Seam - Contextual Components

A Framework for Java EE 5

Version: 1.1.0.BETA

Table of Contents

INtrOdUCEION T0 JBOSS SEAIMueiiiiiiiiee e e e sttt e e e e e e e et e e e e e e s s e st eeaaee e s s s snteaeeeeaaeessasnssrnnnneaaeens viii
OS2 T o T N o = | PSS PPRSRR 1
L1 Try the @XaMPIESoveeeiiie e e e e e e e e e e e e s e et e e e e e e e e s e aennenees 1
1.1.1. Running the exampleS 0N JBOSSASooiiiiiiiiiieiee e 1
1.1.2. Running the exampleS 0n TOMCALc.uveiiiiieiiiiiiiiiee e s e e e e e e 1
1.1.3. RUNNING the @XamMPIE TESESceeiiiiiie ettt 1

1.2. Your first Seam application: the registration eXamplecccccoviiiiieiiiei e 2
1.2.1. Understanding the COOEeuiiiiiiiiiiiiiiie e 2
1.2.1.1. The entity DEaAN: USErJAVAuuuuuiiii s nnnnnnes 3

1.2.1.2. The stateless session bean class: RegisterAction.javacccccvveeveeeeeiiecnnnne, 5

1.2.1.3. The session bean local interface: RegIStEr.javacovevviieee i 6

1.2.1.4. The Seam component deployment descriptor: components.xml 6

1.2.1.5. The web deployment description: WebD.Xmlcooeiiiiiiiiiiiii e, 7

1.2.1.6. The JSF configration: faces-CoNfig. XMlcccccociiiiiiiii s 7

1.2.1.7. The EJB deployment descriptor: glb-jar Xmlcccccoiiiiiiiiiiiiiieee e, 8

1.2.1.8. The EJB persistence deployment descriptor: persistenceXmlcccccceevveeeee. 8

1.2.1.9. Theview: register.jsp and registered.jSP ..uveeveeeeviiiciiiieiiee e 9

1.2.1.10. The EAR deployment descriptor: application.Xmlccoccvveeiiiiiieenninnnn. 10

L1.2.2. HOW I WOTKS ..ottt ettt e et e et e e e e e e e e 10

1.3. Clickablelistsin Seam: the messages eXamPpPleccuvieiiiiiiieeiiiee e 11
1.3.1. Understanding the COUE nnnnnnnnnes 11
1.3.1.1. The entity bean: MESSAgE.JaVAcccoiuiiiiiiiiiie e 11

1.3.1.2. The stateful session bean: MessageManagerBean.java...........cccccccvveeeviinnneee 12

1.3.1.3. The session bean local interface: MessageManager.javaccccvevveeeeeecennnnee. 14

1.3.1.4. ThE VIEW: MESSATES. ISP . .-vvveeeiurrreeeanrreeeaaitrreesaitreeesanrreeesanbeeeesanneeeesannneeas 14

L1.3.2. HOW I WOTKS ..ottt ettt e et e e s e e e e e e e e 15

1.4. Seam and jJBPM: the todo list @XampPlecoooiiiiiiiiiiee e 15
1.4.1. Understanding the COUE ... nnnnnnnnes 16
LA.2. HOW IEWOIKS ..ot e e e e a e e e s s et raeeeaeas 21

1.5. Seam pageflow: the NUMbErgueSS EXamMPIEoooiiiiiiiiie e 21
1.5.1. Understanding the COOEuuimiiiiiec e 21
152 HOW IEWOIKS ..ottt e e e e e e e e e e nneaaeeeeeens 25

1.6. A complete Seam application: the Hotel Booking exampleccceeeeeeeiiiiiciiiieeeee e, 25
OG0 I 11T [T 1 o T TSP 26
1.6.2. Overview of the booking eXample ... 28
1.6.3. Understanding Seam CONVErSALIONSuuviiiieeeeiiiiiiiieieeeeeessssiiinreeeeeeessennssnneeeeens 28
1.6.4. The Seam Ul control [IBrarycoeeooiiiiieieceee e 34
1.6.5. The SEaM DEDUG PAJEcceeiiiiieiiee et e e e e 34

1.7. A complete application featuring Seam and jBPM: the DVD Store exampleccccceneee. 35
1.8. A complete application featuring Seam workspace management: the I ssue Tracker example . 37
1.9. An example of Seam with Hibernate: the Hibernate Booking exampleccccccovvivveennee. 38
1.10. A RESTful Seam application: the Blog eXamplecccocoiiiiiiiiienannens 38
1.10.2. USING "PUI™-SEYIE MV C ...ttt e st ee e 39
1.10.2. Bookmarkable search resultS Pageoevviiiiiieiiiiiiie e 40
1.10.3. Using "push”-style MVC in a RESTful applicationc.ccoecvivierieeeeiiiiiiiieeennn. 42

2. Getting started with Seam, USING SBAM-0ENcooviiiiiiiiiee e 45
2.1 BEfOreYOU Stalrt ... 45
2.2. Setting Up @ NEW ECHIPSE PIOJECTcoiuviiiieiiiiie ettt e e sbn e 45

JBoss Seam 1.1.0.BETA

Seam - Contextual Components

2.3. Creating @NEW BCTTONeiiiiiiiiei ettt e e e e e e e e e e e s e e e e e e e e e e e an 47
2.4. Creating aform With @n @CtioNcooiiiiiiiiiiiiice e e e 48
2.5. Generating an application from an existing datadasecccoveiiiiiiei i 48
2.6. Deploying the application aSan EAR ..., 49
3. The contextual compPoNeNt MOUE!cooiiiiiiiiii e 50
3.1 SEAIM CONMEXES ..ottt ettt ettt ettt ettt et e et e et e et e e e eeeeeeeeeeeeeees 50
.11 SEAEIESS CONEXLEvveiieiiiiiee ettt e e e e st e e e nnbaeeeeans 50
312, BVENE CONEEXE ..ooeiiiiiiiiiiiii ittt ettt et e e e e e e eeeeeeeees 50
I G T =0 T o0 1 PSPPI 51

0 I B 00 1Y/ £ 0] oo | =>4 RS 51

IO T == o g ol 1= (S 51
3.1.6. BUSINESS PrOCESS COMEXT ...uuvereeeiittieeeaiteieessiteeeeesstse e e s sibe e e e e snbse e e s snnneeeannnneeeeenees 52
101 I AN oo [= 1 o g ol g1 1= S 52
3.1.8. CONLEXE VAITAIDIESeeiiiiiiie ittt nbaee e 52
3.1.9. CONteXt SEArCH PIIOMTYvveeeeiiiieee ettt e ettt e e e s e e s nnrneeeeaa 52
3.1.10. CoNCUITENCY MOE!uviiiiieeiiiiciiiee e e e e e s e e e e e e e s e st b r e e e e e e e e s e eanreees 53

3.2. SEAM COMPONENES ...ttt e e e ettt e e e e s st e e e e e e e s s s ab b e e et e e e e s s aanbbbe e e et e e e e s s annnrnneeeeens 53
3.2.1. StAtel €SS SESSION DEANSeeiiiee i 54
3.2.2. Stateful SESSION DEANSooiiiiiiii e 54
323 ENLIY DEANS ..o 54
324, JAVABEANSeeiiiiiiie e b e nraeee e 54
3.2.5. MeSSage-ariVEN DBANScooiiiiiie e 55
I ST 1 01 = (= o/ (o o KOS TSR 55
3.2.7. COMPONENE NAIMESeeeiieeitieeeee ettt e e e e e e st e e et e e e s s s sasnr e e eaeeesssaannbrrreeeaeeessannnnnnes 55
3.2.8. Defining the COMPONENt SCOPEcvvviiiiiiiiiiiieeeeeeeeeeeeeeee et e e e e e 56
3.2.9. Components With MUItIPIE FOIESoeeoiiiieeee e 56
3.2.10. BUIlt-IN COMPONENESceeieiiiiiie ettt e e e e e e e eeeaas 57

3.3. CoNnfiguIiNg COMPONENESveiiieeei ittt e e e e e et e e e e e e e e e et e e e e e e e s s st b barereeeeessannnsraneeeeens 57
3.3.1. Configuring components via property SEttingscoocveveeriiiiieeeiiiieee e 58
3.3.2. Configuring components via ComponentSXMIccooviiiiieiieeeeeiiiiiirree e e e 58
3.3.3. Fine-grained configuration fIllEScoouiiiiiiiiiie e 59
3.3.4. Configurable Property tYPES ..oeveviiiiiiiiiieeeeeeee ettt 60

R 1= ot o) o SRR 60
3.5, LIfECYCI@ MENOASoooiiiiiii e 63
G 1 ST T o] oo [SRR 63
3.7. The MULADIE INTEITACE .. .uviieiiiee e e e e e e e s eeeens 64
3.8. Factory and manager COMPONENTSoeveviviieiiieeeeeeeeee e e eeeeee e e e eeeeeeeeereeereeeeereeeeeeeeeeerereeeeeees 65
4. Events, inter ceptorsand exception handlingoooiiiiiiiiiiieie e 66
4.1, SEAIM BVENES ...eeeieiiiieee ettt ettt ettt ettt ettt ettt ettt e e ettt ettt et ettt et et ee et eeee et aeeeeeeaeeaeeeaaes 66
I = o[o o LSRR 66
4.1.1.1. PEQE PArAMELENSevveeeiieee i ittt e e e s st e e e e s s s snr e e e e e e e s e e e e e e e 67

4.1.1.2. Fine-grained files for definition of page actions and parameters 68

4.1.2. COMPONENE-AIVEN BVENESoiieeieeiiiiiiee et e st e et e et e e s e e e s anbe e e e s sneeeeeans 68
4.1.3. CoNEXTUAl BVENES ...t e e e e e e e e e e e s e e e e e e e e e e nneeees 69

4.2, SEAIM INTEICEPLONSeveieeeiteee e e ettt e ettt e ettt e e e sttt e e e e e e e esb e e e e e sabe e e e e asbe e e e e snnbeeeeennbneeeeans 70
I\ =T o [g To I (0T o) 71
5. Conversations and WOr KSpace ManageMENTc.occiiiieiiieeeeeiiiiirrer e e e e e s ssrrre e e e e e e s esanraeeeeeeas 73
5.1. Seam's CONVErsation MOUELouiiiiiiiieiiie e e s e e e e e e e e et reeeeeeaeeeans 73
5.2. NESLEA CONVEISALIONSuveeeieiiiiiie ettt e e sttt e e s ettt e e e st e e e st e e e ssbe e e e s sbaeeeeasnnaeeeeennteeeeeans 75
5.3. Starting conversations With GET FEQUESESccoiiuiiiiiiiiiiie et 75
5.4.USINg <SIHINK> ..o 76
5.5, SUCCESS MESSATESuevveeetiieeeiiaiittte et e e e e e s s s bbbttt eee et e aaab b b ee e et e e e e s s as bbb eeeeeeeeesaanbbbnneeaaaeeaanns 77

JBoss Seam 1.1.0.BETA

Seam - Contextual Components

5.6. Using an "expliCit" CONVErSation idcocouiiiiiiiiiiieeiiiiiie e 78
5.7. WOrKSpace ManaQEMENLcccuiieiieeeeeeeeiiittee et e e e e s s eeiattbaeeeeaeeesassatraeeeeaesssassntsraneeaaaeeaaans 78
5.7.1. Workspace management and JSF NaVIGationcceeveeriiireeennieeeeeiiieeeessineee e 78
5.7.2. Workspace management and jPDL pageflowcccooeeei 79
5.7.3. The cONVersation SWItCHErcoiiiiiiiiiiiiie e 79
5.7.4. The CONVEISaliON IStoiiieiiiiiiiii et e e e e e s e eeeeeeeens 80
5.7.5. BrEAOCIUMDSeviiiiiiiieie ettt e e st e e s s e e e e e e e nees 80

5.8. Seam-managed persistence contexts and atomic CONVErSationseeveveeeeeiiiciiiiieeeeeennnnns 81
5.9, SEEM @NA AJAX ittt e bt e e e e e e et e e e b et e e e s bt e e e e nnae e e e e nnrreeeeans 82
5.10. SEAM AN SOAP ...t e e aa e e e e a e raaae e e 82
6. Pageflows and DUSINESS PrOCESSEScccoeieie e 83
6.1. PaQEflOW 1N SEAIM ..ot e e st e e e e e e e e snbneeeean 83
6.1.1. Thetwo Navigation MOUEISooiiii et e e 83
6.1.2. Seam and the DaCK DULLONooiiiiiiiiiie e 85

6.2. USING JPDL PAGEFIOWSeeeieiiiiiie ettt e e e e e 86
6.2.1. INStalliNg PAGEFIOWS ...eeeeiieieiceee e 86
6.2.2. Starting PAgEfIOWSeeeiiiee e 87
6.2.3. Page nodes and transitionscccoooveiiiiiie e 87
6.2.4. ControlliNg thE FIOWceiie e 88
6.2.5. ENAING tNE TIOW ... e 88

6.3. BUSINESS Process Management iN SEAMccvuvviiiie e i e e e e e s s e e e e e e e e ans 89
6.4. Using JPDL business process defiNitioNScocveeeeiiiiiieeiiiii et 90
6.4.1. Installing process defiNitioNScoooiiiiiiiiiiiee e 90
6.4.2. INItIAliZING ACLON 1USvveiee et e e 90
6.4.3. Initiating abuSiNESS DIOCESSccooeeeeieieeee e, 90
6.4.4. TASK @SSIGNMENTuuviiiiieeeeieiiiteeree e e e s s et e e e e e s s s st b e e e e aeessasanraaereeaeeesaanssrneeeaens 91

O T IS Q) 1T (PR SPRRR 91
6.4.6. Performing @taskccoiiiiiiiiiiiiiie e 91

7. Internationalization and tNEMESceii it e e e e e e e s rraeeeeeas 93
0 T oo SR UPSR RS 93
7.2, LADEIS oo — e e e a e e e et r e e e e aara e e e e arraeaaaas 93
721 DefiNiNg IabElS ..o 93
7.2.2. DIisPlaying laDEISovvveiiiie e 9
7.2.3. FACES MESSAOESuevvreeeieeeesiaanrrreeeeae e s s s s e e e e e eessaa s n e e e et e e e s s s s s nnnnneeeaeessannnnrnneeeeas 95

4 T T 0= = PP OPPRRRTPRR 95
A I 0= RSOSSN 95
7.5. Persisting locale and theme preferences viaCookIiescooooeveeeeeii 96
8. ASynchroniCity and MESSAGINGcceuiuurreeiiiieieeiiiieee e et e e e s see e e s aab e e e e ssbe e e e s sabe e e e s asbeeeeaanbeeeeeans 97
8.1 ASYNCHIONICITY ..ceeeeeeee e 97
8.1.1. AsynchronOUS MELNOASc.uvviiiiiie e e e e e eeaeas 97
8.1.2. ASYNCNIONOUS BVENLSeeeiiiiiiieeiiitie e e ettt e e ettt e e et e et e e st e e e s annn e e e e eeeenees 99

8.2. MESSAQING 1N SEAIMuiiiiiiie e i ittt ie e e e e e ee e e et e e e s e e e e e e e e e e s s s ntraeeeeaeeessanntbraeeeaaaeeaans 99
8.2. 1. CONFIQUIBLIONeeie ettt e e et e s e e e e e e 99
8.2.2. SENUING MESSATES ..o e e e ee e 100
8.2.3. Receiving messages using a message-driven DEaNcoocveeeiiiiieneiiiiiee e 100
8.2.4. Receiving messageSiNthe Clientooo i 100

S = 0 o)1 o [ESERR 101
0.1, CONFIGUIBLION ..ottt ettt e e e e et e e e e et et e e e sb e e e e ansbe e e e e anrneeeeans 101
0.2. T "SEAM" OBJECLeiiiiiiiiee ettt e st e e e s bt e e e abbe e e e s snbaeeeeans 102
9.2.1. A HElIOWOrld @Xampleceiiiiiiiiie e 102
0.2.2. SEAM.COMPONENT ...eueiiei e eieeeeiii e e e e et e e e e e e r e e e e e e e e eet i a e e e e e e e eeennnaneeeeees 103
9.2.2.1. Seam.Component.NEWINSLANCE()veeeiiirrireiiiiiie et 103

JBoss Seam 1.1.0.BETA

Seam - Contextual Components

9.2.2.2. Seam.Component.getiNStaNCe()ccooovrreeriiiirieeiiiiree e 104

9.2.2.3. Seam.Component.getComponentName()ceeevvvciiireiieeeeesiiciieeee e e e e 105

9.2.3. SEAM.REMOTINGveeieiiiieie ettt e e e s e e s snre e e s snsneeeean 105
9.2.3.1. Seam.Remoting.Creat€TYPe() ...cceeeveeeeeeee e, 105

9.2.3.2. Seam.Remoting.getTYPENEME()vvveiiirrieeiiiiiie et e et 105

0.3, ClIENt INLEITACESeeeeieieiee ettt e e e e e et r e e e e e s e et eeeaaeeeeaannneneeeeaaeeaans 105
S I 0T T 0o 1= APPSR OPPRRPTTPPRRN 106
9.4.1. Setting and reading the ConVersation IDccceveiiiiiiiiiiiiiee e 106

O.5. BAICh REQUESES ...ttt e e e e e e s e et e e e e e e e s e et b rraeeeaaeeaaas 106
9.6. WOrKing With DaBTYPEScciuureieiiiiiie et e ettt e e s e e e e e e e nnbaeeeeans 106
9.6.1. PrimitiveS/ BaSIC TYPES ...coeeeeeeee e 106
TG0 0 S 11 o PP PPP R PPPPRRPPPPRR 106

0.6.1. 2. INUIMIDEY ..ttt ettt ettt e et e e bt e e e e snbe e e nnneeeas 107

9.6.1.3. BOOIEAN ... 107

0.6.2. JAVABEANSeeiiiiieiiie ettt b e be e enne e anes 107
0.6.3. DAES BN TIMESeeieiiiiiee it ettt e ettt e e e et e e e st e e e anee e e e e snnbeeeeeanseeeeeans 107
0.6.4. ENUIMS ... 107

S T 0 1 = o £ o TSR 108
0.6.5. 1. BagS .ooi i i, 108

0.6.5.2. IMADS ...ttt b e ne e anaee e 108

S 1= o o o o To [P PPRRRPR 108
0.8. The LOBOING IMESSAJEeeiiiiiiiiie ettt ettt e et e e e e e e s e e e e s anrne e e e 109
9.8.1. Changing thE MESSAGEcooiiiiiiiiee e e et e e e e s e eaneeees 109
9.8.2. Hiding the 10ading MESSAJEccoiuiiiieiiiie et 109
9.8.3. A Custom Loading INdiCatorcccooeveiiiiii i, 109

9.9. Controlling what dataiS FetUMNEcooiiiiiieiiee e 110
9.9.1. Constraining NOrMal fIElASccoiiiiiiiiiee e 110
9.9.2. Constraining Maps and COllECtiONSccvvviieiiie e 110
9.9.3. Constraining objects of aSPeCifiC Y Povvviiiiiiieiiieie e 111
9.9.4. CombiniNg CONSLIAINEScccuviiiiiiee e e e i e e e e e e e s s e e e e e e s e st barr e e e e e e e s s eaneeees 111

O.10. IMS IMESSAINGvteeeeeuuieeeeesuiieeeeaasteeeeeaite e e e e sabee e e e s sbb e e e e aasbe e e e s anbb e e e e asbae e e e ansbeeeesanbneeeean 111
9.10.1. CoNfIQUIAioNcceeeeee e, 111
9.10.2. SUbSCribiNG t0 @M S TOPIC ...vuvvieiiiiee e e e e e e e e nenes 112
9.10.3. Unsubscribing fromM @ TOPICccoouvrieeiiiiee ettt 112
9.10.4. Tuning the POlING PrOCESSuuviiiiie ittt e e e e 112

10. Seam and JBOSSRUIESc..ceiiiieiiie ettt e et e e e e e e e s s et a e e e aa e e e s annnsrreeeeaens 114
10.1. INSEAIIING FUIES ... nnnnnsnsnsnnnsnnnnnnnnnnns 114
10.2. Using rules from @ Seam COMPONENTueieiiiieieeiiiiieeeesiieeeesesiieee e s e e e sine e e e snraeeeeans 114
10.3. Using rules from ajBPM process definitioncc..ueeviiieiiiiiiiiiiiee e 115
11, JSF form validation iN SEAIMccueiiiiiiiiee e e e s e e s sebneeeean 117
12, CONFIQUITNG SBAIM ..ottt e e e e et e e e e et e e e st e e e e asa e e e s anbn e e e e anrneeeeans 121
12.1. Basic Seam CONFIQUIALIONeeeiiieeiiiiiiiiei e e e e e e e e e st re e e e e e e e e e nanenees 121
12.1.1. Integrating Seam with JSF and your serviet containercccceevieveeeniiieeeennne 121
12.1.2. Integrating Seam with your EJB CONLAINEXccccciiiiiuununnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 121
12.1.3. Enabling conversation propagation With redireCtsccccvvvveeiiiiieeeiiiieee e 122

12.2. Configuring Seam iN JAVAEE S ... 123
N I = o o 1 1o PRSP 123

12.3. Configuring Seam with the JBoss Embeddable EJB3 containerccccevvvivveeniineeennns 124
12.3.1. Installing the Embeddable EJB3 CONtAINEYcccuvviiieeieee e 124
12.3.2. Configuring a datasource with the Embeddable EJB3 containerccceeeenneee. 125

220G TS > = 11 o 125

12.4. Seam Managed traNSACHIONScoiuieiiiiiiie ettt e e s e e e snbaee e e 126

JBoss Seam 1.1.0.BETA

Seam - Contextual Components

12.4.1. Enabling Seam-managed tranSaCtionSoooiruirieriiiirreeniiieee s 127

12.4.2. Using a Seam-managed persistence CONtEXEcccvvveeeeieeeiiiiiiiieeeee e cccvveeee e 127

12.5. Configuring Seam with Hibernate in JaVaEE ..o 127
12.5.1. Boostrapping Hibernate in SEamcccccciiiiiiiiiiii e sennnnees 128

12.5.2. Using a Seam-managed Hibernate SESSIONcccuveveiiiiiieiiiiiiee e 128

e T = ot ¢ o 1 1o S 129

12.6. Configuring Seam with Hibernate in JaAVa SEccovvviiiiiiieeee e 129
12.6.1. Using Hibernate and the JBOSS MiCrOCONTAINEYcocveeiiiiieiiiiie e 130

A I = o o1 1o SRR 131

12.7. Configuring JBPM IN SEAIMcoiiiiiiiiiiiiie e 132
2 T o = 11 o 132

12.8. Configuring SEAM iN@POIaloooiiiiiiieiiie e 133

13. The Seam Application FrameWOI Keeiiiiieiiiiiiiii et e e e e e e e e e e eeeeeeeas 134
30 I g1 (T [F o1 o o I PP OPPRRPTPPRR 134
13.2. HOME ODJECES ...ttt ettt e e e e e s e e e s annn e e e e e anrneeeens 135

13.3. QUENY ODJECLSeuiiiiiiiiee et e e e e e e e et e e e e e e e e e et nbrr e e e e e e e e e e annerees 138

13.4. USING HIDEIMNALE FIITEISooiiiiiii et 139

14, SEAM ANNOLALIONSeiiiiiee ettt e e ettt e e e e e e s et e e e e e e e s aaneeeeeeeaeeeesa s nneeeeeeaaeeeeaannnsneeeeaens 141
14.1. Annotations for component definitionccoooiiiiiiiiie e 141

14.2. ANNOtationS fOr DIJECTIONviiiiiee e 142
14.3. Annotations for component lifecycle methodscccevveeiiiiiiiieee e, 145

14.4. Annotations for coNtext demMarCalioncoooicciiieiireee e e e e e e e 146

14.5. Annotations for transaction demarCationcoovceeeieiiiiieee i e e e seeee e 149

14.6. ANNOLaLiONS TOr EXCEPLIONSvvieiiiiiiee ettt e e e e e e e e 149

14.7. ANNOLALiONS FOr VAIIABLIONeeeiiieeiiieiiei e e e e e e e 150

14.8. Annotations for SEam REMOLINGoccviiieiiie e 150
14.9. ANNOtations fOr SEAM INTEICEPLOIScuvviieiiiieee et e e 151
14.10. Annotations for asyNChIroNICItYcccuvveiiieiiiiiieice e 151
14.11. Annotations for use with JSF dataTableccccviiiiiiie e 152
14.12. Meta-annotations for databindingcccoeeeviiiiiiiiii e 153

15. BUilt-iN SEAM COMPONENTSiiiiiiiiiiie ettt et e e s e e e e s abbe e e e s nnbneeaeans 154
15.1. Context injection COMPONENLScccciiiiiiiiiiearrnrararararanarnraranarnnnnnsnnnsnnnsnnnnnnnnnnns 154
15.2. ULility COMPONENES ...oeiieiiiiiieee et e e e e e e e e e e e e e e s st e e e e e e e e s ennnnnees 154
15.3. Components for internationalization and thEMESoooiiiiiiiiiie e 156
15.4. Components for controlling CONVErSatioNScccuvueieeeeei i i e e 157

15.5. JBPM-related COMPONENTScoiiiiiiieeeiiiiie ettt e e e e e e nnbneeeeans 158

15.6. Security-related COMPONENLSiiiiiiii e asnaanannsnsnnnnnnnnnnnnnnns 160
15.7. IMS-related COMPONENTSuveiieiiiiiee ettt e e e et e s st e e s s e e e e e nnbaeeeean 160

15.8. Infrastructural COMPONENLSciiieeeiiiieiiieieee e e e ettt e e e e e e e e et e e e e e e e e e sennreeeeeeaeeeeaannneees 160
15.9. SpeCial COMPONENLSccciieeiiiiieiee e e e s e ettt e e e e e e et e e e e e e s e st b e e eaeeesssasnbeaereeaeessananneees 162

16. SEAM JSF CONTI OIS .eeiiiiieeeiiieitiie it e e e e ettt e e e e e e e et e e e e e e e e sa et eeeaeeesasnsntaaeeeaaeessaannssrneeeeens 165
17. EXpression language ENNaNCEMENTSuuuiiiiie i e e e e e e e e et e e e e e e s ssnarreaeeeeas 167
17. 1. CONFIQUIBLTON ...ttt e et e et e e et e e e e abe e e e e anbbe e e e eanbneeeen 167

17,2, USSR .oeieiieiiie ettt ettt ettt e e e ettt e e e ettt e e e et e e e e e a e e e e e nbe e e e e e nae e e e e nnaeeeeeanraeeeaans 167
I T I T 011 7 (o) EREPR 167
17.3.1. Incompatibility With ISP 2.1oooiiiiii e 168

17.3.2. Cdling a MethodExpression from Javacodecccceeeveveeiiiiiiiiieeccee e, 168

18. Testing Seam aPPIICALIONSeiiiiiiiiieeiiti e e e e e s s e e e s e e e eans 169
18.1. Unit testing Seam COMPONENESccciicuiiieiieeee s e iiiiiire e e e e e e e esstarer e e e e e e e s s ssanbereeeeeeessananenens 169
18.2. Integration testing Seam apPliCaLIONScooiiiiiiiiiiiii e 170

RS S T T o0 RS 174
19.1. JBPM deSIGNEr N VIEWESeiiiiiiiiieeeiiie ettt e st e e e s b e e e e nnbaeeeean 174

JBoss Seam 1.1.0.BETA

Vi

Seam - Contextual Components

19.1.1. BUSINESS PrOCESS HESIGNENeiiiiiiiieeiitiee e e sttt e e ettt e e e st e e e st e e s s e e e s anne e e e nnes 174
19.1.2. PageflOW VIEWETcooiieiiiiiiieeee ettt e e e a e e e s e et rraeeeeaas 174

19.2. CRUD-8PPli CaLiON QENEIGLOTcoiuveeeeeiiiiiee ettt e sttt e et e et e st e e s s e e e e nnbeeeeeans 175
19.2.1. Creating a Hibernate configuration fileccocociiiiiiiiiiiiiii s 175
19.2.2. Creating a Hibernate Console Configurationcoooveeeiiniieeeennineee e 176
19.2.3. Reverse engineering and code generationcccuveierreeeeiiiciieiieeee e e eeeieeeeeeans 179
19.2.3.1. Code Generation LaunCherccooviiiiiiiiiiie e 179

19.2.3.2. EXPOITEIS ..ttt e e ettt e e et r e e e s s s e e e e e s e e e e e e 181

19.2.3.3. Generating and USINg the COOEc.ccvvveiiiiieiiicee e 183

JBoss Seam 1.1.0.BETA Vii

Introduction to JBoss Seam

Seam is an application framework for Java EE 5. It isinspired by the following principles:

Integrate JSF with EJB 3.0
JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new component model for
server side business and persistence logic. Meanwhile, JSF is a great component model for the presentation
tier. Unfortunately, neither component model is able to solve al problems in computing by itself. Indeed,
JSF and EJB3 work best used together. But the Java EE 5 specification provides no standard way to integ-
rate the two component models. Fortunately, the creators of both models foresaw this situation and
provided standard extension points to allow extension and integration of other solutions.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting the developer
think about the business problem.

Integrated AJAX-based Remoting
Seam provides a built-in JavaScript remoting layer for EJB3 components. AJAX clients can easily call
server-side components and subscribe to JM S topics, without the need for an intermediate action layer.

Integrate Business Process as a First Class Construct
Optionally, Seam integrates transparent business process management via jBPM. Y ou won't believe how
easy it isto implement complex workflows using jBPM and Seam.

Seam even alows definition of presentation tier conversation flow by the same means.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this model by expos-
ing jBPM's business process related events via exactly the same event handling mechanism, providing a
uniform event model for Seam's uniform component model.

One Kind of " Stuff"
Seam provides a uniform component model. A Seam component may be stateful, with the state associated
to any one of anumber of contexts, ranging from the long-running business process to a single web request.

There is no distinction between presentation tier components and business logic components in Seam. It is
possible to write Seam applications where "everything” is an EJB. This may come as a surprise if you are
used to thinking of EJBs as coarse-grained, heavyweight objects that are a pain in the backside to create!
However, EJB 3.0 completely changes the nature of EJB from the point of view of the developer. An EJB
isafine-grained object - nothing more complex than an annotated JavaBean. Seam even encourages you to
use session beans as JSF action listeners!

Unlike plain Java EE or J2EE components, Seam components may simultaneously access state associated
with the web request and state held in transactional resources (without the need to propagate web request
state manually via method parameters). You might object that the application layering imposed upon you
by the old J2EE platform was a Good Thing. Well, nothing stops you creating an equivalent layered archi-
tecture using Seam - the difference is that you get to architect your own application and decide what the
layers are and how they work together.

Declarative State Management
We are all used to the concept of declarative transaction management and J2EE declarative security from
EJB 2.x. EJB 3.0 even introduces declarative persistence context management. These are three examples of
a broader problem of managing state that is associated with a particular context, while ensuring that all
needed cleanup occurs when the context ends. Seam takes the concept of declarative state management

JBoss Seam 1.1.0.BETA Viii

I ntroduction to JBoss Seam

much further and applies it to application state. Traditionally, J2EE applications almost always implement
state management manually, by getting and setting servlet session and request attributes. This approach to
state management is the source of many bugs and memory leaks when applications fail to clean up session
attributes, or when session data associated with different workflows collides in a multi-window application.
Seam has the potential to almost entirely eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context model defined by
Seam. Seam extends the context model defined by the servlet spec—request, session, application—uwith
two new contexts—conversation and business process—that are more meaningful from the point of view of
the business logic.

Bijection
The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as well as in nu-
merous so-called "lighweight containers’. Most of these containers emphasize injection of components that
implement statel ess services. Even when injection of stateful componentsis supported (such asin JSF), it is
virtually useless for handling application state because the scope of the stateful component cannot be
defined with sufficient flexibility.

Bijection differsfrom loC in that it is dynamic, contextual, and bidirectional. Y ou can think of it asa mech-
anism for aliasing contextual variables (names in the various contexts bound to the current thread) to attrib-
utes of the component. Bijection allows auto-assembly of stateful components by the container. It even al-
lows a component to safely and easily manipulate the value of a context variable, just by assigning to an at-
tribute of the component.

Workspace Management
Optionally, Seam applications may take advantage of workspace management, allowing users to freely
switch between different conversations (workspaces) in a single browser window. Seam provides not only
correct multi-window operation, but also multi-window-like operation in a single window!

Annotated POJOs Everywhere
EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to provide information
to the container in a declarative form. Unfortunately, JSF is still heavily dependent on verbose XML con-
figuration files. Seam extends the annotations provided by EJB 3.0 with a set of annotations for declarative
state management and declarative context demarcation. Thislets you eliminate the noisy JSF managed bean
declarations and reduce the required XML to just that information which truly belongs in XML (the JSF
navigation rules).

Testahility asa Core Feature

Seam components, being POJOs, are by nature unit testable. But for complex applications, unit testing
alone is insufficient. Integration testing has traditionally been a messy and difficult task for Java web ap-
plications. Therefore, Seam provides for testability of Seam applications as a core feature of the frame-
work. You can easily write JUnit or TestNG tests that reproduce a whole interaction with a user, exercising
all components of the system apart from the view (the JSP or Facelets page). Y ou can run these tests dir-
ectly inside your IDE, where Seam will automatically deploy EJB components into the JBoss Embeddable
EJB3 container.

Get started now!
Seam works in any application server that supports EJB 3.0. You can even use Seam in a servlet container
like Tomcat, or in any J2EE application server, by leveraging the new JBoss Embeddable EJB3 container.

However, we realize that not everyone is ready to make the switch to EJB 3.0. So, in the interim, you can
use Seam as a framework for applications that use JSF for presentation, Hibernate (or plain JIDBC) for per-
sistence and JavaBeans for application logic. Then, when you're ready to make the switch to EJB 3.0, mi-
gration will be straightforward.

JBoss Seam 1.1.0.BETA iX

Introduction to JBoss Seam

Presentation Tier
Request Cantroller

Context Management

State Management

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex web application
in Java. Y ou won't believe how little code is required!

JBoss Seam 1.1.0.BETA

Chapter 1. Seam Tutorial

1.1. Try the examples

In this tutorial, we'll assume that you have downloaded JBoss AS 4.0.5 and installed the EJB 3.0 profile (using
the JBoss ASinstaller). Y ou should also have a copy of Seam downloaded and extracted to awork directory.

The directory structure of each example in Seam follows this pattern:

« Web pages, images and stylesheets may be found in exanpl es/ registration/ vi ew

* Resources such as deployment descriptors and data import scripts may be found in exanpl es/ regi stration/
resources

« Javasource code may be found in exanpl es/ registration/ src

e TheAnt build script isexanpl es/ regi stration/ bui | d. xri

1.1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOVE and $JAVA_HOME set correctly. Next, make
sure you set the location of your JBoss AS 4.0.5 installation in the bui | d. properti es filein the root folder of
your Seam installation. If you haven't already done so, start JBoss AS now by typing bi n/ run. sh or bin/
run. bat intheroot directory of your JBossinstallation.

Now, build and deploy the example by typing ant depl oy inthe exanpl es/ registration directory.

Try it out by accessing htt p: / /1 ocal host : 8080/ seam r egi strati on/ with your web browser.

1.1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $ANT_HOVE and $JAVA_HOME set correctly. Next, make
sure you set the location of your Tomcat 5.5 installation in the bui | d. properti es filein the root folder of your
Seam installation.

Now, build and deploy the example by typing ant depl oy. t ontat inthe exanpl es/ registration directory.
Finally, start Tomcat.

Try it out by accessing htt p: / /1 ocal host : 8080/ j boss- seam r egi strati on/ With your web browser.

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss Embeddable EJB3

container, a complete standalone EJB3 container environment.

1.1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the testsis to run
ant testexanpl e inside the exanpl es/ registration directory. It is also possible to run the testsinside your IDE
using the TestNG plugin.

JBoss Seam 1.1.0.BETA 1

http://localhost:8080/seam-registration/
http://localhost:8080/jboss-seam-registration/

Seam Tutorial

1.2. Your first Seam application: the registration example

The registration example is a fairly trivial application that lets a new user store his username, real name and
password in the database. The example isn't intended to show off al of the cool functionality of Seam.
However, it demonstrates the use of an EJB3 session bean as a JSF action listener, and basic configuration of
Seam.

WEe'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then submitting the
form. Thiswill save a user object in the database.

©) Register New User - Mozilla Firefox |:||§||X|

File Edit View Go Bookmarks Tools Help
@ - E:} - % @ |@ http://localhost:8080/seam-registration/register.seam V| ® Go |@.

| [Chapter 1. Seam Tutorial | [&] Register New User |[#380ss DVD Store

Username |gavin
Peal Name |Gavin King
Password |m'm1

1.2.1. Understanding the code

The example isimplemented with two JSP pages, one entity bean and one statel ess session bean.

JBoss Seam 1.1.0.BETA 2

Seam Tutorid

FF companents in 15P page J5F components in J5F page

register.jsp registered, jsp

update model values

@

Eritity Bean

®

risfehe i H e

User

@ ,

ik applicaten
raglEtec (]

Snateless Session Bean

RegisterAction

T k)

EntityManager

EJE A

Let'stake alook at the code, starting from the "bottom".

1.2.1.1. The entity bean: User. | ava

We need an EJB entity bean for user data. This class defines persistence and validation declaratively, via an-
notations. It also needs some extra annotations that define the class as a Seam component.

Example 1.1.
@ntity (1)
@\anme("user") (2)
@scope(SESSI ON) (3)
@abl e(nane="users") (4)
public class User inplenents Serializable
{

private static final |ong serial VersionU D = 1881413500711441951L;

private String usernane; (5)
private String password;

private String nane;

public User(String nane, String password, String usernane)

{
this. nane = nane;
thi s. password = passwor d;
t hi s. user nane = user nane;
}
public User() {} (6)
@Not Nul I @engt h(m n=5, nmax=15) (7)

public String getPassword()

JBoss Seam 1.1.0.BETA 3

Seam Tutorid

(1

(2)

(3)

(4)
(5)

(6)
(7

(8)

{

return passwor d;

}

public void setPassword(String password)

{

this. password = password;

}

@\ot Nul |
public String get Nane()

{

return nane,;

}

public void setNane(String nane)

{

thi s. nane = nane;

}

@d @botNull @ength(m n=5, nmax=15) (8)
public String getUsernane()
{

return usernane;

}

public void setUsernane(String usernane)

{

t hi s. user nane = user nane;

}

The EJB3 standard @nt i t y annotation indicates that the User classis an entity bean.

A Seam component needs a component name specified by the @ane annotation. This name must be
unique within the Seam application. When JSF asks Seam to resolve a context variable with a name that is
the same as a Seam component name, and the context variable is currently undefined (null), Seam will in-
stantiate that component, and bind the new instance to the context variable. In this case, Seam will instan-
tiate auser thefirst time JSF encounters avariable named user .

Whenever Seam instantiates a component, it binds the new instance to a context variable in the compon-
ent's default context. The default context is specified using the @cope annotation. The User bean is a ses-
sion scoped component.

The EJB standard @rabl e annotation indicates that the User classis mapped to the user s table.

name, passwor d and user nane are the persistent attributes of the entity bean. All of our persistent attrib-
utes define accessor methods. These are needed when this component is used by JSF in the render re-
sponse and update model values phases.

An empty constructor is both required by both the EJB specification and by Seam.

The @bt Nul I and @engt h annotations are part of the Hibernate Validator framework. Seam integrates
Hibernate Validator and lets you use it for data validation (even if you are not using Hibernate for persist-
ence).

The EJB standard @ d annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @wane and @cope annotations. These annotations
establish that this class is a Seam component.

WEe'll see below that the properties of our User class are bound to directly to JSF components and are popul ated
by JSF during the update model values phase. We don't need any tedious glue code to copy data back and forth
between the JSP pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't use this component
as a JSF action listener. For that we need a session bean.

JBoss Seam 1.1.0.BETA 4

Seam Tutorid

1.2.1.2. The stateless session bean class: Regi sterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead if you like).

We have exactly one JSF action in our application, and one session bean method attached to it. In this case,
we'll use a statel ess session bean, since all the state associated with our action is held by the User bean.

Thisisthe only redly interesting code in the exampl el

Example 1.2.

@t at el ess (1)
@ame("regi ster")
public class RegisterAction inplenents Register

{

(1)
(2)

(3)
(4
(5)

(6)
(7

@n (2)
private User user;

@er si st enceCont ext (3)
private EntityManager em

@ogger (4)
private Log | og;

public String register() (5)
{

Li st existing = emcreateQuery("sel ect usernane from User where usernane=: usernane")
. set Par anet er ("user nane", user.getUsernane())
.getResul tList();

i f (existing.size()==0)

{
em persi st (user);
| 0og.info("Registered new user #{user.usernane}"); (6)
return "/registered.jsp"; (7)
}
el se
{
FacesMessages. i nstance().add("User #{user.usernane} already exists"); (8)
return null;
}

The EJB standard @t at el ess annotation marks this class as statel ess session bean.

The @ n annotation marks an attribute of the bean as injected by Seam. In this case, the attribute is injec-
ted from a context variable named user (the instance variable name).

The EJB standard @per si st enceCont ext annotation is used to inject the EJB3 entity manager.

The Seam @ ogger annotation is used to inject the component's Log instance.

The action listener method uses the standard EJB3 Ent i t ymManager API to interact with the database, and
returns the JSF outcome. Note that, since this is a sesson bean, a transaction is automatically begun when
ther egi st er () method is called, and committed when it compl etes.

The Log API letsus easily display templated log messages.

JSF action listener methods return a string-valued outcome that determines what page will be displayed
next. A null outcome (or a void action listener method) redisplays the previous page. In plain JSF, it is
normal to always use a JSF navigation rule to determine the JSF view id from the outcome. For complex
application thisindirection is useful and a good practice. However, for very simple examples like this one,
Seam lets you use the JSF view id as the outcome, eliminating the requirement for a navigation rule. Note

JBoss Seam 1.1.0.BETA 5

Seam Tutorid

that when you use a view id as an outcome, Seam always performs a browser redirect.

(8) Seam provides a number of built-in components to help solve common problems. The FacesMessages
component makes it easy to display templated error or success messages. Built-in Seam components may
be obtained by injection, or by calling ani nst ance() method.

Note that we did not explicitly specify a @cope thistime. Each Seam component type has a default scope if not
explicitly specified. For stateless session beans, the default scope is the stateless context. Actually, all stateless
session beans belong in the statel ess context.

Our session bean action listener performs the business and persistence logic for our mini-application. In more
complex applications, we might need to layer the code and refactor persistence logic into a dedicated data ac-
cess component. That's perfectly trivial to do. But notice that Seam does not force you into any particular
strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with the web request
(the form values in the user object, for example), and state held in transactional resources (the Ent i t yManager
object). Thisis abreak from traditional J2EE architectures. Again, if you are more comfortable with the tradi-
tional J2EE layering, you can certainly implement that in a Seam application. But for many applications, it's
simply not very useful.

1.2.1.3. The session bean local interface: Regi ster.java

Naturally, our session bean needs alocal interface.

Example 1.3.

@.ocal
public interface Register

{
}

public String register();

That's the end of the Java code. Now onto the deployment descriptors.

1.2.1.4. The Seam component deployment descriptor: conponent s. xn

If you've used many Java frameworks before, you'll be used to having to declate all your component classes in
some kind of XML file that gradually grows more and more unmanageable as your project matures. You'll be
relieved to know that Seam does not require that application components be accompanied by XML. Most Seam
applications require avery small amount of XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some components
(particularly the components built in to Seam). Y ou have a couple of options here, but the most flexible option
is to provide this configuration in afile caled conponent s. xni , located in the wee- | NF directory. We'l use the
conmponent s. xn fileto tell Seam how to find our EJB componentsin JNDI:

Example 1.4.

<conponent s>

<conponent name="org.j boss.seamcore.init">
<l-- JNDI nane pattern for JBoss EJB 3.0 -->
<property nanme="j ndi Pattern">#{ej bNane}/| ocal </ property>

JBoss Seam 1.1.0.BETA 6

Seam Tutorid

</ conponent >

</ conponent s>

This code configures a property named jndiPattern of a built-in Seam component named
org.j boss.seamcore.init.

1.2.1.5. The web deployment description: web. xn

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web deployment
descriptor.

Example 1.5.

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="2.5"
xm ns="http://java. sun. conl xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://java. sun.com xm / ns/j avaee
http://java. sun. comf xm / ns/j avaee/ web- app_2_5. xsd" >

<l-- Seam -->

<li stener>
<l istener-class>org.jboss. seam servl et. SeanlLi stener</|i stener-cl ass>
</listener>

<!-- MyFaces -->

<listener>
<l i stener-class>
or g. apache. nyf aces. webapp. St art upSer vl et Cont ext Li st ener
</listener-class>
</listener>

<cont ext - par anr
<par am nane>j avax. f aces. STATE_SAVI NG_METHOD</ par am name>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an>

<servl et>
<servl et - nane>Faces Servl et </servl et - nane>
<servl et -cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>
<l oad- on- st art up>1</1| oad- on- st art up>

</servl et>

<I-- Faces Servlet Mpping -->
<servl et - mappi ng>
<servl et - name>Faces Servl et </servl et - name>
<url - pattern>*. seanx/url - pattern>
</ servl et - mappi ng>

</ web- app>

Thisweb. xm file configures Seam and MyFaces. The configuration you see here is pretty much identical in all
Seam applications.

1.2.1.6. The JSF configration: faces-confi g. xm

All Seam applications use JSF views as the presentation layer. So we'll need f aces- confi g. xm .

JBoss Seam 1.1.0.BETA 7

Seam Tutorid

Example 1.6.

<?xm version="1.0" encodi ng="UTF-8""?>

<! DOCTYPE f aces-config

PUBLIC "-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.0//EN'
"http://java. sun. com dt d/ web-facesconfig_1 0.dtd">

<f aces-config>

<I-- A phase listener is needed by all Seam applications -->

<lifecycl e>
<phase-|i stener>org.jboss. seam j sf. SeanPhaseli st ener </ phase-| i st ener>
</lifecycl e>

</ faces-config>

Thefaces-config. xnl file integrates Seam into JSF. Note that we don't need any JSF managed bean declara-
tions! The managed beans are the Seam components. In Seam applications, the faces-config. xn is used
much less often than in plain JSF.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you add new func-
tionality to a Seam application is the navigation rules, and possibly |BPM process definitions. Seam takes the
view that process flow and configuration data are the only things that truly belong in XML.

In this ssmple example, we don't even need a navigation rule, since we decided to embed the view id in our ac-
tion code.

1.2.1.7. The EJB deployment descriptor: ej b-j ar. xn

Theej b-jar. xm fileintegrates Seam with EJB3, by attaching the Seam nt er cept or to all session beansin the
archive.

<ej b-jar xm ns="http://java.sun.conl xm /ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://java. sun.com xm / ns/javaee http://java. sun. conf xm / ns/j avaee/ ej b- |
version="3.0">

<i nterceptors>
<i nterceptor>
<i nterceptor-cl ass>org.jboss. seam ej b. Seanl nt ercept or</i nterceptor-cl ass>
</interceptor>
</interceptors>

<assenbl y-descri ptor>
<i nt er cept or - bi ndi ng>
<ej b- name>*</ ej b- name>
<i nterceptor-class>org.jboss. seam ej b. Seanl nt erceptor</interceptor-class>
</interceptor-bindi ng>
</ assenbl y- descri pt or >

</ejb-jar>

1.2.1.8. The EJB persistence deployment descriptor: persi st ence. xni

The persi stence. xni file tells the EIJB persistence provider where to find the datasource, and contains some
vendor-specific settings. In this case, enables automatic schema export at startup time.

<persi st ence>
<persi stence-unit name="user Dat abase" >
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ pr ovi der >

JBoss Seam 1.1.0.BETA 8

Seam Tutorid

<j ta-dat a-source>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<properties>
<property nane="hi ber nat e. hbnRddl| . aut 0" val ue="cr eat e-drop"/ >
</ properties>
</ persi stence-unit>
</ per si st ence>

1.2.1.9. The view: regi ster.jsp and regi stered. j sp

The view pages for a Seam application could be implemented using any technology that supports JSF. In this
example we use JSP, since it is familiar to most developers and since we have minimal requirements here any-
way. (But if you take our advice, you'll use Facelets for your own applications.)

Example 1.7.

<v@taglib ur
<Yy@taglib ur
<v@taglib ur
<htm >
<head>
<title>Regi ster New User</title>
</ head>
<body>
<f:view
<h: f or m»>
<t abl e border="0">
<s:validateAll >
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user.usernane}"/></td>
</tr>
<tr>
<t d>Real Nane</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h: i nput Secret val ue="#{user. password}"/></td>
</tr>
</s:validateAl l>
</t abl e>
<h: messages/ >
<h: commandButton type="subnit" val ue="Regi ster" action="#{register.register}"/>
</ h: form
</f:view
</ body>
</htm >

"http://java.sun.conljsf/htm" prefix="h" %
"http://java.sun.conmljsf/core" prefix="f" %
"http://jboss. com products/seamtaglib" prefix="s" %

The only thing here that is specific to Seam isthe <s: val i dat eAl | > tag. This JSF component tells JSF to valid-
ate all the contained input fields against the Hibernate Validator annotations specified on the entity bean.

Example 1.8.

<v@taglib ur
<Yy@taglib ur
<htm >
<head>
<title>Successfully Regi stered New User</title>
</ head>
<body>
<f:view

"http://java.sun.conljsf/htm" prefix="h" %
"http://java.sun.conml jsf/core" prefix="f" %

JBoss Seam 1.1.0.BETA 9

Seam Tutorid

Wl come, <h:out put Text val ue="#{user.nane}"/>,
you are successfully registered as <h:out put Text val ue="#{user.usernane}"/>.
</f:view
</ body>
</htm >

Thisis aboring old JSP pages using standard JSF components. There is nothing specific to Seam here.

1.2.1.10. The EAR deployment descriptor: appl i cati on. xm

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Example 1.9.

<appl i cati on>
<di spl ay- nane>Seanx/ di spl ay- name>

<nmodul e>
<web>
<web- uri >j boss- seam regi stration. war </ web-uri >
<cont ext -r oot >/ seam r egi strati on</ cont ext - r oot >
</ web>
</ modul e>
<modul e>
<ej b>j boss-seam regi stration.jar</ejb>
</ modul e>
<nmodul e>
<j ava>j boss-seam j ar </ j ava>
</ modul e>

</ appl i cati on>

This deployment descriptor links modules in the enterprise archive and binds the web application to the context
root / seamregi stration.

We've now seen all the filesin the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is no value already
bound to that name (in any Seam context), Seam instantiates the user component, and returns the resulting
User entity bean instance to JSF after storing it in the Seam session context.

The form input values are now validated against the Hibernate Validator constraints specified on the User en-
tity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the form input values to prop-
erties of the User entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er . Seam finds the Regi st er Act i on Stateless session
bean in the statel ess context and returnsit. JSF invokesther egi st er () action listener method.

Seam intercepts the method call and injects the user entity from the Seam session context, before continuing
the invocation.

The regi ster () method checks if a user with the entered username already exists. If so, an error message is
queued with the FacesMessages component, and a null outcome is returned, causing a page redisplay. The

JBoss Seam 1.1.0.BETA 10

Seam Tutorial

FacesMessages component interpolates the JSF expression embedded in the message string and adds a JSF
FacesMessage to the view.

If no user with that username exists, the "/ regi st ered. j sp" outcome triggers a browser redirect to the re-
gi stered. j sp page. When JSF comes to render the page, it asks Seam to resolve the variable named user and
uses property values of the returned User entity from Seam'’s session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that Seam
provides special functionality on top of JSF to make it easier to query data using EJB-QL or HQL and display it
asaclickablelist using a JSF <h: dat aTabl e>. The messages example demonstrates this functionality.

©) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

G- -5 &) [nttp:/flocalhost:8080 ¥ | © Go [[CL

B3 Latest Headlines €3 The World Clock B XE Currency Converter ' Hibernate JIRA
|| Chapter 1. Seam Tutoral | LI Messages \

Message List

Read Title Date/Time

Greetings Earthling Feb 4, 2006 9:40 AM
Hello World Jan 2, 2006 7-00 AM

Greetings Earthling

This is another example of a message.

1.3.1. Understanding the code
The message list example has one entity bean, Message, one session bean, MessagelLi st Bean and one JSP.

1.3.1.1. The entity bean: Message. j ava

The Message entity defines the title, text, date and time of a message, and a flag indicating whether the message
has been read:

JBoss Seam 1.1.0.BETA 11

Seam Tutorid

Example 1.10.

@ntity
@Nane(" nessage")
@scope(EVENT)
public class Message inplenments Serializable
{
private Long id;
private String title;
private String text;
private bool ean read;
private Date datetineg;

@d @zener at edVal ue

public Long getld() {
return id;

}

public void setld(Long id) {
this.id =id;
}

@Not Nul | @engt h(max=100)

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title =title;
}

@ot Nul | @.ob
public String getText() {
return text;

}
public void setText(String text) {
this.text = text;

}

@\ot Nul |
publ i c bool ean isRead() {
return read,

}

public void set Read(bool ean read) ({
this.read = read;

}

@\ot Nul |
@Basi ¢ @enpor al (Tenpor al Type. TI MESTAMP)
public Date getDatetine() {
return datetine;
}

public void setDatetime(Date datetinme) {
this.datetine = datetine;

}

1.3.1.2. The stateful session bean: MessageManager Bean. j ava

Just like in the previous example, we have a session bean, MessageManager Bean, Which defines the action
listener methods for the two buttons on our form. One of the buttons selects a message from the list, and dis-
plays that message. The other button deletes a message. So far, thisis not so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we navigate to the
message list page. There are various ways the user could navigate to the page, and not all of them are preceded

JBoss Seam 1.1.0.BETA 12

Seam Tutorid

by a JSF action—the user might have bookmarked the page, for example. So the job of fetching the message
list takes place in a Seam factory method, instead of in an action listener method.

We want to cache the list of messages in memory between server reguests, so we will make this a stateful ses-
sion bean.

Example 1.11.

@t at ef ul

@cope(SESSI ON)

@Nane(" nessageManager ")

public class MessageManager Bean i npl enents Seri al i zabl e, MessageManager

{

@at aMbdel (1)
private List<Message> nessageli st;

@pat aModel Sel ecti on (2)
@ut (requi red=fal se) (3)

private Message message;

@Per si st enceCont ext (t ype=EXTENDED) (4)
private EntityManager em

@-act ory("nessageLi st") (5)
public void findMessages()

{

nmessagelLi st = emcreateQuery("from Message nsg order by nsg.dateti ne desc").getResultlList();

}
public void select() (6)
{
nessage. set Read(true);
}
public void del ete() (7)
{
nmessageli st. renmove(message) ;
em r enpve(nessage) ;
message=nul | ;
}
@enpbve @estroy (8)

public void destroy() {}

(1) The @at aMbdel annotation exposes an attibute of typej ava. util . Li st to the JSF page as an instance of
j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF <h: dat aTabl e> with clickable
links for each row. In this case, the bat ambdel IS made available in a session context variable named nes-
sagelLi st .

(2) The @at avbdel Sel ection annotation tells Seam to inject the Li st element that corresponded to the
clicked link.

(3) The @ut annotation then exposes the selected value directly to the page. So ever time a row of the click-
able list is selected, the Message isinjected to the attribute of the stateful bean, and the subsequently out-
jected to the event context variable named nessage.

(4) This stateful bean has an EJB3 extended persistence context. The messages retrieved in the query remain
in the managed state as long as the bean exists, so any subsequent method calls to the stateful bean can
update them without needing to make any explicit call to the Ent i t yManager .

(5) The first time we navigate to the JSP page, there will be no value in the messageLi st context variable.
The @act ory annotation tells Seam to create an instance of MessageManager Bean and invoke the f i nd-
Messages() method toinitialize the value. We call fi ndvessages() afactory method for messages.

JBoss Seam 1.1.0.BETA 13

Seam Tutorid

(6) Theselect() action listener method marks the selected Message asread, and updates it in the database.

(7) Thedel et e() action listener method removes the selected Message from the database.

(8) All stateful session bean Seam components must have a method marked @enove @est r oy to ensure that
Seam will remove the stateful bean when the Seam context ends, and clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session, and al requests
from alogin session share the same instance of the component. (In Seam applications, we usually use session-
scoped components sparingly.)

1.3.1.3. The session bean local interface: MessageManager . j ava
All session beans have abusiness interface, of course.

@.ocal
public interface MessageManager
{
public void findMessages();
public void select();
public void delete();
public void destroy();

From now on, we won't show local interfacesin our code examples.

Let's Skip OVEr conponent s. xnl , persi stence. xm , web. xm , ej b-jar. xm , faces-config.xn and appl i ca-
tion. xm sincethey are much the same as the previous example, and go straight to the JSP.

1.3.1.4. The view: nessages. j sp

The JSP page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing specific to Seam.

Example 1.12.

<Y@taglib ur
<y@taglib uri
<htm >
<head>
<title>Messages</title>
</ head>
<body>
<f:vi ew>
<h: f or m>
<h2>Message Li st</h2>
<h: out put Text val ue="No nessages to display" rendered="#{nessageli st.rowCount==0}"/>
<h: dat aTabl e var="nsg" val ue="#{nessagelLi st}" rendered="#{messageli st.rowCount >0}">
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Read"/>
</f:facet>
<h: sel ect Bool eanCheckbox val ue="#{nsg. read}" di sabled="true"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text value="Title"/>
</f:facet>
<h: conmandLi nk val ue="#{nsg.title}" action="#{nmessageManager.select}"/>
</ h: col um>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Date/ Ti me"/>
</f:facet>

"http://java.sun.conljsf/htm" prefix="h" %
"http://java.sun.conm jsf/core" prefix="f" %

JBoss Seam 1.1.0.BETA 14

Seam Tutorid

<h: out put Text val ue="#{nsg. dateti ne}">
<f:convertDateTi me type="both" dateStyle="medi unt' timeStyl e="short"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<h: conmandBut t on val ue="Del ete" acti on="#{ messageManager . del ete}"/>
</ h: col utm>
</ h: dat aTabl e>
<h3><h: out put Text val ue="#{nmessage.title}"/></h3>
<di v><h: out put Text val ue="#{nmessage. text}"/></div>
</ h: fornm
</f:view
</ body>
</htm >

1.3.2. How it works

The first time we navigate to the nessages. j sp page, whether by a JSF postback (faces request) or a direct
browser GET request (non-faces request), the page will try to resolve the nessageLi st context variable. Since
this context variable is not initialized, Seam will call the factory method fi ndMessages(), which performs a
query against the database and results in a Dat aMbdel being outjected. This Dat ambdel provides the row data
needed for rendering the <h: dat aTabl e>.

When the user clicks the <h: commandLi nk>, JSF callsthe sel ect () action listener. Seam intercepts this call and
injects the selected row data into the nessage attribute of the nessageManager component. The action listener
fires, marking the selected Message as read. At the end of the call, Seam outjects the selected Message to the
context variable named nessage. Next, the EJB container commits the transaction, and the change to the nes-
sage is flushed to the database. Finally, the page is re-rendered, redisplaying the message list, and displaying
the selected message below it.

If the user clicks the <h: commandBut t on>, JSF calls the del et e() action listener. Seam intercepts this call and
injects the selected row data into the nessage attribute of the messageLi st component. The action listener fires,
removing the selected Message from thelist, and also calling r enove() ontheEenti t yManager . At the end of the
call, Seam refreshes the messageLi st context variable and clears the context variable named nessage. The EJB
container commits the transaction, and deletes the Message from the database. Finally, the page is re-rendered,

redisplaying the message list.

1.4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste of how
JBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing lists of tasks is
such core functionality for jBPM, thereis hardly any Java code at al in this example.

JBoss Seam 1.1.0.BETA 15

Seam Tutorial

©) Todo List - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<&~ - &) @) [ntip:/fiocahost:8080/seam-todo/todo.seam v| @ 6o G

|[] Chapter 1. Seam Tutoral [Todo List |[#3Boss DVD Store

Todo List

Description Created Priority Due Date
|Bookﬂightto Isreal |Ja.n. 13, 2006 |
Getthe stupid Seam release finished! Jan13.20065 | [1/17/06

Haircut Jan13,20063 | |

|Review Hibernate in Action second edition |Jan 13, 2006

|
|Kick Roy out of my office |Ja.n 13, 2006 |
|Blog aboutworkspace management |Jan 13, 2006 |

Update ltems

| |[Create New ltem]

1.4.1. Understanding the code
The center of this example is the jBPM pracess definition. There are also two JSPs and two trivia JavaBeans

(There was no reason to use session beans, since they do not access the database, or have any other transaction-
a behavior). Let's start with the process definition:

Example 1.13.

<process-definition nane="t odo" >

<start-state name="start"> (1)
<transition to="todo"/>
</start-state>

<t ask- node nane="t odo"> (2)

<task name="todo" description="#{todolList.description}"> (3)

<assignment actor-id="#{actor.id}"/> (4)
</task>

<transition to="done"/>
</t ask- node>

<end- st at e nanme="done"/> (5)

</ process-definition>

(1) The<start-state> node represents the logical start of the process. When the process starts, it immedi-
ately transitionsto thet odo node.

(2) The <t ask- node> node represents a wait state, where business process execution pauses, waiting for one
or more tasks to be performed.

(3) The<task> element defines a task to be performed by a user. Since there is only one task defined on this
node, when it is complete, execution resumes, and we transition to the end state. The task gets its descrip-

JBoss Seam 1.1.0.BETA 16

Seam Tutorid

tion from a Seam component named t odoLi st (one of the JavaBeans).

(4) Tasks need to be assigned to a user or group of users when they are created. In this case, the task is as-
signed to the current user, which we get from a built-in Seam component named act or . Any Seam com-
ponent may be used to perform task assignment.

(5) The<end- st at e> node defines the logical end of the business process. When execution reaches this node,
the process instance is destroyed.

If we view this process definition using the process definition editor provided by JBossl DE, thisis what it |ooks
like:

« <<olart State=>
start

W <= [ask Node==
i todo

<=fnd State==
]
done

This document defines our business process as a graph of nodes. This is the most trivial possible business pro-
cess. there is one task to be performed, and when that task is complete, the business process ends.

The first JavaBean handles the login screen | ogi n. j sp. Itsjob isjust to initialize the [BPM actor id using the
act or component. (In area application, it would also need to authenticate the user.)

Example 1.14.
@Name("1 ogi n")
public class Login {

@n(create=true)
private Actor actor;

private String user;
public String getUser() {

return user;

public void setUser(String user) {
this.user = user;
}

JBoss Seam 1.1.0.BETA 17

Seam Tutorid

public String Iogin()
{
actor.setld(user);
return "/todo.jsp";

Here we see the use of @ n(cr eat e=t r ue) , which tells Seam to create an instance of a component, in this case
the component named act or , if none currently exists in the context.

The JSP itself istrivia:

Example 1.15.

<Y@taglib uri="http://java.sun.conljsf/htm" prefix="h"%
<v@taglib uri="http://java.sun.conljsf/core" prefix="f"%
<htm >
<head>
<title>Login</title>
</ head>
<body>
<h1l>Logi n</ hl>
<f:view>
<h: f or m»
<di v>
<h: i nput Text val ue="#{l ogi n. user}"/>
<h: commandBut t on val ue="Logi n" action="#{l ogi n.login}"/>
</ di v>
</ h: fornme
</f:view
</ body>
</htm >

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.16.
@ame("t odoLi st")
public class TodoList {
private String description

public String getDescription() (1)
{

}

return description;

public void setDescription(String description) {
this.description = description
}

@Cr eat eProcess(definition="todo") (2)
public void createTodo() {}

@t art Task @ndTask (3)
public void done() {}

(1) The description property accepts user input form the JSP page, and exposes it to the process definition, al-

JBoss Seam 1.1.0.BETA 18

Seam Tutorid

lowing the task description to be set.

(2) The Seam @r eat ePr ocess annotation creates a new jBPM process instance for the named process defini-
tion.

(3) The Seam @t ar t Task annotation starts work on atask. The @ndTask ends the task, and alows the busi-
NESS process execution to resume.

In amore realistic example, @t art Task and @ndTask would not appear on the same method, because there is
usually work to be done using the application in order to compl ete the task.

Finally, the meat of the applicationisint odo. j sp:

Example 1.17.

<Y@taglib uri="http://java.sun.conmjsf/htm" prefix="h" %
<U@taglib uri="http://java.sun.conljsf/core" prefix="f" %

<Yy@taglib uri="http://jboss.con products/seamtaglib" prefix="s" %
<htm >
<head>
<title>Todo List</title>
</ head>
<body>
<h1>Todo Li st</h1l>
<f:view
<h:formid="Ilist">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty tasklnstancelList}"/>
<h: dat aTabl e val ue="#{t askl nstanceList}" var="task" rendered="#{not enpty tasklnstanceList}":
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Descri ption"/>
</f:facet>
<h:input Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{t ask.taskMynt | nst ance. processl nstance. start}">
<f:convertDat eTi ne type="date"/>
</ h: out put Text >
</ h: col utm>
<h: col um>
<f:facet nanme="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text value="#{task.priority}" style="wi dth: 30"/>
</ h: col um>
<h: col um>
<f:.facet nanme="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task.dueDate}" style="wi dth: 100">
<f:convertDateTi ne type="date" dateStyl e="short"/>
</ h: i nput Text >
</ h: col utm>
<h: col utm>
<s:link val ue="Done" action="#{todoLi st.done}" tasklnstance="#{task}" |inkStyle="butt«
</ h: col utm>
</ h: dat aTabl e>
</ di v>
<di v>
<h: messages/ >
</ di v>
<di v>
<h: conmmandBut t on val ue="Update Itens" action="update"/>
</ di v>

JBoss Seam 1.1.0.BETA 19

Seam Tutorid

</ h: fornm
<h: form i d="new'>
<di v>
<h:i nput Text val ue="#{t odoLi st.description}"/>
<h: conmandBut t on val ue="Create New | tent action="#{todoLi st.createTodo}"/>
</ di v>
</ h: form
</f:view
</ body>
</htm >

Let'stake thisone piece at atime.

The page renders a list of tasks, which it gets from a built-in Seam component named t askl nst ancelLi st. The
list is defined inside a JSF form.

<h:formid="Ilist">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty tasklnstancelList}"/>
<h: dat aTabl e val ue="#{t askl nstanceList}" var="task" rendered="#{not enpty tasklnstancelList}">

</ h: dat aTabl e>
</ di v>
</ h:fornp

Each element of thelist is an instance of the jBPM class TaskI nst ance. The following code simply displays the
interesting properties of each task in the list. For the description, priority and due date, we use input controls, to
allow the user to update these values.

<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Description"/>
</f:facet>
<h:i nput Text val ue="#{task.description}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{task.taskMnt | nstance. processl nstance. start}">
<f:convertDateTi ne type="date"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text val ue="#{task.priority}" style="w dth: 30"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task.dueDate}" style="w dth: 100">
<f:convertDat eTi ne type="date" dateStyl e="short"/>
</ h:i nput Text >
</ h: col utm>

This button ends the task by calling the action method annotated @t art Task @ndTask. It passes the task id to
Seam as arequest parameter:

<h: col um>
<s:link val ue="Done" action="#{todoLi st.done}" tasklnstance="#{task}" |inkStyle="button"/>
</ h: col utm>

JBoss Seam 1.1.0.BETA 20

Seam Tutorid

(Note that thisisusing a Seam <s: | i nk> JSF control from the seam ui . j ar package.)

This button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM will
make any changes to the tasks persistent. There is no need for any action listener method:

<h: conmandBut t on val ue="Update Itens" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated
@@r eat ePr ocess.

<h: form i d="new'>
<di v>
<h:i nput Text val ue="#{t odoLi st. description}"/>
<h: conmandBut t on val ue="Create New | tent action="#{todolLi st.createTodo}"/>
</ di v>
</ h: form

There are severa other files needed for the example, but they are just standard jBPM and Seam configuration
and not very interesting.

1.4.2. How it works

TODO

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF navigation rules are a perfectly good
way to define the page flow. For applications with a more constrained style of navigation, especially for user
interfaces which are more stateful, navigation rules make it difficult to really understand the flow of the system.
To understand the flow, you need to piece it together from the view pages, the actions and the navigation rules.

Seam alows you to use a jPDL process definition to define pageflow. The simple number guessing example
shows how thisis done.

©) Guess a number... - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

Qﬂ - IZ> - @ @ |@ http://localhost: 8080/seam-numberguess/numberGuess.seam?conversationId=1 V| @ co ||Qv

| [Chapter 1. Seam Tutoril |[#] Guess a number... }

Guess a number...

Lower!
I'm thinking of a number between 1 and 49. You have 9 guesses.
Your guess: 50 |[Guess |

1.5.1. Understanding the code

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow definition. Let's begin

JBoss Seam 1.1.0.BETA 21

Seam Tutorid

with the pageflow:

Example 1.18.

<pagef | ow defi niti on name="nunber Guess" >

<start-page nanme="di spl ayGuess" vi ewid="/nunber Guess. jsp">
<redirect/>
<transition name="guess" to="eval uat eGuess">
<action expression="#{nunber Guess. guess}" />

</transition> (1)
</start - page> (2)
(3)

<deci si on nane="eval uat eGuess" expressi on="#{nunber Guess. correct GQuess}">
<transition name="true" to="win"/>
<transition nane="fal se" to="eval uat eRenai ni ngGuesses"/ >

</ deci si on> (4)

<deci si on nane="eval uat eRenmai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}">
<transition name="true" to="|ose"/>
<transition name="fal se" to="displayGuess"/>

</ deci si on>

<page name="wi n" viewid="/w n.jsp">
<redirect/>
<end-conversation />

</ page>

<page nane="| ose" viewid="/|ose.jsp">
<redirect/>
<end- conversation />

</ page>

</ pagef | ow definition>

(1) The <page> element defines a wait state where the system displays a particular JSF view and waits for
user input. The vi ew i d isthe same JSF view id used in plain JSF navigation rules. Ther edi rect attrib-
ute tells Seam to use post-then-redirect when navigating to the page. (This results in friendly browser
URLS)

(2) The<transition>element names a JSF outcome. The transition is triggered when a JSF action resultsin
that outcome. Execution will then proceed to the next node of the pageflow graph, after invocation of any
jBPM transition actions.

(3) A transition <acti on> isjust like a JSF action, except that it occurs when a jBPM transition occurs. The
transition action can invoke any Seam component.

(4) A <deci si on> node branches the pageflow, and determines the next node to execute by evaluating a JSF
EL expression.

Here iswhat the pageflow looks like in the JBossI DE pageflow editor:

JBoss Seam 1.1.0.BETA 22

Seam Tutorid

<< Start State>>
start

= {:{:Page:}:}
~ displayGuess

guess false
o ==Decision=> false 2 ==Decision=>
il . o
evaluateGuess evaluateRemainingGuesses
true true
ﬁ%{xpagga} ﬁ%{ﬁpageﬁ}
win ~ lose

Now that we have seen the pageflow, it isvery, very easy to understand the rest of the application!

Here is the main page of the application, nunber Guess. j sp:

Example 1.19.

<y@taglib uri="http://java.sun.confjsf/htm" prefix="h"%
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f"%

<htm >
<head>
<title>Guess a nunber...</title>
</ head>
<body>
<hl>CGuess a nunber...</hl>
<f:view>
<h: f or m»
<h: out put Text val ue="Hi gher!" rendered="#{ nunber Guess. randonmNunber >nunber Guess. current Guess}"
<h: out put Text val ue="Lower!" rendered="#{nunber Guess. randomNunber <nunber Guess. current Guess}" |

I"'mthinking of a nunber between <h:out put Text val ue="#{nunber Guess.snallest}" /> and
<h: out put Text val ue="#{nunber Guess. bi ggest}" />. You have
<h: out put Text val ue="#{nunber Guess. r enai ni ngGuesses}" /> guesses.

Your guess:
<h:i nput Text val ue="#{nunber Guess. current Guess}" id="guess" required="true">
<f:val i dat eLongRange
maxi mun¥" #{ nunber Guess. bi ggest } "
m ni mun¥"#{ nunber Guess. snmal l est}"/>
</ h:i nput Text >
<h: commandButt on type="subnit" val ue="Quess" acti on="guess" />

<h: nessage for="guess" style="color: red"/>
</ h: fornm
</f:view
</ body>
</htm >

JBoss Seam 1.1.0.BETA 23

Seam Tutorid

Notice how the command button names the guess transition instead of calling an action directly.

Thewi n. j sp pageis predictable:

Example 1.20.

<y@taglib ur

<Yy@taglib ur

<htm >

<head>

<title>You won!</title>

</ head>

<body>

<h1>You won! </ h1>

<f:view
Yes, the answer was <h:out put Text val ue="#{nunber Guess. current Guess}" />.
It took you <h:output Text val ue="#{nunber Guess. guessCount}" /> guesses.
Wul d you like to pl ay agai n</ a>?

</f:view
</ body>
</htm >

"http://java.sun.conljsf/htm" prefix="h"%
"http://java.sun.com jsf/core" prefix="f"%

Asislose. j sp (which | can't be bothered copy/pasting). Finally, the JavaBean Seam component:

Example 1.21.

@Nanme(" nunmber Guess")
@cope(ScopeType. CONVERSATI ON)
public class Nunmber Guess {

private int randomNunber;
private |nteger currentCQuess;
private int biggest;

private int snallest;

private int guessCount;
private int maxQuesses;

@r eat e (1)
@egi n(pagef | ow="nunber Guess") (2)
public void begin()

{

randomNunber = new Randon{). next | nt (100);
guessCount = O;

bi ggest = 100;

smal | est = 1;

}
public void setCurrent Guess(| nteger guess)
{ this.current Guess = guess;
}
public Integer getCurrentGuess()
{ return current Guess
}
public void guess()
{ i f (currentGuess>randonmNunber)
i bi ggest = current Guess - 1;

i f (currentGuess<randomNunber)

JBoss Seam 1.1.0.BETA

Seam Tutorid

{
smal | est = current Guess + 1;
}
guessCount ++;
}
publ i c bool ean isCorrect Guess()
{
return current GQuess==r andom\unber ;
}
public int getBiggest()
{
return biggest;
}
public int getSmallest()
{
return small est;
}
public int get@essCount ()
{
return guessCount;
}
publ i c bool ean i sLast Guess()
{
return guessCount ==maxCuesses;
}

public int getRemai ni ngGuesses() {
return maxGuesses- guessCount;
}

public void set MaxGuesses(int nmaxCQuesses) {
t hi s. maxGuesses = maxQuesses;

}

public int get MaxQuesses() {
return maxGuesses;
}

public int get RandomNunber () {
return randomNunber;

}

(1) The first time a JSP page asks for a nunber Guess component, Seam will create a new one for it, and the
@ eat e method will be invoked, allowing the component to initialize itself.

(2) The @egi n annotation starts a Seam conversation (much more about that later), and specifies the page-
flow definition to use for the conversation's page flow.

As you can see, this Seam component is pure business logic! It doesn't need to know anything at all about the
user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

TODO

1.6. A complete Seam application: the Hotel Booking example

JBoss Seam 1.1.0.BETA 25

Seam Tutorid

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following features:

User registration

e Login
e Logout
e Set password

» Hotel search

¢ Hotel selection

* Room reservation

¢ Reservation confirmation

» Existing reservation list

JBoss Seam 1.1.0.BETA

26

Seam Tutorid

jboss suites

State management in
Seam

State in Seam is confextual.
When you click "Find
Hotels", the application

seam framework demo

me Gavin King | Search | Settings | Logout

Thank you, Gavin King, your confimation number for Doubletree is 1

Find Hotels

Search Hotels

Atlanta

retrieves a list of hotels Maximum results: | 10.¥
from the database and
caches it in the session Name Address City, State Zip | Action
context. When you navigate Marriott T ol Atlanta. GA vi
arrio ower Place anta iew
to one of the hotel records ! ! ! 30305 ——
o o i Courtyard Buckhead usa Hotel
by clicking the "View Hotel' _
link, a cenversation begins. Doubletree Tower Place, Atlanta, GA, 30305 View
The conversation is Buckhead USA Hotel
attached to a particular Ritz Carlton Peachtree Rd, Atlanta, GA, 30376 WView
tab, in a particular browser Buckhead USA Hotel
window. You can navigate
to multiple hotels using Current Hotel Bookings
"open in new tab" or "open
in new window" in your web N Add City, FhECk Check Confirmation Acti
browser. Each window will ame ress state ::Inate g::e number ton
execute in the context of a
different conversation. The Tower
plication keen - Doubletree Place Atlanta, Apr 16, Apr 17, 1 Cancel
application keeps state Buck}‘:ead GA 2006 2006 ==

associated with your hotel
booking in the conversation
context, which ensures that
the concurrent
conversations do not
interfere with each other.

How does the search page

work?

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There is aso a port
of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is extremely robust.
You can play with back buttons and browser refresh and opening multiple windows and entering nonsensical
data as much as you like and you will find it very difficult to make the application crash. Y ou might think that
we spent weeks testing and fixing bugs to achive this. Actually, thisis not the case. Seam was designed to make
it very straightforward to build robust web applications and a lot of robustness that you are probably used to
having to code yourself comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works, observe how
the declarative state management and integrated validation has been used to achieve this robustness.

JBoss Seam 1.1.0.BETA 27

Seam Tutorid

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please refer to Sec-
tion 1.1, “Try the examples’. Once you've successfully started the application, you can access it by pointing
your browser to ht t p: / /1 ocal host : 8080/ seam booki ng/

Just ten classes (plus six session beans local interfaces and 1 annotation interface) where used to implement this
application. Six session bean action listeners contain all the business logic for the listed features.

e Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.
e ChangePasswor dAct i on updates the password of the currently logged in user.

* Hot el Booki ngAct i on implements the core functionality of the application: hotel room searching, selection,
booking and booking confirmation. This functionality is implemented as a conversation, so this is the most
interesting class in the application.

e Logi nActi on validates the login details and retrieves the logged in user.
e Logout Act i on endsthelogin session.
* Regi sterAction registersanew system user.

Three entity beans implement the application's persistent domain model.

e Hotel isan entity bean that represent a hotel
e Booki ng isan entity bean that represents an existing booking
e User isan entity bean to represents a user who can make hotel bookings

Finally, the Loggedl n annotation and the Loggedi ni nterceptor are used to protect actions that require a
logged in user.

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate upon one particular
piece of functionality: hotel search, selection, booking and confirmation. From the point of view of the user,
everything from selecting a hotel to confirming a booking is one continuous unit of work, a conversation.
Searching, however, is not part of the conversation. The user can select multiple hotels from the same search
results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This causes enorm-
ous problems managing state associated with the conversation. Usually, Java web applications use a combina-
tion of two techniques: first, some state is thrown into the Ht t pSessi on; second, persistable state is flushed to
the database after every request, and reconstructed from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of scalability. Ad-
ded latency is aso a problem, due to the extra traffic to and from the database on every request. To reduce this
redundant traffic, Java applications often introduce a data (second-level) cache that keeps commonly accessed
data between requests. This cache is necessarily inefficient, because invalidation is based upon an LRU policy
instead of being based upon when the user has finished working with the data. Furthermore, because the cache
is shared between many concurrent transactions, we've introduced a whole raft of problem's associated with

JBoss Seam 1.1.0.BETA 28

http://localhost:8080/seam-booking/

Seam Tutorid

keeping the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. By very careful programming, we might be able to control the
size of the session data. Thisis alot more difficult than it sounds, since web browsers permit ad hoc non-linear
navigation. But suppose we suddenly discover a system requirement that says that a user is allowed to have mu-
tiple concurrent conversations, halfway through the development of the system (this has happened to me). De-
vel oping mechanisms to isolate session state associated with different concurrent conversations, and incorporat-
ing failsafes to ensure that conversation state is destroyed when the user aborts one of the conversations by
closing a browser window or tab is not for the faint hearted (I've implemented this stuff twice so far, once for a
client application, once for Seam, but I'm famously psychotic).

Now thereis a better way.

Seam introduces the conversation context as afirst class construct. Y ou can safely keep conversational state in
this context, and be assured that it will have a well-defined lifecycle. Even better, you won't need to be continu-
ally pushing data back and forth between the application server and the database, since the conversation context
isanatura cache of datathat the user is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We can also keep en-
tity beans and JavaBeans in the conversation context.) There is an ancient canard in the Java community that
stateful session beans are a scalability killer. This may have been true in 1998 when WebFoobar 1.0 was re-
leased. It is no longer true today. Application servers like JBoss 4.0 have extremely sophisticated mechanisms
for stateful session bean state replication. (For example, the JBoss EJB3 container performs fine-grained replic-
ation, replicating only those bean attribute values which actually changed.) Note that all the traditional technic-
al arguments for why stateful beans are inefficient apply equally to the H: t pSessi on, so the practice of shifting
state from business tier stateful session bean components to the web session to try and improve performance is
unbelievably misguided. It is certainly possible to write unscalable applications using stateful session beans, by
using stateful beans incorrectly, or by using them for the wrong thing. But that doesn't mean you should never
use them. Anyway, Seam guides you toward a safe usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can collaborate togeth-
er to achieve complex behaviors. The main page of the booking application allows the user to search for hotels.
The search results are kept in the Seam session scope. When the user navigates to one of these hotels, a conver-
sation begins, and a conversation scoped component calls back to the session scoped component to retrieve the
selected hotel.

The booking example also demonstrates the use of Ajax4JSF to implement rich client behavior without the use
of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to the one we saw
in the message list example above.

Example 1.22.

@t at ef ul (1)
@Nane(" hot el Sear ch")

@cope(ScopeType. SESSI ON)

@oggedI n (2)
@ynchroni zed

public class Hotel Searchi ngActi on inpl enments Hot el Sear chi ng

{

@er si st enceCont ext

JBoss Seam 1.1.0.BETA 29

Seam Tutorid

(1

(2)

(3)

private EntityManager em
private String searchString;
private int pageSize = 10;
private int page;

@at aMbdel (3)
private List<Hotel> hotels;

public String find()

{
page = 0;
queryHot el s();
return "main";
}
public String nextPage()
{
page++;
quer yHot el s();
return "main";
}
private void queryHotel s()
{
String searchPattern = searchString==null ? "% : '% + searchString.tolLowerCase().replace('*",
hotels = emcreateQuery("select h fromHotel h where |ower(h.nane) |like :search or |ower(h.city]
. set Paranet er ("search", searchPattern)
. set MaxResul t s(pageSi ze)
.setFirstResult(page * pageSi ze)
.getResul tList();
}
publ i ¢ bool ean i sNext PageAvai | abl e()
{
return hotels!'=null && hotels.size()==pageSi ze;
}

public int getPageSize() {
return pageSi ze;
}

public void setPageSi ze(i nt pageSi ze) {
thi s. pageSi ze = pageSi ze;

}
public String getSearchString()
{
return searchString;
}
public void setSearchString(String searchString)
{
this.searchString = searchString;
}
@estroy @Renove (4)

public void destroy() {}

The EJB standard @t at ef ul annotation identifies this class as a stateful session bean. Stateful session
beans are scoped to the conversation context by default.

The @oggedl n annotation applies a custom Seam interceptor to the component. This works because
@.ogged! n ismarked with an @ nt er cept or meta-annotation.

The @at aMbdel annotation exposes a Li st as a JSF Li st Dat aMbdel . This makes it easy to implement
clickable lists for search screens. In this case, the list of hotels is exposed to the page as a Li st Dat aMbdel

JBoss Seam 1.1.0.BETA 30

Seam Tutorid

in the conversation variable named hot el s.

(4) The EJB standard @enove annotation specifies that a stateful session bean should be removed and its
state destroyed after invocation of the annotated method. In Seam, al stateful session beans should define
amethod marked @estroy @enove. Thisisthe EIB remove method that will be called when Seam des-
troys the session context. Actually, the @est r oy annotation is of more general usefulness, since it can be
used for any kind of cleanup that should happen when any Seam context ends. If you don't have an
@estroy @enove method, state will leak and you will suffer performance problems.

The main page of the application is a Facelets page. Let's look at the fragment which relates to searching for
hotels:

Example 1.23.

<di v cl ass="section">
<h: f or nmp

<h: messages gl obal Onl y="true"/>
</ span>

<hl>Search Hotel s</h1>
<fiel dset>
<h: i nput Text val ue="#{hot el Search. searchString}" style="w dth: 165px;">
<a: support event="onkeyup" acti onLi stener="#{hot el Search. find}" (1)
reRender ="searchResul ts" />
</ h:i nput Text >

<a: conmandBut t on val ue="Fi nd Hotel s" action="#{hotel Search. find}"
styl eCl ass="button" reRender="searchResults"/>

<a: st at us> (2)
<f:facet nane="start">
<h: graphi cl mage val ue="/i ng/ spi nner.gif"/>
</f:facet>
</ a:status>

<h: out put Label for="pageSi ze">Maxi mum resul ts: </ h: out put Label >
<h: sel ect OneMenu val ue="#{ hot el Sear ch. pageSi ze}" i d="pageSi ze">
<f:selectltemitenlLabel ="5" itenVval ue="5"/>
<f:selectltemitenlLabel ="10" itenVal ue="10"/>
<f:selectltemitenlLabel ="20" itenval ue="20"/>
</ h: sel ect OneMenu>
</fieldset>

</ h: fornp
</ di v>

<a: out put Panel id="searchResults"> (3)
<di v class="section">
<h: out put Text val ue="No Hotels Found"
rendered="#{hotels != null and hotel s. rowCount==0}"/>
<h: dat aTabl e val ue="#{hotel s}" var="hot" rendered="#{hotel s. rowCount >0}">
<h: col um>
<f:facet nane="header">Nane</f:facet>
#{ hot . nane}
</ h: col utm>
<h: col utm>
<f:facet nane="header">Address</f:facet>
#{ hot . addr ess}
</ h: col um>
<h: col um>
<f:.facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}
</ h: col um>
<h: col um>

JBoss Seam 1.1.0.BETA 31

Seam Tutorid

<f:facet name="header">Zi p</f:facet>
#{ hot . zi p}
</ h: col um>
<h: col um>
<f:facet nanme="header">Action</f:facet>
<s:link value="Vi ew Hotel " acti on="#{hot el Booki ng. sel ect Hot el (hot)}"/> (4)
</ h: col um>
</ h: dat aTabl e>
<s:link value="Mre results" action="#{hotel Sear ch. next Page}"
render ed="#{ hot el Sear ch. next PageAvai | abl e}"/ >
</div>

</ a: out put Panel >

(D

(2)

(3)

(4

The Ajax4JSF <a: support > tag alows a JSF action event listener to be called by asynchronous XM_Ht -
t pRequest When a JavaScript event like onkeyup occurs. Even better, the r eRender attribute lets us render
a fragment of the JSF page and perform a partial page update when the asynchronous response is re-
ceived.

The Ajax4JSF <a: st at us> tag lets us display a cheesy annimated image while we wait for asynchronous
requests to return.

The Ajax4JSF <a: out put Panel > tag defines a region of the page which can be re-rendered by an asyn-
chronous request.

The Seam <s: | i nk> tag lets us attach a JSF action listener to an ordinary (non-JavaScript) HTML link.
The advantage of this over the standard JSF <h: commandLi nk> is that it preserves the operation of "open
in new window" and "open in new tab". Also notice that we use a method binding with a parameter:
#{ hot el Booki ng. sel ect Hot el (hot)}. Thisis not possible in the standard Unified EL, but Seam provides
an extension to the EL that lets you use parameters on any method binding expression.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass it to the se-
| ect Hot el () method of the Hot el Booki ngAct i on, which is where the really interesting stuff is going to hap-

pen.

Now lets see how the booking example application uses a conversation-scoped stateful session bean to achieve
anatural cache of persistent data related to the conversation. The following code example is pretty long. But if
you think of it as alist of scripted actions that implement the various steps of the conversation, it's understand-
able. Read the class from top to bottom, asif it were a story.

Example 1.24.

@5t at ef ul
@Nane(" hot el Booki ng")

@.oggedl n
public class Hotel Booki ngActi on inpl ements Hot el Booki ng

{

@Per si st enceCont ext (t ype=EXTENDED) (1)
private EntityManager em

@n (2)
private User user;

@n(requi red=fal se) @ut
private Hotel hotel;

@n(required=fal se)
@ut (requi red=fal se)
private Booki ng booki ng;

@n(create=true)
private FacesMessages facesMessages;

JBoss Seam 1.1.0.BETA 32

Seam Tutorid

(3)

@n(create=true)
private Events events;

@ogger
private Log | og;
@egi n (3)
public String sel ect Hotel (Hotel sel ectedHotel)
{
hotel = em nerge(sel ectedHotel);
return "hotel";
}
public String bookHotel ()
{
booki ng = new Booki ng(hotel, user);
Cal endar cal endar = Cal endar. get | nstance();
booki ng. set Checki nDat e(cal endar. getTime());
cal endar . add(Cal endar. DAY_OF_MONTH, 1);
booki ng. set Checkout Dat e(cal endar. getTi me());
return "book";
}
public String setBooki ngDetails()
{
i f (booking==null || hotel==null) return "main";
i f (!booking. get Checki nDat e() . before(booki ng. get CheckoutDate()))
{
f acesMessages. add(" Check out date nust be |ater than check in date");
return null;
}
el se
{
return "confirni;
}
}
@nd (4)
public String confirm()
{
i f (booking==null || hotel==null) return "main";
em per si st (booki ng) ;
facesMessages. add(" Thank you, #{user.nanme}, your confimation nunber for #{hotel.name} is #{booki
| og. i nfo("New booki ng: #{booking.id} for #{user.usernane}");
events. rai seEvent (" booki ngConfi rned");
return "confirned";
}
@nd
public String cancel ()
{
return "main";
}
@estroy @Renove (5)

public void destroy() {}

This bean uses an EJB3 extended persistence context, so that any entity instances remain managed for the
whole lifecycle of the stateful session bean.

The @ut annotation declares that an attribute value is outjected to a context variable after method invoca-
tions. In this case, the context variable named hot el will be set to the value of the hot el instance variable
after every action listener invocation completes.

The @Begi n annotation specifies that the annotated method begins a long-running conversation, so the
current conversation context will not be destroyed at the end of the request. Instead, it will be reassociated

JBoss Seam 1.1.0.BETA 33

Seam Tutorid

with every request from the current window, and destroyed either by timeout due to conversation inactiv-
ity or invocation of a matching @nd method.

(4) The @nd annotation specifies that the annotated method ends the current long-running conversation, so
the current conversation context will be destroyed at the end of the request.

(5) This EJB remove method will be called when Seam destroys the conversation context. Don't ever forget
to define this method!

Hot el Booki ngActi on contains all the action listener methods that implement selection, booking and booking
confirmation, and holds state related to this work in its instance variables. We think you'll agree that this codeis
much cleaner and simpler than getting and setting Ht t pSessi on attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run a search, and
navigate to different hotel pagesin multiple browser tabs. You'll be able to work on creating two different hotel
reservations at the same time. If you leave any one conversation inactive for long enough, Seam will eventually
time out that conversation and destroy its state. If, after ending a conversation, you backbutton to a page of that
conversation and try to perform an action, Seam will detect that the conversation was already ended, and redir-
ect you to the search page.

1.6.4. The Seam Ul control library

If you check inside the WAR file for the booking application, you'll find seam ui . j ar inthe WeB- I NF/ | i b dir-
ectory. This package contains a number of JSF custom controls that integrate with Seam. The booking applica-
tion uses the <s: 1 i nk> control for navigation from the search screen to the hotel page:

<s:link value="Vi ew Hotel " acti on="#{hot el Booki ng. sel ect Hotel }"/ >

The use of <s: Ii nk> here alows us to attach an action listener to aHTML link without breaking the browser's
"open in new window" feature. The standard JSF <h: commandLi nk> does not work with "open in new window".
WEelll see later that <s: | i nk> aso offers a number of other useful features, including conversation propagation
rules.

The booking application uses some other Seam and Ajax4JSF controls, especially on the / book. xht M page.
We won't get into the details of those controls here, but if you want to understand this code, please refer to the
chapter covering Seam's functionality for JSF form validation.

1.6.5. The Seam Debug Page

The WAR aso includes seam debug. j ar . If thisjar is deployed in Wee- | NF/ | i b, along with the Facelets, and if
you set the following Seam property inweb. xm Or seam properti es:

<cont ext - par an>
<par am nane>or g. j boss. seam core. i ni t. debug</ param name>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

Then the Seam debug page will be available. This page lets you browse and inspect the Seam components in
any of the Seam contexts associated with your current login session. Just point your browser at ht-
tp://1 ocal host: 8080/ seam booki ng/ debug. seam

JBoss Seam 1.1.0.BETA 34

http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

Seam Tutorid

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:57:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook.xhtml Select conversation context

- Component (booking)

checkinDate Fri Jan 20 20:52:20 EST 2006

checkoutDate Sat.Jan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking.Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel{Tower Place, Buckhead, Atlanta,30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context
Empty business process context
+ Session Context

+ Application Context

1.7. A complete application featuring Seam and jBPM: the DVD

Store example

The DVD Store demo application shows the practical usage of jBPM for both task management and pageflow.

The user screens take advantage of ajPDL pageflow to implement searching and shopping cart functionality.

JBoss Seam 1.1.0.BETA

35

Seam Tutorial

Search for Movies My Orders

Search Results

m I Welcome, Harry :

Add to cart Title Actor Price Thank you for choosing
L Life is Beautiful Roberto Benini £12.00 the DVD Store
L] Finding Nemo Albert Brooks $22.49 Logout
F March of the Penguins Morgan Freeman $16.98
F Indiana Jones and the Temple of Doom Harisson Ford $19.99)
F Clear and Present Danger Harisson Ford $19.99 Search for DVDs:
L] Roman Holiday Audrey Hepburn $12.99
] Breakfast at Tiffany's Audrey Hepburn $12.99
L] Sabrina Audrey Hepburn $12.99
L Sabrina Harrison Ford £19.99
F Kill Bill val. 1 Uma Thurman $19.99 R
O Kill Bill vel. 2 Uma Thurman $10.99 v |
L Lost in Translation Bill Murray £19.99 Results Per Page:
F Broken Flowers Bill Murray £$19,99 b |
] Better Off Dead John Cusak $8.99 Search
L Grosse Pointe Blank John Cusak £11.99
N——
L] High Fidelity John Cusak $14.99)
E Somewhere in Time Christopher Reeve $11.24 Shopping Cart
F Superman - The Movie Christopher Reeve $14.99 1 Napoleon Dynamite
L] Superman II Christopher Reeve 314,99
F Superman III Christopher Reeve $14.99 Total:$14.06
Update Shopping Cart Checkout
L
Done

The administration screens take use jBPM to manage the approval and shipping cycle for orders. The business
process may even be changed dynamically, by selecting a different process definition!

JBoss Seam 1.1.0.BETA 36

Seam Tutorial

Manage Orders

Order Management

I Welcome, Albus

Pending orders are shown here on the order management screen for the store
manager to process. Rather than being data-driven, order management

Thank you for choosing
5 the DVD Store
process-driven. A JBoss JBPM process assigns fulfillment tasks to the manager ‘

based on the wversion of the process loaded. The manager can change the

Logout |

version of the process at any time using the admin options box to the right.

* Order process 1 sends orders immediately to shipping, where the manager should
ship the order and record the tracking number for the user to see.

* Order process 2 adds an approval step where the manager is first given the Inventory .
. - o 28 =sold, 2473 in stock
chance to approve the order before sending it to shipping. In each case, the S

. . X !
status of the order is shown in the customer's order list. $437.63 from 7 orders

* Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.

Admin Options
Task Assignment

Process Management
Order Id Order Amount Customer Task | ordermanagement3 s |

° $12.99 Hsert ship ‘ Switch Order Process |
7 577.70 user2 ship

Order Acceptance

There are no orders to be accepted.

Shipping
Order Id Order Amount Customer
5] %94.95 userl
Done
TODO

Look in the dvdst or e directory.

1.8. A complete application featuring Seam workspace man-
agement: the Issue Tracker example

The Issue Tracker demo shows off Seam's workspace management functionality: the conversation switcher,
conversation list and breadcrumbs.

JBoss Seam 1.1.0.BETA 37

Seam Tutorid

Update/Delete Issue

Home | Find Issues | Create Issue | Logout | Project [HHH] | Issue [1] for Project [HHH] Issue [1] for Project [HHH] |+
—Issue Attributes
Id Reporter
Username Name
Status gavin Gavin King
Short description
My laptop does not Hibemate
Version PI'O]ECt
31 L
Name Description
Long description HHH Hibernate 3 Core
Select Project

Assigned developer

No Assigned developer

[Assign][Unassign

Created

Comments
[Update][Deleta H Done] Comment text Created Action
Go to the user forum! Jan 14, 2006

TODO

Look inthei ssues directory.

1.9. An example of Seam with Hibernate: the Hibernate Book-
ing example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative architecture that uses Hi-
bernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hi ber nat e directory.

1.10. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However, server-side
state is not always appropriate, especially in for functionality that serves up content. For this kind of problem
we often need to let the user bookmark pages and have a relatively stateless server, so that any page can be ac-
cessed at any time, via the bookmark. The Blog example shows how to aimplement RESTful application using
Seam. Every page of the application can be bookmarked, including the search results page.

JBoss Seam 1.1.0.BETA 38

Seam Tutorid

©) JBoss Seam Blog - Mozilla Firefox
File Edit View Go Bookmarks Tools Help delicio.us

<:I| - I_IL - @ @ Eﬁ tag | . hitp://localhost:8080/seam-blog/entry.seam?blogEntryld=i18n v | ® Go

Internationalizaetion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mallit anim id est laborum.

[Posted on 5/01/2006 17:03:00]

1Boss Seam Blog: [Al posts][Recent posts|[Vvrite new post]
Total pageviews: 1007

Done (v]

The Blog example demonstrates the use of "pull"-style MV C, where instead of using action listener methods to
retrieve data and prepare the data for the view, the view pulls data from components asit is being rendered.

1.10.1. Using "pull"-style MVC

This snippet from thei ndex. xht m facelets page displays alist of recent blog entries:

Example 1.25.

<h: dat aTabl e val ue="#{bl og. recent Bl ogEntri es}" var="bl ogEntry" rows="3">
<h: col utm>
<di v cl ass="bl ogEntry">
<h3>#{bl ogEntry.title}</h3>
<di v>
<h: out put Text escape="fal se"
val ue="#{bl ogEntry. excerpt==null ? bl ogEntry.body : bl ogEntry. excerpt}"/>
</ di v>
<p>
<h: out put Li nk val ue="entry. seant’ rendered="#{bl ogEntry. excerpt!=null}">
<f:param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
Read nore. ..
</ h: out put Li nk>
</ p>
<p>
[Posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDat eTi ne ti meZone="#{bl og. ti nezone}" | ocal e="#{bl og.|ocal e}" type="both"/>

JBoss Seam 1.1.0.BETA 39

Seam Tutorid

</ h: out put Text >]

<h: out put Li nk val ue="entry. seant >[Li nk]
<f: param nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ h: out put Li nk>
</ p>
</ di v>
</ h: col utm>
</ h: dat aTabl e>

If we navigate to this page from a bookmark, how does the data used by the <h: dat aTabl e> actually get initial-
ized? Well, what happens is that the Bl og is retrieved lazily—"pulled"—when needed, by a Seam component
named bl og. This is the opposite flow of control to what is usual in traditional web action-based frameworks
like Struts.

Example 1.26.

@Nane(" bl og")
@cope(ScopeType. STATELESS)
public class Bl ogService

{

@n(create=true) (1)
private EntityManager entityManager;

@Jnwr ap (2)
public Bl og getBl og()

{
return (Blog) entityManager.createQuery("fromBlog b left join fetch b. bl ogEntries")

.set Hi nt ("org. hi bernate. cacheabl e", true)
.get Si ngl eResul t();

(1) This component uses a seam-managed persistence context. Unlike the other examples we've seen, this
persistence context is managed by Seam, instead of by the EJB3 container. The persistence context spans
the entire web request, allowing us to avoid any exceptions that occur when accessing unfetched associ-
ationsin the view.

(2) The @nw ap annotation tells Seam to provide the return value of the method—the Bl og—instead of the
actual Bl ogSer vi ce component to clients. Thisisthe Seam manager component pattern.

Thisisgood so far, but what about bookmarking the result of form submissions, such as a search results page?

1.10.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog entries.
Thisisdefined in afile, menu. xht m , included by the facelets template, t enpl at e. xht i :

Example 1.27.

<div id="search">
<h: fornp
<h: i nput Text val ue="#{searchActi on. searchPattern}"/>
<h: commandBut t on val ue="Search" action="/search. xhtm "/ >
</ h:fornp

JBoss Seam 1.1.0.BETA 40

Seam Tutorid

</ di v>

To implement a bookmarkable search results page, we need to perform a browser redirect after processing the
search form submission. Because we used the JSF view id as the action outcome, Seam automatically redirects
to the view id when the form is submitted. Alternatively, we could have defined a navigation rule like this:

Example 1.28.

<navi gati on-rul e>
<navi gati on- case>
<f rom out cone>sear chResul t s</ f r om out conme>
<t o-vi ew i d>/search. xhtm </to-vi ewid>
<redirect/>
</ navi gati on- case>
</ navi gati on-rul e>

Then the form would have looked like this:

Example 1.29.

<div id="search">
<h: for >
<h:i nput Text val ue="#{searchAction. searchPattern}"/>
<h: commandBut t on val ue="Search" acti on="searchResul ts"/>
</ h: fornp
</ di v>

But when we redirect, we need to include the values submitted with the form as request parameters, to get a
bookmarkable URL like http://1 ocal host: 8080/ seam bl og/ sear ch. seanPsear chPat t er n=seam JSF does
not provide an easy way to do this, but Seam does. We use a Seam page parameter, defined in WeB-
I NF/ pages. xni :

Example 1.30.

<pages>
<page vi ewid="/search.xhtm ">
<par am nane="sear chPattern" val ue="#{searchService. searchPattern}"/>
</ page>

</ pages>

This tells Seam to include the value of #{searchService. searchPattern} as a request parameter named

sear chPat t er n when redirecting to the page, and then re-apply the value of that parameter to the model before
rendering the page.

The redirect takes usto the sear ch. xht m page:

Example 1.31.

<h: dat aTabl e val ue="#{searchResul ts}" var="bl ogEntry">
<h: col um>

JBoss Seam 1.1.0.BETA 41

Seam Tutorid

<di v>
<h: out put Li nk val ue="entry. seant' >
<f:param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
#{bl ogEntry.titl e}
</ h: out put Li nk>
posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDat eTi ne ti meZone="#{bl og. ti mezone}" | ocal e="#{bl og.|ocal e}" type="both"/>
</ h: out put Text >
</div>
</ h: col utm>
</ h: dat aTabl e>

Which again uses "pull”-style MV C to retrieve the actual search results:

Example 1.32.

@Nane("sear chService")
public class SearchService

{

@n(create=true)
private EntityManager entityManager;

private String searchPattern;

@-actory("searchResul ts")
public List<Bl ogEntry> get SearchResul t s()

{

if (searchPattern==null)

{
}

el se

{

return null;

return entityManager.createQuery("sel ect be from Bl ogEntry be where | ower(be.title) like :se:
.setParaneter("searchPattern", getSql SearchPattern())
. set MaxResul t s(100)
.getResul tList();

}

private String get Sql SearchPattern()
{

}

return searchPattern==null ? "" : '% + searchPattern.tolLowerCase().replace('*', '%).replace(""
public String getSearchPattern()
{
}

public void setSearchPattern(String searchPattern)

{
}

return searchPattern;

this.searchPattern = searchPattern;

1.10.3. Using "push"-style MVC in a RESTful application

Very occasionaly, it makes more sense to use push-style MV C for processing RESTful pages, and so Seam

JBoss Seam 1.1.0.BETA 42

Seam Tutorid

provides the notion of a page action. The Blog example uses a page action for the blog entry page,
entry. xht mi . Note that this is a little bit contrived, it would have been easier to use pull-style MVC here as

well.

Theent ryAct i on component works much like an action class in atraditional push-MV C action-oriented frame-
work like Struts:

Example 1.33.

@anme("entryAction")
@scope(STATELESS)
public class EntryAction

{

@n(create=true)
private Bl og bl og;

@ut
private Bl ogEntry bl ogEntry;

public void | oadBl ogEntry(String id) throws EntryNot FoundException

{
bl ogEntry = bl og. get Bl ogEntry(id);
if (blogEntry==null) throw new EntryNot FoundExcepti on(id);

}

Page actions are also declared in pages. xm :

Example 1.34.
<pages>

<page viewid="/entry.xhtm " action="#{entryAction.|oadBl ogEntry(bl ogEntry.id)}">
<par am nane="bl ogEnt ryl d" val ue="#{bl ogEntry.id}"/>
</ page>

<page viewid="/post.xhtm " action="#{l ogi nAction. challenge}"/>
<page viewid="*" action="#{bl og. hitCount.hit}"/>

</ pages>

Notice that the example is using page actions for some other functionality—the login challenge, and the
pageview counter. Also notice the use of a parameter in the page action method binding. Thisis not a standard
feature of JSF EL, but Seam lets you use it, not just for page actions, but also in JSF method bindings.

When the ent ry. xht ml page is requested, Seam first binds the page parameter bl ogEnt ryI d to the model, then
runs the page action, which retrieves the needed data—the bl ogent r y—and places it in the Seam event context.
Finally, the following is rendered:

Example 1.35.

<di v cl ass="bl ogEntry">
<h3>#{bl ogEntry.title}</h3>

JBoss Seam 1.1.0.BETA 43

Seam Tutorid

<di v>
<h: out put Text escape="fal se" val ue="#{bl ogEntry. body}"/>
</ div>
<p>
[Post ed oné
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi ne ti mezone="#{bl og.ti mezone}" | ocal e="#{bl og. | ocal e}" type="both"/>
</ h: out put Text >]
</ p>
</ di v>

If the blog entry is not found in the database, the Ent r yNot FoundExcept i on exception is thrown. We want this
exception to result in a404 error, not a 505, so we annotate the exception class:

Example 1.36.

@\ppl i cati onException(roll back=true)
@t t pError (errorCode=Htt pServl et Response. SC_NOT_FOUND)
public class EntryNot FoundExcepti on extends Exception

{
Ent r yNot FoundExcepti on(String id)
{
super("entry not found: " + id);
}
}

An dternative implementation of the example does not use the parameter in the method binding:

Example 1.37.

@ame("entryAction")
@cope(STATELESS)
public class EntryAction

{

@n(create=true)
private Bl og bl og;

@n @out
private Bl ogEntry bl ogEntry;

public void | oadBl ogEntry() throws EntryNot FoundException

{
bl ogEntry = bl og. get Bl ogEntry(bl ogEntry.getld());
if (blogEntry==null) throw new EntryNot FoundExcepti on(id);
}
}
<pages>
<page viewid="/entry.xhtm" action="#{entryAction.|oadBl ogEntry}">
<par am nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ page>
</ pééés>

It isamatter of taste which implementation you prefer.

JBoss Seam 1.1.0.BETA 44

Chapter 2. Getting started with Seam, using
seam-gen

The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse project,
generate some simple Seam skeleton code, and reverse engineer an application from a pre-existing database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next time you find
yourself trapped in an elevator with one of those tedious Ruby guys ranting about how great and wonderful his
new toy isfor building totally trivial applications that put thingsin databases.

In this release, seam-gen only works for people who want to use Seam with EJB 3.0 in JBoss AS. Future ver-
sions will support other deployment environments.

Y ou can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in conjunction
with Eclipse for debugging and integration testing. If you don't want to install Eclipse, you can till follow
along with this tutorial—all steps can be peformed from the command line.

Seam-gen is basically just abig ugly Ant script wrapped around Hibernate Tools, together with some templates.
Which meansit is easy to customize if you need to.

2.1. Before you start

Make sure you have recent versions of Eclipse, the JBoss IDE plugin for Eclipse and the TestNG plugin for Ec-
lipse along with JBoss AS 4.0.5 and Ant 1.6 correctly installed before starting. Add your JBoss installation to
the JBoss Server View in Eclipse. Start JBoss in debug mode. Finally, start a command prompt in the directory
where you unzipped the Seam distribution.

2.2. Setting up a new Eclipse project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation directory, Ec-
lipse workspace, and database connection. It's easy, just type:

cd j boss-seam 1. 1. x
seam set up

And you will be prompted for the needed information:

C:\ Proj ects\jboss-seanrseam set up
Bui l dfile: C. \Projects\jboss-sean seam gen\buil d. xm

set up:
[echo] Welcone to seamgen :-)
[input] Enter your Java project workspace [C:./Projects]

[input] Enter your JBoss hone directory [C /Program Fil es/jboss-4.0.5. GA]
[input] Enter the project name [myproject]
hel | owor | d
[input] Enter the Java package nanme for your session beans [com nmydonei n. hel | owor | d]
org.j boss. hel l oworl d
[input] Enter the Java package nane for your entity beans [org.jboss. hel | oworl d]
[input] Enter the Java package nane for your test cases [org.jboss. helloworld.test]

[input] What kind of database are you using? [hsql] (hsql, nysql, oracl e, postgres, nssql, db2, sybase,)

JBoss Seam 1.1.0.BETA 45

Getting started with Seam, using seam-gen

nysql
[input] Enter the Hibernate dialect for your database [org. hibernate.dial ect. WwSQ.Di al ect]

[input] Enter the filesystempath to the JDBC driver jar [lib/hsqldb.jar]
..1../nysql -connector.jar
[input] Enter JDBC driver class for your database [com nysql.jdbc.Driver]

[input] Enter the JDBC URL for your database [jdbc:nysql:///test]

[input] Enter database usernane [sa]
gavin
[input] Enter database password []

[input] Are you working with tables that already exist in the database? [n] (y,n,)

y

[propertyfile] Creating new property file: C/\Projects\jboss-seam seam gen\buil d. properties
[echo] Installing JDBC driver jar to JBoss server
[echo] Type 'seam new project' to create the new project

BUI LD SUCCESSFUL
Total tine: 1 mnute 17 seconds
C:\ Proj ects\]jboss-seanr

Thetool provides sensible defaults, which you can accept by just pressing enter at the prompt.

The settings are stored in seam gen/ bui | d. properti es, but you can aso modify them simply by running seam
set up asecond time.

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new pr oj ect

C:\ Proj ect s\ j boss- seanrseam new pr oj ect
Bui l dfile: C. \Projects\jboss-seam seam gen\buil d. xm

val i dat e- wor kspace:
val i dat e- proj ect :

copy-lib:
[echo] Copying project jars ...
[copy] Copying 32 files to C.\Projects\helloworld\lib
[copy] Copying 9 files to C:\Projects\hell oworl d\enbedded-ejb

file-copy-wp:

file-copy:
[echo] Copying project resources ...
[copy] Copying 12 files to C:\Projects\helloworld\resources
[copy] Copying 1 file to C: \Projects\helloworld\resources
[copy] Copying 5 files to C: \Projects\helloworld\view
[copy] Copying 5 files to C:\Projects\helloworld
[mkdir] Created dir: C \Projects\helloworld\src

new- proj ect:

[echo] A new Seam project was created in the C/Projects directory

[echo] Add the project frominside Eclipse (or type 'seamexplode') and go to http://I ocal host:
8080/ hel | owor | d

BU LD SUCCESSFUL
Total tine: 7 seconds
C:\ Proj ects\jboss-seanr

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and generates all
needed resources and configuration files, a facelets template file and stylesheet, along with Eclipse metadata
and an Ant build script. The Eclipse project will be automatically deployed to an exploded directory structure in

JBoss Seam 1.1.0.BETA 46

Getting started with Seam, using seam-gen

JBoss AS as soon as you add the project using New -> Project... -> Java Project. Alternatively, you can
deploy the project from outside Eclipse by typing seam expl ode.

Gotohttp://1 ocal host: 8080/ hel | owor | d t0o See awelcome page. Thisis a facelets page, vi ew hone. xht i ,
using the template vi ew | ayout / t enpl at e. xht ni . You can edit this page, or the template, in eclipse, and see
the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project directory. They are
mostly standard Java EE stuff, the stuff you need to create once and then never look at again, and they are 90%
the same between all Seam projects. (They are so easy to write that even seam-gen can do it.)

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can create a
simple webpage with a stateless action method in Java. If you type:

seam new acti on

Seam will prompt for some information, and generate a new facelets page and Seam component for your
project.

C:\ Proj ect s\ boss-seanrseam new acti on pi ng
Bui l dfile: C\Projects\jboss-sean seam gen\ bui | d. xm

val i dat e- wor kspace:
val i dat e- proj ect:

action-input:
[nput] Enter the Seam conmponent nane
pi ng
[input] Enter the local interface name [Ping]

[input] Enter the bean class nanme [Pi ngBean]
[input] Enter the action method nane [ping]

[input] Enter the page name [ping]

setup-filters:

new acti on:
[echo] Creating a new statel ess session bean conponent with an action method
[copy] Copying 1 file to C.\Projects\hello\src\comhello
[copy] Copying 1 file to C:\Projects\hello\src\comhello
[copy] Copying 1 file to C.\Projects\hello\src\com hello\test
[copy] Copying 1 file to C:\Projects\hello\src\com hello\test
[copy] Copying 1 file to C: \Projects\hello\view
[echo] Type 'seamrestart’ and go to http://l|ocal host: 8080/ hel | owor| d/ pi ng. seam

BU LD SUCCESSFUL
Total tine: 13 seconds
C.\ Proj ects\jboss-seanr

Because we've added a new Seam component, we need to restart the exploded directory deployment. Y ou can
do this by typing seam restart, or by running therest art target in the generated project bui | d. xm file from
inside Eclipse. You do not need to restart JBoss each time you change the application.

Now gotohttp://1 ocal host: 8080/ hel | owor | d/ pi ng. seamand click the button. Y ou can see the code behind

JBoss Seam 1.1.0.BETA 47

Getting started with Seam, using seam-gen

this action by looking in the project sr ¢ directory. Put a breakpoint in the pi ng() method, and click the button
again. Finaly, locate the Pi ngTest . xm file in the test package and run the integration tests using the TestNG

plugin.

2.4. Creating a form with an action

The next step isto create aform. Type:

seam new f orm

C:\ Proj ects\jboss-seanrseam new f orm
Bui l dfile: C: \Projects\jboss-sean seam gen\buil d. xm

val i dat e- wor kspace:
val i dat e- proj ect:

action-input:
[input] Enter the Seam conponent nane
hel |l o
[input] Enter the local interface nanme [Hell 0]

[input] Enter the bean class nane [Hel | oBean]
[Input] Enter the action nmethod nane [hell o]

[input] Enter the page nane [hell 0]

setup-filters:

new f orm
[echo] Creating a new stateful session bean conmponent with an action nethod
[copy] Copying 1 file to C.\Projects\hello\src\comhello
[copy] Copying 1 file to C:\Projects\hello\src\comhello
[copy] Copying 1 file to C \Projects\hello\src\com hello\test
[copy] Copying 1 file to C: \Projects\hello\view
[copy] Copying 1 file to C \Projects\hello\src\com hello\test
[echo] Type 'seamrestart’ and go to http://l|ocal host: 8080/ hel | o/ hel | 0. seam

BU LD SUCCESSFUL
Total time: 5 seconds
C:\ Proj ects\j boss-seanr

Restart the application again, and goto ht t p: / /1 ocal host : 8080/ hel | owor | d/ hel | 0. seam Then take alook at
the generated code. Run the test. Try adding some new fields to the form and Seam component (remember to
restart the deploment each time you change the Java code).

2.5. Generating an application from an existing database

Manually create some tables in your database. (If you need to switch to a different database, just run seam
set up again.) Now type:

seam generate-entities

Restart the deployment, and go to ht t p: / /1 ocal host : 8080/ hel | owor | d. Y 0u can browse the database, edit ex-
isting objects, and create new objects. If you look at the generated code, you'll probably be amazed how simple
it isl Seam was designed so that data access code is easy to write by hand, even for people who don't want to
cheat using seam-gen.

JBoss Seam 1.1.0.BETA 48

Getting started with Seam, using seam-gen

2.6. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First, we need to re-
move the exploded directory by running seam unexpl ode. To deploy the EAR, we can type seam depl oy at the
command prompt, or run the depl oy target of the generated project build script. You can undeploy using seam
undepl oy or the undepl oy target.

JBoss Seam 1.1.0.BETA 49

Chapter 3. The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component. Components are
stateful objects, usually EJBs, and an instance of a component is associated with a context, and given anamein
that context. Bijection provides a mechanism for aliasing internal component names (instance variables) to con-
textual names, allowing component trees to be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

3.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control context demarca-
tion via explicit Java API calls. Context are usually implicit. In some cases, however, contexts are demarcated
via annotations.

The basic Seam contexts are:

» Stateless context

e Event (or request) context
e Page context

e Conversation context

* Session context

+ Business process context

Application context

Y ou will recognize some of these contexts from servlet and related specifications. However, two of them might
be new to you: conversation context, and business process context. One reason state management in web ap-
plications is so fragile and error-prone is that the three built-in contexts (request, session and application) are
not especially meaningful from the point of view of the business logic. A user login session, for example, is a
fairly arbitrary construct in terms of the actual application work flow. Therefore, most Seam components are
scoped to the conversation or business process contexts, since they are the contexts which are most meaningful
in terms of the application.

Let'slook at each context in turn.

3.1.1. Stateless context
Components which are truly stateless (stateless session beans, primarily) always live in the stateless context

(thisis really a non-context). Stateless components are not very interesting, and are arguably not very object-
oriented. Nevertheless, they are important and often useful.

3.1.2. Event context

The event context is the "narrowest” stateful context, and is a generalization of the notion of the web request
context to cover other kinds of events. Nevertheless, the event context associated with the lifecycle of a JSF re-

JBoss Seam 1.1.0.BETA 50

The contextual component model

quest is the most important example of an event context, and the one you will work with most often. Compon-
ents associated with the event context are destroyed at the end of the request, but their state is available and
well-defined for at least the lifecycle of the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created and distroyed
just for the invocation.

3.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page. You can initialize
state in your event listener, or while actually rendering the page, and then have access to it from any event that
originates from that page. Thisis especially useful for functionality like clickable lists, where the list is backed
by changing data on the server side. The state is actually serialized to the client, so this construct is extremely
robust with respect to multi-window operation and the back button.

3.1.4. Conversation context

The conversation context is atruly central concept in Seam. A conversation is a unit of work from the point of
view of the user. It might span several interactions with the user, several requests, and several database transac-
tions. But to the user, a conversation solves a single problem. For example, "book hotel", "approve contract”,
"create order" are al conversations. Y ou might like to think of a conversation implementing asingle "use case”,
but the relationship is not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single user may
have multiple conversations in progress at any point in time, usually in multiple windows. The conversation
context allows us to ensure that state from the different conversations does not collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But once you get
used to it, we think you'll love the notion, and never be able to not think in terms of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must be demarcated
using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-running busi-
ness process, and has the potential to trigger a business process state transition when it is successfully com-
pleted. Seam provides a specia set of annotations for task demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation. Thisis an ad-
vanced feature.

Usually, conversation state is actually held by Seam in the servlet session between requests. Seam implements
configurable conversation timeout, automatically destroying inactive conversations, and thus ensuring that the
state held by asingle user login session does not grow without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running conversation con-
text, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

3.1.5. Session context

A session context holds state associated with the user login session. While there are some cases where it is use-

JBoss Seam 1.1.0.BETA 51

The contextual component model

ful to share state between several conversations, we generally frown on the use of session context for holding
components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

3.1.6. Business process context

The business process context holds state associated with the long running business process. This state is man-
aged and made persistent by the BPM engine (JBoss jBPM). The business pracess spans multiple interactions
with multiple users, so this state is shared between multiple users, but in a well-defined manner. The current
task determines the current business process instance, and the lifecycle of the business process is defined ex-
ternally using a process definition language, so there are no specia annotations for business process demarca
tion.

3.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context is mainly use-
ful for holding static information such as configuration data, reference data or metamodels. For example, Seam
stores its own configuration and metamodel in the application context.

3.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session or request at-
tributes in the servlet spec. You may bind any value you like to a context variable, but usually we bind Seam
component instances to context variables.

So, within a context, a component instance is identified by the context variable name (thisis usualy, but not al-
ways, the same as the component name). You may programatically access a named component instance in a
particular scope viathe Cont ext s class, which provides access to several thread-bound instances of the Cont ext
interface:

User user = (User) Contexts.getSessionContext().get("user");
Y ou may also set or change the value associated with a name:

Cont ext s. get Sessi onCont ext (). set("user", user);

Usually, however, we obtain components from a context via injection, and put component instances into a con-
text via outjection.

3.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other times, all stateful
scopes are searched, in priority order. The order isasfollows:

« Event context
¢ Page context

* Conversation context

JBoss Seam 1.1.0.BETA 52

The contextual component model

e Session context
e Business process context
» Application context

Y ou can perform a priority search by calling Cont ext s. | ookupl nSt at ef ul Cont ext s() . Whenever you access a
component by name from a JSF page, a priority search occurs.

3.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests originating
from the same client. The serviet container simply lets all threads run concurrently and leaves enforcing thread-
safeness to application code. The EJB container allows stateless components to be accessed concurrently, and
throws an exception if multiple threads access a stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-grained, syn-
chronous requests. But for modern applications which make heavy use of many fine-grained, asynchronous
(AJAX) requests, concurrency isafact of life, and must be supported by the programming model. Seam weaves
a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent requests in a context
to be processed concurrently. The event and page contexts are by nature single threaded. The business process
context is strictly speaking multi-threaded, but in practice concurrency is sufficiently rare that this fact may be
disregarded most of the time. Finaly, Seam enforces a single thread per conversation per process model for
the conversation context by serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope components are al-
ways protected by Seam from concurrent access. Seam serializes requests to session scope session beans and
JavaBeans by default (and detects and breaks any deadlocks that occur). This is not the default behaviour for
application scoped components however, since application scoped components do not usualy hold volatile
state and because synchronization at the global level is extremely expensive. However, you can force a serial-
ized threading model on any session bean or JavaBean component by adding the @ynchr oni zed annotation.

This concurrency model means that AJAX clients can safely use volatile session and conversational state,
without the need for any special work on the part of the developer.

3.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or EJB 3.0 enterprise
beans. While Seam does not require that components be EJBs and can even be used without an EJB 3.0 compli-
ant container, Seam was designed with EJB 3.0 in mind and includes deep integration with EJB 3.0. Seam sup-
ports the following component types.

+ EJB 3.0 statel ess session beans
« EJB 3.0 stateful session beans
¢ EJB 3.0 entity beans

e JavaBeans

JBoss Seam 1.1.0.BETA 53

The contextual component model

¢ EJB 3.0 message-driven beans

3.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations. Therefore, they usu-
aly work by operating upon the state of other components in the various Seam contexts. They may be used as
JSF action listeners, but cannot provide properties to JSF components for display.

Statel ess session beans always live in the statel ess context.

Statel ess session beans are the least interesting kind of Seam component.

3.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of the bean, but
also across multiple requests. Application state that does not belong in the database should usualy be held by
stateful session beans. This is a major difference between Seam and many other web application frameworks.
Instead of sticking information about the current conversation directly in the Ht t pSessi on, you should keep it
in instance variables of a stateful session bean that is bound to the conversation context. This alows Seam to
manage the lifecycle of this state for you, and ensure that there are no collisions between state relating to differ-
ent concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide properties to JSF
components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be bound to the page
or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam.

3.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because entities have a
persistent identity in addition to their contextual identity, entity instances are usually bound explicitly in Java
code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of an entity bean
trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans that provide
properties to JSF components for display or form submission. In particular, it is common to use an entity as a
backing bean, together with a stateless session bean action listener to implement create/update/del ete type func-
tionality.

By default, entity beans are bound to the conversation context. They may never be bound to the stateless con-
text.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to a conversa-
tion or session scoped Seam context variable than it would be to hold a reference to the entity bean in a stateful
session bean. For this reason, not all Seam applications define entity beans to be Seam components.

3.2.4. JavaBeans

JBoss Seam 1.1.0.BETA 54

The contextual component model

Javabeans may be used just like a stateless or stateful session bean. However, they do not provide the function-
ality of a session bean (declarative transaction demarcation, declarative security, efficient clustered state replic-
ation, EJB 3.0 persistence, timeout methods, etc).

In alater chapter, we show you how to use Seam and Hibernate without an EJB container. In this use case,
components are JavaBeans instead of session beans. Note, however, that in many application serversit is some-
what less efficient to cluster conversation or session scoped Seam JavaBean components than it is to cluster
stateful session bean components.

By default, JavaBeans are bound to the event context.

Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

3.2.5. Message-driven beans

M essage-driven beans may function as a seam component. However, message-driven beans are called quite dif-
ferently to other Seam components - instead of invoking them via the context variable, they listen for messages
sent to a JM S queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the session or conversa
tion state of their "caller". However, they do support bijection and some other Seam functionality.

3.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept component
invocations. For JavaBeans, Seam isin full control of instantiation of the component, and no special configura-
tion is needed. For entity beans, interception is not required since bijection and context demarcation are not
defined. For session beans, we must register an EJB interceptor for the session bean component. We could use
an annotation, as follows:

@t at el ess
@ nt er cept or s(Seam nt er cept or. cl ass)
public class LoginAction inplenments Login {

}

But a much better way isto define the interceptor inej b-j ar. xni .

<i nt ercept ors>
<i nterceptor>
<interceptor-class>org.jboss. seam ej b. Seanl nt erceptor</interceptor-class>
</interceptor>
</interceptors>

<assenbl y-descri pt or>
<i nt er cept or - bi ndi ng>
<ej b- name>* </ ej b- name>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nterceptor-cl ass>
</i nt er cept or - bi ndi ng>
</ assenbl y-descri pt or >

3.2.7. Component names

Almost all seam components need a name. We assigh a name to a component using the @ane annotation:

@ame("l ogi nAction")

JBoss Seam 1.1.0.BETA 55

The contextual component model

@5t at el ess
public class LoginAction inplenments Login {

}

This name is the seam component name and is not related to any other name defined by the EJB specification.
However, seam component names work just like JSF managed bean names and you can think of the two con-
cepts asidentical.

Just like in JSF, a seam component instance is usually bound to a context variable with the same name as the
component name. So, for example, we would access the LoginAction using Con-

texts. get St at el essCont ext (). get ("1 ogi nAction"). In particular, whenever Seam itself instantiates a com-
ponent, it binds the new instance to a variable with the component name. However, again like JSF, it is possible
for the application to bind a component to some other context variable by programmatic APl call. Thisis only
useful if a particular component serves more than one role in the system. For example, the currently logged in
User might be bound to the current User session context variable, while a User that is the subject of some ad-
ministration functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Nane("com j boss. nyapp. | ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {

}

Unfortunately, JSF's expression language interprets a period as a property dereference. So, inside a JSF expres-
sion, we use $ to indicate a qualified component name:

<h: commandButt on type="subm t" val ue="Logi n"
acti on="#{con®j boss$nyapp$l ogi nActi on. | ogi n}"/>

3.2.8. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This lets us define
what context a component instance is bound to, when it isinstantiated by Seam.

@anme("user")
@ntity

@cope(SESSI ON)
public class User {

}

org. j boss. seam ScopeType defines an enumeration of possible scopes.

3.2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we often have a User
class which is usually used as a session-scoped component representing the current user but is used in user ad-
ministration screens as a conversation-scoped component. The @rol e annotation lets us define an additional
named role for a component, with a different scope—it lets us bind the same component class to different con-
text variables. (Any Seam component instance may be bound to multiple context variables, but this lets us do it
at the class level, and take advantage of auto-instantiation.)

JBoss Seam 1.1.0.BETA 56

The contextual component model

@Nane("user")

@ntity

@cope(CONVERSATI ON)

@Rol e(nane="current User", scope=SESSI ON)
public class User {

}
The @ol es annotation lets us specify as many additional roles aswe like.

@anme("user")

@ntity

@scope(CONVERSATI ON)

@Rol es({ @0l e(name="current User", scope=SESSI ON)
@Rol e(nane="t enpUser", scope=EVENT)})

public class User {

}

3.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of built-in Seam
interceptors (see later) and Seam components. This makes it easy for applications to interact with built-in com-
ponents at runtime or even customize the basic functionality of Seam by replacing the built-in components with
custom implementations. The built-in components are defined in the Seam namespace or g. j boss. seam core
and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they aso provide convenient
statici nst ance() methods:

FacesMessages. i nstance() . add(" Wl cone back, #{user.name}!");

Seam was designed to integrate tightly in a Java EE 5 environment. However, we understand that there are
many projects which are not running in a full EE environment. We also realize the critical importance of easy
unit and integration testing using frameworks such as TestNG and JUnit. So, we've made it easy to run Seam in
Java SE environments by allowing you to boostrap certain critical infrastructure normally only found in EE en-
vironments by installing built-in Seam components.

For example, you can run your EJB3 components in Tomcat or an integration test suite just by instaling the
built-in component or g. j boss. seam core. ej b, which automatically bootstraps the JBoss Embeddable EJB3
container and deploys your EJB components.

Or, if you're not quite ready for the Brave New World of EJB 3.0, you can write a Seam application that uses
only JavaBean components, together with Hibernate3 for persistence, by instaling the built-in component
org. j boss. seam cor e. hi ber nat e. When using Hibernate outside of a J2EE environment, you will also prob-
ably need a JTA transaction manager and JNDI server, which are available via the built-in component
org. j boss. seam core. mi crocont ai ner. This lets you use the bulletproof JTA/JCA pooling datasource from
JBoss application server in an SE environment like Tomcat!

3.3. Configuring components

Seam provides two basic approaches to configuring components. configuration via property settings in a prop-
ertiesfile or web. xni , and configuration viaconponent s. xm .

JBoss Seam 1.1.0.BETA 57

The contextual component model

3.3.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context parameters, or viaa
properties file named seam properti es in theroot of the classpath.

The configurable Seam component must expose a JavaBeans-style property setter methods for the configurable
attributes. If a seam component hamed com j boss. nyapp. setti ngs has a setter method named set Local e(),
we can provide a property named com j boss. nyapp. set ti ngs. | ocal e intheseam properties fileor asaser-
vlet context parameter, and Seam will set the value of the | ocal e attribute whenever it instantiates the compon-
ent.

The same mechanism is used to configure Seam itself. For example, to set the conversation timeout, we provide
avalue for org. j boss. seam cor e. manager . conver sati onTi meout iNweb. xm OF seam properties. (Thereis
a built-in Seam component named or g. j boss. seam cor e. manager With a setter method named set Conver sa-
tionTi meout ().)

3.3.2. Configuring components via conponent s. xni

The conponent s. xni fileisabit more powerful than property settings. It lets you:

» Configure components that have been installed automatically—including both built-in components, and ap-
plication components that have been annotated with the @vane annotation and picked up by Seam'’s deploy-
ment scanner.

e Instal classes with no @vane annotation as Seam components—this is most useful for certain kinds of infra-
structural components which can be installed multiple times different names (for example Seam-managed
persi stence contexts).

¢ Install components that do have a @vane annotation but are not installed by default (this is the case for cer-
tain built-in components).

e Qverride the scope of a component.

Usually, Seam components are installed when the deployment scanner discovers a class with a @ane annota-
tion sitting in an archive with a seam properti es file. The conponents. xm file lets us handle specia cases
where that is not the case.

For example, the following cormponent s. xni file installs the JBoss Embeddable EJB3 container:

<conponent s>
<conponent class="org.jboss.seam core. Ej b"/>
</ conponent s>

Thisone installs and configures two different Seam-managed persistence contexts:

<component s>

<conponent nane="cust oner Dat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nanme="persi stenceUnitJndi Name">j ava: / cust orrer Ent i t yManager Fact or y</ property>
</ conponent >

<conmponent name="accounti ngDat abase"
cl ass="org.j boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persistenceUnitJndi Nane">j ava: /accounti ngEntityManager Fact or y</ property>
</ conponent >

JBoss Seam 1.1.0.BETA 58

The contextual component model

</ conponent s>

This example creates a session-scoped Seam-managed persistence context (this is not recommended in prac-
tice):
<conponent s>
<conponent name="product Dat abase"
scope="sessi on"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property name="persistenceUnitJndi Name">j ava: / product Enti t yManager Fact or y</ property>
</ conponent >
</ conponent s>

The <f act or y> declaration lets you specify a value or method binding expression that will be evaluated to ini-
tialize the value of a context variable when it isfirst referenced.

<component s>
<factory nane="contact" net hod="#{contact Manager.| oadContact}" scope="CONVERSATI ON'/ >

</ conponent s>

Y ou can create an "alias" (a second name) for a Seam component like so:

<conponent s>
<factory name="user" val ue="#{actor}" scope="STATELESS"/ >

</ conponent s>

Y ou can even create an "aias’ for acommonly used expression:

<conponent s>
<factory nanme="contact" val ue="#{contact Manager.contact}" scope="STATELESS"/>

</ conponent s>

Sometimes we want to reuse the same conponent s. xni file with minor changes during both deployment and
testing. Seam let's you place wildcards of the form @i | dcar d@in the conponent s. xm file which can be re-
placed either by your Ant build script (at deployment time) or by providing a file named conpon-
ents. properti es in the classpath (at development time). Y ou'll see this approach used in the Seam examples.

3.3.3. Fine-grained configuration files

If you have a large number of components that need to be configured in XML, it makes much more sense to
split up the information in conponent s. properti es into many small files. Seam lets you put configuration for a
class named, for example, comhelloworid.Hello in a resource named con hello-

wor | d/ Hel | o. conponent . xmi . (You might be familiar with this pattern, since it is the same one we use in Hi-
bernate.) The root element of the file may be either a<conponent s> or <conponent > element.

Thefirst option |ets you define multiple componentsin the file:

<conponent s>
<conponent cl ass="com hel |l oworl d. Hel | 0" nanme="hel | 0" >
<property nanme="nane">#{user. nane}</ property>
</ conponent >

JBoss Seam 1.1.0.BETA 59

The contextual component model

<factory nanme="nessage" val ue="#{hell o. message}"/>
</ conponent s>

The second option only lets you define or configure one component, but is less noisy:

<conponent name="hel |l 0">
<property name="name">#{user. nane} </ property>
</ conponent >

In the second option, the class name isimplied by the file in which the component definition appears.

3.3.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org.j boss. seam cor e. manager . conver sati onTi meout 60000

<conponent name="org.j boss. seam cor e. manager" >
<property name="conversationTi meout">60000</ pr operty>
</ conponent >

Arrays, sets and lists of strings or primitives are aso supported:

org.j boss. seam core. jbpm processDefinitions order.jpdl.xm, return.jpdl.xm, inventory.jpdl .xnl

<conponent name="org.j boss. seam core. jbpni>
<property nane="processDefinitions">
<val ue>order.j pdl . xm </ val ue>
<val ue>return.jpdl.xm </ val ue>
<val ue>i nventory. j pdl . xm </ val ue>
</ property>
</ conponent >

Even maps with String-valued keys and string or primitive values are supported:

<conmponent name="issuekditor">
<property nane="issueSt at uses" >
<key>open</ key> <val ue>open i ssue</val ue>
<key>r esol ved</ key> <val ue>i ssue resol ved by devel oper</val ue>
<key>cl osed</ key> <val ue>resol uti on accepted by user</val ue>
</ pr operty>
</ conponent >

Finally, you may wire together components using a value-binding expression. Note that thisis quite different to
injection using @ n, since it happens at component instantiation time instead of invocation time. It is therefore
much more similar to the dependency injection facilities offered by traditional 10C containers like JSF or

Spring.

<conponent name="pol i cyPrici ngWr ki ngMenor y"
cl ass="org.j boss. seam dr ool s. ManagedWr ki ngMenor y" >
<property nanme="rul eBase">#{pol i cyPri ci ngRul es} </ property>
</ conponent >

3.4. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers. Depend-

JBoss Seam 1.1.0.BETA 60

The contextual component model

ency injection allows a component to obtain a reference to another component by having the container "inject"
the other component to a setter method or instance variable. In all dependency injection implementations that
we have seen, injection occurs when the component is constructed, and the reference does not subsequently
change for the lifetime of the component instance. For stateless components, this is reasonable. From the point
of view of aclient, all instances of a particular stateless component are interchangeable. On the other hand,
Seam emphasizes the use of stateful components. So traditional dependency injection is no longer a very useful
construct. Seam introduces the notion of bijection as a generalization of injection. In contrast to injection, bijec-
tionis:

» contextual - bijection is used to assemble stateful components from various different contexts (a component
from a"wider" context may even have areference to a component from a " narrower" context)

* Dbidirectional - values are injected from context variables into attributes of the component being invoked,
and also outjected from the component attributes back out to the context, allowing the component being in-
voked to manipulate the values of contextual variables simply by setting its own instance variables

» dynamic - since the value of contextual variables changes over time, and since Seam components are state-
ful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by specifying that the
value of the instance variable is injected, outjected, or both. Of course, we use annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@ame("| ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenents Login {
@n User user;

or into a setter method:

@Nane("| ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
User user;

@n
public void setUser(User user) {
t hi s. user=user;

}

By default, Seam will do a priority search of all contexts, using the name of the property or instance variable
that is being injected. You may wish to specify the context variable name explicitly, using, for example,
@n("currentUser").

If you want Seam to create an instance of the component when there is no existing component instance bound
to the named context variable, you should specify @n(creat e=t rue) . If the value is optional (it can be null),
specify @ n(requi red=f al se).

Y ou can even inject the value of an expression:

@Nane("| ogi nActi on")

JBoss Seam 1.1.0.BETA 61

The contextual component model

@t at el ess

@ nt er cept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {
@n("#{user.usernane}") String usernane;

(There is much more information about component lifecycle and injection in the next chapter.)
The @ut annotation specifies that an attribute should be outjected, either from an instance variable:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {
@ut User user;

or from a getter method:

@Nane ("l ogi nActi on")

@5t at el ess

@ nt ercept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
User user;

@ut

public User getUser() {
return user;

}

An attribute may be both injected and outjected:

@ame("| ogi nAction")

@t at el ess

@ nt er cept or s(Seanl nt er cept or. cl ass)

public class LoginAction inplenents Login {
@n @ut User user;

or:

@Nane ("l ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
User user;

@n

public void setUser(User user) {
t hi s. user=user;

}

@out
public User getUser() {
return user,

}

JBoss Seam 1.1.0.BETA

62

The contextual component model

3.5. Lifecycle methods

Session bean and entity bean Seam components support all the usua EJB 3.0 lifecycle callback
(@ost Const ruct, @reDestroy, €tc). Seam extends all of these callbacks except @reDestroy to JavaBean
components. But Seam also defines its own component lifecycle callbacks.

The @r eat e method is called every time Seam instantiates a component. Unlike the @ost Const ruct method,
this method is called after the component is fully constructed by the EJB container, and has access to all the
usual Seam functionality (bijection, etc). Components may define only one @r eat e method.

The @est r oy method is called when the context that the Seam component is bound to ends. Components may
define only one @est r oy method. Stateful session bean components must define a method annotated @est r oy
@Renove.

Finally, a related annotation is the @t ar t up annotation, which may be applied to any application or session
scoped component. The @t art up annotation tells Seam to instantiate the component immediately, when the
context begins, instead of waiting until it is first referenced by a client. It is possible to control the order of in-
stantiation of startup components by specifying @t ar t up(depends={....}).

3.6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log | og = LogFactory. getLog(CreateO derAction. cl ass);

public O der createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled()) {
| og. debug(" Creating new order for user: " + user.usernane() +
" product: " + product.nane()
+ " quantity: " + quantity);
}

return new Order(user, product, quantity);

It is difficult to imagine how the code for a simple log message could possibly be more verbose. There is more
lines of code tied up in logging than in the actual business logic! | remain totally astonished that the Java com-
munity has not come up with anything better in 10 years.

Seam provides alogging API built on top of Apache commons-logging that simplifies this code significantly:

@ogger private Log | og;

public Order createOrder(User user, Product product, int quantity) {

| og. debug(" Creati ng new order for user: #0 product: #1 quantity: #2", user.usernanme(), product.nat

return new Order (user, product, quantity);

Note that we don't need the noisy i f (| og.isDebugEnabl ed()) guard, since string concatenation happens
inside the debug() method. Note also that we don't usually need to specify the log category explicitly, since
Seam knows what component it isinjecting the Log into.

If user and Product are Seam components available in the current contexts, it gets even better:

@.ogger private Log | og;

public O der createOrder(User user, Product product, int quantity) {

| og. debug(" Creati ng new order for user: #{user.usernanme} product: #{product.nane} quantity: #0",

JBoss Seam 1.1.0.BETA 63

(

The contextual component model

return new Order(user, product, quantity);

3.7. The mut abl e interface

Many application servers feature an amazingly broken implementation of Htt pSession clustering, where
changes to the state of mutable objects bound to the session are only replicated when the application calls
setAttribute() explicitly. Thisis a source of bugs that can not effectively be tested for at development time,
since they will only manifest when failover occurs. Furthermore, the actual replication message contains the en-
tire serialized object graph bound to the session attribute, which inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of mutable state
and a sophisticated EJB container can introduce optimizations such as attribute-level replication. Unfortunately,
not all Seam users have the good fortune to be working in an environment that supports EJB 3.0. So, for session
and conversation scoped JavaBean and entity bean components, Seam provides an extra layer of cluster-safe
state management over the top of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication to occur by
calling set Attribute() oncein every request that the component was invoked by the application. Of course,
this strategy is inefficient for read-mostly components. You can control this behavior by implementing the
org. j boss. seam cor e. Mut abl e interface, or by extending or g. j boss. seam cor e. Abst r act Mit abl e, and writ-
ing your own dirty-checking logic inside the component. For example,

@Nane("account ")
public class Account extends AbstractMitabl e

{

private BigDeci mal bal ance;

public void setBal ance(Bi gDeci mal bal ance)

{

setDirty(this.bal ance, bal ance);
t hi s. bal ance = bal ance;

}

publ i c Bi gDeci mal get Bal ance()
{

}

return bal ance;

For session or conversation scoped entity bean components, Seam automatically forces replication to occur by
calling set Attribute() oncein every request. This strategy is not efficient, so session or conversation scope
entity beans should be used with care. Y ou can always write a stateful session bean or JavaBean component to
"manage" the entity bean instance. For example,

@t at ef ul
@Nane("account™)
public class Account Manager extends Abstract Miutabl e

{

private Account account; // an entity bean
@Jnwr ap

public void getAccount ()

{

}

return account;

JBoss Seam 1.1.0.BETA 64

The contextual component model

Note that the Ent i t yHone classin the Seam Framework provides a great example of this pattern.

3.8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to inject them
into our components using @n and use them in value and method binding expressions, etc. Sometimes, we
even need to tie them into the Seam context lifecycle (@est r oy, for example). So the Seam contexts can con-
tain objects which are not Seam components, and Seam provides a couple of nice features that make it easier to
work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component object. A
factory method will be called when a context variable is referenced but has no value bound to it. We define
factory methods using the @act ory annotation. The factory method binds a value to the context variable, and
determines the scope of the bound value. There are two styles of factory method. The first style returns a value,
which is bound to the context by Seam:

@-act or y(scope=CONVERSATI ON)
public List<Custoner> get CustonerlList() {
return ...

}

The second style is amethod of type voi d which binds the value to the context variable itself:

@at aModel Li st <Custoner> custoner Li st ;

@-actory("custonerlList")

public void initCustonerList() {
custonmerList = ... ;

}

In both cases, the factory method is called when we reference the cust oner Li st context variable and its value
is null, and then has no further part to play in the lifecycle of the value. An even more powerful pattern is the
manager component pattern. In this case, we have a Seam component that is bound to a context variable, that
manages the value of the context variable, while remaining invisible to clients.

A manager component is any component with an @anw ap method. This method returns the value that will be
visableto clients, and is called every time a context variable is referenced.

@Nane("customerList")
@cope(CONVERSATI ON)
public class CustomerListManager

{

@Jnwr ap
public List<Custoner> getCustonerList() {
return ...

}

This pattern is especialy useful if we have some heavyweight object that needs a cleanup operation when the
context ends. In this case, the manager component may perform cleanup in the @est r oy method.

JBoss Seam 1.1.0.BETA 65

Chapter 4. Events, interceptors and exception
handling

Complementing the contextual component model, there are two further basic concepts that facilitate the ex-
treme loose-coupling that is the distinctive feature of Seam applications. Thefirst is a strong event model where
events may be mapped to event listeners via JSF-like method binding expressions. The second is the pervasive
use of annotations and interceptors to apply cross-cutting concerns to components which implement business
logic.

4.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to enable the
development of fine-grained, loosely-coupled components in a fine-grained eventing model. Events in Seam
comein several types, most of which we have already seen:

« JSF events

« jBPM transition events

e Seam page actions

e Seam component-driven events

* Seam contextua events

All of these various kinds of events are mapped to Seam components via JSF EL method binding expressions.
For a JSF event, thisis defined in the JSF template:

<h: conmandBut t on val ue="Cick nme!" action="#{hell oWrl d. sayHel |l o}"/>

For ajBPM transition event, it is specified in the JBPM process definition or pageflow definition:

<start-page nane="hell 0" viewid="/hello.jsp">
<transition to="hello0">
<action expressi on="#{hel | oWr| d. sayHel | 0} "/ >
</transition>
</start - page>

You can find out more information about JSF events and jBPM events elsewhere. Lets concentrate for now
upon the two additional kinds of events defined by Seam.

4.1.1. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions in WeB-
I NF/ pages. xm . We can define a page action for either a particular JSF view id:

<pages>
<page viewid="/hello.jsp" action="#{hell oWrl d.sayHel | o}"/>
<pages>

Or we can use awildcard to specify an action that appliesto all view ids that match the pattern:

JBoss Seam 1.1.0.BETA 66

Events, interceptors and exception handling

<pages>
<page viewid="/hello/*" action="#{hell oWrl d. sayHel | 0}"/>
<pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in order of least-
specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will delegate to the defined
JSF navigation rules and a different view may end up being rendered.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or Facelets page!
So, we can reproduce the functionality of atraditional action-oriented framework like Struts or WebWork using
page actions. For example:

TODO. translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for example, HTTP
GET requests).

Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and "parameters’
(input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request parameters.
(Unlike JSF form inputs, which are anything but!)

Seam |ets us provide a value binding that maps a named request parameter to an attribute of a model object.

<pages>
<page viewid="/hello.jsp" action="#{hell oWrld. sayHel | 0}">
<param nanme="first Name" val ue="#{person. firstNane}"/>
<par am nane="1| ast Nane" val ue="#{person. | ast Nane}"/ >
</ page>
<pages>

The <par ame declaration is bidirectional, just like a value binding for a JSF input:

* When a non-faces (GET) request for the view id occurs, Seam sets the value of the named request paramet-
er onto the model object, after performing appropriate type conversions.

* Any <s:1ink> transparently includes the request parameter. The value of the parameter is determined by
evaluating the value binding during the render phase (when the <s: I i nk> is rendered).

* Any navigation rule with a <redi rect / > to the view id transparently includes the request parameter. The
value of the parameter is determined by evaluating the value binding at the end of the invoke application
phase.

* The value is transparently propagated with any JSF form submission for the page with the given view id.
(This means that view parameters behave like PAGE-scoped context variables for faces requests.

The essential idea behind all this is that however we get from any other page to /hello.jsp (or from /
hel l 0. jsp back to /hello.jsp), the value of the model attribute referred to in the value binding is "re-
membered"”, without the need for a conversation (or other server-side state).

This all sounds pretty complex, and you're probably wondering if such an exotic construct is really worth the

JBoss Seam 1.1.0.BETA 67

Events, interceptors and exception handling

effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the time to understand
this stuff. Page parameters are the most elegant way to propagate state across a non-faces request. They are es-
pecially cool for problems like search screens with bookmarkable results pages, where we would like to be able
to write our application code to handle both POST and GET requests with the same code. Page parameters
eliminate repetitive listing of request parameters in the view definition and make redirects much easier to code.

Note that you don't need an actual page action method binding to use a page parameter. The following is per-
fectly valid:

<pages>
<page viewid="/hello.jsp">
<param nanme="first Name" val ue="#{person.firstName}"/>
<par am nane="| ast Nane" val ue="#{person. | ast Nane}"/>
</ page>
<pages>

Y ou can even specify a JSF converter:

<pages>
<page viewid="/cal culator.jsp" action="#{cal culator.cal cul ate}">
<par am nane="x" val ue="#{cal cul ator.| hs}"/>
<param nane="y" val ue="#{cal cul ator.rhs}"/>
<par am nanme="op" converterld="com mny. cal cul at or. Qper at or Converter"/>
</ page>
<pages>

<pages>
<page viewid="/cal cul ator.jsp" action="#{cal cul ator.cal cul ate}">
<par am nane="x" val ue="#{cal cul ator. | hs}"/>
<par am nanme="y" val ue="#{cal cul ator.rhs}"/>
<par am nane="op" converter="#{operatorConverter}"/>
</ page>
<pages>

Fine-grained files for definition of page actions and parameters

If you have alot of different page actions and page parameters, you will aimost certainly want to split the de-
clarations up over multiple files. You can define actions and parameters for a page with the view id /
cal c/cal cul ator.jsp in aresource named cal c/ cal cul at or. page. xm . The root element in this case is the
<page> element, and the view id isimplied:

<page action="#{cal cul ator.cal cul ate}">

<par am nane="x" val ue="#{cal cul ator.| hs}"/>

<param name="y" val ue="#{cal cul ator.rhs}"/>

<par am nane="op" converter="#{operatorConverter}"/>
</ page>

4.1.2. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components may even imple-
ment the observer/observable pattern. But to enable components to interact in a more loosely-coupled fashion
than is possible when the components call each others methods directly, Seam provides component-driven
events.

We specify event listeners (observers) in WEB- | NF/ event s. xni .

<event s>
<event type="hello">
<action expressi on="#{hel | oLi st ener. sayHel | oBack}"/ >

JBoss Seam 1.1.0.BETA 68

Events, interceptors and exception handling

<action expressi on="#{l ogger.|ogHello}"/>
</ event >

<event s>

Where the event type isjust an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear in
event s. xnl . How does a component raise an event? Seam provides a built-in component for this.

@ane(" hel | oWorl d")
public class Hell oWrld {
public void sayHello() {
FacesMessages. i nstance().add("Hello World!");
Events.instance().rai seEvent ("hello");

Notice that this event producer has no dependency upon event consumers. The event listener may now be im-
plemented with absolutely no dependency upon the producer:

@ame(" hel | oLi stener")
public class HelloListener {
public void sayHel | oBack() {
FacesMessages. i nstance().add("Hello to you too!");

}

If you don't liketheevents. xm file, we can use an annotation instead:

@Nane(" hel | oLi st ener™")
public class HelloListener {
@server ("hel | 0")
public void sayHel | oBack() ({
FacesMessages. i nstance().add("Hello to you too!");

}

Y ou might wonder why I've not mentioned anything about event objects in this discussion. In Seam, thereis no
need for an event object to propagate state between event producer and listener. All state is held in the Seam
contexts, and is shared between components.

4.1.3. Contextual events

Seam defines a number of built-in events that the application can use to perform specia kinds of framework in-
tegration. The events are:

® org.jboss.
* org.jboss.
® org.jboss.
® org.jboss.
®* org.jboss.

® org.jboss.

seam preSet Vari abl e. <name> — called when the context variable <name> is set

seam post Set Var i abl e. <name> — called when the context variable <name> is set

seam pr eRenpveVar i abl e. <nane> — called when the context variable <name> is unset
seam post RenpbveVar i abl e. <name> — called when the context variable <name> is unset
seam pr eDest r oyCont ext . <SCOPE> — called before the <SCOPE> context is destroyed

seam post Dest r oyCont ext . <SCOPE> — called after the <SCOPE> context is destroyed

JBoss Seam 1.1.0.BETA 69

Events, interceptors and exception handling

e org.jboss. seam begi nConversati on — caled whenever along-running conversation begins
e org.jboss. seam endConversati on — called whenever along-running conversation ends

e org.jboss. seam begi nPagef | ow. <name> — called when the pageflow <name> begins

e org.jboss. seam endPagef | ow. <name> — called when the pageflow <name> ends

* org.jboss. seam creat eProcess. <nane> — called when the process <name> is created

* org.jboss.seam endProcess. <name> — called when the process <name> ends

e org.jboss.seaminitProcess. <name> — called when the process <name> is associated with the conver-
sation

* org.jboss.seam i nit Task. <nane> — called when the task <name> is associated with the conversation
* org.jboss. seam start Task. <name> — called when the task <name> is started

* org.jboss. seam endTask. <name> — called when the task <name> is ended

e org.|boss. seam post Cr eat e. <name> — called when the component <name> is created

* org.jboss. seam preDestroy. <name> — called when the component <name> is destroyed

Seam components may observe any of these events in just the same way they observe component-driven
events.

4.2. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an interceptor to a bean,
you need to write a class with a method annotated @ oundi nvoke and annotate the bean with an
@ nt er cept or s annotation that specifies the name of the interceptor class. For example, the following inter-
ceptor checks that the user islogged in before allowing invoking an action listener method:

public class Loggedlnlnterceptor {

@\r oundl nvoke
publ i c Object checkLoggedl n(lnvocati onContext invocation) throws Exception {

bool ean i sLoggedl n = Cont exts. get Sessi onContext().get ("l oggedln")!=null;
if (isLoggedln) {

//the user is already |ogged in

return invocation. proceed();

}

el se {
//the user is not logged in, fwd to | ogin page
return "l ogin";

}

To apply this interceptor to a session bean which acts as an action listener, we must annotate the session bean
@ nt er cept or s(Logged| nl nt er cept or . cl ass) . Thisis a somewhat ugly annotation. Seam builds upon the in-
terceptor framework in EJB3 by allowing you to use @ nt er cept or s as a meta-annotation. In our example, we
would create an @ ogged! n annotation, as follows:

JBoss Seam 1.1.0.BETA 70

Events, interceptors and exception handling

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

@ nt er cept or s(LoggedI nl nt er cept or. cl ass)
public @nterface Loggedln {}

We can now simply annotate our action listener bean with @ oggedi n to apply the interceptor.

@5t at el ess
@ame(" changePasswor dActi on")

@.oggedl n
@ nt er cept or s(Seam nt ercept or . cl ass)
public class ChangePasswor dAction inpl enments ChangePassword {

public String changePassword() { ... }

If interceptor ordering is important (it usualy is), you can add @ nt er cept or annotations to your interceptor
classes to specify a partial order of interceptors.

@ nterceptor(around={Bijectionlnterceptor.class,
Val i dati onl nt erceptor. cl ass,
Conver sati onl nterceptor. cl ass},
wi t hi n=Renpvel nt er cept or. cl ass)
public class Loggedl nlnterceptor

{
}

Y ou can even have a"client-side" interceptor, that runs around any of the built-in functionality of EJB3:

@ nt er cept or (t ype=CLI ENT)
public class Loggedl nl nterceptor

{
}

EJB interceptors are stateful, with alifecycle that is the same as the component they intercept. For interceptors
which do not need to maintain state, Seam lets you get a performance optimization by specifying
@nterceptor(statel ess=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including the inter-
ceptors named in the previous example. You don't have to explicitly specify these interceptors by annotating
your components; they exist for al interceptable Seam components.

Y ou can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @ oundl nvoke), but also for the lifecycle meth-
ods @ost Const ruct, @r eDest r oy, @r ePassi vat e and @&ost Act i ve. Seam supports all these lifecycle meth-
ods on both component and interceptor not only for EJB3 beans, but also for JavaBean components (except
@r eDest r oy Which is not meaningful for JavaBean components).

4.3. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this problem,
Seam lets you define how a particular class of exception is to be treated by annotating the exception class, or

JBoss Seam 1.1.0.BETA 71

Events, interceptors and exception handling

declaring the exception class in an XML file. This facility is meant to be combined with the EJB 3.0-standard
@\wppl i cati onExcept i on annotation which specifies whether the exception should cause a transaction rollback.

Note that Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components. system excep-
tions always cause a transaction rollback, application exceptions do not cause a rollback by default, but do if
@ppl i cati onException(rol | back=true) isspecified. (An application exception is any checked exception, or
any unchecked exception annotated @ppl i cat i onExcepti on. A system exception is any unchecked exception
without an @ppl i cati onExcept i on annotation.)

This exception results in a HTTP 404 error whenever it propagates out of the Seam component layer. It does
not roll back the current transaction.

@Ht t pError (error Code=404)
public class Applicati onException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component layer. It also
ends the current conversation. It also rolls back the current transaction.

@Redi rect (viewld="/failure.xhtm", end=true)
@\ppl i cati onException(rol | back=true)
public class Unrecoverabl eApplicati onException extends RuntimeException { ... }

Note that @redi rect does not work for exceptions which occur during the render phase of the JSF lifecycle.

This exception results in immediate rendering of the view, along with a message to the user, when it propagates
out of the Seam component layer. It also rolls back the current transaction.

@Render (view d="/error.xhtm ", nessage="Unexpected error")
public class SystenExcepti on extends RuntineException { ... }

Note that @render only works when the exception occurs during the | NVOKE_APPLI CATI ON phase.

Since we can't add annotations to all the exception classes we are interested in, Seam also lets us specify this
functionality in VEB- | NF/ excepti ons. xm .

<excepti ons>

<exception class="j avax. persi stence. Entit yNot FoundExcepti on">
<http-error error-code="404"/>
</ excepti on>

<exception class="j avax. persi st ence. Persi st enceExcepti on">
<r ender >Dat abase access fail ed</render >
<end- conversation/ >

</ exception>

<excepti on>
<redirect viewid="/search.xhtm ">Unexpected failure</redirect>
<end- conver sati on/ >

</ exception>

</ exceptions>

The last <except i on> declaration does not specify a class, and is a catch-all for any exception for which hand-
ling is not otherwise specified viaannotations or in except i ons. xni .

JBoss Seam 1.1.0.BETA 72

Chapter 5. Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation™ came about as a merger of three different ideas:

e The idea of a workspace, which | encountered in a project for the Victorian government in 2002. In this
project | was forced to implement workspace management on top of Struts, an experience | pray never to
repeat.

» The idea of an application transaction with optimistic semantics, and the realization that existing frame-
works based around a statel ess architecture could not provide effective management of extended persistence
contexts. (The Hibernate team is truly fed up with copping the blame for Lazy! niti al i zati onExcept i onS,
which are not really Hibernate's fault, but rather the fault of the extremely limiting persistence context mod-
e supported by stateless architectures such as the Spring framework or the traditional stateless session
facade (anti)pattern in J2EE.)

¢ Theideaof aworkflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct that lets us
build richer and more efficient applications with less code than before.

5.1. Seam's conversation model

The examples we have seen so far make use of avery simple conversation model that follows these rules:

« There is always a conversation context active during the apply request values, process validations, update
model values, invoke application and render response phases of the JSF request lifecycle.

e At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore any previous
long-running conversation context. If none exists, Seam creates a new temporary conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to a long running
conversation.

« When an @nd method is encountered, any long-running conversation context is demoted to a temporary
conversation.

« At theend of the render response phase of the JSF request lifecycle, Seam stores the contents of a long run-
ning conversation context or destroys the contents of atemporary conversation context.

e Any faces request (a JSF postback) will propagate the conversation context. By default, non-faces requests
(GET requests, for example) do not propagate the conversation context, but see below for more information
on this.

« If the JSF request lifecycle is foreshortened by aredirect, Seam transparently stores and restores the current
conversation context—unless the conversation was aready ended via @nd(bef or eRedi r ect =t r ue) .

Seam transparently propagates the conversation context across JSF postbacks and redirects. If you don't do any-
thing special, a non-faces request (a GET request for example) will not propagate the conversation context and

JBoss Seam 1.1.0.BETA 73

Conversations and workspace management

will be processed in a new temporary conversation. Thisis usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly code the Seam
conversation id as arequest parameter:

Conti nue

Or, the more JSF-ish:

<h: out put Li nk val ue="main. jsf">
<f: param nane="conversati onl d" val ue="#{conversation.id}"/>
<h: out put Text val ue="Conti nue"/>

</ h: out put Li nk>

If you use the Seam tag library, thisis equivalent:

<h: out put Li nk val ue="main.jsf">
<s:conversationl d/>
<h: out put Text val ue="Conti nue"/>
</ h: out put Li nk>

If you wish to disable propagation of the conversation context for a postback, asimilar trick is used:

<h: commandLi nk action="mai n" val ue="Exit">
<f: param nane="conver sati onPropagati on" val ue="none"/>
</ h: commandLi nk>

If you use the Seam tag library, thisis equivalent:

<h: commandLi nk action="mai n" val ue="Exit">
<s:conversati onPropagati on type="none"/>
</ h: commandLi nk>

Note that disabling conversation context propagation is absolutely not the same thing as ending the conversa-
tion.

The conversat i onPropagat i on request parameter, or the <s: conversat i onPropagat i on> tag may even be
used to begin and end conversation, or begin a nested conversation.

<h: commandLi nk acti on="nmai n" val ue="Exit">
<s: conver sationPropagati on type="end"/>
</ h: commandLi nk>

<h: conmandLi nk acti on="mai n* val ue="Sel ect Child">
<s: conversationPropagation type="nested"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="begi n"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="join"/>
</ h: commandLi nk>

This conversation model makes it easy to build applications which behave correctly with respect to multi-
window operation. For many applications, thisis al that is needed. Some complex applications have either or
both of the following additional requirements:

JBoss Seam 1.1.0.BETA 74

Conversations and workspace management

* A conversation spans many smaller units of user interaction, which execute serialy or even concurrently.
The smaller nested conversations have their own isolated set of conversation state, and also have access to
the state of the outer conversation.

e The user is able to switch between many conversations within the same browser window. This feature is
called workspace management.

5.2. Nested conversations

A nested conversation is created by invoking a method marked @egi n(nest ed=t rue) inside the scope of an
existing conversation. A nested conversation has its own conversation context, and aso has read-only access to
the context of the outer conversation. (It can read the outer conversation's context variables, but not write to
them.) When an @nd is subsequently encountered, the nested conversation will be destroyed, and the outer
conversation will resume, by "popping” the conversation stack. Conversations may be nested to any arbitrary
depth.

Certain user activity (workspace management, or the back button) can cause the outer conversation to be re-
sumed before the inner conversation is ended. In this case it is possible to have multiple concurrent nested con-
versations belonging to the same outer conversation. If the outer conversation ends before a nested conversation
ends, Seam destroys all nested conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the application to capture
a consistent continuable state at various points in a user interaction, thus insuring truly correct behavior in the
face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you backbutton.

5.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a non-faces request
(for example, a HTTP GET request). This can occur if the user bookmarks the page, or if we navigate to the
page viaan <h: out put Li nk>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is no JSF action
method, we can't solve the problem in the usual way, by annotating the action with @egi n.

A further problem arises if the page needs some state to be fetched into a context variable. We've already seen
two ways to solve this problem. If that state is held in a Seam component, we can fetch the state in a @ eat e
method. If not, we can define a @act ory method for the context variable.

If none of these options works for you, Seam lets you define a page action in the pages. xni file.

<pages>
<page vi ewid="/nessagelist.jsp" action="#{nessageManager.list}"/>

</ pa§é§>
This action method is called at the beginning of the render response phase, any time the page is about to be

rendered. If a page action returns a non-null outcome, Seam will process any appropriate JSF navigation rules,
possibly resulting in a completely different page being rendered.

If all you want to do before rendering the page is begin a conversation, you can use a built-in action method

JBoss Seam 1.1.0.BETA 75

Conversations and workspace management

that does just that:

<pages>
<page vi ewid="/nessagelist.jsp" action="#{conversation. begin}"/>

</ pa:qé.s>
Note that you can aso cal this built-in action from a JSF control, and, similarly, you can use

#{ conver sati on. end} to end conversations.

To solve the first problem, we now have four options:

* Annotate the @r eat e method with @egi n
* Annotate the @act or y method with @egi n
¢ Annotate the Seam page action method with @egi n

e Use#{conversati on. begi n} asthe Seam page action method

5.4. Using <s: i nk>

JSF command links always perform a form submission via JavaScript, which breaks the web browser's "open in
new window" or "open in new tab" feature. In plain JSF, you need to use an <h: out put Li nk> if you need this
functionality. But there are two major limitations to <h: out put Li nk>.

» JSF provides no way to attach an action listener to an <h: out put Li nk>.
» JSF does not propagate the selected row of a bat aMbdel since there is no actual form submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing to help us with
the second problem. We could work around this by using the RESTful approach of passing a request parameter
and requerying for the selected object on the server side. In some cases—such as the Seam blog example ap-
plication—this is indeed the best approach. The RESTful style supports bookmarking, since it does not require
server-side state. In other cases, where we don't care about bookmarks, the use of @pataMbdel and
@at aModel Sel ecti on iSjust so convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to manage, Seam
providesthe <s: I i nk> JSF tag.

The link may specify just the JSF view id:

<s:link view="/1ogin.xhtm” val ue=*Login"/>

Or, it may specify an action method (in which case the action outcome determines the page that results):

<s:link action="#{l ogin.|ogout}” val ue="Logout”/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action method returns
anon-null outcome:

<s:link view="/|oggedQut.xhtm " action="#{login.logout}” val ue="Logout”/>

The link may be rendered as a button:

JBoss Seam 1.1.0.BETA 76

Conversations and workspace management

<s:link action="#{login.logout}” value="Logout” style="button”/>

The link automatically propagates the selected row of abat aModel using inside <h: dat aTabl e>:

<s:link view="/hotel.xhtm ” action="#{hotel Search. sel ect Hotel }" val ue="#{hotel . nane}"/ >

Y ou can leave the scope of an existing conversation:

<s:link view="/main.xhtm"” propagati on="none”/>

Y ou can begin, end, or nest conversations:

<s:link action="#{i ssueEditor.vi ewCorment}” propagati on="nest”/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{docunent Edi t or. get Docunent}” propagati on="begi n”
pagef | ow=" Edi t Docunent "/ >

Thet askl nst ance attribute if for usein jBPM task lists:

<s:link action="#{docunent Approval . approveOr Rej ect}” tasklnstance="#{task}"/>

(Seethe DVD Store demo application for examples of this.)

5.5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It is convenient to
use a JSF FacesMessage for this. Unfortunately, a successful action often requires a browser redirect, and JSF
does not propagate faces messages across redirects. This makes it quite difficult to display success messagesin
plain JSF.

The built in conversation-scoped Seam component named f acesMessages Solves this problem. (Y ou must have
the Seam redirect filter installed.)

@ame(" edi t Docunent Acti on")

@t at el ess

public class EditDocunentBean inplenents EditDocunent {
@n(create=true) EntityManager em
@n Docunent docunent;
@n(create=true) FacesMessages facesMessages;

public String update() {

em ner ge(docunent) ;
f acesMessages. add(" Docunment updat ed");

Any message added to f acesMessages is used in the very next render response phase for the current conversa
tion. This even works when there is no long-running conversation since Seam preserves even temporary con-
versation contexts across redirects.

Y ou can even include JSF EL expressions in afaces message summary:

facesMessages. add(" Docunent #{docunent.title} was updated");

JBoss Seam 1.1.0.BETA 77

Conversations and workspace management

Y ou may display the messages in the usual way, for example:

<h: messages gl obal Onl y="true"/>

5.6. Using an "explicit" conversation id

Ordinarily, Seam generates a meaningless unique id for each conversation in each session. Y ou can customize
the id value when you begin the conversation.

This feature can be used to customize the conversation id generation agorithm like so:

@egi n(i d="#{myConversati onl dGenerator. nextld}")
public void editHotel () { ... }

Or it can be used to assign ameaningful conversation id:

@Begi n(i d="hot el #{ hotel .id}")
public String editHotel () { ... }

@egi n(i d="hot el #{ hot el sDat aMbdel . rowDat a. i d} ")
public String selectHotel () { ... }

@egi n(id="entry#{parans[' blogld]}")
public String viewBlogEntry() { ... }

@egi nTask(i d="t ask#{t askl nstance.id}")
public String approveDocunment() { ... }

Clearly, these example result in the same conversation id every time a particular hotel, blog or task is selected.
So what happens if a conversation with the same conversation id already exists when the new conversation be-
gins? Well, Seam detects the existing conversation and redirects to that conversation without running the
@egi n method again. This feature helps control the number of workspaces that are created when using work-
space management.

5.7. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam makes workspace
management completely transparent at the level of the Java code. To enable workspace management, all you
needtodois:

* Provide description text for each view id (when using JSF navigation rules) or page node (when using jPDL
pageflows). This description text is displayed to the user by the workspace switchers.

¢ Include one or more of the standard workspace switcher JSP or facel ets fragments in your pages. The stand-
ard fragments support workspace management via a drop down menu, a list of conversations, or bread-
crumbs.

5.7.1. Workspace management and JSF navigation

When you use JSF navigation rules, Seam switches to a conversation by restoring the current vi ewi d for that

JBoss Seam 1.1.0.BETA 78

Conversations and workspace management

conversation. The descriptive text for the workspace is defined in afile called pages. xm that Seam expects to
find in the veB- I NF directory, right next to f aces- confi g. xni :

<pages>
<page vi ewid="/main. xhtnm ">Search hotels: #{hotel Booki ng. searchStri ng} </ page>
<page viewid="/hotel.xhtm ">View hotel: #{hotel.nanme}</page>
<page vi ew i d="/book. xht ml ">Book hotel: #{hotel.name}</page>
<page viewid="/confirmxhtm ">Confirm #{booking. description}</page>
</ pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only missing func-
tionality will be the ability to switch workspaces.

5.7.2. Workspace management and jPDL pageflow

When you use ajPDL pageflow definition, Seam switches to a conversation by restoring the current jBPM pro-
cess state. Thisis amore flexible model since it allows the same vi ewi d to have different descriptions depend-
ing upon the current <page> node. The description text is defined by the <page> node:

<pagef | ow defi niti on nane="shoppi ng" >

<start-state nane="start">
<transition to="browse"/>
</start-state>

<page nane="browse" viewid="/browse.xhtm ">
<descri pti on>DVD Sear ch: #{search. searchPattern}</description>
<transition to="browse"/>
<transiti on name="checkout" to="checkout"/>

</ page>

<page nane="checkout" viewi d="/checkout.xhtm ">
<descri pti on>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transiti on name="conpl ete" to="conplete"/>

</ page>

<page nane="conpl ete" viewid="/conplete.xhtm ">
<end-conversation />
</ page>

</ pagef | ow definition>

5.7.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets you switch to
any current conversation, or to any other page of the application:

<h: sel ect OneMenu val ue="#{sw tcher. conversati onl dO Qut cone}" >
<f:selectltemitenlLabel ="Find | ssues" itenVal ue="findlssue"/>
<f:selectltemitenlLabel ="Create |ssue" itenVal ue="editlssue"/>
<f:selectltens val ue="#{switcher.selectltens}"/>

</ h: sel ect OneMenu>

<h: conmandBut t on acti on="#{sw tcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two additional items
that let the user begin a new conversation.

JBoss Seam 1.1.0.BETA 79

Conversations and workspace management

Cnmmentunlssue[‘I]fmF‘rmect[HHH] =

Find lssues
Create lssue
Browse Projects
Create Project
Me | |ssue [1] for Project [HHH]

in K Project [HHH
Comment on Issue [1] for Project [HHH]

5.7.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as atable:

<h: dat aTabl e val ue="#{conversationList}" var="entry"
render ed="#{not enpty conversationList}">
<h: col utm>
<f:facet nane="header">Wrkspace</f:facet>
<h: commandLi nk action="#{entry.select}" val ue="#{entry. description}"/>
<h: out put Text val ue="[current]" rendered="#{entry.current}"/>
</ h: col utm>
<h: col utm>
<f:facet name="header">Activity</f:facet>
<h: out put Text val ue="#{entry.startDateti ne}">
<f:convertDateTime type="tinme" pattern="hh:mm a"/>
</ h: out put Text >
<h: out put Text val ue=" - "/>
<h: out put Text val ue="#{entry. | astDatetine}">
<f:convertDateTime type="tinme" pattern="hh:mm a"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<f:facet nane="header">Action</f:facet>
<h: conmandBut ton acti on="#{entry.select}" value="#{nmsg. Switch}"/>
<h: conmandBut t on action="#{entry. destroy}" val ue="#{nmsg. Destroy}"/>
</ h: col utm>
</ h: dat aTabl e>

We imagine that you will want to customize this for your own application.

Workspace Workspace activity Action

Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | Switch || Destroy |
|ssue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Project [HHH] 01:18 PM - 01:18 PM | Switch || Destroy |

The conversation list is nice, but it takes up a lot of space on the page, so you probably don't want to put it on
every page.

Notice that the conversation list lets the user destroy workspaces.

5.7.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs are a list of

JBoss Seam 1.1.0.BETA 80

Conversations and workspace management

links to conversations in the current conversation stack:

<t:datali st val ue="#{conversationStack}" var="entry">

<h: out put Text val ue=" | "/>

<h: commandLi nk val ue="#{entry. description}" action="#{entry.select}"/>
</t:dataList>

Notice that here we are using the MyFaces <t : dat aLi st > component, since JSF amazingly does not provide
any standard component for looping.

Home | Find |Issues | Create Issue | Project [HHH] | Issue [1] for Project [HHH]
—lssue Attributes |

Please refer to the Seam Issue Tracker demo to see all this functionality in action!

5.8. Seam-managed persistence contexts and atomic conver-
sations

Seam provides built-in components for EJB 3.0 and Hibernate persistence context management that support the
use of persistence contexts scoped to the conversation. This useful feature allows you to program optimistic
transactions that span multiple requests to the server without the need to use the merge() operation or to re-load
data at the beginning of each request, and without the need to wrestle with the dreaded Lazylnitiali za-
ti onException OF NonUni queChj ect Excepti on. Please see the configuration chapter for information about
configuring Seam-managed persistence contexts and Seam-managed transactions.

As with any optimistic transaction management, transaction isolation and consistency can be achieved via use
of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy to use optimistic locking, by
providing the @er si on annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of each transaction.
This is sometimes the desired behavior. But very often, we would prefer that all changes are held in memory
and only written to the database when the conversation ends successfully. This alows for truly atomic conver-
sations. As the result of atruly stupid and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase
members of the EJB 3.0 expert group, there is currently no simple, usable and portable way to implement atom-
ic conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor extension to
the FI ushmodeTypes defined by the specification, and it is our expectation that other vendors will soon provide
asimilar extension.

Seam lets you specify Fl ushMbdeType. MANUAL when beginning a conversation. Currently, this works only when
Hibernate is the underlying persistence provider, but we plan to support other equivalent vendor extensions.

@n(create=true) EntityManager em //a Seam managed persistence context

@egi n(f | ushMode=MANUAL)
public void begi nCl ai MW zard() {
claim= emfind(daimclass, clainmd);

}

Now, the cl ai m object remains managed by the persistence context for the rest ot the conversation. We can
make changes to the claim:

public void addPartyToC ai n{) {
Party party =;
cl ai maddParty(party);

JBoss Seam 1.1.0.BETA 81

Conversations and workspace management

But these changes will not be flushed to the database until we explicitly force the flush to occur:

@nd

public void comm td ain() {
em flush();

}

5.9. Seam and AJAX

AJAX requests from a JSF page are not processed by the JSF servlet, so Seam provides a servlet filter that can
be applied to the servlet processing your AJAX calls (or, in fact, to any servlet at al).

<filter>
<filter-name>Seam Servlet Filter</filter-nane>
<filter-class>org.jboss.seam servlet. SeanServletFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>Seam Servl et Filter</filter-nanme>
<url-pattern>*. aj ax</url-pattern>
</filter-mappi ng>

This servlet filter is responsible for initializing all Seam contexts before passing control to the servlet. It expects
to find the conversation id of any conversation context in a request parameter named conver sati onl d. You are
responsible for ensuring that it gets sent in the request.

Y ou are also responsible for ensuring propagation of any new conversation id back to the client. Seam exposes
the conversation id as a property of the built in component conver sat i on.

Seam also provides the Seam Remoting framework, a simple way to expose any method of a Seam component
for invocation by an asynchronous JavaScript request simply by annotating the methods that should be access-
ible in the client. See the Seam Remoting chapter for further information.

5.10. Seam and SOAP

TODO

JBoss Seam 1.1.0.BETA 82

Chapter 6. Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM lets you rep-
resent a business process or user interaction as a graph of nodes representing wait states, decisions, tasks, web
pages, etc. The graph is defined using asimple, very readable, XML dialect caled jPDL, and may be edited and
visualised graphically using an eclipse plugin. jPDL is an extensible language, and is suitable for a range of
problems, from defining web application page flow, to traditional workflow management, al the way up to or-
chestration of servicesin a SOA environment.

Seam applications use jBPM for two different problems:

» Defining the pageflow involved in complex user interactions. A jPDL process definition defines the page
flow for a single conversation. A Seam conversation is considered to be a relatively short-running interac-
tion with asingle user.

« Defining the overarching business process. The business process may span multiple conversations with
multiple users. Its state is persistent in the jJBPM database, so it is considered long-running. Coordination of
the activities of multiple users is a much more complex problem than scripting an interaction with a single
user, so jBPM offers sophisticated facilities for task management and dealing with multiple concurrent
paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity. Pageflow, conversa-
tion and task all refer to a single interaction with a single user. A business process spans many tasks. Futher-
more, the two applications of jBPM are totally orthogonal. Y ou can use them together or independently or not
at all.

Y ou don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using JSF's navigation
rules, and if your application is more data-driven that process-driven, you probably don't need jBPM. But we're
finding that thinking of user interaction in terms of a well-defined graphical representation is helping us build
more robust applications.

6.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

e Using JSF navigation rules - the statel ess navigation model
e Using jPDL - the stateful navigation model
Very simple applications will only need the stateless navigation model. Very complex applications will use

both models in different places. Each model hasits strengths and weaknesses!

6.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly to the result-
ing page of the view. The navigation rules are entirely oblivious to any state held by the application other than
what page was the source of the event. This means that your action listener methods must sometimes make de-
cisions about the page flow, since only they have access to the current state of the application.

Here is an example page flow definition using JSF navigation rules:

JBoss Seam 1.1.0.BETA 83

Pageflows and business processes

<navi gati on-rul e>
<fromvi ew i d>/ nunber Guess. j sp</fromvi ewid>

<navi gati on- case>
<f r om out cone>guess</from out come>
<t 0-vi ew i d>/ nunber Quess. j sp</to-vi ewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f r om out conme>w n</ f r om out cone>
<to-viewid>wn.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f rom out cone>| ose</from out cone>
<to-viewid>/|ose.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

</ navi gati on-rul e>

If you find navigation rules overly verbose, you can return view ids directly from your action listener methods:

public String guess() {
i f (guess==randomNunber) return "/w n.jsp";
i f (++guessCount ==maxQ@uesses) return "/l ose.jsp";
return null;

Note that this resultsin aredirect. Y ou can even specify parameters to be used in the redirect:

public String search() {
return "/searchResul ts.]sp?searchPattern=#{searchActi on. searchPattern}";
}

The stateful model defines a set of transitions between a set of named, logical application states. In this model,
it is possible to express the flow of any user interaction entirely in the jPDL pageflow definition, and write ac-
tion listener methods that are completely unaware of the flow of the interaction.

Here is an example page flow definition using jPDL:

<pagef | ow defi niti on name="nunber Guess" >

<start-page name="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<redirect/>
<transition name="guess" to="eval uateGuess">
<action expression="#{nunber Guess. guess}" />
</transition>
</start - page>

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}">
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRerai ni ngGuesses"/>

</ deci si on>

<deci si on nane="eval uat eRenai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}" >
<transition name="true" to="|ose"/>
<transition nane="fal se" to="di spl ayGuess"/>

</ deci si on>

<page name="wi n" viewid="/wn.jsp">
<redirect/>
<end- conversation />

</ page>

JBoss Seam 1.1.0.BETA 84

Pageflows and business processes

<page nane="|ose" viewid="/|ose.jsp">
<redirect/>
<end-conversation />

</ page>

</ pagef | ow defi niti on>

B seam.test X = O 5% outline 33 =0
[Select B
£, Maroues (p i e +-@ rumberGuess

i3 Start start

ChDecision

Erage .

—+ Transition = displayGuess

gquess falze

o ==Decisionss= false i ==Decision==
4 . _—
"" evaluateGuess evaluateRemainingGuesses

rue frue
= ==Page== = ==Fage==
~ win ~ lose

Ciagram | Design | Source

There are two things we notice immediately here:

e The JSF navigation rules are much simpler. (However, this obscures the fact that the underlying Java code
is more complex.)

e The jPDL makes the user interaction immediately understandable, without us needing to even look at the
JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the page flow), there are
aconstrained set of possible transitions to other states. The stateless model is an ad hoc model which is suitable
to relatively unconstrained, freeform navigation where the user decides where he/she wants to go next, not the
application.

The stateful/statel ess navigation distinction is quite similar to the traditional view of modal/modeless interac-
tion. Now, Seam applications are not usually modal in the simple sense of the word - indeed, avoiding applica
tion modal behavior is one of the main reasons for having conversations! However, Seam applications can be,
and often are, modal at the level of a particular conversation. It is well-known that modal behavior is something
to avoid as much as possible; it is very difficult to predict the order in which your users are going to want to do
things! However, there is no doubt that the stateful model hasits place.

The biggest contrast between the two models is the back-button behavior.

6.1.2. Seam and the back button

JBoss Seam 1.1.0.BETA 85

Pageflows and business processes

When JSF navigation rules are used, Seam lets the user freely navigate via the back, forward and refresh but-
tons. It is the responsibility of the application to ensure that conversational state remains internally consistent
when this occurs. Experience with the combination of web application frameworks like Struts or WebWork -
that do not support a conversational model - and statel ess component models like EJB statel ess session beans or
the Spring framework has taught many developers that this is close to impossible to do! However, our experi-
ence is that in the context of Seam, where there is a well-defined conversational model, backed by stateful ses-
sion beans, it is actualy quite straightforward. Usualy it is as simple as combining the use of no-
conver sati on-vi ewi d with null checks at the beginning of action listener methods. We consider support for
freeform navigation to be almost aways desirable.

In this case, the no- conversati on- vi ewi d declaration goes in pages. xni . It tells Seam to redirect to a differ-
ent page if arequest originates from a page rendered during a conversation, and that conversation no longer ex-
ists:

<page vi ewid="/checkout.xhtm "
no- conversation-vi ewid="/min.xhtm"/>

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition back to a previ-
ous state. Since the stateful model enforces a defined set of transitions from the current state, back buttoning is
be default disallowed in the stateful model! Seam transparently detects the use of the back button, and blocks
any attempt to perform an action from a previous, "stale" page, and simply redirects the user to the "current”
page (and displays a faces message). Whether you consider this a feature or a limitation of the stateful model
depends upon your point of view: as an application developer, it is a feature; as a user, it might be frustrating!
Y ou can enable backbutton navigation from a particular page node by setting back="enabl ed".

<page nane="checkout"
vi ewi d="/checkout . xht m "
back="enabl ed" >
<redirect/>
<transition to="checkout"/>
<transiti on name="conpl ete" to="conplete"/>
</ page>

This allows backbuttoning fromthe checkout stateto any previous state!

Of course, we still need to define what happens if a request originates from a page rendered during a pageflow,
and the conversation with the pageflow no longer exists. In this case, the no- conversati on-vi ewi d declara-
tion goes into the pageflow definition:

<page nane="checkout"
vi ew i d="/checkout . xhtm "
back="enabl ed"
no- conversation-vi ewid="/min. xhtm ">
<redirect/>
<transition to="checkout"/>
<transition name="conpl ete" to="conpl ete"/>
</ page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when to prefer one
model over the other.

6.2. Using jPDL pageflows

6.2.1. Installing pageflows

JBoss Seam 1.1.0.BETA 86

Pageflows and business processes

We need to install the Seam jBPM-related components, and tell them where to find our pageflow definition.
We can specify this Seam configuration in conponent s. xni .

<conponent cl ass="org.] boss. seam core. Jbpni >
<property nanme="pagefl owDefi ni ti ons">pagefl ow. j pdl . xnml </ property>
</ conponent >

Thefirst lineinstalls jBPM, the second points to a jPDL-based pageflow definition.

6.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a @egin,
@Begi nTask Or @t ar t Task annotation:

@egi n(pagef | ow="nunber guess")
public void begin() { ... }

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @act ory Or @r eat e method,
for example—we consider ourselves to be aready at the page being rendered, and use a<st art - page> node as
the first node in the pageflow, asin the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action listener de-
termines which is the first page to be rendered. In this case, we use a <start - st at e> as the first node in the
pageflow, and declare atransition for each possible outcome:

<pagef | ow defi ni ti on name="vi ewkdi t Docunent " >

<start-state nanme="start">
<transition name="docunent Found" to="di spl ayDocunment"/>
<transition name="docunent Not Found" to="not Found"/>
</start-state>

<page nane="di spl ayDocunent" vi ewi d="/docunent.jsp">
<transition nanme="edit" to="editDocunent"/>
<transition nane="done" to="nain"/>

</ page>

<page nane="not Found" view i d="/404.]sp">
<end- conver sati on/ >
</ page>

</ pagef | ow definition>

6.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page nane="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<redirect/>
<transition name="guess" to="eval uateCGuess">
<action expression="#{nunber Quess. guess}" />
</transition>
</ page>

Thevi ewi d isthe JSF view id. The <r edi r ect / > element has the same effect as <r edi rect / > in a JSF naviga-
tion rule: namely, a post-then-redirect behavior, to overcome problems with the browser's refresh button. (Note

JBoss Seam 1.1.0.BETA 87

Pageflows and business processes

that Seam propagates conversation contexts over these browser redirects. So there is no need for a Ruby on
Rails style "flash" construct in Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or command link in
nunber Guess. j sp.

<h: conmandBut t on type="subnmit" val ue="Quess" acti on="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action by calling the
guess() method of the nunber Guess component. Notice that the syntax used for specifying actions in the jPDL
isjust afamiliar JSF EL expression, and that the transition action handler is just a method of a Seam compon-
ent in the current Seam contexts. So we have exactly the same event model for jBPM events that we already
have for JSF events! (The One Kind of Suff principle.)

In the case of a null outcome (for example, a command button with no acti on defined), Seam will signal the
transition with no name if one exists, or else simply redisplay the page if all transitions have names. So we
could dlightly simplify our example pageflow and this button:

<h: conmandBut t on type="subm t" val ue="CGuess"/>

Would fire the following un-named transition:

<page name="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<redirect/>
<transition to="eval uat eGuess" >
<action expression="#{nunber Guess. guess}" />
</transition>
</ page>

It is even possible to have the button call an action method, in which case the action outcome will determine the
transition to be taken:

<h: conmandBut t on type="subnmit" val ue="Quess" acti on="#{nunber Guess. guess}"/>

<page name="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<transition nane="correct Guess" to="w n"/>
<transition name="incorrect Guess" to="eval uat eGuess"/>
</ page>

However, thisis considered an inferior style, since it moves responsibility for controlling the flow out of the
pageflow definition and back into the other components. It is much better to centralize this concern in the page-
flow itself.

6.2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do need the
<deci si on> node, however:

<deci si on nane="eval uat eGuess" expressi on="#{nunber Guess. correct GQuess}">
<transition name="true" to="win"/>
<transition nane="fal se" to="eval uat eRenai ni ngGuesses"/ >

</ deci si on>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

6.2.5. Ending the flow

JBoss Seam 1.1.0.BETA 88

Pageflows and business processes

We end the conversation using <end- conver sat i on> or @nd. (In fact, for readability, use of both is encour-
aged.)

<page name="wi n" viewid="/wn.jsp">
<redirect/>
<end- conver sati on/ >

</ page>

Optionally, we can specify atransi ti on name. In this case, Seam will signal the end of the current task in the
overarching business process.

<page name="wi n" viewid="/wn.jsp">
<redirect/>
<end- conversation transition="success"/>
</ page>

6.3. Business process management in Seam

A business processis awell-defined set of tasks that must be performed by users or software systems according
to well-defined rules about who can perform a task, and when it should be performed. Seam's jBPM integration
makes it easy to display lists of tasks to users and let them manage their tasks. Seam aso lets the application
store state associated with the business process in the BUSI NESS_PROCESS context, and have that state made per-
sistent viajBPM variables.

A simple business process definition looks much the same as a page flow definition (One Kind of Suff), except
that instead of <page> nodes, we have <t ask- node> nodes. In a long-running business process, the wait states
are where the system is waiting for some user to log in and perform atask.

<process-definition name="t odo" >

<start-state name="start">
<transition to="todo"/>
</start-state>

<t ask- node nanme="t odo" >
<task nanme="todo" description="#{todoList.description}">
<assignnment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>
</t ask- node>

<end- st at e nane="done"/ >

</ process-definition>

JBoss Seam 1.1.0.BETA 89

Pageflows and business processes

B T >
G resources X = O || & Properties 2 3 = O
-+ foe

il Marguee
ﬁ;St r? - <<Siart State>> Property Value #
bt T T MName
State . Source start
= End ! Target todo

=[5 Fork
ohe Join o <<Task Node>>
.7 Decision 2 todo

Mode

¥ Task Node

—+ Transition

=<fEnd State==
]
done

Diagram | Swimlanes Design | Source

It is perfectly possible that we might have both jPDL business process definitions and jPDL pageflow defini-
tions in the same project. If so, the relationship between the two is that a single <t ask> in a business process
corresponds to a whole pageflow <pr ocess- definition>

6.4. Using jPDL business process definitions

6.4.1. Installing process definitions
We need to install JBPM, and tell it where to find the business process definitions:

<conponent cl ass="org.jboss. seam core. Jbpni' >
<property nanme="processDefinitions">todo.jpdl.xm </property>
</ conponent >

6.4.2. Initializing actor ids

We aways need to know what user is currently logged in. jBPM "knows" users by their actor id and group act-
or ids. We specify the current actor ids using the built in Seam component named act or :

@n(create=true) Actor actor;
public String login() {

actor.setld(user.getUserNanme());
act or. get G oupActorlds().addAl | (user.get G oupNames());

6.4.3. Initiating a business brocess

To initiate a business process instance, we use the @r eat ePr ocess annotation:

JBoss Seam 1.1.0.BETA 90

Pageflows and business processes

@Cr eat eProcess(definition="todo")
public void createTodo() { ... }

6.4.4. Task assignment

When a process starts, task instances are created. These must be assigned to users or user groups. We can either
hardcode our actor ids, or delegate to a Seam component:

<task nanme="t odo" descri ption="#{todoLi st.description}">
<assi gnment actor-id="#{actor.id}"/>
</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to a pool:

<task nane="todo" description="#{todoLi st.description}">
<assi gnnment pool ed- act or s="enpl oyees"/ >
</ task>

6.4.5. Task lists

Severa built-in Seam components make it easy to display task lists. The pool edTaskl nst ancelLi st isalist of
pooled tasks that users may assign to themselves:

<h: dat aTabl e val ue="#{pool edTaskl nst anceLi st}" var="task">
<h: col utm>
<f:facet name="header">Description</f:facet>
<h: out put Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<s:link action="#{pool edTask. assi gnToCurrent Actor}" val ue="Assi gn" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>

Note that instead of <s: I i nk> we could have used a plain JSF <h: commandLi nk>:

<h: commandLi nk acti on="#{ pool edTask. assi gnToCurrent Actor}">
<f:param nane="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>

The pool edTask component is a built-in component that simply assigns the task to the current user.

The t askl nst anceLi st ByType component includes tasks of a particular type that are assigned to the current
user:

<h: dat aTabl e val ue="#{taskl nstancelLi st ByType['todo']}" var="task">
<h: col utm>
<f:facet name="header">Description</f:facet>
<h: out put Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<s:link action="#{todoList.start}" value="Start Work" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>

6.4.6. Performing a task

To begin work on atask, we use either @t art Task Or @egi nTask on the listener method:

JBoss Seam 1.1.0.BETA 91

Pageflows and business processes

@t art Task
public String start() { ... }

These annotations begin a specia kind of conversation that has significance in terms of the overarching busi-
ness process. Work done by this conversation has access to state held in the business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@ndTask(transiti on="conpl et ed")
public String conpleted() { ... }

(Alternatively, we could have used <end- conver sat i on> as shown above.)

At this point, jBPM takes over and continues executing the business process definition. (In more complex pro-
cesses, several tasks might need to be completed before process execution can resume.)

Please refer to the JBPM documentation for a more thorough overview of the sophisticated features that jBPM
provides for managing complex business processes.

JBoss Seam 1.1.0.BETA 92

Chapter 7. Internationalization and themes

Seam makes it easy to build internationalized applications by providing several built-in components for hand-
ling multi-language Ul messages.

7.1. Locales

Each user login session has an associated instance of j ava. uti | . Local e (available to the application as a ses-
sion-scoped component named | ocal e). Under normal circumstances, you won't need to do any special config-
uration to set the locale. Seam just delegates to JSF to determine the active locale:

e If thereis alocale associated with the HTTP request (the browser locale), and that locale is in the list of
supported locales from f aces- confi g. xm , use that locale for the rest of the session.

e Otherwise, if adefault locale was specified in the f aces- confi g. xm , use that locale for the rest of the ses-
sion.

¢ Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam configuration properties| ocal eSel ect or . | anguage, | oc-
al eSel ector. country and| ocal eSel ect or. vari ant , but we can't think of any good reason to ever do this.

It is, however, useful to allow the user to set the locale manually via the application user interface. Seam
provides built-in functionality for overriding the locale determined by the algorithm above. All you have to do
is add the following fragment to aform in your JSP or Facelets page:

<h: sel ect OneMenu val ue="#{l ocal eSel ect or. | anguage}" >
<f:selectltemitenlabel ="English" itenVal ue="en"/>
<f:selectltemitenlLabel ="Deutsch" itenVal ue="de"/>
<f:selectltemitenlabel ="Francais" itenvalue="fr"/>
</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangeLanguage']}"/>

Or, if you want alist of al supported locales from f aces- confi g. xni , just use:

<h: sel ect OneMenu val ue="#{l ocal eSel ector.| ocal eString}">
<f:selectltens val ue="#{l ocal eSel ect or. support edLocal es}"/>
</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{l| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangeLanguage']}"/>

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF locales will be
overridden for the rest of the session.

7.2. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of <f : | oadBundl e />.
You can use this approach in Seam applications. Alternatively, you can take advantage of the Seam nessages
component to display templated labels with embedded EL expressions.

7.2.1. Defining labels

JBoss Seam 1.1.0.BETA 93

Internationalization and themes

Each login session has an associated instance of j ava. uti | . Resour ceBundl e (available to the application as a
session-scoped component hamed r esour ceBundl e). You'll need to make your internationalized labels avail-
able via this special resource bundle. By default, the resource bundle used by Seam is named nessages and so
you'll need to define your labels in files named nessages. properties, nessages_en. properties, nes-
sages_en_AU. properti es, etc. These files usually belong in the VEB- I NF/ ¢l asses directory.

S0, innessages_en. properties:

Hel | o=Hel | o

Andinmessages_en_AU. properties:

Hel | 0=G day

You can select a different name for the resource bundle by setting the Seam configuration property named r e-
sour ceBundl e. bundl eNanes. You can even specify alist of resource bundle names to be searched (depth first)

for messages.

<component name="resour ceBundl e">
<property nane="bundl enanes" >
<val ue>nyconpany_nessages</ val ue>
<val ue>st andar d_nessages</ val ue>
</ property>
</ conponent >

If you want to define a message just for a particular page, you can specify it in a resource bundle with the same
name as the JSF view id, with the leading / and trailing file extension removed. So we could put our message in
wel conme/ hel | o_en. properti es if we only needed to display the message on/ wel cone/ hel | o. j sp.

Y ou can even specify an explicit bundle namein pages. xm :

<page vi ewid="/wel cone/ hello.jsp" bundl e="Hel | oMessages"/ >

Then we could use messages defined in Hel | oMessages. properti es 0N/ wel come/ hel | o. j sp.

7.2.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without having to type
<f:loadBundl e ... /> 0nevery page. Instead, you can simply type:

<h: out put Text val ue="#{nessages[' Hello']}"/>

or.

<h: out put Text val ue="#{messages. Hel | 0}"/>

Even better, the messages themselves may contain EL expressions:

Hel | o=Hel | o, #{user.firstNane} #{user.|astNane}
Hel | 0=G day, #{user.firstNane}

Y ou can even use the messagesin your code:

@n(create=true) private Map<String, String> nessages;

JBoss Seam 1.1.0.BETA 94

Internationalization and themes

@n("#{nmessages['Hello']}") private String hel | oMessage;

7.2.3. Faces messages

The f acesMessages component is a super-convenient way to display success or failure messages to the user.
The functionality we just described also works for faces messages:

@Nane("hel | 0")

@t at el ess

public class HelloBean inplenments Hello {
@n(create=true)
FacesMessages facesMessages;

public String saylt() {
f acesMessages. addFr onResour ceBundl e("Hel | 0") ;

}

Thiswill display Hel | 0, Gavin King oOr G day, Gavi n, depending upon the user'slocale.

7.3. Timezones

There is also a session-scoped instance of j ava. uti|. Ti mezone, named t i nezone, and a Seam component for
changing the timezone named t i nezoneSel ect or . By default, the timezone is the default timezone of the serv-
er. Unfortunately, the JSF specification says that all dates and times should be assumed to be UTC, and dis-
played as UTC, unless atimezone is explicitly specified using <f : conver t Dat eTi me>. Thisis an extremely in-
convenient default behavior.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In addition, Seam provides
the <s: convert Dat eTi me> tag which always performs conversions in the Seam timezone.

7.4. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the localization API, but of
course these two concerns are orthogonal, and some applications support both localization and themes.

First, configure the set of supported themes:

<conmponent name="t henmeSel ect or ">
<property nane="avai |l abl eThenes" >
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</ property>
</ conponent >

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example, the def aul t theme is
defined as aset of entriesin def aul t . properti es. For example, def aul t . properti es might define:

css ../ screen.css
tenpl ate tenpl ate. xhtm

JBoss Seam 1.1.0.BETA 95

Internationalization and themes

Usually the entries in a theme resource bundle will be paths to CSS styles or images and names of facelets tem-
plates (unlike localization resource bundles which are usualy text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the stylesheet in a facelets
page:

<link href="#{theme.css}" rel ="styl esheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a<ui : conposi ti on>:

<ui: conposition xm ns="http://ww. w3. org/ 1999/ xhtm "
xm ns: ui ="http://java. sun.com jsf/facel ets”
xm ns: h="http://java. sun.com jsf/htnm"
xm ns: f="http://java. sun.com j sf/core"
tenpl at e="#{t hene.tenpl ate}">

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch themes:

<h: sel ect OneMenu val ue="#{t heneSel ector.t hene}">
<f:selectltens val ue="#{themeSel ector.thenmes}"/>
</ h: sel ect OneMenu>
<h: commandBut t on acti on="#{t heneSel ector. sel ect}" val ue="Sel ect Thene"/>

7.5. Persisting locale and theme preferences via cookies

The locale selector, theme selector and timezone selector al support persistence of locale and theme preference
to acookie. Simply set the cooki eEnabl ed configuration property:

<component name="t henmeSel ect or ">
<property nane="avai |l abl eThenes" >
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</ property>
<property nanme="cooki eEnabl ed" >t rue</ property>
</ conponent >

<conponent nanme="1| ocal eSel ector" >
<property nanme="cooki eEnabl ed" >t rue</ property>
</ conponent >

JBoss Seam 1.1.0.BETA 96

Chapter 8. Asynchronicity and messaging

Seam makes it very easy to perform work asynchronously from a web regquest. When most people think of
asynchronicity in Java EE, they think of using IMS. Thisis certainly one way to approach the problem in Seam,
and is the right way when you have strict and well-defined quality of service requirements. Seam makes it easy
to send and recieve JM S messages using Seam components.

But for many usecases, IMS is overkill. Seam layers a simple asynchronous method and event facility over the
EJB 3.0 timer service.

8.1. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations as the container's EJB
timer service. If you're not familiar with the Timer service, don't worry, you don't need to interact with it dir-
ectly if you want to use asynchronous methods in Seam.

To use asynchronous methods and events, you need to add the following line to conponent s. xm :

<conponent cl ass="org.j boss. seam core. D spatcher"/>

Note that this functionality is not available in environments which do not support EJB 3.0.

8.1.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in a different
thread) from the caller. We usually use an asynchronous call when we want to return an immediate response to
the client, and let some expensive work be processed in the background. This pattern works very well in applic-
ations which use AJAX, where the client can automatically poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed asynchronously.

@.ocal

public interface PaynentHandl er

{
@\synchr onous

public void processPaynent (Paynent paynent);

(For JavaBean components we can annotate the component implementation classif welike.)
The use of asynchronicity is transparent to the bean class:

@t at el ess
@Nane(" paynent Handl er ")
public class Paynent Handl er Bean i npl enents Paynent Handl er

{

public void processPaynment (Paynment paynent)

{
}

//do sone wor k!

And aso transparent to the client:

@t at ef ul

JBoss Seam 1.1.0.BETA 97

Asynchronicity and messaging

@Nane(" paynent Acti on")
public class CreatePaynmentAction

{
@n(create=true) Payment Handl er paynent Handl er;
@n Bill bill;
public String pay()
{
payment Handl er . processPaynment (new Paynent (bill));
return "success";
}
}

The asynchronous method is processed in a completely new event context and does not have access to the ses-
sion or conversation context state of the caller. However, the business process context is propagated.

Asynchronous method calls may be scheduled for later execution using the @urati on, @xpiration and
@ nt er val Dur at i on annotations.

@.ocal
public interface Paynent Handl er
{
@\synchr onous
public voi d processSchedul edPaynent (Paynment payment, @xpiration Date date);
@\synchr onous
public void processRecurringPaynent (Paynment paynment, @xpiration Date date, @nterval Duration Dat ¢
}
@t at ef ul

@Nane(" paynent Acti on")
public class CreatePaynment Action

{
@n(create=true) PaynentHandl er paynent Handl er;
@n Bill bill;
public String schedul ePaynent ()
{
paynent Handl er . processSchedul edPaynent (new Paynment (bill), bill.getDueDate());
return "success";
}
public String schedul eRecurri ngPaynent ()
{
paynent Handl er . processRecurri ngPaynent (new Paynment (bill), bill.getDueDate(), ONE_MONTH);
return "success";
}
}

Both client and server may accessthe Ti mer object associated with the invocation.

@.ocal
public interface Paynent Handl er

{
@\synchr onous
public Tinmer processSchedul edPaynent (Paynment paynent, @xpiration Date date);

@t at el ess
@ame(" paynment Handl er ")
public class Paynent Handl er Bean i npl enents Paynent Handl er

{

@n Timer tiner;

public Tinmer processSchedul edPayment (Paynment paynent, @xpiration Date date)
{

JBoss Seam 1.1.0.BETA 98

Asynchronicity and messaging

//do sone wor k!

return tiner; //note that return value is conpletely ignored

@t at ef ul
@Nane(" paynent Acti on")
public class CreatePaynmentAction

{
@n(create=true) Payment Handl er paynent Handl er;
@n Bill bill;
public String schedul ePaynent ()
{
Timer timer = paynent Handl er. processSchedul edPayrment (new Paynent (bill), bill.getDueDate());
return "success";
}
}

Asynchronous methods cannot return any other value to the caller.

8.1.2. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous processing, simply
call the rai seAsynchronousEvent () methods of the Events class. To schedule a timed event, call one of the
rai seTi medEvent () methods. Components may observe asynchronous events in the usual way, but remember
that only the business process context is propagated to the asynchronous thread.

8.2. Messaging in Seam

Seam makes it easy to send and receive JIM S messages to and from Seam components.

8.2.1. Configuration

To configure Seam's infrastructure for sending JIMS messages, you need to tell Seam about any topics and
queues you want to send messages to, and also tell Seam where to find the QueueConnect i onFact ory and/or
Topi cConnecti onFactory.

Seam defaults to using Ul L2Connect i onFact ory Which is the usual connection factory for use with JBossMQ.
If you are using some other JMS provider, you need to set one or both of queueConnec-
tion. queueConnecti onFactoryJndi Name and topi cConnecti on. t opi cConnecti onFact oryJndi Name in
seam properties,web. xm Or conponents. xmn .

You also need to list topics and queues in conponent s. xm to install a Seam managed Topi cPubl i sher s and
QueueSender S.

<conmponent name="stockTi cker Publ i sher"
cl ass="org. j boss. seam j ns. ManagedTopi cPubl i sher" >
<property nane="t opi cJndi Name" >t opi ¢/ st ockTi cker Topi c</ pr operty>
</ conponent >

<conponent nanme="paynent QueueSender"
cl ass="org.j boss. seam j ns. ManagedQueueSender " >
<property nane="queuedndi Nane" >queue/ paynent Queue</ property>
</ conponent >

JBoss Seam 1.1.0.BETA 99

Asynchronicity and messaging

8.2.2. Sending messages

Now, you can inject a JMS Topi cPubl i sher and Topi cSessi on into any component:

@n(create=true)

private transient Topi cPublisher stockTickerPublisher;
@n(create=true)

private transient Topi cSession topicSession;

public void publish(StockPrice price) {

try
{
t opi cPubl i sher. publ i sh(topi cSessi on. createObj ect Message(price));
}
catch (Exception ex)
{
t hrow new Runti meExcepti on(ex);
}

Or, for working with a queue:

@n(create=true)

private transient QueueSender paynent QueueSender;
@n(create=true)

private transient QueueSession queueSessi on;

public void publish(Paynent paynent) {
try

{
paynent QueueSender . publ i sh(queueSessi on. cr eat eCbj ect Message(paynent));

catch (Exception ex)

{

throw new Runti neException(ex);

}

8.2.3. Receiving messages using a message-driven bean

You can process messages using any EJB3 message driven bean. Message-driven beans may even be Seam
components, in which caseit is possible to inject other event and application scoped Seam components.

8.2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described in the next
chapter.

JBoss Seam 1.1.0.BETA 100

Chapter 9. Remoting

Seam provides a convenient method of remotely accessing components from a web page, using AJAX
(Asynchronous Javascript and XML). The framework for this functionality is provided with amaost no up-front
development effort - your components only require simple annotating to become accessible via AJAX. This
chapter describes the steps required to build an AJAX-enabled web page, then goes on to explain the features of
the Seam Remoting framework in more detail.

9.1. Configuration

To use remoting, the Seam Remoting servliet must first be configured in your web. xni file:

<servl et >

<servl et - name>Seam Renot i ng</ ser vl et - name>

<servl et-class>org. | boss. seam renoti ng. SeanRenot i ngSer vl et </ servl et - cl ass>
</servl et>

<servl et - mappi ng>
<servl et - name>Seam Renot i ng</ ser vl et - name>
<url-pattern>/seanrenmoting/*</url-pattern>
</ servl et - mappi ng>

The next step isto import the necessary Javascript into your web page. There are a minimum of two scripts that
must be imported. The first one contains all the client-side framework code that enables remoting functionality:

<script type="text/javascript" src="seam renoting/resource/renote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call. It is generated
dynamically based on the local interface of your components, and includes type definitions for all of the classes
that can be used to call the remotable methods of the interface. The name of the script reflects the name of your
component. For example, if you have a stateless session bean annotated with @ianme(" cust oner Acti on") , then
your script tag should look like this:

<script type="text/javascript" src="seam renoting/interface.js?custonerAction"></script>

If you wish to access more than one component from the same page, then include them all as parameters of
your script tag:

<script type="text/javascript" src="seam renoting/interface.js?custonerActi on&ccountAction"></scri |

JBoss Seam 1.1.0.BETA 101

Remoting

9.2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object. This object is
definedinrenote. j s, and you'll be using it to make asynchronous calls against your component. It is split into
two areas of functionality; Seam Conponent contains methods for working with components and
Seam Renot i ng contains methods for executing remote requests. The easiest way to become familiar with this
object isto start with a simple example.

9.2.1. A Hello World example

Let's step through a simple exampl e to see how the seamobject works. First of al, |et's create a new Seam com-
ponent called hel | oActi on.

@t at el ess
@ame(" hel | oAction")
public class HelloAction inplenents HelloLocal {
public String sayHel l o(String nanme) {
return "Hello, " + nane;

}
}

Y ou also need to create alocal interface for our new component - take specia note of the @ebRenot e annota-
tion, asit's required to make our method accessible viaremoting:

@.ocal
public interface HelloLocal {
@\¥bRenot e
public String sayHello(String nane);
}

That's al the server-side code we need to write. Now for our web page - create a new page and import the fol-
lowing scripts:

<script type="text/javascript" src="seam renoting/resource/renote.js"></script>
<script type="text/javascript" src="seam renoting/interface.js?hell oAction"></script>

To make this afully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hel | o</ button>

WEe'll also need to add some more script to make our button actually do something when it's clicked:

JBoss Seam 1.1.0.BETA 102

Remoting

<script type="text/javascript">
/] <!'[CDATA[

function sayHel l o() {

var name = pronpt("Wat is your name?");

Seam Component . get | nst ance(" hel | oActi on") . sayHel | o(name, sayHel | oCal | back) ;
}

function sayHel | oCal | back(result) {
alert(result);
}

I 11>
</scri pt>

We're done! Deploy your application and browse to your page. Click the button, and enter a name when promp-
ted. A message box will display the hello message confirming that the call was successful. If you want to save
some time, youll find the full source code for this Hello World example in Seam's /ex-
anpl es/ renot i ng/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start with, you can
see from the Javascript code listing that we have implemented two methods - the first method is responsible for
prompting the user for their name and then making a remote request. Take alook at the following line:

Seam Conponent . get | nst ance(" hel | oAction") . sayHel | o(name, sayHel | oCal | back) ;

The first section of thisline, Seam Conponent . get | nst ance(" hel | oActi on") returns aproxy, or "stub” for our
hel I oAct i on component. We can invoke the methods of our component against this stub, which is exactly what
happens with the remainder of theline: sayHel | o(name, sayHel | oCal | back) ; .

What this line of code in its completeness does, is invoke the sayHel | o method of our component, passing in
nane as a parameter. The second parameter, sayHel | oCal | back iSn't a parameter of our component's sayHel | o
method, instead it tells the Seam Remoting framework that once it receives the response to our request, it
should passit to the sayHel | oCal | back Javascript method. This callback parameter is entirely optional, so feel
freeto leaveit out if you're calling a method with avoi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops up an aert mes-
sage displaying the result of our method call.

9.2.2. Seam.Component

The seam Conponent Javascript object provides a number of client-side methods for working with your Seam
components. The two main methods, newl nst ance() and get | nst ance() are documented in the following sec-
tions however their main difference is that newl nst ance() will always create a new instance of a component
type, and get | nst ance() will return asingleton instance.

Seam.Component.newlnstance()

Use this method to create a new instance of an entity or Javabean component. The object returned by this meth-
od will have the same getter/setter methods as its server-side counterpart, or alternatively if you wish you can
access itsfields directly. Take the following Seam entity component for example:

JBoss Seam 1.1.0.BETA 103

Remoting

@ame(" cust omer")
@ntity
public class Custoner inplenents Serializable

{

private |nteger custonerld;
private String firstName;
private String | astNaneg;

@Col umm public Integer getCustonerld() {
return custonerld;

}

public void setCustonerld(lnteger custonerld} {
this.custonerld = custonerld;

}

@Col umm public String getFirstNane() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstNane = firstNane;

}

@ol utm public String getlLast Nane() {
return | ast Nane;

}

public void setlLastNanme(String | astNane) ({
this.lastNane = | ast Nane;

}

}

To create a client-side Customer you would write the following code:

var custonmer = Seam Conponent.new nst ance("custoner");

Then from here you can set the fields of the customer object:

cust oner. set Fi r st Name(" John") ;
/1 O you can set the fields directly
custoner. | ast Name = "Sm th";

Seam.Component.getinstance()

The get I nst ance() method is used to get a reference to a Seam session bean component stub, which can then
be used to remotely execute methods against your component. This method returns a singleton for the specified
component, so calling it twice in a row with the same component name will return the same instance of the
component.

To continue our example from before, if we have created a new cust oner and we now wish to save it, we
would passit to the saveCust oner () method of our cust oner Act i on component:

Seam Conponent . get | nst ance(" cust omer Acti on"). saveCust oner (cust oner);

JBoss Seam 1.1.0.BETA 104

Remoting

Seam.Component.getComponentName()

Passing an object into this method will return its component nameif it is acomponent, or nul | if it isnot.

i f (Seam Conponent . get Conponent Nanme(i nstance) == "custoner")
alert("Custoner");
el se if (Seam Conponent . get Conponent Nane(i nstance) == "staff")

alert("Staff menber");

9.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam Renot i ng object. While
you shouldn't need to directly call most of its methods, there are a couple of important ones worth mentioning.

Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may need to create these
types on the client side to pass as parameters into your component method. Use the creat eType() method to
create an instance of your type. Passin the fully qualified Java class name as a parameter:

var wi dget = Seam Renoti ng. createType("com acre. w dgets. MyW dget ") ;

Seam.Remoting.getTypeName()

This method is the equivalent of Seam Corponent . get Conponent Nane() but for non-component types. It will
return the name of the type for an object instance, or nul | if the type is not known. The name is the fully quali-
fied name of the type's Java class.

9.3. Client Interfaces

In the configuration section above, the interface, or "stub" for our component is imported into our page via
seanirenoting/interface.js:

<script type="text/javascript" src="seamrenoting/interface.js?custonerAction"></script>

By including this script in our page, the interface definitions for our component, plus any other components or
types that are required to execute the methods of our component are generated and made available for the re-
moting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs. Executable stubs
are behavioural, and are used to execute methods against your session bean components, while type stubs con-
tain state and represent the types that can be passed in as parameters or returned as aresullt.

The type of client stub that is generated depends on the type of your Seam component. If the component is a
session bean, then an executable stub will be generated, otherwise if it's an entity or JavaBean, then atype stub

JBoss Seam 1.1.0.BETA 105

Remoting

will be generated. There is one exception to this rule; if your component is a JavaBean (ie it is not a session
bean nor an entity bean) and any of its methods are annotated with @WebRemote, then an executable stub will
be generated for it instead of a type stub. This allows you to use remoting to call methods of your JavaBean
components in a non-EJB environment where you don't have access to session beans.

9.4. The Context

The Seam Remoting Context contains additional information which is sent and received as part of a remoting
reguest/response cycle. At this stage it only contains the conversation ID but may be expanded in the future.

9.4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to read or set the
conversation 1D in the Seam Remoting Context. To read the conversation ID after making a remote request call
Seam Rent i ng. get Cont ext (). get Conversationld(). To set the conversation 1D before making a request,
call Seam Renot i ng. get Cont ext () . set Conversationl d() .

If the conversation ID hasn't been explicitly set with Seam Renot i ng. get Cont ext (). set Conver sationl d(),
then it will be automatically assigned the first valid conversation ID that is returned by any remoting call. If you
are working with multiple conversations within your page, then you may need to explicitly set the conversation
ID before each call. If you are working with just a single conversation, then you don't need to do anything spe-
cial.

9.5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is recommended that
thisfeature is used wherever it is appropriate to reduce network traffic.

The method Seam Renoti ng. startBat ch() Will start a new batch, and any component calls executed after
starting a batch are queued, rather than being sent immediately. When al the desired component calls have
been added to the batch, the Seam Renmt i ng. execut eBat ch() method will send a single request containing all
of the queued calls to the server, where they will be executed in order. After the calls have been executed, a
single response containining all return values will be returned to the client and the callback functions (if
provided) triggered in the same order as execution.

If you start a new batch via the startBatch() method but then decide you don't want to send it, the
Seam Renot i ng. cancel Bat ch() method will discard any calls that were queued and exit the batch mode.

To see an example of abatch being used, take alook at / exanpl es/ r emot i ng/ chat r oom

9.6. Working with Data types

9.6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are generally compatible
with either their primitive type or their corresponding wrapper class.

String

JBoss Seam 1.1.0.BETA 106

Remoting

Simply use Javascript String objects when setting String parameter values.

Number

Thereis support for all number types supported by Java. On the client side, number values are always serialized
astheir String representation and then on the server side they are converted to the correct destination type. Con-
version into either a primitive or wrapper type is supported for Byt e, Doubl e, Fl oat, | nt eger, Long and Shor t

types.
Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java boolean.

9.6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-component class. Use
the appropriate method (either Seam Conponent.new nstance() for Seam components or
Seam Renot i ng. cr eat eType() for everything else) to create a new instance of the object.

It isimportant to note that only objects that are created by either of these two methods should be used as para
meter values, where the parameter is not one of the other valid types mentioned anywhere else in this section.
In some situations you may have a component method where the exact parameter type cannot be determined,
such as:

@Nane(" nyAction")
public class M/Action inplenents M/ActionLocal {
public void doSonet hi ngWt hObj ect (Obj ect obj) {
/1 code

}
}

In this case you might want to pass in an instance of your nyw dget component, however the interface for ny-
Act i on won't include nyw dget asit isnot directly referenced by any of its methods. To get around this, MW d-
get needsto be explicitly imported:

<script type="text/javascript" src="seanlrenoting/interface.js?nyActi on&ryW dget"></scri pt>

This will then alow anyw dget object to be created with Seam Conponent . newl nst ance(" myW dget "), which
can then be passed to myAct i on. doSonet hi ngW t hQbj ect () .

9.6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the client side, use
a Javascript Date object to work with date values. On the server side, use any j ava. uti | . Dat e (or descendent,
such asj ava. sql . Dat e Or j ava. sql . Ti mest anp class.

9.6.4. Enums

JBoss Seam 1.1.0.BETA 107

Remoting

On the client side, enums are treated the same as Strings. When setting the value for an enum parameter, simply
use the String representation of the enum. Take the following component as an example:

@anme(" pai nt Action")
public class paintAction inplenents paintLocal {
public enum Col or {red, green, blue, yellow, orange, purple};

public void paint(Color color) {
/] code

}
}

To call the pai nt () method with the color r ed, pass the parameter value as a String literal:

Seam Conponent . get | nst ance(" pai nt Acti on").paint("red");

Theinverseis also true - that is, if a component method returns an enum parameter (or contains an enum field
anywhere in the returned object graph) then on the client-side it will be represented as a String.

9.6.5. Collections

Bags

Bags cover al collection types including arrays, collections, lists, sets, (but excluding Maps - see the next sec-
tion for those), and are implemented client-side as a Javascript array. When calling a component method that
accepts one of these types as a parameter, your parameter should be a Javascript array. If a component method
returns one of these types, then the return value will also be a Javascript array. The remoting framework is clev-
er enough on the server side to convert the bag to an appropriate type for the component method call.

Maps

As there is no native support for Maps within Javascript, a simple Map implementation is provided with the
Seam Remoting framework. To create a Map which can be used as a parameter to a remote call, create a new
Seam Renot i ng. Map object:

var map = new Seam Renoti ng. Map();

This Javascript implementation provides basic methods for working with Maps: si ze(), i sEnpty() , keySet (),
val ues(), get (key), put (key, val ue), remove(key) and cont ai ns(key) . Each of these methods are equival-
ent to their Java counterpart. Where the method returns a collection, such as keySet () and val ues(), a Javas-
cript Array object will be returned that contains the key or value objects (respectively).

9.7. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents of all the
packets send back and forth between the client and server in a popup window. To enable debug mode, either
execute the set Debug() method in Javascript:

JBoss Seam 1.1.0.BETA 108

Remoting

Seam Renot i ng. set Debug(true);

Or configure it via components.xml:

<conponent nane="org.jboss. seam renoting. renoti ngConfig">
<property nane="debug">true</property>
</ conponent >

To turn off debugging, call set Debug(f al se). If you want to write your own messages to the debug log, call
Seam Renoti ng. | og(nessage) .

9.8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified, its rendering
customised or even turned off completely.

9.8.1. Changing the message

n

To change the message from the default "Please Wait...
Seam Renot i ng. | oadi ngMessage:

to something different, set the value of

Seam Renot i ng. | oadi ngMessage = "Loadi ng...";

9.8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of di spl ayLoad-
i ngMessage() and hi deLoadi ngMessage() With functions that instead do nothing:

// don't display the |oading indicator
Seam Renot i ng. di spl ayLoadi ngMessage = function() {};
Seam Renot i ng. hi deLoadi ngMessage = function() {};

9.8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else that you want.
To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage() messages with your own im-
plementation:

Seam Renot i ng. di spl ayLoadi ngMessage = function() {
/1 Wite code here to display the indicator

I

Seam Renot i ng. hi deLoadi ngMessage = function() {
/1 Wite code here to hide the indicator

ki

JBoss Seam 1.1.0.BETA 109

Remoting

9.9. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned to the client.
This response is then unmarshaled by the client into a Javascript object. For complex types (i.e. Javabeans) that
include references to other objects, all of these referenced objects are also serialized as part of the response.
These objects may reference other objects, which may reference other objects, and so forth. If left unchecked,
this object "graph” could potentially be enormous, depending on what rel ationships exist between your objects.
And as a side issue (besides the potential verbosity of the response), you might also wish to prevent sensitive
information from being exposed to the client.

Seam Remoting provides a smple meansto "constrain” the object graph, by specifying the excl ude field of the
remote method's @ebRenot e annotation. This field accepts a String array containing one or more paths spe-
cified using dot notation. When invoking a remote method, the objects in the result's object graph that match
these paths are excluded from the serialized result packet.

For all our examples, well use the following W dget class:

@Nane("w dget")
public class Wdget
{

private String val ue;

private String secret;

private Wdget child;

private Map<String, Wdget > w dget Map;
private List<Wdget> w dgetlList;

/'l getters and setters for all fields

9.9.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secret field because it
contains sensitive information, you would constrain it like this:

@\ébRenot e(excl ude = {"secret"})
public Wdget getWdget();

The value "secret” refersto the secret field of the returned object. Now, suppose that we don't care about ex-
posing this particular field to the client. Instead, notice that the w dget value that is returned has afield chi I d
that is also a W dget . What if we want to hide the chi | d's secret value instead? We can do this by using dot
notation to specify this field's path within the result's object graph:

@\ebRenot e(excl ude = {"child.secret"})
public Wdget getWdget();

9.9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of collection (Li st ,
Set, Array, €tc). Collections are easy, and are treated like any other field. For example, if our w dget contained

JBoss Seam 1.1.0.BETA 110

Remoting

alist of other w dget sin its wi dget Li st field, to constrain the secret field of the w dget siin this list the an-
notation would look like this:

@\¥bRenot e(excl ude = {"wi dgetList.secret"})
public Wdget getWdget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's field name
will constrain the vap's key object values, while [val ue] will constrain the value object values. The following
example demonstrates how the values of the wi dget Map field have their secr et field constrained:

@\ébRenot e(excl ude = {"w dget Map[val ue] . secret"})
public Wdget getWdget();

9.9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of atype of object no matter where in the res-
ult's object graph it appears. This notation uses either the name of the component (if the object is a Seam com-
ponent) or the fully qualified class name (only if the object is not a Seam component) and is expressed using
square brackets:

@\ebRenot e(excl ude = {"[w dget].secret"})
public Wdget getWdget();

9.9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@\¥bRenot e(excl ude = {"wi dgetList.secret”, "w dgetMap[val ue].secret"})
public Wdget get Wdget();

9.10. JMS Messaging

Seam Remoting provides experimental support for IMS Messaging. This section describes the IMS support that
is currently implemented, but please note that this may change in the future. It is currently not recommended
that this feature is used within a production environment.

9.10.1. Configuration

Before you can subscribe to a IM S topic, you must first configure alist of the topics that can be subscribed to
by Seam Remoting. List the topics under
org.j boss. seam renoti ng. messagi ng. subscri pti onRegi stry. al | onedTopi cs in seam properties,
web. xm Or conponents. xm .

<conponent name="org.j boss. seam renoti ng. messagi ng. subscri pti onRegi stry">
<property nane="al | onedTopi cs">chat r ooniTopi ¢, stockTi cker Topi c</ property>
</ conponent >

JBoss Seam 1.1.0.BETA 111

Remoting

9.10.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribeto aJM S Topic:

function subscriptionCall back(nmessage)

{
i f (message instanceof Seam Renoti ng. Text Message)
al ert ("Recei ved nessage: " + nessage. getText());
}

Seam Renot i ng. subscri be("topi cNane", subscriptionCall back);

The seam Renot i ng. subscri be() method accepts two parameters, the first being the name of the IMS Topic to
subscribe to, the second being the callback function to invoke when a message is received.

There are two types of messages supported, Text messages and Object messages. If you need to test for the type
of message that is passed to your callback function you can use the i nst anceof operator to test whether the
message iS a Seam Renot i ng. Text Message OF Seam Renpt i ng. Obj ect Message. A Text Message contains the
text value in itstext field (or aternatively call get Text () on it), while an Obj ect Message contains its object
valueinitsobj ect field (or call itsget Qbj ect () method).

9.10.3. Unsubscribing from a Topic

To unsubscribe from atopic, call Seam Renot i ng. unsubscri be() and passin the topic name:

Seam Renot i ng. unsubscri be("t opi cNane");

9.10.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam Renot i ng. pol | I nt erval , which controls how long to wait between subsequent polls for new messages.
This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam Renot i ng. pol | Ti neout , and is also expressed as seconds. It controls how long a
reguest to the server should wait for a new message before timing out and sending an empty response. Its de-
fault is O seconds, which means that when the server is polled, if there are no messages ready for delivery then
an empty response will be immediately returned.

Caution should be used when setting a high pol | Ti mreout value; each request that has to wait for a message
means that a server thread is tied up until a message is received, or until the request times out. If many such re-
quests are being served simultaneously, it could mean alarge number of threads become tied up because of this
reason.

It is recommended that you set these options via components.xml, however they can be overridden via Javas-
cript if desired. The following example demonstrates how to configure the polling to occur much more aggress-
ively. You should set these parameters to suitable values for your application:

Via components.xmil:

<conponent name="org.j boss.seamrenoting.renotingConfig">

JBoss Seam 1.1.0.BETA 112

Remoting

<property nane="pol | Ti neout " >5</ property>
<property name="pol | | nterval ">1</property>
</ conponent >

Via JavaScript:

/l Only wait 1 second between receiving a poll response and sending the next poll request.
Seam Renpting. pol | I nterval = 1;

/1 VWit up to 5 seconds on the server for new nessages
Seam Renoti ng. pol | Ti neout = 5;

JBoss Seam 1.1.0.BETA 113

Chapter 10. Seam and JBoss Rules

Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM process definitions.

10.1. Installing rules

The first step is to make an instance of or g. drool s. Rul eBase available in a Seam context variable. In most
rules-driven applications, rules need to be dynamically deployable, so you will need to implement some solu-
tion that allows you to deploy rules and make them available to Seam (a future release of Drools will provide a
Rule Server that solves this problem). For testing purposes, Seam provides a built-in component that compiles a
static set of rules from the classpath. You can install this component viaconponent s. xni :

<conponent name="policyPricingRul es"
cl ass="org. j boss. seam dr ool s. Rul eBase" >
<property nane="rul eFi |l es">policyPricingRul es. drl </ property>
</ conponent >

This component compiles rules from a set of . dri files and caches an instance of or g. drool s. Rul eBase in the
Seam APPLI CATI ON context. Note that it is quite likely that you will need to install multiple rule basesin arule-
driven application.

If you want to use a Drools DSL, you ase need to specify the DSL definition:

<conponent name="policyPricingRul es"
cl ass="org.j boss. seam dr ool s. Rul eBase" >
<property nanme="rul eFi | es">policyPricingRul es.drl </ property>
<property nane="dsl Fi | e">policyPricing. dsl </ property>
</ conponent >

Next, we need to make an instance of or g. dr ool s. Wr ki ngMeror y available to each conversation. (Each wr k-
i ngMenor y accumulates facts relating to the current conversation.)

<conponent name="policyPrici ngWr ki ngMenory"
cl ass="org. j boss. seam dr ool s. ManagedWor ki ngMenor y" >
<property name="rul eBase">#{pol i cyPrici ngRul es} </ property>
</ conponent >

Notice that we gave the pol i cyPri ci ngWr ki ngMenory a reference back to our rule base viathe r ul eBase con-
figuration property.

10.2. Using rules from a Seam component

We can now inject our Wr ki ngMenor y into any Seam component, assert facts, and fire rules:

@n(create=true)
Wor ki ngMenory pol i cyPri ci ngWr ki ngMenor y;

@n Policy policy;
@n Custoner custoner;

public void pricePolicy() throws FactException

{
pol i cyPrici ngWor ki ngMenory. assert Cbj ect (policy);
pol i cyPrici ngWr ki ngMenory. assert Cbj ect (cust oner);
pol i cyPrici ngWor ki ngMenory. fireAl | Rul es();

}

JBoss Seam 1.1.0.BETA 114

Seam and JBoss Rules

10.3. Using rules from a jJBPM process definition

You can even allow arule base to act as a jBPM action handler, decision handler, or assignment handler—in
either a pageflow or business process definition.

<deci si on nane="approval ">

<handl er cl ass="org.jboss. seam drool s. Dr ool sDeci si onHandl er" >
<wor ki ngMenor yNanme>or der Appr oval Rul esWr ki ngMenor y</ wor ki ngMenor yNane>
<assert Obj ect s>
<el enent >#{ cust oner } </ el enent >
<el enment >#{ or der } </ el enent >
<el enent >#{order. | i nel t ens} </ el enent >
</ assert Cbj ect s>
</ handl er >

<transition name="approved" to="ship">
<action class="org.jboss. seam dr ool s. Dr ool sActi onHandl er ">
<wor ki ngMenor yNanme>shi ppi ngRul esWor ki nghMenor y</ wor ki ngMenor yName>
<assert Cbj ect s>
<el enent >#{ cust oner } </ el enent >
<el ement >#{ or der} </ el ement >
<el ement >#{ order. | i nel t ens} </ el ement >
</ assert bj ect s>
</ action>
</transition>

<transition nane="rejected" to="cancelled"/>

</ deci si on>

The <assert Obj ect s> element specifies EL expressions that return an object or collection of objects to be as-
serted as factsinto the wor ki ngMenory.

Thereis aso support for using Drools for |JBPM task assignments.

<t ask- node name="revi ew'>
<task name="revi ew' descripti on="Revi ew O der">
<assi gnment handl er="org.j boss. seam dr ool s. Dr ool sAssi gnnent Handl er " >
<wor ki ngMenor yName>or der Appr oval Rul esWor ki ngMenor y</ wor ki ngMenor yNane>
<assert Qoj ect s>
<el ement >#{act or} </ el ement >
<el ement >#{ cust oner } </ el enent >
<el ement >#{ or der} </ el ement >
<el ement >#{ order. | i nel t ens} </ el ement >
</ assert Obj ect s>
</ assi gnnent >
</ task>
<transition name="rejected" to="cancelled"/>
<transiti on name="approved" to="approved"/>
</t ask- node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assi gnabl e, asassi gnabl e and a
Seam Decision object, as decision. Rules which handle decisions should call de-
ci sion.setQutconme("result") to determine the result of the decision. Rules which perform assignments
should set the actor id using the Assi gnabil e.

package org.j boss. seam exanpl es. shop
i mport org.jboss. seam drool s. Deci si on
gl obal Deci si on deci si on

rul e "Approve Order For Loyal Custoner"

JBoss Seam 1.1.0.BETA 115

Seam and JBoss Rules

when
Custoner(loyaltyStatus == "GOLD")
Order (total Amount <= 10000)

t hen

deci si on. set Qut come(" approved");
end

package org.j boss. seam exanpl es. shop
i mport org.jbpmtaskngnt.exe. Assi gnabl e
gl obal Assignabl e assi gnabl e

rule "Assign Review For Small Order"
when
O der (total Ambunt <= 100)
then
assi gnabl e. set Pool edActors(new String[] {"reviewers"});
end

JBoss Seam 1.1.0.BETA 116

Chapter 11. JSF form validation in Seam

In plain JSF, validation is defined in the view:

<h: f ormp

<di v>
<h: nessages/ >

</ di v>

<di v>
Country:
<h:i nput Text val ue="#{l ocati on.country}">

<ny: val i dat eCountry/ >

</ h:i nput Text >

</div>
<di v>
Zi p code:

<h:i nput Text val ue="#{l ocati on. zi p}" >
<ny:val i dat ezi p/ >

</ h: i nput Text >

</div>

<di v>
<h: conmandBut t on/ >

</div>

</ h: fornmp

In practice, this approach usually violates DRY, since most "validation" actually enforces constraints that are
part of the data model, and exist all the way down to the database schema definition. Seam provides support for

model-based constraints defined using Hibernate Validator.
Let's start by defining our constraints, on our Locat i on class:

public class Location {
private String country;
private String zip;

@.engt h(max=30)
public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@.engt h(max=6)

@attern(" N\ d*$")

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints instead of the

ones built into Hibernate Validator:

public class Location {
private String country;
private String zip;

@ountry
public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@i pCode
public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Whichever route we take, we no longer need to specify the type of validation to be used in the JSF page. In-

stead, we can use <s: val i dat e> to validate against the constraint defined on the model object.

JBoss Seam 1.1.0.BETA

117

JSF form validation in Seam

<h: f or m»>

<di v>
<h: messages/ >

</div>

<di v>
Country:
<h:i nput Text val ue="#{l ocati on.country}">

<s:validate/>

</ h:i nput Text >

</ di v>
<di v>
Zi p code:

<h:i nput Text val ue="#{l ocati on. zi p}" >
<s:validate/>
</ h:i nput Text >
</ di v>
<di v>
<h: commandBut t on/ >
</ di v>
</ h:fornp

Thisisnot much less verbose than what we started with, so let'stry <s: val i dat eAl | >;

<h: f or m»
<di v>
<h: messages/ >
</div>
<s:validateAl | >
<di v>
Country:
<h:i nput Text val ue="#{l ocati on.country}"/>
</div>
<di v>
Zi p code:
<h:i nput Text val ue="#{l ocati on. zi p}"/>
</div>
<di v>
<h: commandBut t on/ >
</div>
</s:validateAll>
</ h: fornm

Thistag simply adds an <s: val i dat e> to every input in the form.

Now we need to do something about displaying feedback to the user when validation fails. Currently we are
displaying all messages at the top of the form. What we would really like to do is display the message next to
the field with the error (this is possible in plain JSF), highlight the field (this is not possible) and, for good
measure, display some image next the the field (also not possible).

Let'stry out <s: decor at e>:

<h: f or m»
<di v>
<h: nessages gl obal Onl y="true"/>
</div>
<s:validateAll >
<di v>
Country:
<s:decorat e>
<f:facet nane="beforel nval i dFi el d"><h: graphi cl mage src="ing/error.gif"/></f:facet>
<f:facet name="afterlnvalidFiel d'><s: nessage/ ></f:facet>
<f:facet nanme="aroundl nval i dFi el d"><s:span styl eC ass="error"/></f:facet>
<h:i nput Text val ue="#{l ocati on.country}"/>
</ s: decor at e>
</ di v>
<di v>

Zi p code:

JBoss Seam 1.1.0.BETA 118

JSF form validation in Seam

<s:decor at e>
<f:facet nane="beforel nvalidFi el d"><h: graphi cl nage src="ing/error.gif"/></f:facet>
<f:facet name="afterlnvalidFi el d'><s: nessage/ ></f: facet>
<f:facet nane="aroundl nval i dFi el d"><s: span styl eC ass="error"/></f:facet>
<h:i nput Text val ue="#{l ocati on. zi p}"/ >
</ s: decor at e>
</div>
<di v>
<h: conmandBut t on/ >
</div>
</ s:validateAll>
</ h: fornme

Well, that looks much better to the user, but it is extremely verbose. Fortunately, the facets of <s: decor at e>
may be defined on any parent element:

<h: f or m»
<f:facet name="beforelnvalidField">
<h: graphi cl nage src="ing/error.gif"/>
</f:.facet>
<f:facet nane="afterlnvalidField">
<s: message/ >
</f:facet>
<f:facet name="aroundl nval i dFi el d">
<s:span styleC ass="error"/>
</f:facet>

<di v>
<h: messages gl obal Onl y="true"/>
</ di v>
<s:val i dateAl |l >
<di v>
Country:
<s: decor at e>
<h:i nput Text val ue="#{l ocation.country}"/>
</ s: decor at e>
</ di v>
<di v>
Zi p code:
<s: decor at e>
<h: i nput Text val ue="#{l ocati on. zi p}"/>
</ s: decor at e>
</ di v>
<di v>
<h: commandBut t on/ >
</ di v>
</s:validateAll>
</ h:fornmp

This approach defines constraints on the model, and presents constraint violations in the view—a significantly
better design.

Finally, we can use Ajax4JSF to display validation messages as the user is typing:

<h: fornp
<f:facet name="beforelnvalidField">
<h: graphi cl mage src="ing/error.gif"/>
</f:.facet>
<f:facet name="aroundl nval i dFi el d">
<s:span styleC ass="error"/>

</f:facet>
<di v>
<h: nessages gl obal Onl y="true"/>
</ di v>
<s:validateAll >
<di v>
Country:

<s: decor at e>

JBoss Seam 1.1.0.BETA 119

JSF form validation in Seam

<h:i nput Text val ue="#{l ocation.country}" id="country">
<a:support event="onblur" reRender="countryError"/>
</ h:i nput Text >
<a: out put Panel id="countryError><s: message/ ></ a: out put Panel >
</ s: decor at e>

</ di v>
<di v>
Zi p code:

<s: decor at e>
<h:i nput Text val ue="#{l ocati on. zi p}">
<a: support event="onblur" reRender="zipError"/>
</ h: i nput Text >
<a: out put Panel id="zi pError><s: nessage/ ></ a: out put Panel >
</ s: decor at e>
</div>
<di v>
<h: commandBut t on/ >
</ di v>
</s:validateAll>
</ h: fornmp

JBoss Seam 1.1.0.BETA 120

Chapter 12. Configuring Seam

Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several lines of XML are
required to integrate Seam into your JSF implementation and servlet container. There's no need to be too put off
by the following sections; you'll never need to type any of this stuff yourself, since you can just copy and paste
from the example applications!

12.1. Basic Seam configuration

First, let'slook at the basic configuration that is needed whenever we use Seam with JSF.

12.1.1. Integrating Seam with JSF and your servlet container

Seam requires the following entry in your web. xm file:

<li stener>
<l istener-class>org.jboss. seam servl et. SeanlLi stener</|i stener-cl ass>
</listener>

Thislistener isresponsible for bootstrapping Seam, and for destroying session and application contexts.

If you are using Seam in Apache MyFaces (and possibly some other JSF implementations), you must use client-
side state saving. So you'll also need thisin web. xni :

<cont ext - par anr
<par am nane>j avax. f aces. STATE_SAVI NG_METHOD</ par am name>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an>

To integrate with the JSF request lifecycle, we also need a JSF PhaseLi st ener registered in in the f aces- con-
fig.xnl file

<lifecycl e>
<phase-|i stener>org.jboss. seam j sf. SeanPhaselLi st ener </ phase-|i st ener >
</lifecycl e>

The actual listener class here varies depending upon how you want to manage transaction demarcation (more
on this below).

If you are using Sun's JSF 1.2 reference implementation, you should add thisto f aces- confi g. xm :

<appl i cati on>
<el -resol ver>org. j boss. seam j sf. SeanELResol ver </ el -r esol ver >
</ appl i cati on>

(Thisline should not strictly speaking be necessary, but it works around a minor bug in the RI.)

12.1.2. Integrating Seam with your EJB container

We need to apply the Seam nt er cept or to our Seam components. The simplest way to do thisis to add the fol-
lowing interceptor binding to the <assenbl y-descriptor>inejb-jar. xm :

<i nt er cept or - bi ndi ng>

JBoss Seam 1.1.0.BETA 121

Configuring Seam

<ej b- name>* </ ej b- name>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nt ercept or - cl ass>
</i nt er cept or - bi ndi ng>

Seam needs to know where to go to find session beans in INDI. One way to do this is specify the @ndi Nare
annotation on every session bean Seam component. However, this is quite tedious. A better approach is to spe-
cify a pattern that Seam can use to calculate the INDI name from the EJB name. Unfortunately, there is no
standard mapping to global JINDI defined in the EJB3 specification, so this mapping is vendor-specific. We
must specify a pattern using the configuration property named or g. j boss. seam core. i nit.j ndi Pattern. We
may specify thisusing conponent s. xm , web. xni Or even seam properti es.

For JBoss AS, the following pattern is correct:

<component name="org.jboss.seamcore.init">
<property nane="j ndi Pattern">myEar Nane/ #{ ej bNane} /| ocal </ pr operty>
</ conponent >

Or:

<cont ext - par an»
<par am nane>or ¢. j boss. seam core. i ni t.ndi Pattern</param nanme>
<par am val ue>nyEar Nanme/ #{ ej bNane}/ | ocal </ par am val ue>

</ cont ext - par an»

Where nyEar Nare is the name of the EAR in which the bean is deployed.

Outside the context of an EAR (when using the JBoss Embeddable EJB3 container), the following pattern is the
oneto use:

<component name="org.j boss.seamcore.init">
<property nanme="j ndi Pattern">#{ej bNane}/| ocal </ property>
</ conponent >

Or:

<cont ext - par anr
<par am nane>or g. j boss. seam core. i ni t.ndi Pattern</param nanme>
<par am val ue>#{ ej bNane}/ | ocal </ par am val ue>

</ cont ext - par an>

12.1.3. Enabling conversation propagation with redirects

If you want to use post-then-redirect in JSF, and you want Seam to propagate the conversation context across
the browser redirects, you need to register a servlet filter:

<filter>
<filter-nane>Seam Redirect Filter</filter-name>
<filter-class>org.jboss.seam servlet. SeanRedirectFilter</filter-class>
</filter>

<filter-mappi ng>
<filter-nane>Seam Redirect Filter</filter-nanme>
<url-pattern>*.jsf</url-pattern>

</filter-mappi ng>

This filter intercepts any browser redirects and adds a request parameter that specifies the Seam conversation
id.

JBoss Seam 1.1.0.BETA 122

Configuring Seam

12.2. Configuring Seam in Java EE 5

J5P [Facelets

JSF

Seam

EJB 3

JavaEE S

If you're running in a Java EE 5 environment, this is all the configuration required to start using Seam! But
there is one final item you need to know about. You must place a seam properties file in the root of any
archive in which your Seam components are deployed (even an empty properties file will do). At startup, Seam
will scan any archives with seam properti es filesfor seam components. If that doesn't work for you, you can
also add components by installing them explicitly in conponents. xni . (We don't recommend this alternative

approach.)

12.2.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something like this:

my-application. ear/
j boss-seamj ar
META- | NF/
MANI FEST. MF
appl i cation. xm
ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
V\EB- | NF/
web. xm
conponent s. xn
faces-config. xm
| ogin.jsp
register.jsp

ny-application.jar/
META- | NF/
MANI FEST. MF
per si st ence. xn
seam properties
org/
j boss/
myappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

Make sure you referencej boss- seam j ar from manifests of the EJB-JAR and WAR.

JBoss Seam 1.1.0.BETA 123

Configuring Seam

Seam ships with several example applications that are deployable in any Java EE container that supports EJB
3.0.

| realy wish that was all there was to say on the topic of configuration but unfortunately we're only about a
third of the way there. If you're too overwhelmed by al this tedious configuration stuff, feel free to skip over
therest of this section and come back to it later.

12.3. Configuring Seam with the JBoss Embeddable EJB3 con-
tainer

The JBoss Embeddable EJB3 container lets you run EJB3 components outside the context of the Java EE 5 ap-
plication server. Thisis especialy, but not only, useful for testing.

The Seam booking example application includes a TestNG integration test suite that runs on the Embeddable
EJB3 container.

Seam

JBoss Embeddable EJB 3

TestNG

The booking exampl e application may even be deployed to Tomcat.

JSP / Facelets

JSF

Seam

JBoss Embeddable EJB 3

Tomcat

12.3.1. Installing the Embeddable EJB3 container

Seam ships with a build of the Embeddable EJB3 container in the enbedded- ej b directory. To use the Embed-
dable EJB3 container with Seam, add the enbedded- ej b/ conf directory, and all jarsin thelib and enbedded-
ej b/ i b directories to your classpath. Then, add the following line to conponent s. xm :

<conponent cl ass="org.jboss.seam core. Ej b"/>

This setting installs the built-in component named or g. j boss. seam core. ej b. This component is responsible

JBoss Seam 1.1.0.BETA 124

Configuring Seam

for bootstrapping the EJB container when Seam is started, and shutting it down when the web application is un-
deployed.

12.3.2. Configuring a datasource with the Embeddable EJB3 container

Y ou should refer to the Embeddable EJB3 container documentation for more information about configuring the
container. You'll probably at least need to set up your own datasource. Embeddable EJB3 isimplemented using
the JBoss Microcontainer, so it's very easy to add new services to the minimal set of services provided by de-
fault. For example, | can add a new datasource by putting thisj boss- beans. xni filein my classpath:

<?xm version="1.0" encodi ng="UTF-8""?>

<depl oynment xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
Xsi : schenalLocati on="ur n: j boss: bean- depl oyer bean- depl oyer_1_0. xsd"
xm ns="urn: j boss: bean- depl oyer" >

<bean nane="booki ngDat asour ceBoot st r ap"
cl ass="org. j boss.resource. adapt er. jdbc. | ocal . Local TxDat aSour ce" >
<property name="driverC ass">org. hsqgl db. j dbcDri ver </ property>
<property nane="connecti onURL" >j dbc: hsql db: . </ property>
<property name="user Nanme" >sa</ property>
<property nane="j ndi Nane" >j ava: / booki ngDat asour ce</ pr operty>
<property nanme="m nSi ze">0</ property>
<property name="maxSi ze">10</ property>
<property nane="Dbl ocki ngTi neout " >1000</ pr operty>
<property nane="idl eTi neout " >100000</ pr operty>
<property nane="transacti onManager" >
<i nj ect bean="Transacti onManager"/>
</ property>
<property nane="cachedConnecti onManager">
<i nj ect bean="CachedConnecti onManager"/>
</ property>
<property nane="initial ContextProperties">
<i nj ect bean="Initi al ContextProperties"/>
</ property>
</ bean>

<bean nane="booki ngDat asource" cl ass="java. | ang. Obj ect">
<constructor factoryMethod="get Dat asource">
<factory bean="booki ngDat asour ceBoot st rap"/>
</ const ruct or >
</ bean>

</ depl oynent >

12.3.3. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look something like
this:

nmy-appl i cati on. war/
META- | NF/
MANI FEST. MF
\EB- | NF/
web. xm
conponent s. xn
faces-config. xn
l'i b/
j boss-seam j ar
nyfaces-api.jar
myfaces-inpl.jar
j boss-ej b3.jar
j boss-jca.jar
j boss-j 2ee. jar

JBoss Seam 1.1.0.BETA 125

Configuring Seam

nc-conf.jar/
ej b3-i nt er cept or s- aop. xmi
enbedded- j boss- beans. xni
def aul t. persi stence. properties
jndi.properties
| ogi n-confi g. xm
security-beans. xn

| og4j . xm
my-application.jar/

META- | NF/
MANI FEST. MF

per si st ence. xn
j boss- beans. xn
| og4j . xm
seam properties
org/
j boss/
nmyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

l ogin.jsp
register.jsp

The nc-conf . jar just contains the standard JBoss Microcontainer configuration files for Embeddable EJB3.
Y ou won't usually need to edit these files yoursalf.

Most of the Seam example applications may be deployed to Tomcat by running ant depl oy. t ontat .

12.4. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start a transaction
transparently when the bean is invoked, and end it when the invocation ends. If we write a session bean method
that acts as a JSF action listener, we can do al the work associated with that action in one transaction, and be
surethat it is committed or rolled back when we finish processing the action. Thisis a great feature, and all that
is needed by many Seam applications.

There is just one problem with this approach. ORM solutions like Hibernate and EJB 3.0 persistence support
lazy fetching of entity associations inside a transaction context, but throw Lazyl ni ti al i zati onExcept i onS if
you try to access an unfetched association outside the context of a transaction. This is a problem if your view
page tries to access data that was not fetched during the transaction. Hibernate users devel oped the open session
in view pattern to work around this problem. This pattern is usually implemented as a transaction which spans
the entire request. There are several problems with this idea, the most serious being that we can't be sure that a
transaction has been successful until we commit it, but by the time we commit the transaction, we have already
rendered the view. Furthermore, thisis at best a partial solution to the problem, because we can still meet the
dreaded Lazyl nitial i zati onExcepti on if wetry to re-use the entity object in the next request.

Seam completely solves the problem of unwanted Lazyl ni ti al i zat i onExcept i ons, while working around the
biggest problem in the open session in view pattern. The solution comes in two parts:

e use an extended persistence context that is scoped to the conversation, instead of to the request

e use two transactions per request; the first spans the beginning of the update model values phase until the
end of the invoke application phase; the second spans the render response phase

JBoss Seam 1.1.0.BETA 126

Configuring Seam

12.4.1. Enabling Seam-managed transactions

To make use of Seam managed transactions, you need to use SeanExt endedManagedPer si st encePhaseL-
i st ener in place of SeanPhaseli st ener.

<lifecycl e>
<phase-|i stener>
org.j boss. seam j sf. SeanExt endedManagedPer si st encePhaselLi st ener
</ phase-1i st ener >
</lifecycl e>

It's also a good idea to add a servlet filter to rollback uncommitted transactions when uncaught exceptions oc-
cur.

<filter>
<filter-nane>Seam Exception Filter</filter-name>
<filter-class>org.jboss. seam servl et. SeanExceptionFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-name>Seam Exception Filter</filter-name>
<url-pattern>*.jsf</url-pattern>

</filter-nmappi ng>

12.4.2. Using a Seam-managed persistence context

You'll need to use a managed persistence context (for EJB3) or managed session (for Hibernate) in your com-
ponents. We'll see how to use a managed session later. Configuring a managed persistence context is easy. In
component s. xm , We can write:

<conponent name="booki ngDat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persistenceUnitJndi Nane">j ava: /EntityManager Fact ori es/ booki ngDat a</ pr operty>
</ conponent >

This configuration creates a conversation-scoped Seam component named booki ngDat abase that manages the
lifecycle of EntityManager instances for the persistence unit (Entit yManager Fact ory instance) with JNDI
namej ava: / Enti t yManager Fact ori es/ booki ngDat a.

Of course, you need to make sure that you have bound the Enti t yManager Fact ory into JNDI. In JBoss, you
can do this by adding the following property setting to per si st ence. xmi .

<property nane="jboss.entity.nmanager.factory.jndi.nanme"
val ue="j ava: / Entit yManager Fact ori es/ booki ngbDat a"/ >

Now we can have our Ent i t yManager injected using:

@n(create=true) EntityManager booki ngDat abase;

12.5. Configuring Seam with Hibernate in Java EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you would use Hibern-
ate3 instead of EJB 3.0 persistence, and plain JavaBeans instead of session beans. You'll miss out on some of
the nice features of session beans but it will be very easy to migrate to EJB 3.0 when you're ready and, in the
meantime, you'll be able to take advantage of Seam's unique declarative state management architecture.

JBoss Seam 1.1.0.BETA 127

Configuring Seam

J5P / Facelets

JSF

Seam

Hibernate

JavaEE S5/ J2EE

Seam JavaBean components do not provide declarative transaction demarcation like session beans do. You
could manage your transactions manually using the JTA User Transacti on (you could even implement your
own declarative transaction management in a Seam interceptor). But most applications will use Seam managed
transactions when using Hibernate with JavaBeans. Follow the instructions above to enable SeanExt endedMan-
agedPer si st encePhaseli st ener.

The Seam distribution includes a version of the booking example application that uses Hibernate and Java-
Beansinstead of EJB3. This example application is ready to deploy into any J2EE application server.

12.5.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate Sessi onFact ory from your hi ber nate. cfg. xm fileif you install the built-in
component named or g. j boss. seam cor e. hi ber nat e.

12.5.2. Using a Seam-managed Hibernate Session

We will also need to configure a managed session if we want a Seam managed Hibernate Sessi on to be avail-
ableviainjection.

To configure our Seam component, as usual, we use conponent s. xm :

<conponent nane="hi ber nat eSessi onFact ory"
cl ass="org. j boss. seam cor e. Hi ber nat eSessi onFactory"/>

<conponent name="booki ngDat abase"
cl ass="org.j boss. seam cor e. ManagedH ber nat eSessi on" >
<property nane="sessi onFactoryJndi Nane">j ava: / booki ngSessi onFact or y</ pr operty>
</ conponent >

Wherej ava: / booki ngSessi onFact ory iSthe name of the session factory specified in hi ber nate. cf g. xm .

<session-factory nane="j ava:/ booki ngSessi onFact ory" >
<property nane="transaction.flush_before_conpl eti on">true</property>
<property nane="connection.rel ease_node">after_st at ement </ property>

<property nanme="transacti on. manager _| ookup_cl ass" >or g. hi bernat e. transacti on. JBossTr an:
<property name="transaction.factory_cl ass">org. hi bernate.transacti on. JTATransacti onFa

<property nanme="connecti on. dat asour ce">j ava: / booki ngDat asour ce</ property>

</ sessi on-factory>

JBoss Seam 1.1.0.BETA 128

Configuring Seam

Note that Seam does not flush the session, so you should aways enable hibern-
ate.transaction. fl ush_bef ore_conpl eti on t0 ensure that the session is automatically flushed before the

JTA transaction commits.

We can now have a managed Hibernate Sessi on injected into our JavaBean components using the following
code:

@n(create=true) Session booki ngDat abase;

12.5.3. Packaging
We can package our application asa WAR, in the following structure;

nmy-appl i cati on. war/
VETA- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
conponent s. xm
faces-config. xm
l'i b/
j boss-seam j ar
hi bernat e3. j ar

ny-application.jar/
META- | NF/
MANI FEST. MF
seam properties
hi ber nat e. cf g. xm
org/
j boss/
myappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

I ogin.jsp
register.jsp

If we want to deploy Hibernate in a non-J2EE environment like Tomcat or TestNG, we need to do a little bit
more work.

12.6. Configuring Seam with Hibernate in Java SE

The Seam support for Hibernate requires JTA and a JCA datasource. If you are running in a non-EE environ-
ment like Tomcat or TestNG, you can run these services, and Hibernate itself, in the JBoss Microcontainer.

Y ou can even deploy the Hibernate version of the booking example in Tomcat.

JBoss Seam 1.1.0.BETA 129

Configuring Seam

JSP / Facelets

JSF

Seam

Hibernate

JBoss JTA JBoss JCA

JBoss Microcontainer

Tomcat

Seam ships with an example Microcontainer configuration in ni crocont ai ner/ conf/j boss-beans. xm that
provides al the things you need to run Seam with Hibernate in any non-EE environment. Just add the ni cr o-
cont ai ner/ conf directory, and all jarsinthe!ib and mi crocont ai ner/1i b directories to your classpath. Refer
to the documentation for the JBoss Microcontainer for more information.

12.6.1. Using Hibernate and the JBoss Microcontainer

The built-in Seam component named or g. j boss. seam cor e. ni crocont ai ner bootstraps the microcontainer.
As before, we probably want to use a Seam managed session.

<conponent class="org.jboss. seam core. M crocontainer"/>

<conponent name="booki ngDat abase"
cl ass="org. j boss. seam cor e. ManagedHi ber nat eSessi on" >
<property nane="sessi onFact oryJndi Nane">j ava: / booki ngSessi onFact or y</ pr operty>
</ conponent >

Where j ava: / booki ngSessi onFact ory is the name of the Hibernate session factory specified in hi bern-
ate.cfg. xm .

You'll need to provide aj boss. beans. xm filethat installs INDI, JTA, your JCA datasource and Hibernate into
the microcontainer:

<?xm version="1.0" encodi ng="UTF-8"?>

<depl oynent xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="urn: j boss: bean- depl oyer bean-depl oyer _1 0. xsd"
xm ns="ur n: j boss: bean- depl oyer" >

<bean name="Nam ng" cl ass="org.]jnp.server. Si ngl et onNam ngServer"/>

<bean name="Transacti onManager Factory" cl ass="org.jboss. seam ni crocont ai ner. Tr ansact i onManager Fact
<bean nane="Transacti onManager" cl ass="java.l ang. Obj ect">
<constructor factoryMethod="get Transacti onManager" >
<factory bean="Transacti onManager Factory"/>
</ constructor>

JBoss Seam 1.1.0.BETA 130

Configuring Seam

</ bean>

<bean nane="booki ngDat asour ceFact ory" cl ass="org.j boss. seam mi crocont ai ner. Dat aSour ceFact ory" >
<property nanme="driverd ass">org. hsql db. j dbcDri ver </ property>
<property nanme="connecti onUrl">j dbc: hsql db: . </ property>
<property name="user Name">sa</ property>
<property nane="j ndi Nane">j ava: / hi ber nat eDat asour ce</ property>
<property nanme="m nSi ze" >0</ pr operty>
<property name="maxSi ze">10</ property>
<property nane="bl ocki ngTi neout " >1000</ pr operty>
<property nanme="idl eTi meout " >100000</ pr operty>
<property nane="transacti onManager" ><i nj ect bean="Transacti onManager"/ ></ property>
</ bean>
<bean nane="booki ngDat asource" cl ass="java. | ang. Obj ect">
<constructor factoryMethod="get Dat aSour ce" >
<factory bean="booki ngDat asour ceFactory"/>
</ constructor>
</ bean>

<bean nane="booki ngDat abaseFact ory" cl ass="org. | boss. seam ni crocont ai ner. H ber nat eFact ory"/ >
<bean nane="booki ngDat abase" cl ass="java. | ang. Obj ect">
<constructor factoryMethod="get Sessi onFactory" >
<factory bean="booki ngDat abaseFact ory"/ >
</ constructor >
<depends>booki ngDat asour ce</ depends>
</ bean>

</ depl oynent >

12.6.2. Packaging

The WAR could have the following structure:

ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
VEB- | NF/
web. xm
conponent s. xn
faces-config. xm
l'i b/
j boss-seam j ar
hi ber nat e3. j ar

j boss-ni crocontainer.jar
j boss-jca.jar

nyf aces-api . j ar

myf aces-inpl.jar

nc-conf.jar/
jndi.properties

| og4j . xm
my-application.jar/

META- | NF/
MANI FEST. MF

j boss- beans. xni
seam properties
hi ber nat e. cf g. xm
| 0g4j . xn
org/
j boss/
myappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

l ogin.jsp
register.jsp

JBoss Seam 1.1.0.BETA 131

Configuring Seam

12.7. Configuring jJBPM in Seam

Seam's jJBPM integration is not installed by default, so you'll need to enable jBPM by installing a built-in com-
ponent. Y ou'll also need to explicitly list your process and pageflow definitions. In component s. xni :

<conponent cl ass="org.] boss. seam core. Jbpni >
<property nanme="pagefl owDefi nitions">
creat eDocunent . j pdl . xm
edi t Docunent . j pdl . xm
appr oveDocunent . j pdl . xm
</ property>
<property nane="processDefinitions">
docunent Li f ecycl e. j pdl . xmi
</ property>
</ conponent >

No further special configuration is needed if you only have pageflows. If you do have business process defini-
tions, you need to provide a jBPM configuration, and a Hibernate configuration for jBPM. The Seam DVD
Store demo includes examplej bpm cf g. xm and hi ber nat e. cf g. xm filesthat will work with Seam:

<j bpm confi gur ati on>

<j bpm cont ext >
<servi ce nanme="persi stence">
<factory>
<bean cl ass="org.j bpm persi st ence. db. DoPer si st enceSer vi ceFact ory" >
<field name="i sTransacti onEnabl ed" ><f al se/ ></fi el d>
</ bean>
</factory>
</ servi ce>
<servi ce nane="nessage" factory="org.jbpm nsg. db. DoMessageServi ceFactory" />
<servi ce nane="schedul er" factory="org.jbpm schedul er. db. DbSchedul er Servi ceFactory" />
<servi ce nanme="| oggi ng" factory="org.jbpm | oggi ng. db. DbLoggi ngServi ceFactory" />
<servi ce nane="aut hentication" factory="org.jbpm security. authentication. Defaul t Aut henti cati onSer\
</j bpm cont ext >

</j bpm confi gurati on>

The most important thing to notice here is that jJBPM transaction control is disabled. Seam or EJB3 should con-
trol the JTA transactions.

12.7.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow definition
files. In the Seam examples we've decided to ssimply package al these files into the root of the EAR. In future,
we will probably design some other standard packaging format. So the EAR looks something like this:

nmy-application. ear/
j boss-seam j ar
jbpm3.1.jar
META- | NF/
MANI FEST. MF
appl i cation. xm
ny-appl i cation. war/
META- | NF/
MANI FEST. M-
V\EB- | NF/
web. xm

JBoss Seam 1.1.0.BETA 132

Configuring Seam

conponent s. xm

faces-config. xm
| ogin.jsp
register.jsp

ny-application.jar/
META- | NF/
MANI FEST. MF
per si st ence. xn
seam properties
org/
j boss/
myappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

j bpm cf g. xm

hi ber nat e. cf g. xm

creat eDocunent . j pdl . xm
edi t Docunent . j pdl . xm

appr oveDocunent . j pdl . xm
docunent Li f ecycl e. j pdl . xmi

Remember to add j bpm 3. 1. j ar to the manifest of your EJB-JAR and WAR.

12.8. Configuring Seam in a Portal

To run a Seam application as a portlet, you'll need to provide certain portlet metadata (port ! et . xni , €tc) in ad-
dition to the usual Java EE metadata. See the exanpl es/ port al directory for an example of the booking demo
preconfigured to run on JBoss Portal.

In addition, you'll need to use a portlet-specific phase listener instead of SeanPhaseLi st ener Or SeanExt ended-
ManagedPer si st encePhaselLi st ener. The SeanPort | et PhaseLi st ener and SeanExt endedManagedPer si st en-
cePort| et PhaseLi st ener are adapted to the portlet lifecycle.

JBoss Seam 1.1.0.BETA 133

Chapter 13. The Seam Application Framework

Seam makes it really easy to create applications by writing plain Java classes with annotations, which don't
need to extend any special interfaces or superclasses. But we can simplify some common programming tasks
even further, by providing a set of pre-built components which can be re-used either by configuration in com
ponents. xn (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing basic database
access in aweb application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes that are easy to
understand and extend. The "magic" is in Seam itself—the same magic you use when creating any Seam ap-
plication even without using this framework.

13.1. Introduction

The components provided by the Seam application framework may be used in one of two different approaches.
The first way is to install and configure an instance of the component in conponents. xm , just like we have
done with other kinds of built-in Seam components. For example, the following fragment from conpon-
ents. xm installs acomponent which can perform basic CRUD operations for a Cont act entity:

<conponent name="personHone" class="org.jboss. seam franewor k. EntityHome" >
<property nane="entityd ass">eg. Person</ property>
<property nanme="id">#{param personl d} </ property>
<property nane="entityManager">#{ per sonDat abase} </ property>

</ conponent >

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@5t at ef ul

@Nane(" per sonHone")

public class PersonHonme extends EntityHome<Person> i npl enents Local Per sonHore {
@Request Par anet er Long personl d;
@n(create=true) EntityManager personDat abase;

public Qoject getld() { return personld; }
public EntityManager getEntityManager() { return personDatabase; }

The second approach has one huge advantage: you can easily add extra functionality, and override the built-in
functionality (the framework classes were carefully designed for extension and customization).

A second advantage is that your classes may be EJB stateful sessin beans, if you like. (They do not have to be,
they can be plain JavaBean componentsif you prefer.)

At this time, the Seam Application Framework provides just four built-in components. Enti t yHome and Hi -
ber nat eEnt i t yHome for CRUD, along with Ent i t yQuery and Hi ber nat eEnt i t yQuery for queries.

The Home and Query components are written so that they can function with a scope of session, event or con-
versation. Which scope you use depends upon the state model you wish to usein your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By default, the com-
ponents will ook for a persistence context named ent i t yManager .

JBoss Seam 1.1.0.BETA 134

The Seam Application Framework

13.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our trusty Per son
class:

@ntity

public class Person {
@d private Long id;
private String firstName;
private String |astName;
private Country nationality;

/lgetters and setters...

We can define a per sonHone component either via configuration:

<conponent name="personHone" cl ass="org. | boss. seam franework. EntityHone" >
<property nane="entityCd ass">eg. Person</ property>
</ conponent >

Or viaextension:

@Nane(" per sonHone")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: per si st (), renove() , updat e() and get I nst ance() . Before
you can call therenove(), or updat e() operations, you must first set the identifier of the object you are inter-
ested in, using the set 1 d() method.

We can use a Home directly from a JSF page, for example:

<h1>Creat e Person</hil>
<h: f or mp
<di v>Fi rst name: <h:inputText val ue="#{personHone.instance.firstName}"/></div>
<di v>Last name: <h:inputText val ue="#{personHone.instance.|astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}"/>
</ di v>
</ h:formr

Usually, it is much nicer to be able to refer to the Person merely as person, S0 let's make that possible by
adding aline to conponent s. xm :

<factory nane="person" val ue="#{per sonHone. i nstance}"/>
<conponent name="personHone" cl ass="org.jboss. seam franework. EntityHone" >

<property nane="entityd ass">eg. Person</ property>
</ conponent >

(If we are using configuration.) Or by adding a @act ory method to Per sonHonre:

@Nane(" per sonHonme")
public class PersonHone extends EntityHone<Person> {

@ actory("person")
public Person initPerson() { return getlnstance(); }

JBoss Seam 1.1.0.BETA 135

The Seam Application Framework

(If we are using extension.) This change simplifies our JSF page to the following:

<h1>Creat e Person</hil>
<h: f or m»
<di v>Fi rst nanme: <h:inputText val ue="#{person.firstNane}"/></div>
<di v>Last nanme: <h:inputText val ue="#{person.| astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}"/>
</ di v>
</ h: fornm

Well, that lets us create new Per son entries. Yes, that isall the code that is required! Now, if we want to be able
to display, update and delete pre-existing Per son entries in the database, we need to be able to pass the entry
identifier to the Per sonHome. Page parameters are agreat way to do that:

<pages>
<page vi ewi d="/editPerson.jsp">
<par am nane="per sonl d" >#{ per sonHon®. i d} </ par an»
</ page>
</ pages>

Now we can add the extra operations to our JSF page:

<h1>
<h: out put Text rendered="#{! per sonHorme. managed}" val ue="Create Person"/>
<h: out put Text render ed="#{per sonHone. managed}" val ue="Edit Person"/>
</ h1>
<h: f or m»
<di v>Fi rst name: <h:inputText val ue="#{person.firstNane}"/></div>
<di v>Last nane: <h:inputText val ue="#{person.| astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persi st}" rendered="#{! personHone.
<h: commandBut t on val ue="Updat e Person" acti on="#{personHone. updat e}" rendered="#{per sonHone. m
<h: conmandBut t on val ue="Del ete Person" acti on="#{personHone. renove}" rendered="#{personHone. m
</ di v>
</ h: form

When we link to the page with no request parameters, the page will be displayed as a "Create Person" page.
When we provide avalue for the per sonl d request parameter, it will be an "Edit Person" page.

Suppose we heed to create Per son entries with their nationality initialized. We can do that easily, via configura-
tion:
<factory nane="person" val ue="#{personHone. i nstance}"/>
<conponent name="personHone" class="org.jboss. seam franework. EntityHome" >
<property nane="entityC ass">eg. Person</ property>
<property nane="new nst ance" >#{ newPer son} </ property>
</ conponent >
<conponent nane="newPer son" cl ass="eg. Person">

<property nane="nationality">#{country}</property>
</ conponent >

Or by extension:

@ame(" per sonHone")
public class PersonHone extends EntityHone<Person> {

@n Country country;

@ actory("person")
public Person initPerson() { return getlnstance(); }

JBoss Seam 1.1.0.BETA 136

The Seam Application Framework

protected Person createlnstance() {
return new Person(country);

}

Of course, the count ry could be an object managed by another Home object, for example, Count r yHone.
To add more sophisticated operations (association management, etc), we can just add methods to Per sonHonre.

@Nane(" per sonHone")
public class PersonHone extends EntityHone<Person> {

@n Country country;

@actory("person")
public Person initPerson() { return getlnstance(); }

prot ect ed Person createlnstance() {
return new Person(country);

}

public void mgrate()

{
get |l nstance() . set Country(country);
updat e();

}

The Home object automatically displays faces messages when an operation is successful. To customize these
messages we can, again, use configuration:

<factory nane="person" val ue="#{personHone. i nstance}"/>

<conmponent name="personHone" class="org.jboss. seam franewor k. EntityHome">
<property nane="entityd ass">eg. Person</ property>
<property name="new nst ance" >#{ newPer son} </ pr operty>
<property nane="creat edMessage" >New person #{person.firstNanme} #{person.!|astNane} created</propert
<property nane="del et edMessage" >Per son #{person.firstNanme} #{person.|astNane} del et ed</property>
<property nanme="updat edMessage" >Person #{person.firstName} #{person.|astNane} updated</property>
</ conponent >

<conponent name="newPerson" cl ass="eg. Person">

<property nane="nationality">#{country}</property>
</ conponent >

Or extension:

@ame(" per sonHone")
public class PersonHonme extends EntityHome<Person> {

@n Country country;

@-actory("person")
public Person initPerson() { return getlnstance(); }

protected Person createl nstance() {
return new Person(country);
}

protected String getCreatedMessage() { return "New person #{person.firstNanme} #{person.|astNane} ¢
protected String getUpdat edMessage() { return "Person #{person.firstName} #{person.|astNane} updat
protected String getDel etedvessage() { return "Person #{person.firstNanme} #{person.|astNane} del et

JBoss Seam 1.1.0.BETA 137

The Seam Application Framework

But the best way to specify the messages is to put them in a resource bundle known to Seam (the bundle named
nessages, by default).

Per son_cr eat ed=New person #{person. firstNane} #{person.|astNane} created
Per son_del et ed=Per son #{person.firstNane} #{person.|astNane} del eted
Per son_updat ed=Per son #{person. first Nane} #{person.|astNanme} updated

This enabl es internationalization, and keeps your code and configuration clean of presentation concerns.

The final step is to add validation functionality to the page, using <s: val i dat eAl | > and <s: decor at e>, but ['ll
leave that for you to figure out.

13.3. Query objects

If we need alist of al Per son instance in the database, we can use a Query object. For example:

<component name="peopl e" class="org.jboss. seam franmework. EntityQuery">
<property nane="ej bqgl ">sel ect p from Person p</property>
</ conponent >

We can use it from a JSF page:

<hl>Li st of people</hl>
<h: dat aTabl e val ue="#{peopl e}" var="person">
<h: col um>
<s:link viewid="/editPerson.jsp" val ue="#{person.firstNane} #{person.|astNanme}">
<f:param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col um>
</ h: dat aTabl e>

We probably need to support pagination:

<conponent nanme="peopl e" cl ass="org.jboss. seam franmewor k. EntityQuery">
<property nane="ej bqgl ">sel ect p from Person p</property>
<property nanme="order" >l ast Name</ property>
<property name="nmaxResul t s">20</property>

</ conponent >

The JSF code for a pagination control is a bit verbose, but manageable:

<hl>Search for peopl e</hl>
<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col um>
<s:link viewid="/editPerson.jsp" value="#{person.firstNane} #{person.|astName}">
<f: param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

<s:link view="/search.xhtm" rendered="#{peopl e. previ ousExi sts}" val ue="First Page">
<f: param nanme="firstResult" val ue="0"/>
</s:link>

<s:link view="/search. xhtm " rendered="#{peopl e. previ ousExi sts}" val ue="Previ ous Page">
<f: param nanme="first Result" val ue="#{peopl e. previ ousFirstResult}"/>
</s:link>

<s:link view="/search. xhtm " rendered="#{peopl e. next Exi sts}" val ue="Next Page">
<f:param nanme="firstResul t" val ue="#{people.nextFirstResult}"/>
</s:link>

JBoss Seam 1.1.0.BETA 138

The Seam Application Framework

<s:link view="/search.xhtm " rendered="#{peopl e. next Exi sts}" val ue="Last Page">
<f:param nane="firstResult" val ue="#{people.lastFirstResult}"/>
</s:link>

Real search screens let the user enter a bunch of optional search criteria to narrow the list of results returned.
The Query object lets you specify optional "restrictions” to support thisimportant usecase:

<conponent nane="exanpl ePerson" cl ass="Person"/>

<conponent name="peopl e" class="org.jboss. seam franmework. EntityQuery">
<property name="ej bqgl ">select p from Person p</property>
<property nane="order" >l ast Nane</ property>
<property name="maxResul t s">20</ property>
<restrictions>
<val ue>l ower (firstName) l|ike |ower(#{exanpl ePerson.firstNanme} + '%)</val ue>
<val ue>l ower (| ast Nane) |ike | ower(#{exanpl ePerson.|astNane} + '%)</val ue>
</restriction>
</ conponent >

Notice the use of an "example" object.

<hl>Search for peopl e</hl>

<h: f or m»
<di v>Fi rst name: <h:inputText val ue="#{exanpl ePerson.firstName}"/></div>
<di v>Last nane: <h:inputText val ue="#{exanpl ePerson.| ast Name}"/></div>
<di v><h: commandBut t on val ue="Search" action="/search.jsp"/></div>

</ h: fornm

<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col um>
<s:link viewid="/editPerson.jsp" val ue="#{person.firstNane} #{person.|astNane}">
<f: param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

The examples in this section have al shown reuse by configuration. However, reuse by extension is equaly
possible for Query objects.

13.4. Using Hibernate filters

The coolest, and most unique, feature of Hibernate isfilters. Filters let you provide arestricted view of the data
in the database. Y ou can find out more about filters in the Hibernate documentation. But we thought we'd men-
tion an easy way to incorporate filters into a Seam application, one that works especialy well with the Seam
Application Framework.

Seam-managed persistence contexts may have alist of filters defined, which will be enabled whenever an En-
tityManager or Hibernate Sessi on is first created. (Of course, they may only be used when Hibernate is the
underlying persistence provider.)

<conmponent name="regi onFilter"
class="org.j boss.seamcore. Filter">
<property nanme="nane">regi on</ property>
<property nane="paraneters">
<key>r egi onCode</ key><val ue>#{r egi on. code} </ val ue>
</ property>
</ conponent >

conponent nanme="currentFilter"
class="org.j boss.seamcore.Filter">
<property nanme="nane">current</property>

JBoss Seam 1.1.0.BETA 139

The Seam Application Framework

<property nane="paraneters">
<key>dat e</ key><val ue>#{ cur r ent Dat e} </ val ue>
</ property>
</ conponent >

<conponent nane="personDat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persistenceUnitJndi Nane">j ava: /EntityManager Fact ori es/ per sonDat abase</ property>
<property name="filters">
<val ue>#{regionFil ter}</val ue>
<val ue>#{currentFilter}</val ue>
</ property>
</ conponent >

JBoss Seam 1.1.0.BETA 140

Chapter 14. Seam annotations

When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations to achieve a
declarative style of programming. Most of the annotations you'll use are defined by the EJB 3.0 specification.
The annotations for data validation are defined by the Hibernate Validator package. Finally, Seam defines its
own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package or g. j boss. seam annot at i ons.

14.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on the component
class.
@Nane

@ame(" conponent Nanme")

Defines the Seam component name for a class. This annotation is required for all Seam components.
@scope

@scope(ScopeType. CONVERSATI ON)

Defines the default context of the component. The possible values are defined by the ScopeType enumera-
tion: EVENT, PAGE, CONVERSATI ON, SESSI ON, BUSI NESS_PROCESS, APPLI CATI ON, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For stateless session
beans, the default is STATELESS. For entity beans and stateful session beans, the default is CONVERSATI ON.
For JavaBeans, the default is EVENT.

@Rol e

@Rol e(name="r ol eNane", scope=ScopeType. SESSI ON)

Allows a Seam component to be bound to multiple contexts variables. The @ame/@cope annotations
define a"default role". Each @rol e annotation defines an additional role.

* name — the context variable name.

* scope — the context variable scope. When no scope is explicitly specified, the default depends upon
the component type, as above.

@Rol es

@Rol es({
@Rol e(name="user", scope=ScopeType. CONVERSATI ON),
@Rol e(name="current User", scope=ScopeType. SESSI ON)

})

Allows specification of multiple additional roles.

JBoss Seam 1.1.0.BETA 141

Seam annotations

@ nt er cept

@ntercept (I ntercepti onType. ALWAYS)

Determines when Seam interceptors are active. The possible values are defined by the I nt er cept i onType
enumeration: ALWAYS, AFTER RESTORE_VI EW AFTER UPDATE_MODEL_VALUES, | NVOKE_APPLI CATI ON,
NEVER.

When no interception type is explicitly specified, the default depends upon the component type. For entity
beans, the default is NEVER. For session beans, message driven beans and JavaBeans, the default is ALWAYS.

@ndi Nane

@ndi Nane(" nmy/ j ndi / nane")

Specifies the INDI name that Seam will use to look up the EJB component. If no JNDI name is explicitly
specified, Seam will use the INDI pattern specified by or g. j boss. seam core.init.jndi Pattern.

@conver sat i onal

@Conver sati onal (i f Not BegunQut cone="error")

Specifies that a conversation scope component is conversational, meaning that no method of the component
can be called unless a long-running conversation started by this component is active (unless the method
would begin a new long-running conversation).

e i fNot BegunQut cone — specifies a JSF outcome for the action when the component is invoked and no
long-running conversation is active.

@5t artup

@bt art up(depends={"org.j boss.core.jndi", "org.jboss.core.jta"})

Specifies that an application scope component is started immediately at initialization time. This is mainly
used for certain built-in components that bootstrap critical infrastructure such as JINDI, datasources, etc.

@t art up

Specifies that a session scope component is started immediately at session creation time.

* depends — specifies that the named components must be started first, if they areinstalled.
@ynchroni zed

@ynchroni zed(ti neout =1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam should seriadize re-
quests. If areguest is not able to obtain its lock on the component in the given timeout period, an exception
will be raised.

14.2. Annotations for bijection

JBoss Seam 1.1.0.BETA 142

Seam annotations

The next two annotations control bijection. These attributes occur on component instance variables or property
accessor methods.

@n

@n

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an exception will be thrown.

@ n(required=fal se)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. The context variable may be null.

@n(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an instance of the component is instantiated by Seam.

@n(val ue="cont ext Vari abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

@n(val ue="#{cust omer. addr esses["' shi pping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at the beginning of
each component invocation.

» val ue — specifies the name of the context variable. Default to the name of the component attribute. Al-
ternatively, specifies a JSF EL expression, surrounded by #{. . . }.

* creat e — specifies that Seam should instantiate the component with the same name as the context vari-
ableif the context variable is undefined (null) in all contexts. Default to false.

e required — specifies Seam should throw an exception if the context variable is undefined in al con-
texts.

@ut

@ut

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. If the attribute is null, an exception is thrown.

@ut (requi red=fal se)

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. The attribute may be null.

@ut (scope=ScopeType. SESSI ON)

Specifies that a component attribute that is not a Seam component type is to be outjected to a specific scope

JBoss Seam 1.1.0.BETA 143

Seam annotations

at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @t attribute is used
(or the EVENT scope if the component is statel ess).

@out (val ue="cont ext Var i abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

¢ val ue — specifies the name of the context variable. Default to the name of the component attribute.

e required — specifies Seam should throw an exception if the component attribute is null during outjec-
tion.

Note that it is quite common for these annotations to occur together, for example:

@n(create=true) @ut private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that manages the life-
cycle of an instance of some other class that isto be injected. It appears on a component getter method.

@Jnwr ap

@Jnwr ap

Specifies that the object returned by the annotated getter method is the thing that is injected instead of the
component instance itself.

The next annotation supports the factory component pattern, where a Seam component is responsible for initial-
izing the value of a context variable. Thisis especially useful for initializing any state needed for rendering the
response to a non-faces request. It appears on a component method.

@actory

@ract ory("processl nstance")

Specifies that the method of the component is used to initialize the value of the named context variable,
when the context variable has no value. This style is used with methods that return voi d.

@-actory("processlnstance", scope=CONVERSATI ON)

Specifies that the method returns a value that Seam should use to initialize the value of the named context
variable, when the context variable has no value. This style is used with methods that return a value. If no
scope is explicitly specified, the scope of the component with the @act ory method is used (unless the
component is stateless, in which case the EVENT context is used).

* val ue — specifies the name of the context variable. If the method is a getter method, default to the
JavaBeans property name.

* scope — specifies the scope that Seam should bind the returned value to. Only meaningful for factory
methods which return avalue.

This annotation lets you inject aLog:

JBoss Seam 1.1.0.BETA 144

Seam annotations

@ogger

@.ogger (" cat egor yName")

Specifies that a component field isto be injected with an instance of or g. j boss. seam | og. Log.

« val ue — specifies the name of the log category. Default to the name of the component class.

The last annotation lets you inject arequest parameter value:

@Request Par anet er

@Request Par anet er (" par anet er Nane")

Specifies that a component attribute is to be injected with the value of a request parameter. Basic type con-
versions are performed automatically.

e val ue — specifies the name of the request parameter. Default to the name of the component attribute.

14.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods of the com-
ponent. There may be only one of each per component class.
@r eat e

@r eat e

Specifies that the method should be called when an instance of the component is instantiated by Seam.
Note that create methods are only supported for JavaBeans and stateful session beans.

@pest r oy

@est r oy

Specifies that the method should be called when the context ends and its context variables are destroyed.
Note that create methods are only supported for JavaBeans and stateful session beans.

Note that all stateful session bean components must define a method annotated @est roy @renove in order
to guarantee destruction of the stateful bean when a context ends.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any exception that
propagates out of a destroy method.

@ser ver

@server (" sonet hi ngChanged")

Specifies that the method should be called when a component-driven event of the specified type occurs.

JBoss Seam 1.1.0.BETA 145

Seam annotations

14.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of Seam compon-
ents, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations end at the end of
the request. If you want a conversation that span multiple requests, you must "promote" the current conversa
tion to along-running conversation by calling a method marked with @egi n.
@egi n

@egi n

Specifies that along-running conversation begins when this method returns a non-null outcome without ex-
ception.

@Begi n(i f Qut cone={"success", "continue"})

Specifies that a long-running conversation begins when this action listener method returns with one of the
given outcomes.

@Begi n(j oi n=true)

Specifies that if a long-running conversation is already in progress, the conversation context is simply
propagated.

@egi n(nest ed=t r ue)

Specifies that if along-running conversation is already in progress, a new nested conversation context be-
gins. The nested conversation will end when the next @nd is encountered, and the outer conversation will
resume. It is perfectly legal for multiple nested conversations to exist concurrently in the same outer con-
versation.

@egi n(pagef | ow="process definition name")

Specifies ajBPM process definition name that defines the pageflow for this conversation.

@Begi n(f | ushMode=FI ushMbdeType. MANUAL)

Specify the flush mode of any Seam-managed persistence contexts. f | ushMode=FI ushMbdeType. MANUAL
supports the use of atomic conversations where al write operations are queued in the conversation context
until an explicit call tof1 ush() (which usually occurs at the end of the conversation).

e ifoutcome — specifies the JSF outcome or outcomes that result in a new long-running conversation
context.

e joi n — determines the behavior when a long-running conversation is already in progress. If t r ue, the
context is propagated. If f al se, an exception is thrown. Default to f al se. This setting is ignored when
nest ed=t r ue is specified

* nested — gpecifies that a nested conversation should be started if a long-running conversation is
already in progress.

JBoss Seam 1.1.0.BETA 146

Seam annotations

e flushvde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

e pageflow — a process definition name of a jBPM process definition deployed via
org.j boss. seam core. j bpm pagef | owDefi ni tions.

@nd

@nd

Specifies that a long-running conversation ends when this method returns a non-null outcome without ex-
ception.

@nd(i f Qut come={"success", "error"}, evenlfException={SoneException.class, OherException.class})

Specifies that a long-running conversation ends when this action listener method returns with one of the
given outcomes or throws one of the specified classes of exception.

e ifout come — gpecifies the JSF outcome or outcomes that result in the end of the current long-running
conversation.

e beforeRedirect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting bef or eRedi r ect =t rue Specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@5t art Task

@5t art Task

"Starts' a jBPM task. Specifies that a long-running conversation begins when this method returns a non-
null outcome without exception. This conversation is associated with the jBPM task specified in the named
request parameter. Within the context of this conversation, a business process context is also defined, for
the business process instance of the task instance.

The jBPM Taskl nst ance will be available in a request context variable named t ask! nst ance. The |PBM
Processl nstance Will be available in a request context variable named processl nst ance. (Of course,
these objects are available for injection via@n.)

* taskldParameter — the name of a request parameter which holds the id of the task. Default to
"taskl d", which is also the default used by the Seam t askLi st JSF component.

e flushvde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

@egi nTask

@Begi nTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation begins when this
method returns a non-null outcome without exception. This conversation is associated with the jBPM task
specified in the named request parameter. Within the context of this conversation, a business process con-
text is also defined, for the business process instance of the task instance.

JBoss Seam 1.1.0.BETA 147

Seam annotations

The jBPM Taskl nst ance will be available in a request context variable named t askl nst ance. The jPBM
Processl nst ance Will be available in arequest context variable named pr ocessli nst ance.

e taskldParameter — the name of a request parameter which holds the id of the task. Default to
“taskl d", which is also the default used by the Seam t askLi st JSF component.

e flushMde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

@ndTask

@ndTask

"Ends' a jBPM task. Specifies that a long-running conversation ends when this method returns a non-null
outcome, and that the current task is complete. Triggers a jBPM transition. The actual transition triggered
will be the default transition unless the application has called Tr ansi ti on. set Nane() on the built-in com-
ponent named t r ansi ti on.

@ndTask(transition="transiti onName")

Triggersthe given jBPM transition.

@ndTask(i f Qut come={"success", "continue"})

Specifies that the task ends when this method returns one of the listed outcomes.

* transition — the name of the jBPM transition to be triggered when ending the task. Defaults to the
default transition.

* i fout come — specifies the JSF outcome or outcomes that result in the end of the task.

e beforeRedirect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting bef or eRedi r ect =t r ue Specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@Cr eat eProcess

@Cr eat eProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without exception. The
Processl nst ance object will be available in a context variable named pr ocessl nst ance.

e definition — the name of the jBPM process definition deployed Vvia
org.j boss.seam core. j bpm processDefinitions.

@ResuneProcess

@ResurnePr ocess(processl dPar anet er =" processl d")

Re-enters the scope of an existing |BPM process instance when the method returns a non-null outcome
without exception. The Processl! nst ance object will be available in a context variable named pr ocessl n-
st ance.

JBoss Seam 1.1.0.BETA 148

Seam annotations

e processl dPar anet er — the name arequest parameter holding the process id. Default to " process! d".

14.5. Annotations for transaction demarcation

Seam provides an annotation that lets you force arollback of the JTA transaction for certain action listener out-
comes.

@Rol | back

@Rol | back(i fQutcome={"failure", "not-found"})

If the outcome of the method matches any of the listed outcomes, or if no outcomes are listed, set the trans-
action to rollback only when the method compl etes.

e ifoutcome — the JSF outcomes that cause a transaction rollback (no outcomes is interpreted to mean
any outcome).

@r ansact i onal

@r ansact i onal

Specifies that a JavaBean component should have a similar transactional behavior to the default behavior of
a session bean component. ie. method invocations should take place in a transaction, and if no transaction
exists when the method is called, a transaction will be started just for that method. This annotation may be
applied at either class or method level.

Seam applications usually use the standard EJB3 annotations for all other transaction demarcation needs.

14.6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of a Seam com-
ponent.

@Redi rect

@Redi rect (view d="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.

* view d — specifiesthe JSF view id to redirect to.

* nmessage — amessage to be displayed, default to the exception message.

¢ end — specifies that the long-running conversation should end, default to f al se.
@Render

@Render (viewl d="error.jsp")

JBoss Seam 1.1.0.BETA 149

Seam annotations

Specifies that the annotated exception causes immediate rendering of the view. This annotation is ignored
unless the exception is thrown during the JSF INVOKE_APPLICATION phase.

e view d — specifiesthe JSF view id to redirect to.
* nmessage — amessage to be displayed, default to the exception message.
* end — specifiesthat the long-running conversation should end, default to f al se.

@t t pError

@Ht t pError (error Code=404)

Specifies that the annotated exception causesaHTTP error to be sent.

* errorCode — the HTTP error code, default to 500.
* nmessage — amessage to be sent with the HTTP error, default to the exception message.

e end — gpecifies that the long-running conversation should end, default to f al se.

14.7. Annotations for validation

This annotation triggers Hibernate Validator. It appears on a method of a Seam component, almost always an
action listener method.

Please refer to the documentation for the Hibernate Annotations package for information about the annotations
defined by the Hibernate Validator framework.

Note that use of @ f I nval i d is now semi-deprecated and <s: val i dat eAl | > isnow preferred.

@flnvalid

@flnvalid(outcome="invalid", refreshEntities=true)
Specifies that Hibernate Validator should validate the component before the method is invoked. If the in-

vocation fails, the specified outcome will be returned, and the validation failure messages returned by Hi-
bernate Validator will be added to the FacesCont ext . Otherwise, the invocation will proceed.

* out come — the JSF outcome when validation fails.

e refreshEntities — specifiesthat any invalid entity in the managed state should be refreshed from the
database when validation fails. Default to f al se. (Useful with extended persistence contexts.)

14.8. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following annotation:

@\ebRenpt e

JBoss Seam 1.1.0.BETA 150

Seam annotations

@\ébRenot e(excl ude="pat h. t 0. excl ude")

Indicates that the annotated method may be called from client-side JavaScript. The excl ude property is op-
tional and allows objects to be excluded from the result's object graph (see the Remoting chapter for more
details).

14.9. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the annotations required
for EJB interceptor definition.

@ nt er cept or

@nterceptor(statel ess=true)
Specifies that this interceptor is statel ess and Seam may optimize replication.
@ nt er cept or (t ype=CLI ENT)
Specifies that thisinterceptor isa"client-side" interceptor that is called before the EJB container.

@ nt er cept or (around={ Sonel nt erceptor. cl ass, Ot herlnterceptor.class})

Specifies that thisinterceptor is positioned higher in the stack than the given interceptors.

@ nterceptor (wthin={Sonmel nterceptor.class, Oherlnterceptor.class})

Specifies that thisinterceptor is positioned deeper in the stack than the given interceptors.

14.10. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

@\synchronous public void scheduleAlert(Al ert alert, @xpiration Date date) { ... }

@\ synchronous public Timer schedul eAlerts(Alert alert, @txpiration Date date, @nterval Duration |ong i

@\synchr onous
@\synchr onous
Specifies that the method call is processed asynchronously.
@ur at i on
@ur at i on

Specifies that a parameter of the asynchronous call is the duration before the call is processed (or first pro-

JBoss Seam 1.1.0.BETA 151

Seam annotations

cessed for recurring calls).
@xpiration

@xpi ration

Specifies that a parameter of the asynchronous call is the datetime at which the call is processed (or first
processed for recurring calls).

@nterval Duration

@ nt erval Duration

Specifies that an asynchronous method call recurs, and that the annotationed parameter is duration between
recurrences.

14.11. Annotations for use with JSF dat aTabl e

The following annotations make it easy to implement clickable lists backed by a stateful session bean. They ap-
pear on attributes.

@at aModel

@pat aModel (" vari abl eNanme")

Exposes an attribute of type Li st, Map, Set or vj ect[] as a JSF Dat ambdel into the scope of the owning
component (or the EVENT scope if the owning component is STATELESS). In the case of Map, each row of the
Dat aMbdel iSaMap. Entry.

* val ue — name of the conversation context variable. Default to the attribute name.

e scope — if scope=ScopeType. PAGE is explicitly specified, the Dat ampdel will be kept in the PAGE con-
text.

@at aMbdel Sel ecti on

@at aModel Sel ecti on

Injects the selected value from the JSF Dat ambdel (this is the element of the underlying collection, or the
map value).

* val ue — name of the conversation context variable. Not needed if there is exactly one @at avbdel in
the component.

@at aMbdel Sel ecti onl ndex

@at aModel Sel ecti onl ndex

Exposes the selection index of the JSF Dat ambdel as an attribute of the component (this is the row number
of the underlying collection, or the map key).

JBoss Seam 1.1.0.BETA 152

Seam annotations

e val ue — name of the conversation context variable. Not needed if there is exactly one @at avbdel in
the component.

14.12. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @patambdel and
@at aMbdel Sel ect i on for other datastructures apart from lists.

@at aBi nder Cl ass

@pat aBi nder Cl ass(Dat avbdel Bi nder. cl ass)

Specifies that an annotation is a databinding annotation.
@at aSel ect or C ass

@pat aSel ect or O ass(Dat aMbdel Sel ect or. cl ass)

Specifies that an annotation is a datasel ection annotation.

JBoss Seam 1.1.0.BETA 153

Chapter 15. Built-in Seam components

This chapter describes Seam'’s built-in components, and their configuration properties.

Note that you can replace any of the built in components with your own implementations simply by specifying
the name of one of the built in components on your own class using @ane.

15.1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects. For example,
the following component instance variable would have the Seam session context object injected:

@n private Context sessionContext;

event Cont ext
Manager component for the event context object

pageCont ext
Manager component for the page context object

conver sat i onCont ext
Manager component for the conversation context object

sessi onCont ext
Manager component for the session context object

appl i cati onCont ext
Manager component for the appication context object

busi nessProcessCont ext
Manager component for the business process context object

f acesCont ext
Manager component for the FacesCont ext context object (not a true Seam context)

All of these components are always installed.

15.2. Utility components

These components are merely useful.

f acesMessages
Allows faces success messages to propagate across a browser redirect.

* add(FacesMessage facesMessage) — add a faces message, which will be displayed during the next
render response phase that occursin the current conversation.

e add(String nessageTenpl ate) — add a faces message, rendered from the given message template
which may contain EL expressions.

JBoss Seam 1.1.0.BETA 154

Built-in Seam components

e add(Severity severity, String nessageTenpl ate) — add afaces message, rendered from the giv-
en message template which may contain EL expressions.

e addFronResourceBundl e(String key) — add a faces message, rendered from a message template
defined in the Seam resource bundle which may contain EL expressions.

e addFronResourceBundl e(Severity severity, String key) — add afaces message, rendered from a
message template defined in the Seam resource bundle which may contain EL expressions.

e clear() — clear all messages.

redirect
A convenient API for performing redirects with parameters (this is especially useful for bookmarkable
search results screens).

e redirect.view d —the JSF view id to redirect to.

e redirect.conversationPropagati onEnabl ed — determines whether the conversation will propagate
across the redirect.

e redirect.parameters — amap of request parameter name to value, to be passed in the redirect re-
quest.

e execut e() — perform the redirect immediately.

e captureCurrent Request () — storesthe view id and request parameters of the current GET request (in
the conversation context), for later use by calling execut e() .

htt pError
A convenient API for sending HTTP errors.

events
An APl for raising events that can be observed via @vserver methods, or method bindings in WeB-
I NF/ events. xni .

* raiseEvent (String type) — raisean event of aparticular type and distribute to all observers.

* raiseAsynchronousEvent (String type) — raise an event to be processed asynchronously by the
EJB3 timer service.

* raiseTinedEvent (String type,) — schedule an event to be processed asynchronously by the
EJB3 timer service.

e addListener(String type, String nethodBi ndi ng) — add an observer for a particular event type.

i nt er pol at or
An API for interpolating the values of JSF EL expressionsin Strings.

* interpolate(String tenplate) — scan the template for JSF EL expressions of the form #{. ..} and
replace them with their evaluated values.

expressi ons
An API for creating value and method bindings.

JBoss Seam 1.1.0.BETA 155

Built-in Seam components

e createVal ueBi ndi ng(String expressi on) — create avalue binding object.
e createMet hodBi ndi ng(String expressi on) — create amethod binding object.

poj oCache
Manager component for a JBoss Cache Poj oCache instance.

* poj oCache. cf gResour ceName — the name of the configuration file. Default to t r eecache. xm .

ui Conponent
Allows access to a JSF U Component by its id from the EL. For example, we can write
@ n("#{ui Conponent [' nyFor m address'] . val ue}").

All of these components are aways installed.

15.3. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using Seam.

| ocal e

The Seam locale. Thelocale is session scoped.

tinezone
The Seam timezone. The timezone is session scoped.

resour ceBundl e
The Seam resource bundle. The resource bundle is session scoped. The Seam resource bundle performs a
depth-first search for keysin alist of Javaresource bundles.

* resourceBundl e. bundl eNames — the names of the Java resource bundles to search. Default to nes-
sages.

| ocal eSel ect or
Supports selection of the locale either at configuration time, or by the user at runtime.

e select () — select the specified locale.

* |ocal eSel ector.|ocal e—theactua java. util. Local e.

e local eSel ector. | ocal eSt ri ng — the stringified representation of the locale.
* local eSel ector. | anguage — the language for the specified locale.

e local eSel ect or. count ry — the country for the specified locale.

e local eSel ector.vari ant — the variant for the specified locale.

e local eSel ect or. support edLocal es — alist of Sel ect I t ens representing the supported locales listed
injsf-config.xm .

* local eSel ector. cooki eEnabl ed — specifies that the locale selection should be persisted viaa cookie.

JBoss Seam 1.1.0.BETA 156

Built-in Seam components

ti nezoneSel ect or
Supports selection of the timezone either at configuration time, or by the user at runtime.

* select () — select the specified locale.
* timezoneSel ector.tinezone —theactual j ava. util. Ti neZone.
* tinmezoneSel ector.timezZonel d — the stringified representation of the timezone.

e tinmezoneSel ector. cooki eEnabl ed — specifies that the timezone selection should be persisted via a
cookie.

nessages
A map containing internationalized messages rendered from message templates defined in the Seam re-
source bundle.

t heneSel ect or
Supports selection of the theme either at configuration time, or by the user at runtime.

* select () — select the specified theme.

* thene. avai | abl eThenes — the list of defined themes.

* themeSel ect or . t heme — the selected theme.

e theneSel ector.thenes — alist of Sel ect I t ens representing the defined themes.

* themeSel ector. cooki eEnabl ed — sSpecifies that the theme selection should be persisted via a cookie.

t hene
A map containing theme entries.

All of these components are always installed.

15.4. Components for controlling conversations

The next group of components allow control of conversations by the application or user interface.

conversation
API for application control of attributes of the current Seam conversation.

e getld() — returnsthe current conversation id

* isNested() — isthecurrent conversation a nested conversation?

e isLongRunni ng() — isthe current conversation along-running conversation?
e getld() — returnsthe current conversation id

e getParent|d() — returnsthe conversation id of the parent conversation

* getRoot|d() — returnsthe conversation id of the root conversation

JBoss Seam 1.1.0.BETA 157

Built-in Seam components

* setTimeout(int tinmeout) — Setsthetimeout for the current conversation

e setView d(String outcome) — setsthe view id to be used when switching back to the current conver-
sation from the conversation switcher, conversation list, or breadcrumbs.

e setDescription(String description) — sets the description of the current conversation to be dis-
played in the conversation switcher, conversation list, or breadcrumbs.

* redirect() — redirect to the last well-defined view id for this conversation (useful after login chal-
lenges).

* |eave() — exit the scope of this conversation, without actually ending the conversation.
* begi n() — begin along-running conversation (equivalent to @egi n).

* beginPageflow(String pageflowName) — begin a long-running conversation with a pageflow
(equivalent to @egi n(pagefl ow="...")).

* end() — end along-running conversation (equivalent to @nd).

e pop() — pop the conversation stack, returning to the parent conversation.

* root () — returnto the root conversation of the conversation stack.

e changeFl ushMde(Fl ushModeType flushMode) — change the flush mode of the conversation.

conver sati onLi st
Manager component for the conversation list.

conversationSt ack
Manager component for the conversation stack (breadcrumbs).

sw t cher
The conversation switcher.

All of these components are always installed.

15.5. [BPM-related components

These components are for use with JBPM.

pagef | ow
API control of Seam pageflows.

* islnProcess() — returnstrue if thereis currently a pageflow in process

e getProcesslnstance() — returnsjBPM Processl nst ance for the current pageflow

e begin(String pagefl owNane) — begin a pageflow in the context of the current conversation
* reposition(String nodeNane) — reposition the current pageflow to a particular node

act or
API for application control of attributes of the JBPM actor associated with the current session.

JBoss Seam 1.1.0.BETA 158

Built-in Seam components

e setld(String actorld) — setsthejBPM actor id of the current user.

e getGoupActorlds() — returnsaset to which jBPM actor ids for the current users groups may be ad-
ded.

transition
API for application control of the jBPM transition for the current task.

e setName(String transitionName) — Setsthe jBPM transition name to be used when the current task
is ended via @ndTask.

busi nessProcess
API for programmatic control of the association between the conversation and business process.

* businessProcess. t askl d — theid of the task associated with the current conversation.
* businessProcess. processl d — theid of the process associated with the current conversation.
* busi nessProcess. hasCurrent Task() — isatask instance associated with the current conversation?

* DbusinessProcess. hasCurrent Process() — iSaprocess instance associated with the current conversa-
tion.

e createProcess(String nane) — create an instance of the named process definition and associate it
with the current conversation.

* startTask() — start the task associated with the current conversation.

* endTask(String transitionNane) — end the task associated with the current conversation.

e resuneTask(Long i d) — associate the task with the given id with the current conversation.

e resuneProcess(Long i d) — associate the process with the given id with the current conversation.
e transition(String transitionNane) — trigger the transition.

taskl nst ance
Manager component for the JBPM Taskl nst ance.

pr ocessl nstance
Manager component for the jJBPM Pr ocessl nst ance.

j bpntCont ext
Manager component for an event-scoped JbpnCont ext .

t askl nst ancelLi st
Manager component for the jBPM task list.

pool edTaskl nst ancelLi st

Manager component for the JBPM pooled task list.

t askl nst anceli st For Type

Manager component for the jBPM task lists.

pool edTask

JBoss Seam 1.1.0.BETA 159

Built-in Seam components

Action handler for pooled task assignment.

All of these components are installed whenever the component or g. j boss. seam cor e. j bpmisinstalled.

15.6. Security-related components

These components relate to web-tier security.

user Pri nci pal
Manager component for the current user Pri nci pal .

i sUser| nRol e
Allows JSF pages to choose to render a control, depending upon the roles available to the current principal.
<h: commandBut t on val ue="edit" rendered="#{isUserlnRole['adnmn']}"/>.

15.7. IMS-related components

These components are for use with managed Topi cPubl i sher Sand QueueSender S (See below).

queueSessi on
Manager component for aJM S QueueSessi on .

t opi cSessi on
Manager component for aJM S Topi cSessi on .

15.8. Infrastructural components

These components provide critical platform infrastructure. You can install a component by including its class
nameintheorg. j boss. seam core. i ni t. conponent d asses configuration property.

org.j boss.seamcore.init
Initialization settings for Seam. Alwaysinstalled.

* org.jboss.seamcore.init.jndiPattern— theJNDI pattern used for looking up session beans
e org.jboss.seamcore.init.debug — enable Seam debug mode

* org.jboss.seamcore.init.clientSideConversations — if Set totrue, Seam will save conversation
context variables in the client instead of in the Ht t pSessi on.

e org.jboss.seamcore.init.userTransacti onName — the INDI name to use when looking up the JTA
User Transact i on object.

org.j boss. seam cor e. manager
Internal component for Seam page and conversation context management. Always installed.

e org.jboss. seam core. manager. conver sati onTi neout — the conversation context timeout in milli-
seconds.

JBoss Seam 1.1.0.BETA 160

Built-in Seam components

* org.jboss.seam core. manager . concur r ent Request Ti meout — maximum wait time for a thread at-
tempting to gain alock on the long-running conversation context.

e org.jboss. seam core. manager. conver sat i onl dPar anet er — the request parameter used to propag-
ate the conversation id, default to conver sat i onl d.

e org.jboss. seam core. manager. conver sat i onl sLongRunni ngPar anet er — the request parameter
used to propagate information about whether the conversation is long-running, default to conver sa-
ti onl sLongRunni ng.

org. j boss. seam core. pages
Internal component for Seam workspace management. Always installed.

* org.|boss. seam core. pages. noConver sati onView d — global setting for the view id to redirect to
when a conversation entry is not found on the server side.

org.j boss.seamcore.ejb
Bootstraps the JBoss Embeddable EJB3 container. Install as class or g. j boss. seam core. Ej b. Thisis use-
ful when using Seam with EJB components outside the context of a Java EE 5 application server.

The basic Embedded EJB configuration is defined in j boss- enbedded- beans. xni . Additional microcon-
tainer configuration (for example, extra datasources) may be specified by j boss-beans. xnl OF META-
I NF/ j boss- beans. xni in the classpath.

org.j boss. seam core. m crocont ai ner
Bootstraps the JBoss microcontainer. Install as class or g. j boss. seam core. M crocont ai ner. Thisis use-
ful when using Seam with Hibernate and no EJB components outside the context of a Java EE application
server. The microcontainer can provide a partial EE environment with INDI, JTA, a JCA datasource and
Hibernate.

The microcontainer configuration may be specified by j boss- beans. xnl Or META- | NF/ j boss- beans. xni in
the classpath.

org. j boss. seam core.jbpm
Bootstraps a JbpnConfi gurati on. Install asclassorg. j boss. seam core. Jobpm

e org.jboss.seamcore.jbpm processDefiniti ons — alist of resource names of jPDL filesto be used
for orchestration of business processes.

* org.jboss.seam core. | bpm pagefl owDefinitions — a list of resource names of jPDL files to be
used for orchestration of conversation page flows.

org.j boss. seam core. conversati onEntries
Internal session-scoped component recording the active long-running conversations between requests.

org.j boss. seam core. facesPage
Internal page-scoped component recording the conversation context associated with a page.

org.j boss. seam core. persi st enceCont ext s
Internal component recording the persistence contexts which were used in the current conversation.

org.j boss. seam j nms. queueConnecti on
Manages a JIMS QueueConnect i on. Installed whenever managed managed QueueSender isinstalled.

JBoss Seam 1.1.0.BETA 161

Built-in Seam components

* org.jboss.seam | ns. queueConnect i on. queueConnect i onFact or yJndi Nane — the JNDI name of a
JMS QueueConnect i onFact ory. Default to Ul L2Connect i onFact ory

org.j boss.seam j ns. t opi cConnecti on
Manages a JM S Topi cConnect i on. Installed whenever managed managed Topi cPubl i sher isinstalled.

* org.jboss.seam | ms. t opi cConnecti on. t opi cConnect i onFact or yJndi Name — the JNDI name of a
JMS Topi cConnect i onFact ory. Default to Ul L2Connect i onFact ory

org.j boss. seam core. val i dati on
Internal component for Hibernate Validator support.

org.j boss. seam debug. i nt r ospect or

Support for the Seam Debug Page.

org.j boss. seam debug. cont ext s

Support for the Seam Debug Page.

15.9. Special components

Certain special Seam component classes are installable multiple times under names specified in the Seam con-
figuration. For example, the following linesin conponent s. xni install and configure two Seam components:

<conponent nane="booki ngDat abase"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persi stenceUnitJndi Nane">j ava: / conp/ enf/ booki ngPer si st ence</ property>
</ conponent >

<conponent nane="user Dat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nanme="persistenceUnitJndi Name">j ava: / conp/ enf / user Per si st ence</ property>
</ conponent >

The Seam component names are booki ngbat abase and user Dat abase.

<entityManager >, org.j boss. seam cor e. ManagedPer si st enceCont ext
Manager component for a conversation scoped managed Ent i t yManager With an extended persistence con-
text.

e <entityManager>. entityManager Fact ory — a value binding expression that evaluates to an instance
of Enti t yManager Fact ory.

<ent i t yManager >. per si st enceUni t Jndi Name — the JINDI name of the entity manager factory, default
toj ava: / <managedPer si st enceCont ext >.

<entityManager Fact ory>, org.j boss. seam core. Enti t yManager Fact ory
Manages a JPA Ent it yManager Fact ory. This is most useful when using JPA outside of an EJB 3.0 sup-
porting environment.

e entityManager Fact ory. persi st enceUni t Name — the name of the persistence unit.

See the API JavaDoc for further configuration properties.

JBoss Seam 1.1.0.BETA 162

Built-in Seam components

<sessi on>, org.j boss. seam cor e. ManagedSessi on
Manager component for a conversation scoped managed Hibernate Sessi on.

e <session>. sessi onFactory — a value binding expression that evaluates to an instance of Sessi on-
Factory.

<sessi on>. sessi onFact oryJndi N\ame — the JNDI name of the session factory, default to
j ava: / <managedSessi on>.

<sessi onFact ory>, org. j boss. seam cor e. Hi ber nat eSessi onFactory
Manages a Hibernate Sessi onFact ory.

e org.jboss. seam core. hi ber nat e. cf gResour ceNane — the path to the configuration file. Default to
hi bernate. cfg. xm .

See the API JavaDoc for further configuration properties.

<managedQueueSender >, or g. j boss. seam j ns. ManagedQueueSender
Manager component for an event scoped managed JM S QueueSender .

e <managedQueueSender >. queueJndi Name — the INDI name of the IMS queue.

<managedTopi cPubl i sher >, org. j boss. seam j ns. ManagedTopi cPubl i sher
Manager component for an event scoped managed JM S Topi cPubl i sher .

e <nmanagedTopi cPubl i sher>. t opi cJndi Name — the JNDI name of the IM S topic.

<managedWor ki ngMenor y>, or g. j boss. seam dr ool s. ManagedWor ki ngMenory
Manager component for a conversation scoped managed Drools VWor ki ngMenory.

* <managedWr ki ngMenor y>. rul eBase — avalue expression that evaluates to an instance of Rul eBase.

<rul eBase>, org. j boss. seam dr ool s. Rul eBase
Manager component for an application scoped Drools Rul eBase. Note that this is not really intended for
production usage, since it does not support dynamic installation of new rules.

e <rul eBase>. rul eFi | es — alist of files containing Drools rules.
<rul eBase>. ds| Fi | e — aDrools DSL definition.

<alias>,org.jboss.seamcore. Ali as
An"dias' (asecond name) for a component. Y ou can even create an alias for an often-used expression.

e <alias>. name — the name of the component to be aliased.
e <alias>. expressi on — an expression to be evaluated.
<entityHone>, org.j boss. seam franmewor k. Enti t yHone

<hi ber nat eEnti t yHonme>, or g. j boss. seam f ramewor k. Hi ber nat eEnti t yHone

JBoss Seam 1.1.0.BETA 163

Built-in Seam components

<entityQuery>,org.jboss. seam franework. EntityQuery

<hi bernat eEnti t yQuery>, org. j boss. seam franmewor k. Hi bernat eEntityQuery

JBoss Seam 1.1.0.BETA 164

Chapter 16. Seam JSF controls

Seam includes a number of JSF controls that are useful for working with Seam. These are intended to comple-
ment the built-in JSF controls, and controls from other third-party libraries. We recommend the Ajax4JSF and
ADF faces (now Trinidad) tag libraries for use with Seam. We do not recommend the use of the Tomahawk tag
library.

<Ss:

<Ss:

<S:

<Ss:

<Ss:

<Ss:

<Ss:

<Ss:

<s:

val i dat e>

Vadidate a JSF input field against the bound property using Hibernate VValidator.

val i dat eAl | >
Validate al child JSF input fields against the bound propertys using Hibernate Validator.

convert Dat eTi ne>
Perform date or time conversions in the Seam timezone.

decor at e>
"Decorate” a JSF input field when validation fails.

message>
"Decorate" a JSF input field with the validation error message.

span>
Render aHTML .

di v>
Render aHTML <di v>.

cache>
Cache the rendered page fragment using JBoss Cache. Note that <s: cache> actually uses the instance of
JBoss Cache managed by the built-in poj oCache component.

* key — the key to cache rendered content, often a value expression. For example, if we were caching a
page fragment that displays a document, we might use key="Docunent - #{ docunent . i d}".

* enabl ed — avaue expression that determines if the cache should be used.
* regi on — aJBoss Cache node to use (different nodes can have different expiry policies).

l'i nk>
A link or button that supports invocation of an action with control over conversation propagation.

e val ue —thelabel.

* action — amethod binding that specified the action listener.
* view— theJSF view id to link to.

* fragment — the fragment identifier to link to.

* |inkStyl e — either i nk, the default, or but t on.

e buttond ass — the css class for the button.

JBoss Seam 1.1.0.BETA 165

Seam JSF controls

e propagati on — determines the conversation propagation style: begi n, j oi n, nest , none Or end.

e pagefl ow — a pageflow definition to begin. (This is only useful when propagati on="begi n" or
propagat i on="j oi n".)

<s:conversati onPropagati on>
Customize the conversation propagation for a command link or button (or similar JSF control). Facelets

only.
e propagati on — determines the conversation propagation style: begi n, j oi n, nest , none Of end.

e pagefl ow — a pageflow definition to begin. (This is only useful when propagati on="begi n" or
propagat i on="j oi n".)

<s:conversationl d>
Add the conversation id to an output link (or similar JSF control). Facelets only.

<s:taskl d>

Add the task id to an output link (or similar JSF contral), when the task is available via #{t ask} . Facelets
only.

<s:action>
Attach an action listener to an output link (or similar JSF control). Facelets only.

* action — amethod binding that specified the action listener.

<s:sel ection>

Propagate the selected row of abat ambdel with an output link (or similar JSF control). Facelets only.

JBoss Seam 1.1.0.BETA 166

Chapter 17. Expression language enhancements

The standard Unified Expression Language (EL) assumes that any parameters to a method expression will be
provided by Java code. This means that a method with parameters cannot be used as a JSF method binding.
Seam provides an enhancement to the EL that allows parameters to be included in a method expression itself.
This applies to any Seam method expression, including any JSF method binding, for example:

<s: commandBut t on acti on="#{hot el Booki ng. bookHot el (hotel)}" val ue="Book Hotel "/>

17.1. Configuration

To use this feature in Facelets, you will need to declare a special view handler, SeanFacel et Vi ewHandl er in
faces-config. xm .

<faces-config>
<appl i cati on>
<vi ew handl er >or g. j boss. seam ui . f acel et . Seanfacel et Vi ewHandl| er </ vi ew handl er >
</ application>
</ faces-confi g>

17.2. Usage

Parameters are surrounded by parentheses, and separated by commas:

<h: conmandBut t on acti on="#{hot el Booki ng. bookHot el (hotel, user)}" val ue="Book Hotel "/>

The parameters hot el and user will be evaluated as value expressions and passed to the bookHot el () method
of the component. This gives you an alternative to the use of @n.

Any value expression may be used as a parameter:

<h: commandBut t on acti on="#{ hot el Booki ng. bookHot el (hotel .id, user.usernane)}" val ue="Book Hotel"/>

Y ou may even pass literal strings using single or double quotes:
<h: commandLi nk action="#{printer.printin(‘Hello world!")}” value="Hello"/>
<h: conmandLi nk action="#{printer.println(“Hello again”)}' value="Hello' />
Y ou might even want to use this notation for all your action methods, even when you don’'t have parameters to

pass. This improves readability by making it clear that the expression is a method expression and not a value
expression:

<s:link val ue="Cancel " acti on="#{hot el Booki ng. cancel ()}"/>

17.3. Limitations

Please be aware of the following limitations:

JBoss Seam 1.1.0.BETA 167

Expression language enhancements

17.3.1. Incompatibility with JSP 2.1

This extension is not currently compatible with JSP 2.1. So if you want to use this extension with JSF 1.2, you
will need to use Facelets. The extension works correctly with JSP 2.0.

17.3.2. Calling a Met hodExpr essi on from Java code

Normally, when aMet hodExpr essi on OF Met hodBi ndi ng is created, the parameter types are passed in by JSF. In
the case of a method binding, JSF assumes that there are no parameters to pass. With this extension, we can’t
know the parameter types until after the expression has been evaluated. This has two minor consequences.

¢ When you invoke a Met hodExpr essi on in Java code, parameters you pass may be ignored. Parameters
defined in the expression will take precedence.

e Ordinarily, it is safeto call net hodExpr essi on. get Met hodl nf o() . get Par anTypes() at any time. For an ex-
pression with parameters, you must first invoke the Met hodExpr essi on before calling get Par anifypes() .

Both of these cases are exceedingly rare and only apply when you want to invoke the Met hodExpr essi on by
hand in Java code.

JBoss Seam 1.1.0.BETA 168

Chapter 18. Testing Seam applications

Most Seam applications will need at least two kinds of automated tests: unit tests, which test a particular Seam
component in isolation, and scripted integration tests which exercise al Java layers of the application (that is,
everything except the view pages).

Both kinds of tests are very easy to write.

18.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing. And since Seam
emphasises the use of bijection for inter-component interactions and access to contextual objects, it's very easy
to test a Seam component outside of its normal runtime environment.

Consider the following Seam component:

@t at el ess
@scope(EVENT)
@Nane("register")
public class RegisterAction inplenents Register
{
private User user;
private EntityManager em

@n
public void setUser(User user) {
this.user = user;

}

@er si st enceCont ext

public voi d set Booki ngDat abase(User em) {
this.em= em

}

public String register()
{
Li st existing = emcreateQuery("sel ect usernane from User where username=: usernane")
. set Paranet er ("usernane", user.getUsernane())
.getResul tList();
i f (existing.size()==0)
{
em per si st (user);
return "success";

}

el se

{
}

return null;

}

We could write a TestNG test for this component as follows:

public class Regi sterActionTest

{

@est
public testRegisterAction()

{
EntityManager em = get EntityManager Factory().creat eEntityManager();

em get Transacti on() . begi n();

JBoss Seam 1.1.0.BETA 169

Testing Seam applications

User gavin = new User();

gavi n. set Nane(" Gavi n Ki ng");
gavi n. set User Nanme(" lovt haf ew') ;
gavi n. set Password("secret");

Regi sterActi on acti on = new Regi sterAction();
action. set User (gavi n);
acti on. set Booki ngDat abase(emn ;

assert "success".equal s(action.register());

em get Transaction().comit();
em cl ose();

private EntityManager Factory enf;

public EntityManagerFactory get EntityManager Factory()
{

}

@onfi gurati on(beforeTest Cl ass=true)
public void init()
{

}

@onfiguration(afterTestCl ass=true)
public void destroy()
{

}

return enf;

enf = Persistence. createEntityManager Fact ory("myResourcelLocal EntityManager");

enf. close();

Seam components don't usually depend directly upon container infrastructure, so most unit testing as as easy as
that!

18.2. Integration testing Seam applications

Integration testing is slightly more difficult. In this case, we can't eliminate the container infrastructure; indeed,
that is part of what is being tested! At the same time, we don't want to be forced to deploy our application to an
application server to run the automated tests. We need to be able to reproduce just enough of the container in-
frastructure inside our testing environment to be able to exercise the whole application, without hurting per-
formance too much.

A second problem is emulating user interactions. A third problem is where to put our assertions. Some test
frameworks let us test the whole application by reproducing user interactions with the web browser. These
frameworks have their place, but they are not appropriate for use at development time.

The approach taken by Seam isto let you write tests that script your components while running inside a pruned
down container environment (Seam, together with the JBoss Embeddable EJB container). The role of the test
script is basicaly to reproduce the interaction between the view and the Seam components. In other words, you
get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSP view for the component we unit tested above:

JBoss Seam 1.1.0.BETA 170

Testing Seam applications

<htm >
<head>
<title>Regi ster New User</title>
</ head>
<body>
<f:view>
<h: f or
<t abl e border="0">
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user.usernane}"/></td>
</tr>
<tr>
<t d>Real Nane</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h: i nput Secret val ue="#{user.password}"/></td>
</tr>
</t abl e>

<h: nessages/ >
<h: commandBut ton type="subm t" val ue="Regi ster" action="#{register.register}"/>
</ h: fornm
</f:view
</ body>
</htm >

We want to test the registration functionality of our application (the stuff that happens when the user clicks the
Register button). We'll reproduce the JSF request lifecycle in an automated TestNG test:

public class Regi sterTest extends SeanTest

{
@est
public void testRegister() throws Exception
{
new FacesRequest () {
@verride
protected void processValidations() throws Exception
{
val i dat eVal ue("#{user. usernane}", "lovthafew');
val i dat eVal ue("#{user.nane}", "Gavin King");
val i dat eval ue("#{user. password}", "secret");
assert lisValidationFailure();
}
@verride
protected voi d updat eModel Val ues() throws Exception
{
set Val ue("#{user. usernane}", "lovthafew');
set Val ue("#{user.nane}", "Gavin King");
set Val ue("#{user. password}", "secret");
}
@verride
protected void i nvokeApplication()
{
assert invokeMet hod("#{register.register}").equal s("success");
}
@verride
protected void render Response()
{

assert getVal ue("#{user.usernane}"). equal s("21lovthafew');
assert getVal ue("#{user.nane}"). equal s("Gavin King");
assert getVal ue("#{user.password}").equal s("secret");

JBoss Seam 1.1.0.BETA 171

Testing Seam applications

}.run();

Notice that we've extended Seantest , which provides a Seam environment for our components, and written our
test script as an anonymous class that extends Seanfrest . FacesRequest , which provides an emulated JSF re-
quest lifecycle. (There is al'so a Seanrest . NonFacesRequest for testing GET requests.) We've written our code
in methods which are named for the various JSF phases, to emulate the calls that JSF would make to our com-
ponents. Then we've thrown in various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate more complex
cases. There are instructions for running these tests using Ant, or using the TestNG plugin for eclipse:

JBoss Seam 1.1.0.BETA 172

Testing Seam applications

=

3 fnutline JUnitm o | QBY =8

IResults of running suite

Suites: 1/1 Tests: 1/1

Methods: 2/2

Passed: 2 B Failed: 0 8 Skipped: 0

% All Tests| o Failed Tests|
= He Registration (2/0/0/0)
=gl Register (2/0/0/0)
----- rel org.jboss.seam.example.numberguess.test. \umberGues
- org.jboss.seam.example.numberguess.test. NumberGues

< | 111

Failure Exception

7 v

JBoss Seam 1.1.0.BETA

173

Chapter 19. Seam tools

19.1. jBPM designer and viewer

The |BPM designer and viewer will let you design and view in a nice way your business processes and your
pageflows. This convenient tool is part of JBoss Eclipse IDE and more details can be found in the jJBPM's doc-

umentation (http://docs.jboss.com/jbpm/v3/gpd/)

19.1.1. Business process designer

Thistool lets you design your own business process in a graphical way.

2 start
o7 State

B End

[}3 Fork

g]-o Jein

L:?J Decision
Mode

\" Task Made
1% Process State
3% Super State

Marques

—+ Transition

Diagram | Swimlanes | Design | Source

Wt <<Task Node>>
= process

G =<Start State==

wt <<Task Node==
= approval

approve
reject

shipped

] ==End States>
complete

19.1.2. Pageflow viewer

This tool let you design to some extend your pageflows and let you build graphical views of them so you can
easily share and compare ideas on how it should be designed.

JBoss Seam 1.1.0.BETA

174

Seam tools

—
) start

L:?J Decision

Margues O ==Start State==
start

E FPage

— Transition
= =<=fages=>

BZ| ,.
=l displayGuess

guess false
islan B
lv'.?_l eblEb false L:?J ==lecision==
ERRINIFETEN evaluateRemainingGues
true true
L'=_' <<Page=> L'='__ ==fage=>=
— win = Jose

Diagrarm | Design | Source

19.2. CRUD-application generator

This chapter, will give you a short overview of the support for Seam that is available in the Hibernate Tools.
Hibernate Tools is a set of tools for working with Hibernate and related technologies, such as JBoss Seam and
EJB3. Thetools are available as a set of eclipse plugins and Ant tasks. Y ou can download the Hibernate Tools
from the JBoss Eclipse IDE or Hibernate Tools websites.

The specific support for Seam that is currently available is generation of a fully functional Seam based CRUD-
application. The CRUD-application can be generated based on your existing Hibernate mapping files or EJB3
annotated POJO's or even fully reverse engineered from your existing database schema.

The following sections is focused on the features required to understand for usage with Seam. The content is
derived from the the Hibernate Tools reference documentation. Thus if you need more detailed information
please refer to the Hibernate Tools documentation.

19.2.1. Creating a Hibernate configuration file

To be able to reverse engineer and generate code a hibernate.properties or hibernate.cfg.xml file is needed. The
Hibernate Tools provide awizard for generating the hibernate.cfg.xml fileif you do not already have such file.

Start the wizard by clicking "New Wizard" (Ctrl+N), select the Hibernate/Hibernate Configuration file
(cfg.xml) wizard and press "Next". After selecting the wanted location for the hibernate.cfg.xml file, you will
see the following page:

JBoss Seam 1.1.0.BETA 175

Seam tools

¢ x
Hibernate Configuration File {cfg.xml) ‘ ’

This wizard creates a new configuratien file to use with Hibemate,

Container: Jhibernatetook-demo/src

File name: hibernate.cig.xmi

Session factory name: |

Database dialect: | HSQL |
Driver dass: | org.hsgidb.jdbcDriver -
Connection LRL: | jdbe:hsgidb:hsqk:/flocalhost -]
Default Schema: |

Default Catalog: |

Lisermarme: |sa

Password: |

[v Create a consoke configuration

=y

< Back Hext = Cancel

Tip: The contents in the combo boxes for the JIDBC driver class and JDBC URL change automatically, depend-
ing on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can be found in Hi-
bernate reference documentation.

Press "Finish" to create the configuration file, after optionaly creating a Console onfiguration, the hibern-
ate.cfg.xml will be automatically opened in an editor. The last option "Create Console Configuration™” is en-
abled by default and when enabled i will automatically use the hibernate.cfg.xml for the basis of a "Console
Configuration”

19.2.2. Creating a Hibernate Console configuration

A Console Configuration describes to the Hibernate plugin which configuration files should be used to config-
ure hibernate, including which classpath is needed to load the POJO's, JDBC drivers etc. It is required to make
usage of query prototyping, reverse engineering and code generation. Y ou can have multiple named console
configurations. Normally you would just need one per project, but more (or less) is definitly possible.

You create a console configuration by running the Console Configuration wizard, shown in the following
screenshot. The same wizard will also be used if you are coming from the hibernate.cfg.xml wizard and had en-
abled " Create Console Configuration”.

JBoss Seam 1.1.0.BETA 176

Seam tools

f

X

Create Hibernate Console Configuration

This wizard allows you to create a configuration for Hibernate Console,

@
&>

Name: | hibernatetools-demo

Property fle: | Browse... |
Configuration fie: | Browse...|
Entity resoiver: | Browse...

[Enable hibernate ejb3/annotations (requires running eclipse with a Java 5 runtime)

Mapping files
Name Add.
REMovE
up

Classpath (onby add path for POIO and driver - No Hibernate jars!)
Hame

Add JARSDr...
Shibernatetools-demay/buid/ecipse
Jhibernatetoolks-demoyib/jdbc/hsqgldb.jar Add External JARS. .
Remove
Up
< 3 Drowm
........... ‘: BE"'"I" [Einish Cancel

The following table describes the relevant settings. The wizard can automatically detect default values for most
of these if you started the Wizard with the relevant java project selected

Table 19.1. Hibernate Console Configuration Parameters

Parameter Description Auto detected
value
Name The unique name of the configuration Name of the selec-
ted project

JBoss Seam 1.1.0.BETA 177

Seam tools

Parameter Description Auto detected
value

Property file Path to a hibernate.propertiesfile First hibern-

ate.properties file
found in the selec-
ted project

Configuration file | Path to ahibernate.cfg.xml file First hibern-

ate.cfg.xml file
found in the selec-
ted project

Enable Hibernate Selecting this option enables usage of annotated classes. Not enabled

€jb3/annotations hbm.xml files are of course till possible to use too. This feature
requires running the Eclipse IDE with a JDK 5 runtime, other-
wise you will get classloading and/or version errors.

Mapping files List of additional mapping files that should be loaded. Note: A | If no hibern-
hibernate.cfg.xml can also contain mappings. Thus if these adu- ate.cfg.xml file is
plicated here, you will get "Duplicate mapping" errors when us- found, al hbm.xml
ing the consol e configuration. filesfound in the se-

lected project

Classpath The classpath for loading POJO and JDBC drivers. Do not add The default build

Hibernate core libraries or dependencies, they are already in-
cluded. If you get ClassNotFound errors then check this list for
possible missing or redundant directories/jars.

output directory and
any JARs with a
class implementing

javasgl.Driver in
the selected project
Clicking "Finish" creates the configuration and shows it in the "Hibernate Configurations' view
JBoss Seam 1.1.0.BETA 178

Seam tools

= Hibernate Configu... X =0

=S8 hibernatetools-demo

[#, Configuration

- Database

=85 [YBLIC

+- [CUSTOMER

T CUSTOMERORDER
= LINEITEM
3 PRODUCT
3 SIMPLECUSTOMERORDER
=] SIMPLELINEITEM

+

+

+

+

+

19.2.3. Reverse engineering and code generation

A very simple "click-and-generate” reverse engineering and code generation facility is available. It is this facil-
ity that allows you to generate the skeleton for afull Seam CRUD application.

To start working with this process, start the "Hibernate Code Generation" which is available in the toolbar via
the Hibernate icon or viathe "Run/Hibernate Code Generation" menu item.

19.2.3.1. Code Generation Launcher

When you click on "Hibernate Code Generation™" the standard Eclipse launcher dialog will appear. In this dia-
log you can create, edit and delete named Hibernate code generation "launchers’.

avigate Search Project Run XML Wi

LRl | -F oo
Run As s
¥4 Hibernate Code Generation...... !
Lﬂrganize Favorites... - f{
] "http:/

B = TR 1

The dialog has the standard tabs "Refresh” and "Common" that can be used to configure which directories
should be automatically refreshed and various general settings launchers, such as saving them in a project for
sharing the launcher within a team.

JBoss Seam 1.1.0.BETA 179

Seam tools

 Hibernate Code Generation... g|
Create, manage, and run configurations ‘
& [Exporters]: Al least one exporter option must be selected ’

Configurations: Name: | New_configuration

=- ¥4 Hibernate Code Generation

Fs New_configuration o i |q. Expnrters| 7S Refnsh| o Eﬂﬂmﬂﬂ|

Console configuralsgn: |hibernatetook-demo -

Output directory: | \hibernatetook-demalsrc Browse... |

[+ Reverse engineer from JDBC Connection

Package: | com.bz.model
reveng.xmi: I Setup...
reveng. strategy: | Browse... |

[+ Generate basic typed composite ids

s

Uise custom templates

Negy Delete | Apply | Reyert

|

The first time you create a code generation launcher you should give it a meaningfull name, otherwise the de-
fault prefix "New_Generation” will be used.

Note: The "At least one exporter option must be selected" is just a warning stating that for this launch to work
you heed to select an exporter on the Exporter tab. When an exporter has been selected the warning will disap-
pear.

On the "Main" tab you the following fields:

Table 19.2. Code generation "Main" tab fields

Field Description

Console Configuration The name of the console configuration which should be used when code generat-
ing.

Output directory Path to a directory into where all output will be written by default. Be aware that
existing fileswill be overwritten, so be sure to specify the correct directory.

Reverse engineer from If enabled the tools will reverse engineer the database available via the connec-
JDBC Connection tion information in the selected Hibernate Console Configuration and generate
code based on the database schema. If not enabled the code generation will just
be based on the mappings already specified in the Hibernate Console configura-
tion.

JBoss Seam 1.1.0.BETA 180

Seam tools

Field

Package

reveng.xmi

reveng. strategy

Generate basic typed
composite ids

Description

The package name here is used as the default package name for any entities found
when reverse engineering.

Path to areveng.xml file. A reveng.xml file allows you to control certain aspects
of the reverse engineering. e.g. how jdbc types are mapped to hibernate types and
especially important which tables are included/excluded from the process. Click-
ing "setup” allows you to select an existing reveng.xml file or create a new one..

If reveng.xml does not provide enough customization you can provide your own
implementation of an ReverseEngineeringStrategy. The class need to be in the
claspath of the Console Configuration, otherwise you will get class not found ex-
ceptions.

This field should aways be enabled when generating the Seam CRUD applica
tion. A table that has a multi-colum primary key a <composite-id> mapping will
always be created. If this option is enabled and there are matching foreign-keys
each key column is still considered a 'basic' scalar (string, long, etc.) instead of a
reference to an entity. If you disable this option a <key-many-to-one> instead.
Note: a <many-to-one> property is still created, but is ssmply marked as non-
updatable and non-insertable.

Use custom templ ates

If enabled, the Template directory will be searched first when looking up the ve-
locity templates, allowing you to redefine how the individual templates process
the hibernate mapping model.

Template directory

19.2.3.2. Exporters

A path to adirectory with custom vel ocity templates.

The exporters tab is used to specify which type of code that should be generated. Each selection represents an
"Exporter” that are responsible for generating the code, hence the name.

JBoss Seam 1.1.0.BETA

181

Seam tools

Hibernate Code Generation...

Create, manage, and run configurations ‘ ’

Select or configure a code generation

Confiqurations: Mame: lflew_l:unflgurarmn ---
= "4 Hibernate Code Generation
T New_configuration

* Main % Expurtersg i Refresh | [Common

[Generate domain code (.java)

r

r

[T Generate DAO code (.java)

[Generate mappings (hbm.xml)

| Generate hibernate configuration (hibernate.cfig.xml)
[Generate schema htmkdocumentation

— pelete | Apply | Revert |
Bun ; Close |

The following table describes in short the various exporters. The most relevant for Seam is of course the "JBoss
Seam Skeleton app".

Table 19.3. Code generation " Exporter” tab fields

Field Description

Generate domain code Generates POJO's for all the persistent classes and components found in the given
Hibernate configuration.

JDK 1.5 constructs When enabled the POJO's will use JDK 1.5 constructs.

EJB3/ISR-220 annota- When enabled the POJO's will be annotated according to the EJB3/JSR-220 per-
tions sistency specification.

Generate DAO code Generates a set of DAO's for each entity found.

Generate Mappings Generate mapping (hbm.xml) files for each entity

Generate hibernate con- Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml uptodate
figuration file with any new found mapping files.

Generate schema html- Generates set of html pages that documents the database schema and some of the

JBoss Seam 1.1.0.BETA 182

Seam tools

Field Description

documentation mappings.

Generate JBoss Seam Generates a complete JBoss Seam skeleton app. The generation will include an-
skeleton app (beta) notated POJO's, Seam controller beans and a JSP for the presentation layer. See
the generated readme.txt for how to useiit.

Note: this exporter generates a full application, including a build.xml thus you
will get the best results if you use an output directory which is the root of your
project.

19.2.3.3. Generating and using the code

When you have finished filling out the settings, simply press "Run" to start the generation of code. This might
take alittle while if you are reverse engineering from a database.

When the generation have finished you should now have a complete skeleton Seam application in the output

directory. In the output directory there is areadne. t xt file describing the steps needed to deploy and run the
example.

If you want to regenerate/update the skeleton code then simply run the code generation again by selecting the
"Hibernate Code Generation" in the toolbar or "Run" menu. Enjoy.

JBoss Seam 1.1.0.BETA 183

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	Chapter 1. Seam Tutorial
	1.1. Try the examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the examples on Tomcat
	1.1.3. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The Seam component deployment descriptor: components.xml
	1.2.1.5. The web deployment description: web.xml
	1.2.1.6. The JSF configration: faces-config.xml
	1.2.1.7. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.8. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.9. The view: register.jsp and registered.jsp
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.jsp

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam UI control library
	1.6.5. The Seam Debug Page

	1.7. A complete application featuring Seam and jBPM: the DVD Store example
	1.8. A complete application featuring Seam workspace management: the Issue Tracker example
	1.9. An example of Seam with Hibernate: the Hibernate Booking example
	1.10. A RESTful Seam application: the Blog example
	1.10.1. Using "pull"-style MVC
	1.10.2. Bookmarkable search results page
	1.10.3. Using "push"-style MVC in a RESTful application

	Chapter 2. Getting started with Seam, using seam-gen
	2.1. Before you start
	2.2. Setting up a new Eclipse project
	2.3. Creating a new action
	2.4. Creating a form with an action
	2.5. Generating an application from an existing database
	2.6. Deploying the application as an EAR

	Chapter 3. The contextual component model
	3.1. Seam contexts
	3.1.1. Stateless context
	3.1.2. Event context
	3.1.3. Page context
	3.1.4. Conversation context
	3.1.5. Session context
	3.1.6. Business process context
	3.1.7. Application context
	3.1.8. Context variables
	3.1.9. Context search priority
	3.1.10. Concurrency model

	3.2. Seam components
	3.2.1. Stateless session beans
	3.2.2. Stateful session beans
	3.2.3. Entity beans
	3.2.4. JavaBeans
	3.2.5. Message-driven beans
	3.2.6. Interception
	3.2.7. Component names
	3.2.8. Defining the component scope
	3.2.9. Components with multiple roles
	3.2.10. Built-in components

	3.3. Configuring components
	3.3.1. Configuring components via property settings
	3.3.2. Configuring components via components.xml
	3.3.3. Fine-grained configuration files
	3.3.4. Configurable property types

	3.4. Bijection
	3.5. Lifecycle methods
	3.6. Logging
	3.7. The Mutable interface
	3.8. Factory and manager components

	Chapter 4. Events, interceptors and exception handling
	4.1. Seam events
	4.1.1. Page actions
	Page parameters
	Fine-grained files for definition of page actions and parameters

	4.1.2. Component-driven events
	4.1.3. Contextual events

	4.2. Seam interceptors
	4.3. Managing exceptions

	Chapter 5. Conversations and workspace management
	5.1. Seam's conversation model
	5.2. Nested conversations
	5.3. Starting conversations with GET requests
	5.4. Using <s:link>
	5.5. Success messages
	5.6. Using an "explicit" conversation id
	5.7. Workspace management
	5.7.1. Workspace management and JSF navigation
	5.7.2. Workspace management and jPDL pageflow
	5.7.3. The conversation switcher
	5.7.4. The conversation list
	5.7.5. Breadcrumbs

	5.8. Seam-managed persistence contexts and atomic conversations
	5.9. Seam and AJAX
	5.10. Seam and SOAP

	Chapter 6. Pageflows and business processes
	6.1. Pageflow in Seam
	6.1.1. The two navigation models
	6.1.2. Seam and the back button

	6.2. Using jPDL pageflows
	6.2.1. Installing pageflows
	6.2.2. Starting pageflows
	6.2.3. Page nodes and transitions
	6.2.4. Controlling the flow
	6.2.5. Ending the flow

	6.3. Business process management in Seam
	6.4. Using jPDL business process definitions
	6.4.1. Installing process definitions
	6.4.2. Initializing actor ids
	6.4.3. Initiating a business brocess
	6.4.4. Task assignment
	6.4.5. Task lists
	6.4.6. Performing a task

	Chapter 7. Internationalization and themes
	7.1. Locales
	7.2. Labels
	7.2.1. Defining labels
	7.2.2. Displaying labels
	7.2.3. Faces messages

	7.3. Timezones
	7.4. Themes
	7.5. Persisting locale and theme preferences via cookies

	Chapter 8. Asynchronicity and messaging
	8.1. Asynchronicity
	8.1.1. Asynchronous methods
	8.1.2. Asynchronous events

	8.2. Messaging in Seam
	8.2.1. Configuration
	8.2.2. Sending messages
	8.2.3. Receiving messages using a message-driven bean
	8.2.4. Receiving messages in the client

	Chapter 9. Remoting
	9.1. Configuration
	9.2. The "Seam" object
	9.2.1. A Hello World example
	9.2.2. Seam.Component
	Seam.Component.newInstance()
	Seam.Component.getInstance()
	Seam.Component.getComponentName()

	9.2.3. Seam.Remoting
	Seam.Remoting.createType()
	Seam.Remoting.getTypeName()

	9.3. Client Interfaces
	9.4. The Context
	9.4.1. Setting and reading the Conversation ID

	9.5. Batch Requests
	9.6. Working with Data types
	9.6.1. Primitives / Basic Types
	String
	Number
	Boolean

	9.6.2. JavaBeans
	9.6.3. Dates and Times
	9.6.4. Enums
	9.6.5. Collections
	Bags
	Maps

	9.7. Debugging
	9.8. The Loading Message
	9.8.1. Changing the message
	9.8.2. Hiding the loading message
	9.8.3. A Custom Loading Indicator

	9.9. Controlling what data is returned
	9.9.1. Constraining normal fields
	9.9.2. Constraining Maps and Collections
	9.9.3. Constraining objects of a specific type
	9.9.4. Combining Constraints

	9.10. JMS Messaging
	9.10.1. Configuration
	9.10.2. Subscribing to a JMS Topic
	9.10.3. Unsubscribing from a Topic
	9.10.4. Tuning the Polling Process

	Chapter 10. Seam and JBoss Rules
	10.1. Installing rules
	10.2. Using rules from a Seam component
	10.3. Using rules from a jBPM process definition

	Chapter 11. JSF form validation in Seam
	Chapter 12. Configuring Seam
	12.1. Basic Seam configuration
	12.1.1. Integrating Seam with JSF and your servlet container
	12.1.2. Integrating Seam with your EJB container
	12.1.3. Enabling conversation propagation with redirects

	12.2. Configuring Seam in Java EE 5
	12.2.1. Packaging

	12.3. Configuring Seam with the JBoss Embeddable EJB3 container
	12.3.1. Installing the Embeddable EJB3 container
	12.3.2. Configuring a datasource with the Embeddable EJB3 container
	12.3.3. Packaging

	12.4. Seam managed transactions
	12.4.1. Enabling Seam-managed transactions
	12.4.2. Using a Seam-managed persistence context

	12.5. Configuring Seam with Hibernate in Java EE
	12.5.1. Boostrapping Hibernate in Seam
	12.5.2. Using a Seam-managed Hibernate Session
	12.5.3. Packaging

	12.6. Configuring Seam with Hibernate in Java SE
	12.6.1. Using Hibernate and the JBoss Microcontainer
	12.6.2. Packaging

	12.7. Configuring jBPM in Seam
	12.7.1. Packaging

	12.8. Configuring Seam in a Portal

	Chapter 13. The Seam Application Framework
	13.1. Introduction
	13.2. Home objects
	13.3. Query objects
	13.4. Using Hibernate filters

	Chapter 14. Seam annotations
	14.1. Annotations for component definition
	14.2. Annotations for bijection
	14.3. Annotations for component lifecycle methods
	14.4. Annotations for context demarcation
	14.5. Annotations for transaction demarcation
	14.6. Annotations for exceptions
	14.7. Annotations for validation
	14.8. Annotations for Seam Remoting
	14.9. Annotations for Seam interceptors
	14.10. Annotations for asynchronicity
	14.11. Annotations for use with JSF dataTable
	14.12. Meta-annotations for databinding

	Chapter 15. Built-in Seam components
	15.1. Context injection components
	15.2. Utility components
	15.3. Components for internationalization and themes
	15.4. Components for controlling conversations
	15.5. jBPM-related components
	15.6. Security-related components
	15.7. JMS-related components
	15.8. Infrastructural components
	15.9. Special components

	Chapter 16. Seam JSF controls
	Chapter 17. Expression language enhancements
	17.1. Configuration
	17.2. Usage
	17.3. Limitations
	17.3.1. Incompatibility with JSP 2.1
	17.3.2. Calling a MethodExpression from Java code

	Chapter 18. Testing Seam applications
	18.1. Unit testing Seam components
	18.2. Integration testing Seam applications

	Chapter 19. Seam tools
	19.1. jBPM designer and viewer
	19.1.1. Business process designer
	19.1.2. Pageflow viewer

	19.2. CRUD-application generator
	19.2.1. Creating a Hibernate configuration file
	19.2.2. Creating a Hibernate Console configuration
	19.2.3. Reverse engineering and code generation
	19.2.3.1. Code Generation Launcher
	19.2.3.2. Exporters
	19.2.3.3. Generating and using the code

