam components can interact by simply calling each others methods. Stateful components may even imple-
ment the observer/observable pattern. But to enable components to interact in a more loosely-coupled fashion
than is possible when the components call each others methods directly, Seam provides component-driven
events.

We specify event listeners (observers) in conponent s. xm .

<component s>
<event type="hello0">
<action expressi on="#{hel | oLi st ener. sayHel | oBack}"/ >
<action expressi on="#{l ogger.|ogHello}"/>
</ event >
</ conponent s>

Where the event type isjust an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear in conmpon-
ents. xm . How does a component raise an event? Seam provides a built-in component for this.

@ane(" hel | oWorl d")
public class Hell oWrld {
public void sayHell o() {
FacesMessages. i nstance().add("Hello World!");
Events.instance().rai seEvent ("hell o");

Or you can use an annotation.

@Nane(" hel | oWor | d")
public class HelloWwrld {
@Rai seEvent ("hel | o")
public void sayHello() {
FacesMessages. i nstance().add("Hello Wrld!");

}

Notice that this event producer has no dependency upon event consumers. The event listener may now be im-
plemented with absolutely no dependency upon the producer:

@ame(" hel | oLi stener")
public class HelloListener {
public void sayHel | oBack() ({
FacesMessages. i nstance().add("Hello to you too!");
}

The method binding defined in conponent s. xm above takes care of mapping the event to the consumer. If you
don't like futzing about in the conponent s. xn file, you can use an annotation instead:

@Nane(" hel | oLi st ener")
public class HelloListener {
@server ("hel | 0")
public void sayHel | oBack() ({
FacesMessages. i nstance().add("Hello to you too!");
}

Y ou might wonder why |'ve not mentioned anything about event objects in this discussion. In Seam, thereis no
need for an event object to propagate state between event producer and listener. State is held in the Seam con-
texts, and is shared between components. However, if you really want to pass an event object, you can:

JBoss Seam 1.1.6.GA 77

Events, interceptors and exception handling

@ane(" hel | oworl d")
public class Hellowrld {
private String nane;
public void sayHell o() {
FacesMessages. i nstance().add("Hello Wrld, my nanme is #0.", nane);
Events.instance().rai seEvent("hell 0", nane);

@ame(" hel | oLi stener")
public class HelloListener {
@server ("hel | 0")
public void sayHel | oBack(String nane) {
FacesMessages. i nstance().add("Hello #0!", nane);
}

5.1.3. Contextual events

Seam defines a number of built-in events that the application can use to perform specia kinds of framework in-
tegration. The events are:

* org.jboss. seam preSet Vari abl e. <name> — called when the context variable <name> is set

* org.jboss. seam post Set Vari abl e. <name> — called when the context variable <name> is set

* org.jboss. seam preRenoveVari abl e. <name> — called when the context variable <name> is unset
* org.jboss. seam post RenoveVari abl e. <name> — called when the context variable <name> is unset
* org.jboss. seam preDest royCont ext . <SCOPE> — called before the <SCOPE> context is destroyed
e org.jboss. seam post Dest r oyCont ext . <SCOPE> — called after the <SCOPE> context is destroyed
e org.jboss. seam begi nConversati on — caled whenever along-running conversation begins

e org.jboss. seam endConversati on — called whenever along-running conversation ends

e org.]jboss. seam begi nPagef | ow. <name> — called when the pageflow <name> begins

e org.jboss. seam endPagef | ow. <name> — called when the pageflow <name> ends

e org.|boss. seam creat eProcess. <nane> — called when the process <name> is created

* org.|boss. seam endProcess. <nane> — called when the process <name> ends

e org.jboss.seaminitProcess. <name> — called when the process <name> is associated with the conver-
sation

* org.jboss.seami nit Task. <nane> — called when the task <name> is associated with the conversation
* org.jboss. seam start Task. <name> — called when the task <name> is started

e org.jboss. seam endTask. <name> — called when the task <name> is ended

e org.|boss. seam post Cr eat e. <name> — called when the component <name> is created

e org.jboss. seam preDestroy. <name> — called when the component <name> is destroyed

JBoss Seam 1.1.6.GA 78

Events, interceptors and exception handling

e org.jboss. seam bef orePhase — called before the start of a JSF phase

e org.jboss. seam af t er Phase — called after the end of a JSF phase

* org.jboss. seam post Aut henti cat e. <nane> — called after auser is authenticated

e org.jboss. seam preAut henti cat e. <name> — called before attempting to authenticate a user

Seam components may observe any of these eventsin just the same way they observe any other component-driv-
en events.

5.2. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an interceptor to a bean,
you need to write a class with a method annotated @\ oundi nvoke and annotate the bean with an
@ nt er cept or s annotation that specifies the name of the interceptor class. For example, the following inter-
ceptor checks that the user islogged in before allowing invoking an action listener method:

public class Loggedlnlnterceptor {

@\r oundl nvoke
publ i c Object checkLoggedl n(lnvocati onContext invocation) throws Exception {

bool ean i sLoggedl n = Cont exts. get Sessi onCont ext ().get ("l oggedln")!=null;
if (isLoggedln) {

//the user is already |ogged in

return invocation. proceed();

}

el se {
//the user is not logged in, fwd to | ogin page
return "l ogin";

}

To apply this interceptor to a session bean which acts as an action listener, we must annotate the session bean
@ nt er cept or s(Logged! nl nt er cept or . cl ass) . Thisis a somewhat ugly annotation. Seam builds upon the in-
terceptor framework in EJB3 by allowing you to use @ nt er cept or s as a meta-annotation. In our example, we
would create an @ogged! n annotation, as follows:

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

@ nt er cept or s(Logged! nl nterceptor. cl ass)
public @nterface Loggedlin {}

We can now simply annotate our action listener bean with @ ogged! n to apply the interceptor.

@t at el ess

@Nane(" changePasswor dActi on")

@oggedl n

@ nt er cept or s(Seam nt er cept or. cl ass)

public class ChangePasswordAction inpl ements ChangePassword {

public String changePassword() { ... }

JBoss Seam 1.1.6.GA 79

Events, interceptors and exception handling

If interceptor ordering is important (it usually is), you can add @ nt er cept or annotations to your interceptor
classes to specify apartial order of interceptors.

@ nterceptor (around={Bijectionlnterceptor.class,
Val i dati onl nt erceptor. cl ass,
Conver sati onl nterceptor. cl ass},
wi t hi n=Renovel nt er ceptor. cl ass)
public class Loggedl nl nterceptor

{
}

Y ou can even have a"client-side" interceptor, that runs around any of the built-in functionality of EJB3:

@ nterceptor (type=CLI ENT)
public class Loggedl nlnterceptor

{
}

EJB interceptors are stateful, with alifecycle that is the same as the component they intercept. For interceptors
which do not need to maintain state, Seam lets you get a performance optimization by specifying
@nterceptor(statel ess=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including the inter-
ceptors named in the previous example. You don't have to explicitly specify these interceptors by annotating
your components; they exist for all interceptable Seam components.

Y ou can even use Seam interceptors with JavaBean components, not just EJB3 beang!

EJB defines interception not only for business methods (using @vr oundl nvoke), but also for the lifecycle meth-
ods @ost Construct, @r eDest r oy, @r ePassi vat e and @ost Act i ve. Seam supports all these lifecycle meth-
ods on both component and interceptor not only for EJB3 beans, but also for JavaBean components (except
@ eDest r oy Which is not meaningful for JavaBean components).

5.3. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this problem,
Seam lets you define how a particular class of exception is to be treated by annotating the exception class, or
declaring the exception class in an XML file. This facility is meant to be combined with the EJB 3.0-standard
@\wppl i cati onExcept i on annotation which specifies whether the exception should cause a transaction rollback.

5.3.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately marks the current trans-
action for rollback when it is thrown by a business method of the bean: system exceptions always cause a trans-
action rollback, application exceptions do not cause a rollback by default, but they do if
@\ppl i cati onException(roll back=true) isspecified. (An application exception is any checked exception, or
any unchecked exception annotated @pp! i cat i onExcepti on. A System exception is any unchecked exception
without an @\ppl i cati onExcept i on annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it back. The ex-
ception rules say that the transaction should be marked rollback only, but it may still be active after the excep-
tion is thrown.

JBoss Seam 1.1.6.GA 80

Events, interceptors and exception handling

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

But these rules only apply in the Seam component layer. What about an exception that is uncaught and propag-
ates out of the Seam component layer, and out of the JSF layer? Well, it is aways wrong to leave a dangling
transaction open, so Seam rolls back any active transaction when an exception occurs and is uncaught in the
Seam component layer.

5.3.2. Enabling Seam exception handling

To enable Seam's exception handling, we need to add a servlet filter to web. xm :

<filter>
<filter-nane>Seam Exception Filter</filter-nanme>
<filter-class>org.jboss. seam servl et. SeanExceptionFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>Seam Exception Filter</filter-name>
<url - pattern>*. seanx/url - pattern>

</filter-mappi ng>

5.3.3. Using annotations for exception handling

The following exception resultsin a HTTP 404 error whenever it propagates out of the Seam component layer.
It does not roll back the current transaction immediately when thrown, but the transaction will be rolled back if
it the exception is not caught by another Seam component.

@t t pError (error Code=404)
public class Applicati onException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component layer. It also
ends the current conversation. It causes an immediate rollback of the current transaction.

@Redirect (view d="/failure.xhtm ", end=true)
@\ppl i cati onException(rol | back=true)
public class Unrecoverabl eApplicati onExcepti on extends RuntinmeException { ... }

Note that @edi r ect does not work for exceptions which occur during the render phase of the JSF lifecycle.

This exception results in a redirect, along with a message to the user, when it propagates out of the Seam com-
ponent layer. It also immediately rolls back the current transaction.

@Redi rect (view d="/error.xhtm ", message="Unexpected error")
public class SystentExcepti on extends RuntimeException { ... }

5.3.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets us specify this
functionality in pages. xni .

<pages>

<exception cl ass="j avax. persi st ence. Entit yNot FoundExcepti on" >
<http-error error-code="404"/>
</ exception>

JBoss Seam 1.1.6.GA 81

Events, interceptors and exception handling

<exception class="j avax. persi st ence. Persi st enceExcepti on">
<end- conver sati on/ >
<redirect viewid="/error.xhtm">
<message>Dat abase access fail ed</ message>
</redirect>
</ exception>

<exception>
<end- conver sati on/ >
<redirect viewid="/error.xhtm">
<nessage>Unexpect ed fail ure</ nessage>
</redirect>
</ excepti on>

</ pages>

The last <except i on> declaration does not specify a class, and is a catch-all for any exception for which hand-
ling is not otherwise specified viaannotations or in pages. xm .

JBoss Seam 1.1.6.GA 82

Chapter 6. Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation™ came about as a merger of three different ideas:

e The idea of a workspace, which | encountered in a project for the Victorian government in 2002. In this
project | was forced to implement workspace management on top of Struts, an experience | pray never to
repeat.

» The idea of an application transaction with optimistic semantics, and the realization that existing frame-
works based around a statel ess architecture could not provide effective management of extended persistence
contexts. (The Hibernate team is truly fed up with copping the blame for Lazy! niti al i zati onExcept i onS,
which are not really Hibernate's fault, but rather the fault of the extremely limiting persistence context mod-
e supported by stateless architectures such as the Spring framework or the traditional stateless session
facade (anti)pattern in J2EE.)

¢ Theideaof aworkflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct that lets us
build richer and more efficient applications with less code than before.

6.1. Seam's conversation model

The examples we have seen so far make use of avery simple conversation model that follows these rules:

« There is always a conversation context active during the apply request values, process validations, update
model values, invoke application and render response phases of the JSF request lifecycle.

e At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore any previous
long-running conversation context. If none exists, Seam creates a new temporary conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to a long running
conversation.

« When an @nd method is encountered, any long-running conversation context is demoted to a temporary
conversation.

« At theend of the render response phase of the JSF request lifecycle, Seam stores the contents of a long run-
ning conversation context or destroys the contents of atemporary conversation context.

e Any faces request (a JSF postback) will propagate the conversation context. By default, non-faces requests
(GET requests, for example) do not propagate the conversation context, but see below for more information
on this.

« If the JSF request lifecycle is foreshortened by aredirect, Seam transparently stores and restores the current
conversation context—unless the conversation was aready ended via @nd(bef or eRedi r ect =t r ue) .

Seam transparently propagates the conversation context across JSF postbacks and redirects. If you don't do any-
thing special, a non-faces request (a GET request for example) will not propagate the conversation context and

JBoss Seam 1.1.6.GA 83

Conversations and workspace management

will be processed in a new temporary conversation. Thisis usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly code the Seam
conversation id as arequest parameter:

Conti nue

Or, the more JSF-ish:

<h: out put Li nk val ue="main. jsf">
<f: param nane="conversati onl d" val ue="#{conversation.id}"/>
<h: out put Text val ue="Conti nue"/>

</ h: out put Li nk>

If you use the Seam tag library, thisis equivalent:

<h: out put Li nk val ue="main.jsf">
<s:conversationl d/>
<h: out put Text val ue="Conti nue"/>
</ h: out put Li nk>

If you wish to disable propagation of the conversation context for a postback, asimilar trick is used:

<h: commandLi nk action="mai n" val ue="Exit">
<f: param nane="conver sati onPropagati on" val ue="none"/>
</ h: commandLi nk>

If you use the Seam tag library, thisis equivalent:

<h: commandLi nk action="mai n" val ue="Exit">
<s:conversati onPropagati on type="none"/>
</ h: commandLi nk>

Note that disabling conversation context propagation is absolutely not the same thing as ending the conversa-
tion.

The conversat i onPropagat i on request parameter, or the <s: conversat i onPropagat i on> tag may even be
used to begin and end conversation, or begin a nested conversation.

<h: commandLi nk acti on="nmai n" val ue="Exit">
<s: conver sationPropagati on type="end"/>
</ h: commandLi nk>

<h: conmandLi nk acti on="mai n* val ue="Sel ect Child">
<s: conversationPropagation type="nested"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="begi n"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="join"/>
</ h: commandLi nk>

This conversation model makes it easy to build applications which behave correctly with respect to multi-
window operation. For many applications, thisis al that is needed. Some complex applications have either or
both of the following additional requirements:

JBoss Seam 1.1.6.GA 84

Conversations and workspace management

* A conversation spans many smaller units of user interaction, which execute serialy or even concurrently.
The smaller nested conversations have their own isolated set of conversation state, and also have access to
the state of the outer conversation.

e The user is able to switch between many conversations within the same browser window. This feature is
called workspace management.

6.2. Nested conversations

A nested conversation is created by invoking a method marked @egi n(nest ed=t rue) inside the scope of an
existing conversation. A nested conversation has its own conversation context, and aso has read-only access to
the context of the outer conversation. (It can read the outer conversation's context variables, but not write to
them.) When an @nd is subsequently encountered, the nested conversation will be destroyed, and the outer
conversation will resume, by "popping” the conversation stack. Conversations may be nested to any arbitrary
depth.

Certain user activity (workspace management, or the back button) can cause the outer conversation to be re-
sumed before the inner conversation is ended. In this case it is possible to have multiple concurrent nested con-
versations belonging to the same outer conversation. If the outer conversation ends before a nested conversation
ends, Seam destroys all nested conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the application to capture
a consistent continuable state at various points in a user interaction, thus insuring truly correct behavior in the
face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you backbutton.

6.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a non-faces request
(for example, a HTTP GET request). This can occur if the user bookmarks the page, or if we navigate to the
page viaan <h: out put Li nk>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is no JSF action
method, we can't solve the problem in the usual way, by annotating the action with @egi n.

A further problem arises if the page needs some state to be fetched into a context variable. We've already seen
two ways to solve this problem. If that state is held in a Seam component, we can fetch the state in a @ eat e
method. If not, we can define a @act ory method for the context variable.

If none of these options works for you, Seam lets you define a page action in the pages. xni file.

<pages>
<page vi ewid="/nessagelist.jsp" action="#{nessageManager.list}"/>

</pa§é§>
This action method is called at the beginning of the render response phase, any time the page is about to be

rendered. If a page action returns a non-null outcome, Seam will process any appropriate JSF and Seam naviga-
tion rules, possibly resulting in a completely different page being rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in action method

JBoss Seam 1.1.6.GA 85

Conversations and workspace management

that does just that:

<pages>
<page vi ewid="/nessagelist.jsp" action="#{conversation. begin}"/>

</pa§é§>
Note that you can aso cal this built-in action from a JSF control, and, similarly, you can use
#{ conver sati on. end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a pageflow or an
atomic conversation, you should use the <begi n- conver sat i on> element.

<pages>
<page vi ewid="/nmessagelist.jsp">
<begi n- conversati on nested="true" pagefl ow="Addlteni/>
<page>
</ pages>
Thereis aso an <end- conver sat i on> € ement.

<pages>
<page vi ewid="/hone.jsp">
<end- conversation/ >
<page>

</ pa.gé;s>
To solve the first problem, we now have five options:

* Annotate the @r eat e method with @egi n

* Annotate the @act or y method with @egi n

¢ Annotate the Seam page action method with @egi n
* Use<begin-conversation> inpages. xm .

e Use#{conversation. begi n} asthe Seam page action method

6.4. Using <s: 1ink>and <s: but t on>

JSF command links always perform aform submission via JavaScript, which breaks the web browser's "open in
new window" or "open in new tab" feature. In plain JSF, you need to use an <h: out put Li nk> if you need this
functionality. But there are two major limitations to <h: out put Li nk>.

e JSF provides no way to attach an action listener to an <h: out put Li nk>.
« JSF does not propagate the selected row of a bat avbdel since there isno actua form submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing to help us with
the second problem. We could work around this by using the RESTful approach of passing a request parameter
and requerying for the selected object on the server side. In some cases—such as the Seam blog example ap-
plication—this is indeed the best approach. The RESTful style supports bookmarking, since it does not require
server-side state. In other cases, where we don't care about bookmarks, the use of @ataMbdel and

JBoss Seam 1.1.6.GA 86

Conversations and workspace management

@at aMbdel Sel ect i on iSjust SO convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to manage, Seam
providesthe <s: I i nk> JSF tag.

The link may specify just the JSF view id:
<s:link view="/1ogin.xhtm” val ue=*Login"/>
Or, it may specify an action method (in which case the action outcome determines the page that results):

<s:link action="#{login.logout}” val ue="Logout”/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action method returns
anon-null outcome:

<s:link view="/l|oggedQut.xhtm " action="#{login.logout}” val ue=*Logout”/>

The link automatically propagates the selected row of aDat aMbdel using inside <h: dat aTabl e>:

<s:link view="/hotel.xhtm” action="#{hotel Search. sel ect Hotel }" val ue="#{hotel . nane}”/ >
Y ou can leave the scope of an existing conversation:

<s:link view="/main.xhtm " propagati on="none”/>

Y ou can begin, end, or nest conversations:

<s:link action="#{i ssueEditor.vi ewCorment}” propagati on="nest”/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{docunent Edi t or. get Docunent}” propagati on="begi n”
pagef | ow=" Edi t Docunent "/ >

Thet askl nst ance attribute if for usein jBPM task lists:

<s:link action="#{docunent Approval . approveOr Rej ect}” tasklnstance="#{task}"/>

(Seethe DVD Store demo application for examples of this.)
Finally, if you need the "link" to be rendered as a button, use <s: but t on>:

<s: button action="#{l ogi n. | ogout}” val ue=*Logout”/>

6.5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It is convenient to
use a JSF FacesMessage for this. Unfortunately, a successful action often requires a browser redirect, and JSF
does not propagate faces messages across redirects. This makes it quite difficult to display success messagesin
plain JSF.

The built in conversation-scoped Seam component named f acesMessages solves this problem. (Y ou must have
the Seam redirect filter installed.)

JBoss Seam 1.1.6.GA 87

Conversations and workspace management

@ame(" edi t Docunent Acti on")

@t at el ess

public class EditDocunment Bean i npl ements Edit Docunment {
@n EntityManager em
@n Docunent docunent;
@n FacesMessages facesMessages;

public String update() {
em mer ge(docunent) ;
f acesMessages. add(" Docunent updat ed");

Any message added to f acesMessages is used in the very next render response phase for the current conversa
tion. This even works when there is no long-running conversation since Seam preserves even temporary con-
versation contexts across redirects.

Y ou can even include JSF EL expressions in afaces message summary:

facesMessages. add(" Docunent #{docunent.title} was updated");

Y ou may display the messages in the usual way, for example:

<h: nessages gl obal Onl y="true"/>

6.6. Using an "explicit" conversation id

Ordinarily, Seam generates a meaningless unique id for each conversation in each session. You can customize
the id value when you begin the conversation.

This feature can be used to customize the conversation id generation algorithm like so:

@egi n(i d="#{myConversati onl dGenerator.nextld}")
public void editHotel () { ... }

Or it can be used to assign ameaningful conversation id:

@Begi n(i d="hot el #{ hotel .id}")
public String editHotel () { ... }

@egi n(i d="hot el #{ hot el sDat aMbdel . rowDat a. i d} ")
public String selectHotel () { ... }

@egi n(id="entry#{parans['blogld]}")
public String viewBlogEntry() { ... }

@egi nTask(i d="t ask#{t askl nstance.id}")
public String approveDocurment () { ... }

Clearly, these example result in the same conversation id every time a particular hotel, blog or task is selected.
So what happens if a conversation with the same conversation id already exists when the new conversation be-
gins? Well, Seam detects the existing conversation and redirects to that conversation without running the
@egi n method again. This feature helps control the number of workspaces that are created when using work-
space management.

JBoss Seam 1.1.6.GA 88

Conversations and workspace management

6.7. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam makes workspace
management completely transparent at the level of the Java code. To enable workspace management, all you
needtodois:

» Provide description text for each view id (when using JSF or Seam navigation rules) or page node (when
using jPDL pageflows). This description text is displayed to the user by the workspace switchers.

¢ Include one or more of the standard workspace switcher JSP or facel ets fragments in your pages. The stand-
ard fragments support workspace management via a drop down menu, a list of conversations, or bread-
crumbs.

6.7.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring the current vi ewi d
for that conversation. The descriptive text for the workspace is defined in afile called pages. xm that Seam ex-
pectsto find in the ves- | NF directory, right next to f aces- confi g. xni :

<pages>
<page vi ewid="/mai n. xhtnm ">Search hotels: #{hotel Booki ng. searchStri ng}</page>
<page viewid="/hotel.xhtm ">View hotel: #{hotel.nanme}</page>
<page vi ew i d="/book. xht ml ">Book hotel: #{hotel.nane}</page>
<page viewid="/confirmxhtm ">Confirm #{booking.description}</page>
</ pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only missing func-
tionality will be the ability to switch workspaces.

6.7.2. Workspace management and jPDL pageflow

When you use ajPDL pageflow definition, Seam switches to a conversation by restoring the current jBPM pro-
cess state. Thisis amore flexible model since it allows the same vi ew- i d to have different descriptions depend-
ing upon the current <page> node. The description text is defined by the <page> node:

<pagef | owdefi ni ti on name="shoppi ng" >

<start-state nane="start">
<transition to="browse"/>
</start-state>

<page nane="browse" viewid="/browse.xhtm ">
<descri pti on>DVD Search: #{search. searchPattern}</description>
<transition to="browse"/>
<transition name="checkout" to="checkout"/>

</ page>

<page nane="checkout" vi ewid="/checkout.xhtm ">
<descri pti on>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="conpl ete" to="conplete"/>

</ page>

<page nane="conpl ete" vi ewid="/conplete.xhtm ">
<end- conversation />
</ page>

</ pagef | owdefinition>

JBoss Seam 1.1.6.GA 89

Conversations and workspace management

6.7.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets you switch to
any current conversation, or to any other page of the application:

<h: sel ect OneMenu val ue="#{sw t cher. conversati onl dO Qut cone}" >
<f:selectltemitenliabel ="Find | ssues" itenVal ue="findl ssue"/>
<f:selectltemitenlLabel ="Create |ssue" itenVal ue="editlssue"/>
<f:selectltens val ue="#{switcher.selectltens}"/>

</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{sw tcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two additional items
that let the user begin a new conversation.

Cnmmentnnlssue['I]fc:rF'mject[HHH] —

Find lssues
Create Issue
Browse Projects
Create Project
M& | |5sue [1] for Project [HHH]

in K Project [HHH
Comment on Issue [1] for Project [HHH]

6.7.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as atable:

<h: dat aTabl e val ue="#{conversationList}" var="entry"
rendered="#{not enpty conversationList}">
<h: col um>
<f:.facet nanme="header">Wrkspace</f:facet>
<h: conmandLi nk action="#{entry.sel ect}" value="#{entry.description}"/>
<h: out put Text val ue="[current]" rendered="#{entry.current}"/>
</ h: col um>
<h: col utm>
<f:facet nane="header">Activity</f:facet>
<h: out put Text val ue="#{entry.startDateti ne}">
<f:convertDat eTi ne type="time" pattern="hh:mm a"/>
</ h: out put Text >
<h: out put Text val ue=" - "/>
<h: out put Text val ue="#{entry.| astDatetine}">
<f:convertDateTi ne type="time" pattern="hh:mm a"/>
</ h: out put Text >
</ h: col utm>
<h: col um>
<f:.facet nane="header">Action</f:facet>
<h: commandButton acti on="#{entry.sel ect}" val ue="#{nsg. Switch}"/>
<h: conmandBut t on acti on="#{entry. destroy}" val ue="#{nsg. Destroy}"/>
</ h: col utm>
</ h: dat aTabl e>

We imagine that you will want to customize this for your own application.

JBoss Seam 1.1.6.GA 90

Conversations and workspace management

Workspace Workspace activity Action

Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Project [HHH] 01:18 PM - 01:18 PM | Switch || Destroy |

The conversation list is nice, but it takes up alot of space on the page, so you probably don't want to put it on
every page.

Notice that the conversation list lets the user destroy workspaces.

6.7.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs are a list of
links to conversationsin the current conversation stack:

<t:dataLi st val ue="#{conversati onStack}" var="entry">

<h: out put Text val ue=" | "/>

<h: conmandLi nk val ue="#{entry. description}" action="#{entry.select}"/>
</t:dataList>

Notice that here we are using the MyFaces <t : dat aLi st > component, since JSF amazingly does not provide
any standard component for looping.

Home | Find Issues | Create Issue | Project [HHH] | |ssue [1] for Project [HHH]
—Issue Attributes |

Please refer to the Seam Issue Tracker demo to see all this functionality in action!

6.8. Seam and Servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the JSF lifecycle, so
Seam provides a servlet filter that can be applied to any servlet that needs access to Seam components.

<filter>
<filter-nane>Seam Servl et Filter</filter-name>
<filter-class>org.jboss.seamservlet. SeanServletFilter</filter-class>
</[filter>

<filter-mppi ng>
<filter-name>Seam Servlet Filter</filter-name>
<url -pattern>*.aj ax</url -pattern>
</filter-mappi ng>

This servlet filter is responsible for initializing all Seam contexts before passing control to the servlet. It expects
to find the conversation id of any conversation context in a request parameter named conver sati onl d. You are
responsible for ensuring that it gets sent in the request.

Y ou are also responsible for ensuring propagation of any new conversation id back to the client. Seam exposes
the conversation id as a property of the built in component conver sat i on.

Seam also provides the Seam Remoting framework, a simple way to expose any method of a Seam component
for invocation by an asynchronous JavaScript request simply by annotating the methods that should be access-

JBoss Seam 1.1.6.GA 91

Conversations and workspace management

ible in the client. See the Seam Remoting chapter for further information.

6.9. Seam and SOAP

TODO

JBoss Seam 1.1.6.GA

92

Chapter 7. Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM lets you rep-
resent a business process or user interaction as a graph of nodes representing wait states, decisions, tasks, web
pages, etc. The graph is defined using asimple, very readable, XML dialect caled jPDL, and may be edited and
visualised graphically using an eclipse plugin. jPDL is an extensible language, and is suitable for a range of
problems, from defining web application page flow, to traditional workflow management, al the way up to or-
chestration of servicesin a SOA environment.

Seam applications use jBPM for two different problems:

» Defining the pageflow involved in complex user interactions. A jPDL process definition defines the page
flow for a single conversation. A Seam conversation is considered to be a relatively short-running interac-
tion with asingle user.

« Defining the overarching business process. The business process may span multiple conversations with
multiple users. Its state is persistent in the jJBPM database, so it is considered long-running. Coordination of
the activities of multiple users is a much more complex problem than scripting an interaction with a single
user, so jBPM offers sophisticated facilities for task management and dealing with multiple concurrent
paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity. Pageflow, conversa-
tion and task all refer to a single interaction with a single user. A business process spans many tasks. Futher-
more, the two applications of jBPM are totally orthogonal. Y ou can use them together or independently or not
at all.

Y ou don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using JSF or Seam nav-
igation rules, and if your application is more data-driven that process-driven, you probably don't need jBPM.
But we're finding that thinking of user interaction in terms of a well-defined graphical representation is helping
us build more robust applications.

7.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

e Using JSF or Seam navigation rules - the statel ess navigation model
e Using jPDL - the stateful navigation model
Very simple applications will only need the stateless navigation model. Very complex applications will use

both models in different places. Each model hasits strengths and weaknesses!

7.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly to the result-
ing page of the view. The navigation rules are entirely oblivious to any state held by the application other than
what page was the source of the event. This means that your action listener methods must sometimes make de-
cisions about the page flow, since only they have access to the current state of the application.

Here is an example page flow definition using JSF navigation rules:

JBoss Seam 1.1.6.GA 93

Pageflows and business processes

<navi gati on-rul e>
<fromvi ew i d>/ nunber Guess. j sp</fromvi ewid>

<navi gati on- case>
<f r om out cone>guess</from out come>
<t 0-vi ew i d>/ nunber Quess. j sp</to-vi ewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f r om out conme>w n</ f r om out cone>
<to-viewid>wn.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f rom out cone>| ose</from out cone>
<to-viewid>/|ose.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

</ navi gati on-rul e>

Here is the same example page flow definition using Seam navigation rules:

<page vi ew i d="/nunber Guess.jsp">

<navi gati on>
<rul e if-outconme="guess">
<redirect viewid="/nunberGuess.jsp"/>
</rul e>
<rul e if-outcome="w n">
<redirect viewid="/win.jsp"/>
</rul e>
<rule if-outcome="|ose">
<redirect viewid="/|ose.jsp"/>
</rul e>
</ navi gati on- case>

</ navi gati on-rul e>

If you find navigation rules overly verbose, you can return view ids directly from your action listener methods:

public String guess() {
i f (guess==randomNunber) return "/w n.jsp";
i f (++guessCount ==maxCGuesses) return "/l ose.jsp";
return null;

Note that thisresultsin aredirect. Y ou can even specify parameters to be used in the redirect:
public String search() {

return "/searchResul ts.jsp?searchPattern=#{searchActi on. searchPattern}";
}

The stateful model defines a set of transitions between a set of named, logical application states. In this model,
it is possible to express the flow of any user interaction entirely in the jPDL pageflow definition, and write ac-
tion listener methods that are compl etely unaware of the flow of the interaction.

Here is an example page flow definition using jPDL.:

<pagef | ow defi niti on name="nunber Guess" >

<start-page name="di spl ayGuess" viewid="/nunber Guess. jsp">
<redirect/>

JBoss Seam 1.1.6.GA 94

Pageflows and business processes

<transition name="guess" to="eval uat eGuess">
<action expressi on="#{nunber Guess. guess}" />
</transition>
</start-page>

<deci si on nane="eval uat eGuess" expressi on="#{nunber Guess. correct GQuess}">
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRenui ni ngGuesses"/ >

</ deci si on>

<deci si on nane="eval uat eRenai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}">
<transition name="true" to="Iose"/>
<transition name="fal se" to="displayCGuess"/>

</ deci si on>

<page nanme="wi n" viewid="/win.jsp">
<redirect/>
<end- conversation />

</ page>

<page nane="l| ose" viewid="/lose.jsp">
<redirect/>
<end- conversation />

</ page>

</ pagef | ow definition>

= 0| B= outline 52 = B8
R
o ==5tart State=> +- @ numberGuess
O Start i
C?Decision
=
El Page |T§| quaQe::::
—+ Transition displayGuess
gQuess falze
5 ==Decision== false = ==Decision==
'Je\ralualeGuess : evaluateRemainingGuesses
frue frue
quaQe:::: ?El {{Page}::
win lose
Diagram | Design | Source

There are two things we notice immediately here:

» The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the underlying Java
code is more complex.)

» The jPDL makes the user interaction immediately understandable, without us needing to even look at the
JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the page flow), there are

JBoss Seam 1.1.6.GA 95

Pageflows and business processes

aconstrained set of possible transitions to other states. The stateless model is an ad hoc model which is suitable
to relatively unconstrained, freeform navigation where the user decides where he/she wants to go next, not the
application.

The stateful/stateless navigation distinction is quite similar to the traditional view of modal/modeless interac-
tion. Now, Seam applications are not usually modal in the simple sense of the word - indeed, avoiding applica
tion modal behavior is one of the main reasons for having conversations! However, Seam applications can be,
and often are, modal at the level of aparticular conversation. It is well-known that modal behavior is something
to avoid as much as possible; it is very difficult to predict the order in which your users are going to want to do
things! However, there is no doubt that the stateful model hasiits place.

The biggest contrast between the two models is the back-button behavior.

7.1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back, forward and re-
fresh buttons. It is the responsibility of the application to ensure that conversational state remains internally
consistent when this occurs. Experience with the combination of web application frameworks like Struts or
WebWork - that do not support a conversational model - and statel ess component models like EJB statel ess ses-
sion beans or the Spring framework has taught many devel opers that thisis close to impossible to do! However,
our experience is that in the context of Seam, where there is a well-defined conversational model, backed by
stateful session beans, it is actually quite straightforward. Usually it is as simple as combining the use of no-
conver sati on-vi ewi d with null checks at the beginning of action listener methods. We consider support for
freeform navigation to be almost always desirable.

In this case, the no- conver sati on-vi ewi d declaration goesin pages. xni . It tells Seam to redirect to a differ-
ent page if arequest originates from a page rendered during a conversation, and that conversation no longer ex-
ists:

<page vi ewid="/checkout.xhtm "
no- conversation-vi ewid="/min. xhtm "/>

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition back to a previ-
ous state. Since the stateful model enforces a defined set of transitions from the current state, back buttoning is
be default disallowed in the stateful model! Seam transparently detects the use of the back button, and blocks
any attempt to perform an action from a previous, "stale" page, and simply redirects the user to the "current"
page (and displays a faces message). Whether you consider this a feature or a limitation of the stateful model
depends upon your point of view: as an application developer, it is a feature; as a user, it might be frustrating!
Y ou can enable backbutton navigation from a particular page node by setting back="enabl ed" .

<page nane="checkout"
vi ew i d="/ checkout . xht m "
back="enabl ed" >
<redirect/>
<transition to="checkout"/>
<transition name="conpl ete" to="conplete"/>
</ page>

This allows backbuttoning fromthe checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered during a pageflow,
and the conversation with the pageflow no longer exists. In this case, the no- conversati on- vi ewi d declara-
tion goes into the pageflow definition:

<page nane="checkout"
vi ewi d="/ checkout . xhtm "

JBoss Seam 1.1.6.GA 96

Pageflows and business processes

back="enabl ed"
no- conversation-vi ewid="/min. xhtnm ">
<redirect/>
<transition to="checkout"/>
<transition name="conpl ete" to="conplete"/>
</ page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when to prefer one
model over the other.

7.2. Using jPDL pageflows

7.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and tell them where to find our pageflow definition.
We can specify this Seam configuration in conponent s. xni .

<conponent cl ass="org.jboss. seam core. Jbpni' >
<property name="pagefl| owDefi ni ti ons">pagefl ow. jpdl.xm </ property>
</ conponent >

Thefirst lineinstalls jBPM, the second points to ajPDL-based pageflow definition.

7.2.2. Starting pageflows

We "start” a jPDL-based pageflow by specifying the name of the process definition using a @segin,
@Begi nTask Or @t ar t Task annotation:

@egi n(pagef | ow="nunber guess")
public void begin() { ... }

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @act ory Of @r eat e method,
for example—we consider ourselves to be aready at the page being rendered, and use a <st ar t - page> node as
the first node in the pageflow, as in the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action listener de-
termines which is the first page to be rendered. In this case, we use a<start - st at e> as the first node in the
pageflow, and declare atransition for each possible outcome:

<pagef | owdefi niti on nanme="vi ewkdi t Docunent " >

<start-state name="start">
<transition name="docunent Found" to="di spl ayDocunent"/>
<transition name="docunent Not Found" to="not Found"/>
</start-state>

<page nane="di spl ayDocunent" vi ewi d="/docunent.jsp">
<transition name="edit" to="editDocunent"/>
<transition nane="done" to="nain"/>

</ page>

<page name="not Found" viewid="/404.jsp">
<end- conversati on/ >
</ page>

JBoss Seam 1.1.6.GA 97

Pageflows and business processes

</ pagef | ow definition>

7.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page name="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<redirect/>
<transiti on name="guess" to="eval uat eGuess" >
<action expression="#{nunber Guess. guess}" />
</transition>
</ page>

Thevi ewi d isthe JSF view id. The <r edi r ect / > element has the same effect as <r edi rect / > in a JSF naviga-
tion rule: namely, a post-then-redirect behavior, to overcome problems with the browser's refresh button. (Note
that Seam propagates conversation contexts over these browser redirects. So there is no need for a Ruby on
Rails style "flash" construct in Seam!)

The transition hame is the name of a JSF outcome triggered by clicking a command button or command link in
nunber Guess. j sp.

<h: conmandBut t on type="submit" val ue="CGuess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action by calling the
guess() method of the nunber Guess component. Notice that the syntax used for specifying actionsin the jPDL
isjust afamiliar JSF EL expression, and that the transition action handler is just a method of a Seam compon-
ent in the current Seam contexts. So we have exactly the same event model for jBPM events that we already
have for JSF events! (The One Kind of Stuff principle.)

In the case of a null outcome (for example, a command button with no acti on defined), Seam will signal the
transition with no name if one exists, or else simply redisplay the page if all transitions have names. So we
could dlightly simplify our example pageflow and this button:

<h: conmandButt on type="subm t" val ue="CGuess"/>

Would fire the following un-named transition:

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess.jsp">
<redirect/>
<transition to="eval uat eGuess">
<action expression="#{nunber Guess. guess}" />
</transition>
</ page>

It is even possible to have the button call an action method, in which case the action outcome will determine the
transition to be taken:

<h: commandBut t on type="subnmit" val ue="CGuess" action="#{nunber Guess. guess}"/>

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess.jsp">
<transition name="correct Guess" to="w n"/>
<transition nane="incorrect Guess" to="eval uat eGuess"/>
</ page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow out of the
pageflow definition and back into the other components. It is much better to centralize this concern in the page-

JBoss Seam 1.1.6.GA 98

Pageflows and business processes

flow itself.

7.2.4. Controlling the flow

Usualy, we don't need the more powerful features of jPDL when defining pageflows. We do need the
<deci si on> node, however:

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}">
<transition name="true" to="win"/>
<transition name="fal se" to="eval uat eRerai ni ngGuesses"/ >

</ deci si on>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

7.2.5. Ending the flow

We end the conversation using <end- conver sati on> or @nd. (In fact, for readability, use of both is encour-
aged.)

<page nanme="wi n" viewid="/win.jsp">
<redirect/>
<end- conversation/ >

</ page>

Optionally, we can end a task, specify ajBPM transi ti on name. In this case, Seam will signal the end of the
current task in the overarching business process.

<page name="w n" viewid="/wn.jsp">
<redirect/>
<end-task transition="success"/>
</ page>

7.3. Business process management in Seam

A business processis awell-defined set of tasks that must be performed by users or software systems according
to well-defined rules about who can perform atask, and when it should be performed. Seam's jBPM integration
makes it easy to display lists of tasks to users and let them manage their tasks. Seam also lets the application
store state associated with the business process in the BUsI NESS_PROCESS context, and have that state made per-
sistent viajBPM variables.

A simple business process definition looks much the same as a page flow definition (One Kind of Stuff), except
that instead of <page> nodes, we have <t ask- node> nodes. In a long-running business process, the wait states
are where the system is waiting for some user to log in and perform atask.

<process-definition nane="t odo" >

<start-state nanme="start">
<transition to="todo"/>
</start-state>

<t ask- node name="t odo" >
<task nane="todo" description="#{todoLi st.description}">
<assignment actor-id="#{actor.id}"/>
</ task>
<transition to="done"/>
</t ask- node>

JBoss Seam 1.1.6.GA 99

Pageflows and business processes

<end- st at e nane="done"/ >

</ process-definition>

G resources X = O || = properties 2 ™3 =B
o | =

[:3 Select | E | 2
3, Margquee =
g <<Start State>> Property Value
2 start o ctart \ame
o state 1 Source start
_
enc i Target todo
#f2 Fork
she Join v <<Task Node>>
7 Decision = todo
MNode
¥ Task Node
—+ Transition
==<fnd State==

done

Diagram | Swimlanes Design | Source

It is perfectly possible that we might have both jPDL business process definitions and jPDL pageflow defini-
tions in the same project. If so, the relationship between the two is that a single <t ask> in a business process
corresponds to a whole pageflow <pagef | ow def i ni ti on>

7.4. Using jPDL business process definitions

7.4.1. Installing process definitions

We need to ingtall jBPM, and tell it where to find the business process definitions:

<conponent cl ass="org.] boss. seam core. Jbpni' >
<property nane="processDefinitions">todo.jpdl.xn </property>
</ conponent >

7.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and group act-
or ids. We specify the current actor ids using the built in Seam component named act or :

@n Actor actor;

public String login() {

actor.setld(user.getUserName());
actor.get G oupActorlds().addAl | (user.get GoupNames());

JBoss Seam 1.1.6.GA 100

Pageflows and business processes

7.4.3. Initiating a business process

To initiate a business process instance, we use the @ eat ePr ocess annotation:

@cr eat eProcess(definition="todo")
public void createTodo() { ... }

7.4.4. Task assignment

When a process starts, task instances are created. These must be assigned to users or user groups. We can either
hardcode our actor ids, or delegate to a Seam component:

<task nane="todo" description="#{todoLi st.description}">
<assignnment actor-id="#{actor.id}"/>
</ task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to a pool:

<task name="t odo" description="#{todoList.description}">
<assi gnnment pool ed- act or s="enpl oyees"/ >
</ task>

7.4.5. Task lists

Several built-in Seam components make it easy to display task lists. The pool edTaskl! nst anceLi st isalist of
pooled tasks that users may assign to themselves:

<h: dat aTabl e val ue="#{ pool edTaskl nst anceLi st}" var="task">
<h: col utm>
<f:facet name="header">Description</f:facet>
<h: out put Text val ue="#{t ask. description}"/>
</ h: col utm>
<h: col um>
<s:link action="#{pool edTask. assi gnToCurrent Actor}" val ue="Assign" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>

Note that instead of <s: | i nk> we could have used a plain JSF <h: commandLi nk>:

<h: conmandLi nk acti on="#{pool edTask. assi gnToCurrent Actor}">
<f: param nanme="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>

The pool edTask component is a built-in component that simply assigns the task to the current user.

The t askl nst anceLi st ByType component includes tasks of a particular type that are assigned to the current
user:

<h: dat aTabl e val ue="#{t askl nst ancelLi st ByType['todo']}" var="task">
<h: col utm>
<f:facet nanme="header">Description</f:facet>
<h: out put Text val ue="#{t ask. description}"/>
</ h: col utm>
<h: col utm>
<s:link action="#{todoList.start}" value="Start Wrk" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>

JBoss Seam 1.1.6.GA 101

Pageflows and business processes

7.4.6. Performing a task

To begin work on atask, we use either @t art Task Or @egi nTask on the listener method:

@t art Task
public String start() { ... }

These annotations begin a specia kind of conversation that has significance in terms of the overarching busi-
ness process. Work done by this conversation has access to state held in the business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@ndTask(transition="conpl eted")
public String conpleted() { ... }

(Alternatively, we could have used <end- conver sat i on> as shown above.)

At this point, jBPM takes over and continues executing the business process definition. (In more complex pro-
cesses, several tasks might need to be completed before process execution can resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features that jBPM
provides for managing complex business processes.

JBoss Seam 1.1.6.GA 102

Chapter 8. Seam and Object/Relational Mapping

Seam provides extensive support for the two most popular persistence architectures for Java: Hibernate3, and
the Java Persistence APl introduced with EJB 3.0. Seam's unique state-management architecture allows the
most sophisticated ORM integration of any web application framework.

8.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of the previous generation
of Java application architectures. The state management architecture of Seam was originally designed to solve
problems relating to persistence—in particular problems associated with optimistic transaction processing.
Scalable online applications always use optimistic transactions. An atomic (database/JTA) level transaction
should not span a user interaction unless the application is designed to support only a very small number of
concurrent clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence context which
spanned an optimistic transaction.

Unfortunately, the so-called "stateless' architectures that preceded Seam and EJB 3.0 had no construct for rep-
resenting an optimistic transaction. So, instead, these architectures provided persistence contexts scoped to the
atomic transaction. Of course, this resulted in many problems for users, and is the cause of the number one user
complaint about Hibernate: the dreaded Lazy! ni ti al i zat i onExcepti on. What we need is a construct for rep-
resenting an optimistic transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful session bean) with
an extended persistence context scoped to the lifetime of the component. Thisis a partial solution to the prob-
lem (and is auseful construct in and of itself) however there are two problems:

e Thelifecycle of the stateful session bean must be managed manually via code in the web tier (it turns out
that thisis a subtle problem and much more difficult in practice than it sounds).

e Propagation of the persistence context between stateful components in the same optimistic transaction is
possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components scoped to the
conversation. (Most conversations actually represent optimistic transactions in the data layer.) Thisis sufficient
for many simple applications (such as the Seam booking demo) where persistence context propagation is not
needed. For more complex applications, with many loosly-interacting components in each conversation,
propagation of the persistence context across components becomes an important issue. So Seam extends the
persistence context management model of EJB 3.0, to provide conversation-scoped extended persistence con-
texts.

8.2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start a transaction
transparently when the bean is invoked, and end it when the invocation ends. If we write a session bean method
that acts as a JSF action listener, we can do al the work associated with that action in one transaction, and be
surethat it is committed or rolled back when we finish processing the action. Thisis a great feature, and all that
is needed by some Seam applications.

JBoss Seam 1.1.6.GA 103

Seam and Object/Relational Mapping

However, there is a problem with this approach. A Seam application may not perform all data access for are-
quest from a single method call to a session bean.

e The request might require processing by several 1oody-coupled components, each of which is called inde-
pendently from the web layer. It is common to see several or even many calls per request from the web lay-
er to EJB components in Seam.

¢ Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation problems when
our application is processing many concurrent requests. Certainly, all write operations should occur in the same
transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In the Hibernate
community, "open session in view" was historically even more important because frameworks like Spring use
transaction-scoped persistence contexts. So rendering the view would cause Lazylniti al i zati onExcepti onS
when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request. There are several
problems with this implementation, the most serious being that we can never be sure that a transaction is suc-
cessful until we commit it—but by the time the "open session in view" transaction is committed, the view is
fully rendered, and the rendered response may aready have been flushed to the client. How can we notify the
user that their transaction was unsuccessful ?

Seam solves both the transaction isolation problem and the association fetching problem, while working around
the problems with "open session in view". The solution comesin two parts:

¢ use an extended persistence context that is scoped to the conversation, instead of to the transaction

e use two transactions per request; the first spans the beginning of the update model values phase until the
end of the invoke application phase; the second spans the render response phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But first we need to
tell you how to enable Seam transaction management. Note that you can use conversation-scoped persistence
contexts without Seam transaction management, and there are good reasons to use Seam transaction manage-
ment even when you're not using Seam-managed persistence contexts. However, the two facilities were de-
signed to work together, and work best when used together.

8.2.1. Enabling Seam-managed transactions

To make use of Seam managed transactions, you need to use Transact i onal SeanPhaseli st ener in place of
SeanPhaseli st ener.

<lifecycl e>
<phase-|i st ener>
org.j boss. seam j sf. Transact i onal SeanPhaselLi st ener
</ phase-1|i st ener>
</lifecycle>

Seam transaction management is useful even if you're using EJB 3.0 container-managed persistence contexts.
But it is especially useful if you use Seam outside a Java EE 5 environment, or in any other case where you
would use a Seam-managed persistence context.

JBoss Seam 1.1.6.GA 104

Seam and Object/Relational Mapping

8.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE 5 environment, you can't rely upon the container to manage the per-
sistence context lifecycle for you. Even if you are in an EE 5 environment, you might have a complex applica-
tion with many loosly coupled components that collaborate together in the scope of a single conversation, and
in this case you might find that propagation of the persistence context between component is tricky and error-
prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session (for Hibernate)
in your components. A Seam-managed persistence context is just a built-in Seam component that manages an
instance of Ent i t yManager Of Sessi on in the conversation context. You can inject it with @ n.

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam is able to perform
an optimization that EJB 3.0 specification does not allow containers to use for container-managed extended
persistence contexts. Seam supports transparent failover of extended persisence contexts, without the need to
replicate any persistence context state between nodes. (We hope to fix this oversight in the next revision of the
EJB spec.)

8.3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In conponent s. xni , we can write:

<cor e: managed- per si st ence- cont ext nane="booki ngDat abase"
auto-create="true"
persi stence-unit-jndi-nane="java:/EntityManager Fact ori es/ booki ngDhat a"/ >

This configuration creates a conversation-scoped Seam component named booki ngDat abase that manages the
lifecycle of EntityManager instances for the persistence unit (EntityManager Fact ory instance) with JNDI
namej ava: / Enti t yManager Fact ori es/ booki ngDat a.

Of course, you need to make sure that you have bound the Enti t yManager Fact ory into JNDI. In JBoss, you
can do this by adding the following property setting to per si st ence. xm .

<property nane="jboss.entity.nmanager.factory.jndi.nanme"
val ue="j ava: / Enti t yManager Fact ori es/ booki ngbDat a"/ >

Now we can have our Ent i t yManager injected using:

@n EntityManager booki ngDat abase;

8.3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions are similar. In conponent s. xm :

<cor e: hi ber nat e- sessi on-factory name="hi ber nat eSessi onFact ory"/ >
<cor e: managed- hi ber nat e- sessi on name="booki ngDat abase"

aut o-create="true"
sessi on-factory-jndi - nane="j ava: / booki ngSessi onFact ory"/ >

Wherej ava: / booki ngSessi onFact ory isthe name of the session factory specified in hi ber nate. cf g. xmi .

<sessi on-factory nane="j ava:/booki ngSessi onFact ory" >
<property nane="transaction.flush_before_conpletion">true</property>

JBoss Seam 1.1.6.GA 105

Seam and Object/Relational Mapping

<property nane="connection.rel ease_node">after_st at ement </ property>

<property nanme="transacti on. manager _| ookup_cl ass">org. hi bernate. transacti on. JBossTransact i onManag«
<property nane="transaction.factory_cl ass">org. hi bernate.transacti on. JTATransacti onFact or y</ pr opel
<property nanme="connecti on. dat asour ce">j ava: / booki ngDat asour ce</ property>

</ sessi on-factory>

Note that Seam does not flush the sesson, so you should aways enable hibern-
ate.transaction. fl ush_before_conpl eti on to ensure that the session is automatically flushed before the
JTA transaction commits.

We can now have a managed Hibernate Sessi on injected into our JavaBean components using the following
code:

@n Session booki ngDat abase;

8.3.3. Seam-managed persistence contexts and atomic conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions that span mul-
tiple requests to the server without the need to use the ner ge() operation , without the need to re-load data at
the beginning of each request, and without the need to wrestle with the Lazyl niti al i zati onException Of
NonUni queObj ect Excepti on.

As with any optimistic transaction management, transaction isolation and consistency can be achieved via use
of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy to use optimistic locking, by
providing the @/er si on annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of each transaction.
This is sometimes the desired behavior. But very often, we would prefer that all changes are held in memory
and only written to the database when the conversation ends successfully. This alows for truly atomic conver-
sations. As the result of atruly stupid and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase
members of the EJB 3.0 expert group, there is currently no simple, usable and portable way to implement atom-
ic conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor extension to
the FI ushmodeTypes defined by the specification, and it is our expectation that other vendors will soon provide
asimilar extension.

Seam lets you specify Fl ushMbdeType. MANUAL When beginning a conversation. Currently, this works only when
Hibernate is the underlying persistence provider, but we plan to support other equivalent vendor extensions.

@n EntityManager em //a Seam nmanaged persi stence context

@egi n(f | ushMode=MANUAL)
public void begi nCl ai MW zard() {

claim= emfind(daimclass, claind);
}

Now, the cl ai m object remains managed by the persistence context for the rest ot the conversation. We can
make changes to the claim:

public void addPartyTod ai m() {
Party party =;
cl ai maddParty(party);

}

But these changes will not be flushed to the database until we explicitly force the flush to occur:

JBoss Seam 1.1.6.GA 106

Seam and Object/Relational Mapping

@nd

public void conmitd ainm() {
em flush();

}

8.4. Using the JPA "delegate"

The Enti t yManager interface lets you access a vendor-specific APl via the get Del egat e() method. Naturally,
the most interesting vendor is Hibernate, and the most powerful delegate interface is or g. hi ber nat e. Sessi on.
Y ou'd be nuts to use anything else. Trust me, I'm not biased at all.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just not very
bright), you'll almost certainly want to use the delegate in your Seam components from time to time. One ap-
proach would be the following:

@n EntityManager entityManager;

@r eat e
public void init() {
((Session) entityManager.getDel egate()).enabl eFilter("currentVersions");

}

But typecasts are unguestionably the ugliest syntax in the Java language, so most people avoid them whenever
possible. Here's a different way to get at the delegate. First, add the following line to conponent s. xn :

<factory name="session"
scope="STATELESS"
aut o-create="true"
val ue="#{enti tyManager . del egate}"/ >

Now we can inject the session directly:

@n Session session;

@Cr eat e
public void init() {
sessi on. enabl eFi |l ter ("current Versions");

}

8.5. Using Hibernate filters

The coolest, and most unique, feature of Hibernate isfilters. Filters let you provide arestricted view of the data
in the database. Y ou can find out more about filters in the Hibernate documentation. But we thought we'd men-
tion an easy way to incorporate filters into a Seam application, one that works especialy well with the Seam
Application Framework.

Seam-managed persistence contexts may have alist of filters defined, which will be enabled whenever an En-
tityManager or Hibernate Sessi on is first created. (Of course, they may only be used when Hibernate is the
underlying persistence provider.)

<core:filter name="regionFilter">
<cor e: name>r egi on</ cor e: nanme>
<cor e: par anet er s>
<key>r egi onCode</ key>
<val ue>#{r egi on. code} </ val ue>
</ core: par anet er s>

JBoss Seam 1.1.6.GA 107

Seam and Object/Relational Mapping

</core:filter>

<core:filter nane="currentFilter">
<cor e: name>cur r ent </ cor e: nanme>
<cor e: par anet er s>
<key>dat e</ key>
<val ue>#{ current Dat e} </ val ue>
</ core: par anet er s>
</core:filter>

<cor e: managed- per si st ence- cont ext nane="per sonDat abase"
persi stence-unit-jndi-nane="java:/EntityManager Fact ori es/ per sonDat abase" >
<core:filters>
<val ue>#{regionFilter}</val ue>
<val ue>#{currentFilter}</val ue>
</core:filters>
</ cor e: managed- per si st ence- cont ext >

JBoss Seam 1.1.6.GA 108

Chapter 9. JSF form validation in Seam

In plain JSF, validation is defined in the view:

<h: f ormp

<di v>
<h: nessages/ >

</ di v>

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true">

<ny: val i dat eCountry/ >

</ h:i nput Text >

</div>
<di v>
Zi p code:

<h:i nput Text val ue="#{l ocati on. zi p}" required="true">
<ny:val i dat ezi p/ >

</ h: i nput Text >

</div>

<di v>
<h: conmandBut t on/ >

</ di v>

</ h: fornme

In practice, this approach usually violates DRY, since most "validation" actually enforces constraints that are
part of the data model, and exist all the way down to the database schema definition. Seam provides support for
model-based constraints defined using Hibernate Validator.

Let's start by defining our constraints, on our Locat i on class:

public class Location {
private String country;
private String zip;

@\ot Nul |

@engt h(nax=30)

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@\ot Nul |

@.engt h(max=6)

@attern(" N\ d*$")

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints instead of the
ones built into Hibernate Validator:

public class Location {
private String country;
private String zip;

@\ot Nul |

@ountry

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@lot Nul |

@i pCode

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

JBoss Seam 1.1.6.GA 109

JSF form validation in Seam

Whichever route we take, we no longer need to specify the type of validation to be used in the JSF page. In-
stead, we can use<s: val i dat e> t0 validate against the constraint defined on the model object.

<h: f or m»

<di v>
<h: messages/ >

</ di v>

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true">

<s:validate/>

</ h:i nput Text >

</ di v>
<di v>
Zi p code:

<h:i nput Text val ue="#{l ocation. zip}" required="true">
<s:validate/>
</ h:i nput Text >
</ di v>
<di v>
<h: conmandBut t on/ >
</ di v>
</ h: fornmp

Note: specifying @ot Nul I on the model does not eliminate the requirement for r equi red="t rue" to appear on
the control! Thisis due to alimitation of the JSF validation architecture.

Thisversion is not much less verbose than what we started with, so let'stry <s: val i dat eAl | >:

<h: f or mp
<di v>
<h: messages/ >
</ di v>
<s:validateAll >
<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true"/>
</div>
<di v>
Zi p code:
<h:i nput Text val ue="#{l ocation. zi p}" required="true"/>
</ di v>
<di v>
<h: conmandBut t on/ >
</ di v>
</s:validateAll>
</ h: fornm

Thistag simply adds an <s: val i dat e> to every input in the form. For alarge form, it can save alot of typing!

Now we need to do something about displaying feedback to the user when validation fails. Currently we are
displaying all messages at the top of the form. What we would really like to do is display the message next to
the field with the error (this is possible in plain JSF), highlight the field (this is not possible) and, for good
measure, display some image next the the field (also not possible).

Let'stry out <s: decor at e>:

<h: f or >
<di v>
<h: nessages gl obal Onl y="true"/>
</ di v>
<s:validateAl >
<di v>
Country:
<s:decorat e>

JBoss Seam 1.1.6.GA 110

JSF form validation in Seam

<f:facet nanme="beforel nvalidFi el d"><h: graphi cl mage src="ing/error.gif"/></f:facet>
<f:facet nane="afterlnvalidFi el d"><s: message/ ></f:facet >
<f:facet nanme="aroundl nval i dFi el d"><s: span styl eC ass="error"/></f:facet>
<h:i nput Text val ue="#{l ocati on.country}" required="true"/>
</ s: decor at e>

</ di v>
<di v>
Zi p code:

<s: decor at e>
<f:facet nane="beforel nvalidFi el d"><h: graphi cl mage src="ing/error.gif"/></f:facet>
<f:facet name="afterlnvalidFiel d'><s: nessage/ ></f: facet>
<f:facet nane="aroundl nval i dFi el d"><s:span styl eC ass="error"/></f:facet>
<h:i nput Text val ue="#{location. zip}" required="true"/>
</ s: decor at e>
</div>
<di v>
<h: conmandBut t on/ >
</ di v>
</s:validateAll>
</ h: fornmp

Well, that looks much better to the user, but it is extremely verbose. Fortunately, the facets of <s: decor at e>
may be defined on any parent element:

<h: f or m»

<f:facet nanme="beforelnvalidFiel d">
<h: graphi cl nage src="ing/error.gif"/>

</f:facet>

<f:facet nane="afterlnvalidField">
<s: message/ >

</f:facet>

<f:facet nanme="aroundl nvali dFi el d">
<s:span styleC ass="error"/>

</f:facet>
<di v>
<h: messages gl obal Onl y="true"/>
</ di v>
<s:val i dateAl | >
<di v>
Country:

<s: decor at e>
<h:i nput Text val ue="#{l ocation.country}" required="true"/>
</ s: decor at e>

</div>
<di v>
Zi p code:

<s: decor at e>
<h:i nput Text val ue="#{l ocati on. zi p}" required="true"/>

</ s: decor at e>

</ di v>

<di v>
<h: commandBut t on/ >

</ di v>

</s:validateAll>
</ h: fornp

This approach defines constraints on the model, and presents constraint violations in the view—a significantly
better design.

Finally, we can use Ajax4JSF to display validation messages as the user is typing:

<h: f or m»
<f:facet nanme="beforelnvalidFiel d">
<h: graphi cl mage src="ing/error.gif"/>
</f:facet>
<f:facet nanme="aroundl nval i dFi el d">
<s:span styleC ass="error"/>

JBoss Seam 1.1.6.GA 111

JSF form validation in Seam

</f:facet>

<di v>
<h: messages gl obal Onl y="true"/>
</ di v>
<s:validateAll >
<di v>
Country:
<s:decor at e>
<h:i nput Text val ue="#{l ocation.country}" required="true">
<a: support event="onblur" reRender="countryError"/>
</ h:i nput Text >
<a: out put Panel id="countryError><s: message/ ></ a: out put Panel >
</ s: decor at e>
</ di v>
<di v>
Zi p code
<s:decorat e>
<h:i nput Text val ue="#{l ocation. zi p}" required="true">
<a:support event="onblur" reRender="zipError"/>
</ h: i nput Text >
<a: out put Panel id="zi pError><s: message/ ></ a: out put Panel >
</ s: decor at e>
</ di v>
<di v>
<h: conmandBut t on/ >
</ di v>
</s:validateAll>
</ h: form

JBoss Seam 1.1.6.GA 112

Chapter 10. The Seam Application Framework

Seam makes it really easy to create applications by writing plain Java classes with annotations, which don't
need to extend any special interfaces or superclasses. But we can simplify some common programming tasks
even further, by providing a set of pre-built components which can be re-used either by configuration in com
ponents. xn (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing basic database
access in aweb application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes that are easy to
understand and extend. The "magic" is in Seam itself—the same magic you use when creating any Seam ap-
plication even without using this framework.

10.1. Introduction

The components provided by the Seam application framework may be used in one of two different approaches.
The first way is to install and configure an instance of the component in conponents. xm , just like we have
done with other kinds of built-in Seam components. For example, the following fragment from conpon-
ents. xm installs acomponent which can perform basic CRUD operations for a Cont act entity:

<framework: entity-home nane="personHone"
entity-cl ass="eg. Person"
entity- manager =" #{ per sonDat abase}" >
<f ramewor k: i d>#{ par am per sonl d} </ f ranewor k: i d>
</framework: entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@5t at ef ul

@Nane(" per sonHone")

public class PersonHonme extends EntityHome<Person> i npl enents Local Per sonHore {
@Request Paranmeter String personld;
@n EntityManager personDat abase;

public Qoject getld() { return personld; }
public EntityManager getEntityManager() { return personDatabase; }

The second approach has one huge advantage: you can easily add extra functionality, and override the built-in
functionality (the framework classes were carefully designed for extension and customization).

A second advantage is that your classes may be EJB stateful sessin beans, if you like. (They do not have to be,
they can be plain JavaBean componentsif you prefer.)

At this time, the Seam Application Framework provides just four built-in components. Enti t yHome and Hi -
ber nat eEnt i t yHome for CRUD, along with Ent i t yQuery and Hi ber nat eEnt i t yQuery for queries.

The Home and Query components are written so that they can function with a scope of session, event or con-
versation. Which scope you use depends upon the state model you wish to usein your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By default, the com-
ponents will ook for a persistence context named ent i t yManager .

JBoss Seam 1.1.6.GA 113

The Seam Application Framework

10.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our trusty Per son
class:

@ntity

public class Person {
@d private Long id;
private String firstName;
private String |astName;
private Country nationality;

/lgetters and setters...

We can define a per sonHone component either via configuration:

<franmewor k: entity- home nane="personHome" entity-class="eg. Person" />

Or viaextension:

@Nane(" per sonHone")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: per si st (), renove() , updat e() and get I nst ance() . Before
you can call therenove(), or updat e() operations, you must first set the identifier of the object you are inter-
ested in, using the set 1 d() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</hl>
<h: f ormp
<di v>Fi rst name: <h:inputText val ue="#{personHone.instance.firstName}"/></div>
<di v>Last name: <h:inputText val ue="#{personHone.instance.|astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}"/>
</ di v>
</ h:formr

Usually, it is much nicer to be able to refer to the Person merely as person, S0 let's make that possible by
adding aline to conponent s. xm :

<factory name="person"
val ue="#{ per sonHone. i nst ance}"/ >

<framework: entity-honme nane="personHone"
entity-cl ass="eg. Person" />

(If we are using configuration.) Or by adding a @act ory method to Per sonHonre:

@Nane(" per sonHonme")
public class PersonHone extends EntityHone<Person> {

@ actory("person")
public Person initPerson() { return getlnstance(); }

(If we are using extension.) This change simplifies our JSF page to the following:

JBoss Seam 1.1.6.GA 114

The Seam Application Framework

<h1>Cr eat e Person</hil>
<h: f or e
<di v>Fi rst name: <h:inputText val ue="#{person.firstNane}"/></div>
<di v>Last name: <h:inputText val ue="#{person.|astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}"/>
</ di v>
</ h:formp

WEell, that lets us create new Per son entries. Yes, that isall the code that is required! Now, if we want to be able
to display, update and delete pre-existing Per son entries in the database, we need to be able to pass the entry
identifier to the Per sonHone. Page parameters are a great way to do that:

<pages>
<page vi ew d="/editPerson.jsp">
<par am nane="per sonl d" val ue="#{personHone.id}"/>
</ page>
</ pages>

Now we can add the extra operations to our JSF page:

<hl>
<h: out put Text render ed="#{! per sonHone. nanaged}" val ue="Create Person"/>
<h: out put Text render ed="#{per sonHonme. managed}" val ue="Edit Person"/>
</ h1>
<h: f or m»
<di v>Fi rst name: <h:inputText val ue="#{person.firstNane}"/></div>
<di v>Last nane: <h:inputText val ue="#{person.| astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}" rendered="#{! personHone.
<h: commandBut t on val ue="Updat e Person" acti on="#{personHone. update}" rendered="#{personHone. m
<h: conmandBut t on val ue="Del ete Person" action="#{personHone. renove}" rendered="#{personHone. m
</ div>
</ h: fornmp

When we link to the page with no request parameters, the page will be displayed as a "Create Person" page.
When we provide avalue for the per sonl d request parameter, it will be an "Edit Person" page.

Suppose we need to create Per son entries with their nationality initialized. We can do that easily, via configura-
tion:

<factory name="person"
val ue="#{per sonHone. i nst ance}"/ >

<franewor k: enti ty- honme nane="per sonHone"
entity-cl ass="eg. Person”
new i nst ance="#{ newPer son}"/ >
<conponent nane="newPer son"
cl ass="eg. Person" >

<property nane="nationality">#{country}</property>
</ conponent >

Or by extension:

@ame(" per sonHone")
public class PersonHonme extends EntityHome<Person> {

@n Country country;

@ actory("person")
public Person initPerson() { return getlnstance(); }

protected Person createl nstance() {

JBoss Seam 1.1.6.GA 115

The Seam Application Framework

return new Person(country);

Of course, the count ry could be an object managed by another Home object, for example, Count r yHone.
To add more sophisticated operations (association management, etc), we can just add methods to Per sonHone.

@ame(" per sonHone")
public class PersonHonme extends EntityHome<Person> {

@n Country country;

@ actory("person")
public Person initPerson() { return getlnstance(); }

protected Person createl nstance() {
return new Person(country);

}

public void mgrate()

{
getl nstance().set Country(country);
updat e();

}

The Home object automatically displays faces messages when an operation is successful. To customize these
messages we can, again, use configuration:

<factory nane="person"
val ue="#{ per sonHone. i nst ance}"/ >

<framework: entity-home nane="personHone"
entity-cl ass="eg. Person"
new- i nst ance="#{ newPer son}" >
<framewor k: cr eat ed- message>New per son #{person. firstName} #{person.|astNanme} created</framework: cl
<framewor k: del et ed- nessage>Per son #{person. firstNane} #{person.|astNane} del et ed</franework: del et «
<f ramewor k: updat ed- message>Per son #{person. firstName} #{person.|astName} updated</framework: updat
</framework: entity-home>

<conponent name="newPer son"
cl ass="eg. Person" >
<property name="nationality">#{country}</property>
</ conponent >

Or extension:

@Nane(" per sonHone")
public class PersonHone extends EntityHone<Person> {

@n Country country;

@actory("person")
public Person initPerson() { return getlnstance(); }

prot ect ed Person createlnstance() {
return new Person(country);

}

protected String getCreatedMessage() { return "New person #{person.firstNanme} #{person.|astNane} «
protected String getUpdat edMessage() { return "Person #{person.firstNanme} #{person.|astNane} updat
protected String getDel etedMessage() { return "Person #{person.firstName} #{person.|astNane} del et

JBoss Seam 1.1.6.GA 116

The Seam Application Framework

But the best way to specify the messages is to put them in a resource bundle known to Seam (the bundle named
nessages, by default).

Per son_cr eat ed=New person #{person. firstNane} #{person.|astNane} created
Per son_del et ed=Per son #{person.firstNane} #{person.|astNane} del eted
Per son_updat ed=Per son #{person. first Nane} #{person.|astNanme} updated

This enabl es internationalization, and keeps your code and configuration clean of presentation concerns.

The final step is to add validation functionality to the page, using <s: val i dat eAl | > and <s: decor at e>, but ['ll
leave that for you to figure out.

10.3. Query objects

If we need alist of al Per son instance in the database, we can use a Query object. For example:

<franmewor k: enti ty-query nane="peopl e"
ej bgl ="sel ect p from Person p"/>

We can use it from a JSF page:

<h1l>Li st of peopl e</hl>
<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col utm>
<s:link viewid="/editPerson.jsp" value="#{person.firstNanme} #{person.|astNane}">
<f: param nane="personld" val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

We probably need to support pagination:

<framework: entity-query nane="peopl e"
ej bgl ="sel ect p from Person p"
order="1 ast Nane"
max-resul t s="20"/>

WEe'l use a page parameter to determine the page to display:

<pages>
<page vi ewi d="/searchPerson.jsp">
<param nane="firstResult" val ue="#{people.firstResult}"/>
</ page>
</ pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<hl>Search for peopl e</hl>
<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col utm>
<s:link viewid="/editPerson.jsp" val ue="#{person.firstNanme} #{person.|astNane}">
<f:param nane="personl d' val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

<s:link view="/search.xhtm " rendered="#{peopl e. previ ousExi sts}" val ue="First Page">
<f:param nanme="firstResult" val ue="0"/>
</s:link>

JBoss Seam 1.1.6.GA 117

The Seam Application Framework

<s:link view="/search.xhtm " rendered="#{peopl e. previ ousExi sts}" val ue="Previ ous Page">
<f:param nane="firstResul t" val ue="#{peopl e. previ ousFirstResult}"/>
</s:link>

<s:link view="/search.xhtm " rendered="#{peopl e. next Exi sts}" val ue="Next Page">
<f:param nane="firstResult" val ue="#{peopl e. next FirstResult}"/>
</s:link>

<s:link view="/search.xhtm " rendered="#{peopl e. next Exi sts}" val ue="Last Page">
<f: param nanme="first Resul t" val ue="#{people.lastFirstResult}"/>
</s:link>

Real search screens let the user enter a bunch of optional search criteria to narrow the list of results returned.
The Query object lets you specify optional "restrictions' to support this important usecase:

<conmponent nane="exanpl ePerson" cl ass="Person"/>

<framework: entity-query nane="peopl e"
ej bql ="sel ect p from Person p"
order="1 ast Nane"
max-resul t s="20">
<framework:restrictions>
<val ue>l ower (firstName) |ike |ower(#{exanpl ePerson.firstName} + '%)</val ue>
<val ue>l ower (| ast Nane) |ike | ower(#{exanpl ePerson.|astNane} + '%)</val ue>
</framework:restrictions>
</framework: entity-query>

Notice the use of an "example" object.

<hl>Search for peopl e</hl>

<h: f or mp
<di v>Fi rst name: <h:inputText val ue="#{exanpl ePerson.firstName}"/></div>
<di v>Last nane: <h:inputText val ue="#{exanpl ePerson. | ast Nane}"/></di v>
<di v><h: conmandBut t on val ue="Search" action="/search.jsp"/></div>

</ h: fornm

<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col um>
<s:link viewid="/editPerson.jsp" val ue="#{person.firstNane} #{person.|astNanme}">
<f: param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

The examples in this section have al shown reuse by configuration. However, reuse by extension is equaly
possible for Query objects.

10.4. Controller objects

A totally optional part of the Seam Application Framework is the class Control | er and its subclassesEnt i ty-
Controll er HibernateEntityController and Busi nessProcessControl |l er. These classes provide nothing
more than some convenience methods for access to commonly used built-in components and methods of built-
in components. They help save a few keystrokes (characters can add up!) and provide a great launchpad for
new users to explore the rich functionality built in to Seam.

For example, hereiswhat Regi st er Act i on from the Seam registration example would look like:

@5t at el ess
@ame("regi ster")
public class RegisterAction extends EntityController inplenents Register

{

JBoss Seam 1.1.6.GA 118

The Seam Application Framework

@n private User user;

public String register()

{
Li st existing = createQuery("sel ect u.username from User u where u.usernane=: usernane")
. set Par anet er ("usernane", user.getUsernane())
.getResul tList();
if (existing.size()==0)
{
persi st (user);
i nfo("Regi stered new user #{user.usernane}");
return "/registered.jspx";
}
el se
{
addFacesMessage(" User #{user.usernane} already exists");
return null;
}
}

Asyou can seg, its not an earthshattering improvement...

JBoss Seam 1.1.6.GA 119

Chapter 11. Seam and JBoss Rules

Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM process definitions.

11.1. Installing rules

The first step is to make an instance of or g. drool s. Rul eBase available in a Seam context variable. In most
rules-driven applications, rules need to be dynamically deployable, so you will need to implement some solu-
tion that allows you to deploy rules and make them available to Seam (a future release of Drools will provide a
Rule Server that solves this problem). For testing purposes, Seam provides a built-in component that compiles a
static set of rules from the classpath. You can install this component viaconponent s. xni :

<dr ool s: rul e-base name="policyPrici ngRul es">
<drool s:rule-fil es>
<val ue>pol i cyPri ci ngRul es</ val ue>
</drools:rule-fil es>
</ dr ool s: rul e- base>

This component compiles rules from a set of . drl files and caches an instance of or g. dr ool s. Rul eBase in the
Seam APPLI CATI ON context. Note that it is quite likely that you will need to install multiple rule basesin arule-
driven application.

If you want to use aDrools DSL, you ase need to specify the DSL definition:

<dr ool s: rul e-base name="policyPricingRul es" dsl-file="policyPricing.dsl">
<drool s:rule-fil es>
<val ue>pol i cyPri ci ngRul es</val ue>
</drools:rule-fil es>
</ drool s: rul e- base>

Next, we need to make an instance of or g. dr ool s. Wr ki ngMenor y available to each conversation. (Each wer k-
i ngMeror y accumul ates facts relating to the current conversation.)

<dr ool s: managed- wor ki ng- nenory nane="pol i cyPri ci ngWr ki ngMenory" aut o-create="true" rul e-base="#{pol i (

Notice that we gave the pol i cyPri ci ngWr ki ngMenory a reference back to our rule base viathe r ul eBase con-
figuration property.

11.2. Using rules from a Seam component

We can now inject our Wor ki ngMenor y into any Seam component, assert facts, and fire rules:

@n Worki ngMenory pol i cyPrici ngWr ki ngMenory;

@n Policy policy;
@n Custoner custoner;

public void pricePolicy() throws FactException

{
pol i cyPri ci ngWor ki ngMenory. assert Cbj ect (pol i cy);
pol i cyPrici ngWor ki ngMenory. assert Cbj ect (cust oner) ;
pol i cyPrici ngWor ki ngMenory. fireAll Rul es();

}

JBoss Seam 1.1.6.GA 120

Seam and JBoss Rules

11.3. Using rules from a jJBPM process definition

You can even allow arule base to act as a jBPM action handler, decision handler, or assignment handler—in
either a pageflow or business process definition.

<deci si on nane="approval ">

<handl er cl ass="org.jboss. seam drool s. Dr ool sDeci si onHandl er" >
<wor ki ngMenor yNanme>or der Appr oval Rul esWr ki ngMenor y</ wor ki ngMenor yNane>
<assert Obj ect s>
<el enent >#{ cust oner } </ el enent >
<el enment >#{ or der } </ el enent >
<el enent >#{order. | i nel t ens} </ el enent >
</ assert Cbj ect s>
</ handl er >

<transition name="approved" to="ship">
<action class="org.jboss. seam dr ool s. Dr ool sActi onHandl er ">
<wor ki ngMenor yNanme>shi ppi ngRul esWor ki nghMenor y</ wor ki ngMenor yName>
<assert Cbj ect s>
<el enent >#{ cust oner } </ el enent >
<el ement >#{ or der} </ el ement >
<el ement >#{ order. | i nel t ens} </ el ement >
</ assert bj ect s>
</ action>
</transition>

<transition nane="rejected" to="cancelled"/>

</ deci si on>

The <assert Obj ect s> element specifies EL expressions that return an object or collection of objects to be as-
serted as factsinto the wor ki ngMenory.

Thereis aso support for using Drools for |JBPM task assignments.

<t ask- node name="revi ew'>
<task name="revi ew' descripti on="Revi ew O der">
<assi gnment handl er="org.j boss. seam dr ool s. Dr ool sAssi gnnent Handl er " >
<wor ki ngMenor yName>or der Appr oval Rul esWor ki ngMenor y</ wor ki ngMenor yNane>
<assert Qoj ect s>
<el ement >#{act or} </ el ement >
<el ement >#{ cust oner } </ el enent >
<el ement >#{ or der} </ el ement >
<el ement >#{ order. | i nel t ens} </ el ement >
</ assert Obj ect s>
</ assi gnnent >
</ task>
<transition name="rejected" to="cancelled"/>
<transiti on name="approved" to="approved"/>
</t ask- node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assi gnabl e, asassi gnabl e and a
Seam Decision object, as decision. Rules which handle decisions should call de-
ci sion.setQutconme("result") to determine the result of the decision. Rules which perform assignments
should set the actor id using the Assi gnabil e.

package org.j boss. seam exanpl es. shop
i mport org.jboss. seam drool s. Deci si on
gl obal Deci si on deci si on

rul e "Approve Order For Loyal Custoner"

JBoss Seam 1.1.6.GA 121

Seam and JBoss Rules

when
Custoner(loyaltyStatus == "GOLD")
Order (total Amount <= 10000)

t hen

deci si on. set Qut come(" approved");
end

package org.j boss. seam exanpl es. shop
i mport org.jbpmtaskngnt.exe. Assi gnabl e
gl obal Assignabl e assi gnabl e

rule "Assign Review For Small Order"
when
O der (total Ambunt <= 100)
then
assi gnabl e. set Pool edActors(new String[] {"reviewers"});
end

JBoss Seam 1.1.6.GA 122

Chapter 12. Security

The Seam Security API is an optional Seam feature that provides authentication and authorization features for
securing both domain and page resources within your Seam project.

12.1. Requirements

Thefollowing jar files are required to be configured as modulesin appl i cati on. xm t0 use Seam Security:

e drools-compiler-3.0.5.jar

e drools-core-3.0.5.jar

e commons-jci-core-1.0-406301.jar
e cOmmMoNs-jci-janino-2.4.3.jar

e commons-lang-2.1.jar

e janino-2.4.3jar

e gtringtemplate-2.3b6.jar

e antlr-2.7.6.Jar

e antlr-3.0ea8.jar

For web-based security, j boss-seam ui . j ar must also be included in the application's war file. Also, to make
use of the security EL functions, Seanfacel et Vi ewHandl er must be used. Configure it in f aces- confi g. xni
likethis:

<appl i cati on>
<vi ew handl er >or g. j boss. seam ui . f acel et . Seanfacel et Vi ewHandl| er </ vi ew handl er >
</ appl i cati on>

12.2. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java Authentication and Authoriz-
ation Service), and as such provide a robust and highly configurable API for handling user authentication.
However, for less complex authentication requirements Seam offers a much more simplified method of authen-
tication that hides the complexity of JAAS.

12.2.1. Configuration

The simplified authentication method uses a built-in JAAS login module, Sear_ogi nhvbdul e, which delegates
authentication to one of your own Seam components. This login module is already configured inside Seam as
part of a default application policy and as such does not require any additional configuration files. It allows you

JBoss Seam 1.1.6.GA 123

Security

to write an authentication method using the entity classes that are provided by your own application. Configur-
ing this simplified form of authentication requires the i dentity component to be configured in conpon-
ents. xm :

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"

xm ns: core="http://jboss. com products/seam core"

xm ns: security="http://jboss. conl products/seanl security"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schere- i nst ance"

Xsi : schenalLocat i on=

"http://]boss. conl products/seanicore http://jboss. conf products/seanfcore-1.1.xsd

http://jboss. coml product s/ seanl conponents http://jboss. conl product s/ seanf conponent s-
http://jboss. com products/seam security http://jboss. conl products/seanfsecurity-1.1.;

<security:identity authenticate-nmethod="#{authenticator.authenticate}"/>

</ conponent s>

The EL expression #{ aut henti cat or. aut henti cat e} iS a method binding indicating that the aut henti cate
method of the aut hent i cat or component will be used to authenticate the user.

12.2.2. Writing an authentication method

The aut hent i cat e- met hod property specified for i dentity in conponents. xm specifies which method will be
used by Seaniogi nMbdul e to authenticate users. This method takes no parameters, and is expected to return a
boolean indicating whether authentication is successful or not. The user's username and password can be ob-
tained from Identity.instance().get Username() and Identity.instance().get Password(), respectively.
Any roles that the user is a member of should be assigned using I dentity. i nstance(). addRol e() . Here's a
complete exampl e of an authentication method inside a JavaBean component:

@Nane("aut henticator")

public class Authenticator {
@n EntityManager entityManager;
publ i c bool ean aut henticate() {

try
{
User user = (User) entityManager. createQuery(
"from User where username = :usernanme and password = :password")
. set Paranet er ("usernane", ldentity.instance().getUsernane())
. set Paramet er ("password", ldentity.instance().getPassword())

.get Si ngl eResul t();

if (user.getRoles() !'= null)

{

for (UserRole nr : user.getRoles())
Identity.instance().addRol e(nr.getNane());

}
return true;

E:at ch (NoResul t Exception ex)

{ FacesMessages. i nstance().add("I nval id usernane/ password");
return false;

}

JBoss Seam 1.1.6.GA 124

Security

In the above example, both user and User Rol e are application-specific entity beans. The r ol es parameter is
populated with the roles that the user is a member of, which should be added to the set as literal string values,
e.g. "admin", "user". In this casg, if the user record is not found and a NoResul t Except i on thrown, the authen-
tication method returnsf al se to indicate the authentication failed.

12.2.3. Writing a login form

The I dentity component provides both user nane and passwor d properties, catering for the most common au-
thentication scenario. These properties can be bound directly to the username and password fields on a login
form. Once these properties are set, calling thei dentity. 1 ogi n() method will authenticate the user using the
provided credentials. Here's an example of asimple login form:

<di v>

<h: out put Label for="nanme" val ue="User nane"/>

<h:i nput Text id="nane" val ue="#{identity.usernane}"/>
</ di v>

<di v>

<h: out put Label for="password" val ue="Password"/>

<h:i nput Secret id="password" val ue="#{identity.password}"/>
</div>
<di v>

<h: conmandBut t on val ue="Logi n" action="#{identity.login}"/>
</div>

Similarly, logging out the user is done by calling #{i dentity. | ogout } . Calling this action will clear the secur-
ity state of the currently authenticated user.

12.2.4. Simplified Configuration - Summary

So to sum up, there are the three easy steps to configure authentication:

« Configure an authentication method in conponent s. xni .
» Write an authentication method.

« Writealogin form so that the user can authenticate.

12.2.5. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for addressing more complex
security requirements.

Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security API, you may in-
stead delegate to the default system JAAS configuration by providing aj aasConf i gName property in conpon-
ents. xm . For example, if you are using JBoss AS and wish to use the ot her policy (which uses the user -
sRol esLogi nModul e login module provided by JBoss AS), then the entry in conponents. xmi would look like
this:

JBoss Seam 1.1.6.GA 125

Security

<security:identity authenticate-nmethod="#{authenticator.authenticate}" jaasConfi gNanme="other"/>

12.3. Authorization

There are a number of authorization features provided by the Seam Security APl for securing access to com-
ponents, component methods, and pages. This section describes each of these.

12.3.1. Core concepts

Each of the authorization mechanisms provided by the Seam Security API are built upon the concept of a user
being granted roles and/or permissions. A roleis a group, or type, of user that may have been granted certain
privileges for performing one or more specific actions within an application. A permission on the other hand is
a privilege (sometimes once-off) for performing a single, specific action. It is entirely possible to build an ap-
plication using nothing but permissions, however roles offer a higher level of convenience when granting priv-
ileges to groups of users.

Roles are simple, consisting of only a name such as "admin”, "user", "customer", etc. Permissions consist of
both a name and an action, and are represented within this documentation in the form nane: acti on, for ex-
amp|8cust oner : del et e, OF custoner:insert.

12.3.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the @restri ct
annotation.

The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @restri ct annotation. If
both a method and it's declaring class are annotated with @rest ri ct, the method restriction will take precend-
ence (and the class restriction will not apply). If a method invocation fails a security check, then an exception
will be thrown as per the contract for | denti ty. checkRestriction() (seeInline Restrictions).

An empty @rest ri ct implies apermission check of corponent Nane: et hodNane. Take for example the follow-
ing component method:

@Nane("account")
public class AccountAction {
@Restrict public void delete() {
/1 code

}
}

In this example, the implied permission required to call the del et e() method isaccount : del et e. The equival-
ent of thiswould be to write @est ri ct (" #{s: hasPer mi ssi on(' account', ' delete',null)}"). Now let'slook
at another example:

JBoss Seam 1.1.6.GA 126

Security

@Restrict @anme("account™)
public class AccountAction {
public void insert() {
/'l code

}
@Restrict("#{s:hasRol e('admn')}") public void delete() {
/1 code

}
}

This time, the component class itself is annotated with @estri ct. This means that any methods without an
overriding @Rest ri ct annotation require an implicit permission check. In the case of this example, the i n-
sert () method requires a permission of account : i nsert, whilethe del et e() method requires that the user isa
member of the adni n role.

Before we go any further, let's address the #{s: hasRol e()} expression seen in the above example. Both
s: hasRol e and s: hasPer ni ssi on are EL functions, which delegate to the correspondingly named methods of
the 1 dentity class. These functions can be used within any EL expression throughout the entirety of the secur-
ity API.

Being an EL expression, the value of the @restrict annotation may reference any objects that exist within a
Seam context. Thisis extremely useful when performing permission checks for a specific object instance. Look
at this example:

@anme("account")
public class AccountAction {
@n Account sel ectedAccount;
@Restrict("#{s: hasPerm ssion('account', ' nodify', sel ectedAccount)}")
public void nodify() {
sel ect edAccount . nodi fy();
}
}

The interesting thing to note from this example is the reference to sel ect edAccount seen within the hasper -
mi ssi on() function call. The value of this variable will be looked up from within the Seam context, and passed
to the hasPer ni ssi on() method in 1 dentity, which in this case can then determine if the user has the required
permission for modifying the specified Account object.

Inline restrictions

Sometimes it might be desirable to perform a security check in code, without using the @est ri ct annotation.
Inthis situation, Simply use I dentity. checkRestriction() toevaluate a security expression, like this:

public void del eteCustoner() {
Identity.instance().checkRestriction("#{s:hasPerm ssion('custoner','delete', sel ectedCustoner)}");
}

If the expression specified doesn't evaluate to t r ue, either 1) a Not LoggedI nExcept i on exception is thrown if
the user is not logged in, or 2) Aut hori zati onExcept i on iSthrown if the user islogged in. It is also possible to
call the hasRol e and hasPer ni ssi on methods directly:

JBoss Seam 1.1.6.GA 127

Security

if (!ldentity.instance().hasRol e("adm n"))
t hrow new Aut hori zati onException("Mist be adnmin to performthis action");

if (!ldentity.instance().hasPerm ssion("custoner", "create", null))
throw new Aut hori zati onException("You may not create new customers");

12.3.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for which they
don't have the necessary privileges to use. Seam Security allows conditional rendering of either 1) sections of a
page or 2) individua controls, based upon the privileges of the user, using the very same EL expressions that
are used for component security.

Let's take alook at some examples of interface security. First of al, let's pretend that we have alogin form that
should only be rendered if the user is not already logged in. Using the i dentity. i sLoggedl n() property, we
can writethis:

<h: form cl ass="1 ogi nForni' rendered="#{not identity.|oggedln}">

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now let's pretend
there is a menu on the page that contains some actions which should only be accessible to users in the manager
role. Here's one way that these could be written:

<h: out put Li nk action="#{reports.|istMinagerReports}" rendered="#{s: hasRol e(' nanager')}">
Manager Reports
</ h: out put Li nk>]

Thisis also quite straight forward. If the user is not a member of the manager role, then the outputLink will not
be rendered. Ther ender ed attribute can generally be used on the control itself, or on a surrounding <s: di v> or
<s: span> control.

Now for something more complex. Let's say you have a h: dat aTabl e control on a page listing records for
which you may or may not wish to render action links depending on the user's privileges. The
s: hasPer ni ssi on EL function allows us to passin an object parameter which can be used to determine whether
the user has the requested permission for that object or not. Here's how a dataTable with secured links might
look:

<h: dat aTabl e val ue="#{clients}" var="cl">
<h: col um>
<f:facet nanme="header">Nane</f:facet>
#{ cl . nane}
</ h: col um>
<h: col um>
<f:.facet nanme="header">City</f:facet>
#{cl.city}
</ h: col um>

JBoss Seam 1.1.6.GA 128

Security

<h: col utm>
<f:facet nane="header">Action</f:facet>
<s:link value="Mdify Cient" action="#{clientAction.nodify}" rendered="#{s: hasPerm ssion('cliel
<s:link value="Delete Cient" action="#{clientAction.delete}" rendered="#{s: hasPerm ssion('cli el
</ h: col utm>
</ h: dat aTabl e>

12.3.4. Securing pages

Page security requires that the application is using a pages. xni file, however is extremely simple to configure.
Simply include a<restri ct/> element within the page elements that you wish to secure. By default, if avalue
is not provided for the restrict element, an implied permission of {vi ew d}: render will be checked for
whenever accessing that page. Otherwise the value will be evaluated as a standard security expression. Here's a
couple of examples:

<page viewid="/settings.xhtm">
<restrict/>
</ page>

<page viewid="/reports.xhtm ">
<restrict>#{s: hasRole('adnin')}</restrict>
</ page>

In the above example, the first page has an implied permission restriction of / setti ngs. xht i : render, while
the second one checks that the user is a member of the adni n role.

12.4. Writing Security Rules

Up to this point there has been a lot of mention of permissions, but no information about how permissions are
actually defined or granted. This section completes the picture, by explaining how permission checks are pro-
cessed, and how to implement permission checks for a Seam application.

12.4.1. Permissions Overview

So how does the security APl know whether a user has the cust orrer : nodi fy permission for a specific custom-
er? Seam Security provides quite a novel method for determining user permissions, based on JBoss Rules. A
couple of the advantages of using arule engine are 1) a centralized location for the business logic that is behind
each user permission, and 2) speed - JBoss Rules uses very efficient algorithms for evaluating large numbers of
complex rules involving multiple conditions.

12.4.2. Configuring arules file

Seam Security expects to find a Rul eBase component called securi t yRul es which it uses to evaluate permis-
sion checks. Thisis configured in component s. xm asfollows:

<dr ool s: rul e-base nanme="securityRul es">
<drool s:rule-fil es> META-I NF/ security.drl</drools:rule-files>

JBoss Seam 1.1.6.GA 129

Security

</ dr ool s: rul e- base>

Once the Rul eBase component is configured, it'stime to write the security rules.

12.4.3. Creating a security rules file

For this step you need to create afile caled security. drl inthe/META- I NF directory of your application's jar
file. In actual fact this file can be called anything you want, and exist in any location as long as it is configured
appropriately in conponent s. xm .

So what should the security rules file contain? At this stage it might be a good idea to at least skim through the
JBoss Rules documentation, however to get started here's an extremely simple example:

package MyAppli cati onPerm ssions;

i mport org.jboss.seam security. Perni ssi onCheck;
i mport org.jboss.seam security. Rol e;

rul e CanUser Del et eCust oner s

when
c: Perm ssionCheck(name == "custoner", action == "del ete")
Rol e(nane == "adnin")

t hen
c.grant()

end;

Let's break this down. The first thing we see is the package declaration. A package in JBoss Rulesis essentially
acollection of rules. The package name can be anything you want - it doesn't relate to anything else outside the
scope of the rule base.

The next thing we can notice is a couple of import statements for the Per ni ssi onCheck and Rol e classes. These
imports inform the rules engine that wel'll be referencing these classes within our rules.

Finally we have the code for the rule. Each rule within a package should be given a unique name (usually de-
scribing the purpose of the rule). In this case our rule is called canUser Del et eCust oner s and will be used to
check whether a user is allowed to delete a customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is known as a
left hand side (LHS) and aright hand side (RHS). The LHS consists of the conditional part of therule, i.e. alist
of conditions which must be satisfied for the rule to fire. The LHS is represented by the when section. The RHS
is the consequence, or action section of the rule that will only be fired if all of the conditions in the LHS are
met. The RHS is represented by thet hen section. The end of the rule is denoted by the end; line.

If welook at the LHS of the rule, we see two conditions listed there. Let's examine the first condition:

c: Perm ssi onCheck(name == "custoner”, action == "delete")

In plain english, this condition is stating that there must exist a Per ni ssi onCheck object with a nane property

JBoss Seam 1.1.6.GA 130

Security

equal to "customer”, and an act i on property equal to "delete” within the working memory. What is the working
memory? It is a session-scoped object that contains the contextual information that is required by the rules en-
gine to make a decision about a permission check. Each time the hasPer i ssi on() method is called, a tempor-
ary Per mi ssi onCheck object, or Fact, is asserted into the working memory. This Per i ssi onCheck corresponds
exactly to the permission that is being checked, so for example if you call hasPer mi ssi on("account", "cre-
ate", null) then aPernissi onCheck object with aname equal to "account” and act i on equal to "create” will
be asserted into the working memory for the duration of the permission check.

So what elseis in the working memory? Besides the short-lived temporary facts asserted during a permission
check, there are some longer-lived objects in the working memory that stay there for the entire duration of a
user being authenticated. These include any j ava. security. Princi pal objects that are created as part of the
authentication process, plus a org. j boss. seam security. Rol e object for each of the roles that the user is a
member of. It is also possible to assert additional long-lived facts into the working memory by calling | den-
tity.instance().getSecurityContext().assertObject(),passing the object as a parameter.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed withc: . Thisis
a variable binding, and is used to refer back to the object that is matched by the condition. Moving onto the
second line of our LHS, we see this:

Rol e(nane == "adnin")

This condition simply states that there must be a Rol e object with a name of "admin" within the working
memory. As mentioned, user roles are asserted into the working memory as long-lived facts. So, putting both
conditions together, this rule is essentialy saying "I will fire if you are checking for the cust orrer : del et e per-
mission and the user is amember of the adni n role".

So what is the consequence of the rule firing? Let's take alook at the RHS of therule:

c.grant ()

The RHS consists of Java code, and in this case is invoking the grant () method of the ¢ object, which as
already mentioned is a variable binding for the Per ni ssi onCheck object. Besides the nane and act i on proper-
ties of the Per i ssi onCheck object, there is also a grant ed property which is initially set to fal se. Calling
grant () ONaPerni ssi onCheck Setsthe grant ed property to t r ue, which means that the permission check was
successful, allowing the user to carry out whatever action the permission check was intended for.

12.5. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's recommended that
pages. xm is configured to redirect security errors to a more "pretty” page. The two main types of exceptions
thrown by the security API are:

e Not Logged| nExcept i on - This exception is thrown if the user attempts to access a restricted action or page
when they are not logged in.

e AuthorizationException - Thisexception isonly thrown if the user is already logged in, and they have at-

JBoss Seam 1.1.6.GA 131

Security

tempted to access arestricted action or page for which they do not have the necessary privileges.

Here's an example of apages. xni file that redirects these security exceptions:

<pages>

<exception class="org.jboss. seam security. Not Loggedl nExcepti on">
<end- conversati on/ >
<redirect viewid="/login.xhtm">
<nessage>You must be logged in to performthis action</nessage>
</redirect>
</ excepti on>

<exception class="org.j boss. seam security. Aut hori zati onExcepti on">
<end- conversati on/ >
<redirect viewid="/security_error.xhtm ">
<nessage>You do not have the necessary security privileges to performthis action.</nessage:
</redirect>
</ exception>

</ pages>

JBoss Seam 1.1.6.GA 132

Chapter 13. Internationalization and themes

Seam makes it easy to build internationalized applications by providing several built-in components for hand-
ling multi-language Ul messages.

13.1. Locales

Each user login session has an associated instance of j ava. uti | . Local e (available to the application as a ses-
sion-scoped component named | ocal e). Under normal circumstances, you won't need to do any special config-
uration to set the locale. Seam just delegates to JSF to determine the active locale:

e If thereis alocale associated with the HTTP request (the browser locale), and that locale is in the list of
supported locales from f aces- confi g. xm , use that locale for the rest of the session.

e Otherwise, if adefault locale was specified in the f aces- confi g. xm , use that locale for the rest of the ses-
sion.

¢ Otherwise, use the default locale of the server.

It is possible to set the locae manually via the Seam configuration properties
org. j boss. seam core. | ocal eSel ector. | anguage, org.jboss.seam core.|ocal eSel ector.country and
org.j boss. seam core. | ocal eSel ector. vari ant, but we can't think of any good reason to ever do this.

It is, however, useful to allow the user to set the locale manually via the application user interface. Seam
provides built-in functionality for overriding the locale determined by the algorithm above. All you have to do
is add the following fragment to aform in your JSP or Facelets page:

<h: sel ect OneMenu val ue="#{l ocal eSel ect or. | anguage}" >
<f:selectltemitenlLabel ="English" itenVal ue="en"/>
<f:selectltemitenlLabel ="Deutsch" itenVal ue="de"/>
<f:selectltemitenlabel ="Francai s" itenValue="fr"/>
</ h: sel ect OneMenu>
<h: commandBut t on acti on="#{| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangelLanguage']}"/>

Or, if youwant alist of al supported locales from f aces- confi g. xn , just use:

<h: sel ect OneMenu val ue="#{l ocal eSel ector.|ocal eString}">
<f:selectltens val ue="#{l ocal eSel ect or. support edLocal es}"/>
</ h: sel ect OneMenu>
<h: commandBut t on acti on="#{| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangeLanguage']}"/>

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF locales will be
overridden for the rest of the session.

13.2. Labels

JSF supports internationalization of user interface labels and descriptive text viathe use of <f: | cadBundl e />.
Y ou can use this approach in Seam applications. Alternatively, you can take advantage of the Seam nessages
component to display templated labels with embedded EL expressions.

13.2.1. Defining labels

JBoss Seam 1.1.6.GA 133

Internationalization and themes

Each login session has an associated instance of j ava. uti | . Resour ceBundl e (available to the application as a
session-scoped component named or g. j boss. seam cor e. r esour ceBundl e). You'll need to make your interna-
tionalized labels available via this specia resource bundle. By default, the resource bundle used by Seam is
named nessages and so you'll need to define your labels in files named nessages. properties, nes-
sages_en. properties, mnessages_en_AU. properti es, etc. These files usually belong in the WeB- I NF/ ¢l asses
directory.

S0, innessages_en. properties:

Hel | o=Hel | o

Andinnmessages_en_AU. properties:

Hel | 0=G day

You can select a different name for the resource bundle by setting the Seam configuration property named
org. j boss. seam core. resour ceBundl e. bundl eNanes. You can even specify alist of resource bundle names
to be searched (depth first) for messages.

<cor e: resour ce- bundl e>
<cor e: bundl e- nanes>
<val ue>myconpany_nessages</ val ue>
<val ue>st andar d_nessages</ val ue>
</ cor e: bundl e- nanes>
</ core: resource-bundl e>

If you want to define a message just for a particular page, you can specify it in a resource bundle with the same
name as the JSF view id, with the leading / and trailing file extension removed. So we could put our message in
wel cone/ hel | o_en. properti es if we only needed to display the message on/ wel cone/ hel | o. j sp.

Y ou can even specify an explicit bundle name in pages. xm :

<page vi ewid="/wel conme/ hell o.jsp" bundl e="Hel | oMessages"/ >

Then we could use messages defined in Hel | oMessages. properti es 0N/ wel come/ hel | 0. j sp.

13.2.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without having to type
<f:1o0adBundl e ... /> o0nevery page. Instead, you can smply type:

<h: out put Text val ue="#{nmessages['Hello']}"/>

or:

<h: out put Text val ue="#{messages. Hel | 0}"/>

Even better, the messages themselves may contain EL expressions:

Hel | o=Hel | o, #{user.firstNanme} #{user.| astNane}
Hel | 0=G day, #{user.firstNane}

Y ou can even use the messagesin your code:

JBoss Seam 1.1.6.GA 134

Internationalization and themes

@n private Map<String, String> nmessages;

@n("#{nessages['Hello']}") private String hel | oMessage;

13.2.3. Faces messages

The f acesMessages component is a super-convenient way to display success or failure messages to the user.
The functionality we just described also works for faces messages:

@ame("hel |1 0")

@t at el ess

public class HelloBean inplenents Hello {
@n FacesMessages facesMessages;

public String saylt() {
f acesMessages. addFr omResour ceBundl e(" Hel | 0") ;

}

Thiswill display Hel | o, Gavin King Or G day, Gavi n, depending upon the user'slocale.

13.3. Timezones

There is also a session-scoped instance of j ava. uti | . Ti nezone, named or g. j boss. seam core. ti nezone, and
a Seam component for changing the timezone named or g. j boss. seam core. ti mezoneSel ect or . By default,
the timezone is the default timezone of the server. Unfortunately, the JSF specification says that al dates and
times should be assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified using
<f: convert Dat eTi me>. Thisis an extremely inconvenient default behavior.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In addition, Seam provides
the <s: conver t Dat eTi me> tag which always performs conversions in the Seam timezone.

13.4. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the localization API, but of
course these two concerns are orthogonal, and some applications support both localization and themes.

First, configure the set of supported themes:

<t hene: t hene- sel ect or cooki e- enabl ed="t rue" >
<t hene: avai | abl e-t henes>
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</t hene: avai | abl e-t henes>
</t henme: t hene- sel ect or >

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example, the def aul t theme is
defined asa set of entriesin def aul t. properti es. For example, def aul t . properti es might define:

css ../ screen.css
tenpl ate tenpl ate. xhtm

JBoss Seam 1.1.6.GA 135

Internationalization and themes

Usually the entries in a theme resource bundle will be paths to CSS styles or images and names of facelets tem-
plates (unlike localization resource bundles which are usualy text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the stylesheet in a facelets
page:

<link href="#{theme.css}" rel ="styl esheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a<ui : conposi ti on>:

<ui: conposition xm ns="http://ww. w3. org/ 1999/ xhtm "
xm ns: ui ="http://java. sun.com jsf/facel ets”
xm ns: h="http://java. sun.com jsf/htnm"
xm ns: f="http://java. sun.com j sf/core"
tenpl at e="#{t hene.tenpl ate}">

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch themes:

<h: sel ect OneMenu val ue="#{t heneSel ector.t hene}">
<f:selectltens val ue="#{themeSel ector.thenmes}"/>
</ h: sel ect OneMenu>
<h: commandBut t on acti on="#{t heneSel ector. sel ect}" val ue="Sel ect Thene"/>

13.5. Persisting locale and theme preferences via cookies

The locale selector, theme selector and timezone selector al support persistence of locale and theme preference
to acookie. Simply set the cooki e- enabl ed configuration property:

<t hene: t hene- sel ect or cooki e- enabl ed="t rue" >
<t hene: avai | abl e-t henes>
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</t henme: avai | abl e-t henes>
</t hene: t henme- sel ect or >

<core: |l ocal e-sel ector cooki e-enabl ed="true"/>

JBoss Seam 1.1.6.GA 136

Chapter 14. Seam Text

Collaboration-oriented websites require a human-friendly markup language for easy entry of formatted text in
forum posts, wiki pages, blogs, comments, etc. Seam provides the <s: f or mat t edText / > control for display of
formatted text that conforms to the Seam Text language. Seam Text is implemented using an ANTLR-based
parser. Y ou don't need to know anything about ANTLR to use it, however.

14.1. Basic fomatting

Hereisasimple example:

It's easy to naeke *bold text*, /italic text/, |nonospace|
~del eted text~, super”scripts® or _underlines_.

If we display thisusing <s: f or mat t edText / >, we will get the following HTML produced:

<p>

It's easy to make bold text <i>italic text</i> <tt>npnospace</tt>
del et ed text super^{scripts} or <u>underlines</u>.

</ p>

We can use ablank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading
You /nust/ have sone text follow ng a headi ng!

++This is a small er headi ng
This is the first paragraph. W can split it across nultiple
lines, but we nust end it with a blank Iine.

This is the second paragraph.

(Note that a simple newline is ignored, you need an additional blank line to wrap text into a new paragraph.)
Thisisthe HTML that results:

<h1>This is a big headi ng</hl>

<p>

You <i>nust</i> have sone text follow ng a heading!
</ p>

<h2>This is a smaller headi ng</h2>

<p>

This is the first paragraph. W can split it across nultiple
lines, but we nust end it with a blank |ine.

</ p>

<p>

This is the second paragraph.
</ p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered |ist:

#first item

#second item

#and even the /third/ item

An unordered |ist:

JBoss Seam 1.1.6.GA 137

Seam Text

=an item
=anot her item

<p>
An ordered |ist:
</ p>

first itenx/li>

second itenx/Ili>

and even the <i>third</i> itenx/li>
</ ol >

<p>

An unordered |ist:
</ p>

an itenx/li>

another itenx/li>
</ ul >

Quoted sections should be surrounded in double quotes:

The ot her guy said:

"Nyeah nyeah-nee
/ nyeah/ nyeah!"

But what do you think he neans by "nyeah-nee"?
<p>

The ot her guy said:

</ p>

<g>Nyeah nyeah- nee
<i >nyeah</i > nyeah! </ g>

<p>

But what do you think he nmeans by <qg>nyeah- nee</ q>?
</ p>

14.2. Entering code and text with special characters

Special characterssuch as*, | and #, along with HTML characters such as <, > and & may be escaped using\ :

You can wite down equations |ike 2*3\=6 and HTM. tags
l'i ke \<body\> using the escape character: \\.

<p>
You can wite down equations |ike 2*3=6 and HTM. tags
like & t;body> using the escape character: \.

</ p>

And we can quote code blocks using backticks:

My code doesn't work:

“for (int i=0; i<100; i--)
{

}

doSonet hi ng() ;

JBoss Seam 1.1.6.GA 138

Seam Text

Any i deas?

<p>

My code doesn't work:

</ p>

<pre>for (int i=0; i&t;100; i--)

{
doSonet hi ng();
} </ pre>

<p>
Any i deas?
</ p>

14.3. Links

A link may be created using the following syntax:

Go to the Seam website at [=>http://jboss. com products/sean.

Or, if you want to specify the text of the link:

Co to [the Seam website=>http://jboss. conl products/seani.

For advanced users, it is even possible to customize the Seam Text parser to understand wikiword links written
using this syntax.

14.4. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be safe from
cross-site scripting attacks). Thisis useful for creating links:

You might want to link to sonet hi ng
cool , or even include an inmage: <inmg src="/l|ogo.jpg"/>

And for creating tables:

<t abl e>
<tr><td>First nane: </td><td>Gvin</td></tr>
<tr><td>Last name: </td><td>Ki ng</td></tr>
</t abl e>

But you can do much more if you want!

JBoss Seam 1.1.6.GA 139

Chapter 15. iText PDF generation

Seam now includes an component set for generating documents using i Text. The primary focus of Seam's i Text
document support is for the generation of PDF doucuments, but Seam also offers basic support for RTF docu-
ment generation.

15.1. Using PDF Support

iText support is provided by j boss- seam pdf . j ar . ThisJAR contains the iText JSF controls, which are used to
construct views that can render to PDF, and the DocumentStore component, which serves the rendered docu-
ments to the user. To include PDF support in your application, included j boss-seam pdf.jar in your WeB-
I NF/ |'i b directory along with the iText JAR file. There is no further configuration needed to use Seam's i Text
support.

The Seam i Text module requires the use of Facelets as the view technology. Future versions of the library may
also support the use of JSP. Additionally, it requires the use of the seam-ui package.

The exanpl es/ i text project contains an example of the PDF support in action. It demonstrates proper deploy-
ment packaging, and it contains a number examples that demonstrate the key PDF generation features current
supported.

15.2. Creating a document

Documents are generated by facelets documents using tags in the http://j boss. conl product s/ seant pdf
namespace. Documents should always have the docunent tag at the root of the document. The docunent tag
prepares Seam to generate a document into the DocumentStore and renders an HTML redirect to that stored
content. The following isaasmall PDF document consisting only asingle line of text:

<p: docunment xm ns: p="http://jboss.com product s/ seam pdf ">
The docunent goes here.
</ p: docunent >

15.2.1. p:document

The p: docunent tag supports the following attributes:

type
The type of the document to be produced. Valid values are PDF, RTF and HTM. modes. Seam defaults to PDF
generation, and many of the features only work correctly when generating PDF documents.

pageSi ze
The size of the page to be generate. The most commonly used values would be LETTER and A4. A full list of
supported pages sizes can be found in com | owagi e. t ext . PageSi ze class. Alternatively, pageSize can
provide the width and height of the page directly. The value "612 792", for example, is equizalent to the
LETTER page size.

orientation
The orientation of the page. Valid values are portrait and | andscape. In landscape mode, the height and

JBoss Seam 1.1.6.GA 140

iText PDF generation

width page size values are reversed.

mar gi ns
The left, right, top and bottom margin values.

margi nM rroring
Indicates that margin settings should be reversed an alternating pages.

Document metadata is also set as attributes of the document tag. The following metadata fields are supported:

title
subj ect
keywor ds
aut hor

creator

15.3. Basic Text Elements

Useful documents will need to contain more than just text; however, the standard Ul components are geared to-
wards HTML generation and are not useful for generating PDF content. Instead, Seam provides a special Ul
components for generating suitable PDF content. Tags like <p: i mage> and <p: par agr aph> are the basic found-
ations of simple documents. Tags like <p: f ont > provide style information to al the content surrounging them.

<p: docunment xm ns: p="http://jboss.com product s/ seam pdf ">
<p:image alignment="right" wap="true" resource="/10go.jpg" />
<p:font size="24">
<p: par agr aph spaci ngAfter="50">M First Docunent</p: paragraph>
</ p: font>

<p: par agraph alignnent="justify">
This is a sinple document. It isn't very fancy.
</ p: par agr aph>
</ p: docurent >

15.3.1. p:paragraph

Most uses of text should be sectioned into paragraphs so that text fragments can be flowed, formatted and
styled in logical groups.

firstLinel ndent

ext r aPar agr aphSpace

| eadi ng

mul ti pli edLeadi ng

spaci ngBef ore
The blank space to be inserted before the element.

JBoss Seam 1.1.6.GA 141

iText PDF generation

spaci ngAfter
The blank space to be inserted after the element.

i ndent ati onLeft
i ndent ati onRi ght

keepToget her

15.3.2. p:text

Thetext tag alows text fragments to be produced from application data using normal JSF converter mechan-
isms. It isvery similar to the out put Text tag used when rendering HTML documents. Hereis an example:

<p: par agr aph>
The item costs <p:text val ue="#{product.price}">
<f:convert Nunber type="currency" currencySynbol ="$"/>
</ p:text>
</ p: par agr aph>

val ue

The value to be displayed. Thiswill typically be avalue binding expression.

15.3.3. p:font

Font declarations have no direct

fam | yNane
The font family. One of: COURI ER, HELVETI CA, TI MES- ROVAN, SYMBOL OF ZAPFDI NGBATS.

si ze
The point size of the font.

style
The font styles. Any combination of : NORVAL, BOLD, | TALI C, OBLI QUE, UNDERLI NE, LI NE- THROUGH

15.3.4. p:newPage

p: newPage inserts a page break.

15.3.5. p:image

p: i mage inserts an image into the document. Images can be be loaded from the classpath or from the web ap-
plication context using ther esour ce attribute.

<p:image resource="/jboss.jpg" />

Resources can aso be dynamically generated by application code. The i mageDat a attribute can specify a value
binding expression whose valueis aj ava. awt . | mage object.

JBoss Seam 1.1.6.GA 142

iText PDF generation

<p:i mage i nageDat a="#{i mages. chart}" />

resource
The location of the image resource to be included. Resources should be relative to the document root of the
web application.

i mageDat a
A method expression binding to an application-generated image.

rotation
The rotation of the image in degrees.

hei ght
The height of the image.

wi dth
The width of theimage.

al i gnment

The alignment of the image. (see Section 15.8.2, “ Alignment Values’ for possible values)

alt
Alternative text representation for the image.

i ndent ati onLeft
i ndent ati onRi ght

spaci ngBef ore
The blank space to be inserted before the element.

spaci ngAfter
The blank space to be inserted after the element.

wi dt hPer cent age
initial Rotation
dpi

scal ePer cent
The scaling factor (as a percentage) to use for the image. This can be expressed as a single percentage value
or as two percentage val ues representing separate x and y scaling percentages.

wrap

under | yi ng
15.3.6. p:anchor

p: anchor defines clickable links from a document. It supports the following attributes:

nane
The name of an in-document anchor destination.

JBoss Seam 1.1.6.GA 143

iText PDF generation

ref erence
The destination the link refers to. Links to other points in the document should begin with a "#". For ex-
ample, "#link1" to refer to an anchor postion with aname of 1i nk1. Links may also be a full URL to point
to aresource outside of the document.

15.4. Headers and Footers

15.4.1. p:header and p:footer

The p: header and p: f oot er components provide the ability to place header and footer text on each page of a
generated document, with the exception of the first page. Header and footer declarations should appear near the
top of adocument.

al i gnnent
The alignment of the header/footer box section. (see Section 15.8.2, “Alignment Values® for alignment val-
ues)

backgr oundCol or
The background color of the header/footer box. (see Section 15.8.1, “Color Values’ for color values)

bor der Col or
The border color of the header/footer box. Individual border sides can be set using bor der Col or Lef t, bor -
der Col or Ri ght, bor der Col or Top and bor der Col or Bot t om(See Section 15.8.1, “Color Vaues’ for color
values)

bor der Wdt h
The width of the border. Inidvidual border sides can be specified using bor der W dt hLef t, bor der W d-
t hRi ght , bor der W dt hTop and bor der W dt hBot t om

15.4.2. p:pageNumber

The current page number can be placed inside of a header or footer using the p: pageNurber tag. The page num-
ber tag can only be used in the context of a header or footer and can only be used once.

15.5. Chapters and Sections

If the generated document follows a book/article structure, the p: chapt er and p: secti on tags can be used to
provide the necessary structure. Sections can only be used inside of chapters, but they may be nested arbitrarily
deep. Most PDF viewers provide easy navigation between chapters and sections in a document.

<p: docurment xm ns: p="http://jboss. conl product s/ seani pdf"
title="Hello">

<p: chapt er nunber="1">
<p:title><p:paragraph>Hel | o</ p: paragraph></p:title>
<p: par agr aph>Hel | o #{user . nane}! </ p: par agr aph>

</ p: chapt er >

<p: chapt er nunber="2">
<p:title><p: paragraph>Goodbye</ p: paragraph></p:title>
<p: par agr aph>Goodbye #{user. nane}. </ p: par agr aph>

JBoss Seam 1.1.6.GA 144

iText PDF generation

</ p: chapt er >

</ p: docunent >

15.5.1. p:chapter and p:section

nunber
The chapter number. Every chapter should be assigned a chapter number.

nunber Dept h
The depth of numbering for section. All sections are numbered relative to their surrounding chapter/sec-
tions. The fourth section of of the first section of chapter three would be section 3.1.4, if displayed at the
default number depth of three. To omit the chapter number, a number depth of 2 should be used. In that
case, the section number would be displayed as 1.4.

15.5.2. p:title

Any chapter or section can contain ap:title. The title will be displayed next to the chapter/section number.
The body of thetitle may contain raw text or may be ap: par agr aph.

15.6. Lists

List structures can be displayed using the p: 1ist and p: 1istItemtags. Lists may contain arbitrarily-nested
sublists. List items may not be used outside of alist. he following document uses the ui : r epeat tag to to dis-
play alist of valuesretrieved from a Seam component.

<p: docunment xm ns: p="http://]boss. con products/seani pdf"
xm ns:ui ="http://java. sun.con j sf/facel ets"
title="Hello">
<p:list style="nunbered">
<ui : repeat val ue="#{docunents}" var="doc">
<p:listltenmp#{doc. name}</p:listltenr
</ ui:repeat >
</p:list>
</ p: docunent >

15.6.1. p:list

p: i st supports the following attributes:

style
The ordering/bulleting style of list. One of: NUVBERED, LETTERED, GREEK, ROVAN, ZAPFDI NGBATS, ZAPFDI NG-
BATS_NUMBER. If no styleis given, thelist items are bulleted.

I'i st Synbol
For bulleted lists, specifies the bullet symbol.

i ndent
The indentation level of thelist.

JBoss Seam 1.1.6.GA 145

iText PDF generation

| oner Case
For list styles using letters, indicates whether the letters should be lower case.

char Nunber
For ZAPFDINGBATS, indicates the character code of the bullet character.

nunber Type
For ZAPFDINGBATS _NUMBER, indicates the numbering style.

15.6.2. p:listltem

p: i st 1t emsupports the following attributes:

al i gnment

The alignment of thelist item. (See Section 15.8.2, “ Alignment Values’ for possible values)

i ndent ati onLeft
The left indentation amount.

i ndent ati onRi ght
The right indentation amount.

|'i st Synbo
Overrides the default list symbol for thislist item.

15.7. Tables

Table structures can be created using the p: t abl e and p: cel | tags. Unlike many table structures, thereis no ex-
plicit row declaration. If atable has 3 columns, then every 3 cells will automatically form a row. Header and
footer rows can be declared, and the headers and footers will be repeated in the event a table structure spans
multiple pages.

<p: docunment xm ns: p="http://jboss. com products/seani pdf"
xm ns:ui ="http://java. sun. conl j sf/facel ets"
title="Hell o">
<p:tabl e col ums="3" header Rows="1">
<p: cel | >nane</ p: cel | >
<p: cel | >owner </ p: cel | >
<p: cel | >si ze</p: cel | >
<ui : repeat val ue="#{documents}" var="doc">
<p: cel | >#{doc. nanme} </ p: cel | >
<p: cel | >#{doc. user. nane} </ p: cel | >
<p: cel | >#{doc. si ze} </ p: cel | >
</ ui : repeat >
</ p: tabl e>
</ p: docunent >

15.7.1. p:table

p: t abl e supports the following attributes.

col ums

JBoss Seam 1.1.6.GA 146

iText PDF generation

The number of columns (cells) that make up atable row.

wi dt hs
The relative widths of each column. There should be one value for each column. For example: widths="2 1
1" would indicate that there are 3 columns and the first column should be twice the size of the second and
third column.

header Rows
The initial number of rows which are considered to be headers or footer rows and should be repeated if the
table spans multiple pages.

f oot er Rows
The number of rows that are considered to be footer rows. This value is subtracted from the header Rows
value. If document has 2 rows which make up the header and one row that makes up the footer, header -
Rows should be set to 3 and f oot er Rows should be set to 1

wi dt hPer cent age

The percentage of the page width that the table spans.

hori zont al Al i gnrment

The horizontal alignment of the table. (See Section 15.8.2, “ Alignment Values’ for possible values)
ski pFi r st Header
runDirection
| ockedW dt h
spl it Rows

spaci ngBef or e
The blank space to be inserted before the element.

spaci ngAf ter
The blank space to be inserted after the element.

ext endLast Row
header sl nEvent
splitLate

keepToget her

15.7.2. p:cell

p: cel | supports the following attributes.

col span
Cdlls can span more than one column by declaring acol span greater than 1. Tables do not have the ability
to span across multiple rows.

hori zont al Al i gnnment
The horizontal alignment of the cell. (see Section 15.8.2, “Alignment Values’ for possible values)

JBoss Seam 1.1.6.GA 147

iText PDF generation

vertical Al'i gnrment

The vertica alignment of the cell. (see Section 15.8.2, “ Alignment Values® for possible values)
paddi ng
Padding on a given side can also be specified using paddi ngLef t, paddi ngRi ght , paddi ngTop and pad-
di ngBott om
useBor der Paddi ng
| eadi ng
mul ti pli edLeadi ng
i ndent
vertical Al i gnment
ext raPar agr aphSpace
fi xedHei ght
noW ap
m ni nuntHei ght
fol I owi ngl ndent
ri ghtl ndent
spaceCharRatio
runbDirection
ar abi cOpti ons
useAscender
grayFil

rotation

15.8. Document Constants

This section documents some of the constants shared by attributes on multiple tags.

15.8.1. Color Values

Seam documents do not yet support afull color specification. Currently, only named colors are supported. They
are: whi t e, gray, | i ght gray, dar kgr ay, bl ack, r ed, pi nk, yel | ow, gr een, magent a, cyan and bl ue.

15.8.2. Alignment Values

Where aignment values are used, the Seam PDF supports the following horizontal alignment values: | eft,
right, center, justify and justifyall. The vertica alignment values are top, niddle, bottom and

JBoss Seam 1.1.6.GA 148

iText PDF generation

15.9. Configuring iText

Document generation works out of the box with no additional configuration needed. However, there are a few
points of configuration that are needed for more serious applications.

The default implementation serves PDF documents from a generic URL, / seam doc. seam Many browsers (and
users) would prefer to see URLSs that contain the actual PDF name like / nyDocunent . pdf . This capability re-
quires some configuration. To serve PDF files, all *.pdf resources should be mapped to the Seam Servlet Filter,
as shown here:

<filter>
<filter-name>Seam Servlet Filter</filter-name>
<filter-class>org.jboss.seam servlet. SeanServletFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>Seam Servlet Filter</filter-name>

<url -pattern>*. pdf </url -pattern>
</filter-mappi ng>

The useExt ensi ons option on the document store component completes the functionality by instructing the
document store to generate URL s with the correct filename extension for the document type being generated.

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: pdf =" http://] boss. conl product s/ seant pdf " >
<pdf : docunent St or e useExt ensi ons="true" />
</ conponent s>

Generated documents are stored in conversation scope and will expire when the conversation ends. At that
point, references to the document will be invalid. To Y ou can specify a default view to be shown when a docu-
ment does not exist using the er r or Page property of the documentStore.

<pdf : docunent St or e useExt ensi ons="true" errorPage="/pdfM ssi ng. seam' />

15.10. iText links

For further information on i Text, see:

e iText Home Page [http://www.lowagie.com/i Text/]

e iTextin Action [http://www.manning.com/lowagie/]

JBoss Seam 1.1.6.GA 149

http://www.lowagie.com/iText/
http://www.manning.com/lowagie/

Chapter 16. Email

Seam now includes an optional components for templating and sending emails.

Email support is provided by j boss-seam mai | . j ar. This JAR contains the mail JSF controls, which are used
to construct emails, and the mai | Sessi on manager component.

The examples/mail project contains an example of the email support in action. It demonstrates proper pack-
aging, and it contains a number of example that demonstrate the key features currently supported.

16.1. Creating a message

In Seam Mail, an email isjust facelet:

<m nmessage xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: m="http://jboss. conf products/seant nail "
xm ns: h="http://java. sun.com jsf/htm ">

<m from name="Pet er" address="peter @xanpl e. coni' />
<mto nane="#{person.firstnane} #{person.|astnane}">#{person. address}</mto>
<m subj ect >Try out Seamnl </ m subj ect >

<m body>
<p><h: out put Text val ue="Dear #{person.firstnanme}" />, </p>
<p>You can try out Seam by visiting
http://|abs.|boss. conljbossseanx/ a>. </ p>
<p>Regar ds, </ p>
<p>Pet er </ p>
</ m body>

</ m nessage>

The <m message> tag wraps the whole message, and tells Seam to start rendering an email. Inside the
<m nessage> tag we use an <m frome tag to set who the message is from, a <m t o> tag to specify a sender
(notice how we use EL aswe would in a normal facelet), and a<m subj ect > tag.

The <m body> tag wraps the body of the email. You can use regular HTML tags inside the body as well as JSF
components.

So, now you have your email template, how do you go about sending it? Well, at the end of rendering the
m nessage the mai | Sessi on is called to send the email, so all you haveto do is ask Seam to render the view:

@n(create=true)
private Renderer renderer;

public void send() {

try {
renderer. render ("/sinple. xhtm");
facesMessages. add(" Emai | sent successful ly");
} catch (Exception e) {
facesMessages. add("Emai | sending failed: " + e.getMssage());
}

}

If, for example, you entered an invalid email address, then an exception would be thrown, which is caught and
then displayed to the user.

16.1.1. Attachments

JBoss Seam 1.1.6.GA 150

Emalil

Seam makes it easy to attach files to an email. It supports most of the standard java types used when working
with files.

If you wanted to email thej boss-seam i | . j ar:

<m attachnent val ue="/WEB-INF/Ilib/jboss-seammuil.jar" />

Seam will load the file from the classpath, and attach it to the email. By default it would be attached asj boss-
seam mai | . j ar; if you wanted it to have another name you would just add thef i | eNarre attribute:

<m attachnment val ue="/WEB-INF/|ib/jboss-seamnuil.jar" fileNane="this-is-so-cool.jar" />

You could also attach aj ava. i 0. Fi l e, @j ava. net. URL:

<m attachnment val ue="#{nunbers}" />

abyte[] Orajava.io.|nputStream

<m attachnent val ue="#{person. photo}" content Type="i nage/ png" />

You'll notice that for abyte[] and aj ava. i o. | nput St reamyou need to specify the MIME type of the attach-
ment (as that information is not carried as part of thefile).

And it gets even better, you can attach a Seam generated PDF, or any standard JSF view, just by wrapping a
<m at t achnment > around the normal tags you would use:

<m attachment fileName="tiny. pdf">
<p: docunent >
A very tiny PDF
</ p: docunent >
</ m attachnent >

If you had a set of files you wanted to attach (for example a set of pictures loaded from a database) you can just
use a<ui : repeat >:

<ui:repeat val ue="#{people}" var="person">
<m attachnment val ue="#{person. photo}" content Type="i mage/ | peg" fil eName="#{person. firstnane}_#{pel
</ ui : repeat >

16.1.2. HTML/Text alternative part

Whilst most mail readers nowadays support HTML, some don't, so you can add a plain text alternative to your
email body:

<m body>

<f:facet nane="alternative">Sorry, your enmmil reader can't show our fancy email,
pl ease go to http://I|abs.jboss.com jbossseamto expl ore Seam </f: facet>
</ m body>

16.1.3. Multiple recipients

Often you'll want to send an email to a group of recipients (for example your users). All of the recipient mail
tags can be placed inside a <ui : r epeat >:

<ui :repeat val ue="#{all Users} var="user">

JBoss Seam 1.1.6.GA 151

Emalil

<mto nanme="#{user.firstnane} #{user.|astnane}" address="#{user.email Address}" />
</ ui:repeat>

16.1.4. Templating

The mail templating example shows that facelets templating 'just works' with the Seam mail tags.
Our tenpl ate. xht m contains.

<m nessage>
<m from nanme="Seant address="do-not-repl y@ boss.coni />
<m to name="#{person.firstname} #{person.|astnane}">#{person. address}</mto>
<m subj ect >#{ subj ect } </ m subj ect >
<m body>
<htm >
<body>
<ui :insert name="body"> This is the default body, specified by the tenplate.</ui:insert
</ body>
</htm >
</ m body>
</ m nessage>

Our t enpl ati ng. xht ni contains.

<ui : param nane="subj ect" val ue="Tenplating with Seam Mai |l " />
<ui : defi ne name="body" >

<p>Thi s enmil denonstrates that you can easily use <i>facelets tenplating features</i> in your co
</ ui : defi ne>

16.1.5. Other Headers

Sometimes you'll want to add other headers to your email. Seam provides support for some (see Section 16.3,
“Tags’). For example, we can set the importance of the email, and ask for aread receipt:

<m nessage xm ns: m"http://jboss. com products/seam mail"
i mport ance="1 ow'
request ReadRecei pt ="t rue" >

Otherise you can add any header to the message using the <m header > tag:

<m header nane="X-Sent-Fron' val ue="JBoss Seani />

16.2. Configuration

To include Email support in your application, includej boss-seam mai | . j ar in your WEB-INF/lib directory. If
you are using JBoss AS there is no further configuration needed to use Seam's email support. Otherwise you
need to make sure you have the JavaMail API, an implementation of the JavaMail API present (the APl and im-
pl used in JBoss AS are distributed with seam as |1 i b/ mai | . j ar), and a copy of the Java Activation Framework
(distributed with seam as i b/ acti vation. j ar.

The Seam Email module requires the use of Facelets as the view technology. Future versions of the library may
also support the use of JSP. Additionaly, it requires the use of the seam-ui package.

The mai | Sessi on component uses JavaMail to talk to a'real' SMTP server.

JBoss Seam 1.1.6.GA 152

Emalil

16.2.1. mai | Sessi on

A JavaMail Session may be available via a INDI lookup if you are working in an JEE environment or you can
use a Seam configured Session.

The mailSession component's properties are described in more detail in Section 21.8, “Mail-related compon-
ents’.

16.2.1.1. INDI lookup in JBoss AS

The JBossAS depl oy/ mai | - servi ce. xm configures a JavaMail session binding into JNDI. The default service
configuration will need atering for your network. http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail describes
the service in more detail .

<conponent s xm ns=" ; http://j boss. com product s/ seam conponent s" ;
xm ns: core=" ; http: //j boss. coni pr oduct s/ seani cor e" ;
xm ns: mai | =" ; http: //j boss. com product s/ seam mai | " ; >
<mai | : mai | Sessi on sessi onJndi Nane=" ; j ava: / Mai | " ; />
</ conponent s>

Here we tell Seam to get the mail session bound to j ava: / Mai | from JNDI.

16.2.1.2. Seam configured Session

A mail session can be configured via conponent s. xn . Here we tell Seam to use snt p. exanpl e. com as the
smtp server,

<conponent s xm ns=" ; http://jboss. com product s/ seam conponent s" ;
xm ns: core=" ; http: //j boss. conl pr oduct s/ seani cor e" ;
xm ns: mai | =" ; http: //j boss. com product s/ seam nai | " ; >
<mai | : mai | Sessi on host =" ; snt p. exanpl e. com" />
</ conponent s>

16.3. Tags

Emails are generated using tagsintheht t p: // j boss. cont pr oduct s/ sean mai | namespace. Documents should
always have the nessage tag at the root of the message. The message tag prepares Seam to generate an email.

The standard templating tags of facelets can be used as normal. Inside the body you can use any JSF tag which
doesn't require access to external resources (stylesheets, javascript).

<m:message>
Root tag of amail message
e inportance — low, normal or high. By default normal, this sets the importance of the mail message.
e precedence — Sets the precedence of the message (e.g. bulk).

* request ReadRecei pt — by default false, if set, a read receipt will be request will be added, with the
read receipt being sent to the From address.

<m:from>
Set's the From: address for the email. Y ou can only have one of these per email.

JBoss Seam 1.1.6.GA 153

http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail

Emalil

* name — the name the email should come from.
* address — the email address the email should come from.
<m:replyTo>
Set's the Reply-to: address for the email. Y ou can only have one of these per email.
e address — the email address the email should come from.

<m:to>
Add arecipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can be safely placed
inside arepeat tag such as <ui:repeat>.
e name — the name of the recipient.

e address — the email address of the recipient.

<m:cc>
Add acc recipient to the email. Use multiple <m:cc> tags for multiple ccs. This tag can be safely placed in-
side arepeat tag such as <ui:repeat>.
¢ nanme — the name of the recipient.

* address — the email address of the recipient.

<m:bcc>
Add a bcc recipient to the email. Use multiple <m:bcc> tags for multiple bees. This tag can be safely
placed inside a repeat tag such as <ui:repeat>.

e name — the name of the recipient.
e address — the email address of the recipient.

<m:header>
Add a header to the email (e.g. X- Sent - From JBoss Seam

e name — The name of the header to add (e.g. X- Sent - Fr om).
e val ue — Thevalue of the header to add (e.g. JBoss Sean).

<m:attachment>
Add an attachment to the email.

* val ue — Thefileto attach:

e sString— A String isinterpreted as a path to file within the classpath
* java.io.File— AnEL expression can reference aFi| e object
* java.net.URL — An EL expression can reference a URL object

e java.io.InputStream— An EL expression can reference an | nput St r eam In this case both afi -

JBoss Seam 1.1.6.GA 154

Emalil

| eNarme and acont ent Type must be specified.

* byte[] — An EL expression can reference an byt e[] . In this case both afi | eNane and acont ent -
Type must be specified.

If the value attribute is ommitted:

e If this tag contains a <p: docunent > tag, the document described will be generated and attached to
theemail. A fi | eName should be specfied.

e If thistag contains other JSF tags a HTML document will be generated from them and attached to
theemail. A fi | eName should be specfied.

* fil eName — Specify the file name to use for the attached file.
* cont ent Type — Specify the MIME type of the attached file

<m:subject>
Set's the subject for the email.

<m:body>
Set's the body for the email. Supports an al t er nat i ve facet which, if an HTML email is generated can con-
tain aternative text for amail reader which doesn't support html.

e type — If settopl ai n then aplain text email will be generated otherwise an HTML email is generated.

JBoss Seam 1.1.6.GA 155

Chapter 17. Asynchronicity and messaging

Seam makes it very easy to perform work asynchronously from a web regquest. When most people think of
asynchronicity in Java EE, they think of using IMS. Thisis certainly one way to approach the problem in Seam,
and is the right way when you have strict and well-defined quality of service requirements. Seam makes it easy
to send and recieve JM S messages using Seam components.

But for many usecases, IMS is overkill. Seam layers a simple asynchronous method and event facility over the
EJB 3.0 timer service.

17.1. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations as the container's EJB
timer service. If you're not familiar with the Timer service, don't worry, you don't need to interact with it dir-
ectly if you want to use asynchronous methods in Seam.

To use asynchronous methods and events, you need to add the following line to conponent s. xm :

<core: di spat cher/ >

Note that this functionality is not available in environments which do not support EJB 3.0.

17.1.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in a different
thread) from the caller. We usually use an asynchronous call when we want to return an immediate response to
the client, and let some expensive work be processed in the background. This pattern works very well in applic-
ations which use AJAX, where the client can automatically poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed asynchronously.

@.ocal

public interface PaynentHandl er

{
@\synchr onous

public void processPaynent (Paynent paynent);

}

(For JavaBean components we can annotate the component implementation classif welike.)
The use of asynchronicity is transparent to the bean class:

@t at el ess
@Nane(" paynent Handl er ")
public class Paynent Handl er Bean i npl enents Paynent Handl er

{

public void processPaynment (Paynment paynent)

{
}

//do sone wor k!

}

And aso transparent to the client:

@t at ef ul

JBoss Seam 1.1.6.GA 156

Asynchronicity and messaging

@Nane(" paynent Acti on")
public class CreatePaynmentAction

{
@n(create=true) Payment Handl er paynent Handl er;
@n Bill bill;
public String pay()
{
payment Handl er . processPaynment (new Paynent (bill));
return "success";
}
}

The asynchronous method is processed in a completely new event context and does not have access to the ses-
sion or conversation context state of the caller. However, the business process context is propagated.

Asynchronous method calls may be scheduled for later execution using the @urati on, @xpiration and
@ nt er val Dur at i on annotations.

@.ocal
public interface Paynent Handl er
{
@\synchr onous
public voi d processSchedul edPaynent (Paynment payment, @xpiration Date date);
@\synchr onous
public void processRecurringPaynent (Paynment paynment, @xpiration Date date, @nterval Duration Dat ¢
}
@t at ef ul

@Nane(" paynent Acti on")
public class CreatePaynment Action

{
@n(create=true) PaynentHandl er paynent Handl er;
@n Bill bill;
public String schedul ePaynent ()
{
paynent Handl er . processSchedul edPaynent (new Paynment (bill), bill.getDueDate());
return "success";
}
public String schedul eRecurri ngPaynent ()
{
paynent Handl er . processRecurri ngPaynent (new Paynment (bill), bill.getDueDate(), ONE_MONTH);
return "success";
}
}

Both client and server may accessthe Ti mer object associated with the invocation.

@.ocal
public interface Paynent Handl er

{
@\synchr onous
public Tinmer processSchedul edPaynent (Paynment paynent, @xpiration Date date);

@t at el ess
@ame(" paynment Handl er ")
public class Paynent Handl er Bean i npl enents Paynent Handl er

{

@n Timer tiner;

public Tinmer processSchedul edPayment (Paynment paynent, @xpiration Date date)
{

JBoss Seam 1.1.6.GA 157

Asynchronicity and messaging

//do sone wor k!

return tiner; //note that return value is conpletely ignored

@t at ef ul
@Nane(" paynent Acti on")
public class CreatePaynmentAction

{
@n(create=true) Payment Handl er paynent Handl er;
@n Bill bill;
public String schedul ePaynent ()
{
Timer timer = paynent Handl er. processSchedul edPayrment (new Paynent (bill), bill.getDueDate());
return "success";
}
}

Asynchronous methods cannot return any other value to the caller.

17.1.2. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous processing, simply
call the rai seAsynchronousEvent () methods of the Events class. To schedule a timed event, call one of the
rai seTi medEvent () methods. Components may observe asynchronous events in the usual way, but remember
that only the business process context is propagated to the asynchronous thread.

17.2. Messaging in Seam

Seam makes it easy to send and receive JIM S messages to and from Seam components.

17.2.1. Configuration

To configure Seam's infrastructure for sending JIMS messages, you need to tell Seam about any topics and
queues you want to send messages to, and also tell Seam where to find the QueueConnect i onFact ory and/or
Topi cConnecti onFactory.

Seam defaults to using Ul L2Connect i onFact ory Which is the usual connection factory for use with JBossMQ.
If you are using some other JMS provider, you need to set one or both of queueConnec-
tion. queueConnecti onFactoryJndi Name and topi cConnecti on. t opi cConnecti onFact oryJndi Name in
seam properties,web. xm Or conponents. xmn .

You aso need to list topics and queues in conponent s. xm to install Seam managed Topi cPubl i sher s and
QueueSender S.

<j ms: managed-t opi c- publ i sher nanme="st ockTi cker Publ i sher" auto-create="true" topic-jndi-nane="topic/ st

<j ms: managed- queue- sender name="paynment QueueSender" auto-create="true" queue-jndi - name="queue/ paynent

17.2.2. Sending messages

Now, you can inject a JMS Topi cPubl i sher and Topi cSessi on into any component:

JBoss Seam 1.1.6.GA 158

Asynchronicity and messaging

@n

private Topi cPublisher stockTi ckerPublisher;

@n

private Topi cSessi on topi cSession;

public void publish(StockPrice price) {
try
{

}
catch (Exception ex)

{
}

t opi cPubl i sher. publ i sh(topi cSessi on. creat eObj ect Message(price));

t hrow new Runti meExcepti on(ex);

Or, for working with a queue:

@n
private QueueSender paynent QueueSender ;
@n

private QueueSessi on queueSessi on;

public void publish(Paynent paynent) {
try
{

paynent QueueSender . publ i sh(queueSessi on. cr eat eCbj ect Message(paynent));

catch (Exception ex)

{
}

t hrow new Runti meExcepti on(ex);

17.2.3. Receiving messages using a message-driven bean

You can process messages using any EJB3 message driven bean. Message-driven beans may even be Seam
components, in which case it is possible to inject other event and application scoped Seam components.

17.2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described in the next
chapter.

JBoss Seam 1.1.6.GA 159

Chapter 18. Remoting

Seam provides a convenient method of remotely accessing components from a web page, using AJAX
(Asynchronous Javascript and XML). The framework for this functionality is provided with amaost no up-front
development effort - your components only require simple annotating to become accessible via AJAX. This
chapter describes the steps required to build an AJAX-enabled web page, then goes on to explain the features of
the Seam Remoting framework in more detail.

18.1. Configuration

To use remoting, the Seam Remoting servliet must first be configured in your web. xni file:

<servl et >

<servl et - name>Seam Renot i ng</ ser vl et - name>

<servl et-class>org. | boss. seam renoti ng. SeanRenot i ngSer vl et </ servl et - cl ass>
</servl et>

<servl et - mappi ng>
<servl et - name>Seam Renot i ng</ ser vl et - name>
<url-pattern>/seanrenmoting/*</url-pattern>
</ servl et - mappi ng>

The next step isto import the necessary Javascript into your web page. There are a minimum of two scripts that
must be imported. The first one contains all the client-side framework code that enables remoting functionality:

<script type="text/javascript" src="seam renoting/resource/renote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call. It is generated
dynamically based on the local interface of your components, and includes type definitions for all of the classes
that can be used to call the remotable methods of the interface. The name of the script reflects the name of your
component. For example, if you have a stateless session bean annotated with @ianme(" cust oner Acti on") , then
your script tag should look like this:

<script type="text/javascript" src="seam renoting/interface.js?custonerAction"></script>

If you wish to access more than one component from the same page, then include them all as parameters of
your script tag:

<script type="text/javascript" src="seam renoting/interface.js?custonerActi on&ccountAction"></scri |

JBoss Seam 1.1.6.GA 160

Remoting

18.2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object. This object is
definedinrenote. j s, and you'll be using it to make asynchronous calls against your component. It is split into
two areas of functionality; Seam Conponent contains methods for working with components and
Seam Renot i ng contains methods for executing remote requests. The easiest way to become familiar with this
object isto start with a simple example.

18.2.1. A Hello World example

Let's step through a simple exampl e to see how the seamobject works. First of al, |et's create a new Seam com-
ponent called hel | oActi on.

@t at el ess
@ame(" hel | oAction")
public class HelloAction inplenents HelloLocal {
public String sayHel l o(String nanme) {
return "Hello, " + nane;

}
}

Y ou also need to create alocal interface for our new component - take specia note of the @ebRenot e annota-
tion, asit's required to make our method accessible viaremoting:

@.ocal

public interface HelloLocal {
@\¥bRenot e
public String sayHello(String nane);
}

That's al the server-side code we need to write. Now for our web page - create a new page and import the fol-
lowing scripts:

<script type="text/javascript" src="seam renoting/resource/renote.js"></script>
<script type="text/javascript" src="seam renoting/interface.js?hell oAction"></script>

To make this afully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hel | o</ button>

WEe'll also need to add some more script to make our button actually do something when it's clicked:

JBoss Seam 1.1.6.GA 161

Remoting

<script type="text/javascript">
/] <!'[CDATA[

function sayHel l o() {

var name = pronpt("Wat is your name?");

Seam Component . get | nst ance(" hel | oActi on") . sayHel | o(name, sayHel | oCal | back) ;
}

function sayHel | oCal | back(result) {
alert(result);
}

I 11>
</scri pt>

We're done! Deploy your application and browse to your page. Click the button, and enter a name when promp-
ted. A message box will display the hello message confirming that the call was successful. If you want to save
some time, youll find the full source code for this Hello World example in Seam's /ex-
anpl es/ renot i ng/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start with, you can
see from the Javascript code listing that we have implemented two methods - the first method is responsible for
prompting the user for their name and then making a remote request. Take alook at the following line:

Seam Conponent . get | nst ance(" hel | oAction") . sayHel | o(name, sayHel | oCal | back) ;

The first section of thisline, Seam Conponent . get | nst ance(" hel | oActi on") returns aproxy, or "stub” for our
hel I oAct i on component. We can invoke the methods of our component against this stub, which is exactly what
happens with the remainder of theline: sayHel | o(name, sayHel | oCal | back) ; .

What this line of code in its completeness does, is invoke the sayHel | o method of our component, passing in
nane as a parameter. The second parameter, sayHel | oCal | back iSn't a parameter of our component's sayHel | o
method, instead it tells the Seam Remoting framework that once it receives the response to our request, it
should passit to the sayHel | oCal | back Javascript method. This callback parameter is entirely optional, so feel
freeto leaveit out if you're calling a method with avoi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops up an aert mes-
sage displaying the result of our method call.

18.2.2. Seam.Component

The seam Conponent Javascript object provides a number of client-side methods for working with your Seam
components. The two main methods, newl nst ance() and get | nst ance() are documented in the following sec-
tions however their main difference is that newl nst ance() will always create a new instance of a component
type, and get | nst ance() will return asingleton instance.

Seam.Component.newlnstance()

Use this method to create a new instance of an entity or Javabean component. The object returned by this meth-
od will have the same getter/setter methods as its server-side counterpart, or alternatively if you wish you can
access itsfields directly. Take the following Seam entity component for example:

JBoss Seam 1.1.6.GA 162

Remoting

@ame(" cust omer")
@ntity
public class Custoner inplenents Serializable

{

private |nteger custonerld;
private String firstName;
private String | astNaneg;

@Col umm public Integer getCustonerld() {
return custonerld;

}

public void setCustonerld(lnteger custonerld} {
this.custonerld = custonerld;

}

@Col umm public String getFirstNane() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstNane = firstNane;

}

@ol utm public String getlLast Nane() {
return | ast Nane;

}

public void setlLastNanme(String | astNane) ({
this.lastNane = | ast Nane;

}

}

To create a client-side Customer you would write the following code:

var custonmer = Seam Conponent.new nst ance("custoner");

Then from here you can set the fields of the customer object:

cust oner. set Fi r st Name(" John") ;
/1 O you can set the fields directly
custoner. | ast Name = "Sm th";

Seam.Component.getinstance()

The get I nst ance() method is used to get a reference to a Seam session bean component stub, which can then
be used to remotely execute methods against your component. This method returns a singleton for the specified
component, so calling it twice in a row with the same component name will return the same instance of the
component.

To continue our example from before, if we have created a new cust oner and we now wish to save it, we
would passit to the saveCust oner () method of our cust oner Act i on component:

Seam Conponent . get | nst ance(" cust omer Acti on"). saveCust oner (cust oner);

JBoss Seam 1.1.6.GA 163

Remoting

Seam.Component.getComponentName()

Passing an object into this method will return its component nameif it is acomponent, or nul | if it isnot.

i f (Seam Conponent . get Conponent Nanme(i nstance) == "custoner")
alert("Custoner");
el se if (Seam Conponent . get Conponent Nane(i nstance) == "staff")

alert("Staff menber");

18.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam Renot i ng object. While
you shouldn't need to directly call most of its methods, there are a couple of important ones worth mentioning.

Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may need to create these
types on the client side to pass as parameters into your component method. Use the creat eType() method to
create an instance of your type. Passin the fully qualified Java class name as a parameter:

var wi dget = Seam Renoti ng. createType("com acre. w dgets. MyW dget ") ;

Seam.Remoting.getTypeName()

This method is the equivalent of Seam Corponent . get Conponent Nane() but for non-component types. It will
return the name of the type for an object instance, or nul | if the type is not known. The name is the fully quali-
fied name of the type's Java class.

18.3. Client Interfaces

In the configuration section above, the interface, or "stub" for our component is imported into our page via
seanirenoting/interface.js:

<script type="text/javascript" src="seamrenoting/interface.js?custonerAction"></script>

By including this script in our page, the interface definitions for our component, plus any other components or
types that are required to execute the methods of our component are generated and made available for the re-
moting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs. Executable stubs
are behavioural, and are used to execute methods against your session bean components, while type stubs con-
tain state and represent the types that can be passed in as parameters or returned as aresullt.

The type of client stub that is generated depends on the type of your Seam component. If the component is a
session bean, then an executable stub will be generated, otherwise if it's an entity or JavaBean, then atype stub

JBoss Seam 1.1.6.GA 164

Remoting

will be generated. There is one exception to this rule; if your component is a JavaBean (ie it is not a session
bean nor an entity bean) and any of its methods are annotated with @WebRemote, then an executable stub will
be generated for it instead of a type stub. This allows you to use remoting to call methods of your JavaBean
components in a non-EJB environment where you don't have access to session beans.

18.4. The Context

The Seam Remoting Context contains additional information which is sent and received as part of a remoting
reguest/response cycle. At this stage it only contains the conversation ID but may be expanded in the future.

18.4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to read or set the
conversation 1D in the Seam Remoting Context. To read the conversation ID after making a remote request call
Seam Rent i ng. get Cont ext (). get Conversationld(). To set the conversation 1D before making a request,
call Seam Renot i ng. get Cont ext () . set Conversationl d() .

If the conversation ID hasn't been explicitly set with Seam Renot i ng. get Cont ext (). set Conver sationl d(),
then it will be automatically assigned the first valid conversation ID that is returned by any remoting call. If you
are working with multiple conversations within your page, then you may need to explicitly set the conversation
ID before each call. If you are working with just a single conversation, then you don't need to do anything spe-
cial.

18.5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is recommended that
thisfeature is used wherever it is appropriate to reduce network traffic.

The method Seam Renoti ng. startBat ch() Will start a new batch, and any component calls executed after
starting a batch are queued, rather than being sent immediately. When al the desired component calls have
been added to the batch, the Seam Renmt i ng. execut eBat ch() method will send a single request containing all
of the queued calls to the server, where they will be executed in order. After the calls have been executed, a
single response containining all return values will be returned to the client and the callback functions (if
provided) triggered in the same order as execution.

If you start a new batch via the startBatch() method but then decide you don't want to send it, the
Seam Renot i ng. cancel Bat ch() method will discard any calls that were queued and exit the batch mode.

To see an example of abatch being used, take alook at / exanpl es/ r emot i ng/ chat r oom

18.6. Working with Data types

18.6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are generally compatible
with either their primitive type or their corresponding wrapper class.

String

JBoss Seam 1.1.6.GA 165

Remoting

Simply use Javascript String objects when setting String parameter values.

Number

Thereis support for all number types supported by Java. On the client side, number values are always serialized
astheir String representation and then on the server side they are converted to the correct destination type. Con-
version into either a primitive or wrapper type is supported for Byt e, Doubl e, Fl oat, | nt eger, Long and Shor t

types.
Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java boolean.

18.6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-component class. Use
the appropriate method (either Seam Conponent.new nstance() for Seam components or
Seam Renot i ng. cr eat eType() for everything else) to create a new instance of the object.

It isimportant to note that only objects that are created by either of these two methods should be used as para
meter values, where the parameter is not one of the other valid types mentioned anywhere else in this section.
In some situations you may have a component method where the exact parameter type cannot be determined,
such as:

@Nane(" nyAction")
public class M/Action inplenents M/ActionLocal {
public void doSonet hi ngWt hObj ect (Obj ect obj) {
/1 code

}
}

In this case you might want to pass in an instance of your nyw dget component, however the interface for ny-
Act i on won't include nyw dget asit isnot directly referenced by any of its methods. To get around this, MW d-
get needsto be explicitly imported:

<script type="text/javascript" src="seanlrenoting/interface.js?nyActi on&ryW dget"></scri pt>

This will then alow anyw dget object to be created with Seam Conponent . newl nst ance(" myW dget "), which
can then be passed to myAct i on. doSonet hi ngW t hQbj ect () .

18.6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the client side, use
a Javascript Date object to work with date values. On the server side, use any j ava. uti | . Dat e (or descendent,
such asj ava. sql . Dat e Or j ava. sql . Ti mest anp class.

18.6.4. Enums

JBoss Seam 1.1.6.GA 166

Remoting

On the client side, enums are treated the same as Strings. When setting the value for an enum parameter, simply
use the String representation of the enum. Take the following component as an example:

@anme(" pai nt Action")
public class paintAction inplenents paintLocal {
public enum Col or {red, green, blue, yellow, orange, purple};

public void paint(Color color) {
/] code

}
}

To call the pai nt () method with the color r ed, pass the parameter value as a String literal:

Seam Conponent . get | nst ance(" pai nt Acti on").paint("red");

Theinverseis also true - that is, if a component method returns an enum parameter (or contains an enum field
anywhere in the returned object graph) then on the client-side it will be represented as a String.

18.6.5. Collections

Bags

Bags cover al collection types including arrays, collections, lists, sets, (but excluding Maps - see the next sec-
tion for those), and are implemented client-side as a Javascript array. When calling a component method that
accepts one of these types as a parameter, your parameter should be a Javascript array. If a component method
returns one of these types, then the return value will also be a Javascript array. The remoting framework is clev-
er enough on the server side to convert the bag to an appropriate type for the component method call.

Maps

As there is no native support for Maps within Javascript, a simple Map implementation is provided with the
Seam Remoting framework. To create a Map which can be used as a parameter to a remote call, create a new
Seam Renot i ng. Map object:

var map = new Seam Renoti ng. Map();

This Javascript implementation provides basic methods for working with Maps: si ze(), i sEnpty() , keySet (),
val ues(), get (key), put (key, val ue), remove(key) and cont ai ns(key) . Each of these methods are equival-
ent to their Java counterpart. Where the method returns a collection, such as keySet () and val ues(), a Javas-
cript Array object will be returned that contains the key or value objects (respectively).

18.7. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents of all the
packets send back and forth between the client and server in a popup window. To enable debug mode, either
execute the set Debug() method in Javascript:

JBoss Seam 1.1.6.GA 167

Remoting

Seam Renot i ng. set Debug(true);

Or configure it via components.xml:

<renoti ng: renoting-config debug="true"/>

To turn off debugging, call set Debug(f al se). If you want to write your own messages to the debug log, call
Seam Renoti ng. | og(nessage) .

18.8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified, its rendering
customised or even turned off completely.

18.8.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of
Seam Renot i ng. | oadi ngMessage:

Seam Renot i ng. | oadi ngMessage = "Loadi ng...";

18.8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of di spl ayLoad-
i ngMessage() and hi deLoadi ngMessage() With functions that instead do nothing:

/1 don't display the |oading indicator
Seam Renot i ng. di spl ayLoadi ngMessage = function() {};
Seam Renot i ng. hi deLoadi ngMessage = function() {};

18.8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else that you want.
To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage() messages with your own im-
plementation:

Seam Renot i ng. di spl ayLoadi ngMessage = function() {
/1 Wite code here to display the indicator

b
Seam Renot i ng. hi deLoadi ngMessage = function() {

/1 Wite code here to hide the indicator

I

18.9. Controlling what data is returned

JBoss Seam 1.1.6.GA 168

Remoting

When a remote method is executed, the result is serialized into an XML response that is returned to the client.
This response is then unmarshaled by the client into a Javascript object. For complex types (i.e. Javabeans) that
include references to other objects, all of these referenced objects are also serialized as part of the response.
These objects may reference other objects, which may reference other objects, and so forth. If left unchecked,
this object "graph” could potentially be enormous, depending on what rel ationships exist between your objects.
And as a side issue (besides the potential verbosity of the response), you might also wish to prevent sensitive
information from being exposed to the client.

Seam Remoting provides a simple means to "constrain™ the object graph, by specifying the excl ude field of the
remote method's @ebRenot e annotation. This field accepts a String array containing one or more paths spe-
cified using dot notation. When invoking a remote method, the objects in the result's object graph that match
these paths are excluded from the serialized result packet.

For all our examples, well use the following w dget class:

@Nanme("w dget")
public class Wdget
{

private String val ue;

private String secret;

private Wdget child;

private Map<String, Wdget > w dget Map;
private List<Wdget> w dgetlList;

/'l getters and setters for all fields

18.9.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secret field because it
contains sensitive information, you would constrain it like this:

@\ébRenot e(excl ude = {"secret"})
public Wdget get Wdget();

The value "secret” refersto the secret field of the returned object. Now, suppose that we don't care about ex-
posing this particular field to the client. Instead, notice that the w dget value that is returned has afield chi | d
that is also a w dget . What if we want to hide the chi | d's secret value instead? We can do this by using dot
notation to specify this field's path within the result's object graph:

@\ebRenot e(excl ude = {"child.secret"})
public Wdget get Wdget();

18.9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a vap or some kind of collection (Li st ,
Set, Array, €tc). Collections are easy, and are treated like any other field. For example, if our w dget contained
alist of other w dget sin itswi dget Li st field, to constrain the secret field of the w dget s in this list the an-
notation would look like this:

JBoss Seam 1.1.6.GA 169

Remoting

@\ébRenot e(excl ude = {"w dgetList.secret"})
public Wdget getWdget();

To constrain a Map's key or value, the notation is dightly different. Appending [key] after the map's field name
will constrain the Map's key object values, while [val ue] will constrain the value object values. The following
example demonstrates how the values of the wi dget Map field have their secr et field constrained:

@\ébRenot e(excl ude = {"w dget Map[val ue] . secret"})
public Wdget getWdget();

18.9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of atype of object no matter where in the res-
ult's object graph it appears. This notation uses either the name of the component (if the object is a Seam com-
ponent) or the fully qualified class name (only if the object is not a Seam component) and is expressed using
square brackets:

@\ébRenot e(exclude = {"[wi dget].secret"})
public Wdget getWdget();

18.9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@\ébRenot e(excl ude = {"w dgetList.secret", "w dget Map[val ue].secret"})
public Wdget getWdget();

18.10. JIMS Messaging

Seam Remoting provides experimental support for IMS Messaging. This section describes the IMS support that
is currently implemented, but please note that this may change in the future. It is currently not recommended
that this feature is used within a production environment.

18.10.1. Configuration

Before you can subscribe to a IM S topic, you must first configure alist of the topics that can be subscribed to
by Seam Remoting. List the topics under
org.j boss. seam renoti ng. nessagi ng. subscri pti onRegi stry. al | onedTopi cs in seam properties,
web. xm O conponent s. xmi .

<renoting: renoti ng-config poll-tineout="5" poll-interval="1"/>

18.10.2. Subscribing to a JMS Topic

JBoss Seam 1.1.6.GA 170

Remoting

The following example demonstrates how to subscribeto a JIMS Topic:

function subscriptionCall back(message)

{
i f (message instanceof Seam Renoti ng. Text Message)
al ert ("Recei ved nessage: " + nessage. get Text());

}

Seam Renot i ng. subscri be("topi cNane", subscriptionCal |l back);

The seam Renot i ng. subscri be() method accepts two parameters, the first being the name of the IMS Topic to
subscribe to, the second being the callback function to invoke when a message is received.

There are two types of messages supported, Text messages and Object messages. If you need to test for the type
of message that is passed to your callback function you can use the i nst anceof operator to test whether the
message iS a Seam Renot i ng. Text Message OF Seam Renpt i ng. bj ect Message. A Text Message contains the
text value in itstext field (or aternatively call get Text () on it), while an Obj ect Message contains its object
valueinitsobj ect field (or call itsget Qbj ect () method).

18.10.3. Unsubscribing from a Topic

To unsubscribe from atopic, call Seam Renot i ng. unsubscri be() and passin the topic name:

Seam Renot i ng. unsubscri be("t opi cNane") ;

18.10.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam Renot i ng. pol | I nt erval , which controls how long to wait between subsequent polls for new messages.
This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam Renot i ng. pol | Ti neout , and is also expressed as seconds. It controls how long a
reguest to the server should wait for a new message before timing out and sending an empty response. Its de-
fault is O seconds, which means that when the server is polled, if there are no messages ready for delivery then
an empty response will be immediately returned.

Caution should be used when setting a high pol | Ti mreout value; each request that has to wait for a message
means that a server thread istied up until a message is received, or until the request times out. If many such re-
quests are being served simultaneously, it could mean alarge number of threads become tied up because of this
reason.

It is recommended that you set these options via components.xml, however they can be overridden via Javas-
cript if desired. The following example demonstrates how to configure the polling to occur much more aggress-
ively. You should set these parameters to suitable values for your application:

Via components.xmil:

<conponent name="org.jboss.seamrenoting.renotingConfig">
<property nane="pol | Ti neout " >5</ property>
<property name="pol | | nterval ">1</property>

</ conponent >

JBoss Seam 1.1.6.GA 171

Remoting

Via JavaScript:

// Only wait 1 second between receiving a poll response and sending the next poll request.
Seam Renoti ng. pol I I nterval = 1;

/1 Wait up to 5 seconds on the server for new nessages
Seam Renot i ng. pol | Ti meout = 5;

JBoss Seam 1.1.6.GA 172

Chapter 19. Configuring Seam and packaging Seam
applications

Configuration is avery boring topic and an extremely tedious pastime. Unfortunately, several lines of XML are
required to integrate Seam into your JSF implementation and servlet container. There's no need to be too put off
by the following sections; you'll never need to type any of this stuff yourself, since you can just copy and paste
from the example applications!

19.1. Basic Seam configuration

First, let'slook at the basic configuration that is needed whenever we use Seam with JSF.

19.1.1. Integrating Seam with JSF and your servlet container

Seam requires the following entry in your web. xni file:

<listener>
<listener-class>org.jboss. seam servl et. Seanli stener</1|i stener-class>
</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application contexts.

To integrate with the JSF request lifecycle, we also need a JSF Phaseli st ener registered in in the f aces- con-
fig.xn file

<lifecycl e>
<phase-|i stener>org.jboss. seam j sf. SeanPhaseli st ener </ phase-| i st ener>
</lifecycle>

The actual listener class here varies depending upon how you want to manage transaction demarcation (more
on this below).

If you are using Sun's JSF 1.2 reference implementation, you should also add thisto f aces- confi g. xm :

<appl i cati on>
<el -resol ver>org. j boss. seam j sf. SeanELResol ver </ el -r esol ver >
</ application>

(Thisline should not strictly speaking be necessary, but it works around a minor bug in the RI.)

Some JSF implementations have a broken implementation of server-side state saving that interferes with
Seam's conversation propagation. If you have problems with conversation propagation during form submis-
sions, try switching to client-side state saving. You'll need thisin web. xm :

<cont ext - par an>
<par am nane>j avax. f aces. STATE_SAVI NG_METHOD</ par am nanme>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an>

19.1.2. Integrating Seam with your EJB container

We need to apply the Seam nt er cept or to our Seam components. The simplest way to do thisis to add the fol-

JBoss Seam 1.1.6.GA 173

Configuring Seam and packaging Seam applications

lowing interceptor binding to the <assenbl y-descri ptor>inejb-jar. xm :

<i nt er cept or - bi ndi ng>

<ej b- name>* </ ej b- nane>

<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or</i nterceptor-cl ass>
</i nt er cept or - bi ndi ng>

Seam needs to know where to go to find session beans in INDI. One way to do this is specify the @ndi Namre
annotation on every session bean Seam component. However, this is quite tedious. A better approach is to spe-
cify a pattern that Seam can use to calculate the JINDI name from the EJB name. Unfortunately, there is no
standard mapping to global INDI defined in the EJB3 specification, so this mapping is vendor-specific. We
usually specify thisoption in conponent s. xni .

For JBoss AS, the following pattern is correct:

<core:init jndi-nane="nmyEar Nane/ #{ej bNane}/| ocal " />

Where nyEar Nare is the name of the EAR in which the bean is deployed.

Outside the context of an EAR (when using the JBoss Embeddable EJB3 container), the following pattern is the
one to use:

<core:init jndi-name="#{ej bNane}/local" />

You'll have to experiment to find the right setting for other application servers. Note that some servers (such as
GlassFish) require you to specify JINDI names for all EJB components explicitly (and tediously). In this case,
you can pick your own pattern ;-)

19.1.3. Enabling Seam exception handling

If you want to use Seam's exception mapping functionality in pages. xm (almost al applications will need
this), you need to add a servlet filter to web. xni :

<filter>
<filter-nane>Seam Exception Filter</filter-name>
<filter-class>org.jboss. seam servl et. SeanExceptionFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>Seam Exception Filter</filter-name>
<url - pattern>*. seanx/url - pattern>
</filter-mapping>

This servlet filter also takes care of rolling back uncommitted transactions when uncaught exceptions occur.
(According to the Java EE specification, the web container should do this automatically, but we've found that
this behavior cannot be relied upon in all application servers. And it is certainly not required of plain servlet en-
gines like Tomcat.)

19.1.4. Enabling conversation propagation with redirects

If you want to use post-then-redirect in JSF, and you want Seam to propagate the conversation context across
the browser redirects, you need to register a servlet filter:

<filter>
<filter-name>Seam Redirect Filter</filter-name>
<filter-class>org.jboss. seamservlet. SeanRedirectFilter</filter-class>
</filter>

JBoss Seam 1.1.6.GA 174

Configuring Seam and packaging Seam applications

<filter-mppi ng>
<filter-nane>Seam Redirect Filter</filter-nanme>
<url-pattern>*.jsf</url-pattern>
</filter-mappi ng>

This filter intercepts any browser redirects and adds a request parameter that specifies the Seam conversation
id.

19.1.5. Using facelets

If you want follow our advice and use facelets instead of JSP, add the following linesto f aces- confi g. xni :

<appl i cati on>
<vi ew handl er >com sun. f acel et s. Facel et Vi ewHandl| er </ vi ew handl er >
</ appl i cati on>

And the following linesto web. xm :

<cont ext - par an>
<par am nanme>j avax. f aces. DEFAULT_SUFFI X</ par am nane>
<par am val ue>. xht m </ par am val ue>

</ cont ext - par an>

19.1.6. Don't forget!

There is one fina item you need to know about. You must place a seam properties, META-
| NF/ seam properti es Of META-1 NF/ conponent s. xnd file in any archive in which your Seam components are
deployed (even an empty properties file will do). At startup, Seam will scan any archives with
seam properti es filesfor seam components.

That's why all the Seam examples have an empty seam properti es file. You can't just delete this file and ex-
pect everything to still work!

Y ou might think this is silly and what kind of idiot framework designers would make an empty file affect the
behavior of their software?? Well, thisis aworkaround for alimitation of the VM—if we didn't use this mech-
anism, our next best option would be to force you to list every component explicitly in conponents. xm , just
like some other competing frameworks do! | think you'll like our way better.

19.2. Configuring Seam in Java EE 5

JBoss Seam 1.1.6.GA 175

Configuring Seam and packaging Seam applications

J5P [Facelets

JSF

Seam

EJB 3

JavaEE S

If you're running in a Java EE 5 environment, thisis all the configuration required to start using Seam!

19.2.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something like this:

nmy-application. ear/
j boss-seam j ar
el -api.jar
el-ri.jar
META- | NF/
MANI FEST. MF
appl i cation. xm
ny-appl i cati on. war/
META- | NF/
MANI FEST. MF
\EB- | NF/
web. xm
conponent s. xm
faces-config. xm
l'ib/
jsf-facelets.jar
j boss-seamui . j ar
| ogin.jsp
register.jsp

ny- application.jar/
META- | NF/
MANI FEST. MF
persi st ence. xni
seam properties
org/
j boss/
nmyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

You mustincludej boss-seamjar, el -api.jar andel -ri.jar inthe EAR classpath. Make sure you reference
al of thesejarsfrom appl i cati on. xni .

If you want to use jBPM or Drools, you must include the needed jars in the EAR classpath. Make sure you ref-
erence al of thejarsfrom appl i cati on. xmi .

JBoss Seam 1.1.6.GA 176

Configuring Seam and packaging Seam applications

If you want to use facelets (our recommendation), you must includej sf-facel ets. jar inthe Wwe- 1 NF/ 1i b dir-
ectory of the WAR.

If you want to use the Seam tag library (most Seam applications do), you must include j boss-seam ui . j ar in
the VEB- I NF/ 1 i b directory of the WAR. If you want to use the PDF or email tag libraries, you need to put
j boss-seam pdf . jar Of j boss-seam nai | . jar iNVEB- I NF/ | i b.

If you want to use the Seam debug page (only works for applications using facelets), you must include j boss-
seam debug. j ar inthe WeB- I NF/ | i b directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that supports EJB
3.0.

| really wish that was al there was to say on the topic of configuration but unfortunately we're only about a
third of the way there. If you're too overwhelmed by all this tedious configuration stuff, feel free to skip over
the rest of this section and come back to it later.

19.3. Configuring Seam in Java SE, with the JBoss Embed-
dable EJB3 container

The JBoss Embeddable EJB3 container lets you run EJB3 components outside the context of the Java EE 5 ap-
plication server. Thisis especialy, but not only, useful for testing.

The Seam hooking example application includes a TestNG integration test suite that runs on the Embeddable
EJB3 container.

Seam

JBoss Embeddable EJB 3

TestNG

The booking exampl e application may even be deployed to Tomcat.

ISP / Facelets

JSF

Seam

JBoss Embeddable EJB 3

Tomcat

JBoss Seam 1.1.6.GA 177

Configuring Seam and packaging Seam applications

19.3.1. Installing the Embeddable EJB3 container

Seam ships with a build of the Embeddable EJB3 container in the enbedded- ej b directory. To use the Embed-
dable EJB3 container with Seam, add the embedded- ej b/ conf directory, and all jarsinthelib and enbedded-
ej b/ 1i b directories to your classpath. Then, add the following line to conponent s. xm :

<core:ejb />

This setting installs the built-in component named or g. j boss. seam cor e. ej b. This component is responsible
for bootstrapping the EJB container when Seam is started, and shutting it down when the web application is un-
deployed.

19.3.2. Configuring a datasource with the Embeddable EJB3 container

Y ou should refer to the Embeddable EJB3 container documentation for more information about configuring the
container. You'll probably at least need to set up your own datasource. Embeddable EJB3 is implemented using
the JBoss Microcontainer, so it's very easy to add new services to the minimal set of services provided by de-
fault. For example, | can add a new datasource by putting thisj boss- beans. xni filein my classpath:

<?xm version="1.0" encodi ng="UTF-8"?>

<depl oynment xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="ur n: j boss: bean- depl oyer bean-depl oyer _1 0. xsd"
xm ns="ur n: j boss: bean- depl oyer" >

<bean nane="booki ngDat asour ceBoot st r ap"
cl ass="org.j boss. resource. adapt er. j dbc. | ocal . Local TxDat aSour ce" >
<property nane="driverd ass">org. hsql db. j dbcDri ver </ property>
<property name="connecti onURL">j dbc: hsql db: . </ property>
<property nane="user Nane">sa</ property>
<property nane="j ndi Nane">j ava: / booki ngDat asour ce</ pr operty>
<property nanme="mi nSi ze">0</ property>
<property name="maxSi ze">10</ property>
<property nane="bl ocki ngTi neout " >1000</ pr operty>
<property name="idl eTi meout">100000</ property>
<property nane="transacti onManager" >
<i nj ect bean="Transacti onManager"/>
</ property>
<property nanme="cachedConnecti onManager" >
<i nj ect bean="CachedConnecti onManager"/>
</ pr operty>
<property nane="initial ContextProperties">
<i nj ect bean="Initi al Cont extProperties"/>
</ property>
</ bean>

<bean name="booki ngDat asour ce" cl ass="j ava. |l ang. Obj ect" >
<constructor factoryMethod="get Dat asource">
<factory bean="booki ngDat asour ceBoot strap"/ >
</ const ructor >
</ bean>

</ depl oyment >

19.3.3. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look something like
this:

ny- appl i cati on. war/
META- | NF/

JBoss Seam 1.1.6.GA 178

Configuring Seam and packaging Seam applications

MANI FEST. MF
VAEB- | NF/

web. xm

conponent s. xm

faces-config. xm

l'i b/
j boss-seam j ar
j boss-seamui . jar
el -api.jar
el-ri.jar
jsf-facelets.jar
nmyf aces-api . j ar
nmyf aces-inpl.jar
j boss-ej b3.jar
j boss-jca.jar
j boss-j 2ee.jar

nc-conf.jar/
ej b3-i nt er cept or s- aop. xmi
enbedded- j boss- beans. xni
def aul t. persi stence. properties
j ndi.properties
| ogi n-config. xm
security-beans. xm

| og4j . xm
my-application.jar/
VETA- | NF/
MANI FEST. MF

persi st ence. xm
j boss- beans. xm
| og4j . xm
seam properties
org/
j boss/
nmyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

| ogin.jsp
register.jsp

The nc-conf . jar just contains the standard JBoss Microcontainer configuration files for Embeddable EJB3.
Y ou won't usually need to edit these files yourself.

Most of the Seam example applications may be deployed to Tomcat by running ant depl oy. t ontat .

19.4. Configuring Seam in J2EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you would use Hibern-
ate3 or JPA instead of EJB 3.0 persistence, and plain JavaBeans instead of session beans. You'll miss out on
some of the nice features of session beans but it will be very easy to migrate to EJB 3.0 when you're ready and,
in the meantime, you'll be able to take advantage of Seam's unique declarative state management architecture.

JBoss Seam 1.1.6.GA 179

Configuring Seam and packaging Seam applications

J5P / Facelets

JSF

Seam

Hibernate

JavaEE S5/ J2EE

Seam JavaBean components do not provide declarative transaction demarcation like session beans do. You
could manage your transactions manually using the JTA User Transacti on (you could even implement your
own declarative transaction management in a Seam interceptor). But most applications will use Seam managed
transactions when using Hibernate with JavaBeans. Follow the instructions in the persistence chapter to install
Tr ansact i onal SeanPhaselLi st ener.

The Seam distribution includes a version of the booking example application that uses Hibernate3 and Java-
Beans instead of EJB3, and another version that uses JPA and JavaBeans. These example applications are ready
to deploy into any J2EE application server.

19.4.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate Sessi onFact ory from your hi bernat e. cf g. xni file if you install a built-in
component:

<cor e: hi ber nat e- sessi on-factory name="hi ber nat eSessi onFactory"/ >

Y ou will also need to configure a managed session if you want a Seam managed Hibernate Sessi on to be avail-
ableviainjection.

19.4.2. Boostrapping JPA in Seam

Seam will bootstrap a JPA Enti t yManager Fact ory from your per si st ence. xm file if you install this built-in
Component:

<core:entity-manager-factory name="entityManager Factory"/>

Y ou will also need to configure a managed per sistencece context if you want a Seam managed JPA Ent i t yMan-
ager to beavailable viainjection.

19.4.3. Packaging

We can package our application asa WAR, in the following structure:

ny- appl i cati on. war/
META- | NF/
MANI FEST. MF

JBoss Seam 1.1.6.GA 180

Configuring Seam and packaging Seam applications

VAEB- | NF/

web. xm

conponent s. xn

faces-config. xm

l'i b/
j boss-seam j ar
j boss-seamui . j ar
el -api.jar
el-ri.jar
jsf-facelets.jar
hi ber nat e3.j ar
hi ber nat e- annot ati ons. j ar

nmy-application.jar/
META- | NF/
MANI FEST. MF
seam properties
hi ber nat e. cf g. xm
org/
j boss/
nyappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

| ogin.jsp

register.jsp

If we want to deploy Hibernate in a non-J2EE environment like Tomcat or TestNG, we need to do a little bit
more work.

19.5. Configuring Seam in Java SE, with the JBoss Microcon-
tainer

The Seam support for Hibernate and JPA requires JTA and a JCA datasource. If you are running in a non-EE
environment like Tomcat or TestNG you can run these services, and Hibernate itself, in the JBoss Microcon-
tainer.

Y ou can even deploy the Hibernate and JPA versions of the booking example in Tomcat.

JBoss Seam 1.1.6.GA 181

Configuring Seam and packaging Seam applications

JSP / Facelets

JSF

Seam

Hibernate

JBoss JTA JBoss JCA

JBoss Microcontainer

Tomcat

Seam ships with an example Microcontainer configuration in ni crocont ai ner/ conf/j boss-beans. xm that
provides al the things you need to run Seam with Hibernate in any non-EE environment. Just add the ni cr o-
cont ai ner/ conf directory, and all jarsinthe!ib and mi crocont ai ner/1i b directories to your classpath. Refer
to the documentation for the JBoss Microcontainer for more information.

19.5.1. Using Hibernate and the JBoss Microcontainer

The built-in Seam component named or g. j boss. seam cor e. ni crocont ai ner bootstraps the microcontainer.
As before, we probably want to use a Seam managed session.

<core: m crocont ai ner/ >

<cor e: managed- hi ber nat e- sessi on name="booki ngDat abase" auto-create="true"
sessi on-factory-jndi - name="j ava: / booki ngSessi onFact ory"/ >

Where j ava: / booki ngSessi onFact ory is the name of the Hibernate session factory specified in hi bern-
ate.cfg. xm .

You'll need to provide aj boss. beans. xm filethat installs INDI, JTA, your JCA datasource and Hibernate into
the microcontainer:

<?xm version="1.0" encodi ng="UTF-8"?>

<depl oynment xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="urn:j boss: bean- depl oyer bean-depl oyer _1_0. xsd"
xm ns="ur n: j boss: bean- depl oyer" >

<bean name="Nam ng" cl ass="org.]jnp.server. Si ngl et onNam ngServer"/>

<bean name="Transacti onManager Factory" cl ass="org.jboss. seam ni crocont ai ner. Tr ansact i onManager Fact
<bean nane="Transacti onManager" cl ass="java.l ang. Obj ect">
<constructor factoryMethod="get Transacti onManager" >
<factory bean="Transacti onManager Factory"/>
</ const ruct or >
</ bean>

JBoss Seam 1.1.6.GA 182

Configuring Seam and packaging Seam applications

<bean nane="booki ngDat asour ceFact ory" cl ass="org.j boss. seam mi crocont ai ner. Dat aSour ceFact ory" >
<property nanme="driverd ass">org. hsql db. j dbcDri ver </ property>
<property nanme="connecti onUrl">j dbc: hsql db: . </ property>
<property nanme="user Name">sa</ property>
<property nane="j ndi Nane">j ava: / hi ber nat eDat asour ce</ property>
<property name="nmi nSi ze">0</ property>
<property nanme="maxSi ze">10</ property>
<property nane="bl ocki ngTi neout " >1000</ pr operty>
<property nanme="idl eTi meout " >100000</ pr operty>
<property nane="transacti onManager" ><i nj ect bean="Transacti onManager"/ ></ property>
</ bean>
<bean nane="booki ngDat asource" cl ass="java. | ang. Obj ect">
<constructor factoryMethod="get Dat aSour ce" >
<factory bean="booki ngDat asour ceFactory"/>
</ constructor>
</ bean>

<bean nane="booki ngSessi onFact oryFactory" cl ass="org.] boss. seam mi crocont ai ner. H ber nat eFactory"/>
<bean name="booki ngSessi onFactory" cl ass="java. | ang. Cbj ect" >
<constructor factoryMethod="get Sessi onFactory" >
<factory bean="booki ngSessi onFact oryFactory"/>
</ constructor>
<depends>booki ngDat asour ce</ depends>
</ bean>

</ depl oynent >

19.5.2. Packaging

The WAR could have the following structure:

ny-appl i cation. war/
META- | NF/
MANI FEST. MF
V\EB- | NF/
web. xm
conponent s. xn
faces-config. xm
l'i b/
j boss-seam j ar
j boss-seamui . j ar
el -api.jar
el-ri.jar
jsf-facelets.jar
hi ber nat e3. j ar

j boss-mi crocontainer.jar
j boss-jca.jar

nmyf aces-api . j ar

nmyf aces-inpl.jar

nc-conf.jar/
jndi.properties

| og4j . xm
nmy-application.jar/

META- | NF/
MANI FEST. MF

j boss- beans. xni
seam properties
hi ber nat e. cf g. xm
| 0og4j . xn
org/
j boss/
myappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

JBoss Seam 1.1.6.GA 183

Configuring Seam and packaging Seam applications

| ogin.jsp
register.jsp

19.6. Configuring jJBPM in Seam

Seam's jJBPM integration is not installed by default, so you'll need to enable jBPM by installing a built-in com-
ponent. Y ou'll also need to explicitly list your process and pageflow definitions. In component s. xni :

<core:j bpnr
<cor e: pagef | owdefinitions>
<val ue>creat eDocunent . j pdl . xm </ val ue>
<val ue>edi t Docunent . j pdl . xm </ val ue>
<val ue>appr oveDocunent . j pdl . xm </ val ue>
</ core: pagef |l ow definiti ons>
<core: process-definitions>
<val ue>docunent Li f ecycl e. j pdl . xm </ val ue>
</ core: process-definitions>
</ core:jbpnp

No further special configuration is needed if you only have pageflows. If you do have business process defini-
tions, you need to provide a jBPM configuration, and a Hibernate configuration for jBPM. The Seam DVD
Store demo includes examplej bpm cf g. xm and hi ber nat e. cf g. xm filesthat will work with Seam:

<j bpm conf i gurati on>

<j bpm cont ext >
<servi ce name="persi stence">
<factory>
<bean cl ass="org.j bpm persi st ence. db. DbPer si st enceSer vi ceFact ory" >
<field name="i sTransacti onEnabl ed" ><f al se/ ></fi el d>
</ bean>
</factory>
</ servi ce>
<servi ce nane="nessage" factory="org.jbpm nsg. db. DoMessageSer vi ceFactory" />
<servi ce nane="schedul er" factory="org.jbpm schedul er. db. DbSchedul er Servi ceFactory" />
<servi ce nanme="| oggi ng" factory="org.jbpm | oggi ng. db. DbLoggi ngServi ceFactory" />
<servi ce nane="aut hentication" factory="org.jbpm security.authentication. Defaul t Aut henti cati onSer\
</j bpm cont ext >

</j bpm confi gurati on>

The most important thing to notice here is that jJBPM transaction control is disabled. Seam or EJB3 should con-
trol the JTA transactions.

19.6.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow definition
files. In the Seam examples we've decided to simply package al these files into the root of the EAR. In future,
we will probably design some other standard packaging format. So the EAR looks something like this:

ny-appl i cation. ear/
j boss-seam j ar
el -api.jar
el-ri.jar
jbpm3.1.jar
META- | NF/
MANI FEST. MF
appl i cation. xm
ny- appl i cati on. war/

JBoss Seam 1.1.6.GA 184

Configuring Seam and packaging Seam applications

META- | NF/
MANI FEST. M-
VAEB- | NF/
web. xm
conponent s. xm
faces-config. xm
l'i b/
jsf-facelets.jar
j boss-seam ui . j ar
| ogin.jsp
register.jsp

my-application.jar/
META- | NF/
MANI FEST. MF
per si st ence. xn
seam properties
org/
j boss/
myappl i cati on/
User . cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

j bpm cf g. xm

hi ber nat e. cf g. xm

creat eDocunent . j pdl . xm
edi t Docunent . j pdl . xn

appr oveDocunent . j pdl . xm
docunent Li f ecycl e. j pdl . xni

Remember to add j bpm 3. 1. j ar to the manifest of your EJB-JAR and WAR.

19.7. Configuring Seam in a Portal

To run a Seam application as a portlet, you'll need to provide certain portlet metadata (port | et . xni , €tc) in ad-
dition to the usual Java EE metadata. See the exanpl es/ portal directory for an example of the booking demo
preconfigured to run on JBoss Portal.

In addition, you'll need to use a portlet-specific phase listener instead of SeanPhaselLi st ener Or Transact i on-
al SeanPhaselLi st ener. The SeanPort| et PhaseLi st ener and Transacti onal SeanPort | et PhaseLi st ener are
adapted to the portlet lifecycle. | would like to offer my sincerest apologies for the name of that last class. |
really couldn't think of anything better. Sorry.

JBoss Seam 1.1.6.GA 185

Chapter 20. Seam annotations

When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations to achieve a
declarative style of programming. Most of the annotations you'll use are defined by the EJB 3.0 specification.
The annotations for data validation are defined by the Hibernate Validator package. Finally, Seam defines its
own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package or g. j boss. seam annot at i ons.

20.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on the component
class.

@Nane

@ame(" conponent Nanme")

Defines the Seam component name for a class. This annotation is required for all Seam components.
@scope

@scope(ScopeType. CONVERSATI ON)

Defines the default context of the component. The possible values are defined by the ScopeType enumera-
tion: EVENT, PAGE, CONVERSATI ON, SESSI ON, BUSI NESS_PROCESS, APPLI CATI ON, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For stateless session
beans, the default is STATELESS. For entity beans and stateful session beans, the default is CONVERSATI ON.
For JavaBeans, the default is EVENT.

@Rol e

@Rol e(name="r ol eNane", scope=ScopeType. SESSI ON)

Allows a Seam component to be bound to multiple contexts variables. The @ame/@cope annotations
define a"default role". Each @rol e annotation defines an additional role.

* name — the context variable name.

* scope — the context variable scope. When no scope is explicitly specified, the default depends upon
the component type, as above.

@Rol es

@Rol es({
@Rol e(name="user", scope=ScopeType. CONVERSATI ON),
@Rol e(name="current User", scope=ScopeType. SESSI ON)
b

Allows specification of multiple additional roles.

JBoss Seam 1.1.6.GA 186

Seam annotations

@ nt er cept

@ntercept (I ntercepti onType. ALWAYS)

Determines when Seam interceptors are active. The possible values are defined by the I nt er cept i onType
enumeration: ALWAYS, AFTER RESTORE_VI EW AFTER UPDATE_MODEL_VALUES, | NVOKE_APPLI CATI ON,
NEVER.

When no interception type is explicitly specified, the default depends upon the component type. For entity
beans, the default is NEVER. For session beans, message driven beans and JavaBeans, the default is ALWAYS.

@ndi Nane

@ndi Nane(" nmy/ j ndi / nane")

Specifies the INDI name that Seam will use to look up the EJB component. If no JNDI name is explicitly
specified, Seam will use the INDI pattern specified by or g. j boss. seam core.init.jndi Pattern.

@conver sat i onal

@Conver sati onal (i f Not BegunQut cone="error")

Specifies that a conversation scope component is conversational, meaning that no method of the component
can be called unless a long-running conversation started by this component is active (unless the method
would begin a new long-running conversation).

@5t art up

@t art up(depends={"org. j boss.core.jndi", "org.jboss.core.jta"})

Specifies that an application scope component is started immediately at initialization time. This is mainly
used for certain built-in components that bootstrap critical infrastructure such as JNDI, datasources, etc.

@t art up

Specifies that a session scope component is started immediately at session creation time.

e depends — specifies that the named components must be started first, if they areinstalled.
@nstall

@nstall (fal se)

Specifies whether or not a component should be installed by default. The lack of an @Install annotation in-
dicates a component should be installed.

@ nst al | (dependenci es="org.] boss. seam core.j bpni')

Specifies that a component should only be stalled if the components listed as dependencies are aso in-
stalled.

@nst al | (generi cDependenci es=ManagedQueueSender . cl ass)

Specifies that a component should only be installed if a component that is implemented by a certain classis

JBoss Seam 1.1.6.GA 187

Seam annotations

installed. Thisis useful when the dependency doesn't have a single well-known name.

@nst al | (cl assDependenci es="or g. hi ber nat e. Sessi on")

Specifies that a component should only be installed if the named classisin the classpath.

@nstal | (precedence=BU LT_I N)

Specifies the precedence of the component. If multiple components with the same name exist, the one with
the higher precedence will be installed. The defined precendence values are:

e BUILT_I N— Precedence of al built-in Seam components
* FRAMEWORK — Precedence to use for components of frameworks which extend Seam
e APPLI CATI ON— Predence of application components (the default precedence)

e DEPLOYMENT — Precedence to use for components which override application components in a particu-
lar deployment

@ynchroni zed

@ynchroni zed(ti meout =1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam should seriaize re-
quests. If arequest is not able to obtain its lock on the component in the given timeout period, an exception
will be raised.

@ReadOnl y

@ReadOnl y

Specifies that a JavaBean component or component method does not require state replication at the end of
the invocation.

20.2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance variables or property
accessor methods.

@n

@n

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an exception will be thrown.

@n(required=fal se)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. The context variable may be null.

JBoss Seam 1.1.6.GA 188

Seam annotations

@n(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an instance of the component isinstantiated by Seam.

@ n(val ue="cont ext Vari abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

@ n(val ue="#{cust oner. addresses["'shipping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at the beginning of
each component invocation.

¢ val ue — specifies the name of the context variable. Default to the name of the component attribute. Al-
ternatively, specifies a JSF EL expression, surrounded by #{. . .}.

e creat e — Specifiesthat Seam should instantiate the component with the same name as the context vari-
ableif the context variable is undefined (null) in al contexts. Default to false.

¢ required — specifies Seam should throw an exception if the context variable is undefined in al con-
texts.

@out

@ut

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. If the attribute is null, an exception is thrown.

@ut (requi red=fal se)

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. The attribute may be null.

@ut (scope=ScopeType. SESSI ON)

Specifies that a component attribute that is not a Seam component type is to be outjected to a specific scope
at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @t attribute is used
(or the EVENT scope if the component is statel ess).

@out (val ue="cont ext Var i abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

* val ue — specifies the name of the context variable. Default to the name of the component attribute.

e requi red — specifies Seam should throw an exception if the component attribute is null during outjec-
tion.

Note that it is quite common for these annotations to occur together, for example:

JBoss Seam 1.1.6.GA 189

Seam annotations

@n(create=true) @ut private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that manages the life-
cycle of an instance of some other class that is to be injected. It appears on a component getter method.

@Jnwr ap

@Jnwr ap

Specifies that the object returned by the annotated getter method is the thing that is injected instead of the
component instance itself.

The next annotation supports the factory component pattern, where a Seam component is responsible for initial-
izing the value of a context variable. Thisis especially useful for initializing any state needed for rendering the
response to a non-faces request. It appears on a component method.

@actory

@-act ory("processlnstance")

Specifies that the method of the component is used to initialize the value of the named context variable,
when the context variable has no value. This style is used with methods that return voi d.

@-actory("processlnstance", scope=CONVERSATI ON)

Specifies that the method returns a value that Seam should use to initialize the value of the named context
variable, when the context variable has no value. This style is used with methods that return a value. If no
scope is explicitly specified, the scope of the component with the @act ory method is used (unless the
component is stateless, in which case the EVENT context is used).

* val ue — specifies the name of the context variable. If the method is a getter method, default to the
JavaBeans property name.

* scope — specifies the scope that Seam should bind the returned value to. Only meaningful for factory
methods which return avalue.

This annotation lets you inject aLog:

@.ogger

@.ogger (" cat egor yName")

Specifies that a component field isto be injected with an instance of or g. j boss. seam | og. Log.

« val ue — specifies the name of the log category. Default to the name of the component class.

The last annotation lets you inject arequest parameter value:

@Request Par anet er

@Request Par anet er (" par anet er Nane")

JBoss Seam 1.1.6.GA 190

Seam annotations

Specifies that a component attribute is to be injected with the value of arequest parameter. Basic type con-
versions are performed automatically.

* val ue — specifies the name of the request parameter. Default to the name of the component attribute.

20.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods of the com-
ponent. There may be only one of each per component class.
@r eat e

@r eat e

Specifies that the method should be called when an instance of the component is instantiated by Seam.
Note that create methods are only supported for JavaBeans and stateful session beans.

@est r oy

@est r oy

Specifies that the method should be called when the context ends and its context variables are destroyed.
Note that create methods are only supported for JavaBeans and stateful session beans.

Note that all stateful session bean components must define a method annotated @est r oy @renove in order
to guarantee destruction of the stateful bean when a context ends.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any exception that
propagates out of a destroy method.

@ser ver
@ser ver (" somet hi ngChanged")
Specifies that the method should be called when a component-driven event of the specified type occurs.

@server (val ue="sonet hi ngChanged", cr eat e=f al se)

Specifies that the method should be called when an event of the specified type occurs but that an instance
should not be created if one doesn't exist. If an instance does not exist and create is false, the event will not
be observed. The default value for createistrue.

20.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of Seam compon-
ents, usualy action listener methods.

Every web request has a conversation context associated with it. Most of these conversations end at the end of
the request. If you want a conversation that span multiple requests, you must "promote” the current conversa
tion to along-running conversation by calling a method marked with @egi n.

JBoss Seam 1.1.6.GA 191

Seam annotations

@egi n

@egi n

Specifies that along-running conversation begins when this method returns a non-null outcome without ex-
ception.

@Begi n(i f Qut cone={"success", "continue"})

Specifies that a long-running conversation begins when this action listener method returns with one of the
given outcomes.

@Begi n(j oi n=true)

Specifies that if a long-running conversation is already in progress, the conversation context is simply
propagated.

@Begi n(nest ed=true)

Specifies that if along-running conversation is already in progress, a new nested conversation context be-
gins. The nested conversation will end when the next @nd is encountered, and the outer conversation will
resume. It is perfectly legal for multiple nested conversations to exist concurrently in the same outer con-
versation.

@egi n(pagef | ow="process definition name")

Specifies ajBPM process definition name that defines the pageflow for this conversation.

@egi n(f |l ushMode=FI ushModeType. MANUAL)

Specify the flush mode of any Seam-managed persistence contexts. f | ushMode=Fl ushModeType. MANUAL
supports the use of atomic conversations where al write operations are queued in the conversation context
until an explicit call tof1ush() (which usually occurs at the end of the conversation).

e ifoutcome — specifies the JSF outcome or outcomes that result in a new long-running conversation
context.

e joi n — determines the behavior when a long-running conversation is already in progress. If t rue, the
context is propagated. If f al se, an exception is thrown. Default to f al se. This setting is ignored when
nest ed=t r ue is specified

* nested — gpecifies that a nested conversation should be started if a long-running conversation is
aready in progress.

e flushMde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

* pageflow — a process definition name of a jBPM process definition deployed via
org.j boss. seam core. j bpm pagef | owDefi ni tions.

@nd

@:nd

JBoss Seam 1.1.6.GA 192

Seam annotations

Specifies that a long-running conversation ends when this method returns a non-null outcome without ex-
ception.

@nd(i f Qut come={"success", "error"}, evenlfException={SoneException.class, O herException.cl ass})

Specifies that a long-running conversation ends when this action listener method returns with one of the
given outcomes or throws one of the specified classes of exception.

e ifautcome — specifies the JSF outcome or outcomes that result in the end of the current long-running
conversation.

e beforeRedi rect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting bef or eRedi r ect =t r ue Specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@Bt art Task

@5t art Task

"Starts' a jBPM task. Specifies that a long-running conversation begins when this method returns a non-
null outcome without exception. This conversation is associated with the jBPM task specified in the named
request parameter. Within the context of this conversation, a business process context is aso defined, for
the business process instance of the task instance.

The jBPM Taskl nst ance will be available in a request context variable named t ask! nst ance. The |PBM
Processl nstance Will be available in a request context variable named processi nst ance. (Of course,
these objects are available for injection via@n.)

* taskldParameter — the name of a request parameter which holds the id of the task. Default to
"taskl d", which is also the default used by the Seam t askLi st JSF component.

* flushMde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

@egi nTask

@egi nTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation begins when this
method returns a non-null outcome without exception. This conversation is associated with the jBPM task
specified in the named request parameter. Within the context of this conversation, a business process con-
text is also defined, for the business process instance of the task instance.

The jBPM Taskl nst ance will be available in arequest context variable named t askl nst ance. The jPBM
Processl nst ance Will be available in arequest context variable named pr ocessl nst ance.

* taskldParameter — the name of a request parameter which holds the id of the task. Default to
"taskl d", which is also the default used by the Seam t askLi st JSF component.

* flushMde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

JBoss Seam 1.1.6.GA 193

Seam annotations

@ndTask

@ndTask

"Ends' ajBPM task. Specifies that a long-running conversation ends when this method returns a non-null
outcome, and that the current task is complete. Triggers a jBPM transition. The actual transition triggered
will be the default transition unless the application has called Transi ti on. set Nane() on the built-in com-
ponent named t r ansi ti on.

@ndTask(transition="transiti onName")

Triggersthe given jBPM transition.

@ndTask(i f Qut cone={"success", "continue"})

Specifies that the task ends when this method returns one of the listed outcomes.

e transition — the name of the jBPM transition to be triggered when ending the task. Defaults to the
default transition.

e i faut come — specifies the JSF outcome or outcomes that result in the end of the task.

e beforeRedirect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting bef or eRedi r ect =t r ue specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@r eat ePr ocess

@Cr eat eProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without exception. The
Processl nst ance object will be available in a context variable named pr ocessl nst ance.

* definition — the name of the JBPM process definition deployed via
org. j boss. seam core. j bpm processDefinitions.

@ResunePr ocess

@ResumrrePr ocess(processl dPar anet er =" processl d")

Re-enters the scope of an existing jBPM process instance when the method returns a non-null outcome
without exception. The Process! nst ance object will be available in a context variable named pr ocessl n-
st ance.

e processl dPar anet er — the name arequest parameter holding the process id. Default to " process! d".

20.5. Annotations for transaction demarcation

Seam provides an annotation that lets you force arollback of the JTA transaction for certain action listener out-
comes.

JBoss Seam 1.1.6.GA 194

Seam annotations

@Rol | back

@Rol | back(i fQutcone={"failure", "not-found"})

If the outcome of the method matches any of the listed outcomes, or if no outcomes are listed, set the trans-
action to rollback only when the method compl etes.

e ifoutcome — the JSF outcomes that cause a transaction rollback (no outcomes is interpreted to mean
any outcome).

@r ansact i onal

@r ansact i onal

Specifies that a JavaBean component should have a similar transactional behavior to the default behavior of
a session bean component. ie. method invocations should take place in a transaction, and if no transaction
exists when the method is called, a transaction will be started just for that method. This annotation may be
applied at either class or method level.

Seam applications usually use the standard EJB3 annotations for all other transaction demarcation needs.

20.6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of a Seam com-
ponent.

@Redi rect

@Redi rect (viewl d="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.

e view d — specifiesthe JSF view id to redirect to.
* nessage — amessage to be displayed, default to the exception message.
« end — gpecifiesthat the long-running conversation should end, default to f al se.

@+t t pError

@+t t pError (error Code=404)
Specifies that the annotated exception causesaHTTP error to be sent.
* errorCode — the HTTP error code, default to 500.

* nessage — amessage to be sent with the HTTP error, default to the exception message.

* end — specifiesthat the long-running conversation should end, default to f al se.

JBoss Seam 1.1.6.GA 195

Seam annotations

20.7. Annotations for validation

This annotation triggers Hibernate Validator. It appears on a method of a Seam component, almost always an
action listener method.

Please refer to the documentation for the Hibernate Annotations package for information about the annotations
defined by the Hibernate Validator framework.

Notethat use of @f I nval i d is now semi-deprecated and <s: val i dat eAl | > isnhow preferred.

@flnvalid

@flnvalid(outcone="invalid", refreshEntities=true)

Specifies that Hibernate Validator should validate the component before the method is invoked. If the in-
vocation fails, the specified outcome will be returned, and the validation failure messages returned by Hi-
bernate Validator will be added to the FacesCont ext . Otherwise, the invocation will proceed.

* out comre — the JSF outcome when validation fails.

e refreshEntities — specifiesthat any invalid entity in the managed state should be refreshed from the
database when validation fails. Default to f al se. (Useful with extended persistence contexts.)

20.8. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following annotation:

@+¥bRenot e

@\ébRenot e(excl ude="pat h. t 0. excl ude")

Indicates that the annotated method may be called from client-side JavaScript. The excl ude property is op-
tional and allows objects to be excluded from the result's object graph (see the Remoting chapter for more
details).

20.9. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the annotations required
for EJB interceptor definition.

@ nt er cept or

@nt erceptor (st atel ess=true)

Specifies that this interceptor is statel ess and Seam may optimize replication.

@ nterceptor (type=CLI ENT)

JBoss Seam 1.1.6.GA 196

Seam annotations

Specifies that thisinterceptor isa'client-side” interceptor that is called before the EJB container.

@ nt er cept or (ar ound={ Sonel nt ercept or. cl ass, G herlnterceptor.class})

Specifies that thisinterceptor is positioned higher in the stack than the given interceptors.

@nterceptor(wthin={Sonel nterceptor.class, Oherlnterceptor.class})

Specifies that thisinterceptor is positioned deeper in the stack than the given interceptors.

20.10. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

@\synchronous public void scheduleAlert(Al ert alert, @xpiration Date date) { ... }

@synchronous public Timer schedul eAlerts(Alert alert, @xpiration Date date, @nterval Duration |ong i

@\synchr onous

@\synchr onous
Specifies that the method call is processed asynchronously.
@ur at i on
@ur at i on

Specifies that a parameter of the asynchronous call is the duration before the call is processed (or first pro-
cessed for recurring calls).

@xpiration
@Expi ration

Specifies that a parameter of the asynchronous call is the datetime at which the call is processed (or first
processed for recurring calls).

@nterval Duration

@nterval Duration
Specifies that an asynchronous method call recurs, and that the annotationed parameter is duration between
recurrences.
20.11. Annotations for use with JSF dat aTabl e

The following annotations make it easy to implement clickable lists backed by a stateful session bean. They ap-
pear on attributes.

JBoss Seam 1.1.6.GA 197

Seam annotations

@at aModel

@pat aModel (" vari abl eNanme")

Exposes an attribute of type Li st, Map, Set or Ovj ect[] as a JSF Dat ambdel into the scope of the owning
component (or the EVENT scope if the owning component is STATELESS). In the case of Map, each row of the
Dat aMbdel iSaMap. Entry.

* val ue — name of the conversation context variable. Default to the attribute name.

* scope — if scope=ScopeType. PAGE is explicitly specified, the Dat ampdel will be kept in the PAGE con-
text.

@at aMbdel Sel ecti on

@pat aModel Sel ecti on

Injects the selected value from the JSF Dat ambdel (this is the element of the underlying collection, or the
map value).

¢ val ue — name of the conversation context variable. Not needed if there is exactly one @at avbdel in
the component.

@at aModel Sel ecti onl ndex

@pat aModel Sel ecti onl ndex

Exposes the selection index of the JSF Dat ambdel as an attribute of the component (this is the row number
of the underlying collection, or the map key).

e val ue — name of the conversation context variable. Not needed if there is exactly one @at avbdel in
the component.

20.12. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @atambdel and
@at aMbdel Sel ect i on for other datastructures apart from lists.

@at aBi nder Cl ass

@pat aBi nder Cl ass(Dat avbdel Bi nder. cl ass)

Specifies that an annotation is a databinding annotation.
@at aSel ect or Cl ass

@pat aSel ect or O ass(Dat aMbdel Sel ect or. cl ass)

Specifies that an annotation is a datasel ection annotation.

JBoss Seam 1.1.6.GA 198

Seam annotations

20.13. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that are packaged
together. It can be applied to any Java package.

@\anespace

@Nanespace(val ue="http://jboss. con product s/ seam exanpl e/ seanpay")

Specifies that components in the current package are associated with the given namespace. The declared
namespace can be used as an XML namespace in aconponent s. xm file to ssmplify application configura-
tion.

@Nanespace(val ue="http://jboss. conf products/seanf core", prefix="org.jboss.seam core")

Specifies a namespace to associate with a given package. Additionally, it specifies a component name pre-
fix to be applied to component names specified in the XML file. For example, an XML element named ni -
crocont ai ner that is associated with this namespace would be understood to actually refere to a compon-
ent named or g. j boss. seam cor e. i cr ocont ai ner .

JBoss Seam 1.1.6.GA 199

Chapter 21. Built-in Seam components

This chapter describes Seam'’s built-in components, and their configuration properties.

Note that you can replace any of the built in components with your own implementations simply by specifying
the name of one of the built in components on your own class using @ane.

Note also that even though all the built in components use a qualified name, most of them are aliased to unqual-
ified names by default. These aliases specify aut o-creat e="true", SO you do not need to use creat e=true
when injecting built-in components by their unqualified name.

21.1. Context injection components

Thefirst set of built in components exist purely to support injection of various contextual objects. For example,
the following component instance variable would have the Seam session context object injected:

@n private Context sessionContext;
org.j boss. seam cor e. event Cont ext
Manager component for the event context object

org.j boss. seam cor e. pageCont ext
Manager component for the page context object

org.j boss. seam cor e. conver sati onCont ext
Manager component for the conversation context object

org.j boss. seam cor e. sessi onCont ext
Manager component for the session context object

org.j boss. seam core. appl i cati onCont ext
Manager component for the appication context object

org.j boss. seam cor e. busi nessPr ocessCont ext
Manager component for the business process context object

org.j boss. seam cor e. f acesCont ext
Manager component for the FacesCont ext context object (not atrue Seam context)

All of these components are aways installed.

21.2. Utility components

These components are merely useful.

org.j boss. seam core. facesMessages
Allows faces success messages to propagate across a browser redirect.

e add(FacesMessage facesMessage) — add a faces message, which will be displayed during the next
render response phase that occursin the current conversation.

JBoss Seam 1.1.6.GA 200

Built-in Seam components

e add(String nessageTenpl ate) — add a faces message, rendered from the given message template
which may contain EL expressions.

e add(Severity severity, String nessageTenpl at e) — add a faces message, rendered from the giv-
en message template which may contain EL expressions.

e addFronResourceBundl e(String key) — add a faces message, rendered from a message template
defined in the Seam resource bundle which may contain EL expressions.

e addFronResourceBundl e(Severity severity, String key) — add afaces message, rendered from a
message template defined in the Seam resource bundle which may contain EL expressions.

e clear() — clear all messages.

org. j boss. seam core. redirect
A convenient API for performing redirects with parameters (this is especially useful for bookmarkable
search results screens).

e redirect.view d —theJSF view id to redirect to.

e redirect.conversationPropagati onEnabl ed — determines whether the conversation will propagate
across the redirect.

e redirect.parameters — amap of request parameter name to value, to be passed in the redirect re-
quest.

e execut e() — perform the redirect immediately.

e captureCurrent Request () — storesthe view id and request parameters of the current GET request (in
the conversation context), for later use by calling execut e() .

org.j boss. seam core. htt pError
A convenient API for sending HTTP errors.

org.j boss. seam core. events
An API for raising events that can be observed via @bserver methods, or method bindings in conpon-
ents. xm .

* raiseEvent (String type) — raisean event of aparticular type and distribute to all observers.

* raiseAsynchronousEvent (String type) — raise an event to be processed asynchronously by the
EJB3 timer service.

* raiseTinedEvent (String type,) — schedule an event to be processed asynchronously by the
EJB3 timer service.

e addListener(String type, String nethodBi ndi ng) — add an observer for a particular event type.

org. j boss. seam core. i nterpol at or
An APl for interpolating the values of JSF EL expressionsin Strings.

* interpolate(String tenplate) — scan the template for JSF EL expressions of the form #{. ..} and
replace them with their evaluated values.

JBoss Seam 1.1.6.GA 201

Built-in Seam components

org. j boss. seam cor e. expressi ons
An API for creating value and method bindings.

e createVal ueBindi ng(String expressi on) — create avalue binding object.
e createMethodBindi ng(String expressi on) — create a method binding object.

org. j boss. seam core. poj oCache
Manager component for a JBoss Cache Poj oCache instance.

* poj oCache. cf gResour ceName — the name of the configuration file. Default to t r eecache. xm .

org.j boss. seam cor e. ui Conponent
Allows access to a JSF U Component by its id from the EL. For example, we can write
@ n("#{ui Conponent[' nyFor m address'].val ue}").

All of these components are always installed.

21.3. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using Seam.

org. j boss.seam core.local e

The Seam locale. Thelocale is session scoped.

org. j boss.seam core.ti nezone
The Seam timezone. The timezone is session scoped.

org. j boss. seam core. resour ceBundl e
The Seam resource bundle. The resource bundle is session scoped. The Seam resource bundle performs a
depth-first search for keysin alist of Javaresource bundles.

* resourceBundl e. bundl eNames — the names of the Java resource bundles to search. Default to nes-
sages.

org.j boss. seam core. | ocal eSel ect or
Supports selection of the locale either at configuration time, or by the user at runtime.

e select () — select the specified locale.

* |ocal eSel ector.|ocal e—theactua java. util. Local e.

* local eSel ector.|ocal estring — the stringified representation of the locale.
* local eSel ect or. | anguage — the language for the specified locale.

* local eSel ector. country — the country for the specified locale.

e local eSel ector. vari ant — the variant for the specified locale.

e local eSel ector. supportedLocal es — alist of Sel ect I t ens representing the supported locales listed

JBoss Seam 1.1.6.GA 202

Built-in Seam components

injsf-config. xm .
* local eSel ector. cooki eEnabl ed — specifies that the locale selection should be persisted viaa cookie.

org.j boss.seam core.ti mezoneSel ect or
Supports selection of the timezone either at configuration time, or by the user at runtime.

e select () — select the specified locale.
* tinmezoneSel ector.timezone — theactual j ava. util. Ti meZone.
e tinmezoneSel ector.tinmezonel d — the stringified representation of the timezone.

e timezoneSel ector. cooki eEnabl ed — specifies that the timezone selection should be persisted via a
cookie.

org.j boss. seam cor e. nessages
A map containing internationalized messages rendered from message templates defined in the Seam re-
source bundle.

org.j boss. seam t hene. t hemeSel ect or
Supports selection of the theme either at configuration time, or by the user at runtime.

e select () — select the specified theme.

e thene. avai | abl eThenes — the list of defined themes.

e theneSel ector. t heme — the selected theme.

* themeSel ector.themes — alist of Sel ect | t ens representing the defined themes.

* theneSel ect or. cooki eEnabl ed — specifies that the theme selection should be persisted via a cookie.

org.j boss. seam t hene. t hene
A map containing theme entries.

All of these components are aways installed.

21.4. Components for controlling conversations

The next group of components alow control of conversations by the application or user interface.

org.j boss. seam core. conversation
API for application control of attributes of the current Seam conversation.

e getld() — returnsthe current conversation id
* isNested() — isthe current conversation a nested conversation?
e isLongRunni ng() — isthe current conversation along-running conversation?

e getld() — returnsthe current conversation id

JBoss Seam 1.1.6.GA 203

Built-in Seam components

e getParent|d() — returnsthe conversation id of the parent conversation
* getRoot|d() — returnsthe conversation id of the root conversation
* setTimeout(int tineout) — Setsthetimeout for the current conversation

e setView d(String outcome) — setsthe view id to be used when switching back to the current conver-
sation from the conversation switcher, conversation list, or breadcrumbs.

e setDescription(String description) — sets the description of the current conversation to be dis-
played in the conversation switcher, conversation list, or breadcrumbs.

e redirect() — redirect to the last well-defined view id for this conversation (useful after login chal-
lenges).

e leave() — exit the scope of this conversation, without actually ending the conversation.
e begi n() — begin along-running conversation (equivalent to @egi n).

* begi nPagefl ow(String pagefl owNane) — begin a long-running conversation with a pageflow
(equivalent to @egi n(pagefl ow="...")).

e end() — end along-running conversation (equivalent to @nd).

e pop() — pop the conversation stack, returning to the parent conversation.

* root () — return to the root conversation of the conversation stack.

e changeFl ushMode(Fl ushModeType flushMode) — change the flush mode of the conversation.

org. j boss. seam core. conversati onLi st
Manager component for the conversation list.

org. j boss. seam core. conversati onSt ack
Manager component for the conversation stack (breadcrumbs).

org. j boss. seam core. swi t cher
The conversation switcher.

All of these components are always installed.

21.5. jBPM-related components

These components are for use with jBPM.

org. j boss. seam core. pagef | ow

API control of Seam pageflows.

e islnProcess() — returnstrue if thereis currently a pageflow in process
e getProcesslnstance() — returnsjBPM Processl nst ance for the current pageflow

e begin(String pagefl owName) — begin a pageflow in the context of the current conversation

JBoss Seam 1.1.6.GA 204

Built-in Seam components

e reposition(String nodeNane) — reposition the current pageflow to a particular node

org. j boss. seam core. act or
API for application control of attributes of the JBPM actor associated with the current session.

e setld(String actorld) — setsthejBPM actor id of the current user.

e getGoupActorlds() — returnsaset towhich jBPM actor ids for the current users groups may be ad-
ded.

org.j boss.seam core.transition
API for application control of the JBPM transition for the current task.

e setName(String transitionName) — setsthe jBPM transition name to be used when the current task
isended via @ndTask.

org.j boss. seam cor e. busi nessProcess
API for programmatic control of the association between the conversation and business process.

* businessProcess. t askl d — theid of the task associated with the current conversation.
* businessProcess. processl d — theid of the process associated with the current conversation.
* businessProcess. hasCurrent Task() — isatask instance associated with the current conversation?

* busi nessProcess. hasCurrent Process() — iSa process instance associated with the current conversa
tion.

e createProcess(String name) — create an instance of the named process definition and associate it
with the current conversation.

* startTask() — start the task associated with the current conversation.

e endTask(String transitionName) — end the task associated with the current conversation.

e resunmeTask(Long id) — associate the task with the given id with the current conversation.

* resuneProcess(Long id) — associate the process with the given id with the current conversation.
e transition(String transitionNane) — trigger the transition.

org.j boss. seam core. t askl nst ance
Manager component for the jBPM Taskl nst ance.

org. j boss. seam core. processl nst ance
Manager component for the JBPM Pr ocess| nst ance.

org.j boss. seam cor e. j bpnCont ext
Manager component for an event-scoped JbpnCont ext .

org.j boss. seam cor e. t askl nst ancelLi st
Manager component for the jBPM task list.

org.j boss. seam cor e. pool edTaskl nst ancelLi st

JBoss Seam 1.1.6.GA 205

Built-in Seam components

Manager component for the JBPM pooled task list.

org.j boss. seam core. t askl nst anceli st For Type

Manager component for the jBPM task lists.

org.j boss. seam cor e. pool edTask
Action handler for pooled task assignment.

All of these components are installed whenever the component or g. j boss. seam cor e. j bpmisinstalled.

21.6. Security-related components

These components relate to web-tier security.

org.j boss. seam core. user Pri nci pal
Manager component for the current user Pri nci pal .

org.j boss.seam core.isUserlnRol e
Allows JSF pages to choose to render a control, depending upon the roles available to the current principal.

<h: commandButt on val ue="edit"

rendered="#{i sUserl nRol e["adm n"]}"/>.

21.7. IMS-related components

These components are for use with managed Topi cPubl i sher Sand QueueSender S (See below).

org.j boss. seam j ns. queueSessi on
Manager component for aJMS QueueSessi on .

org.j boss.seamj ns. t opi cSessi on
Manager component for aJM S Topi cSessi on .

21.8. Mail-related components

These components are for use with Seam's Email support

org.j boss.seam nai | . mai | Sessi on
Manager component for a JavaMail Sessi on .

® org.jboss.seam il .
® org.jboss.seam mail.
® org.jboss.seamnail.
® org.jboss.seamnail.
® org.jboss.seamnmil.

® org.jboss.seam il .

bound to INDI

mai | Sessi on.

mai | Sessi on.

mai | Sessi on.

mai | Sessi on.

mai | Sessi on.

mai | Sessi on.

host — the hosthame of the SMTP server to use

port — the port of the SMTP server to use

user name — the username to use to connect to the SMTP server.
passwor d — the password to use to connect to the SMTP server
debug — enable JavaMail debugging (very verbose)

sessi onJndi Name — name under which a javax.mail.Session is

JBoss Seam 1.1.6.GA

206

Built-in Seam components

21.9. Infrastructural components

These components provide critical platform infrastructure. Y ou can install a component by including its class
nameintheorg. j boss. seam core. i ni t. conponent d asses configuration property.

org.j boss.seamcore.init

Initialization settings for Seam. Always installed.

* org.jboss.seamcore.init.jndi Pattern— the JINDI pattern used for looking up session beans
e org.jboss.seamcore.init.debug — enable Seam debug mode

e org.jboss.seamcore.init.clientSideConversations — if set totrue, Seam will save conversation
context variables in the client instead of in the Ht t pSessi on.

e org.jboss.seamcore.init.userTransacti onName — the INDI name to use when looking up the JTA
User Transact i on object.

org.j boss. seam cor e. nanager
Internal component for Seam page and conversation context management. Always installed.

* org.jboss.seam core. manager. conversati onTi meout — the conversation context timeout in milli-
seconds.

* org.jboss.seam core. manager . concur r ent Request Ti meout — maximum wait time for a thread at-
tempting to gain alock on the long-running conversation context.

e org.jboss. seam core. manager . conver sat i onl dPar amet er — the request parameter used to propag-
ate the conversation id, default to conver sati onl d.

e org.jboss. seam core. manager. conver sati onl sLongRunni ngPar ameter — the request parameter
used to propagate information about whether the conversation is long-running, default to conver sa-
ti onl sLongRunni ng.

org.j boss. seam cor e. pages
Internal component for Seam workspace management. Always installed.

* org.jboss. seam core. pages. noConversati onViewl d — global setting for the view id to redirect to
when a conversation entry is not found on the server side.

org.j boss.seamcore.ejb
Bootstraps the JBoss Embeddable EJB3 container. Install as class or g. j boss. seam core. Ej b. Thisis use-
ful when using Seam with EJB components outside the context of a Java EE 5 application server.

The basic Embedded EJB configuration is defined in j boss- enbedded- beans. xn . Additional microcon-
tainer configuration (for example, extra datasources) may be specified by j boss-beans. xm OF META-
| NF/ j boss- beans. xni in the classpath.

org.j boss. seam core. m crocont ai ner
Bootstraps the JBoss microcontainer. Install as class or g. j boss. seam core. M crocont ai ner. Thisis use-
ful when using Seam with Hibernate and no EJB components outside the context of a Java EE application
server. The microcontainer can provide a partial EE environment with INDI, JTA, a JCA datasource and

JBoss Seam 1.1.6.GA 207

Built-in Seam components

Hibernate.

The microcontainer configuration may be specified by j boss- beans. xni Or META- | NF/ j boss- beans. xnl in
the classpath.

org.j boss. seam core.j bpm
Bootstraps a JbpnConfi gurati on. Install asclassor g. j boss. seam core. Jbpm

e org.jboss.seamcore.bpm processDefinitions — alist of resource names of jPDL filesto be used
for orchestration of business processes.

* org.jboss. seam core. | bpm pagefl owDefinitions — a list of resource names of jPDL files to be
used for orchestration of conversation page flows.

org.j boss. seam core. conversati onEntries
Interna session-scoped component recording the active long-running conversations between requests.

org.j boss. seam core. facesPage
Internal page-scoped component recording the conversation context associated with a page.

org.j boss. seam cor e. persi st enceCont ext s
Internal component recording the persistence contexts which were used in the current conversation.

org.j boss. seam j ns. queueConnecti on
Manages a JMS QueueConnect i on. Installed whenever managed managed QueueSender isinstalled.

* org.jboss.seam | ms. queueConnect i on. queueConnect i onFact or yJndi Nane — the JNDI name of a
JMS QueueConnect i onFact ory. Default to Ul L2Connect i onFact ory

org. j boss. seamj ns. t opi cConnecti on
Manages a JMS Topi cConnect i on. Installed whenever managed managed Topi cPubl i sher isinstalled.

* org.jboss.seam | ms. t opi cConnect i on. t opi cConnecti onFact or yJndi Nane — the JNDI name of a
JMS Topi cConnect i onFact ory. Default to Ul L2Connect i onFact ory

org. j boss. seam persi st ence. persi st enceProvi der
Abstraction layer for non-standardized features of JPA provider.

org. j boss.seam core. validation
Internal component for Hibernate Validator support.

org. j boss. seam debug. i ntrospect or

Support for the Seam Debug Page.

org. j boss. seam debug. cont ext s

Support for the Seam Debug Page.

21.10. Special components

Certain special Seam component classes are installable multiple times under names specified in the Seam con-
figuration. For example, the following linesin conponent s. xn install and configure two Seam components:

<conponent nane="booki ngDat abase"

JBoss Seam 1.1.6.GA 208

Built-in Seam components

cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persi stenceUnitJndi Name">j ava: / conp/ enf / booki ngPer si st ence</ property>
</ conponent >

<conmponent name="user Dat abase"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >

<property nane="persistenceUnitJndi Nane">j ava: / conp/ enf/ user Per si st ence</ property>
</ conponent >

The Seam component names are booki ngDat abase and user Dat abase.

<entityManager >, org.j boss. seam cor e. ManagedPer si st enceCont ext
Manager component for a conversation scoped managed Ent i t yManager With an extended persistence con-
text.

e <entityManager>. entityManager Fact ory — a value binding expression that evaluates to an instance
of Entit yManager Factory.

<ent i t yManager >. per si st enceUni t Jndi Nane — the JNDI name of the entity manager factory, default

t0j ava: / <managedPer si st enceCont ext >.

<entityManager Fact ory>, org.j boss. seam core. Entit yManager Fact ory
Manages a JPA Ent it yManager Fact ory. Thisis most useful when using JPA outside of an EJB 3.0 sup-

porting environment.

e entityManager Fact ory. persi st enceUni t Name — the name of the persistence unit.

See the API JavaDoc for further configuration properties.

<sessi on>, org.j boss. seam cor e. ManagedSessi on
Manager component for a conversation scoped managed Hibernate Sessi on.
* <session>. sessi onFactory — a value hinding expression that evaluates to an instance of Sessi on-

Factory.

<sessi on>. sessi onFact oryJndi Name — the JNDI name of the session factory, default to

j ava: / <managedSessi on>.

<sessi onFact ory>, org. j boss. seam cor e. H ber nat eSessi onFact ory
Manages a Hibernate Sessi onFact ory.

e <sessionFactory>. cf gResourceNane — the path to the configuration file. Default to hi bern-
ate.cfg. xm.

See the API JavaDoc for further configuration properties.

<managedQueueSender >, or g. j boss. seam j ns. ManagedQueueSender
Manager component for an event scoped managed JMS QueueSender .

e <managedQueueSender >. queueJndi Namre — the INDI name of the IMS queue.

<managedTopi cPubl i sher >, org. j boss. seam j ns. ManagedTopi cPubl i sher
Manager component for an event scoped managed JM S Topi cPubl i sher .

JBoss Seam 1.1.6.GA 209

Built-in Seam components

e <mmnagedTopi cPubl i sher>. t opi cJndi Nane — the INDI name of the IMStopic.

<managedWr ki ngMenor y>, or g. j boss. seam dr ool s. ManagedWr ki nghenory
Manager component for a conversation scoped managed Drools Wor ki ngMenory.

e <managedWr ki ngMenor y>. rul eBase — avalue expression that evaluates to an instance of Rul eBase.

<rul eBase>, org. j boss. seam dr ool s. Rul eBase
Manager component for an application scoped Drools Rul eBase. Note that this is not really intended for
production usage, since it does not support dynamic installation of new rules.

e <rul eBase>. rul eFi | es — alist of files containing Drools rules.
<rul eBase>. dsl Fi | e — aDrools DSL definition.
<entityHone>, org.j boss. seam franmewor k. Enti t yHone
<hi ber nat eEnti t yHome>, or g. j boss. seam f ramewor k. Hi ber nat eEnti t yHone
<entityQuery>,org.jboss. seam franework. EntityQuery

<hi bernat eEnti t yQuery>, org. j boss. seam franmewor k. Hi ber nat eEntityQuery

JBoss Seam 1.1.6.GA 210

Chapter 22. Seam JSF controls

Seam includes a number of JSF controls that are useful for working with Seam. These are intended to comple-
ment the built-in JSF controls, and controls from other third-party libraries. We recommend the Ajax4JSF and
ADF faces (now Trinidad) tag libraries for use with Seam. We do not recommend the use of the Tomahawk tag
library.

The ui example demonstrates the use of a number of these tags.

<s:val i dat e>

Validate a JSF input field against the bound property using Hibernate Validator.

<s:validateAl>
Validate all child JSF input fields against the bound propertys using Hibernate Validator.

<s: formattedText >
Output Seam Text.

<s:convert Dat eTi ne>
Perform date or time conversions in the Seam timezone.

<s: convert Enunp
Assigns an enum converter to the current component. This is primarily useful for radio button and drop-
down controls.

<s:enumtenp
Creates a Sel ect | t emfrom an enum value.

* enunval ue — the string representation of the enum value.
e | abel — thelabel to be used when rendering the Sel ect I tem

<s:selectltems>
Createsali st <Sel ect | t em» from aList, Set, DataModel or Array.

e val ue — an EL expression specifying the data that backsthe Li st <Sel ect I t en»

e var — defines the name of the local variable that holds the current object during iteration

e | abel — thelabel to be used when rendering the Sel ect | t em Can reference thevar variable
* disabl ed —if truethe sel ect I t emwill be rendered disabled. Can reference thevar variable

* noSel ecti onLabel — specifies the (optional) label to place at the top of list (if required="true" is
also specified then selecting this value will cause avalidation error)

* hi deNoSel ecti onLabel — if true, thenoSel ecti onLabel will be hidden when avalueis selected

<s:decorat e>
"Decorate” a JSF input field when validation fails.

<Ss: nmessage>

"Decorate” a JSF input field with the validation error message.

JBoss Seam 1.1.6.GA 211

Seam JSF controls

<s: span>

Render aHTML .

<s:div>

Render aHTML <di v>.

<s:cache>
Cache the rendered page fragment using JBoss Cache. Note that <s: cache> actually uses the instance of
JBoss Cache managed by the built-in poj oCache component.

* key — the key to cache rendered content, often a value expression. For example, if we were caching a
page fragment that displays a document, we might use key="Docunent - #{ docunent . i d}".

* enabl ed — avalue expression that determinesif the cache should be used.
e regi on — aJBoss Cache node to use (different nodes can have different expiry policies).

<s:link>
A link that supports invocation of an action with control over conversation propagation. Does not submit
the form.

* val ue —thelabd.

* action — amethod binding that specified the action listener.

* view— theJSF view id to link to.

e fragment — the fragment identifier to link to.

* disabl ed —isthelink disabled?

* propagati on — determines the conversation propagation style: begi n, j oi n, nest , none 0Of end.

e pagefl ow — a pageflow definition to begin. (This is only useful when propagati on="begi n* or
propagat i on="j oi n".)

<s: button>
A button that supports invocation of an action with control over conversation propagation. Does not submit
the form.

* val ue —thelabdl.

* action — amethod binding that specified the action listener.

e view— the JSFview idtolink to.

* fragment — the fragment identifier to link to.

* disabl ed — isthelink disabled?

* propagati on — determines the conversation propagation style: begi n, j oi n, nest , none 0Of end.

e pagefl ow — a pageflow definition to begin. (This is only useful when propagati on="begi n" or
propagat i on="j oi n".)

JBoss Seam 1.1.6.GA 212

Seam JSF controls

<s: sel ect Dat e>

Displays a dynamic date picker component that selects a date for the specified input field. The body of the
sel ect Dat e element should contain HTML elements, such as text or an image, that prompt the user to click
to display the date picker. The date picker can be styled using CSS. An example CSS file can be found in

the Seam booking demo asdat e. css.

* for — Theid of theinput field that the date picker will insert the selected date into.

» dateFormat — Thedate format string. This should match the date format of the input field.

<s: conver sati onPropagati on>
Customize the conversation propagation for a command link or button (or similar JSF control). Facelets

only.

e propagat i on — determines the conversation propagation style: begi n, j oi n, nest, none Or end.

e pagefl ow — a pageflow definition to begin. (This is only useful when propagati on="begi n" or

propagat i on="j oi n".)

<s:conversationl d>
Add the conversation id to an output link (or similar JSF control). Facelets only.

<s:taskl d>
Add the task id to an output link (or similar JSF contral), when the task is available via #{ t ask} . Facelets

only.

<s:fil eUpl oad>
Renders a file upload control. This control must be used within a form with an encoding type of mul ti -

part/formdata, i.€

<h: form enctype="nul ti part/form data">

For multipart requests, the Seam Multipart servlet filter must also be configured in web. xm :

<filter>
<filter-nane>Seam Mul tipart Filter</filter-name>
<filter-class>org.jboss. seamservlet. SeanMultipartFilter</filter-class>

</filter>

<filter-mpping>
<filter-name>Seam Mul tipart Filter</filter-name>
<url - pattern>*. seanx/url - pattern>

</filter-mappi ng>

The following configuration options for multipart requests may be configured in components.xml:

e createTenpFil es — if thisoption is set to true, uploaded files are streamed to a temporary file instead
of in memory.

JBoss Seam 1.1.6.GA 213

Seam JSF controls

e maxRequest Si ze — the maximum size of afile upload request, in bytes.

Here's an example:

<conponent class="org.jboss.seam servlet. MiltipartConfig">
<property nane="createTenpFil es">true</property>
<property nanme="maxRequest Si ze">1000000</ pr operty>

</ conponent >

And here's alist of the supported attributes for thefi | eUpl oad control:

* data — this value binding receives the binary file data. The receiving field should be declared as a
byt e[] Of | nput St ream(required).

e cont ent Type — thisvalue binding receives the file's content type (optional).
e fil eName — thisvalue binding receives the filename (optional).

e accept — acomma-separated list of content types to accept, may not be supported by the browser. E.g.
"i mages/ png, i mages/j pg", "i mages/*".

e style — Thecontrol's style

* styled ass — Thecontrol's style class

JBoss Seam 1.1.6.GA 214

Chapter 23. Expression language enhancements

The standard Unified Expression Language (EL) assumes that any parameters to a method expression will be
provided by Java code. This means that a method with parameters cannot be used as a JSF method binding.
Seam provides an enhancement to the EL that allows parameters to be included in a method expression itself.
This applies to any Seam method expression, including any JSF method binding, for example:

<s: commandBut t on acti on="#{hot el Booki ng. bookHot el (hotel)}" val ue="Book Hotel "/>

23.1. Configuration

To use this feature in Facelets, you will need to declare a special view handler, SeanFacel et Vi ewHandl er in
faces-config. xm .

<faces-config>
<appl i cati on>
<vi ew handl er >or g. j boss. seam ui . f acel et . Seanfacel et Vi ewHandl| er </ vi ew handl er >
</ application>
</ faces-confi g>

23.2. Usage

Parameters are surrounded by parentheses, and separated by commas:

<h: conmandBut t on acti on="#{hot el Booki ng. bookHot el (hotel, user)}" val ue="Book Hotel "/>

The parameters hot el and user will be evaluated as value expressions and passed to the bookHot el () method
of the component. This gives you an alternative to the use of @n.

Any value expression may be used as a parameter:

<h: commandBut t on acti on="#{ hot el Booki ng. bookHot el (hotel .id, user.usernane)}" val ue="Book Hotel"/>

Y ou may even pass literal strings using single or double quotes:
<h: commandLi nk action="#{printer.printin(‘Hello world!")}” value="Hello"/>
<h: conmandLi nk action="#{printer.println(“Hello again”)}' value="Hello' />
Y ou might even want to use this notation for all your action methods, even when you don’'t have parameters to

pass. This improves readability by making it clear that the expression is a method expression and not a value
expression:

<s:link val ue="Cancel " acti on="#{hot el Booki ng. cancel ()}"/>

23.3. Limitations

Please be aware of the following limitations:

JBoss Seam 1.1.6.GA 215

Expression language enhancements

23.3.1. Incompatibility with JSP 2.1

This extension is not currently compatible with JSP 2.1. So if you want to use this extension with JSF 1.2, you
will need to use Facelets. The extension works correctly with JSP 2.0.

23.3.2. Calling a Met hodExpr essi on from Java code

Normally, when aMet hodExpr essi on OF Met hodBi ndi ng is created, the parameter types are passed in by JSF. In
the case of a method binding, JSF assumes that there are no parameters to pass. With this extension, we can’t
know the parameter types until after the expression has been evaluated. This has two minor consequences.

¢ When you invoke a Met hodExpr essi on in Java code, parameters you pass may be ignored. Parameters
defined in the expression will take precedence.

e Ordinarily, it is safeto call net hodExpr essi on. get Met hodl nf o() . get Par anTypes() at any time. For an ex-
pression with parameters, you must first invoke the Met hodExpr essi on before calling get Par anifypes() .

Both of these cases are exceedingly rare and only apply when you want to invoke the Met hodExpr essi on by
hand in Java code.

JBoss Seam 1.1.6.GA 216

Chapter 24. Testing Seam applications

Most Seam applications will need at least two kinds of automated tests: unit tests, which test a particular Seam
component in isolation, and scripted integration tests which exercise al Java layers of the application (that is,
everything except the view pages).

Both kinds of tests are very easy to write.

24.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing. And since Seam
emphasises the use of bijection for inter-component interactions and access to contextual objects, it's very easy
to test a Seam component outside of its normal runtime environment.

Consider the following Seam component:

@t at el ess
@scope(EVENT)
@Nane("register")
public class RegisterAction inplenents Register
{
private User user;
private EntityManager em

@n
public void setUser(User user) {
this.user = user;

}

@er si st enceCont ext

public voi d set Booki ngDat abase(EntityManager em {
this.em= em

}

public String register()
{
Li st existing = emcreateQuery("sel ect usernane from User where username=: usernane")
. set Paranet er ("usernane", user.getUsernane())
.getResul tList();
if (existing.size()==0)
{
em persi st (user);
return "success";
}

el se

{
}

return null;

}

We could write a TestNG test for this component as follows:

public class Regi sterActionTest

{

@est
public testRegisterAction()

{
EntityManager em = get EntityManager Factory().creat eEntityManager();

em get Transacti on() . begi n();

JBoss Seam 1.1.6.GA 217

Testing Seam applications

User gavin = new User();

gavi n. set Nane(" Gavi n Ki ng");
gavi n. set User Nanme(" lovt haf ew') ;
gavi n. set Password("secret");

Regi sterActi on acti on = new Regi sterAction();
action. set User (gavi n);
acti on. set Booki ngDat abase(emn ;

assert "success".equal s(action.register());

em get Transaction().comit();
em cl ose();

private EntityManager Factory enf;

public EntityManagerFactory get EntityManager Factory()
{

}

@onfi gurati on(beforeTest Cl ass=true)
public void init()
{

}

@onfiguration(afterTestCl ass=true)
public void destroy()

{
}

return enf;

enf = Persistence. createEntityManager Fact ory("myResourcelLocal EntityManager");

enf. close();

Seam components don't usually depend directly upon container infrastructure, so most unit testing as as easy as
that!

24.2. Integration testing Seam applications

Integration testing is slightly more difficult. In this case, we can't eliminate the container infrastructure; indeed,
that is part of what is being tested! At the same time, we don't want to be forced to deploy our application to an
application server to run the automated tests. We need to be able to reproduce just enough of the container in-
frastructure inside our testing environment to be able to exercise the whole application, without hurting per-
formance too much.

A second problem is emulating user interactions. A third problem is where to put our assertions. Some test
frameworks let us test the whole application by reproducing user interactions with the web browser. These
frameworks have their place, but they are not appropriate for use at development time.

The approach taken by Seam isto let you write tests that script your components while running inside a pruned
down container environment (Seam, together with the JBoss Embeddable EJB container). The role of the test
script is basicaly to reproduce the interaction between the view and the Seam components. In other words, you
get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSP view for the component we unit tested above:

JBoss Seam 1.1.6.GA 218

Testing Seam applications

<htm >
<head>
<title>Regi ster New User</title>
</ head>
<body>
<f:view>
<h: f or
<t abl e border="0">
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user.usernane}"/></td>
</tr>
<tr>
<t d>Real Nane</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h: i nput Secret val ue="#{user.password}"/></td>
</tr>
</t abl e>

<h: nessages/ >
<h: commandBut ton type="subm t" val ue="Regi ster" action="#{register.register}"/>
</ h: fornm
</f:view
</ body>
</htm >

We want to test the registration functionality of our application (the stuff that happens when the user clicks the
Register button). We'll reproduce the JSF request lifecycle in an automated TestNG test:

public class Regi sterTest extends SeanTest

{
@est
public void testRegister() throws Exception
{
new FacesRequest () {
@verride
protected void processValidations() throws Exception
{
val i dat eVal ue("#{user. usernane}", "lovthafew');
val i dat eVal ue("#{user.nane}", "Gavin King");
val i dat eval ue("#{user. password}", "secret");
assert lisValidationFailure();
}
@verride
protected voi d updat eModel Val ues() throws Exception
{
set Val ue("#{user. usernane}", "lovthafew');
set Val ue("#{user.nane}", "Gavin King");
set Val ue("#{user. password}", "secret");
}
@verride
protected void i nvokeApplication()
{
assert invokeMet hod("#{register.register}").equal s("success");
}
@verride
protected void render Response()
{

assert getVal ue("#{user.usernane}"). equal s("21lovthafew');
assert getVal ue("#{user.nane}"). equal s("Gavin King");
assert getVal ue("#{user.password}").equal s("secret");

JBoss Seam 1.1.6.GA 219

Testing Seam applications

}.run();

Notice that we've extended Seantest , which provides a Seam environment for our components, and written our
test script as an anonymous class that extends Seanfrest . FacesRequest , which provides an emulated JSF re-
quest lifecycle. (There is al'so a Seanrest . NonFacesRequest for testing GET requests.) We've written our code
in methods which are named for the various JSF phases, to emulate the calls that JSF would make to our com-
ponents. Then we've thrown in various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate more complex
cases. There are instructions for running these tests using Ant, or using the TestNG plugin for eclipse:

JBoss Seam 1.1.6.GA 220

Testing Seam applications

=

3 fnutline JUnitm o | QBY =8

IResults of running suite

Suites: 1/1 Tests: 1/1

Methods: 2/2

Passed: 2 B Failed: 0 8 Skipped: 0

% All Tests| o Failed Tests|
= He Registration (2/0/0/0)
=gl Register (2/0/0/0)
----- rel org.jboss.seam.example.numberguess.test. \umberGues
- org.jboss.seam.example.numberguess.test. NumberGues

< | 111

Failure Exception

7 v

JBoss Seam 1.1.6.GA

221

Chapter 25. Seam tools

25.1.]BPM designer and viewer

The |BPM designer and viewer will let you design and view in a nice way your business processes and your
pageflows. This convenient tool is part of JBoss Eclipse IDE and more details can be found in the jJBPM's doc-

umentation (http://docs.jboss.com/jbpm/v3/gpd/)

25.1.1. Business process designer

Thistool lets you design your own business process in a graphical way.

2 start
% State
B End

[}3 Fork

g]-o Jein

L:?J Decision
Mode

\" Task Made
1% Process State
3% Super State

Marques

—+ Transition

Diagram | Swimlanes | Design | Source

Wt <<Task Node>>
= process

G =<Start State==

wt <<Task Node==
= approval

approve
reject

shipped

] ==End States>
complete

25.1.2. Pageflow viewer

This tool let you design to some extend your pageflows and let you build graphical views of them so you can
easily share and compare ideas on how it should be designed.

JBoss Seam 1.1.6.GA

222

Seam tools

—
) start

L:?J Decision

Margues O ==Start State==
start

E FPage

— Transition
= =<=fages=>

BZ| ,.
=l displayGuess

guess false
islan Sl
lv'.?_l eblEb false L:?J ==lecision==
ERRINIFETEN evaluateRemainingGues
true true
= <<fage==> = ==fage=>
HE B

win lose

Diagrarm | Design | Source

25.2. CRUD-application generator

This chapter, will give you a short overview of the support for Seam that is available in the Hibernate Tools.
Hibernate Tools is a set of tools for working with Hibernate and related technologies, such as JBoss Seam and
EJB3. Thetools are available as a set of eclipse plugins and Ant tasks. Y ou can download the Hibernate Tools
from the JBoss Eclipse IDE or Hibernate Tools websites.

The specific support for Seam that is currently available is generation of a fully functional Seam based CRUD-
application. The CRUD-application can be generated based on your existing Hibernate mapping files or EJB3
annotated POJO's or even fully reverse engineered from your existing database schema.

The following sections is focused on the features required to understand for usage with Seam. The content is
derived from the the Hibernate Tools reference documentation. Thus if you need more detailed information
please refer to the Hibernate Tools documentation.

25.2.1. Creating a Hibernate configuration file

To be able to reverse engineer and generate code a hibernate.properties or hibernate.cfg.xml file is needed. The
Hibernate Tools provide awizard for generating the hibernate.cfg.xml fileif you do not already have such file.

Start the wizard by clicking "New Wizard" (Ctrl+N), select the Hibernate/Hibernate Configuration file
(cfg.xml) wizard and press "Next". After selecting the wanted location for the hibernate.cfg.xml file, you will
see the following page:

JBoss Seam 1.1.6.GA 223

Seam tools

¢ x
Hibernate Configuration File {cfg.xml) ‘ ’

This wizard creates a new configuratien file to use with Hibemate,

Container: Jhibernatetook-demo/src

File name: hibernate.cig.xmi

Session factory name: |

Database dialect: | HSQL |
Driver dass: | org.hsgidb.jdbcDriver -
Connection LRL: | jdbe:hsgidb:hsqk:/flocalhost -]
Default Schema: |

Default Catalog: |

Lisermarme: |sa

Password: |

[v Create a consoke configuration

=y

< Back Hext = Cancel

Tip: The contents in the combo boxes for the JIDBC driver class and JDBC URL change automatically, depend-
ing on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can be found in Hi-
bernate reference documentation.

Press "Finish" to create the configuration file, after optionaly creating a Console onfiguration, the hibern-
ate.cfg.xml will be automatically opened in an editor. The last option "Create Console Configuration™” is en-
abled by default and when enabled i will automatically use the hibernate.cfg.xml for the basis of a "Console
Configuration”

25.2.2. Creating a Hibernate Console configuration

A Console Configuration describes to the Hibernate plugin which configuration files should be used to config-
ure hibernate, including which classpath is needed to load the POJO's, JDBC drivers etc. It is required to make
usage of query prototyping, reverse engineering and code generation. Y ou can have multiple named console
configurations. Normally you would just need one per project, but more (or less) is definitly possible.

You create a console configuration by running the Console Configuration wizard, shown in the following
screenshot. The same wizard will also be used if you are coming from the hibernate.cfg.xml wizard and had en-
abled " Create Console Configuration”.

JBoss Seam 1.1.6.GA 224

Seam tools

f

X

Create Hibernate Console Configuration

This wizard allows you to create a configuration for Hibernate Console,

@
&>

Name: | hibernatetools-demo

Property fle: | Browse... |
Configuration fie: | Browse...|
Entity resoiver: | Browse...

[Enable hibernate ejb3/annotations (requires running eclipse with a Java 5 runtime)

Mapping files
Name Add.
REMovE
up

Classpath (onby add path for POIO and driver - No Hibernate jars!)
Hame

Add JARSDr...
Shibernatetools-demay/buid/ecipse
Jhibernatetoolks-demoyib/jdbc/hsqgldb.jar Add External JARS. .
Remove
Up
< 3 Drowm
........... ‘: BE"'"I" [Einish Cancel

The following table describes the relevant settings. The wizard can automatically detect default values for most
of these if you started the Wizard with the relevant java project selected

Table 25.1. Hibernate Console Configuration Parameters

Parameter Description Auto detected
value
Name The unique name of the configuration Name of the selec-
ted project

JBoss Seam 1.1.6.GA 225

Seam tools

Parameter Description Auto detected
value

Property file Path to a hibernate.propertiesfile First hibern-

ate.properties file
found in the selec-
ted project

Configuration file | Path to ahibernate.cfg.xml file First hibern-

ate.cfg.xml file
found in the selec-
ted project

Enable Hibernate Selecting this option enables usage of annotated classes. Not enabled

€jb3/annotations hbm.xml files are of course till possible to use too. This feature
requires running the Eclipse IDE with a JDK 5 runtime, other-
wise you will get classloading and/or version errors.

Mapping files List of additional mapping files that should be loaded. Note: A | If no hibern-
hibernate.cfg.xml can also contain mappings. Thus if these adu- ate.cfg.xml file is
plicated here, you will get "Duplicate mapping" errors when us- found, al hbm.xml
ing the consol e configuration. filesfound in the se-

lected project

Classpath The classpath for loading POJO and JDBC drivers. Do not add The default build

Hibernate core libraries or dependencies, they are already in-
cluded. If you get ClassNotFound errors then check this list for
possible missing or redundant directories/jars.

output directory and
any JARs with a
class implementing

javasgl.Driver in
the selected project
Clicking "Finish" creates the configuration and shows it in the "Hibernate Configurations' view
JBoss Seam 1.1.6.GA 226

Seam tools

= Hibernate Configu... X =0

=S8 hibernatetools-demo

[#, Configuration

- Database

=85 [YBLIC

+- [CUSTOMER

T CUSTOMERORDER
= LINEITEM
3 PRODUCT
3 SIMPLECUSTOMERORDER
=] SIMPLELINEITEM

+

+

+

+

+

25.2.3. Reverse engineering and code generation

A very simple "click-and-generate” reverse engineering and code generation facility is available. It is this facil-
ity that allows you to generate the skeleton for afull Seam CRUD application.

To start working with this process, start the "Hibernate Code Generation" which is available in the toolbar via
the Hibernate icon or viathe "Run/Hibernate Code Generation" menu item.

25.2.3.1. Code Generation Launcher

When you click on "Hibernate Code Generation™" the standard Eclipse launcher dialog will appear. In this dia-
log you can create, edit and delete named Hibernate code generation "launchers’.

avigate Search Project Run XML Wi

LRl | -F oo
Run As s
¥4 Hibernate Code Generation...... !
Lﬂrganize Favorites... - f{
] "http:/

B = TR 1

The dialog has the standard tabs "Refresh” and "Common" that can be used to configure which directories
should be automatically refreshed and various general settings launchers, such as saving them in a project for
sharing the launcher within a team.

JBoss Seam 1.1.6.GA 227

Seam tools

 Hibernate Code Generation... g|
Create, manage, and run configurations ‘
& [Exporters]: Al least one exporter option must be selected ’

Configurations: Name: | New_configuration

=- ¥4 Hibernate Code Generation

Fs New_configuration o i |q. Expnrters| 7S Refnsh| o Eﬂﬂmﬂﬂ|

Console configuralsgn: |hibernatetook-demo -

Output directory: | \hibernatetook-demalsrc Browse... |

[+ Reverse engineer from JDBC Connection

Package: | com.bz.model
reveng.xmi: I Setup...
reveng. strategy: | Browse... |

[+ Generate basic typed composite ids

s

Uise custom templates

Negy Delete | Apply | Reyert

|

The first time you create a code generation launcher you should give it a meaningfull name, otherwise the de-
fault prefix "New_Generation” will be used.

Note: The "At least one exporter option must be selected" is just a warning stating that for this launch to work
you heed to select an exporter on the Exporter tab. When an exporter has been selected the warning will disap-
pear.

On the "Main" tab you the following fields:

Table 25.2. Code generation "Main" tab fields

Field Description

Console Configuration The name of the console configuration which should be used when code generat-
ing.

Output directory Path to a directory into where all output will be written by default. Be aware that
existing fileswill be overwritten, so be sure to specify the correct directory.

Reverse engineer from If enabled the tools will reverse engineer the database available via the connec-
JDBC Connection tion information in the selected Hibernate Console Configuration and generate
code based on the database schema. If not enabled the code generation will just
be based on the mappings already specified in the Hibernate Console configura-
tion.

JBoss Seam 1.1.6.GA 228

Seam tools

Field

Package

reveng.xmi

reveng. strategy

Generate basic typed
composite ids

Description

The package name here is used as the default package name for any entities found
when reverse engineering.

Path to areveng.xml file. A reveng.xml file allows you to control certain aspects
of the reverse engineering. e.g. how jdbc types are mapped to hibernate types and
especially important which tables are included/excluded from the process. Click-
ing "setup” allows you to select an existing reveng.xml file or create a new one..

If reveng.xml does not provide enough customization you can provide your own
implementation of an ReverseEngineeringStrategy. The class need to be in the
claspath of the Console Configuration, otherwise you will get class not found ex-
ceptions.

This field should aways be enabled when generating the Seam CRUD applica
tion. A table that has a multi-colum primary key a <composite-id> mapping will
always be created. If this option is enabled and there are matching foreign-keys
each key column is still considered a 'basic' scalar (string, long, etc.) instead of a
reference to an entity. If you disable this option a <key-many-to-one> instead.
Note: a <many-to-one> property is still created, but is ssmply marked as non-
updatable and non-insertable.

Use custom templ ates

If enabled, the Template directory will be searched first when looking up the ve-
locity templates, allowing you to redefine how the individual templates process
the hibernate mapping model.

Template directory

25.2.3.2. Exporters

A path to adirectory with custom vel ocity templates.

The exporters tab is used to specify which type of code that should be generated. Each selection represents an
"Exporter” that are responsible for generating the code, hence the name.

JBoss Seam 1.1.6.GA

229

Seam tools

Hibernate Code Generation...

Create, manage, and run configurations ‘ ’

Select or configure a code generation

Confiqurations: Mame: lflew_l:unflgurarmn ---
= "4 Hibernate Code Generation
T New_configuration

* Main % Expurtersg i Refresh | [Common

[Generate domain code (.java)

r

r

[T Generate DAO code (.java)

[Generate mappings (hbm.xml)

| Generate hibernate configuration (hibernate.cfig.xml)
[Generate schema htmkdocumentation

— pelete | Apply | Revert |
Bun ; Close |

The following table describes in short the various exporters. The most relevant for Seam is of course the "JBoss
Seam Skeleton app".

Table 25.3. Code generation " Exporter” tab fields

Field Description

Generate domain code Generates POJO's for all the persistent classes and components found in the given
Hibernate configuration.

JDK 1.5 constructs When enabled the POJO's will use JDK 1.5 constructs.

EJB3/ISR-220 annota- When enabled the POJO's will be annotated according to the EJB3/JSR-220 per-
tions sistency specification.

Generate DAO code Generates a set of DAO's for each entity found.

Generate Mappings Generate mapping (hbm.xml) files for each entity

Generate hibernate con- Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml uptodate
figuration file with any new found mapping files.

Generate schema html- Generates set of html pages that documents the database schema and some of the

JBoss Seam 1.1.6.GA 230

Seam tools

Field Description

documentation mappings.

Generate JBoss Seam Generates a complete JBoss Seam skeleton app. The generation will include an-
skeleton app (beta) notated POJO's, Seam controller beans and a JSP for the presentation layer. See
the generated readme.txt for how to useiit.

Note: this exporter generates a full application, including a build.xml thus you
will get the best results if you use an output directory which is the root of your
project.

25.2.3.3. Generating and using the code

When you have finished filling out the settings, simply press "Run" to start the generation of code. This might
take alittle while if you are reverse engineering from a database.

When the generation have finished you should now have a complete skeleton Seam application in the output

directory. In the output directory there is areadne. t xt file describing the steps needed to deploy and run the
example.

If you want to regenerate/update the skeleton code then simply run the code generation again by selecting the
"Hibernate Code Generation" in the toolbar or "Run" menu. Enjoy.

JBoss Seam 1.1.6.GA 231

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	Chapter 1. Seam Tutorial
	1.1. Try the examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the examples on Tomcat
	1.1.3. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The Seam component deployment descriptor: components.xml
	1.2.1.5. The web deployment description: web.xml
	1.2.1.6. The JSF configration: faces-config.xml
	1.2.1.7. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.8. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.9. The view: register.jsp and registered.jsp
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.jsp

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam UI control library
	1.6.5. The Seam Debug Page

	1.7. A complete application featuring Seam and jBPM: the DVD Store example
	1.8. A complete application featuring Seam workspace management: the Issue Tracker example
	1.9. An example of Seam with Hibernate: the Hibernate Booking example
	1.10. A RESTful Seam application: the Blog example
	1.10.1. Using "pull"-style MVC
	1.10.2. Bookmarkable search results page
	1.10.3. Using "push"-style MVC in a RESTful application

	Chapter 2. Getting started with Seam, using seam-gen
	2.1. Before you start
	2.2. Setting up a new Eclipse project
	2.3. Creating a new action
	2.4. Creating a form with an action
	2.5. Generating an application from an existing database
	2.6. Deploying the application as an EAR

	Chapter 3. The contextual component model
	3.1. Seam contexts
	3.1.1. Stateless context
	3.1.2. Event context
	3.1.3. Page context
	3.1.4. Conversation context
	3.1.5. Session context
	3.1.6. Business process context
	3.1.7. Application context
	3.1.8. Context variables
	3.1.9. Context search priority
	3.1.10. Concurrency model

	3.2. Seam components
	3.2.1. Stateless session beans
	3.2.2. Stateful session beans
	3.2.3. Entity beans
	3.2.4. JavaBeans
	3.2.5. Message-driven beans
	3.2.6. Interception
	3.2.7. Component names
	3.2.8. Defining the component scope
	3.2.9. Components with multiple roles
	3.2.10. Built-in components

	3.3. Bijection
	3.4. Lifecycle methods
	3.5. Conditional installation
	3.6. Logging
	3.7. The Mutable interface and @ReadOnly
	3.8. Factory and manager components

	Chapter 4. Configuring Seam components
	4.1. Configuring components via property settings
	4.2. Configuring components via components.xml
	4.3. Fine-grained configuration files
	4.4. Configurable property types
	4.5. Using XML Namespaces

	Chapter 5. Events, interceptors and exception handling
	5.1. Seam events
	5.1.1. Page actions
	Page parameters
	Navigation
	Fine-grained files for definition of page actions and parameters

	5.1.2. Component-driven events
	5.1.3. Contextual events

	5.2. Seam interceptors
	5.3. Managing exceptions
	5.3.1. Exceptions and transactions
	5.3.2. Enabling Seam exception handling
	5.3.3. Using annotations for exception handling
	5.3.4. Using XML for exception handling

	Chapter 6. Conversations and workspace management
	6.1. Seam's conversation model
	6.2. Nested conversations
	6.3. Starting conversations with GET requests
	6.4. Using <s:link> and <s:button>
	6.5. Success messages
	6.6. Using an "explicit" conversation id
	6.7. Workspace management
	6.7.1. Workspace management and JSF navigation
	6.7.2. Workspace management and jPDL pageflow
	6.7.3. The conversation switcher
	6.7.4. The conversation list
	6.7.5. Breadcrumbs

	6.8. Seam and Servlets
	6.9. Seam and SOAP

	Chapter 7. Pageflows and business processes
	7.1. Pageflow in Seam
	7.1.1. The two navigation models
	7.1.2. Seam and the back button

	7.2. Using jPDL pageflows
	7.2.1. Installing pageflows
	7.2.2. Starting pageflows
	7.2.3. Page nodes and transitions
	7.2.4. Controlling the flow
	7.2.5. Ending the flow

	7.3. Business process management in Seam
	7.4. Using jPDL business process definitions
	7.4.1. Installing process definitions
	7.4.2. Initializing actor ids
	7.4.3. Initiating a business process
	7.4.4. Task assignment
	7.4.5. Task lists
	7.4.6. Performing a task

	Chapter 8. Seam and Object/Relational Mapping
	8.1. Introduction
	8.2. Seam managed transactions
	8.2.1. Enabling Seam-managed transactions

	8.3. Seam-managed persistence contexts
	8.3.1. Using a Seam-managed persistence context with JPA
	8.3.2. Using a Seam-managed Hibernate session
	8.3.3. Seam-managed persistence contexts and atomic conversations

	8.4. Using the JPA "delegate"
	8.5. Using Hibernate filters

	Chapter 9. JSF form validation in Seam
	Chapter 10. The Seam Application Framework
	10.1. Introduction
	10.2. Home objects
	10.3. Query objects
	10.4. Controller objects

	Chapter 11. Seam and JBoss Rules
	11.1. Installing rules
	11.2. Using rules from a Seam component
	11.3. Using rules from a jBPM process definition

	Chapter 12. Security
	12.1. Requirements
	12.2. Authentication
	12.2.1. Configuration
	12.2.2. Writing an authentication method
	12.2.3. Writing a login form
	12.2.4. Simplified Configuration - Summary
	12.2.5. Advanced Authentication Features
	Using your container's JAAS configuration

	12.3. Authorization
	12.3.1. Core concepts
	12.3.2. Securing components
	The @Restrict annotation
	Inline restrictions

	12.3.3. Security in the user interface
	12.3.4. Securing pages

	12.4. Writing Security Rules
	12.4.1. Permissions Overview
	12.4.2. Configuring a rules file
	12.4.3. Creating a security rules file

	12.5. Handling Security Exceptions

	Chapter 13. Internationalization and themes
	13.1. Locales
	13.2. Labels
	13.2.1. Defining labels
	13.2.2. Displaying labels
	13.2.3. Faces messages

	13.3. Timezones
	13.4. Themes
	13.5. Persisting locale and theme preferences via cookies

	Chapter 14. Seam Text
	14.1. Basic fomatting
	14.2. Entering code and text with special characters
	14.3. Links
	14.4. Entering HTML

	Chapter 15. iText PDF generation
	15.1. Using PDF Support
	15.2. Creating a document
	15.2.1. p:document

	15.3. Basic Text Elements
	15.3.1. p:paragraph
	15.3.2. p:text
	15.3.3. p:font
	15.3.4. p:newPage
	15.3.5. p:image
	15.3.6. p:anchor

	15.4. Headers and Footers
	15.4.1. p:header and p:footer
	15.4.2. p:pageNumber

	15.5. Chapters and Sections
	15.5.1. p:chapter and p:section
	15.5.2. p:title

	15.6. Lists
	15.6.1. p:list
	15.6.2. p:listItem

	15.7. Tables
	15.7.1. p:table
	15.7.2. p:cell

	15.8. Document Constants
	15.8.1. Color Values
	15.8.2. Alignment Values

	15.9. Configuring iText
	15.10. iText links

	Chapter 16. Email
	16.1. Creating a message
	16.1.1. Attachments
	16.1.2. HTML/Text alternative part
	16.1.3. Multiple recipients
	16.1.4. Templating
	16.1.5. Other Headers

	16.2. Configuration
	16.2.1. mailSession
	16.2.1.1. JNDI lookup in JBoss AS
	16.2.1.2. Seam configured Session

	16.3. Tags

	Chapter 17. Asynchronicity and messaging
	17.1. Asynchronicity
	17.1.1. Asynchronous methods
	17.1.2. Asynchronous events

	17.2. Messaging in Seam
	17.2.1. Configuration
	17.2.2. Sending messages
	17.2.3. Receiving messages using a message-driven bean
	17.2.4. Receiving messages in the client

	Chapter 18. Remoting
	18.1. Configuration
	18.2. The "Seam" object
	18.2.1. A Hello World example
	18.2.2. Seam.Component
	Seam.Component.newInstance()
	Seam.Component.getInstance()
	Seam.Component.getComponentName()

	18.2.3. Seam.Remoting
	Seam.Remoting.createType()
	Seam.Remoting.getTypeName()

	18.3. Client Interfaces
	18.4. The Context
	18.4.1. Setting and reading the Conversation ID

	18.5. Batch Requests
	18.6. Working with Data types
	18.6.1. Primitives / Basic Types
	String
	Number
	Boolean

	18.6.2. JavaBeans
	18.6.3. Dates and Times
	18.6.4. Enums
	18.6.5. Collections
	Bags
	Maps

	18.7. Debugging
	18.8. The Loading Message
	18.8.1. Changing the message
	18.8.2. Hiding the loading message
	18.8.3. A Custom Loading Indicator

	18.9. Controlling what data is returned
	18.9.1. Constraining normal fields
	18.9.2. Constraining Maps and Collections
	18.9.3. Constraining objects of a specific type
	18.9.4. Combining Constraints

	18.10. JMS Messaging
	18.10.1. Configuration
	18.10.2. Subscribing to a JMS Topic
	18.10.3. Unsubscribing from a Topic
	18.10.4. Tuning the Polling Process

	Chapter 19. Configuring Seam and packaging Seam applications
	19.1. Basic Seam configuration
	19.1.1. Integrating Seam with JSF and your servlet container
	19.1.2. Integrating Seam with your EJB container
	19.1.3. Enabling Seam exception handling
	19.1.4. Enabling conversation propagation with redirects
	19.1.5. Using facelets
	19.1.6. Don't forget!

	19.2. Configuring Seam in Java EE 5
	19.2.1. Packaging

	19.3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container
	19.3.1. Installing the Embeddable EJB3 container
	19.3.2. Configuring a datasource with the Embeddable EJB3 container
	19.3.3. Packaging

	19.4. Configuring Seam in J2EE
	19.4.1. Boostrapping Hibernate in Seam
	19.4.2. Boostrapping JPA in Seam
	19.4.3. Packaging

	19.5. Configuring Seam in Java SE, with the JBoss Microcontainer
	19.5.1. Using Hibernate and the JBoss Microcontainer
	19.5.2. Packaging

	19.6. Configuring jBPM in Seam
	19.6.1. Packaging

	19.7. Configuring Seam in a Portal

	Chapter 20. Seam annotations
	20.1. Annotations for component definition
	20.2. Annotations for bijection
	20.3. Annotations for component lifecycle methods
	20.4. Annotations for context demarcation
	20.5. Annotations for transaction demarcation
	20.6. Annotations for exceptions
	20.7. Annotations for validation
	20.8. Annotations for Seam Remoting
	20.9. Annotations for Seam interceptors
	20.10. Annotations for asynchronicity
	20.11. Annotations for use with JSF dataTable
	20.12. Meta-annotations for databinding
	20.13. Annotations for packaging

	Chapter 21. Built-in Seam components
	21.1. Context injection components
	21.2. Utility components
	21.3. Components for internationalization and themes
	21.4. Components for controlling conversations
	21.5. jBPM-related components
	21.6. Security-related components
	21.7. JMS-related components
	21.8. Mail-related components
	21.9. Infrastructural components
	21.10. Special components

	Chapter 22. Seam JSF controls
	Chapter 23. Expression language enhancements
	23.1. Configuration
	23.2. Usage
	23.3. Limitations
	23.3.1. Incompatibility with JSP 2.1
	23.3.2. Calling a MethodExpression from Java code

	Chapter 24. Testing Seam applications
	24.1. Unit testing Seam components
	24.2. Integration testing Seam applications

	Chapter 25. Seam tools
	25.1. jBPM designer and viewer
	25.1.1. Business process designer
	25.1.2. Pageflow viewer

	25.2. CRUD-application generator
	25.2.1. Creating a Hibernate configuration file
	25.2.2. Creating a Hibernate Console configuration
	25.2.3. Reverse engineering and code generation
	25.2.3.1. Code Generation Launcher
	25.2.3.2. Exporters
	25.2.3.3. Generating and using the code

