Seam - Contextual Components

A Framework for Java EE 5

Version: 1.3.0.A1

Table of Contents

INtrOdUCEION T0 JBOSS SEAIMeeiiiiiiiiee e e i s ittt et e e e e e s s sttt e e e e e e e s s e st b baeeraaaeessasntaaeeeeaeessannssaannneaaeesaans X
OS2 T o T N o = | PSS PPRSRR 1
L1 Try the @XaMPIESoveeeiiie e e e e e e e e e e e e s e et e e e e e e e e s e aennenees 1
1.1.1. Running the exampleS 0N JBOSSASooiiiiiiiiiieiee e 1
1.1.2. Running the exampleS 0n TOMCALc.uveiiiiieiiiiiiiiiee e s e e e e e e 1
1.1.3. RUNNING the @XamMPIE TESESceeiiiiiie ettt 1

1.2. Your first Seam application: the registration eXamplecccccoviiiiieiiiei e 2
1.2.1. Understanding the COOEeuiiiiiiiiiiiiiiie e 2
1.2.1.1. The entity DEaAN: USErJAVAuuuuuiiii s nnnnnnes 3

1.2.1.2. The stateless session bean class: RegisterAction.javacccccvveeveeeeeiiecnnnne, 5

1.2.1.3. The session bean local interface: RegIStEr.javacovevviieee i 6

1.2.1.4. The Seam component deployment descriptor: components.xml 6

1.2.1.5. The web deployment description: WebD.Xmlcooeiiiiiiiiiiiii e, 7

1.2.1.6. The JSF configration: faces-CoNfig. XMlcccccociiiiiiiii s 8

1.2.1.7. The EJB deployment descriptor: glb-jar Xmlcccccoiiiiiiiiiiiiiieee e, 8

1.2.1.8. The EJB persistence deployment descriptor: persistenceXmlcccccceevveeeee. 8

1.2.1.9. Theview: register.jsp and registered.jSP ..uveeveeeeviiiciiiieiiee e 9

1.2.1.10. The EAR deployment descriptor: application.Xmlccoccvveeiiiiiieenninnnn. 10

L1.2.2. HOW I WOTKS ..ottt ettt e et e et e e e e e e e e 10

1.3. Clickablelistsin Seam: the messages eXamPpPleccuvieiiiiiiieeiiiee e 11
1.3.1. Understanding the COUE nnnnnnnnnes 12
1.3.1.1. The entity bean: MESSAgE.JaVAcccoiuiiiiiiiiiie e 12

1.3.1.2. The stateful session bean: MessageManagerBean.java...........cccccccvveeeviinnneee 13

1.3.1.3. The session bean local interface: MessageManager.javaccccvevveeeeeecennnnee. 14

1.3.1.4. ThE VIEW: MESSATES. ISP . .-vvveeeiurrreeeanrreeeaaitrreesaitreeesanrreeesanbeeeesanneeeesannneeas 15

L1.3.2. HOW I WOTKS ..ottt ettt e et e e s e e e e e e e e 16

1.4. Seam and jJBPM: the todo list @XampPlecoooiiiiiiiiiiee e 16
1.4.1. Understanding the COUE ... nnnnnnnnes 17
LA.2. HOW IEWOIKS ..ot e e e e a e e e s s et raeeeaeas 22

1.5. Seam pageflow: the NUMbErgueSS EXamMPIEoooiiiiiiiiie e 22
1.5.1. Understanding the COOEuuimiiiiiec e 23
152 HOW IEWOIKS ..ottt e e e e e e e e e e nneaaeeeeeens 28

1.6. A complete Seam application: the Hotel Booking exampleccceeeeeeeiiiiiciiiieeeee e, 28
OG0 I 11T [T 1 o T TSP 28
1.6.2. Overview of the booking eXample ... 30
1.6.3. Understanding Seam CONVErSALIONSuuviiiieeeeiiiiiiiieieeeeeessssiiinreeeeeeessennssnneeeeens 30
1.6.4. The Seam Ul control [IBrarycoeeooiiiiieieceee e 36
1.6.5. The SEaM DEDUG PAJEcceeiiiiieiiee et e e e e 36

1.7. A complete application featuring Seam and jBPM: the DVD Store exampleccccceneee. 37
1.8. A complete application featuring Seam workspace management: the I ssue Tracker example . 39
1.9. An example of Seam with Hibernate: the Hibernate Booking exampleccccccovvivveennee. 40
1.10. A RESTful Seam application: the Blog eXamplecccocoiiiiiiiiienannens 40
1.10.2. USING "PUI™-SEYIE MV C ...ttt e st ee e 41
1.10.2. Bookmarkable search resultS Pageoevviiiiiieiiiiiiie e 42
1.10.3. Using "push”-style MVC in a RESTful applicationc.ccoecvivierieeeeiiiiiiiieeennn. 45

2. Getting started with Seam, USING SBAM-0ENcooviiiiiiiiiee e 48
2.1 BEfOreYOU Stalrt ... 48
2.2. Setting Up @ NEW ECHIPSE PIOJECTcoiuviiiieiiiiie ettt e e sbn e 48

JBoss Seam 1.3.0.A1

Seam - Contextual Components

2.3. Creating @NEW BCTTONeiiiiiiiiei ettt e e e e e e e e e e e s e e e e e e e e e e e an 51
2.4. Creating aform With @n @CtioNcooiiiiiiiiiiiiice e e e 51
2.5. Generating an application from an existing datadasecccoveiiiiiiei i 52
2.6. Deploying the application aSan EAR ..., 52
2.7. Seam and incremental NOt dePlOYMENTevviiiiiiiii e 53
2.8.UsiNg Seam With JBOSS 4.0ciiiiiiiiiie ettt e e e e e e e e e e e e et eeeaaeeean 53
2.8. 1 INSEEI JBOSS 4.0 ...eeiiiiiiiiee ittt 54
2.8.2. INSAll thEJISF L2 RI ..ottt a e e e e e e e e e e e e nees 54

3. The contextual compPONENt MOUELcoiiiiiiiiiiiiee e e e e e e e e s eaneeees 55
TS 1 g oo (= PP 55
I S == ==Y o 1= S 55
L2 EVENE CONMEXT ..ooeeeeeeeeeeeee e 55
3.1.3. Pag@ CONLEXLcoeieiiiiiiiie ettt ettt e e e e e e e e ee e 56
3.1.4. CONVErSatioN CONEEXT ...vvveiieiiiiieeeeitiee ettt e st e ettt e e e st e e s snbb e e e s nnbneeeeans 56

O I T =S o g ol 1= (SR 56
3.1.6. BUSINESS PrOCESS CONLEXLeieeiiiiiiiiieiiee e e e e eccttiete e e e e e e e s sttt e e e e e e e e e s e satbbrreeeeeeeesenanrnees 57
.17, APPIICELION COMEXE ...oiiiiiiieiiiiiee ettt e e e e e e eeeeaa 57
3.1.8. Context VariabIES ... 57
3.1.9. Context SEarCh PriOritYcooceeiiieii e e e e e e e e s eeeeas 57
3.1.10. CoNCUITENCY MOAE!oeiiiiiiiiiee ettt e e 58

3.2, SEAIM COMPONENES .evuiiieteeieeeitiiate e e e e e ee ettt r e s e e e eeeeaetas s eeeeeeeeetbaaaeeeaeeeeesesa s eeeeeeeeessrnnnnns 58
3.2.1. StAtEl €SS SESSION DEANS ...eeeiiiee et e e e e e e 59
3.2.2. Stateful SESSION DEANSeeiiiiiiiiie ittt e e nraeeeeans 59
323 ENLILY DEANSooiiiiii e 59
.24, JAVABEENSoeie e e e e e e e e a e e e e e nraeeeeans 59
3.2.5. MeSSage-arVEN DEANSccoiiiiiiiee et e e et e e 60
A S 14 1= o= o o] o PP UP PP PPPRPPPPPRRPN 60
3.2.7. COMPONENT NAIMIESiiiiiieeiiiiass e e et et e eet s s e e e e e e e eeteer s e e eeeeeaatssaaseeeeeeeeesnsaseeaaeeeennes 60
3.2.8. Defining the COMPONENT SCOPEciiuvriiieiiiiee ettt 61
3.2.9. Components With MUItIPIE FOIESveiiiiiiii e 62
3.2.10. BUIlt-IN COMPONENLSeeiiiiiiiieiitie ettt e e e e e 62

G TG T = 11 =" 1o o 63
3.4, LifecyCle MELNOASouiiiiiiieeee e e e e 65
3.5. Conditional INSEAHELIONcooiiieiiiiiiiii e e e e e e st r e e e e e s e ennereeeeaens 65
G 1 ST T o] oo [SRR 66
3.7. The Mutable interface and @REAAONIYoiiiiiiiiiieiie e 67
3.8. Factory and manager COMPONENTSoeveviviieiiieeeeeeeeee e e eeeeee e e e eeeeeeeeereeereeeeereeeeeeeeeeerereeeeeees 68
4. Configuring SEam COMPONENTScoiiiiiiieiiitiieeerteee e e ee e e s bt e e st e e s sbb e e e aabbe e e e anbeeeesanbreeeeans 70
4.1. Configuring components Via property SEtiNGSeeeereeeeiiiiiiieieee e e 70
4.2. Configuring components via CompPONENtS. XMcviieeiiiiiiiiieiiee e e 70
4.3. Fine-grained configuration fIlESc.uviiiiiiieei e 73
4.4, Configurable Property TYPES .ooeeei it e e e e e e e e e e e aas 73
4.5. USING XML NBIMESPECESeeeeiiuiiiieeiiiiiieeeiiieie e e sttt e e et e e st e e s sber e e e aasbr e e e s ssaeeeeasnbneeeeans 74
5. Events, interceptorsand exception handlingccc 77
B0 SBAIM BVENES ..o 77
oI I I o L= = o1 o PSSP 77
5.1.1.1 Page ParameterScccoeee e 78

ST I B \F= Y/ ' = o o OO PP PP PPPRP 80

5.1.1.3. Fine-grained files for definition of navigation, page actions and parameters 82

5.1.2. CoMPONENt-AriVEN BVENESeviiiiiiiiieeiiii ettt e e e e nees 82
5.1.3. CONLEXLUBl BVENLSeeeiiieeeiiieiiiie e e e e ettt e e e e e e e et e e e e e e e s e ennte e e e e e e e e e aanenneeeeeens 83

5.2, SEAM INTEICEPIONSveiee ettt ettt e et e ettt e e e st e e e e st et e e e aabb e e e e e anbbeeeeennbneeeeans 85

JBoss Seam 1.3.0.A1

Seam - Contextual Components

5.3. MaNaging EXCEPLIONSuuveeeeiiiiee e ettt e e ettt e e ettt e e et e e st e e e e e sbe e e e e aber e e e e anneeeeaanrreeeean 86
5.3.1. EXCEPtioNs and traNSACIONSeiiieeeiiiiiiiieieeeee e e ccititee e e e e e s s s e e e e e e e e enraraeeeeeas 86
5.3.2. Enabling Seam exception handlingc.ccooiiiiiiiiiiiei e 87
5.3.3. Using annotations for exception handling ... 87
5.3.4. Using XML for exception handlingccooiiiiiiiiiiiiieiieicc i 87
6. Conversations and WOor KSpace ManageMENTcooiiiiiiiiiree e iiaieiee e e e e e e re e e e e e e e neeeeeeeeeas 89
6.1. Seam's CONVErSation MOE]oooiiiiiiiiiiiiii e sbe e e 89
6.2. NESIEU CONVEISALIONSeeiiiieeeiiiiiiiieiite e e e e ettt et e e e e e s s aee et eeeaeeesssasnesaeeeaaeeesaannssaneenaaaeeaaans 91
6.3. Starting conversations With GET FEQUESESuvveiiieiiiiiiiiiiiieecee e s st e e ssatrrnee e e e e e 91
6.4. Using <s:link> and <SIDULLON>cciiiiiiiiiiie e e e e e e ennnaeeean 92
5.5, SUCCESS IMESSAGES ...eeevvtiii it e e e e et ettt r e e e e e e e ettt e e e e e et eeetet s eeeeeeeeeaeean e aeeeaeeeensnnnnaeeaeeennnnes 93
6.6. Using an "expliCit" CONVErSatioN idooouiiiiiiiiiiie e 9
6.7. WOrkSpace ManagEMENLoiiueiieiiiee e e e et et e e e e e s e ettt eeeeeeessanneeaeeeeaaeeesannssnneeeeaaeeaans 95
6.7.1. Workspace management and JSF NaVigationccccvveeieeeiiiiciiiieeeee e ceivieeee e 95
6.7.2. Workspace management and jPDL pageflowcccceeiiiiiiiiiiiiiee e 95
6.7.3. The CONVErsation SWITCNENccciiuiiieiiiiie et e e e 96
6.7.4. The CONVEISALION ISt ..evviiieeeiiiiiiie et e e e s e e e e e s e nerraeeeeeas 96
6.7.5. BreadCrumbs 97
6.8. Conversational components and JSF component BiNdingsccoovccivieieeeeei e 97
7. Pageflows and DUSINESS PrOCESSESoviiiiiiiiiieiiiie ettt e s e e e s s e e e anbre e e 99
7.1 PageflOW 1N SEAIMoiiiiiiiiie e e e e e s e e e e e e e e e e et eeaaaeeaaa 99
7.1.1. The two Navigation MOELSoccuiiiiiiiiiii e 99
7.1.2. Seam and the DaCK DULLONcooiuiiiiiiiie e 102
7.2. USING JPDL PAGEFIOWSeeiiiiiiiiie ettt e e e e e 103
7.2.1. Installing pageflows ... 103
7.2.2. Starting PAJEfIOWSueeiiie e 103
7.2.3. Page n0des and tranSItioNSccveieiiiimieeiiieee e e e 104
7.2.4. ControlliNg the FIOWeeeie e 105
7.2.5. ENAING TNE TIOW ... 105
7.3. BUSINESS Process Management iN SEAMcccuvveiiiiie e e e e e e e e e e 105
7.4. Using JPDL business process defiNitioNScuveieiiiiiieiiiiiie et 106
7.4.1. Installing process definitions ..o, 106
7.4.2. INItIaliZiNG ACLON 1US ..vvveiiieee e e e e 106
7.4.3. INitialing @DUSINESS PrOCESSeeeiiiiiiieeiiiiii e e st e st e e e e e e e s e e 107
7.4.4. TaSK @SSIGNMENTuuiiiiiiee e e e i e e e e e s e et e e e e e e e s s st e e e e e eeesssanatbaeeeeaeeeessannnnrees 107
TADL. TaSK LSS ..o 107
7.4.6. Performing ataskcooooeiiiiiiii 108
8. Seam and Object/Relational MapPinNgcooeiiiiiiiiiiiiie e 109
S 300 R 1 1o L o1 o o PSSP 109
8.2. Seam managed tranSACLIONSueviiiieeei it ie e e e e e e e e e e s e e e e e e s e st rrrrraaaeeaaa 109
8.2.1. Enabling Seam-managed tranSaCtioNnScceeeeiiiuieieeiiiiiee e 110
8.3. Seam-managed PErsiStENCE CONEXESccccurrieiiieeeeeiiiitiee e e e e e e s s e e e e e e e e e e s sarrareeeaaeeeans 111
8.3.1. Using a Seam-managed persistence context With JPAcoovvveiiiiiiiiiieneee e, 111
8.3.2. Using a Seam-managed Hibernate sessioncccccoooe 111
8.3.3. Seam-managed persistence contexts and atomic conversationsccccceeeeeeeenenee. 112
8.4. USING the JPA "UEIEQALE"ceeeeee ettt e e et e e e et e e e e e nrea e e e annaeeeeans 113
8.5. USING EL iN EIB-QL/HQL ..ttt ettt e e nnbneee e 113
8.6. USING HIDEINAE FIITErSeeeeiieiee e 114
9. JSF form validation iN SEAMooiiiiiiie et e e s e e s e e e e s snrneeeeans 115
10. GrOOVY INTEGIALION ..ooiiieiiieiieie ettt e e et e e e b et e e e st e e e e s asb e e e s annbe e e e sanbneeeeans 119
0 T 1 0117 VAR T 11 oo [N o 1 o) X 119

10.2. Writing Seam appliCationS iN GrOOVYccooiueieeiiiiieeieiiiieeesssiieeeessieeeessssseee e nnsneeeeans 119

JBoss Seam 1.3.0.A1

Seam - Contextual Components

10.2.1. Writing Groovy COMPONENTSveeeeiireeeeiiiireeeaiereeesasireeesabneeesssneeeesaneeeeeennnes 119
02 0 = Y TSP 119

10.2.1.2. SE8M COMPONENT .ceiiiiiiteeee e e e e e e e e e e e s st r e e e e e s s s bbb e e e e e e e s e annrnees 120

O o T o P 121
10.3. DEPIOYMENT ..ttt ettt e sttt e e e ab e e e e st e e e e s e bb e e e e annb e e e e e anbneeeean 121
10.3.1. DePIoying GrOOVY COUEuueiiiieeeeiiaiiiiieeeee e e e ettt ee e e e e e e e e e e e e e e s e e enneeeeeeeeas 121
10.3.2. Native .groovy file deployment at development timecccccvveveeeeenicccivieeennnn. 121
F0.3.3. SBAM-OEN .ottt e e e e e st e e e e s s s e e e e e e e e e e e e e e e a e ree s 121

11. The Seam Application FrameWOrKc.uuviiiiieiiiiciiee e s s e e e reee e 123
0 T 1 T [1 o o SRR 123
T2 o T T o o] = o 124
11.3. QUENY ODJECES ...ttt 127
I o T = e o = £ 128
12, Seam and JBOSS RUIESoouiiiiiiiiiiee ettt e e e st e e s st e e e s nnbneeeeans 130
12,1, INSEBIING TUIES ...ttt e s e e e e e e e e e 130
12.2. Using rules from a Seam COMPONENTuueiiieeiiiiiiiiieiee e e e et e e e e s e e e e e e e e anenes 130
12.3. Using rulesfrom ajBPM process definitioncccceoiiiiieeiniiieie e 131
TS o U) YR SURRRRR 133
131, OVEIVIBW .ttt ettt ettt e e e ekttt e e e e sttt e e e sttt e e e e bbbt e e s antb e e e e e anbbe e e e e nnbneeeean 133
13.1.1. Which mode is right for my appliCation?ccoveiiiiiieiiniiee e 133

I B L= o U = 101 g1 £ T PERPRR 133
13.3. DiSADIING SECUNTY ..ooiueeieieeiiee ettt e e e s e e e anrne e e e 133
13.4. AULNENEICEIIONveieee ettt e e et e e e et e e e e ste e e e e sseeeeeeannneeeeeanraeeeeans 134
13.4. 1. CONFIQUIBLTON ...eviiiiiiiiee ettt ettt et e e e et e e e st e e e s e e e e e nnes 134
13.4.2. Writing an authentication Methodcccooiiiiiiiiiiiii s 134
13.4.3. Writing @alogin fOrM ... 135
13.4.4. Simplified Configuration - SUMMEIYccceeeeiiiimieniiieee e 135
13.4.5. Handling Security EXCEPLIONSooiiiiiiiiiic e 136
13.4.6. LOGIN REAITECLIONeeiiiiiiiiieiiiiie ettt 136
13.4.7. HTTP AULNENEICAIION ..eeiitiiieeiiiiiee et e e e 137
13.4.7.1. Writing aDigest AUtNENTICAIONeeveiiiiiiiie e 137

13.4.8. Advanced AuthentiCation FEaLUIEScoiiiiiiiiiiiiiiiie e 138
13.4.8.1. Using your container's JAAS configurationccccceeeeeviiciiieeeeeeeeececieee, 138

13.5. EXTOr IMESSBgESeeeeeiieeiiiinitieeet e e e e s s s et e a e e e s s s e e e e e s e s s s n e e e e e e e e e s s asnrnnn e e e e e e s s annnnnes 138
13.6. AULNOTTZBIION ...ttt ettt e e e et e e e et e e e s abee e e e e e nsbeeeeenntaeeeeans 138
13.6.1. COME COMCEPLSvveeerieeeeieiiittreeee e e e e e st e et e e e e s e st e e e e e e e e e s e bnbnr e e e e e e e s s aannrrreeeeeeas 138
13.6.2. SECUING COMPONENLSuuuuuuuuuuunnuunnnnnunnnaaannnnnnnnnannnanananananananannnnnannnnsnnnsnsnnnnnnnnnnns 139
13.6.2.1. The @RESLICt aNNOLELIONccevvveeieiiiiieeiiee e e 139

13.6.2.2. INHNE TESIHICLIONS ... e e e e e e e 140

13.6.3. Security inthe USer INtErfaceooocciiieiii e 140
13.6.4. SECUMNG PAOES ..eeeeuutereeeiiereeeaaiteeeeeaste e e e s atee e e e ase e e e e assae e e e s asbee e e s asne e e e e annneeeeannes 141
13.6.5. SECUINNG ENLILIES ...eiiiieiiiiiiiieie e e e e e s e e as 142
13.6.5.1. Entity security With JPAcooiiiiiiieee e 143

13.6.5.2. Entity security With HIDErNEaecccooiiiiiiii e 143

13.7. WIItiNG SECUNTY RUIEScooiiiiii ettt e e e e 143
13.7.1. PermiSSIONS OVEIVIEWceeiiiiiiiieeeeeiaiiieieeeee e e e e ettt e e e e e e e s s annteeeeeaaeeseaannneeeeeeeas 143
13.7.2. Configuring arUlESFIlEuviiiiiiee e 143
13.7.3. Creating aSeCurity TUIESTIlEvviiii e 144
13.7.3.1. Wildcard permission checkscccoeveiiiiiiicc e, 145

13,8, SSL SECUNMLY weeueteiee ettt ettt ettt e et e e sttt e e et e e e s abb e e e e annb e e e e e anbneeeean 145
13.9. Implementing @ CaptChAa TESLccciiiiiiiiiii s ann s nnnnnnnnnnns 146
13.9.1. Configuring the CaptCha SErVIELooeiiiiiiiie e 146

JBoss Seam 1.3.0.A1

Seam - Contextual Components

13.9.2. Adding aCaptChatO @ Pa0Evvveeeiiiieeee et 147

14. Internationalization and thEMESoociiiiiiii e 148
7t T I o= SRR 148
LA.2, LADEIS oottt e e et e e e e b e e e e e anre e e e e anraeeeeans 148
14.2.1. DEfINING TADAIS ..o 148
14.2.2. Displaying laelScooiiieee e 149
14.2.3. FCES IMESSAGES ...uuuuunununununnnnnuiannnanannnannanasanaaanananasasnsanasasnsasasssnsnsssnnnsnsnsnnnnnsnnns 150

I T T 07 TSP 150
T I 4T 03T PP OPPRRRTTPPRRN 150
14.5. Persisting locale and theme preferences via CooKIEsocovviiiiiiieiiiiciiiee e 151
TS = o I = PSRRI 152
15.1. BASICFOMEIEING ...vveeiiiiiiieeeeiiii ettt e e e e s st e e e bbe e e e e nnbneeeeans 152
15.2. Entering code and text with special CharaCtersoooviiiiiiiiiie e 153
ST A I 0] PP PPPOPPRRTRPPRRN 154
154 ENErING HTIML oottt e e e e e e e e 154
16. ITEXt PDF QENErAtION ...cccoiiiiiieeie ettt e e e e e e et e e e e e e e s s ettt e e e e e e e e e senntbreneeeeas 155
16.1. USING PDF SUPPOITeeiieeiiiiete ettt ettt e et e e s st e e e annbe e e e e nnbneeeean 155
16.1.1. Creating @ 0OCUMENLiiiiiiii e anaaan s nasasnsnnannnnnnnnsnnnnnnnnnnnnns 155
16.1.2. BaSIC TEXE EIBMENTS ...ooeiiiiiiiiciee e 156
16.1.3. HeaderS anNd FOOLEISoiieiiiiiiieee ettt e e e e e e e et e e e e e e s e e neeeeeeeas 159
16.1.4. Chapters and SECHIONSuvviiiieeee it e e e s e e e e e e e s s s r e e e e e s e e rnrrraaeeeeas 160
G 0 0 T 0 £ 161
16.1.6. TADIES ...ttt e e e e e e e e nnes 162
16.1.7. DOCUMENT CONSLANESuuuuuiuiiiiiiii s sssessssnnnnnsnees 165
16.2.7.1. COIOr VAIUEBSeeiiieeieieieee ettt e e e e e e e e e e e e e 165

16.2.7.2. AlIgNMENE VAIUES ...ttt e e e e 165

16.1.8. CONFIQUITNG I TEXLEveeeeiiiiiie ettt e e 165
2 @117 1 (oo TP PSRPRRP 166
TG I T g oo o === RSP 170
16.4. FUrther dOCUMIENEEEIONo.vvireeeiiiiee e et e e et e e s sttt e e e et e e e et e e e s snneeeeesnnbeeeeennneeeeaans 171
= 3T T RSP 172
17.1. Creating @IMESSAZE ...uuuuuuuuuuuuunnnnnnnunnnnnnnnnnnnnnnannnnnnsnnnnnnnsnsnsnsnssnnsnsnsnsnsnsnsssnsnsnsnnnsnnnnnnnsnnns 172
17. 1.0 ATEBCRMENTS ...eeiiiiiiiieie ettt e et e e st e e e s b e e e nees 173
17.1.2. HTML/TEXt alternNatiVe Partcoeoiivmreeiiiiiie et 173
17.2.3. MUItIPIE FECIPIENTS .o e e e s eeaeas 173
17.1.4. MUITIPIE MESSAESeeeeeiiiiiiee ittt e e e ettt ettt et e et e e e st e e e s e e e e 174
0 T S = 1 4o =11 o 174
17.2.6. INterNatioN@liSAtIONccciiiiiiiiee e e e 174
17.1.7. Other HEAOEIS ...ooeeiiiiiee ettt et s e e et e e e e nne e e e e e nnaeeeeennees 175
I o L= o AV o To = 0 7= 11 PSPPI 175
17.3. CONFIGUIALTON ...ttt ettt e e et e e e s s e e e e annr e e e e s anbneeeen 175
17.3. 1 MAITSESSION ...ttt ettt e e e et e e e s e e e e e e e e e nees 176
17.3.1.1. INDI [0OKUP INJBOSS AS ...ttt 176

17.3.1.2. Seam CcONfigUred SESSIONuuuuuuuuiuininininnninnnnnnnnannnnnnnnnnnnnnrnnnnnnnnannnnnnnn 176

Y = Lo 1= T S EERPR 176
ST 1o SRR SOUPSRSSRPRR 177
18. AsynchroniCity and MESSAGINGcceeeieiiiiiiiiiieeeeeie e e e e e e e e se e e e e e e e s s st trrereeeaessssnsrreaeeaeas 180
18. 1. ASYNCHIONICITY ...eveeeeiiiiiie ettt ettt e et e e et e e e s e e e e e e e ne e e e e anrneeeeans 180
18.1.1. ASynchronOUS MELNOMSuueiiiiiei it e e e e 180
18.1.2. Asynchronous methods with the Quartz DiSpaiChercooviveiiiiiieeeiiieeeeee 182
18.1.3. ASYNCIIONOUS EVENLSuuiuiiii s nnnnnnnnnnnnnnnnnnnnnns 183

18.2. MESSAING 1N SEAIM ...ttt ettt e ettt e e et e e e e abb e e e e anbbe e e e e nnbneeeeans 183

JBoss Seam 1.3.0.A1

Vi

Seam - Contextual Components

18.2. 1. CONFIQUIBLIONeiiiiiiiieeeetee ettt e e s s e e e s e e e 183
18.2.2. SENUING MESSAGES ..eeiieeei ittt ee e e e e e e et et e e e e s e ettt e e e e e e s e stabaa e e e e e e e s s aantrraaneeeas 184
18.2.3. Receiving messages using a message-driven DEaNccccevvveeeeeiiiieee s 184
18.2.4. Receiving messagesS iNthe Client ..o 184

LS OF= Yo 1 o T PP PP TUPRPPTRTPRP 185
19.1. USING JBOSSCACNE 1N SBAIMeiiiiieeeiiiiitiiii e e ettt e e e e e e et e e e e e e e e e s eeeeaeeeeannnneees 186
19.2. Page fragment CaChINGvviiiiiie it e e e 186
PO = 1 T] oo TSP P PP P R PUPPPPTPPPRPN 188
20.1. CONFIGUIBLIONiiiieiee e e e e e et e e s e et e e e e e e e s et e e e e e e e s s saanteraeeeeaeessasasnreseeeaaeesaans 188
20.2. The"Seam” ODJECT ..o 188
20.2.1. A HelloWorld exampleccoooeoeiieii 188
20.2.2. SEAM.COMPONENEteeieieeeeeiiittiee ittt eee e s st et e e e ae e e s s abnbe e e e aeeessaanbbrrreeeaeeessannnenes 190
20.2.2.1. Seam.Component.NeWINSLANCE()ooeovreeiereeeeee e e e e e e e e riieeeee e e e e e 190

20.2.2.2. Seam.Component.getinstanCe()ooocvvieeeriee e 191

20.2.2.3. Seam.Component.getComponentName()cooovvveeeriiiieeenniiieee e 191

20.2.3. SEAM.REMOLINGvvvviiiiieee e e e e e e e e e e e e s e e e e e e e s s s rabb e e e e eeeeesseaneeees 191
20.2.3.1. Seam.RemOting.Creale€TYPE()uvveeeeiiirieeeiiieie ettt 191

20.2.3.2. Seam.Remoting.getTypeName()ccccceveeeii 191

20.3. ClIENT INEEITACESveieeiiiiiee ettt e et e e s st e e e e sbb e e e e annb e e e e s anbeeeeeans 191
20.4. TRE CONIEXL ...ttt e e e e e e ettt e e e e e e e s et e e eeaaeeeaasnnnneaeeeaaeeaaans 192
20.4.1. Setting and reading the Conversation IDccoooiiiiiiiiiiiiiee e 192
20.4.2. Remote calls within the current CONVersation SCOPEcvvvveriivieeeiniirieee s 192

20.5. BACh REQUESEScuviiiiiiii ettt ettt e e e et e e e e e e e s e et e e e e e e e s s e s sanbbeeeeeaaeeaaas 192
20.6. WOrKing With DEIATYPEScc.vveeieiiiiiie ettt e s s e e e s snne e e e s snnneeeeans 193
20.6.1. PrimitivesS/ BasSiC TYPES ..ccoeee oo, 193
0 T O O 1 o SRS PRRRR 193

20.6.1.2. NUMDESeieiiie ettt e i e et e s b e e sbeeeanneeeas 193

20.6.1.3. BOOIBAN ..ottt 193

20.6.2. JAVABEANScciutiieiiie et b e ba e e e enbe e anes 193
20.6.3. DAES AN TIMES ..eeeiiiiiieeeiiiiie et e e et e e e st e e e e e e e e st e e e e anneeeeesanreeeeeansaeeeeans 194
20.6.4. ENUMS ..o 194
20.6.5. COIBCLIONS ...t e e e e e e e et e e e e e e e e e enneees 194
20.6.5.0. BaAgS ..o i 194

20.6.5.2. IMIBDSee ittt ab e e 194

20.7. DEDUGOING ooeiieeiiiee et e e e e e e e e e e e e a i — e e aaaeaaaaas 195
20.8. The LOAUING IMESSAOEeeeiiuiiiiieiiiie ettt ettt e e et e e e e b e e e anbneeeeans 195
20.8.1. Changing the MESSAgEccceeeee e, 195
20.8.2. Hiding the 10a0iNg MESSAEcuuiiieiiiiee et 195
20.8.3. A Custom Loading INdiCatorccooeeviiiiiiiie e, 195
20.9. Controlling what dataiSTELUMNEAcciiiiiiiiiiee e e e a e e e e 196
20.9.1. Constraining NOrMal FIEIASoocuiiiiiiiii e 196
20.9.2. Constraining Maps and CollECHIONSc.c.uveieeeeeeiiicciiiee e e 196
20.9.3. Constraining objects Of & SPECITICLYPEvvviiiiiiieiiiiiiee e 197
20.9.4. Combining CONSITAINLSccoeeiiiiee e, 197
20.10. IMS MESSATING -..veeeeeuutereeeiuitreeeaauteeeeeaasteeeessbseeeeaasbeeeeaaabeeeesanbbeeeeaassseeeeannbeeeesanbaeeeeans 197
P20 I (0 5 I @0 g 1T 1 =1 o o PSSR 197
20.10.2. SuUbsCribing to @M S TOPIC ...vvvviiiieeeei ettt ee et e e e eneees 197
20.10.3. Unsubscribing from @TOPICcc.vvvveiiiiiiee ettt 198
20.10.4. Tuning the POIIING ProCESSccviiiiiiiiiiiiieieee ettt e e e 198

21. Spring Framewor K iNTEQIAtIONeeeiiiiriee ittt e et e e e s e e e s snneeeeans 199
21.1. Injecting Seam components into Spring beanscccccceee 199
21.2. Injecting Spring beans into Seam COMPONENTScviiiiiiiiiiee e 200

JBoss Seam 1.3.0.A1

Vii

Seam - Contextual Components

21.3. Making a Spring bean into & Seam COMPONENTcuuvieeiiiiiee e 201
21.4. Seam-scoped SPriNg DEANSoviiiiiiii e 201
21.5. Using a Seam Managed Persistence Context in SPringc.eeeevrvereeeinireeessiieeeeenieeeeens 202
21.6. Spring Application Context asa Seam CoOmMpPoNeNtccceeeeeeeeeee e, 203
22. Configuring Seam and packaging Seam appliCatioNSccoviueieeiiiiiiiee e 204
22.1. BaSiC Seam CONFIQUIALIONceeeiiiieiee et ee e e e e e e e e e e e e e e e e e e ennneeeeeeaaeeeen 204
22.1.1. Integrating Seam with JSF and your servlet containercccoeecvvvieeeeeee e, 204
22.1.2. SEAM RESOUICE SEIVIEL ...t 204
22.1.3. SeaM SEIVIEL FIIEIS ...eveeiie i e e e 205
22.1.3.1. EXception NAanNdliNgccccuueieiiiiiieeeiiiiee e 205

22.1.3.2. Conversation propagation with redirectsccccoeee . 205

22.1.3.3. Multipart form SUDMISSIONSceeiiiiiiiiieiiiiie e 206

22.1.3.4. CharaCter @NCOMINGcceiiiieeiiieiieee e e e eeteieier e e e e e e e et e e e e e e s e snneeeeeeeaeeeeaa 206

22.1.3.5. AJBXAISE .o 206

22.1.3.6. Context management for CUSIOM SENVIELScoooviiiiiiiiiiieeeeee e 207

22.1.3.7. Adding CUStOM fIITErS ... 207

22.1.4. Integrating Seam with your EJB CONTAINEScoeviiuiiiiiiiiiiie e 208
22.1.5. UsiNgfaceletS ..o 208
P72 WL G T o 0 A {0 (o= 4 SRR 208
22.2. Configuring SEam iN JAVAEE Soooiiiiiiiiie e 209
W T o= o o 1 0o SRR 209

22.3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container 210
22.3.1. Installing the Embeddable EJB3 CONLAINEYccceviiiiiiiiiieeeeeeeciiiieeee e e e e 211
22.3.2. Configuring a datasource with the Embeddable EJB3 containercccccvvveennne 211
22.3.3. PaCkagingcoooeieiiii 212

22.4. Configuring SEaM INJ2EEomiiiiii e 213
22.4.1. Boostrapping Hibernate in Seamcvvviiiiiiie e 213
22.4.2. BOOSrapping JPA IN SEAMuviiiiiiie ettt e e et e e e e e e e e s eannnees 214
22.4.3. PACKBGING ...eeeiiiiiiieiiie ettt 214

22.5. Configuring Seam in Java SE, with the JBoss MicrocontaiNgrcccceeeevviiiiiineeeeeennnnn, 214
22.5.1. Using Hibernate and the JBOSS MiCrOCONTAINESoeeeiiiiieeiiiiiiee e e 215
22.5.2. PaCKagingccoooeiiiieiie e, 216
22.6. Configuring JBPM 1N SE8IMuviiiiiiiii e e e a e 217
22.6.1. PACKBGING ...eeeiiiieieiiieie ettt 217

22.7. Configuring SEamM iN @POrtalcooiiiiiiiiiiiic e 218
22.8. Configuring SFSB and Session TimeoutSin JBOSSASvviieiiiiiieeiiieee e 218
TS < 1o 1= [0 = 4 o P USTTR 220
23.1. Annotations for component definitionccviriiiiiiii i 220
23.2. ANNOtationS fOr DIJECLION ... e 222
23.3. Annatations for component lifecycle methodscccvveeviieiiiiicci e 225
23.4. Annotations for CONtEXt deMEICaLiONeceiiiierieeiiiiiie et e e 225
23.5. Annotations for transaction demMarCationc.c.ceeoiueeieeiiieiee i seeeee e 229
23.6. ANNOLELiONS TOI EXCEPLIONSveeeeiiiiei ettt ettt e s e e s e e e e anbaeeeean 229
23.7. ANNOtatioNS FOr ValIALTON ..ot e e e e e e 230
23.8. ANNotations for SEamM REMOLINGooeiiiiiiieiiiiiie et 230
23.9. ANNotations fOr SEam INLErCEPLONSeeii e e e e ettt e e e e s e e e e e e e e s eeeeeeeeeeaeeeen 230
23.10. Annotations for asyNChrONICILYoooiiiiiiiieii e 231
23.11. ANNotationS fOr USEWITN JSF ... 232
23.11.1. Annotations for use with dataTablecocvieieiiiiiiie e 232
23.12. Meta-annotations for databiNdiNgc.eeeoviiiiieiiiiiie e 233
23.13. Annotations for packagingccooeverieie i, 233
23.14. Annotations for integrating with the serviet CoNtaiNerooovviviiiiiiieie e 233

JBoss Seam 1.3.0.A1 Viii

Seam - Contextual Components

24. BUIlt-IN SEAM COMPONENTSeeiiieiiiiiee ettt e e et e e e s b e e e e anbe e e e s annnneeeans 235
24.1. Context iNjeCtion COMPONENESuviiiieeeiiiiiiiieeee e e e e e e eerre e e e e e e s et rr e e e e e e e s sastrrarreeaeeeaaans 235
24.2. ULIHITY COMPONENTS ...oiitiieeeiiiiee e ettt e e ettt e e sttt e et e e e et e e e s sabb e e e e nsb e e e e e anbe e e e e anbnneeean 235
24.3. Components for internationalization and themesccccc 237
24.4. Components for controlling CONVEISAtiONSeeiiiiiiiieeiiiiie e 238
24.5. IBPM-related COMPONENESceiiiiiiiieeei ittt e et ee e e e e s e e e e e e e e e e snnneeeeeaeaeeeans 239
24.6. Security-related COMPONENTSvvviiiieeeiiiiiiie e e e e e e e e s e s e e e e e e s s s rrreraaaeeaaaas 241
24.7. IMS-related COMPONENLSouveieeeiiiiie et e ettt e e e e s e e e e e e e e e anrneeeaans 241
24.8. Mail-related COMPONENLSuviiiiieeeei i e e e e e sree e e e e e s s et e e e e e e e s e s sarnrereeeaeeeaaans 241
24.9. Infrastructural COMPONENTSeiiiiiiiieeiiiiie ettt e et e e s e e e s snr e e e s anbneeeeans 242
24.10. Miscellaneous COMPONENLSccoeeerieie e 244
24.11. SPECial COMPONENTSveiieiiiiiiee ittt e e ettt e e ettt e e et e e e et e e e e sbb e e s aasbe e e e e enbeeeesanbaeeeeans 244

T o I IS e oo 1 o =PRSS 247

26. EXpression language eNhanCeEMENTSocuviiiiiiie e e s e e e e e e nnneees 259
26.1. Parameterized Method BiNAINGSccoiiiiiiiiiiiiii et 259

26.1.1. USAOE .oooeiiieeeetiite ettt e ettt e e ettt e e et e e et e e e e e n et e e ettt e e e e nnr e e e e e nreeeeennraeeeeans 259

P2 T N I 1T = 4o SRR 259
26.1.2.1. Incompatibility With ISP 2.1ooiiiiiiiieeee e 260

26.1.2.2. Caling a MethodExpression from Javacodecccveveeeeeeiiicciiiiieeeee e 260

26.2. Parameterized Value BiNdiNGSc.uviiiiiiiiiieieiiee et 260
PTG T = (0 1= ot (o) o PP PPPRRRR 260

27. Testing SEam APPHCALIONSeviiiiiiiiieeiii ettt e s e s e e e e e e e e eans 262
27.1. Unit testing Seam COMPONENLSccceeiiiiiiiiieeieeeeeeeiiiitrreeeeeeessssatrrereeeaessssssnrereeeaaesaaans 262
27.2. Integration testing Seam COMPONENTSvviiiiiiieeeiiieee et e et e e e e e seneee e 263

27.2.1. Using mocksin integration testSooovvvieieiiii e, 264
27.3. Integration testing Seam application USer iNtEraCtionsccoooecvvveeeeeeessiiiiiiieee e e e e 264

P22 TS = o 1 o] KSR 268

28.1. [BPM deSIgNer aNd VIEWETuviiiiiieeeiiiiiiiiei e e e e st e e e e e e s et re e e e e e e e s s s sannrareeaaaeeeans 268
28.1.1. BUSINESS PrOCESS UESIGNEYeieieiiiiiieeiiiiiee e sttt e e s et e e e et e e e s e e e s snre e e e s snreeeeean 268
28.1.2. PaQEflOW VIBWEYovieiieii e e et e e e e e e e eaneeees 268

28.2. CRUD-DPIiCaLION JENEIALONeiiiiiieeieeiiieieeesieee e e ettt e st e e e e e s e e e s b e e e e snbneeeeans 269
28.2.1. Creating aHibernate configuration fileccccc 269
28.2.2. Creating a Hibernate Console configurationcccccveveveeeiiiiiiiineencee e, 270
28.2.3. Reverse engineering and COOE gENENaioNeveiiurieeeiiiiieeeiireeeeeiree e e s sieeee e 273

28.2.3.1. Code Generation LAUNCHEYeeeeiiiiiiiieiiiiiie et 273
28.2.3.2. EXPOITENS ...ttt ettt e e e e s e e e e e s e a e e e e e e 275
28.2.3.3. Generating and usingthecodecccceoeeee 277

JBoss Seam 1.3.0.A1

Introduction to JBoss Seam

Seam is an application framework for Java EE 5. It isinspired by the following principles:

Integrate JSF with EJB 3.0
JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new component model for
server side business and persistence logic. Meanwhile, JSF is a great component model for the presentation
tier. Unfortunately, neither component model is able to solve al problems in computing by itself. Indeed,
JSF and EJB3 work best used together. But the Java EE 5 specification provides no standard way to integ-
rate the two component models. Fortunately, the creators of both models foresaw this situation and
provided standard extension points to allow extension and integration of other solutions.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting the developer
think about the business problem.

Integrated AJAX
Seam supports two open source JSF-based AJAX solutions. |CEfaces and Ajax4JSF. These solutions let
you add AJAX capability to your user interface without the need to write any JavaScript code.

Seam also provides a built-in JavaScript remoting layer for EJB3 components. AJAX clients can easily call
server-side components and subscribe to JM S topics, without the need for an intermediate action layer.

Neither of these approaches would work well, were it not for Seam's built-in concurrency and state man-
agement, which ensures that many concurrent fine-grained, asynchronous AJAX requests are handled
safely and efficiently on the server side.

Integrate Business Process as a First Class Construct
Optionally, Seam integrates transparent business process management via jBPM. Y ou won't believe how
easy it isto implement complex workflows using jBPM and Seam.

Seam even alows definition of presentation tier conversation flow by the same means.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this model by expos-
ing jBPM's business process related events via exactly the same event handling mechanism, providing a
uniform event model for Seam'’s uniform component model.

One Kind of " Stuff"
Seam provides a uniform component model. A Seam component may be stateful, with the state associated
to any one of a number of contexts, ranging from the long-running business process to a single web request.

There is no distinction between presentation tier components and business logic components in Seam. It is
possible to write Seam applications where "everything" is an EJB. This may come as a surprise if you are
used to thinking of EJBs as coarse-grained, heavyweight objects that are a pain in the backside to create!
However, EJB 3.0 completely changes the nature of EJB from the point of view of the developer. An EJB
is afine-grained object - nothing more complex than an annotated JavaBean. Seam even encourages you to
use session beans as JSF action listeners!

Unlike plain Java EE or J2EE components, Seam components may simultaneously access state associated
with the web request and state held in transactional resources (without the need to propagate web request
state manually via method parameters). You might object that the application layering imposed upon you
by the old J2EE platform was a Good Thing. Well, nothing stops you creating an equivalent layered archi-
tecture using Seam - the difference is that you get to architect your own application and decide what the

JBoss Seam 1.3.0.A1 X

I ntroduction to JBoss Seam

layers are and how they work together.

Declarative State Management

We are al used to the concept of declarative transaction management and J2EE declarative security from
EJB 2.x. EJB 3.0 even introduces declarative persistence context management. These are three examples of
a broader problem of managing state that is associated with a particular context, while ensuring that all
needed cleanup occurs when the context ends. Seam takes the concept of declarative state management
much further and applies it to application state. Traditionally, J2EE applications almost always implement
state management manually, by getting and setting servlet session and request attributes. This approach to
state management is the source of many bugs and memory leaks when applications fail to clean up session
attributes, or when session data associated with different workflows collides in a multi-window application.
Seam has the potential to almost entirely eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context model defined by
Seam. Seam extends the context model defined by the serviet spec—request, session, application—with
two new contexts—conversation and business process—that are more meaningful from the point of view of
the business logic.

Bijection
The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as well as in nu-
merous so-called "lighweight containers'. Most of these containers emphasize injection of components that
implement statel ess services. Even when injection of stateful componentsis supported (such asin JSF), it is
virtually useless for handling application state because the scope of the stateful component cannot be
defined with sufficient flexibility.

Bijection differsfrom 1oC in that it is dynamic, contextual, and bidirectional. Y ou can think of it as a mech-
anism for aliasing contextual variables (names in the various contexts bound to the current thread) to attrib-
utes of the component. Bijection allows auto-assembly of stateful components by the container. It even al-
lows a component to safely and easily manipulate the value of a context variable, just by assigning to an at-
tribute of the component.

Workspace Management
Optionaly, Seam applications may take advantage of workspace management, allowing users to freely
switch between different conversations (workspaces) in a single browser window. Seam provides not only
correct multi-window operation, but also multi-window-like operation in a single window!

Annotated POJOs Everywhere
EJB 3.0 embraces annotations and "configuration by exception™ as the easiest way to provide information
to the container in a declarative form. Unfortunately, JSF is till heavily dependent on verbose XML con-
figuration files. Seam extends the annotations provided by EJB 3.0 with a set of annotations for declarative
state management and declarative context demarcation. This lets you eliminate the noisy JSF managed bean
declarations and reduce the required XML to just that information which truly belongs in XML (the JSF
navigation rules).

Testability as a Core Feature

Seam components, being POJOs, are by nature unit testable. But for complex applications, unit testing
alone is insufficient. Integration testing has traditionally been a messy and difficult task for Java web ap-
plications. Therefore, Seam provides for testability of Seam applications as a core feature of the frame-
work. You can easily write JUnit or TestNG tests that reproduce a whole interaction with a user, exercising
all components of the system apart from the view (the JSP or Facelets page). Y ou can run these tests dir-
ectly inside your IDE, where Seam will automatically deploy EJB components into the JBoss Embeddable
EJB3 container.

Get started now!

JBoss Seam 1.3.0.A1 Xi

I ntroduction to JBoss Seam

Seam works in any application server that supports EJB 3.0. Y ou can even use Seam in a servlet container
like Tomcat, or in any J2EE application server, by leveraging the new JBoss Embeddable EJB3 container.

However, we realize that not everyone is ready to make the switch to EJB 3.0. So, in the interim, you can
use Seam as a framework for applications that use JSF for presentation, Hibernate (or plain JDBC) for per-
sistence and JavaBeans for application logic. Then, when you're ready to make the switch to EJB 3.0, mi-
gration will be straightforward.

ISP Facelets Portal Presentation Tier
JSF Request Controller
Seam Context Management
EJE 3 JBoss |BPM || Hibernate || State Management
T

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex web application
in Java. You won't believe how little codeis required!

JBoss Seam 1.3.0.A1 Xii

Chapter 1. Seam Tutorial

1.1. Try the examples

In this tutorial, we'll assume that you have downloaded JBoss AS 4.2.0. Y ou should also have a copy of Seam
downloaded and extracted to awork directory.

The directory structure of each example in Seam follows this pattern:

« Web pages, images and stylesheets may be found in exanpl es/ registration/ vi ew

* Resources such as deployment descriptors and data import scripts may be found in exanpl es/ regi stration/
resources

« Javasource code may be found in exanpl es/ registration/ src

e TheAnt build script isexanpl es/ regi stration/ bui | d. xri

1.1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOVE and $JAVA_HOME set correctly. Next, make
sure you set the location of your JBoss AS 4.2.0 installation in the bui | d. properti es filein the root folder of
your Seam installation. If you haven't already done so, start JBoss AS now by typing bi n/ run. sh or bin/
run. bat intheroot directory of your JBossinstallation.

Now, build and deploy the example by typing ant depl oy inthe exanpl es/ registration directory.
Try it out by accessing http://1 ocal host: 8080/ seamregi strati on/

[http://localhost:8080/seam-registration/] with your web browser.

1.1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $ANT_HOMVE and $JAVA HOME set correctly. Next, make
sure you set the location of your Tomcat 6.0 installation in the bui | d. properti es filein the root folder of your
Seam installation.

Now, build and deploy the example by typing ant depl oy. t ontat intheexanpl es/ registration directory.
Finaly, start Tomcat.

Try it out by accessing http://1 ocal host: 8080/ boss-seamregi stration/
[http://local host:8080/j boss-seam-registration/] with your web browser.

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss Embeddable EJB3
container, a compl ete standalone EJB3 container environment.

1.1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the testsis to run
ant testexanpl e inside the exanpl es/ registration directory. It is also possible to run the testsinside your IDE

JBoss Seam 1.3.0.A1 1

http://localhost:8080/seam-registration/
http://localhost:8080/jboss-seam-registration/

Seam Tutorial

using the TestNG plugin.

1.2. Your first Seam application: the registration example

The registration example is a fairly trivial application that lets a new user store his username, real name and
password in the database. The example isn't intended to show off al of the cool functionality of Seam.
However, it demonstrates the use of an EJB3 session bean as a JSF action listener, and basic configuration of
Seam.

WEe'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then submitting the
form. Thiswill save a user object in the database.

) Register New User - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

@ M II> M % @ |@ http://localhost:8080/seam-registration/register.seam V| @ Go ||Qv

|1 Chapter 1. Seam Tutorial | [Register New User |[#38oss DVD Store

Username |gavin
Real Name |Gavin King
Password |”*m1

1.2.1. Understanding the code

The example isimplemented with two JSP pages, one entity bean and one statel ess session bean.

JBoss Seam 1.3.0.A1 2

Seam Tutorid

FF companents in 15P page J5F components in J5F page

register.jsp registered, jsp

update model values

@

Eritity Bean

®

risfehe i H e

User

@ ,

ik applicaten
raglEtec (]

Snateless Session Bean

RegisterAction

T k)

EntityManager

EJE A

Let'stake alook at the code, starting from the "bottom".

1.2.1.1. The entity bean: User. | ava

We need an EJB entity bean for user data. This class defines persistence and validation declaratively, via an-
notations. It also needs some extra annotations that define the class as a Seam component.

Example 1.1.
@ntity (1)
@\anme("user") (2)
@scope(SESSI ON) (3)
@abl e(nane="users") (4)
public class User inplenents Serializable
{

private static final |ong serial VersionU D = 1881413500711441951L;

private String usernane; (5)
private String password;

private String nane;

public User(String nane, String password, String usernane)

{
this. nane = nane;
thi s. password = passwor d;
t hi s. user nane = user nane;
}
public User() {} (6)
@Not Nul I @engt h(m n=5, nmax=15) (7)

public String getPassword()

JBoss Seam 1.3.0.A1 3

Seam Tutorid

(1

(2)

(3)

(4)
(5)

(6)
(7

(8)

{

return passwor d;

}

public void setPassword(String password)

{

this. password = password;

}

@\ot Nul |
public String get Nane()

{

return nane,;

}

public void setNane(String nane)

{

thi s. nane = nane;

}

@d @botNull @ength(m n=5, nmax=15) (8)
public String getUsernane()
{

return usernane;

}

public void setUsernane(String usernane)

{

t hi s. user nane = user nane;

}

The EJB3 standard @nt i t y annotation indicates that the User classis an entity bean.

A Seam component needs a component name specified by the @ane annotation. This name must be
unique within the Seam application. When JSF asks Seam to resolve a context variable with a name that is
the same as a Seam component name, and the context variable is currently undefined (null), Seam will in-
stantiate that component, and bind the new instance to the context variable. In this case, Seam will instan-
tiate auser thefirst time JSF encounters avariable named user .

Whenever Seam instantiates a component, it binds the new instance to a context variable in the compon-
ent's default context. The default context is specified using the @cope annotation. The User bean is a ses-
sion scoped component.

The EJB standard @rabl e annotation indicates that the User classis mapped to the user s table.

name, passwor d and user nane are the persistent attributes of the entity bean. All of our persistent attrib-
utes define accessor methods. These are needed when this component is used by JSF in the render re-
sponse and update model values phases.

An empty constructor is both required by both the EJB specification and by Seam.

The @bt Nul I and @engt h annotations are part of the Hibernate Validator framework. Seam integrates
Hibernate Validator and lets you use it for data validation (even if you are not using Hibernate for persist-
ence).

The EJB standard @ d annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @wane and @cope annotations. These annotations
establish that this class is a Seam component.

WEe'll see below that the properties of our User class are bound to directly to JSF components and are popul ated
by JSF during the update model values phase. We don't need any tedious glue code to copy data back and forth
between the JSP pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't use this component
as a JSF action listener. For that we need a session bean.

JBoss Seam 1.3.0.A1 4

Seam Tutorid

1.2.1.2. The stateless session bean class: Regi sterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead if you like).

We have exactly one JSF action in our application, and one session bean method attached to it. In this case,
we'll use a statel ess session bean, since all the state associated with our action is held by the User bean.

Thisisthe only redly interesting code in the exampl el

Example 1.2.

@t at el ess (1)
@ame("regi ster")
public class RegisterAction inplenents Register

{

(1)
(2)

(3)
(4
(5)

(6)

(7
(8)

@n (2)
private User user;
@er si st enceCont ext (3)
private EntityManager em
@ogger (4)
private Log | og;
public String register() (5)
{
Li st existing = em createQuery(
"sel ect usernanme from User where username=#{user.usernanme}") (6)

.getResul tList();

i f (existing.size()==0)

{
em persi st (user);
| 0og.info("Registered new user #{user.usernane}"); (7)
return "/registered.jspx"; (8)
}
el se
{
FacesMessages. i nstance().add("User #{user.usernane} already exists"); (9)
return null;
}

The EJB standard @t at el ess annotation marks this class as statel ess session bean.

The @ n annotation marks an attribute of the bean as injected by Seam. In this case, the attribute is injec-
ted from a context variable named user (the instance variable name).

The EJB standard @per si st enceCont ext annotation is used to inject the EJB3 entity manager.

The Seam @ ogger annotation is used to inject the component's Log instance.

The action listener method uses the standard EJB3 Ent i t ymManager API to interact with the database, and
returns the JSF outcome. Note that, since this is a sesson bean, a transaction is automatically begun when
ther egi st er () method is called, and committed when it compl etes.

Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this resultsin an or-
dinary JPA set Par anet er () call on the standard JPA Query object. Nice, huh?

TheLog API lets us easily display templated |og messages.

JSF action listener methods return a string-valued outcome that determines what page will be displayed
next. A null outcome (or a void action listener method) redisplays the previous page. In plain JSF, it is
normal to always use a JSF navigation rule to determine the JSF view id from the outcome. For complex

JBoss Seam 1.3.0.A1 5

Seam Tutorid

application thisindirection is useful and agood practice. However, for very simple examples like this one,
Seam lets you use the JSF view id as the outcome, eliminating the requirement for a navigation rule. Note
that when you use a view id as an outcome, Seam always performs a browser redirect.

(9) Seam provides a number of built-in components to help solve common problems. The FacesMessages
component makes it easy to display templated error or success messages. Built-in Seam components may
be obtained by injection, or by calling ani nst ance() method.

Note that we did not explicitly specify a @cope thistime. Each Seam component type has a default scope if not
explicitly specified. For stateless session beans, the default scope is the statel ess context. Actually, all stateless
session beans belong in the statel ess context.

Our session bean action listener performs the business and persistence logic for our mini-application. In more
complex applications, we might need to layer the code and refactor persistence logic into a dedicated data ac-
cess component. That's perfectly trivial to do. But notice that Seam does not force you into any particular
strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with the web request
(the form values in the user object, for example), and state held in transactional resources (the Ent i t yManager
object). Thisis abreak from traditional J2EE architectures. Again, if you are more comfortable with the tradi-
tional J2EE layering, you can certainly implement that in a Seam application. But for many applications, it's
simply not very useful.

1.2.1.3. The session bean local interface: Regi ster.java

Naturally, our session bean needs alocal interface.

Example 1.3.

@.ocal

public interface Register

{
public String register();

}

That's the end of the Java code. Now onto the deployment descriptors.

1.2.1.4. The Seam component deployment descriptor: conponents. xm

If you've used many Java frameworks before, you'll be used to having to declare all your component classes in
some kind of XML file that gradually grows more and more unmanageable as your project matures. You'll be
relieved to know that Seam does not require that application components be accompanied by XML. Most Seam
applications require avery small amount of XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some components
(particularly the components built in to Seam). Y ou have a couple of options here, but the most flexible option
is to provide this configuration in afile caled conponent s. xni , located in the Wes- | NF directory. WE'l use the
conponent s. xm fileto tell Seam how to find our EJB componentsin JNDI:

Example 1.4.

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://]jboss. conf product s/ seani core">

JBoss Seam 1.3.0.A1 6

Seam Tutorid

<core:init jndi-pattern="@ndi Pattern@/ >
</ conponent s>

This code configures a property named jndiPattern of a built-in Seam component named
org.j boss.seamcore.init.

1.2.1.5. The web deployment description: web. xni

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web deployment
descriptor.

Example 1.5.

<?xm version="1.0" encodi ng="UTF-8""?>
<web- app version="2.5"
xm ns="http://java. sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocation="http://java. sun. coml xm / ns/ j avaee
http://java. sun. conf xm / ns/ j avaee/ web- app_2_5. xsd" >

<l-- Seam -->

<li stener>
<l i stener-class>org.j boss. seam servl et. SeanlLi stener</|i stener-cl ass>
</listener>

<l-- JSF -->

<li stener>
<l i stener-class>com sun. faces. confi g. Confi gureLi stener</l|istener-class>
</listener>

<cont ext - par anp
<par am nanme>j avax. f aces. STATE_SAVI NG_METHOD</ par am nane>
<par amval ue>cl i ent </ par am val ue>

</ cont ext - par an>

<cont ext - par an>
<par am nane>j avax. f aces. DEFAULT_SUFFI X</ par am nanme>
<par am val ue>. j spx</ par am val ue>

</ cont ext - par an>

<servl et>
<servl et - nane>Faces Servl et </servl et - nane>
<servl et -cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>
<l oad- on- st art up>1</1| oad- on- st art up>

</servl et>

<I-- Faces Servlet Mpping -->
<servl et - mappi ng>
<servl et - nane>Faces Servl et </servl et - nane>
<url - pattern>*. seanx/url - pattern>
</ servl et - mappi ng>

<sessi on-confi g>
<sessi on-ti nmeout >10</ sessi on-ti meout >
</ sessi on-confi g>

</ web- app>

Thisweb. xm file configures Seam and JSF. The configuration you see hereis pretty much identical in all Seam
applications.

JBoss Seam 1.3.0.A1 7

Seam Tutorid

1.2.1.6. The JSF configration: f aces-confi g. xn

All Seam applications use JSF views as the presentation layer. So we'll need f aces- confi g. xm .

Example 1.6.

<?xm version="1.0" encodi ng="UTF-8""?>
<faces-config version="1.2"
xm ns="http://java. sun. coml xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun. coml xm / ns/javaee http://java. sun. com xm / ns/j avaeel

<I-- A phase listener is needed by all Seam applications -->

<lifecycle>
<phase-|i st ener>org.j boss. seam j sf. SeanPhaselLi st ener </ phase- | i st ener >
</lifecycle>

</faces-config>

Thefaces-config. xnl file integrates Seam into JSF. Note that we don't need any JSF managed bean declara-
tions! The managed beans are the Seam components. In Seam applications, the faces-config. xn is used
much less often than in plain JSF.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you add new func-
tionality to a Seam application is the navigation rules, and possibly jBPM process definitions. Seam takes the
view that process flow and configuration data are the only things that truly belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the view id in our ac-
tion code.

1.2.1.7. The EJB deployment descriptor: ej b-j ar. xm

Theej b-jar. xm fileintegrates Seam with EJB3, by attaching the Seam nt er cept or to all session beansin the
archive.

<ejb-jar xm ns="http://java.sun.conl xm /ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun. conf xnm / ns/j avaee
http://java. sun.com xm / ns/j avaee/ ej b-jar_3_0. xsd"
versi on="3.0">

<i nt ercept ors>
<i nterceptor>
<interceptor-class>org.jboss. seam ej b. Seanl nt erceptor</interceptor-class>
</interceptor>
</interceptors>

<assenbl y-descri pt or>
<i nt er cept or - bi ndi ng>
<ej b- name>* </ ej b- nane>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or</i nterceptor-cl ass>
</i nt er cept or - bi ndi ng>
</ assenbl y-descri pt or >

</ejb-jar>

1.2.1.8. The EJB persistence deployment descriptor: persi st ence. xmi

JBoss Seam 1.3.0.A1 8

Seam Tutorid

The persi stence. xni file tells the EIJB persistence provider where to find the datasource, and contains some
vendor-specific settings. In this case, enables automatic schema export at startup time.

<?xm version="1.0" encodi ng="UTF-8""?>
<persi stence xm ns="http://java.sun.com xm / ns/ per si st ence"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schenalLocati on="http://java. sun. conl xm / ns/ per si st ence
http://java. sun. conf xm / ns/ per si st ence/ persi stence_1_0. xsd"
versi on="1.0">
<persi stence-unit name="user Dat abase" >
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j ta-dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<properties>
<property nane="hi ber nat e. hbnRddl| . aut 0" val ue="cr eat e-drop"/>
</ properties>
</ per si st ence-uni t>
</ persi st ence>

1.2.1.9. The view: regi ster.jsp and regi stered. j sp

The view pages for a Seam application could be implemented using any technology that supports JSF. In this
example we use JSP, since it is familiar to most developers and since we have minimal requirements here any-
way. (But if you take our advice, you'll use Facelets for your own applications.)

Example 1.7.

<Y@taglib ur
<v@taglib ur
<U@taglib ur
<htm >
<head>
<title>Regi ster New User</title>
</ head>
<body>
<f:view
<h: f or m>
<t abl e border="0">
<s:validateAl >
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user. username}"/></td>
</tr>
<tr>
<t d>Real Nane</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</[tr>
<tr>
<t d>Passwor d</t d>
<t d><h: i nput Secret val ue="#{user.password}"/></td>
</tr>
</s:validateAl | >
</t abl e>
<h: messages/ >
<h: commandBut t on type="subm t" val ue="Regi ster" action="#{register.register}"/>
</ h: form
</f:view
</ body>
</htm >

"http://java.sun.conljsf/htm" prefix="h" %
"http://java.sun.conljsf/core" prefix="f" %
"http://jboss. com products/seamtaglib" prefix="s" %

The only thing here that is specific to Seam isthe <s: val i dat eAl | > tag. This JSF component tells JSF to valid-
ate all the contained input fields against the Hibernate Validator annotations specified on the entity bean.

JBoss Seam 1.3.0.A1 9

Seam Tutorid

Example 1.8.

<y@taglib uri
<y@taglib ur
<htm >
<head>
<title>Successfully Registered New User</title>
</ head>
<body>
<f:view
Wl come, <h:out put Text val ue="#{user.nane}"/>,
you are successfully regi stered as <h: out put Text val ue="#{user.usernane}"/>.
</f:view
</ body>
</htm >

"http://java.sun.com jsf/htm" prefix="h" %
"http://java.sun.com jsf/core" prefix="f" %

Thisisaboring old JSP pages using standard JSF components. There is nothing specific to Seam here.

1.2.1.10. The EAR deployment descriptor: appli cati on. xm

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Example 1.9.

<?xm version="1.0" encodi ng="UTF-8""?>

<application xm ns="http://java.sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schenalLocati on="http://java. sun. conl xm / ns/j avaee

http://java. sun. comf xm / ns/j avaee/ appl i cati on_5. xsd"

versi on="5">
<di spl ay- nane>Seam Regi strati on</di spl ay- nane>

<modul e>
<web>
<web- uri >j boss- seam regi strati on. war </ web-uri >
<cont ext -r oot >/ seam r egi strati on</ cont ext - r oot >
</ web>
</ modul e>
<nmodul e>
<ej b>j boss-seam regi stration.jar</ejb>
</ modul e>
<nmodul e>
<j ava>j boss-seam j ar</j ava>
</ modul e>
<nodul e>
<j ava>j boss-el .jar</java>
</ nodul e>

</ application>

This deployment descriptor links modules in the enterprise archive and binds the web application to the context

root / seamregi stration

We've now seen all the filesin the entire application!

1.2.2. How it works

JBoss Seam 1.3.0.A1

10

Seam Tutorid

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is no value already
bound to that name (in any Seam context), Seam instantiates the user component, and returns the resulting
User entity bean instance to JSF after storing it in the Seam session context.

The form input values are now validated against the Hibernate Validator constraints specified on the user en-
tity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the form input values to prop-
erties of the user entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er . Seam finds the Regi st er Act i on Stateless session
bean in the statel ess context and returnsit. JSF invokesther egi st er () action listener method.

Seam intercepts the method call and injects the User entity from the Seam session context, before continuing
the invocation.

The regi ster () method checks if a user with the entered username already exists. If so, an error message is
gqueued with the FacesMessages component, and a null outcome is returned, causing a page redisplay. The
FacesMessages component interpolates the JSF expression embedded in the message string and adds a JSF
FacesMessage to the view.

If no user with that username exists, the "/ regi st ered. j spx" outcome triggers a browser redirect to the re-
gi stered. j sp page. When JSF comes to render the page, it asks Seam to resolve the variable named user and
uses property values of the returned user entity from Seam's session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that Seam
provides special functionality on top of JSF to make it easier to query data using EJB-QL or HQL and display it
asaclickable list using a JSF <h: dat aTabl e>. The messages example demonstrates this functionality.

JBoss Seam 1.3.0.A1 11

Seam Tutorial

) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

@-o - & O 9 [0 htp:/focahost:8080 ¥ | © Go [[GL

L3 Latest Headlines £33 The World Clock B XE Currency Converter ' Hibernate JIRA
|[] Chapter 1. Seam Tutorial | LI Messages \

Message List

Read Title Date/Time

Greetings Earthling Feb 4, 2006 9:40 AM
Hello World Jan 2, 2006 7:00 AM

Greetings Earthling

This is another example of a message.

1.3.1. Understanding the code
The message list example has one entity bean, Message, one session bean, MessagelLi st Bean and one JSP.

1.3.1.1. The entity bean: Message. j ava

The Message entity defines the title, text, date and time of a message, and a flag indicating whether the message
has been read:

Example 1.10.

@ntity

@ane(" nessage")

@scope(EVENT)

public class Message i npl enents Serializable

{
private Long id;
private String title;
private String text;
private bool ean read;
private Date dateti ne;

@d @zener at edVal ue
public Long getld() {
return id,

JBoss Seam 1.3.0.A1 12

Seam Tutorid

1.3.1.2. The stateful session bean: MessageManager Bean. j ava

}

public void setld(Long id) {
this.id =id;

}

@ot Nul | @-engt h(max=100)

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

@\ot Nul | @b

public String getText() {
return text;

}

public void setText(String text) {
this.text = text;
}

@ot Nul |

publ i c bool ean i sRead() {
return read;

}

public void setRead(bool ean read) {
this.read = read;
}

@\ot Nul |
@asi ¢ @enpor al (Tenpor al Type. TI MESTAVP)
public Date getDatetinme() {
return datetine;
}

public void setDateti me(Date datetinme) {
this.dateti me = datetine;
}

Just like in the previous example, we have a session bean, MessageManager Bean, which defines the action
listener methods for the two buttons on our form. One of the buttons selects a message from the list, and dis-
plays that message. The other button deletes a message. So far, thisis not so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we navigate to the
message list page. There are various ways the user could navigate to the page, and not all of them are preceded
by a JSF action—the user might have bookmarked the page, for example. So the job of fetching the message
list takes place in a Seam factory method, instead of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this a stateful ses-
sion bean.

Example 1.11.

@5t at ef ul
@cope(SESSI ON)
@anme(" nessageManager ")

public class MessageManager Bean i npl enents Seriali zabl e,

{

@at aMbdel

MessageManager

(1)

JBoss Seam 1.3.0.A1

13

Seam Tutorid

(1

(2)

(3)

(5)

(6)
(7)
(8)

private List<Message> nessageli st;

@at aMbdel Sel ecti on (2)
@ut (requi red=f al se) (3)
private Message nessage;

@er si st enceCont ext (t ype=EXTENDED) (4)
private EntityManager em

@act ory("messageli st") (5)
public void findMessages()

{

messagelLi st = em createQuery("from Message nsg order by nsg.dateti ne desc")
.getResul tList();

}
public void select() (6)
{
message. set Read(true);
}
public void del ete() (7)
{
nmessageli st. renove(nmessage) ;
em r enpve(nessage) ;
message=nul | ;
}
@Renpve @estr oy (8)

public void destroy() {}

The @at aMbdel annotation exposes an attibute of typej ava. uti | . Li st to the JSF page as an instance of
j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF <h: dat aTabl e> with clickable
links for each row. In this case, the bat ambdel is made available in a session context variable named nes-
sagelLi st .

The @at aMbdel Sel ecti on annotation tells Seam to inject the Li st element that corresponded to the
clicked link.

The @ut annotation then exposes the selected value directly to the page. So ever time arow of the click-
able list is selected, the Message isinjected to the attribute of the stateful bean, and the subsequently out-
jected to the event context variable named nessage.

This stateful bean has an EJB3 extended persistence context. The messages retrieved in the query remain
in the managed state as long as the bean exists, so any subsequent method calls to the stateful bean can
update them without needing to make any explicit call to the Ent i t yManager .

The first time we navigate to the JSP page, there will be no value in the messageLi st context variable.
The @act ory annotation tells Seam to create an instance of MessageManager Bean and invoke the f i nd-
Messages() method toinitialize the value. We call fi ndvessages() afactory method for messages.
Thesel ect () action listener method marks the selected Message as read, and updates it in the database.
Thedel et e() action listener method removes the selected Message from the database.

All stateful session bean Seam components must have a method marked @emove @est r oy to ensure that
Seam will remove the stateful bean when the Seam context ends, and clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session, and all requests
from alogin session share the same instance of the component. (In Seam applications, we usually use session-
scoped components sparingly.)

1.3.1.3. The session bean local interface: MessageManager . j ava

JBoss Seam 1.3.0.A1 14

Seam Tutorid

All session beans have a business interface, of course.

@oca
public interface MessageManager
{
public void findMessages();
public void select();
public void delete();
public void destroy();

From now on, we won't show local interfacesin our code examples.

Let's Skip OVEr conponent s. xni , persi stence. xm , web. xm , ej b-jar. xm , faces-config. xn and appl i ca-

tion. xm sincethey are much the same as the previous example, and go straight to the JSP.

1.3.1.4. The view: nessages. j sp

The JSP page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing specific to Seam.

Example 1.12.

<v@taglib uri="http://java.sun.conljsf/htm" prefix="h" %
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f" %
<htm >
<head>
<title>Messages</title>
</ head>
<body>
<f:view
<h: f or m>
<h2>Message Li st </h2>
<h: out put Text val ue="No nessages to displ ay"
render ed="#{ nessagelLi st . r owCount ==0}"/ >
<h: dat aTabl e var="nsg" val ue="#{nmessagelLi st}"
render ed="#{ nessagelLi st . r owCount >0} " >
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Read"/>
</f:facet>
<h: sel ect Bool eanCheckbox val ue="#{nsg. read}" di sabled="true"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text value="Title"/>
</f:facet>
<h: comnmandLi nk val ue="#{nsg.title}" acti on="#{nmessageManager.select}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Date/ Ti me"/>
</f:facet>
<h: out put Text val ue="#{nsg. dateti ne}">
<f:convertDat eTi ne type="both" dateStyl e="nmedi uni' tinmeStyle="short"/>
</ h: out put Text >
</ h: col utm>
<h: col um>
<h: conmandBut t on val ue="Del ete" acti on="#{nmessageManager. del ete}"/>
</ h: col utm>
</ h: dat aTabl e>
<h3><h: out put Text val ue="#{message.title}"/></h3>
<di v><h: out put Text val ue="#{message. text}"/></div>
</ h: fornme
</f:view
</ body>

JBoss Seam 1.3.0.A1

15

Seam Tutorid

</htm >

1.3.2. How it works

The first time we navigate to the nessages. j sp page, whether by a JSF postback (faces request) or a direct
browser GET reguest (non-faces request), the page will try to resolve the nessageLi st context variable. Since
this context variable is not initialized, Seam will call the factory method fi ndMessages(), which performs a
query against the database and results in a Dat aMbdel being outjected. This Dat amodel provides the row data
needed for rendering the <h: dat aTabl e>.

When the user clicks the <h: commandLi nk>, JSF callsthe sel ect () action listener. Seam intercepts this call and
injects the selected row data into the nessage attribute of the nessageManager component. The action listener
fires, marking the selected Message as read. At the end of the call, Seam outjects the selected Message to the
context variable named nessage. Next, the EJB container commits the transaction, and the change to the mes-
sage is flushed to the database. Finally, the page is re-rendered, redisplaying the message list, and displaying
the selected message below it.

If the user clicks the <h: commandBut t on>, JSF calls the del et e() action listener. Seam intercepts this call and
injects the selected row datainto the nessage attribute of the messageLi st component. The action listener fires,
removing the selected Message from thelist, and also calling r enove() ontheEnti t yManager . At the end of the
call, Seam refreshes the messagelLi st context variable and clears the context variable named nessage. The EJB
container commits the transaction, and deletes the Message from the database. Finally, the page is re-rendered,

redisplaying the message list.

1.4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste of how
jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing lists of tasks is
such core functionality for jBPM, thereis hardly any Java code at al in this example.

JBoss Seam 1.3.0.A1 16

Seam Tutorial

©) Todo List - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<&~ - &) @) [ntip:/fiocahost:8080/seam-todo/todo.seam v| @ 6o G

|[] Chapter 1. Seam Tutoral [Todo List |[#3Boss DVD Store

Todo List

Description Created Priority Due Date
|Bookﬂightto Isreal |Ja.n. 13, 2006 |
Getthe stupid Seam release finished! Jan13.20065 | [1/17/06

Haircut Jan13,20063 | |

|Review Hibernate in Action second edition |Jan 13, 2006

|
|Kick Roy out of my office |Ja.n 13, 2006 |
|Blog aboutworkspace management |Jan 13, 2006 |

Update ltems

| |[Create New ltem]

1.4.1. Understanding the code
The center of this example is the jBPM pracess definition. There are also two JSPs and two trivia JavaBeans

(There was no reason to use session beans, since they do not access the database, or have any other transaction-
a behavior). Let's start with the process definition:

Example 1.13.

<process-definition nane="t odo" >

<start-state name="start"> (1)
<transition to="todo"/>
</start-state>

<t ask- node nane="t odo"> (2)

<task name="todo" description="#{todolList.description}"> (3)

<assignment actor-id="#{actor.id}"/> (4)
</task>

<transition to="done"/>
</t ask- node>

<end- st at e nanme="done"/> (5)

</ process-definition>

(1) The<start-state> node represents the logical start of the process. When the process starts, it immedi-
ately transitionsto thet odo node.

(2) The <t ask- node> node represents a wait state, where business process execution pauses, waiting for one
or more tasks to be performed.

(3) The<task> element defines a task to be performed by a user. Since there is only one task defined on this
node, when it is complete, execution resumes, and we transition to the end state. The task gets its descrip-

JBoss Seam 1.3.0.A1 17

Seam Tutorid

tion from a Seam component named t odoLi st (one of the JavaBeans).

(4) Tasks need to be assigned to a user or group of users when they are created. In this case, the task is as-
signed to the current user, which we get from a built-in Seam component named act or . Any Seam com-
ponent may be used to perform task assignment.

(5) The<end- st at e> node defines the logical end of the business process. When execution reaches this node,
the process instance is destroyed.

If we view this process definition using the process definition editor provided by JBossl DE, thisis what it |ooks
like:

« <<olart State=>
start

W <= [ask Node==
i todo

<=fnd State==
]
done

This document defines our business process as a graph of nodes. This is the most trivial possible business pro-
cess. there is one task to be performed, and when that task is complete, the business process ends.

The first JavaBean handles the login screen | ogi n. j sp. Itsjob isjust to initialize the [BPM actor id using the
act or component. (In area application, it would also need to authenticate the user.)

Example 1.14.
@Name("1 ogi n")
public class Login {

@n
private Actor actor;

private String user;
public String getUser() {

return user;

public void setUser(String user) {
this.user = user;
}

JBoss Seam 1.3.0.A1 18

Seam Tutorid

public String Iogin()
{
actor.setld(user);
return "/todo.jsp";

Here we see the use of @ n to inject the built-in Act or component.

The JSPitself istrivial:

Example 1.15.

<y@taglib ur
<Yy@taglib ur
<htm >
<head>
<title>Login</title>
</ head>
<body>
<h1>Logi n</ h1>
<f:view>
<h: f or m»
<di v>
<h:i nput Text val ue="#{l ogi n.user}"/>
<h: conmandBut t on val ue="Logi n" action="#{login.login}"/>
</ di v>
</ h: form
</f:view
</ body>
</htm >

"http://java.sun.com jsf/htm" prefix="h"%
"http://java.sun.conm jsf/core" prefix="f"%

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.16.
@Nane("t odoList")
public class TodoList {
private String description

public String getDescription()
{

}

public void setDescription(String description) {
this.description = description
}

@Cr eat eProcess(definition="todo")
public void createTodo() {}

return description;

@t art Task @EndTask
public void done() {}

(1) The description property accepts user input form the JSP page, and exposes it to the process definition, al-

lowing the task description to be set.

JBoss Seam 1.3.0.A1

19

Seam Tutorid

(2) The Seam @ eat ePr ocess annotation creates anew jBPM process instance for the named process defini-
tion.

(3) The Seam @t ar t Task annotation starts work on atask. The @ndTask ends the task, and alows the busi-
NEsS process execution to resume.

In amore redlistic example, @t art Task and @ndTask would not appear on the same method, because there is
usually work to be done using the application in order to compl ete the task.

Finally, the mesat of the applicationisint odo. j sp:

Example 1.17.

<U@taglib uri="http://java.sun.conljsf/htm" prefix="h" %
<Y@taglib uri="http://java.sun.conljsf/core" prefix="f" %
<v@taglib uri="http://jboss.con products/seantaglib" prefix="s" %

<htm >
<head>
<title>Todo List</title>
</ head>
<body>
<h1>Todo Li st</h1>
<f:vi ew>
<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens."
render ed="#{enpty tasklnstanceList}"/>
<h: dat aTabl e val ue="#{t askl nstanceList}" var="task"
render ed="#{not enpty tasklnstanceList}">
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Description"/>
</f:facet>
<h: i nput Text val ue="#{task.description}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{task.taskMnt | nstance. processl nstance. start}">
<f:convertDateTi ne type="date"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text val ue="#{task.priority}" style="w dth: 30"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task.dueDate}" style="w dth: 100">
<f:convertDat eTi ne type="date" dateStyl e="short"/>
</ h:i nput Text >
</ h: col utm>
<h: col um>
<s: button val ue="Done" action="#{todoLi st.done}" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>
</ di v>
<di v>
<h: nessages/ >
</div>
<di v>

<h: conmandBut t on val ue="Update |tens" acti on="update"/>

JBoss Seam 1.3.0.A1 20

Seam Tutorid

</div>
</ h: fornme
<h: form i d="new'>
<di v>
<h: i nput Text val ue="#{todoLi st.description}"/>
<h: conmandBut t on val ue="Create New |l ten' acti on="#{todoLi st.createTodo}"/>
</div>
</ h: fornme
</f:view
</ body>
</htm >

Let'stake this one piece at atime.

The page renders a list of tasks, which it gets from a built-in Seam component named t askl nst ancelLi st . The
list is defined inside a JSF form.

<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty tasklnstancelList}"/>
<h: dat aTabl e val ue="#{t askl nstanceList}" var="task"
rendered="#{not enpty tasklnstanceList}">

</ h: dat aTabl e>
</ di v>
</ h:fornp

Each element of thelist is an instance of the jBPM class TaskI nst ance. The following code simply displays the
interesting properties of each task in the list. For the description, priority and due date, we use input controls, to
allow the user to update these values.

<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Description"/>
</f:facet>
<h: i nput Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{task.taskMnt | nstance. processl nstance. start}">
<f:convertDateTi ne type="date"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h: i nput Text val ue="#{task.priority}" style="w dth: 30"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task.dueDate}" style="w dth: 100">
<f:convertDat eTi ne type="date" dateStyl e="short"/>
</ h:i nput Text >
</ h: col utm>

This button ends the task by calling the action method annotated @t ar t Task @ndTask. It passes the task id to
Seam as arequest parameter:

<h: col um>

JBoss Seam 1.3.0.A1 21

Seam Tutorial

<s: button val ue="Done" action="#{todoLi st.done}" tasklnstance="#{task}"/>
</ h: col um>

(Note that thisis using a Seam <s: but t on> JSF control from the seam ui . j ar package.)

This button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM will
make any changes to the tasks persistent. There is no need for any action listener method:

<h: conmandBut t on val ue="Update |Itens" action="update"/>

A second form on the page is used to create new items, by caling the action method annotated
@@r eat eProcess.

<h: form i d="new'>
<di v>
<h:i nput Text val ue="#{t odoLi st. description}"/>
<h: conmandBut t on val ue="Create New | tent action="#{todoLi st.createTodo}"/>
</ di v>
</ h: fornme

There are severa other files needed for the example, but they are just standard jBPM and Seam configuration
and not very interesting.

1.4.2. How it works

TODO

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules are a perfectly
good way to define the page flow. For applications with a more constrained style of navigation, especially for
user interfaces which are more stateful, navigation rules make it difficult to really understand the flow of the
system. To understand the flow, you need to piece it together from the view pages, the actions and the naviga-
tion rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number guessing example
shows how thisis done.

©) Guess a number... - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

Qil - E> - @ @ |[# hitp:/flocalhost:8080/seam-numberguess/numberGuess.seam?conversationld=1 ¥ | @ Go |[GL

| L] Chapter 1. Seam Tutoril |] Guess a number... }

Guess a number...

Lower!
I'm thinking of a number between 1 and 49. You have 9 guesses.
Your guess: 50 | [Guess |

JBoss Seam 1.3.0.A1 22

Seam Tutorid

1.5.1. Understanding the code

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow definition. Let's begin
with the pageflow:

Example 1.18.

<pagef | owdefinition
xm ns="http://]boss. conl product s/ seani pagef | ow"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://jboss. com product s/ seam pagef | ow
http://jboss. com product s/ seam pagefl ow 1. 3. xsd"
name="nunber Guess" >

<start-page name="di spl ayGuess" vi ewid="/nunber Guess. jspx"> (1)
<redirect/>

<transition name="guess" to="eval uateQuess"> (2)

<action expression="#{nunber Guess. guess}"/> (3)

</transition>
<transition name="gi veup" to="giveup"/>
</start - page>

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}"> (4)
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRerai ni ngGuesses"/ >

</ deci si on>

<deci si on nane="eval uat eRenai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}" >
<transition name="true" to="|ose"/>
<transiti on name="fal se" to="di spl ayGuess"/>

</ deci si on>

<page nane="gi veup" viewid="/giveup.jspx">
<redirect/>
<transition name="yes" to="|ose"/>
<transiti on name="no" to="di spl ayGuess"/>
</ page>

<page name="wi n" viewid="/w n.jspx">
<redirect/>
<end- conversation/ >

</ page>

<page nane="| ose" viewid="/|ose.|spx">
<redirect/>
<end- conversation/ >

</ page>

</ pagef | owdefinition>

(1) The <page> element defines a wait state where the system displays a particular JSF view and waits for
user input. The vi ew-i d is the same JSF view id used in plain JSF navigation rules. Theredi rect attrib-
ute tells Seam to use post-then-redirect when navigating to the page. (This results in friendly browser
URLS)

(2) The<transition> element names a JSF outcome. The transition is triggered when a JSF action resultsin
that outcome. Execution will then proceed to the next node of the pageflow graph, after invocation of any
jBPM transition actions.

(3) A transition <acti on> isjust like a JSF action, except that it occurs when a jBPM transition occurs. The
transition action can invoke any Seam component.

(4) A <deci si on> node branches the pageflow, and determines the next node to execute by evaluating a JSF
EL expression.

JBoss Seam 1.3.0.A1 23

Seam Tutorid

Here is what the pageflow looks like in the JBossl DE pageflow editor:

==Start State=>
c start

= =
g Page

= displayGuess

guess false
o <<Decision==> false 2 =<Decision==
wl L P
" evaluateGuess evaluateRemainingGuesses
true frue
ﬁ%{ﬁpagex} ﬁ%{ﬁpagei}
win - lose

Now that we have seen the pageflow, it is very, very easy to understand the rest of the application!

Here is the main page of the application, nunber Guess. j spx:

Example 1.19.

<<?xm version="1.0"?>
<jsp:root xmns:jsp="http://java.sun.com JSP/ Page"
xm ns: h="http://java. sun.conmjsf/htm"
xm ns: f="http://java. sun. conij sf/core"
xm ns: s="http://jboss. conl products/seanitaglib"
xm ns="http://ww. wW3. org/ 1999/ xht m "
versi on="2.0">
<j sp: out put doctype-root-element="htm"
doct ype- public="-//WBC//DID XHTM. 1.0 Transitional//EN'
doct ype-system="http://ww. w3c. org/ TR/ xht m 1/ DTD/ xht ml 1-transitional .dtd"/>
<jsp:directive. page content Type="text/htm "/>
<htm >
<head>
<title>Guess a nunber...</title>
<link href="niceforns.css" rel ="styl esheet" type="text/css" />
<script |anguage="j avascript" type="text/javascript" src="niceforns.js" />
</ head>
<body>
<hl>Guess a nunber...</hl>
<f:vi ew>
<h: form styl ed ass="ni cef orni' >

<di v>
<h: messages gl obal Onl y="true"/>
<h: out put Text val ue="Hi gher!"
render ed="#{ nunber Guess. randomNunber gt numnber Guess. current Guess}"/>
<h: out put Text val ue="Lower!"
render ed="#{ nunber Guess. randomNunrber |t nunber Guess. current Guess}"/>
</ di v>

JBoss Seam 1.3.0.A1 24

Seam Tutorid

<di v>
I"'mthinking of a nunmber between
<h: out put Text val ue="#{nunber Guess. smal | est}"/> and
<h: out put Text val ue="#{nunber Guess. bi ggest}"/>. You have
<h: out put Text val ue="#{ nunber Guess. r emai ni ngGuesses}"/ > guesses.
</ di v>

<di v>
Your guess:
<h:i nput Text val ue="#{ nunber Guess. current Guess}" id="i nput Guess"
requi red="true" size="3"
render ed="#{ (nunber Guess. bi ggest - nunber Guess. smal | est) gt 20}">
<f:val i dat eLongRange maxi mum="#{ nunber Guess. bi ggest}"
m ni mun¥"#{ nunber Guess. smal l est}"/>
</ h: i nput Text >
<h: sel ect OneMenu val ue="#{ nunber Guess. curr ent Guess}"
i d="sel ect GuessMenu" required="true"
render ed="#{ (nunber Guess. bi ggest - nunber Guess. srmal l est) e 20 and
(nunber Guess. bi ggest - nunber Guess. snal | est) gt 4}">
<s:sel ectltens val ue="#{nunber Guess. possibilities}" var="i" |abel ="#{i}"/>
</ h: sel ect OneMenu>
<h: sel ect OneRadi o val ue="#{ nunber Guess. current Guess}" id="sel ect GuessRadi 0"
requi red="true"
render ed="#{ (nunber Guess. bi ggest - nunber Guess. snal l est) le 4}">
<s:selectltens val ue="#{nunber Guess. possibilities}" var="i" |abel ="#{i}"/>
</ h: sel ect OneRadi 0>
<h: conmandBut t on val ue="Guess" acti on="guess"/>
<s:button val ue="Cheat" view="/confirmjspx"/>
<s: button val ue="G ve up" action="giveup"/>
</ di v>

<di v>
<h: message for="input Guess" style="color: red"/>
</ di v>

</ h: fornp
</[f:view
</ body>
</htm >
</jsp:root>

Notice how the command button names the guess transition instead of calling an action directly.

Thewi n. j spx pageis predictable;

Example 1.20.

<jsp:root xmns:jsp="http://java.sun.com JSP/ Page"
xm ns: h="http://java. sun.com jsf/htm"
xm ns: f="http://java. sun.com jsf/core"
xm ns="http://ww. w3. org/ 1999/ xht m "
versi on="2.0">
<j sp: out put doctype-root-el ement="htm "
doct ype-public="-//WBC//DTD XHTM. 1.0 Transitional //EN"
doct ype-system="http://ww. w3c. org/ TR/ xht m 1/ DTDY xht m 1-transi ti onal . dtd"/>
<j sp:directive. page content Type="text/htm "/>
<htm >
<head>
<title>You won!</title>
<link href="niceforns.css" rel ="styl esheet" type="text/css" />
</ head>
<body>
<h1>You won! </ h1>
<f:vi ew>
Yes, the answer was <h:out put Text val ue="#{nunber Guess. current Guess}" />.

JBoss Seam 1.3.0.A1 25

Seam Tutorid

It took you <h:output Text val ue="#{nunber Guess. guessCount}" /> guesses.
<h: out put Text val ue="But you cheated, so it doesn't count!"

render ed="#{ nunber Guess. cheat }"/ >
Woul d you like to pl ay agai n</ a>?

</f:view
</ body>
</htm >
</jsp:root>

Asisl ose. j spx (which | can't be bothered copy/pasting). Finaly, the JavaBean Seam component:

Example 1.21.

@Nanme(" nunmber Guess")
@cope(ScopeType. CONVERSATI ON)

public class Nunmber Guess inplenents Serializable {

private int randonNunber
private |nteger currentCQuess;
private int biggest;

private int snallest;

private int guessCount;
private int maxQuesses;
private bool ean cheat ed;

@Cr eat e
public void begin()
{

(1)

randomNunber = new Randon{). next | nt (100);

guessCount = O;
bi ggest = 100;
smal | est = 1;

}
public void setCurrent Guess(| nteger guess)
{
this.current Guess = guess;
}

public I nteger getCurrent Guess()
{

return current GQuess;

}

public void guess()

{ i f (currentGuess>randonmNunber)
{ bi ggest = current Guess - 1;
?f (current Guess<r andomNunber)
{ smal | est = current Guess + 1;
;uesstunt i

}

publ i ¢ bool ean isCorrect Guess()

{

return current GQuess==r andom\unber

}
public int getBiggest()
{
return biggest;
}

JBoss Seam 1.3.0.A1

26

Seam Tutorid

public int getSmallest()

{
return smal |l est;
}
public int getGuessCount ()
{
return guessCount;
}
publ i c bool ean islLast Guess()
{
return guessCount ==maxQ@uesses;
}

public int getRemai ni ngGQuesses() {
return maxGuesses- guessCount;

}

public void set MaxGuesses(int naxQuesses) {
this. maxGuesses = maxQuesses;

}

public int get MaxQuesses() {
return nmaxQ@uesses;

}

public int get RandomNunber () {
return randomNunber ;

}
public void cheated()
{
cheated = true;
}

publ i c bool ean isCheat () {
return cheated,

}

public List<Integer> getPossibilities()

{
Li st<Integer> result = new Arrayli st<Integer>();
for(int i=smallest; i<=biggest; i++) result.add(i);
return result;

}

(1) The first time a JSP page asks for a nunber Guess component, Seam will create a new one for it, and the
@r eat e method will be invoked, allowing the component to initialize itself.

The pages. xm file starts a Seam conversation (much more about that later), and specifies the pageflow defini-
tion to use for the conversation's page flow.

Example 1.22.

<?xm version="1.0" encodi ng="UTF-8""?>
<pages xm ns="http://jboss.com product s/ seam pages"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://jboss. com product s/ seam pages http://jboss. conf product s/ seanf pages-

<page vi ew i d="/nunber Guess. | spx">
<begi n- conversati on joi n="true" pagefl ow="nunber Guess"/ >
</ page>

JBoss Seam 1.3.0.A1 27

Seam Tutorid

<page viewid="/confirmjspx">
<begi n- conversati on nested="true" pagefl ow="cheat"/>
</ page>

</ pages>

As you can see, this Seam component is pure business logic! It doesn't need to know anything at all about the
user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

TODO

1.6. A complete Seam application: the Hotel Booking example

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following features:

e User registration

e Login
» Logout
e Set password

» Hotel search

» Hotel selection

¢ Room reservation

¢ Reservation confirmation

» Exigting reservation list

JBoss Seam 1.3.0.A1 28

Seam Tutorid

jboss suites

State management in
Seam

State in Seam is confextual.
When you click "Find
Hotels", the application

seam framework demo

me Gavin King | Search | Settings | Logout

Thank you, Gavin King, your confimation number for Doubletree is 1

Find Hotels

Search Hotels

Atlanta

retrieves a list of hotels Maximum results: | 10.¥
from the database and
caches it in the session Name Address City, State Zip | Action
context. When you navigate Marriott T ol Atlanta. GA vi
arrio ower Place anta iew
to one of the hotel records ! ! ! 30305 ——
o o i Courtyard Buckhead usa Hotel
by clicking the "View Hotel' _
link, a cenversation begins. Doubletree Tower Place, Atlanta, GA, 30305 View
The conversation is Buckhead USA Hotel
attached to a particular Ritz Carlton Peachtree Rd, Atlanta, GA, 30376 WView
tab, in a particular browser Buckhead USA Hotel
window. You can navigate
to multiple hotels using Current Hotel Bookings
"open in new tab" or "open
in new window" in your web N Add City, FhECk Check Confirmation Acti
browser. Each window will ame ress state ::Inate g::e number ton
execute in the context of a
different conversation. The Tower
plication keen - Doubletree Place Atlanta, Apr 16, Apr 17, 1 Cancel
application keeps state Buck}‘:ead GA 2006 2006 ==

associated with your hotel
booking in the conversation
context, which ensures that
the concurrent
conversations do not
interfere with each other.

How does the search page

work?

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There is aso a port
of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is extremely robust.
You can play with back buttons and browser refresh and opening multiple windows and entering nonsensical
data as much as you like and you will find it very difficult to make the application crash. Y ou might think that
we spent weeks testing and fixing bugs to achive this. Actually, thisis not the case. Seam was designed to make
it very straightforward to build robust web applications and a lot of robustness that you are probably used to
having to code yourself comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works, observe how
the declarative state management and integrated validation has been used to achieve this robustness.

JBoss Seam 1.3.0.A1 29

Seam Tutorid

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please refer to Sec-
tion 1.1, “Try the examples’. Once you've successfully started the application, you can access it by pointing
your browser to ht t p: / /1 ocal host : 8080/ seam booki ng/ [http://local host:8080/seam-booking/]

Just nine classes (plus six session beans local interfaces) where used to implement this application. Six session
bean action listeners contain all the business logic for the listed features.

e Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.
e ChangePasswor dAct i on updates the password of the currently logged in user.

* Hot el Booki ngAct i on implements the core functionality of the application: hotel room searching, selection,
booking and booking confirmation. This functionality is implemented as a conversation, so this is the most
interesting class in the application.

* Regi st erActi on registersanew system user.

Three entity beans implement the application's persistent domain model.

e Hotel isan entity bean that represent a hotel
e Booki ng isan entity bean that represents an existing booking

e User isan entity bean to represents a user who can make hotel bookings

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate upon one particular
piece of functionality: hotel search, selection, booking and confirmation. From the point of view of the user,
everything from selecting a hotel to confirming a booking is one continuous unit of work, a conversation.
Searching, however, is not part of the conversation. The user can select multiple hotels from the same search
results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This causes enorm-
ous problems managing state associated with the conversation. Usually, Java web applications use a combina-
tion of two techniques: first, some state is thrown into the Ht t pSessi on; second, persistable state is flushed to
the database after every request, and reconstructed from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of scalability. Ad-
ded latency is also a problem, due to the extra traffic to and from the database on every request. To reduce this
redundant traffic, Java applications often introduce a data (second-level) cache that keeps commonly accessed
data between requests. This cache is necessarily inefficient, because invalidation is based upon an LRU policy
instead of being based upon when the user has finished working with the data. Furthermore, because the cache
is shared between many concurrent transactions, we've introduced a whole raft of problem's associated with
keeping the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. By very careful programming, we might be able to control the
size of the session data. Thisis alot more difficult than it sounds, since web browsers permit ad hoc non-linear
navigation. But suppose we suddenly discover a system requirement that says that a user is alowed to have mu-
tiple concurrent conversations, halfway through the development of the system (this has happened to me). De-
veloping mechanisms to isolate session state associated with different concurrent conversations, and incorporat-

JBoss Seam 1.3.0.A1 30

http://localhost:8080/seam-booking/

Seam Tutorid

ing failsafes to ensure that conversation state is destroyed when the user aborts one of the conversations by
closing a browser window or tab is not for the faint hearted (I've implemented this stuff twice so far, once for a
client application, once for Seam, but I'm famously psychotic).

Now thereis a better way.

Seam introduces the conversation context as afirst class construct. Y ou can safely keep conversational state in
this context, and be assured that it will have awell-defined lifecycle. Even better, you won't need to be continu-
ally pushing data back and forth between the application server and the database, since the conversation context
isanatura cache of datathat the user is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We can also keep en-
tity beans and JavaBeans in the conversation context.) There is an ancient canard in the Java community that
stateful session beans are a scalability killer. This may have been true in 1998 when WebFoobar 1.0 was re-
leased. It is no longer true today. Application servers like JBoss AS have extremely sophisticated mechanisms
for stateful session bean state replication. (For example, the JBoss EJB3 container performs fine-grained replic-
ation, replicating only those bean attribute values which actually changed.) Note that all the traditional technic-
al arguments for why stateful beans are inefficient apply equally to the H: t pSessi on, so the practice of shifting
state from business tier stateful session bean components to the web session to try and improve performance is
unbelievably misguided. It is certainly possible to write unscalable applications using stateful session beans, by
using stateful beans incorrectly, or by using them for the wrong thing. But that doesn't mean you should never
use them. Anyway, Seam guides you toward a safe usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can collaborate togeth-
er to achieve complex behaviors. The main page of the booking application allows the user to search for hotels.
The search results are kept in the Seam session scope. When the user navigates to one of these hotels, a conver-
sation begins, and a conversation scoped component calls back to the session scoped component to retrieve the
selected hotel.

The booking example also demonstrates the use of Ajax4JSF to implement rich client behavior without the use
of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to the one we saw
in the message list example above.

Example 1.23.

@5t at ef ul (1)
@Nane(" hot el Sear ch")

@cope(ScopeType. SESSI ON)

@Restrict("#{identity.loggedln}") (2)
public class Hot el Sear chi ngActi on inpl enments Hot el Sear chi ng

{

@er si st enceCont ext
private EntityManager em

private String searchString;
private int pageSize = 10;
private int page;

@pat aModel (3)
private List<Hotel > hotels;

public void find()

{
page = 0;

JBoss Seam 1.3.0.A1 31

Seam Tutorid

(2)

(3)

queryHot el s();

}
public void next Page()
{
page++;
quer yHot el s();
}
private void queryHotel s()
{
hotel s =
em createQuery("select h fromHotel h where |ower(h.nane) |ike #{pattern} " +
"or lower(h.city) like #{pattern} " +
"or lower(h.zip) like #{pattern} " +
"or |ower(h.address) like #{pattern}")
. set MaxResul t s(pageSi ze)
.setFirstResul t(page * pageSi ze)
.getResul tList();
}
publ i c bool ean i sNext PageAvai | abl e()
{
return hotel s!'=null && hotels.size()==pageSi ze;
}

public int getPageSize() {
return pageSi ze;
}

public void setPageSi ze(i nt pageSi ze) {
t hi s. pageSi ze = pageSi ze;
}

@actory(val ue="pattern", scope=ScopeType. EVENT)
public String getSearchPattern()

{

return searchString==null ?

"06 : "% + searchString.toLowerCase().replace('*', "%) + "'%;

}
public String getSearchString()
{

return searchString;
}
public void setSearchString(String searchString)
{

this.searchString = searchString;
}

(4)
@est roy @RrRenove
public void destroy() {}

The EJB standard @t at ef ul annotation identifies this class as a stateful session bean. Stateful session
beans are scoped to the conversation context by default.

The @estri ct annotation applies a security restriction to the component. It restricts access to the com-
ponent allowing only logged-in users. The security chapter explains more about security in Seam.

The @at avbdel annotation exposes a Li st as a JSF Li st Dat aMbdel . This makes it easy to implement
clickable lists for search screens. In this case, the list of hotels is exposed to the page as a Li st Dat aMbdel
in the conversation variable named hot el s.

The EJB standard @enove annotation specifies that a stateful session bean should be removed and its
state destroyed after invocation of the annotated method. In Seam, all stateful session beans should define
amethod marked @estroy @enove. Thisisthe EJB remove method that will be called when Seam des-
troys the session context. Actually, the @est r oy annotation is of more general usefulness, since it can be
used for any kind of cleanup that should happen when any Seam context ends. If you don't have an

JBoss Seam 1.3.0.A1 32

Seam Tutorid

@estroy @enove method, state will leak and you will suffer performance problems.

The main page of the application is a Facelets page. Let's look at the fragment which relates to searching for
hotels:

Example 1.24.

<di v class="section">

<h: messages gl obal Onl y="true"/>
</ span>

<hl1>Search Hot el s</ h1>

<h:formid="searchCriteria">
<fiel dset>
<h:i nput Text id="searchString" val ue="#{hotel Search. searchString}"
styl e="w dt h: 165px; ">
<a: support event="onkeyup" actionLi stener="#{hotel Search. find}"
reRender ="sear chResul ts" /> (1)
</ h: i nput Text >

<a: conmandBut t on i d="fi ndHot el s" val ue="Fi nd Hotel s" acti on="#{hot el Search. fi nd}"
reRender =" sear chResul t s"/ >

<a: st at us> (2)
<f:facet name="start">
<h: gr aphi cl nage val ue="/i ng/ spi nner.gif"/>
</f:facet>
</ a: st at us>

<h: out put Label for="pageSi ze" >Maxi mum r esul ts: </ h: out put Label >
<h: sel ect OneMenu val ue="#{ hot el Sear ch. pageSi ze}" i d="pageSi ze">
<f:selectltemitenLabel ="5" itenVal ue="5"/>
<f:selectltemiteniLabel ="10" itenVal ue="10"/>
<f:selectltemitenlLabel ="20" itenVal ue="20"/>
</ h: sel ect OneMenu>
</fieldset>

</ h: fornm
</di v>
<a: out put Panel id="searchResults"> (3)

<di v cl ass="section">
<h: out put Text val ue="No Hot el s Found"
rendered="#{hotels != null and hotel s.rowCount ==0}"/>
<h: dat aTabl e i d="hot el s" val ue="#{hotel s}" var="hot"
render ed="#{ hot el s. ronCount >0} " >

<h: col utm>
<f:facet nane="header">Nane</f:facet>
#{ hot . nane}

</ h: col utm>

<h: col utm>
<f:facet nanme="header">Address</f:facet>
#{ hot . addr ess}

</ h: col um>

<h: col um>
<f:.facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}

</ h: col um>

<h: col utm>
<f:facet name="header">Zi p</f:facet>
#{ hot . zi p}

</ h: col utm>

<h: col utm>
<f:facet nanme="header">Action</f:facet>
<s:link id="viewHotel" val ue="Vi ew Hotel " (4)

JBoss Seam 1.3.0.A1 33

Seam Tutorid

act i on="#{ hot el Booki ng. sel ect Hotel (hot)}"/>
</ h: col utm>
</ h: dat aTabl e>
<s:link val ue="Mre results" action="#{hot el Search. next Page}"
render ed="#{ hot el Sear ch. next PageAvai | abl e}"/>
</ di v>

</ a: out put Panel >

(1

(3)

(4

The Ajax4JSF <a: support > tag allows a JSF action event listener to be called by asynchronous XM_H -
t pRequest when a JavaScript event like onkeyup occurs. Even better, the r eRender attribute lets us render
a fragment of the JSF page and perform a partial page update when the asynchronous response is re-
ceived.

The Ajax4JSF <a: st at us> tag lets us display a cheesy annimated image while we wait for asynchronous
requests to return.

The Ajax4JSF <a: out put Panel > tag defines a region of the page which can be re-rendered by an asyn-
chronous request.

The Seam <s: | i nk> tag lets us attach a JSF action listener to an ordinary (non-JavaScript) HTML link.
The advantage of this over the standard JSF <h: commandLi nk> is that it preserves the operation of "open
in new window" and "open in new tab". Also notice that we use a method binding with a parameter:
#{ hot el Booki ng. sel ect Hot el (hot)}. Thisisnot possible in the standard Unified EL, but Seam provides
an extension to the EL that lets you use parameters on any method binding expression.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass it to the se-
| ect Hot el () method of the Hot el Booki ngAct i on, which is where the really interesting stuff is going to hap-

pen.

Now lets see how the booking example application uses a conversation-scoped stateful session bean to achieve
anatural cache of persistent data related to the conversation. The following code example is pretty long. But if
you think of it as alist of scripted actions that implement the various steps of the conversation, it's understand-
able. Read the class from top to bottom, asif it were a story.

Example 1.25.

@t at ef ul

@ame(" hot el Booki ng")

@Restrict("#{identity.|oggedln}")

public cl ass Hot el Booki ngActi on i npl enents Hot el Booki ng

{

@er si st enceCont ext (t ype=EXTENDED) (1)
private EntityManager em

@n
private User user;

@n(required=fal se) @ut
private Hotel hotel;

@ n(required=fal se)
@t (requi red=f al se) (2)
pri vat e Booki ng booki ng;

@n

private FacesMessages facesMessages;

@n

private Events events;

@ogger
private Log | og;

JBoss Seam 1.3.0.A1 34

Seam Tutorid

private bool ean booki ngVal i d;

@egin (3)
public void sel ectHotel (Hotel selectedHotel)
{
hotel = em nerge(sel ectedHotel);
}
public void bookHotel ()
{

booki ng = new Booki ng(hotel, user);

Cal endar cal endar = Cal endar. get | nstance();
booki ng. set Checki nDat e(cal endar. getTi me());
cal endar . add(Cal endar. DAY_OF_MONTH, 1);

booki ng. set Checkout Dat e(cal endar. getTi me());

}
public void set Booki ngDet ai | s()
{
Cal endar cal endar = Cal endar. getl nstance();
cal endar . add(Cal endar. DAY_OF_MONTH, -1);
i f (booking. get CheckinDate().before(cal endar.getTinme()))
{
f acesMessages. addToCont rol (" checki nDate", "Check in date nust be a future date");
booki ngVal i d=f al se;
}
el se if (!booking. get Checki nDat e(). before(booking. get CheckoutDate()))
{
f acesMessages. addToCont r ol (" checkout Dat e",
"Check out date nust be later than check in date");
booki ngVval i d=f al se;
}
el se
{
booki ngVal i d=t r ue;
}
}
publ i ¢ bool ean i sBooki ngVal i d()
{
return bookingVali d;
}
@nd (4)
public void confirmn()
{
em per si st (booki ng) ;
facesMessages. add(" Thank you, #{user.nane}, your confimation nunber " +
" for #{hotel.nanme} is #{booking.id}");
| og. i nfo("New booki ng: #{booking.id} for #{user.usernane}");
events. rai seTransacti onSuccessEvent (" booki ngConfi r med") ;
}
@:nd

public void cancel () {}

@estroy @Renove (5)
public void destroy() {}

(1) This bean uses an EJB3 extended persistence context, so that any entity instances remain managed for the
whole lifecycle of the stateful session bean.

(2) The @ut annotation declares that an attribute value is outjected to a context variable after method invoca-
tions. In this case, the context variable named hot el will be set to the value of the hot el instance variable
after every action listener invocation completes.

(3) The @Begi n annotation specifies that the annotated method begins a long-running conversation, so the
current conversation context will not be destroyed at the end of the request. Instead, it will be reassociated

JBoss Seam 1.3.0.A1 35

Seam Tutorid

with every request from the current window, and destroyed either by timeout due to conversation inactiv-
ity or invocation of a matching @nd method.

(4) The @nd annotation specifies that the annotated method ends the current long-running conversation, so
the current conversation context will be destroyed at the end of the request.

(5) This EJB remove method will be called when Seam destroys the conversation context. Don't ever forget
to define this method!

Hot el Booki ngActi on contains all the action listener methods that implement selection, booking and booking
confirmation, and holds state related to this work in its instance variables. We think you'll agree that this codeis
much cleaner and simpler than getting and setting Ht t pSessi on attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run a search, and
navigate to different hotel pagesin multiple browser tabs. You'll be able to work on creating two different hotel
reservations at the same time. If you leave any one conversation inactive for long enough, Seam will eventually
time out that conversation and destroy its state. If, after ending a conversation, you backbutton to a page of that
conversation and try to perform an action, Seam will detect that the conversation was already ended, and redir-
ect you to the search page.

1.6.4. The Seam Ul control library

If you check inside the WAR file for the booking application, you'll find seam ui . j ar inthe WeB- I NF/ | i b dir-
ectory. This package contains a number of JSF custom controls that integrate with Seam. The booking applica-
tion uses the <s: 1 i nk> control for navigation from the search screen to the hotel page:

<s:link value="View Hotel " acti on="#{hot el Booki ng. sel ect Hot el (hot)}"/>

The use of <s: Ii nk> here alows us to attach an action listener to aHTML link without breaking the browser's
"open in new window" feature. The standard JSF <h: commandLi nk> does not work with "open in new window".
WEelll see later that <s: | i nk> aso offers a number of other useful features, including conversation propagation
rules.

The booking application uses some other Seam and Ajax4JSF controls, especially on the / book. xht M page.
We won't get into the details of those controls here, but if you want to understand this code, please refer to the
chapter covering Seam's functionality for JSF form validation.

1.6.5. The Seam Debug Page

The WAR aso includes seam debug. j ar . The Seam debug page will be availabled if this jar is deployed in
VEB- | NF/ | i b, along with the Facelets, and if you set the debug property of thei ni t component:

<core:init jndi-pattern="@ndi Pattern@ debug="true"/>

This page lets you browse and inspect the Seam components in any of the Seam contexts associated with your
current login session. Just point your browser at http://1ocal host: 8080/ seam booki ng/ debug. seam
[http://local host:8080/seam-booking/debug.seam].

JBoss Seam 1.3.0.A1 36

http://localhost:8080/seam-booking/debug.seam

Seam Tutorid

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:57:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook.xhtml Select conversation context

- Component (booking)

checkinDate Fri Jan 20 20:52:20 EST 2006

checkoutDate Sat.Jan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking.Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel{Tower Place, Buckhead, Atlanta,30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context
Empty business process context
+ Session Context

+ Application Context

1.7. A complete application featuring Seam and jBPM: the DVD

Store example

The DVD Store demo application shows the practical usage of jBPM for both task management and pageflow.

The user screens take advantage of ajPDL pageflow to implement searching and shopping cart functionality.

JBoss Seam 1.3.0.A1

37

Seam Tutorial

Search for Movies My Orders

Search Results

m I Welcome, Harry :

Add to cart Title Actor Price Thank you for choosing
L Life is Beautiful Roberto Benini £12.00 the DVD Store
L] Finding Nemo Albert Brooks $22.49 Logout
F March of the Penguins Morgan Freeman $16.98
F Indiana Jones and the Temple of Doom Harisson Ford $19.99)
F Clear and Present Danger Harisson Ford $19.99 Search for DVDs:
L] Roman Holiday Audrey Hepburn $12.99
] Breakfast at Tiffany's Audrey Hepburn $12.99
L] Sabrina Audrey Hepburn $12.99
L Sabrina Harrison Ford £19.99
F Kill Bill val. 1 Uma Thurman $19.99 R
O Kill Bill vel. 2 Uma Thurman $10.99 v |
L Lost in Translation Bill Murray £19.99 Results Per Page:
F Broken Flowers Bill Murray £$19,99 b |
] Better Off Dead John Cusak $8.99 Search
L Grosse Pointe Blank John Cusak £11.99
N——
L] High Fidelity John Cusak $14.99)
E Somewhere in Time Christopher Reeve $11.24 Shopping Cart
F Superman - The Movie Christopher Reeve $14.99 1 Napoleon Dynamite
L] Superman II Christopher Reeve 314,99
F Superman III Christopher Reeve $14.99 Total:$14.06
Update Shopping Cart Checkout
L
Done

The administration screens take use jBPM to manage the approval and shipping cycle for orders. The business
process may even be changed dynamically, by selecting a different process definition!

JBoss Seam 1.3.0.A1 38

Seam Tutorial

Manage Orders

Order Management

I Welcome, Albus

Pending orders are shown here on the order management screen for the store
manager to process. Rather than being data-driven, order management

Thank you for choosing
5 the DVD Store
process-driven. A JBoss JBPM process assigns fulfillment tasks to the manager ‘

based on the wversion of the process loaded. The manager can change the

Logout |

version of the process at any time using the admin options box to the right.

* Order process 1 sends orders immediately to shipping, where the manager should
ship the order and record the tracking number for the user to see.

* Order process 2 adds an approval step where the manager is first given the Inventory .
. - o 28 =sold, 2473 in stock
chance to approve the order before sending it to shipping. In each case, the S

. . X !
status of the order is shown in the customer's order list. $437.63 from 7 orders

* Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.

Admin Options
Task Assignment

Process Management
Order Id Order Amount Customer Task | ordermanagement3 s |

° $12.99 Hsert ship ‘ Switch Order Process |
7 577.70 user2 ship

Order Acceptance

There are no orders to be accepted.

Shipping
Order Id Order Amount Customer
5] %94.95 userl
Done
TODO

Look in the dvdst or e directory.

1.8. A complete application featuring Seam workspace man-
agement: the Issue Tracker example

The Issue Tracker demo shows off Seam's workspace management functionality: the conversation switcher,
conversation list and breadcrumbs.

JBoss Seam 1.3.0.A1 39

Seam Tutorid

Update/Delete Issue

Home | Find Issues | Create Issue | Logout | Project [HHH] | Issue [1] for Project [HHH] Issue [1] for Project [HHH] |+
—Issue Attributes
Id Reporter
Username Name
Status gavin Gavin King
Short description
My laptop does not Hibemate
Version PI'O]ECt
31 L
Name Description
Long description HHH Hibernate 3 Core
Select Project

Assigned developer

No Assigned developer

[Assign][Unassign

Created

Comments
[Update][Deleta H Done] Comment text Created Action
Go to the user forum! Jan 14, 2006

TODO

Look inthei ssues directory.

1.9. An example of Seam with Hibernate: the Hibernate Book-
ing example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative architecture that uses Hi-
bernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hi ber nat e directory.

1.10. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However, server-side
state is not always appropriate, especially in for functionality that serves up content. For this kind of problem
we often need to let the user bookmark pages and have a relatively stateless server, so that any page can be ac-
cessed at any time, via the bookmark. The Blog example shows how to aimplement RESTful application using
Seam. Every page of the application can be bookmarked, including the search results page.

JBoss Seam 1.3.0.A1 40

Seam Tutorid

©) JBoss Seam Blog - Mozilla Firefox
File Edit View Go Bookmarks Tools Help delicio.us

<:I| - I_IL - @ @ Eﬁ tag | . hitp://localhost:8080/seam-blog/entry.seam?blogEntryld=i18n v | ® Go

Internationalizaetion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mallit anim id est laborum.

[Posted on 5/01/2006 17:03:00]

1Boss Seam Blog: [Al posts][Recent posts|[Vvrite new post]
Total pageviews: 1007

Done (v]

The Blog example demonstrates the use of "pull"-style MV C, where instead of using action listener methods to
retrieve data and prepare the data for the view, the view pulls data from components asit is being rendered.

1.10.1. Using "pull"-style MVC

This snippet from thei ndex. xht m facelets page displays alist of recent blog entries:

Example 1.26.

<h: dat aTabl e val ue="#{bl og. recent Bl ogEntri es}" var="bl ogEntry" rows="3">
<h: col umm>
<di v cl ass="bl ogEntry">
<h3>#{bl ogEntry.title}</h3>
<di v>
<h: out put Text escape="fal se"
val ue="#{bl ogEntry. excerpt==null ? bl ogEntry.body : bl ogEntry. excerpt}"/>
</div>
<p>
<h: out put Li nk val ue="entry. seant’ rendered="#{bl ogEntry. excerpt!=null}">
<f:param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
Read nore. ..
</ h: out put Li nk>
</ p>
<p>
[Posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDat eTi ne ti meZone="#{bl og. ti nezZone}"

JBoss Seam 1.3.0.A1 41

Seam Tutorid

| ocal e="#{bl og. | ocal e}" type="both"/>
</ h: out put Text >]

<h: out put Li nk val ue="entry. sean{ >[Li nk]
<f:param nane="bl ogEntryl d* val ue="#{bl ogEntry.id}"/>
</ h: out put Li nk>
</ p>
</div>
</ h: col utm>
</ h: dat aTabl e>

If we navigate to this page from a bookmark, how does the data used by the <h: dat aTabl e> actually get initial-
ized? Well, what happens is that the Bl og is retrieved lazily—"pulled"—when needed, by a Seam component
named bl og. This is the opposite flow of control to what is usual in traditional web action-based frameworks
like Struts.

Example 1.27.

@anme(" bl 0og")
@cope(ScopeType. STATELESS)
public class Bl ogService

{
@n (1)
private EntityManager entityManager;
@nwr ap (2)
public Bl og getBl og()
{
return (Blog) entityManager.createQuery("fromBlog b left join fetch b. bl ogEntries")
.set Hi nt ("org. hi bernat e. cacheabl e", true)
.get Si ngl eResul t();
}
}

(1) This component uses a seam-managed persistence context. Unlike the other examples we've seen, this
persistence context is managed by Seam, instead of by the EJB3 container. The persistence context spans
the entire web request, allowing us to avoid any exceptions that occur when accessing unfetched associ-
ationsin the view.

(2) The @nw ap annotation tells Seam to provide the return value of the method—the Bl og—instead of the
actua Bl ogSer vi ce component to clients. Thisis the Seam manager component pattern.

Thisis good so far, but what about bookmarking the result of form submissions, such as a search results page?

1.10.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that alows the user to search for blog entries.
Thisisdefined in afile, menu. xht ni , included by the facelets template, t enpl at e. xht i :

Example 1.28.

<div id="search">
<h: for mp
<h:i nput Text val ue="#{searchAction. searchPattern}"/>
<h: commandBut t on val ue="Search" action="/search. xhtm "/ >

JBoss Seam 1.3.0.A1 42

Seam Tutorid

</ h: fornp
</ di v>

To implement a bookmarkable search results page, we need to perform a browser redirect after processing the
search form submission. Because we used the JSF view id as the action outcome, Seam automatically redirects
to the view id when the form is submitted. Alternatively, we could have defined a navigation rule like this:

Example 1.29.

<navi gati on-rul e>
<navi gati on- case>
<f rom out cone>sear chResul t s</ f rom out cone>
<t o-vi ew i d>/search. xhtm </to-vi ewid>
<redirect/>
</ navi gati on- case>
</ navi gati on-rul e>

Then the form would have looked like this:

Example 1.30.

<div id="search">
<h: fornp
<h: i nput Text val ue="#{searchActi on. searchPattern}"/>
<h: commandBut t on val ue="Search" acti on="searchResul ts"/>
</ h:fornmp
</ di v>

But when we redirect, we need to include the values submitted with the form as request parameters, to get a
bookmarkable URL like http://1 ocal host: 8080/ seam bl og/ sear ch. seanPsear chPat t er n=seam JSF does
not provide an easy way to do this, but Seam does. We use a Seam page parameter, defined in WEB-
I NF/ pages. xm :

Example 1.31.

<pages>
<page vi ewid="/search.xhtm ">
<par am nanme="sear chPattern" val ue="#{searchService. searchPattern}"/>
</ page>

</ pages>

This tells Seam to include the value of #{searchService. searchPattern} as a request parameter named

sear chPat t er n when redirecting to the page, and then re-apply the value of that parameter to the model before
rendering the page.

The redirect takes usto the sear ch. xht ni page:

Example 1.32.

<h: dat aTabl e val ue="#{searchResul ts}" var="bl ogEntry">

JBoss Seam 1.3.0.A1 43

Seam Tutorid

<h: col utm>
<di v>
<h: out put Li nk val ue="entry. seant' >
<f: param nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
#{bl ogEntry.titl e}
</ h: out put Li nk>
post ed on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi me ti meZone="#{bl og. ti neZone}" | ocal e="#{bl og. | ocal e}" type="both"/>
</ h: out put Text >
</ di v>
</ h: col utm>
</ h: dat aTabl e>

Which again uses "pull”-style MV C to retrieve the actual search results:

Example 1.33.

@Nane("sear chService")
public class SearchService

{

@n
private EntityManager entityManager;

private String searchPattern;

@actory("searchResul ts")
public List<Bl ogEntry> get SearchResul ts()

{

if (searchPattern==null)

{
}

el se

{

return null;

return entityManager.createQery("select be from Bl ogEntry be "" +
"where | ower(be.title) like :searchPattern " +
"l ower (be. body) |ike :searchPattern order by be.date desc")
.set Parameter("searchPattern", getSql SearchPattern())
. set MaxResul t s(100)
.getResul tList();

}

private String get Sql SearchPattern()
{

return searchPattern==null 2?2 ""
"% + searchPattern.toLowerCase().replace('*", '%).replace('?', '_') + "'%;

}

public String getSearchPattern()
{

}

public void setSearchPattern(String searchPattern)

{
}

return searchPattern;

this.searchPattern = searchPattern;

JBoss Seam 1.3.0.A1 44

Seam Tutorid

1.10.3. Using "push"-style MVC in a RESTful application

Very occasionaly, it makes more sense to use push-style MV C for processing RESTful pages, and so Seam
provides the notion of a page action. The Blog example uses a page action for the blog entry page,
entry. xht i . Note that this is a little bit contrived, it would have been easier to use pull-style MVC here as

well.

Theent ryAct i on component works much like an action classin atraditional push-MV C action-oriented frame-
work like Struts:

Example 1.34.

@Nane("entryAction")
@cope(STATELESS)
public class EntryAction

{

@n(create=true)
private Bl og bl og;

@ut
private Bl ogEntry bl ogEntry;

public void | oadBl ogEntry(String id) throws EntryNot FoundExcepti on

{
bl ogEntry = bl og. get Bl ogEntry(id);
if (blogEntry==null) throw new EntryNot FoundException(id);

}

Page actions are also declared in pages. xn :

Example 1.35.
<pages>

<page viewid="/entry.xhtm " action="#{entryAction.| oadBl ogEntry(bl ogEntry.id)}">
<par am nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ page>

<page vi ewid="/post.xhtm " action="#{l ogi nAction. chal |l enge}"/>
<page viewid="*" action="#{bl og. hitCount.hit}"/>

</ pages>

Notice that the example is using page actions for some other functionality—the login challenge, and the
pageview counter. Also notice the use of a parameter in the page action method binding. Thisis not a standard
feature of JSF EL, but Seam lets you use it, not just for page actions, but also in JSF method bindings.

When theentry. xht M page is requested, Seam first binds the page parameter bl ogEnt ryl d to the model, then
runs the page action, which retrieves the needed data—the bl ogEnt r y—and places it in the Seam event context.
Finaly, the following is rendered:

Example 1.36.

JBoss Seam 1.3.0.A1 45

Seam Tutorid

<di v cl ass="bl ogEntry">
<h3>#{bl ogEntry.title}</h3>
<di v>
<h: out put Text escape="fal se" val ue="#{bl ogEntry. body}"/>
</div>
<p>
[Post ed oné
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi ne timezone="#{bl og.ti mezZone}"
| ocal e="#{bl 0og. | ocal e}" type="both"/>
</ h: out put Text >]
</ p>
</div>

If the blog entry is not found in the database, the Ent r yNot FoundExcept i on exception is thrown. We want this
exception to result in a404 error, not a 505, so we annotate the exception class:

Example 1.37.

@\ppl i cati onException(rol | back=true)
@Htt pError (errorCode=Htt pServl et Response. SC_NOT_FOUND)
public class EntryNot FoundExcepti on extends Exception

{
Ent r yNot FoundExcepti on(String id)
{
super ("entry not found: " + id);
}
}

An dternative implementation of the example does not use the parameter in the method binding:

Example 1.38.

@Nane("entryAction")
@scope(STATELESS)
public class EntryAction

{
@n(create=true)
private Bl og bl og;
@n @out
private Bl ogEntry bl ogEntry;
public void | oadBl ogEntry() throws EntryNot FoundException
{
bl ogEntry = bl og. get Bl ogéntry(bl ogEntry.getld());
if (blogEntry==null) throw new EntryNot FoundException(id);
}
}
<pages>
<page viewid="/entry.xhtm " action="#{entryAction.!| oadBl ogEntry}">
<par am nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ page>
</ pages>

JBoss Seam 1.3.0.A1 46

Seam Tutorid

It is a matter of taste which implementation you prefer.

JBoss Seam 1.3.0.A1

47

Chapter 2. Getting started with Seam, using
seam-gen

The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse project,
generate some simple Seam skeleton code, and reverse engineer an application from a preexisting database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next time you find
yourself trapped in an elevator with one of those tedious Ruby guys ranting about how great and wonderful his
new toy isfor building totally trivial applications that put thingsin databases.

In this release, seam-gen works best for people with JBoss AS. You can use the generated project with other
J2EE or Java EE 5 application servers by making afew manual changes to the project configuration.

Y ou can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in conjunction
with Eclipse for debugging and integration testing. If you don't want to install Eclipse, you can till follow
along with this tutorial—all steps can be performed from the command line.

Seam-gen is basically just abig ugly Ant script wrapped around Hibernate Tools, together with some templates.
That makes it easy to customize if you need to.

2.1. Before you start

Make sure you have JDK 5 or JDK 6, JBoss AS 4.2 and Ant 1.6, along with recent versions of Eclipse, the
JBoss IDE plugin for Eclipse and the TestNG plugin for Eclipse correctly installed before starting. Add your
JBoss ingtallation to the JBoss Server View in Eclipse. Start JBoss in debug mode. Finally, start a command
prompt in the directory where you unzipped the Seam distribution.

JBoss has sophisticated support for hot re-deployment of WARs and EARs. Unfortunately, due to bugs in the
JVM, repeated redeployment of an EAR—which is common during devel opment—eventually causes the VM
to run out of perm gen space. For this reason, we recommend running JBoss in a VM with a large perm gen
space at development time. If you're running JBoss from JBoss IDE, you can configure thisin the server launch
configuration, under "VM arguments'. We suggest the following values:

- Xme512m - Xmx1024m - XX: Per nSi ze=256m - XX: MaxPer nSi ze=512

If you don't have so much memory available, the following is our minimum recommendation:

- Xn8256m - Xnx512m - XX: Per nSi ze=128m - XX: MaxPer ni ze=256

If you're running JBoss from the command line, you can configure the JVM optionsin bi n/ run. conf .

If you don't want to bother with this stuff now, you don't have to—come back to it later, when you get your first
Qut O Menor yExcept i on.

2.2. Setting up a new Eclipse project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation directory, Ec-
lipse workspace, and database connection. It's easy, just type:

cd j boss-seam 1. 3. x
seam set up

JBoss Seam 1.3.0.A1 48

Getting started with Seam, using seam-gen

And you will be prompted for the needed information:

C:\ Proj ects\jboss-seanrseam set up
Bui l dfile: build.xmn

set up:
[echo] Wl cone to seamgen :-)
[input] Enter your Java project workspace [C:/Projects]

[input] Enter your JBoss hone directory [C /Program Fil es/jboss-4.2.0. GAl

[input] Enter the project name [myproject]
hel | owor | d

[input] Is this project deployed as an EAR (with EJB conponents) or a WAR (with no EJB support)

[input] Enter the Java package nane for your session beans [com nydomai n. hel | owor | d]
org.j boss. hel l oworl d
[input] Enter the Java package nane for your entity beans [org.jboss. helloworl d]

[input] Enter the Java package nane for your test cases [org.]jboss. hell oworld.test]

[¢

[input] What kind of database are you using? [hsql] (hsql, nysql, oracl e, postgres, nssql, db2, sybase,)

nysql
[input] Enter the Hibernate dialect for your database [org. hibernate.dial ect. WwSQ.D al ect]

[input] Enter the filesystempath to the JDBC driver jar [lib/hsqldb.jar]
../l..Inmysqgl -connector.jar
[input] Enter JDBC driver class for your database [com nysql.jdbc.Driver]

[

[input] Enter database usernane [sa]
gavin
[input] Enter database password []

nput] Enter the JDBC URL for your database [jdbc:nysql:///test]

[
[

[

nput] skipping input as property hibernate.default_schema. new has al ready been set.
nput] Enter the database catalog name (it is OKto |eave this blank) []

nput] Are you working with tables that already exist in the database? [n] (y,n,)
y

[input] Do you want to drop and recreate the database tables and data in inport.sqgl each tine you

n
[propertyfile] Creating new property file: C\Projects\jboss-seam seam gen\buil d. properties
[echo] Installing JDBC driver jar to JBoss server
[echo] Type 'seam new project' to create the new project

BUI LD SUCCESSFUL
Total tinme: 1 minute 17 seconds
C:\ Proj ects\jboss-seanr

The tool provides sensible defaults, which you can accept by just pressing enter at the prompt.

The most important choice you need to make is between EAR deployment and WAR deployment of your
project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support EJB 3.0, but may
be deployed to a J2EE environment. The packaging of a WAR is aso simpler to understand. If you installed an
EJB3-ready application server like JBoss, choose ear . Otherwise, choose war . We'll assume that you've chosen
an EAR deployment for the rest of the tutorial, but you can follow exactly the same steps for a WAR deploy-
ment.

If you are working with an existing data model, make sure you tell seam-gen that the tables aready exist in the
database.

The settings are stored in seam gen/ bui | d. properti es, but you can also modify them simply by running seam
set up asecond time.

JBoss Seam 1.3.0.A1 49

Getting started with Seam, using seam-gen

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new pr oj ect

C:\ Proj ects\j boss-seanrseam new- pr oj ect
Bui l dfile: build.xm

val i dat e- wor kspace:
val i dat e- proj ect :

copy-lib:
[echo] Copying project jars ...
[copy] Copying 58 files to C.\Projects\helloworld\lib
[copy] Copying 9 files to C:\Projects\hell oworl d\enbedded-ejb

file-copy-war:

file-copy-ear:
[echo] Copying resources needed for EAR deploynment to the C:.\Projects\helloworld/resources direct

new- proj ect :
[echo] A new Seam project naned 'helloworld was created in the C:\Projects directory
[echo] Type 'seam expl ode' and go to http://I|ocal host: 8080/ hel | oworl d
[echo] Eclipse Users: Add the project into Eclipse using File > New > Project and sel ect General
[echo] NetBeans Users: Open the project in NetBeans

BU LD SUCCESSFUL
Total tinme: 7 seconds
C:\ Proj ects\j boss-seanr

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and generates all
needed resources and configuration files, a facelets template file and stylesheet, along with Eclipse metadata
and an Ant build script. The Eclipse project will be automatically deployed to an exploded directory structurein
JBoss AS as soon as you add the project using New -> Project... -> General -> Project -> Next,typing
the Proj ect nanme (hel | owor | d in this case), and then clicking Fi ni sh. Do not select Java Proj ect from the
New Project wizard.

If your default JDK in Eclipseis not a Java SE 5 or Java SE 6 JDK, you will need to select a Java SE 5 compli-
ant JDK using Proj ect -> Properties -> Java Conpiler.

Alternatively, you can deploy the project from outside Eclipse by typing seam expl ode.

Gotohttp:// 1 ocal host: 8080/ hel | owor | d t0 See awelcome page. Thisis afacelets page, vi ew hone. xhtni
using the template vi ew | ayout / t enpl at e. xht ni . You can edit this page, or the template, in eclipse, and see
the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project directory. They are
mostly standard Java EE stuff, the stuff you need to create once and then never ook at again, and they are 90%
the same between all Seam projects. (They are so easy to write that even seam-gen can do it.)

The generated project includes three database and persistence configurations. The j boss- beans. xn , persi st -
ence-test.xnm andinport-test.sql filesareused when running the TestNG unit tests against HSQLDB. The
database schema and the test datain i nport - t est . sql is always exported to the database before running tests.
The nypr oj ect - dev-ds. xni , persi st ence-dev. xm and i nport - dev. sql files are for use when deploying the
application to your development database. The schema might be exported automatically at deployment, de-
pending upon whether you told seam-gen that you are working with an existing database. The nypr oj ect -
prod-ds. xn , persi st ence- prod. xn and i nport - prod. sql files are for use when deploying the application to
your production database. The schemais not exported automatically at deployment.

JBoss Seam 1.3.0.A1 50

Getting started with Seam, using seam-gen

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can create a
simple web page with a statel ess action method in Java. If you type:

seam new acti on

Seam will prompt for some information, and generate a new facelets page and Seam component for your
project.

C:\ Proj ect s\ boss-seanmrseam new acti on
Bui I dfile: build.xm

val i dat e- wor kspace:
val i dat e- proj ect:

action-input:
[input] Enter the Seam conponent nane
pi ng
[Input] Enter the local interface name [Ping]

[input] Enter the bean class nane [Pi ngBean]
[input] Enter the action nmethod nane [ping]

[input] Enter the page nanme [ping]

setup-filters:

new act i on:
[echo] Creating a new statel ess session bean conponent with an action method
[copy] Copying 1 file to C.\Projects\helloworld\src\action\org\jboss\helloworld
[copy] Copying 1 file to C:\Projects\helloworld\src\action\org\jboss\helloworld
[copy] Copying 1 file to C.\Projects\helloworld\src\action\org\jboss\helloworld\test
[copy] Copying 1 file to C:\Projects\helloworld\src\action\org\jboss\helloworld\test
[copy] Copying 1 file to C: \Projects\helloworld\view
[echo] Type 'seamrestart’ and go to http://|ocal host: 8080/ hel | owor| d/ pi ng. seam

BU LD SUCCESSFUL
Total tine: 13 seconds
C:\ Proj ects\j boss-seanr

Because we've added a new Seam component, we need to restart the exploded directory deployment. You can
do this by typing seam restart, or by running therest art target in the generated project bui 1 d. xm file from
inside Eclipse. Another way to force a restart is to edit the file r esour ces/ META- 1 NF/ appl i cati on. xm in Ec-
lipse. Note that you do not need to restart JBoss each time you change the application.

Now gotohttp://1 ocal host: 8080/ hel | owor | d/ pi ng. seamand click the button. Y ou can see the code behind
this action by looking in the project src directory. Put a breakpoint in the pi ng() method, and click the button

again.

Finally, locate the Pi ngTest . xm file in the test package and run the integration tests using the TestNG plugin
for Eclipse. Alternatively, run the testsusing seam t est Or thet est target of the generated build.

2.4. Creating a form with an action

The next step isto create aform. Type:

JBoss Seam 1.3.0.A1 51

Getting started with Seam, using seam-gen

seam new f orm

C.\ Proj ects\j boss-seanrseam new-f orm
Bui l dfile: C: \Projects\jboss-seam seam gen\buil d. xm

val i dat e- wor kspace:
val i dat e- proj ect :

action-input:
[input] Enter the Seam conponent nane
hel | o
[input] Enter the local interface name [Hell 0]

[input] Enter the bean class nane [Hel | oBean]
[Input] Enter the action nmethod nane [hell o]

[input] Enter the page nane [hell 0]

setup-filters:

new f orm
[echo] Creating a new stateful session bean conmponent with an action nethod
[copy] Copying 1 file to C:\Projects\hello\src\comhello
[copy] Copying 1 file to C:\Projects\hello\src\comhello
[copy] Copying 1 file to C:\Projects\hello\src\com hello\test
[copy] Copying 1 file to C:\Projects\hello\view
[copy] Copying 1 file to C: \Projects\hello\src\com hello\test
[echo] Type 'seamrestart’ and go to http://|ocal host: 8080/ hel | o/ hel | 0. seam

BU LD SUCCESSFUL
Total tine: 5 seconds
C:\ Proj ects\jboss-seanr

Restart the application again, and go to ht t p: / /| ocal host : 8080/ hel | owor | d/ hel | 0. seam Then take alook at
the generated code. Run the test. Try adding some new fields to the form and Seam component (remember to
restart the deployment each time you change the Java code).

2.5. Generating an application from an existing database

Manually create some tables in your database. (If you need to switch to a different database, just run seam
set up again.) Now type:

seam generate-entities

Restart the deployment, and go to ht t p: / /1 ocal host : 8080/ hel | owor | d. Y 0u can browse the database, edit ex-
isting objects, and create new objects. If you look at the generated code, you'll probably be amazed how simple
it isl Seam was designed so that data access code is easy to write by hand, even for people who don't want to
cheat by using seam-gen.

2.6. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First, we need to re-
move the exploded directory by running seam unexpl ode. To deploy the EAR, we can type seam depl oy at the
command prompt, or run the depl oy target of the generated project build script. You can undeploy using seam
undepl oy or the undepl oy target.

JBoss Seam 1.3.0.A1 52

Getting started with Seam, using seam-gen

By default, the application will be deployed with the dev profile. The EAR will include the per si st ence-
dev. xm andinport-dev. sql files, and the nyproj ect - dev-ds. xm file will be deployed. Y ou can change the
profile, and use the prod profile, by typing

seam - Dprofil e=prod depl oy

Y ou can even define new deployment profiles for your application. Just add appropriately named files to your
project—for example, per si st ence- st agi ng. xni , i nport - stagi ng. sql and
nypr oj ect - st agi ng- ds. xmi —and select the name of the profile using - Dpr of i | e=st agi ng.

2.7. Seam and incremental hot deployment

When you deploy your Seam application as an exploded directory, you'll get some support for incremental hot
deployment at development time. Y ou need to enable debug mode in both Seam and Facelets, by adding this
lineto conponent s. xn :

<core:init debug="true"/>

Now, the following files may be redeployed without requiring afull restart of the web application:

« any facelets page
e any pages. xni file

But if we want to change any Java code, we still need to do a full restart of the application. (In JBoss this may
be accomplished by touching the top level deployment descriptor: appl i cati on. xm for an EAR deployment,
or web. xni for aWAR deployment.)

But if you realy want a fast edit/compile/test cycle, Seam supports incremental redeployment of JavaBean
components. To make use of this functionality, you must deploy the JavaBean components into the Wee-
I NF/ dev directory, so that they will be loaded by a special Seam classloader, instead of by the WAR or EAR
classloader.

Y ou need to be aware of the following limitations:

» the components must be JavaBean components, they cannot be EJB3 beans (we are working on fixing this
limitation)

* entities can never be hot-deloyed

» components deployed viaconponent s. xni may not be hot-deployed

« the hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/ dev
e Seam debug mode must be enabled

If you create a WAR project using seam-gen, incremental hot deployment is available out of the box for classes
inthe src/ acti on source directory. However, seam-gen does not support incremental hot deployment for EAR
projects.

2.8. Using Seam with JBoss 4.0

JBoss Seam 1.3.0.A1 53

Getting started with Seam, using seam-gen

Seam 1.3 was developed for JavaServer Faces 1.2. When using JBoss AS, we recommend using JBoss 4.2,
which bundles the JSF 1.2 reference implementation. However, it is still possible to use Seam 1.3 on the JBoss
4.0 platform. There are two basic steps required to do this: install an EJB3-enabled version of JBoss 4.0 and re-
place MyFaces with the JSF 1.2 reference implementation. Once you complete these steps, Seam 1.3 applica-
tions can be deployed to JBoss 4.0.

2.8.1. Install JBoss 4.0

JBoss 4.0 does not ship a default configuration compatible with Seam. To run Seam, you must install JBoss
4.0.5 using the JEMS 1.2 installer with the gjb3 profile selected. Seam will not run with an installation that
doesn't include EJB3 support. The JEMS instaler can be downloaded from ht-
tp://labs.jboss.com/jemsinstall er/downl oads.

2.8.2. Install the JSF 1.2 RI

The web configuration for JBoss 4.0 can be found in the server/ def aul t/ depl oy/ j bossweb- t ontat 55. sar .
You'll need to delete nyf aces- api . j ar any nyfaces-inpl .jar fromthejsf-1ibs directory. Then, you'll need
to copy jsf-api.jar, jsf-inpl.jar, el -api.jar, and el -inpl.jar to that directory. The JSF JARSs can be
found in the Seam I i b directory. The el JARs can be obtained from the Seam 1.2 release.

You'll also need to edit the conf / web. xm , replacing nyf aces-i npl . j ar withjsf-inpl.jar.

JBoss Seam 1.3.0.A1 54

http://labs.jboss.com/jemsinstaller/downloads
http://labs.jboss.com/jemsinstaller/downloads

Chapter 3. The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component. Components are
stateful objects, usually EJBs, and an instance of a component is associated with a context, and given anamein
that context. Bijection provides a mechanism for aliasing internal component names (instance variables) to con-
textual names, allowing component trees to be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

3.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control context demarca-
tion via explicit Java API calls. Context are usually implicit. In some cases, however, contexts are demarcated
via annotations.

The basic Seam contexts are:

» Stateless context

e Event (or request) context
e Page context

e Conversation context

* Session context

+ Business process context

Application context

Y ou will recognize some of these contexts from servlet and related specifications. However, two of them might
be new to you: conversation context, and business process context. One reason state management in web ap-
plications is so fragile and error-prone is that the three built-in contexts (request, session and application) are
not especially meaningful from the point of view of the business logic. A user login session, for example, is a
fairly arbitrary construct in terms of the actual application work flow. Therefore, most Seam components are
scoped to the conversation or business process contexts, since they are the contexts which are most meaningful
in terms of the application.

Let'slook at each context in turn.

3.1.1. Stateless context
Components which are truly stateless (stateless session beans, primarily) always live in the stateless context

(thisis really a non-context). Stateless components are not very interesting, and are arguably not very object-
oriented. Nevertheless, they are important and often useful.

3.1.2. Event context

The event context is the "narrowest” stateful context, and is a generalization of the notion of the web request
context to cover other kinds of events. Nevertheless, the event context associated with the lifecycle of a JSF re-

JBoss Seam 1.3.0.A1 55

The contextual component model

quest is the most important example of an event context, and the one you will work with most often. Compon-
ents associated with the event context are destroyed at the end of the request, but their state is available and
well-defined for at least the lifecycle of the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created and destroyed
just for the invocation.

3.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page. You can initialize
state in your event listener, or while actually rendering the page, and then have access to it from any event that
originates from that page. Thisis especially useful for functionality like clickable lists, where the list is backed
by changing data on the server side. The state is actually serialized to the client, so this construct is extremely
robust with respect to multi-window operation and the back button.

3.1.4. Conversation context

The conversation context is atruly central concept in Seam. A conversation is a unit of work from the point of
view of the user. It might span several interactions with the user, several requests, and several database transac-
tions. But to the user, a conversation solves a single problem. For example, "book hotel", "approve contract”,
"create order" are all conversations. Y ou might like to think of a conversation implementing a single "use case"
or "user story", but the relationship is not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single user may
have multiple conversations in progress at any point in time, usually in multiple windows. The conversation
context allows us to ensure that state from the different conversations does not collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But once you get
used to it, we think you'll love the notion, and never be able to not think in terms of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must be demarcated
using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-running busi-
ness process, and has the potential to trigger a business process state transition when it is successfully com-
pleted. Seam provides a specia set of annotations for task demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation. Thisis an ad-
vanced feature.

Usually, conversation state is actually held by Seam in the servlet session between requests. Seam implements
configurable conversation timeout, automatically destroying inactive conversations, and thus ensuring that the
state held by asingle user login session does not grow without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running conversation con-
text, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

3.1.5. Session context

A session context holds state associated with the user login session. While there are some cases where it is use-

JBoss Seam 1.3.0.A1 56

The contextual component model

ful to share state between several conversations, we generally frown on the use of session context for holding
components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

3.1.6. Business process context

The business process context holds state associated with the long running business process. This state is man-
aged and made persistent by the BPM engine (JBoss jBPM). The business pracess spans multiple interactions
with multiple users, so this state is shared between multiple users, but in a well-defined manner. The current
task determines the current business process instance, and the lifecycle of the business process is defined ex-
ternally using a process definition language, so there are no specia annotations for business process demarca
tion.

3.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context is mainly use-
ful for holding static information such as configuration data, reference data or metamodels. For example, Seam
stores its own configuration and metamodel in the application context.

3.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session or request at-
tributes in the servlet spec. You may bind any value you like to a context variable, but usually we bind Seam
component instances to context variables.

So, within a context, a component instance is identified by the context variable name (thisis usualy, but not al-
ways, the same as the component name). You may programatically access a named component instance in a
particular scope viathe Cont ext s class, which provides access to several thread-bound instances of the Cont ext
interface:

User user = (User) Contexts.getSessionContext().get("user");
Y ou may also set or change the value associated with a name:

Cont ext s. get Sessi onCont ext (). set("user", user);

Usually, however, we obtain components from a context via injection, and put component instances into a con-
text via outjection.

3.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other times, all stateful
scopes are searched, in priority order. The order isasfollows:

« Event context
¢ Page context

* Conversation context

JBoss Seam 1.3.0.A1 57

The contextual component model

e Session context
e Business process context
» Application context

Y ou can perform a priority search by calling Cont ext s. | ookupl nSt at ef ul Cont ext s() . Whenever you access a
component by name from a JSF page, a priority search occurs.

3.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests originating
from the same client. The serviet container simply lets all threads run concurrently and leaves enforcing thread-
safeness to application code. The EJB container allows stateless components to be accessed concurrently, and
throws an exception if multiple threads access a stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-grained, syn-
chronous requests. But for modern applications which make heavy use of many fine-grained, asynchronous
(AJAX) requests, concurrency isafact of life, and must be supported by the programming model. Seam weaves
a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent requests in a context
to be processed concurrently. The event and page contexts are by nature single threaded. The business process
context is strictly speaking multi-threaded, but in practice concurrency is sufficiently rare that this fact may be
disregarded most of the time. Finaly, Seam enforces a single thread per conversation per process model for
the conversation context by serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope components are al-
ways protected by Seam from concurrent access. Seam serializes requests to session scope session beans and
JavaBeans by default (and detects and breaks any deadlocks that occur). This is not the default behaviour for
application scoped components however, since application scoped components do not usualy hold volatile
state and because synchronization at the global level is extremely expensive. However, you can force a serial-
ized threading model on any session bean or JavaBean component by adding the @ynchr oni zed annotation.

This concurrency model means that AJAX clients can safely use volatile session and conversational state,
without the need for any special work on the part of the developer.

3.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or EJB 3.0 enterprise
beans. While Seam does not require that components be EJBs and can even be used without an EJB 3.0 compli-
ant container, Seam was designed with EJB 3.0 in mind and includes deep integration with EJB 3.0. Seam sup-
ports the following component types.

+ EJB 3.0 statel ess session beans
« EJB 3.0 stateful session beans
¢ EJB 3.0 entity beans

e JavaBeans

JBoss Seam 1.3.0.A1 58

The contextual component model

¢ EJB 3.0 message-driven beans

3.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations. Therefore, they usu-
aly work by operating upon the state of other components in the various Seam contexts. They may be used as
JSF action listeners, but cannot provide properties to JSF components for display.

Statel ess session beans always live in the statel ess context.

Statel ess session beans are the least interesting kind of Seam component.

3.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of the bean, but
also across multiple requests. Application state that does not belong in the database should usualy be held by
stateful session beans. This is a major difference between Seam and many other web application frameworks.
Instead of sticking information about the current conversation directly in the Ht t pSessi on, you should keep it
in instance variables of a stateful session bean that is bound to the conversation context. This alows Seam to
manage the lifecycle of this state for you, and ensure that there are no collisions between state relating to differ-
ent concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide properties to JSF
components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be bound to the page
or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam.

3.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because entities have a
persistent identity in addition to their contextual identity, entity instances are usually bound explicitly in Java
code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of an entity bean
trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans that provide
properties to JSF components for display or form submission. In particular, it is common to use an entity as a
backing bean, together with a stateless session bean action listener to implement create/update/del ete type func-
tionality.

By default, entity beans are bound to the conversation context. They may never be bound to the stateless con-
text.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to a conversa-
tion or session scoped Seam context variable than it would be to hold a reference to the entity bean in a stateful
session bean. For this reason, not all Seam applications define entity beans to be Seam components.

3.2.4. JavaBeans

JBoss Seam 1.3.0.A1 59

The contextual component model

Javabeans may be used just like a stateless or stateful session bean. However, they do not provide the function-
ality of a session bean (declarative transaction demarcation, declarative security, efficient clustered state replic-
ation, EJB 3.0 persistence, timeout methods, etc).

In alater chapter, we show you how to use Seam and Hibernate without an EJB container. In this use case,
components are JavaBeans instead of session beans. Note, however, that in many application serversit is some-
what less efficient to cluster conversation or session scoped Seam JavaBean components than it is to cluster
stateful session bean components.

By default, JavaBeans are bound to the event context.

Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

3.2.5. Message-driven beans

M essage-driven beans may function as a seam component. However, message-driven beans are called quite dif-
ferently to other Seam components - instead of invoking them via the context variable, they listen for messages
sent to a JM S queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the session or conversa
tion state of their "caller". However, they do support bijection and some other Seam functionality.

3.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept component
invocations. For JavaBeans, Seam isin full control of instantiation of the component, and no special configura-
tion is needed. For entity beans, interception is not required since bijection and context demarcation are not
defined. For session beans, we must register an EJB interceptor for the session bean component. We could use
an annotation, as follows:

@t at el ess
@ nt er cept or s(Seam nt er cept or. cl ass)
public class LoginAction inplenments Login {

}

But a much better way isto define the interceptor inej b-j ar. xni .

<i nt ercept ors>
<i nterceptor>
<interceptor-class>org.jboss. seam ej b. Seanl nt erceptor</interceptor-class>
</interceptor>
</interceptors>

<assenbl y-descri pt or>
<i nt er cept or - bi ndi ng>
<ej b- name>* </ ej b- name>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nterceptor-cl ass>
</i nt er cept or - bi ndi ng>
</ assenbl y-descri pt or >

3.2.7. Component names

All seam components heed a name. We can assign a name to a component using the @vane annotation:

@ame("l ogi nAction")

JBoss Seam 1.3.0.A1 60

The contextual component model

@5t at el ess
public class LoginAction inplenments Login {

}

This name is the seam component name and is not related to any other name defined by the EJB specification.
However, seam component names work just like JSF managed bean names and you can think of the two con-
cepts asidentical.

@lane is not the only way to define a component name, but we always need to specify the name somewhere. If
we don't, then none of the other Seam annotations will function.

Just like in JSF, a seam component instance is usually bound to a context variable with the same name as the
component name. So, for example, we would access the LoginAction using Con-

texts. get St at el essCont ext (). get ("1 ogi nAction"). In particular, whenever Seam itself instantiates a com-
ponent, it binds the new instance to a variable with the component name. However, again like JSF, it is possible
for the application to bind a component to some other context variable by programmatic API call. Thisis only
useful if a particular component serves more than one role in the system. For example, the currently logged in
User might be bound to the current User session context variable, while a User that is the subject of some ad-
ministration functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Nane("com j boss. nyapp. | ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {

}
We may use the qualified component name both in Java code and in JSF's expression language:

<h: commandButt on type="subm t" val ue="Logi n"
acti on="#{com j boss. myapp. | ogi nActi on. | ogin}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name. Add aline like
thisto the conponent s. xni file:

<factory name="| ogi nActi on" scope="STATELESS" val ue="#{com j boss. nyapp. | ogi nAction}"/>

All of the built-in Seam components have qualified names, but most of them are aiased to a simple name by
the conponent s. xm fileincluded in the Seam jar.

3.2.8. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This lets us define
what context a component instance is bound to, when it isinstantiated by Seam.

@Nane("user")
@ntity

@cope(SESSI ON)
public class User ({

}

org.j boss. seam ScopeType defines an enumeration of possible scopes.

JBoss Seam 1.3.0.A1 61

The contextual component model

3.2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we often have a User
class which is usually used as a session-scoped component representing the current user but is used in user ad-
ministration screens as a conversation-scoped component. The @ol e annotation lets us define an additional
named role for a component, with a different scope—it lets us bind the same component class to different con-
text variables. (Any Seam component instance may be bound to multiple context variables, but this lets us do it
at the classlevel, and take advantage of auto-instantiation.)

@Nane("user")

@ntity

@cope(CONVERSATI ON)

@Rol e(name="current User", scope=SESSI ON)
public class User {

}

The @ol es annotation lets us specify as many additional roles aswe like.

@Nane("user")

@ntity

@scope(CONVERSATI ON)

@Rol es({ @Rol e(name="current User", scope=SESSI ON),
@Rol e(nane="t enpUser", scope=EVENT)})

public class User {

}

3.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of built-in Seam
interceptors (see later) and Seam components. This makes it easy for applications to interact with built-in com-
ponents at runtime or even customize the basic functionality of Seam by replacing the built-in components with
custom implementations. The built-in components are defined in the Seam namespace or g. j boss. seam core
and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide convenient
statici nst ance() methods:

FacesMessages. i nst ance() . add(" Wl cone back, #{user.nanme}!");

Seam was designed to integrate tightly in a Java EE 5 environment. However, we understand that there are
many projects which are not running in a full EE environment. We also realize the critical importance of easy
unit and integration testing using frameworks such as TestNG and JUnit. So, we've made it easy to run Seam in
Java SE environments by allowing you to boostrap certain critical infrastructure normally only found in EE en-
vironments by installing built-in Seam components.

For example, you can run your EJB3 components in Tomcat or an integration test suite just by installing the
built-in component or g. j boss. seam core. ej b, which automatically bootstraps the JBoss Embeddable EJB3
container and deploys your EJB components.

Or, if you're not quite ready for the Brave New World of EJB 3.0, you can write a Seam application that uses
only JavaBean components, together with Hibernate3 for persistence, by installing a built-in component that
manages a Hibernate Sessi onFact ory. When using Hibernate outside of a J2EE environment, you will also
probably need a JTA transaction manager and JNDI server, which are available via the built-in component
org. j boss. seam core. m crocont ai ner. This lets you use the bulletproof JTA/JCA pooling datasource from

JBoss Seam 1.3.0.A1 62

The contextual component model

JBoss application server in an SE environment like Tomcat!

3.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java devel opers. Depend-
ency injection alows a component to obtain a reference to another component by having the container "inject”
the other component to a setter method or instance variable. In all dependency injection implementations that
we have seen, injection occurs when the component is constructed, and the reference does not subsequently
change for the lifetime of the component instance. For statel ess components, this is reasonable. From the point
of view of aclient, al instances of a particular stateless component are interchangeable. On the other hand,
Seam emphasizes the use of stateful components. So traditional dependency injection is no longer avery useful
construct. Seam introduces the notion of bijection as a generalization of injection. In contrast to injection, bijec-
tionis:

« contextual - bijection is used to assemble stateful components from various different contexts (a component
from a"wider" context may even have areference to a component from a"narrower" context)

« bidirectional - values are injected from context variables into attributes of the component being invoked,
and also outjected from the component attributes back out to the context, allowing the component being in-
voked to manipulate the values of contextual variables simply by setting its own instance variables

e dynamic - since the value of contextual variables changes over time, and since Seam components are state-
ful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by specifying that the
value of the instance variable isinjected, outjected, or both. Of course, we use annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
@n User user;

or into a setter method:

@Nane("| ogi nActi on")

@5t at el ess

@ nt ercept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
User user;

@n

public void setUser(User user) {
t hi s. user=user;

}

By default, Seam will do a priority search of all contexts, using the name of the property or instance variable
that is being injected. You may wish to specify the context variable name explicitly, using, for example,
@n("currentUser").

JBoss Seam 1.3.0.A1 63

The contextual component model

If you want Seam to create an instance of the component when there is no existing component instance bound
to the named context variable, you should specify @ n(creat e=t rue) . If the value is optional (it can be null),
specify @ n(requi red=f al se).

For some components, it can be repetitive to have to specify @ n(creat e=true) everywhere they are used. In
such cases, you can annotate the component @wut oCr eat e, and then it will always be created, whenever needed,
even without the explicit use of cr eat e=t r ue.

Y ou can even inject the value of an expression:

@anme("| ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenments Login {
@n("#{user.usernane}") String usernane;

(There is much more information about component lifecycle and injection in the next chapter.)
The @ut annotation specifies that an attribute should be outjected, either from an instance variable:

@ame("l ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt ercept or. cl ass)

public class LoginAction inplenents Login {
@ut User user;

or from a getter method:

@Nane ("l ogi nActi on")

@Bt at el ess

@ nt ercept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
User user;

@ut

public User getUser() {
return user;

}

An attribute may be both injected and outjected:

@ame("| ogi nAction")

@t at el ess

@ nt er cept or s(Seanl nt ercept or. cl ass)

public class LoginAction inplenents Login {
@n @ut User user;

or:

@Nane ("l ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt er cept or. cl ass)

public class LoginAction inplenments Login {
User user;

JBoss Seam 1.3.0.A1 64

The contextual component model

@n
public void setUser(User user) {
t hi s. user=user;

}

@ut

public User getUser() {
return user;

}

3.4. Lifecycle methods

Session bean and entity bean Seam components support all the usua EJB 3.0 lifecycle callback
(@ost Const ruct, @reDestroy, €tc). Seam extends all of these callbacks except @reDestroy to JavaBean
components. But Seam also defines its own component lifecycle callbacks.

The @r eat e method is called every time Seam instantiates a component. Unlike the @ost Const ruct method,
this method is called after the component is fully constructed by the EJB container, and has access to all the
usual Seam functionality (bijection, etc). Components may define only one @cr eat e method.

The @est r oy method is called when the context that the Seam component is bound to ends. Components may
define only one @est r oy method. Stateful session bean components must define a method annotated @est r oy
@Renove.

Finally, a related annotation is the @t art up annotation, which may be applied to any application or session
scoped component. The @t art up annotation tells Seam to instantiate the component immediately, when the
context begins, instead of waiting until it is first referenced by a client. It is possible to control the order of in-
stantiation of startup components by specifying @t ar t up(depends={....}).

3.5. Conditional installation

The @nstal | annotation lets you control conditional installation of components that are required in some de-
ployment scenarios and not in others. Thisis useful if:

* You want to mock out some infrastructural component in tests.
e You want change the implementation of a component in certain deployment scenarios.

¢ You want to install some components only if their dependencies are available (useful for framework au-
thors).

@nstal | works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to install when there
are multiple classes with the same component name in the classpath. Seam will choose the component with the
higher precendence. There are some predefined precedence values (in ascending order):

1. BUILT_I N— thelowest precedece components are the components built in to Seam.

JBoss Seam 1.3.0.A1 65

The contextual component model

2. FRAMEWORK — components defined by third-party frameworks may override built-in components, but are
overridden by application components.

3. APPLI CATI ON— the default precedence. Thisis appropriate for most application components.
4. DEPLOYMENT — for application components which are deployment-specific.

5. mock — for mock objects used in testing.

Suppose we have a component named messageSender that talksto a IMS queue.

@Nane(" nessageSender")
public class MessageSender ({
public void sendMessage() {
//do something with JMS

}

In our unit tests, we don't have a IMS queue available, so we would like to stub out this method. We'll create a
mock component that exists in the classpath when unit tests are running, but is never deployed with the applica-
tion:

@ame(" nessageSender ")

@ nst al | (pr ecedence=MOCK)
public class MbckMessageSender extends MessageSender {

public void sendMessage() {
/1 do not hi ng!

}

The pr ecedence helps Seam decide which version to use when it finds both componentsin the classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing a reusable
framework with many dependecies, | don't want to have to break that framework across many jars. | want to be
able to decide which components to install depending upon what other components are installed, and upon what
classes are available in the classpath. The @ nstal | annotation also controls this functionality. Seam uses this
mechanism internally to enable conditional installation of many of the built-in components. However, you
probably won't need to useit in your application.

3.6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log | og = LogFactory. getLog(CreateCOr derAction. cl ass);

public Order createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled()) {
| 0og. debug("Creating new order for user: " + user.usernane() +
' product: " + product.nane()
+ " quantity: " + quantity);
}

return new Order (user, product, quantity);

It is difficult to imagine how the code for a simple log message could possibly be more verbose. There is more
lines of code tied up in logging than in the actual business logic! | remain totally astonished that the Java com-
munity has not come up with anything better in 10 years.

JBoss Seam 1.3.0.A1 66

The contextual component model

Seam provides alogging API that simplifies this code significantly:

@ogger private Log | og;

public O der createOrder(User user, Product product, int quantity) {
| og. debug(" Creati ng new order for user: #0 product: #1 quantity: #2", user.username(), product.nat
return new Order(user, product, quantity);

It doesn't matter if you declare the | og variable static or not—it will work either way, except for entity bean
components which require the | og variable to be static.

Note that we don't need the noisy i f (| og.isDebugEnabl ed()) guard, since string concatenation happens
inside the debug() method. Note also that we don't usually need to specify the log category explicitly, since
Seam knows what component it isinjecting the Log into.

If user and Product are Seam components available in the current contexts, it gets even better:

@ogger private Log | og;

public O der createOrder(User user, Product product, int quantity) {
| og. debug(" Creating new order for user: #{user.usernane} product: #{product.nane} quantity: #0", ¢
return new Order(user, product, quantity);

Seam logging automagically chooses whether to send output to logdj or JDK logging. If logdj is in the
classpath, Seam with useit. If it is not, Seam will use JDK logging.

3.7. The mut abl e interface and @eadnl y

Many application servers feature an amazingly broken implementation of Htt pSession clustering, where
changes to the state of mutable objects bound to the session are only replicated when the application calls
setAttribute() explicitly. Thisis a source of bugs that can not effectively be tested for at development time,
since they will only manifest when failover occurs. Furthermore, the actual replication message contains the en-
tire serialized object graph bound to the session attribute, which isinefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of mutable state
and a sophisticated EJB container can introduce optimizations such as attribute-level replication. Unfortunately,
not all Seam users have the good fortune to be working in an environment that supports EJB 3.0. So, for session
and conversation scoped JavaBean and entity bean components, Seam provides an extra layer of cluster-safe
state management over the top of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication to occur by
calling set Attribute() oncein every request that the component was invoked by the application. Of course,
this strategy is inefficient for read-mostly components. You can control this behavior by implementing the
org. j boss. seam cor e. Mut abl e interface, or by extending or g. j boss. seam cor e. Abst r act Mit abl e, and writ-
ing your own dirty-checking logic inside the component. For example,

@Nane("account ™)
public class Account extends AbstractMitabl e

{

private Bi gDeci mal bal ance;

public void setBal ance(Bi gDeci mal bal ance)

{

setDirty(this.bal ance, bal ance);
t hi s. bal ance = bal ance;

}

JBoss Seam 1.3.0.A1 67

The contextual component model

publ i c Bi gDeci mal get Bal ance()
{

}

return bal ance;

Or, you can use the @eadnl y annotation to achieve a similar effect:

@ame("account")
public class Account

{

private Bi gDeci mal bal ance;

public void setBal ance(Bi gDeci mal bal ance)

{
t hi s. bal ance = bal ance;
}
@ReadOnl y
publ i c Bi gDeci mal get Bal ance()
{

return bal ance;

}

For session or conversation scoped entity bean components, Seam automatically forces replication to occur by
calling set Attribute() oncein every request, unless the (conversation-scoped) entity is currently associated
with a Seam-managed persistence context, in which case no replication is needed. This strategy is not necessar-
ily efficient, so session or conversation scope entity beans should be used with care. You can always write a
stateful session bean or JavaBean component to "manage” the entity bean instance. For example,

@5t at ef ul
@Nane("account ")
public class Account Manager extends Abstract Miut abl e

{

private Account account; // an entity bean
@Jnwr ap

public void getAccount ()

{

}

return account;

Note that the Ent i t yHorre class in the Seam Application Framework provides a great example of managing an
entity bean instance using a Seam component.

3.8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to inject them
into our components using @n and use them in value and method binding expressions, etc. Sometimes, we
even need to tie them into the Seam context lifecycle (@est r oy, for example). So the Seam contexts can con-

JBoss Seam 1.3.0.A1 68

The contextual component model

tain objects which are not Seam components, and Seam provides a couple of nice features that make it easier to
work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component object. A
factory method will be called when a context variable is referenced but has no value bound to it. We define
factory methods using the @act ory annotation. The factory method binds a value to the context variable, and
determines the scope of the bound value. There are two styles of factory method. The first style returns a value,
which is bound to the context by Seam:

@ract or y(scope=CONVERSATI ON)

public List<Custoner> getCustonerList() {
return ... ;

}

The second style is amethod of type voi d which binds the value to the context variable itself:

@at aModel Li st <Custoner> custoner Li st ;

@-actory("custonerlList")

public void initCustonerList() {
custonmerList = ... ;

}

In both cases, the factory method is called when we reference the cust oner Li st context variable and its value
is null, and then has no further part to play in the lifecycle of the value. An even more powerful pattern is the
manager component pattern. In this case, we have a Seam component that is bound to a context variable, that
manages the value of the context variable, while remaining invisible to clients.

A manager component is any component with an @anw ap method. This method returns the value that will be
visableto clients, and is called every time a context variableis referenced.

@Nane(" customerList")
@scope(CONVERSATI ON)
public class CustomerListManager

{

@Jnwr ap

public List<Custoner> getCustonerList() {
return ...

}

This pattern is especialy useful if we have some heavyweight object that needs a cleanup operation when the
context ends. In this case, the manager component may perform cleanup in the @est r oy method.

JBoss Seam 1.3.0.A1 69

Chapter 4. Configuring Seam components

The philosophy of minimizing XML-based configuration is extremely strong in Seam. Nevertheless, there are
various reasons why we might want to configure a Seam component using XML.: to isolate deployment-specific
information from the Java code, to enable the creation of re-usable frameworks, to configure Seam'’s built-in
functionality, etc. Seam provides two basic approaches to configuring components: configuration via property
settings in a propertiesfile or in web. xn , and configuration viaconponent s. xm .

4.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context parameters, or viaa
properties file named seam properti es in theroot of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods for the configurable
attributes. If a Seam component hamed com j boss. nyapp. setti ngs has a setter method named set Local (),
we can provide a property named com j boss. nyapp. set ti ngs. | ocal e inthe seam properti es file or asaser-
vlet context parameter, and Seam will set the value of the | ocal e attribute whenever it instantiates the compon-
ent.

The same mechanism is used to configure Seam itself. For example, to set the conversation timeout, we provide
avalue for org. j boss. seam cor e. manager . conver sat i onTi meout inweb. xm OF seam properties. (Thereis
a built-in Seam component named or g. j boss. seam cor e. manager With a setter method named set Conver sa-
tionTi meout () .)

4.2. Configuring components via conponent s. xni

The conponent s. xm fileisabit more powerful than property settings. It lets you:

e Configure components that have been installed automatically—including both built-in components, and ap-
plication components that have been annotated with the @vame annotation and picked up by Seam's deploy-
ment scanner.

e Instal classes with no @ane annotation as Seam components—thisis most useful for certain kinds of infra-
structural components which can be installed multiple times different names (for example Seam-managed
persistence contexts).

* Install components that do have a @wane annotation but are not installed by default because of an @ nst al |
annotation that indicates the component should not be installed.

* Override the scope of a component.

A conponent s. xm file may appear in one of three different places:

e TheVvEB- I NF directory of awar .
e TheMETA- I NF directory of aj ar.
* Any directory of aj ar that contains classes with an @ane annotation.

Usually, Seam components are installed when the deployment scanner discovers a class with a @same annota-

JBoss Seam 1.3.0.A1 70

Configuring Seam components

tion sitting in an archive with a seam properti es file or a META- I NF/ conponent s. xni file. (Unless the com-
ponent has an @ nstal | annotation indicating it should not be installed by default.) The conmponent s. xni file
lets us handle special cases where we need to override the annotations.

For example, the following cormponent s. xm file installs the JBoss Embeddable EJB3 container:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: core="http://]boss. conl product s/ seani core">
<core:ejh/>
</ conponent s>

This example does the same thing:

<conponent s>
<conponent cl ass="org.jboss.seam core. Ej b"/>
</ conponent s>

Thisoneinstalls and configures two different Seam-managed persistence contexts:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss. conl product s/ seant core"

<cor e: managed- per si st ence- cont ext nane="cust onmer Dat abase"
persi stence-uni t-jndi -name="j ava: / cust omer Ent i t yManager Fact ory"/ >

<cor e: managed- per si st ence- cont ext nane="account i ngDat abase"
persi stence-unit-jndi-name="j ava:/accounti ngEntityManager Factory"/>

</ conponent s>

As doesthisone:

<comnmponent s>
<component nane="cust oner Dat abase"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >

<property nane="persi stenceUnitJndi Nane">j ava: / cust omer Ent i t yManager Fact or y</ properity>
</ conponent >

<conponent nanme="accounti ngDat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nanme="persi stenceUnitJndi Name">j ava: / account i ngEnt i t yManager Fact or y</ pr operty>
</ conponent >
</ conponent s>

This example creates a session-scoped Seam-managed persistence context (this is not recommended in prac-
tice):

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss. com product s/ seam core"

<cor e: managed- per si st ence- cont ext nane="pr oduct Dat abase"
scope="sessi on"
persi stence-unit-jndi-nane="j ava:/ product EntityManager Factory"/>

</ conponent s>

<component s>

<conponent nane="product Dat abase"
scope="sessi on"
cl ass="org.j boss. seam cor e. ManagedPer si st enceCont ext " >
<property name="persistenceUnitJndi Name">j ava: / product Enti t yManager Fact or y</ property>
</ conponent >

JBoss Seam 1.3.0.A1 71

Configuring Seam components

</ conponent s>

It is common to use the aut o- creat e option for infrastructural objects like persistence contexts, which saves
you from having to explicitly specify cr eat e=t r ue when you use the @ n annotation.

<conponents xm ns="http://jboss. con products/sean conponent s"
xm ns: core="http://jboss. com product s/ seam core"

<cor e: managed- per si st ence- cont ext nane="pr oduct Dat abase"
aut o-create="true"
persi stence-unit-jndi-nane="j ava:/ product Entit yManager Factory"/ >

</ conponent s>

<component s>
<conponent nane="product Dat abase"
auto-create="true"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >
<property nanme="persistenceUnitJndi Name">j ava: / product Enti t yManager Fact or y</ property>
</ conponent >

</ conponent s>

The <f act or y> declaration lets you specify a value or method binding expression that will be evaluated to ini-
tialize the value of a context variable when it isfirst referenced.

<conponent s>
<factory nane="contact" nethod="#{contact Manager.| oadContact}" scope="CONVERSATI ON'/ >

</ conponent s>

Y ou can create an "dias" (a second name) for a Seam component like so:

<conponent s>
<factory name="user" val ue="#{actor}" scope="STATELESS"'/>

</ conponent s>

Y ou can even create an "alias' for acommonly used expression:

<conponent s>
<factory name="contact" val ue="#{contact Manager.contact}" scope="STATELESS"/>

</ conponent s>

It is especialy common to see the use of aut o- cr eat e="t r ue" with the <f act or y> declaration:

<comnponent s>
<factory nane="session" val ue="#{entityManager. del egate}" scope="STATELESS"' auto-create="true"/>

</ conponent s>
Sometimes we want to reuse the same conponent s. xn file with minor changes during both deployment and

testing. Seam lets you place wildcards of the form @ | dcar d@in the conponent s. xm file which can be re-
placed either by your Ant build script (at deployment time) or by providing a file named conpon-

JBoss Seam 1.3.0.A1 72

Configuring Seam components

ents. properti es in the classpath (at development time). Y ou'll see this approach used in the Seam examples.

4.3. Fine-grained configuration files

If you have alarge number of components that need to be configured in XML, it makes much more sense to
split up the information in conponent s. xm into many small files. Seam lets you put configuration for a class
named, for example, com hel I owor | d. Hel | o in a resource named coni hel | owor | d/ Hel | 0. conponent . xm .
(You might be familiar with this pattern, since it is the same one we use in Hibernate.) The root element of the
file may be either a <conponent s> Or <conponent > element.

Thefirst option lets you define multiple components in the file:

<comnponent s>
<component cl ass="com hel | oworl d. Hel | 0" nanme="hel | 0" >
<property nanme="nane">#{user. nane}</ property>
</ conponent >
<factory nane="nessage" val ue="#{hel |l 0. nessage}"/>
</ conponent s>

The second option only lets you define or configure one component, but is less noisy:

<conponent nanme="hel | 0" >
<property nanme="nane">#{user. nane} </ property>
</ conponent >

In the second option, the class name isimplied by the file in which the component definition appears.

Alternatively, you may put configuration for all classes in the com hel l owor | d package in comn hel | o-
wor | d/ conponents. xm .

4.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org. j boss. seam cor e. manager . conver sati onTi mreout 60000
<cor e: manager conversation-ti neout="60000"/>

<conponent name="org.j boss. seam cor e. manager " >
<property nanme="conversationTi nmeout " >60000</ pr operty>
</ conponent >

Arrays, sets and lists of strings or primitives are also supported:

org. j boss. seam core. j bpm processDefinitions order.jpdl.xm, return.jpdl.xm, inventory.jpdl.xm

<core:j bpnr
<core: process-definitions>
<val ue>order. | pdl . xm </ val ue>
<val ue>return.jpdl.xm </ val ue>
<val ue>i nventory.jpdl . xm </ val ue>
</ core: process-definitions>
</ core:jbpn>

<conponent name="org.j boss. seam core. | bpni>
<property nane="processDefinitions">

JBoss Seam 1.3.0.A1 73

Configuring Seam components

<val ue>order.j pdl . xm </ val ue>
<val ue>return.jpdl.xm </val ue>
<val ue>i nventory. j pdl . xm </ val ue>
</ property>
</ conponent >

Even maps with String-valued keys and string or primitive values are supported:

<conponent nanme="i ssueEditor">
<property nane="issueStat uses">
<key>open</ key> <val ue>open i ssue</val ue>
<key>r esol ved</ key> <val ue>i ssue resol ved by devel oper</val ue>
<key>cl osed</ key> <val ue>resol uti on accepted by user</val ue>
</ property>
</ conponent >

Finally, you may wire together components using a value-binding expression. Note that thisis quite different to
injection using @ n, since it happens at component instantiation time instead of invocation time. It is therefore
much more similar to the dependency injection facilities offered by traditional 10C containers like JSF or

Spring.

<dr ool s: managed- wor ki ng- menory nane="pol i cyPri ci ngWr ki ngMenory" rul e-base="#{policyPricingRul es}"/>

<conponent name="policyPrici ngWr ki ngMenor y"
cl ass="org.j boss. seam dr ool s. ManagedWr ki ngMenor y" >
<property nane="rul eBase" >#{pol i cyPrici ngRul es} </ property>
</ conponent >

4.5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components. with and without the
use of XML namespaces. The following shows atypical conponent's. xm file without hamespaces.

<?xm version="1.0" encodi ng="UTF-8""?>
<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
Xsi : schemaLocati on="http://jboss. com product s/ seam conponents http://jboss.com product s/ s

<conponent cl ass="org.jboss.seamcore.init">

<property nane="debug">true</property>

<property nanme="j ndi Pattern">@ ndi Patt er n@/ pr operty>
</ conponent >

<conponent name="org.j boss. sean. core.ejb" installed="@nbeddedEj b@ />

</ conponent s>

Asyou can see, thisis somewhat verbose. Even worse, the component and attribute names cannot be validated
at development time.

The namespaced version looks like this:

<?xm version="1.0" encodi ng="UTF-8""?>
<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss. conl product s/ seanf core"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schenmalLocati on=
"http://jboss. conl products/seanicore http://jboss. conf products/seantf core-1. 3. xsd
http://jboss. com product s/ seam conponents http://jboss. com product s/ seam conponent s-

<core:init debug="true" jndi-pattern="@ndi Pattern@/>

JBoss Seam 1.3.0.A1 74

Configuring Seam components

<core:ejb install ed="@nbeddedE b@/ >

</ conponent s>

Even though the schema declarations are verbose, the actual XML content is lean and easy to understand. The
schemas provide detailed information about each component and the attributes available, allowing XML editors
to offer intelligent autocomplete. The use of hamespaced elements makes generating and maintaining correct
conponent s. xm files much simpler.

Now, this works great for the built-in Seam components, but what about user components? There are two op-
tions. First, Seam supports mixing the two models, allowing the use of the generic <conponent > declarations
for user components, along with namespaced declarations for built-in components. But even better, Seam al-
lows you to quickly declare namespaces for your own components.

Any Java package can be associated with an XML namespace by annotating the package with the @anespace
annotation. (Package-level annotations are declared in a file named package-i nf o. j ava in the package direct-
ory.) Here is an example from the seampay demo:

@Nanespace(val ue="http://jboss. conf product s/ seanf exanpl es/ seanpay")
package org.j boss. seam exanpl e. seanpay;

i mport org.jboss. seam annot ati ons. Namespace;

That isall you need to do to use the namespaced style in conponent s. xn | Now we can write:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: pay="http://jboss. conl product s/ seanl exanpl es/ seanpay"
>

<pay: paynent - hone new i nst ance="#{ newPaynent }"
creat ed- nessage="Created a new paynment to #{newPaynent.payee}" />

<pay: paynment nanme="newPaynent"
payee="Sonebody"
account =" #{ sel ect edAccount }"
paynent - dat e="#{current Dateti ne}"
created-date="#{currentDateti me}" />

</ conponent s>

Or:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: pay="http://jboss. conl product s/ seanl exanpl es/ seanpay"
>

<pay: paynent - hone>

<pay: new i nst ance>"#{ newPaynent } " </ pay: new- i nst ance>

<pay: cr eat ed- message>Created a new paynent to #{newPaynent.payee}</pay: creat ed- mressage>
</ pay: paynent - home>

<pay: paynment nanme="newPaynent" >
<pay: payee>Sonebody" </ pay: payee>
<pay: account >#{ sel ect edAccount } </ pay: account >
<pay: paynent - dat e>#{ curr ent Dat et i ne} </ pay: paynent - dat e>
<pay: cr eat ed- dat e>#{ current Dat et i me} </ pay: cr eat ed- dat e>
</ pay: paynent >

</ conponent s>

These examples illustrate the two usage models of a namespaced element. In the first declaration, the
<pay: paynent - hone> references the paynent Home component:

JBoss Seam 1.3.0.A1 75

Configuring Seam components

package org.j boss. seam exanpl e. seanpay;

@Nane(" paynent Horre")

public class Paynment Controll er
ext ends EntityHome<Paynent >

{

}

The element name is the hyphenated form of the component name. The attributes of the element are the hy-
phenated form of the property names.

In the second declaration, the <pay: payment> element refers to the Payment class in the
org. j boss. seam exanpl e. seanpay package. In this case Paynent is an entity that is being declared as a Seam
component:

package org.j boss. seam exanpl e. seanpay;
@ntity
public class Paynent
i mpl ements Serializabl e
{

}

If we want validation and autocompletion to work for user-defined components, we will need a schema. Seam
does not yet provide a mechanism to automatically generate a schemafor a set of components, so it is necessary
to generate one manually. The schema definitions for the standard Seam packages can be used for guidance.

The following are the the namespaces used by Seam:

¢ components—http://jboss. con product s/ sean conponent s
e core—nhttp://jboss. con products/seani core

e drools—http://jboss. com products/seant drool s

o framework — http://j boss. com product s/ seant f r amewor k
. jms—http://j boss. coni product s/ seani j ns

. remoting —http://jboss. com product s/ seam renoti ng

e theme— http://jboss. cont products/ sean t hene

. security —http://jboss. com product s/ seam security

e mail —http://jboss. con product s/ seam nai |

e web—nhttp://]jboss. con product s/ searm web

e pdf —http://jboss. cont product s/ sean pdf

e gpring—http://jboss. com product s/ seant spring

JBoss Seam 1.3.0.A1 76

Chapter 5. Events, interceptors and exception
handling

Complementing the contextual component model, there are two further basic concepts that facilitate the ex-
treme loose-coupling that is the distinctive feature of Seam applications. Thefirst is a strong event model where
events may be mapped to event listeners via JSF-like method binding expressions. The second is the pervasive
use of annotations and interceptors to apply cross-cutting concerns to components which implement business
logic.

5.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to enable the
development of fine-grained, loosely-coupled components in a fine-grained eventing model. Events in Seam
comein several types, most of which we have already seen:

« JSF events

« jBPM transition events

e Seam page actions

e Seam component-driven events

* Seam contextua events

All of these various kinds of events are mapped to Seam components via JSF EL method binding expressions.
For a JSF event, thisis defined in the JSF template:

<h: conmandBut t on val ue="Cick nme!" action="#{hell oWrl d. sayHel |l o}"/>

For ajBPM transition event, it is specified in the JBPM process definition or pageflow definition:

<start-page nane="hell 0" viewid="/hello.jsp">
<transition to="hello0">
<action expressi on="#{hel | oWr| d. sayHel | 0} "/ >
</transition>
</start - page>

You can find out more information about JSF events and jBPM events elsewhere. Lets concentrate for now
upon the two additional kinds of events defined by Seam.

5.1.1. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions in WeB-
I NF/ pages. xm . We can define a page action for either a particular JSF view id:

<pages>
<page viewid="/hello.jsp" action="#{hell oWrl d.sayHel | o}"/>
</ pages>

Or we can use awildcard to specify an action that appliesto all view ids that match the pattern:

JBoss Seam 1.3.0.A1 77

Events, interceptors and exception handling

<pages>
<page viewid="/hello/*" action="#{hell oWrl d. sayHel | 0}"/>
</ pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in order of least-
specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will use the defined navig-
ation rulesto navigate to aview.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or Facelets page!
So, we can reproduce the functionality of atraditional action-oriented framework like Struts or WebWork using
page actions. For example:

TODO. translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for example, HTTP
GET requests).

Multiple or conditional page actions my be specified using the <act i on> tag:

<pages>
<page viewid="/hello.jsp">
<action expression="#{hell oWrl d. sayHel | o}" if="#{not validation.failed}"/>
<action expression="#{hitCount.increnent}"/>
</ page>
</ pages>

Page parameters

A JSF faces regquest (a form submission) encapsulates both an "action" (a method binding) and "parameters’
(input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request parameters.
(Unlike JSF form inputs, which are anything but!)

Seam |ets us provide a value binding that maps a named request parameter to an attribute of a model object.

<pages>
<page viewid="/hello.jsp" action="#{hell oWrl d. sayHel | o}">
<param nanme="first Name" val ue="#{person. firstNane}"/>
<par am nane="1| ast Nane" val ue="#{person. | ast Nane}"/ >
</ page>
</ pages>

The <par am> declaration is bidirectional, just like a value binding for a JSF input:

¢ When anon-faces (GET) request for the view id occurs, Seam sets the value of the named request paramet-
er onto the model object, after performing appropriate type conversions.

e Any <s:link> Or <s: button> transparently includes the request parameter. The value of the parameter is
determined by evaluating the value binding during the render phase (when the <s: 1 i nk> is rendered).

e Any navigation rule with a <r edi rect/ > to the view id transparently includes the request parameter. The
value of the parameter is determined by evaluating the value binding at the end of the invoke application
phase.

JBoss Seam 1.3.0.A1 78

Events, interceptors and exception handling

e The value is transparently propagated with any JSF form submission for the page with the given view id.
(This means that view parameters behave like PAGE-scoped context variables for faces requests.

The essential idea behind all this is that however we get from any other page to /hello.jsp (or from /
hel l 0. jsp back to /hell o.jsp), the value of the model attribute referred to in the value binding is "re-

membered", without the need for a conversation (or other server-side state).

This al sounds pretty complex, and you're probably wondering if such an exotic construct is really worth the
effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the time to understand
this stuff. Page parameters are the most elegant way to propagate state across a non-faces request. They are es-
pecially cool for problems like search screens with bookmarkable results pages, where we would like to be able
to write our application code to handle both POST and GET requests with the same code. Page parameters
eliminate repetitive listing of request parameters in the view definition and make redirects much easier to code.

Note that you don't need an actual page action method binding to use a page parameter. The following is per-

fectly valid:

<pages>
<page viewid="/hello.jsp">
<par am nane="first Name" val ue="#{person. firstNane}"/>
<par am nane="| ast Nane" val ue="#{person. | ast Nane}"/>
</ page>
</ pages>

Y ou can even specify a JSF converter:

<pages>
<page viewid="/cal culator.jsp" action="#{cal cul ator.cal cul ate}">
<par am nanme="x" val ue="#{cal cul ator.| hs}"/>
<param name="y" val ue="#{cal cul ator.rhs}"/>

<par am name="op" converterld="com ny. cal cul at or. Qper at or Converter"

</ page>
</ pages>

Alternatively:

<pages>
<page viewid="/calculator.jsp" action="#{cal cul ator.cal cul ate}">
<par am nane="x" val ue="#{cal cul ator.| hs}"/>
<par am nanme="y" val ue="#{cal cul ator.rhs}"/>

val ue="#{cal cul ator.op}"/>

<par am nane="op" converter="#{operatorConverter}" value="#{cal cul ator.op}"/>

</ page>
</ pages>

JSF validators, and r equi red="t r ue" may also be used:

<pages>
<page vi ewid="/bl og. xhtm ">
<par am name="dat e"
val ue="#{bl og. date}"
val i dat or | d="com ny. bl og. Past Dat e"
requi red="true"/>
</ page>
</ pages>

Alternatively:

<pages>
<page vi ewid="/bl og. xhtm ">
<par am nanme="dat e"
val ue="#{bl og. date}"

JBoss Seam 1.3.0.A1

79

Events, interceptors and exception handling

val i dat or =" #{ past Dat eVal i dator}"
requi red="true"/>
</ page>
</ pages>

Even better, model-based Hibernate validator annotations are automatically recognized and validated.

When type conversion or validation fails, aglobal FacesMessage is added to the FacesCont ext .

Navigation

Y ou can use standard JSF navigation rules defined in f aces- confi g. xn in a Seam application. However, JSF
navigation rules have a number of annoying limitations:

» [tisnot possible to specify request parametersto be used when redirecting.
» Itisnot possible to begin or end conversations from arule.

« Ruleswork by evaluating the return value of the action method; it is not possible to evaluate an arbitrary EL
expression.

A further problem is that "orchestration” logic gets scattered between pages. xmi and f aces- confi g. xm . It's
better to unify thislogic into pages. xni .

This JSF navigation rule:

<navi gati on-rul e>
<fromvi ew i d>/ edi t Docunent .. xhtm </ fromvi ewi d>

<navi gati on- case>
<from acti on>#{docunment Edi t or . updat e} </ from acti on>
<f rom out come>success</from out cone>
<t 0-vi ew-i d>/ vi ewDocunent . xht m </t o-vi ewi d>
<redirect/>

</ navi gati on- case>

</ navi gati on-rul e>

Can be rewritten as follows:

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromaction="#{docunment Edi t or. updat e}" >
<rul e if-outcome="success">
<redirect viewid="/viewbocunent.xhtm"/>
</rul e>
</ navi gati on>

</ page>

But it would be even nicer if we didn't have to pollute our Docurent Edi t or component with string-valued re-
turn values (the JSF outcomes). So Seam lets us write:

<page vi ewid="/editDocunent.xhtm ">

<navi gation from action="#{docunent Edi t or. update}"
eval uat e="#{docunment Edi tor. errors. si ze}">
<rule if-outcome="0">
<redirect viewid="/viewDocunent.xhtm"/>
</rul e>
</ navi gati on>

JBoss Seam 1.3.0.A1 80

Events, interceptors and exception handling

</ page>

Or even:

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromaction="#{docunent Edi t or. update}" >
<rule if="#{docunmentEditor.errors.enpty}">
<redirect viewid="/viewDocunment.xhtm"/>
</rul e>
</ navi gati on>

</ page>

Thefirst form evaluates a value binding to determine the outcome value to be used by the subsequent rules. The
second approach ignores the outcome and evaluates a value binding for each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We can do that like
this:

<page vi ewid="/editDocunent.xhtm ">

<navi gation fromacti on="#{docunent Edi t or. updat e}" >
<rule if="#{docunentEditor.errors.enpty}">
<end- conversation/ >
<redirect viewid="/viewDbocunent.xhtm "/>
</rul e>
</ navi gati on>

</ page>

But ending the conversation loses any state associated with the conversation, including the document we are
currently interested in! One solution would be to use an immediate render instead of aredirect:

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromaction="#{docunment Edi t or. updat e}" >
<rule if="#{docunmentEditor.errors.enpty}">
<end- conversation/ >
<render viewid="/viewDocunent.xhtm"/>
</rul e>
</ navi gati on>

</ page>

But the correct solution isto pass the document id as arequest parameter:

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromaction="#{docunment Edi t or. updat e}" >
<rule if="#{docunentEditor.errors.enpty}">
<end- conversati on/ >
<redirect viewid="/viewDocunent.xhtm ">
<par am nane="docunent | d* val ue="#{docunent Edi t or. docunent I d}"/ >
</redirect>
</rul e>
</ navi gati on>

</ page>

Null outcomes are a specia case in JSF. The null outcome is interpreted to mean "redisplay the page". The fol-
lowing navigation rule matches any non-null outcome, but not the null outcome:

JBoss Seam 1.3.0.A1 81

Events, interceptors and exception handling

<page vi ewid="/editDocunment.xhtm ">

<navi gation fromaction="#{docunment Edi t or. update}" >
<rul e>
<render viewid="/viewDocunent.xhtm "/>
</rul e>
</ navi gati on>

</ page>
If you want to perform navigation when a null outcome occurs, use the following form instead:

<page vi ew i d="/editDocunent.xhtn ">

<navi gati on fromacti on="#{docunent Edi t or. updat e}" >
<render viewid="/viewbocunent.xhtm "/>
</ navi gati on>

</ page>

Fine-grained files for definition of navigation, page actions and parameters

If you have alot of different page actions and page parameters, or even just a lot of navigation rules, you will
almost certainly want to split the declarations up over multiple files. Y ou can define actions and parameters for
a page with the view id / cal ¢/ cal cul ator. j sp in a resource named cal ¢/ cal cul at or. page. xm . The root
element in this caseis the <page> element, and the view id isimplied:

<page action="#{cal cul ator.cal cul ate}">

<param nane="x" val ue="#{cal cul ator.| hs}"/>

<par am nane="y" val ue="#{cal cul ator.rhs}"/>

<par am nanme="op" converter="#{operatorConverter}" value="#{cal cul ator.op}"/>
</ page>

5.1.2. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components may even imple-
ment the observer/observable pattern. But to enable components to interact in a more loosely-coupled fashion
than is possible when the components call each others methods directly, Seam provides component-driven

events.
We specify event listeners (observers) in conponent s. xni .

<conponent s>
<event type="hello">
<action expression="#{hell oLi stener. sayHel | oBack}"/>
<action expressi on="#{| ogger.| ogHel |l o}"/>
</ event >
</ conponent s>

Where the event typeisjust an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear in conpon-
ents. xm . How does a component raise an event? Seam provides a built-in component for this.

@Nane(" hel | oWor | d")
public class HelloWwrld {
public void sayHello() {
FacesMessages. i nstance().add("Hello World!");
Events.instance().rai seEvent("hello");

JBoss Seam 1.3.0.A1 82

Events, interceptors and exception handling

Or you can use an annotation.

@ane(" hel | oWorl d")
public class HelloWrld {
@rai seEvent ("hel | 0")
public void sayHell o() {
FacesMessages. i nstance().add("Hello World!'");
}

Notice that this event producer has no dependency upon event consumers. The event listener may now be im-
plemented with absolutely no dependency upon the producer:

@ame(" hel | oLi stener")
public class HelloListener {
public void sayHel | oBack() {
FacesMessages. i nstance().add("Hello to you too!");

}

The method binding defined in conponent s. xn above takes care of mapping the event to the consumer. If you
don't like futzing about in the conponent s. xn file, you can use an annotation instead:

@ame(" hel | oLi stener")
public class HelloListener {
@server ("hel | 0")
public void sayHel | oBack() {
FacesMessages. i nstance().add("Hello to you too!");

}

Y ou might wonder why I've not mentioned anything about event objects in this discussion. In Seam, there is no
need for an event object to propagate state between event producer and listener. State is held in the Seam con-
texts, and is shared between components. However, if you really want to pass an event object, you can:

@ame("hel | oWorl d")
public class HelloWwrld {
private String nane;
public void sayHell o() {
FacesMessages. i nstance().add("Hello Wrld, nmy nane is #0.", nane);
Events.instance().rai seEvent("hell 0", nane);

@Nane(" hel | oLi st ener")
public class HelloListener {
@server ("hel | 0")
public void sayHel | oBack(String nane) {
FacesMessages. i nstance().add("Hello #0!", nane);
}

5.1.3. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds of framework in-
tegration. The events are:

JBoss Seam 1.3.0.A1 83

Events, interceptors and exception handling

® org.jboss.

® org.jboss.

seam val i dat i onFai | ed — called when JSF validation fails

seam noConver sat i on — called when there is no long running conversation and along running

conversation is required

® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.
® org.jboss.

® org.jboss.
sation

® org.jboss.

® org.jboss.

® org.jboss.

® org.jboss.

® org.jboss.

® org.jboss.

® org.jboss.

® org.jboss.

® org.jboss.

®* org.jboss.

® org.jboss.

® org.jboss.

®* org.jboss.

seam preSet Vari abl e. <name> — called when the context variable <name> is set

seam post Set Var i abl e. <nane> — called when the context variable <name> is set
seam preRenpoveVari abl e. <name> — called when the context variable <name> is unset
seam post RenpbveVari abl e. <name> — called when the context variable <name> is unset
seam pr eDest r oyCont ext . <SCOPE> — called before the <SCOPE> context is destroyed
seam post Dest r oyCont ext . <SCOPE> — called after the <SCOPE> context is destroyed
seam begi nConver sati on — called whenever along-running conversation begins
seam endConver sat i on — called whenever along-running conversation ends

seam begi nPagef | ow. <name> — called when the pageflow <name> begins

seam endPagef | ow. <name> — called when the pageflow <name> ends

seam cr eat ePr ocess. <nane> — called when the process <name> is created

seam endPr ocess. <nane> — called when the process <name> ends

seam i ni t Process. <name> — called when the process <name> is associated with the conver-

seam i ni t Task. <name> — called when the task <name> is associated with the conversation
seam st art Task. <name> — called when the task <name> is started

seam endTask. <nane> — called when the task <name> is ended

seam post Cr eat e. <name> — called when the component <name> is created

seam pr eDest r oy. <nanme> — called when the component <name> is destroyed

seam bef or ePhase — called before the start of a JSF phase

seam af t er Phase — called after the end of a JSF phase

seam post I nitialization — caled when Seam has initialized and started up all components
seam post Aut hent i cat e. <name> — called after auser is authenticated

seam pr eAut hent i cat e. <nane> — called before attempting to authenticate a user

seam not Logged! n — called there is no authenticated user and authentication is required
seam r enenber Me — occurs when Seam security detects the username in a cookie

seam except i onHandl ed. <Type> — called when an uncaught exception is handled by Seam

JBoss Seam 1.3.0.A1 84

Events, interceptors and exception handling

e org.jboss. seam except i onHandl ed — called when an uncaught exception is handled by Seam
e org.|boss. seam except i onNot Handl ed — called when there was no handler for an uncaught exception

Seam components may observe any of these eventsin just the same way they observe any other component-driv-
en events.

5.2. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an interceptor to a bean,
you need to write a class with a method annotated @\ oundl nvoke and annotate the bean with an
@nt ercept ors annotation that specifies the name of the interceptor class. For example, the following inter-
ceptor checksthat the user islogged in before allowing invoking an action listener method:

public class Loggedlnlnterceptor {

@\r ound! nvoke
publ i c Object checkLoggedl n(l nvocati onContext invocation) throws Exception {

bool ean i sLoggedl n = Cont exts. get Sessi onContext ().get ("l oggedln")!=null;
if (isLoggedln) {

//the user is already |ogged in

return invocation. proceed();

}

el se {
//the user is not logged in, fwd to | ogi n page
return "l ogin";

}

To apply this interceptor to a session bean which acts as an action listener, we must annotate the session bean
@ nt er cept or s(Logged! nl nter cept or. cl ass) . Thisis a somewhat ugly annotation. Seam builds upon the in-
terceptor framework in EJB3 by allowing you to use @ nt er cept or s as a meta-annotation. In our example, we
would create an @ ogged! n annotation, as follows:

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

@ nt er cept or s(LoggedlI nl nt er cept or. cl ass)
public @nterface Loggedln {}

We can now simply annotate our action listener bean with @oggedi n to apply the interceptor.

@Bt at el ess
@Nane(" changePasswor dActi on")

@oggedl n
@ nt ercept or s(Seam nt ercept or. cl ass)
public class ChangePasswor dAction inpl ements ChangePassword {

public String changePassword() { ... }

If interceptor ordering is important (it usually is), you can add @ nt er cept or annotations to your interceptor
classes to specify apartial order of interceptors.

@ nterceptor (around={Bijectionlnterceptor.class,

JBoss Seam 1.3.0.A1 85

Events, interceptors and exception handling

Val i dati onl nterceptor. cl ass,
Conver sati onl nterceptor. cl ass},
wi t hi n=Renovel nt er cept or. cl ass)
public class Loggedl nlnterceptor

{
}

Y ou can even have a"client-side" interceptor, that runs around any of the built-in functionality of EJB3:

@ nt er cept or (t ype=CLI ENT)
public class Loggedl nlnterceptor

{
}

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept. For interceptors
which do not need to maintain state, Seam lets you get a performance optimization by specifying
@nterceptor(statel ess=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including the inter-
ceptors named in the previous example. You don't have to explicitly specify these interceptors by annotating
your components; they exist for al interceptable Seam components.

Y ou can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @v oundl! nvoke), but also for the lifecycle meth-
ods @post Const ruct , @r eDest r oy, @r ePassi vat e and @ost Act i ve. Seam supports all these lifecycle meth-
ods on both component and interceptor not only for EJB3 beans, but also for JavaBean components (except
@r eDest r oy which is not meaningful for JavaBean components).

5.3. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this problem,
Seam lets you define how a particular class of exception is to be treated by annotating the exception class, or
declaring the exception class in an XML file. This facility is meant to be combined with the EJB 3.0-standard
@wppl i cati onExcept i on annotation which specifies whether the exception should cause a transaction rollback.

5.3.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately marks the current trans-
action for rollback when it is thrown by a business method of the bean: system exceptions always cause a trans-
action rollback, application exceptions do not cause a rollback by default, but they do if
@wppl i cati onException(rol |l back=true) isspecified. (An application exception is any checked exception, or
any unchecked exception annotated @ppl i cat i onExcepti on. A system exception is any unchecked exception
without an @ppl i cati onExcept i on annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it back. The ex-
ception rules say that the transaction should be marked rollback only, but it may still be active after the excep-
tion isthrown.

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

But these rules only apply in the Seam component layer. What about an exception that is uncaught and propag-

JBoss Seam 1.3.0.A1 86

Events, interceptors and exception handling

ates out of the Seam component layer, and out of the JSF layer? Well, it is aways wrong to leave a dangling
transaction open, so Seam rolls back any active transaction when an exception occurs and is uncaught in the
Seam component layer.

5.3.2. Enabling Seam exception handling

To enable Seam's exception handling, we need to make sure we have the master servlet filter declared in
web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss. seam web. Seanfilter</filter-cl ass>
</filter>

<filter-mppi ng>
<filter-nane>Seam Filter</filter-name>
<url -pattern>*.seanx/url -pattern>
</filter-mappi ng>

You may also need to disable Facelets development mode in web. xmi and Seam debug mode in conpon-
ents. xm if you want your exception handlersto fire.

5.3.3. Using annotations for exception handling

The following exception resultsin a HTTP 404 error whenever it propagates out of the Seam component layer.
It does not roll back the current transaction immediately when thrown, but the transaction will be rolled back if
it the exception is not caught by another Seam component.

@Ht t pError (error Code=404)
public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component layer. It also
ends the current conversation. It causes an immediate rollback of the current transaction.

@Redi rect (view d="/failure.xhtm ", end=true)
@\ppl i cati onException(roll back=true)
public class Unrecoverabl eApplicati onException extends RuntimeException { ... }

Note that @redi r ect does not work for exceptions which occur during the render phase of the JSF lifecycle.

This exception results in a redirect, along with a message to the user, when it propagates out of the Seam com-
ponent layer. It also immediately rolls back the current transaction.

@Redirect (viewd="/error.xhtm ", nmessage="Unexpected error")
public class SystemExcepti on extends RuntineException { ... }

5.3.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets us specify this
functionality in pages. xni .

<pages>

<exception class="] avax. persi stence. Entit yNot FoundExcepti on">
<http-error error-code="404"/>
</ excepti on>

JBoss Seam 1.3.0.A1 87

Events, interceptors and exception handling

<exception cl ass="j avax. persi st ence. Per si st enceExcepti on">
<end- conversati on/ >
<redirect viewid="/error.xhtm">
<nessage>Dat abase access fail ed</ nessage>
</redirect>
</ excepti on>

<excepti on>
<end- conversation/ >
<redirect viewid="/error.xhtm">
<nessage>Unexpect ed fail ure</ nessage>
</redirect>
</ excepti on>

</ pages>

The last <except i on> declaration does not specify a class, and is a catch-all for any exception for which hand-
ling is not otherwise specified via annotations or in pages. xn .

Y ou can aso access the handled exception instance through EL, Seam placesit in the conversation context, e.g.
to access the message of the exception:

t hrow new Aut hori zati onException("You are not allowed to do this!");
<pages>

<exception class="org.jboss. seam security. Aut hori zati onExcepti on">
<end- conver sati on/ >
<redirect viewid="/error.xhtm ">
<message severity="WARN'>#{org. | boss. seam handl edExcept i on. nessage} </ nessage>

</redirect>
</ excepti on>

</ pages>

org. j boss. seam handl edExcept i on holds the nested exception that was actually handled by an exception
handler. The outermost (wrapper) exception is also available, asor g. j boss. seam excepti on.

JBoss Seam 1.3.0.A1 88

Chapter 6. Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation™ came about as a merger of three different ideas:

e The idea of a workspace, which | encountered in a project for the Victorian government in 2002. In this
project | was forced to implement workspace management on top of Struts, an experience | pray never to
repeat.

» The idea of an application transaction with optimistic semantics, and the realization that existing frame-
works based around a statel ess architecture could not provide effective management of extended persistence
contexts. (The Hibernate team is truly fed up with copping the blame for Lazy! niti al i zati onExcept i onS,
which are not really Hibernate's fault, but rather the fault of the extremely limiting persistence context mod-
e supported by stateless architectures such as the Spring framework or the traditional stateless session
facade (anti)pattern in J2EE.)

¢ Theideaof aworkflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct that lets us
build richer and more efficient applications with less code than before.

6.1. Seam's conversation model

The examples we have seen so far make use of avery simple conversation model that follows these rules:

« There is always a conversation context active during the apply request values, process validations, update
model values, invoke application and render response phases of the JSF request lifecycle.

e At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore any previous
long-running conversation context. If none exists, Seam creates a new temporary conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to a long running
conversation.

« When an @nd method is encountered, any long-running conversation context is demoted to a temporary
conversation.

« At theend of the render response phase of the JSF request lifecycle, Seam stores the contents of a long run-
ning conversation context or destroys the contents of atemporary conversation context.

e Any faces request (a JSF postback) will propagate the conversation context. By default, non-faces requests
(GET requests, for example) do not propagate the conversation context, but see below for more information
on this.

« If the JSF request lifecycle is foreshortened by aredirect, Seam transparently stores and restores the current
conversation context—unless the conversation was aready ended via @nd(bef or eRedi r ect =t r ue) .

Seam transparently propagates the conversation context across JSF postbacks and redirects. If you don't do any-
thing special, a non-faces request (a GET request for example) will not propagate the conversation context and

JBoss Seam 1.3.0.A1 89

Conversations and workspace management

will be processed in a new temporary conversation. Thisis usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly code the Seam
conversation id as arequest parameter:

Conti nue

Or, the more JSF-ish:

<h: out put Li nk val ue="main. jsf">
<f: param nane="conversati onl d" val ue="#{conversation.id}"/>
<h: out put Text val ue="Conti nue"/>

</ h: out put Li nk>

If you use the Seam tag library, thisis equivalent:

<h: out put Li nk val ue="main.jsf">
<s:conversationl d/>
<h: out put Text val ue="Conti nue"/>
</ h: out put Li nk>

If you wish to disable propagation of the conversation context for a postback, asimilar trick is used:

<h: commandLi nk action="mai n" val ue="Exit">
<f: param nane="conver sati onPropagati on" val ue="none"/>
</ h: commandLi nk>

If you use the Seam tag library, thisis equivalent:

<h: commandLi nk action="mai n" val ue="Exit">
<s:conversati onPropagati on type="none"/>
</ h: commandLi nk>

Note that disabling conversation context propagation is absolutely not the same thing as ending the conversa-
tion.

The conversat i onPropagat i on request parameter, or the <s: conversat i onPropagat i on> tag may even be
used to begin and end conversation, or begin a nested conversation.

<h: commandLi nk acti on="nmai n" val ue="Exit">
<s: conver sationPropagati on type="end"/>
</ h: commandLi nk>

<h: conmandLi nk acti on="mai n* val ue="Sel ect Child">
<s: conversationPropagation type="nested"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="begi n"/>
</ h: commandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="join"/>
</ h: commandLi nk>

This conversation model makes it easy to build applications which behave correctly with respect to multi-
window operation. For many applications, thisis al that is needed. Some complex applications have either or
both of the following additional requirements:

JBoss Seam 1.3.0.A1 90

Conversations and workspace management

* A conversation spans many smaller units of user interaction, which execute serialy or even concurrently.
The smaller nested conversations have their own isolated set of conversation state, and also have access to
the state of the outer conversation.

e The user is able to switch between many conversations within the same browser window. This feature is
called workspace management.

6.2. Nested conversations

A nested conversation is created by invoking a method marked @egi n(nest ed=t rue) inside the scope of an
existing conversation. A nested conversation has its own conversation context, and aso has read-only access to
the context of the outer conversation. (It can read the outer conversation's context variables, but not write to
them.) When an @nd is subsequently encountered, the nested conversation will be destroyed, and the outer
conversation will resume, by "popping” the conversation stack. Conversations may be nested to any arbitrary
depth.

Certain user activity (workspace management, or the back button) can cause the outer conversation to be re-
sumed before the inner conversation is ended. In this case it is possible to have multiple concurrent nested con-
versations belonging to the same outer conversation. If the outer conversation ends before a nested conversation
ends, Seam destroys all nested conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the application to capture
a consistent continuable state at various points in a user interaction, thus insuring truly correct behavior in the
face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you backbutton.

Usually, if a component exists in a parent conversation of the current nested conversation, the nested conversa-
tion will use the same instance. Occasionaly, it is useful to have a different instance in each nested conversa-
tion, so that the component instance that exists in the parent conversation is invisible to its child conversations.
Y ou can achieve this behavior by annotating the component @er Nest edConver sat i on.

6.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a non-faces request
(for example, a HTTP GET request). This can occur if the user bookmarks the page, or if we navigate to the
page viaan <h: out put Li nk>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is no JSF action
method, we can't solve the problem in the usual way, by annotating the action with @egi n.

A further problem arises if the page needs some state to be fetched into a context variable. We've already seen
two ways to solve this problem. If that state is held in a Seam component, we can fetch the state in a @ eat e
method. If not, we can define a @act ory method for the context variable.

If none of these options works for you, Seam lets you define a page action in the pages. xni file.

<pages>
<page vi ewid="/nessagelist.jsp" action="#{nessageManager.list}"/>

</ pages>

JBoss Seam 1.3.0.A1 91

Conversations and workspace management

This action method is called at the beginning of the render response phase, any time the page is about to be
rendered. If a page action returns a non-null outcome, Seam will process any appropriate JSF and Seam naviga-
tion rules, possibly resulting in a completely different page being rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in action method
that does just that:

<pages>
<page vi ewid="/nessagelist.jsp" action="#{conversation. begin}"/>

</ paé;é.s>
Note that you can aso cal this built-in action from a JSF control, and, similarly, you can use

#{ conver sati on. end} toend conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a pageflow or an
atomic conversation, you should use the <begi n- conver sat i on> element.

<pages>
<page vi ew i d="/nmessagelist.jsp">
<begi n- conversati on nested="true" pagefl ow="Addlteni/>
<page>

</ pages>
Thereisaso an <end- conver sat i on> € ement.

<pages>
<page vi ewid="/hone.jsp">
<end- conversation/ >
<page>

</ pages>
To solve the first problem, we now have five options:

* Annotate the @r eat e method with @egi n

* Annotate the @act or y method with @egi n

¢ Annotate the Seam page action method with @egi n
* Use<begin-conversation>inpages. xm .

e Use#{conversation. begi n} asthe Seam page action method

6.4. Using <s: 1ink>and <s: but t on>

JSF command links always perform aform submission via JavaScript, which breaks the web browser's "open in
new window" or "open in new tab" feature. In plain JSF, you need to use an <h: out put Li nk> if you need this
functionality. But there are two major limitations to <h: out put Li nk>.

e JSF provides no way to attach an action listener to an <h: out put Li nk>.

» JSF does not propagate the selected row of a bat avbdel since there isno actua form submission.

JBoss Seam 1.3.0.A1 92

Conversations and workspace management

Seam provides the notion of a page action to help solve the first problem, but this does nothing to help us with
the second problem. We could work around this by using the RESTful approach of passing a request parameter
and requerying for the selected object on the server side. In some cases—such as the Seam blog example ap-
plication—this is indeed the best approach. The RESTful style supports bookmarking, since it does not require
server-side state. In other cases, where we don't care about bookmarks, the use of @pataMbdel and
@at aModel Sel ecti on iSjust so convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to manage, Seam
providesthe <s: I i nk> JSF tag.

The link may specify just the JSF view id:
<s:link view="/login.xhtm” val ue="Login"/>
Or, it may specify an action method (in which case the action outcome determines the page that results):

<s:link action="#{l ogin.|ogout}” val ue="Logout”/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action method returns
anon-null outcome:

<s:link view="/|oggedQut.xhtm " action="#{login.logout}” val ue=*Logout”/>
The link automatically propagates the selected row of aDat aMbdel using inside <h: dat aTabl e>:

<s:link view="/hotel.xhtm” action="#{hotel Search. sel ect Hotel }” val ue=“#{hotel . nane}"/ >
Y ou can leave the scope of an existing conversation:

<s:link view="/min.xhtm” propagati on=*none”/>
Y ou can begin, end, or nest conversations:

<s:link action="#{i ssueEditor.vi ewComment}” propagati on="nest”/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{docunent Edi t or. get Docunent}” propagati on="begi n”
pagef | ow=" Edi t Docunent "/ >

Thet askl nst ance attribute if for usein jBPM task lists:

<s:link action="#{docunent Approval . approveOrRej ect}” tasklnstance="#{task}"/>

(Seethe DVD Store demo application for examples of this.)
Finally, if you need the "link" to be rendered as a button, use <s: but t on>:

<s:button action="#{l ogi n. | ogout}” val ue=*Logout”/>

6.5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It is convenient to

JBoss Seam 1.3.0.A1 93

Conversations and workspace management

use a JSF FacesMessage for this. Unfortunately, a successful action often requires a browser redirect, and JSF
does not propagate faces messages across redirects. This makes it quite difficult to display success messagesin
plain JSF.

The built in conversation-scoped Seam component named f acesMessages Solves this problem. (Y ou must have
the Seam redirect filter installed.)

@ame(" edi t Docunent Acti on")
@t at el ess
public class EditDocunentBean inpl enents EditDocunent {
@n EntityManager em
@n Docunent docunent;
@n FacesMessages facesMessages;
public String update() {

em ner ge(docunent) ;
f acesMessages. add(" Docunment updat ed");

Any message added to f acesMessages iS used in the very next render response phase for the current conversa-
tion. This even works when there is no long-running conversation since Seam preserves even temporary con-
versation contexts across redirects.

Y ou can even include JSF EL expressionsin afaces message summary:

facesMessages. add(" Docunent #{docunent.title} was updated");

Y ou may display the messages in the usual way, for example:

<h: messages gl obal Onl y="true"/>

6.6. Using an "explicit" conversation id

Ordinarily, Seam generates a meaningless unique id for each conversation in each session. Y ou can customize
the id value when you begin the conversation.

This feature can be used to customize the conversation id generation algorithm like so:

@Begi n(i d="#{myConver sati onl dGener at or. next1d}")
public void editHotel () { ... }

Or it can be used to assign a meaningful conversation id:

@egi n(i d="hotel #{ hotel .id}")
public String editHotel () { ... }

@Begi n(i d="hot el #{ hot el sDat aMbdel . rowDat a. i d} ")
public String selectHotel () { ... }

@Begi n(i d="entry#{parans['blogld]}")
public String viewBlogEntry() { ... }

@Begi nTask(i d="t ask#{t askl nstance.id}")
public String approveDocurment () { ... }

JBoss Seam 1.3.0.A1 94

Conversations and workspace management

Clearly, these example result in the same conversation id every time a particular hotel, blog or task is selected.
So what happens if a conversation with the same conversation id already exists when the new conversation be-
gins? Well, Seam detects the existing conversation and redirects to that conversation without running the
@egi n method again. This feature helps control the number of workspaces that are created when using work-
space management.

6.7. Workspace management

Workspace management is the ability to "switch” conversations in a single window. Seam makes workspace
management completely transparent at the level of the Java code. To enable workspace management, al you
needtodois:

» Provide description text for each view id (when using JSF or Seam navigation rules) or page node (when
using jPDL pageflows). This description text is displayed to the user by the workspace switchers.

* Include one or more of the standard workspace switcher JSP or facel ets fragments in your pages. The stand-
ard fragments support workspace management via a drop down menu, a list of conversations, or bread-
crumbs.

6.7.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring the current vi ew-i d
for that conversation. The descriptive text for the workspace is defined in afile called pages. xm that Seam ex-
pects to find in the WEB- | NF directory, right next to f aces- confi g. xni :

<pages>
<page vi ewid="/main.xhtm ">Search hotels: #{hotel Booking.searchString}</page>
<page viewid="/hotel.xhtm ">View hotel: #{hotel.name}</page>
<page vi ew i d="/book. xht ml ">Book hotel: #{hotel.name}</page>
<page viewid="/confirmxhtm ">Confirm #{booking.description}</page>
</ pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only missing func-
tionality will be the ability to switch workspaces.

6.7.2. Workspace management and jPDL pageflow

When you use ajPDL pageflow definition, Seam switches to a conversation by restoring the current jBPM pro-
cess state. Thisis amore flexible model since it allows the same vi ewi d to have different descriptions depend-
ing upon the current <page> node. The description text is defined by the <page> node:

<pagef | ow defi niti on nane="shoppi ng" >

<start-state nane="start">
<transition to="browse"/>
</start-state>

<page nane="browse" viewid="/browse.xhtm ">
<descri pti on>DVD Sear ch: #{search. searchPattern}</description>
<transition to="browse"/>
<transiti on nanme="checkout" to="checkout"/>

</ page>

<page nane="checkout" viewi d="/checkout.xhtm ">
<descri pti on>Purchase: $#{cart.total}</description>

JBoss Seam 1.3.0.A1 95

Conversations and workspace management

<transition to="checkout"/>
<transition nanme="conpl ete" to="conplete"/>
</ page>

<page nane="conpl ete" viewid="/conplete.xhtm ">
<end-conversation />
</ page>

</ pagef | ow definiti on>

6.7.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets you switch to
any current conversation, or to any other page of the application:

<h: sel ect OneMenu val ue="#{sw t cher. conversati onl dO Qut cone}" >
<f:selectltemitenlLabel ="Find | ssues" itenVal ue="findl ssue"/>
<f:selectltemitenlLabel ="Create |ssue" itenVal ue="editlssue"/>
<f:selectltens val ue="#{switcher.selectltens}"/>

</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{sw tcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two additional items
that let the user begin a new conversation.

Cnmmentnnlssue['I]fc:rF'mject[HHH] —

Find lssues
Create Issue
Browse Projects
Create Project
M& | |5sue [1] for Project [HHH]

in K Project [HHH
Comment on Issue [1] for Project [HHH]

6.7.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as atable:

<h: dat aTabl e val ue="#{conversationList}" var="entry"
rendered="#{not enpty conversationList}">
<h: col um>
<f:facet nanme="header">Wrkspace</f:facet>
<h: conmandLi nk action="#{entry.sel ect}" value="#{entry.description}"/>
<h: out put Text val ue="[current]" rendered="#{entry.current}"/>
</ h: col utm>
<h: col utm>
<f:facet nane="header">Activity</f:facet>
<h: out put Text val ue="#{entry.startDateti ne}">
<f:convertDat eTi ne type="time" pattern="hh:mm a"/>
</ h: out put Text >
<h: out put Text val ue=" - "/>
<h: out put Text val ue="#{entry. | astDatetinme}">
<f:convertDateTi ne type="time" pattern="hh:mm a"/>
</ h: out put Text >
</ h: col utm>
<h: col um>

JBoss Seam 1.3.0.A1 96

Conversations and workspace management

<f:facet nanme="header">Action</f:facet>
<h: commandButton action="#{entry.select}" val ue="#{nsg. Switch}"/>
<h: conmandBut t on acti on="#{entry. destroy}" val ue="#{nsg. Destroy}"/>
</ h: col utm>
</ h: dat aTabl e>

We imagine that you will want to customize this for your own application.

Workspace Workspace activity Action

Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | Switch || Destroy |
Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |

The conversation list is nice, but it takes up alot of space on the page, so you probably don't want to put it on
every page.

Notice that the conversation list lets the user destroy workspaces.

6.7.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs are a list of
links to conversationsin the current conversation stack:

<t:datalLi st val ue="#{conversationStack}" var="entry">

<h: out put Text val ue=" | "/>

<h: commandLi nk val ue="#{entry. description}" action="#{entry.select}"/>
</t:dataList>

Notice that here we are using the MyFaces <t : dat aLi st > component, since JSF amazingly does not provide
any standard component for looping.

Home | Find Issues | Create Issue | Project [HHH] | Issue [1] for Project [HHH]
—Issue Attnbutes |

Please refer to the Seam Issue Tracker demo to see al this functionality in action!

6.8. Conversational components and JSF component bindings

Conversational components have one minor limitation: they cannot be used to hold bindings to JSF compon-
ents. (We generally prefer not to use this feature of JSF unless absolutely necessary, since it creates a hard de-
pendency from application logic to the view.) On a postback request, component bindings are updated during
the Restore View phase, before the Seam conversation context has been restored.

To work around this use an event scoped component to store the component bindings and inject it into the con-
versation scoped component that requiresiit.

@Nane("grid")
@scope(ScopeType. EVENT)
public class Gid

{
private H nm Panel Gid htnl Panel Gri d;

/'l getters and setters

JBoss Seam 1.3.0.A1 97

Conversations and workspace management

@\anme("gridEditor™)
@cope(ScopeType. CONVERSATI ON)
public class Gi dEditor
{
@n(required=fal se)
private Gid grid;

JBoss Seam 1.3.0.A1

98

Chapter 7. Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM lets you rep-
resent a business process or user interaction as a graph of nodes representing wait states, decisions, tasks, web
pages, etc. The graph is defined using asimple, very readable, XML dialect caled jPDL, and may be edited and
visualised graphically using an eclipse plugin. jPDL is an extensible language, and is suitable for a range of
problems, from defining web application page flow, to traditional workflow management, al the way up to or-
chestration of servicesin a SOA environment.

Seam applications use jBPM for two different problems:

» Defining the pageflow involved in complex user interactions. A jPDL process definition defines the page
flow for a single conversation. A Seam conversation is considered to be a relatively short-running interac-
tion with asingle user.

« Defining the overarching business process. The business process may span multiple conversations with
multiple users. Its state is persistent in the jJBPM database, so it is considered long-running. Coordination of
the activities of multiple users is a much more complex problem than scripting an interaction with a single
user, so jBPM offers sophisticated facilities for task management and dealing with multiple concurrent
paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity. Pageflow, conversa-
tion and task all refer to a single interaction with a single user. A business process spans many tasks. Futher-
more, the two applications of jBPM are totally orthogonal. Y ou can use them together or independently or not
at all.

Y ou don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using JSF or Seam nav-
igation rules, and if your application is more data-driven that process-driven, you probably don't need jBPM.
But we're finding that thinking of user interaction in terms of a well-defined graphical representation is helping
us build more robust applications.

7.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

e Using JSF or Seam navigation rules - the statel ess navigation model
e Using jPDL - the stateful navigation model
Very simple applications will only need the stateless navigation model. Very complex applications will use

both models in different places. Each model hasits strengths and weaknesses!

7.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly to the result-
ing page of the view. The navigation rules are entirely oblivious to any state held by the application other than
what page was the source of the event. This means that your action listener methods must sometimes make de-
cisions about the page flow, since only they have access to the current state of the application.

Here is an example page flow definition using JSF navigation rules:

JBoss Seam 1.3.0.A1 99

Pageflows and business processes

<navi gati on-rul e>
<fromvi ew i d>/ nunber Guess. j sp</fromvi ewid>

<navi gati on- case>
<f r om out cone>guess</from out come>
<t 0-vi ew i d>/ nunber Quess. j sp</to-vi ewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f r om out conme>w n</ f r om out cone>
<to-viewid>wn.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<f rom out cone>| ose</from out cone>
<to-viewid>/|ose.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

</ navi gati on-rul e>

Here is the same example page flow definition using Seam navigation rules:

<page vi ew i d="/nunber Guess.jsp">

<navi gati on>
<rul e if-outconme="guess">
<redirect viewid="/nunberGuess.jsp"/>
</rul e>
<rul e if-outcome="w n">
<redirect viewid="/win.jsp"/>
</rul e>
<rule if-outcome="|ose">
<redirect viewid="/|ose.jsp"/>
</rul e>
</ navi gati on>

</ navi gati on-rul e>

If you find navigation rules overly verbose, you can return view ids directly from your action listener methods:

public String guess() {
i f (guess==randomNunber) return "/w n.jsp";
i f (++guessCount ==maxCGuesses) return "/l ose.jsp";
return null;

Note that thisresultsin aredirect. Y ou can even specify parameters to be used in the redirect:
public String search() {

return "/searchResul ts.jsp?searchPattern=#{searchActi on. searchPattern}";
}

The stateful model defines a set of transitions between a set of named, logical application states. In this model,
it is possible to express the flow of any user interaction entirely in the jPDL pageflow definition, and write ac-
tion listener methods that are compl etely unaware of the flow of the interaction.

Here is an example page flow definition using jPDL.:

<pagef | ow defi niti on name="nunber Guess" >

<start-page name="di spl ayGuess" viewid="/nunber Guess. jsp">
<redirect/>

JBoss Seam 1.3.0.A1 100

Pageflows and business processes

<transition name="guess" to="eval uat eGuess">
<action expressi on="#{nunber Guess. guess}" />
</transition>
</start-page>

<deci si on nane="eval uat eGuess" expressi on="#{nunber Guess. correct GQuess}">
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRenui ni ngGuesses"/ >

</ deci si on>

<deci si on nane="eval uat eRenai ni ngGuesses" expressi on="#{ nunber Guess. | ast Guess}">
<transition name="true" to="Iose"/>
<transition name="fal se" to="displayCGuess"/>

</ deci si on>

<page nanme="wi n" viewid="/win.jsp">
<redirect/>
<end- conversation />

</ page>

<page nane="l| ose" viewid="/lose.jsp">
<redirect/>
<end- conversation />

</ page>

</ pagef | ow definition>

= 0| B= outline 52 = B8
R
o ==5tart State=> +- @ numberGuess
O Start i
C?Decision
=
El Page |T§| quaQe::::
—+ Transition displayGuess
gQuess falze
5 ==Decision== false = ==Decision==
'Je\ralualeGuess : evaluateRemainingGuesses
frue frue
quaQe:::: ?El {{Page}::
win lose
Diagram | Design | Source

There are two things we notice immediately here:

» The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the underlying Java
code is more complex.)

» The jPDL makes the user interaction immediately understandable, without us needing to even look at the
JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the page flow), there are

JBoss Seam 1.3.0.A1 101

Pageflows and business processes

aconstrained set of possible transitions to other states. The stateless model is an ad hoc model which is suitable
to relatively unconstrained, freeform navigation where the user decides where he/she wants to go next, not the
application.

The stateful/stateless navigation distinction is quite similar to the traditional view of modal/modeless interac-
tion. Now, Seam applications are not usually modal in the simple sense of the word - indeed, avoiding applica
tion modal behavior is one of the main reasons for having conversations! However, Seam applications can be,
and often are, modal at the level of aparticular conversation. It is well-known that modal behavior is something
to avoid as much as possible; it is very difficult to predict the order in which your users are going to want to do
things! However, there is no doubt that the stateful model hasiits place.

The biggest contrast between the two models is the back-button behavior.

7.1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back, forward and re-
fresh buttons. It is the responsibility of the application to ensure that conversational state remains internally
consistent when this occurs. Experience with the combination of web application frameworks like Struts or
WebWork - that do not support a conversational model - and statel ess component models like EJB statel ess ses-
sion beans or the Spring framework has taught many devel opers that thisis close to impossible to do! However,
our experience is that in the context of Seam, where there is a well-defined conversational model, backed by
stateful session beans, it is actually quite straightforward. Usually it is as simple as combining the use of no-
conver sati on-vi ewi d with null checks at the beginning of action listener methods. We consider support for
freeform navigation to be almost always desirable.

In this case, the no- conver sati on-vi ewi d declaration goesin pages. xni . It tells Seam to redirect to a differ-
ent page if arequest originates from a page rendered during a conversation, and that conversation no longer ex-
ists:

<page vi ewid="/checkout.xhtm "
no- conversation-vi ewid="/min. xhtm "/>

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition back to a previ-
ous state. Since the stateful model enforces a defined set of transitions from the current state, back buttoning is
be default disallowed in the stateful model! Seam transparently detects the use of the back button, and blocks
any attempt to perform an action from a previous, "stale" page, and simply redirects the user to the "current"
page (and displays a faces message). Whether you consider this a feature or a limitation of the stateful model
depends upon your point of view: as an application developer, it is a feature; as a user, it might be frustrating!
Y ou can enable backbutton navigation from a particular page node by setting back="enabl ed" .

<page nane="checkout"
vi ew i d="/ checkout . xht m "
back="enabl ed" >
<redirect/>
<transition to="checkout"/>
<transition name="conpl ete" to="conplete"/>
</ page>

This allows backbuttoning fromthe checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered during a pageflow,
and the conversation with the pageflow no longer exists. In this case, the no- conversati on- vi ewi d declara-
tion goes into the pageflow definition:

<page nane="checkout"
vi ewi d="/ checkout . xhtm "

JBoss Seam 1.3.0.A1 102

Pageflows and business processes

back="enabl ed"
no- conversation-vi ewid="/min. xhtnm ">
<redirect/>
<transition to="checkout"/>
<transition name="conpl ete" to="conplete"/>
</ page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when to prefer one
model over the other.

7.2. Using jPDL pageflows

7.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and tell them where to find our pageflow definition.
We can specify this Seam configuration in conponent s. xni .

<core:jbpnr
<cor e: pagef | ow definitions>
<val ue>pagef | ow. j pdl . xm </ val ue>
</ core: pagef | ow definitions>
</ core:|jbpn>

Thefirst lineinstalls jBPM, the second points to ajPDL-based pageflow definition.

7.2.2. Starting pageflows

We "start” a jPDL-based pageflow by specifying the name of the process definition using a @segin,
@Begi nTask Or @t ar t Task annotation:

@egi n(pagef | ow="nunber guess")
public void begin() { ... }

Alternatively we can start a pageflow using pages.xml:

<page>
<begi n- conver sati on pagef| ow="nunber guess"/ >
</ page>

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @act ory Or @r eat e method,
for example—we consider ourselves to be aready at the page being rendered, and use a<st art - page> node as
the first node in the pageflow, asin the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action listener de-
termines which is the first page to be rendered. In this case, we use a <start - st at e> as the first node in the
pageflow, and declare atransition for each possible outcome:

<pagef | ow defi ni ti on name="vi ewkdi t Docunent " >

<start-state nanme="start">
<transition name="docunent Found" to="di spl ayDocunment"/>
<transition name="docunent Not Found" to="not Found"/>
</start-state>

<page nane="di spl ayDocunent" vi ewi d="/docunent.jsp">
<transition name="edit" to="editDocunent"/>

JBoss Seam 1.3.0.A1 103

Pageflows and business processes

<transition nane="done" to="nain"/>
</ page>

<page name="not Found" viewid="/404.jsp">
<end- conversation/ >
</ page>

</ pagef | ow definition>

7.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess.jsp">
<redirect/>
<transition name="guess" to="eval uat eGuess">
<action expressi on="#{nunber Guess. guess}" />
</transition>
</ page>

Thevi ewi d isthe JSF view id. The <redi rect / > element has the same effect as <r edi rect / > in a JSF naviga-
tion rule: namely, a post-then-redirect behavior, to overcome problems with the browser's refresh button. (Note
that Seam propagates conversation contexts over these browser redirects. So there is no need for a Ruby on
Rails style "flash" construct in Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or command link in
nunber Guess. j sp.

<h: commandBut t on type="subm t" val ue="CGuess" acti on="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action by calling the
guess() method of the nunber Guess component. Notice that the syntax used for specifying actionsin the jPDL
isjust afamiliar JSF EL expression, and that the transition action handler is just a method of a Seam compon-
ent in the current Seam contexts. So we have exactly the same event model for jBPM events that we already
have for JSF events! (The One Kind of Stuff principle.)

In the case of a null outcome (for example, a command button with no acti on defined), Seam will signal the
transition with no name if one exists, or else simply redisplay the page if all transitions have names. So we
could dlightly simplify our example pageflow and this button:

<h: conmandBut t on type="submt" val ue="CGuess"/>

Would fire the following un-named transition:

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess. jsp">
<redirect/>
<transition to="eval uat eGuess" >
<action expressi on="#{nunber Guess. guess}" />
</transition>
</ page>

It is even possible to have the button call an action method, in which case the action outcome will determine the
transition to be taken:

<h: conmandBut t on type="subm t" val ue="CGuess" acti on="#{nunber Guess. guess}"/>

JBoss Seam 1.3.0.A1 104

Pageflows and business processes

<page nane="di spl ayGuess" vi ew i d="/nunber Cuess.jsp">
<transition name="correct Guess" to="wn"/>
<transition name="incorrect Guess" to="eval uat eGuess"/>
</ page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow out of the
pageflow definition and back into the other components. It is much better to centralize this concern in the page-
flow itself.

7.2.4. Controlling the flow

Usualy, we don't need the more powerful features of jPDL when defining pageflows. We do need the
<deci si on> node, however:

<deci si on nane="eval uat eGuess" expressi on="#{ nunber Guess. correct Quess}">
<transition name="true" to="w n"/>
<transition name="fal se" to="eval uat eRenai ni ngGuesses"/ >

</ deci si on>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

7.2.5. Ending the flow

We end the conversation using <end- conver sati on> or @nd. (In fact, for readability, use of both is encour-
aged.)

<page nane="wi n" viewid="/win.jsp">
<redirect/>
<end- conversation/ >

</ page>

Optionaly, we can end a task, specify ajBPM transiti on hame. In this case, Seam will signal the end of the
current task in the overarching business process.

<page name="wi n" viewid="/wn.jsp">
<redirect/>
<end-task transition="success"/>
</ page>

7.3. Business process management in Seam

A business processis awell-defined set of tasks that must be performed by users or software systems according
to well-defined rules about who can perform atask, and when it should be performed. Seam's jBPM integration
makes it easy to display lists of tasks to users and let them manage their tasks. Seam also lets the application
store state associated with the business process in the BUSI NESS_PROCESS context, and have that state made per-
sistent viajBPM variables.

A simple business process definition looks much the same as a page flow definition (One Kind of Stuff), except
that instead of <page> nodes, we have <t ask- node> nodes. In a long-running business process, the wait states
are where the system is waiting for some user to log in and perform a task.

<process-definition nane="t odo" >

<start-state nanme="start">
<transition to="todo"/>

JBoss Seam 1.3.0.A1 105

Pageflows and business processes

</start-state>

<t ask- node name="t odo" >
<task name="t odo" description="#{todoLi st.description}">
<assi gnment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>
</t ask- node>

<end- st at e nane="done"/ >

</ process-definition>

[s Select = -

| 5|3
3 Marquee =
. <<Start State>> Property Value
2 Start O ctart \ame
o State 1 Source start
_
End i Target todo
#[2 Fork
sk Join s <<Task Node=>
7 Decision = todo
MNode
¥ Task Node
— Transition
=<fnd State==

done

Diagram | Swimlanes Design | Source

It is perfectly possible that we might have both jPDL business process definitions and jPDL pageflow defini-
tions in the same project. If so, the relationship between the two is that a single <t ask> in a business process
corresponds to awhole pageflow <pagef | ow def i ni ti on>

7.4. Using jPDL business process definitions

7.4.1. Installing process definitions
We need to install jBPM, and tell it where to find the business process definitions:

<core:j bpnp
<core: process-definitions>
<val ue>t odo. j pdl . xm </ val ue>
</ core: process-definitions>
</ core:jbpnm

7.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and group act-
or ids. We specify the current actor ids using the built in Seam component named act or :

@n Actor actor;

JBoss Seam 1.3.0.A1 106

Pageflows and business processes

public String login() {

actor.setld(user.getUserNanme());
act or. get G oupActorlds().addAl | (user.get G oupNanmes());

7.4.3. Initiating a business process

To initiate a business process instance, we use the @ eat ePr ocess annotation:

@ eat eProcess(definition="todo")
public void createTodo() { ... }

Alternatively we can initiate a business process using pages.xmil:

<page>
<creat e-process definition="todo" />
</ page>

7.4.4. Task assignment

When a process starts, task instances are created. These must be assigned to users or user groups. We can either
hardcode our actor ids, or delegate to a Seam component:

<task nanme="todo" description="#{todoList.description}">
<assi gnment actor-id="#{actor.id}"/>
</ task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to a pool:

<task name="t odo" description="#{todoLi st.description}">
<assi gnment pool ed- act or s="enpl oyees"/ >
</task>

7.45. Task lists

Severa built-in Seam components make it easy to display task lists. The pool edTaskl nst ancelLi st isalist of
pooled tasks that users may assign to themselves:

<h: dat aTabl e val ue="#{pool edTaskl nst anceLi st}" var="task">
<h: col um>
<f:facet name="header">Description</f:facet>
<h: out put Text val ue="#{task. description}"/>
</ h: col utm>
<h: col um>
<s:link action="#{pool edTask. assi gnToCurrent Actor}" val ue="Assi gn" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>

Note that instead of <s: | i nk> we could have used a plain JSF <h: commandLi nk>:

<h: commandLi nk acti on="#{ pool edTask. assi gnToCurrent Actor}">
<f: param name="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>

JBoss Seam 1.3.0.A1 107

Pageflows and business processes

The pool edTask component is a built-in component that simply assigns the task to the current user.

The t askl nst ancelLi st For Type component includes tasks of a particular type that are assigned to the current
user:

<h: dat aTabl e val ue="#{t askl nstanceli st For Type['todo']}" var="task">
<h: col utm>
<f:facet nane="header">Description</f:facet>
<h: out put Text val ue="#{task. description}"/>
</ h: col utm>
<h: col utm>
<s:link action="#{todoList.start}" value="Start Work" tasklnstance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>

7.4.6. Performing a task

To begin work on atask, we use either @t art Task Or @egi nTask on the listener method:

@t ar t Task
public String start() { ... }

Alternatively we can begin work on atask using pages.xml:

<page>
<start-task />
</ page>

These annotations begin a specia kind of conversation that has significance in terms of the overarching busi-
ness process. Work done by this conversation has access to state held in the business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@ndTask(transiti on="conpl et ed")
public String conpleted() { ... }

Alternatively we can use pages.xml:

<page>
<end-task transition="conpleted" />
</ page>

(Alternatively, we could have used <end- conver sat i on> as shown above.)

At this point, jBPM takes over and continues executing the business process definition. (In more complex pro-
cesses, several tasks might need to be completed before process execution can resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features that jBPM
provides for managing complex business processes.

JBoss Seam 1.3.0.A1 108

Chapter 8. Seam and Object/Relational Mapping

Seam provides extensive support for the two most popular persistence architectures for Java: Hibernate3, and
the Java Persistence APl introduced with EJB 3.0. Seam's unique state-management architecture allows the
most sophisticated ORM integration of any web application framework.

8.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of the previous generation
of Java application architectures. The state management architecture of Seam was originally designed to solve
problems relating to persistence—in particular problems associated with optimistic transaction processing.
Scalable online applications always use optimistic transactions. An atomic (database/JTA) level transaction
should not span a user interaction unless the application is designed to support only a very small number of
concurrent clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence context which
spanned an optimistic transaction.

Unfortunately, the so-called "stateless' architectures that preceded Seam and EJB 3.0 had no construct for rep-
resenting an optimistic transaction. So, instead, these architectures provided persistence contexts scoped to the
atomic transaction. Of course, this resulted in many problems for users, and is the cause of the number one user
complaint about Hibernate: the dreaded Lazy! ni ti al i zat i onExcepti on. What we need is a construct for rep-
resenting an optimistic transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful session bean) with
an extended persistence context scoped to the lifetime of the component. Thisis a partial solution to the prob-
lem (and is auseful construct in and of itself) however there are two problems:

e Thelifecycle of the stateful session bean must be managed manually via code in the web tier (it turns out
that thisis a subtle problem and much more difficult in practice than it sounds).

e Propagation of the persistence context between stateful components in the same optimistic transaction is
possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components scoped to the
conversation. (Most conversations actually represent optimistic transactions in the data layer.) Thisis sufficient
for many simple applications (such as the Seam booking demo) where persistence context propagation is not
needed. For more complex applications, with many loosly-interacting components in each conversation,
propagation of the persistence context across components becomes an important issue. So Seam extends the
persistence context management model of EJB 3.0, to provide conversation-scoped extended persistence con-
texts.

8.2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start a transaction
transparently when the bean is invoked, and end it when the invocation ends. If we write a session bean method
that acts as a JSF action listener, we can do al the work associated with that action in one transaction, and be
surethat it is committed or rolled back when we finish processing the action. Thisis a great feature, and all that
is needed by some Seam applications.

JBoss Seam 1.3.0.A1 109

Seam and Object/Relational Mapping

However, there is a problem with this approach. A Seam application may not perform all data access for are-
quest from a single method call to a session bean.

e The request might require processing by several 1oody-coupled components, each of which is called inde-
pendently from the web layer. It is common to see several or even many calls per request from the web lay-
er to EJB components in Seam.

¢ Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation problems when
our application is processing many concurrent requests. Certainly, all write operations should occur in the same
transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In the Hibernate
community, "open session in view" was historically even more important because frameworks like Spring use
transaction-scoped persistence contexts. So rendering the view would cause Lazylniti al i zati onExcepti onS
when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request. There are several
problems with this implementation, the most serious being that we can never be sure that a transaction is suc-
cessful until we commit it—but by the time the "open session in view" transaction is committed, the view is
fully rendered, and the rendered response may aready have been flushed to the client. How can we notify the
user that their transaction was unsuccessful ?

Seam solves both the transaction isolation problem and the association fetching problem, while working around
the problems with "open session in view". The solution comesin two parts:

¢ use an extended persistence context that is scoped to the conversation, instead of to the transaction

e use two transactions per request; the first spans the beginning of the update model values phase until the
end of the invoke application phase; the second spans the render response phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But first we need to
tell you how to enable Seam transaction management. Note that you can use conversation-scoped persistence
contexts without Seam transaction management, and there are good reasons to use Seam transaction manage-
ment even when you're not using Seam-managed persistence contexts. However, the two facilities were de-
signed to work together, and work best when used together.

8.2.1. Enabling Seam-managed transactions

To make use of Seam managed transactions, you need to use Transact i onal SeanPhaseli st ener in place of
SeanPhaseli st ener.

<lifecycl e>
<phase-|i st ener>
org.j boss. seam j sf. Transact i onal SeanPhaselLi st ener
</ phase-1|i st ener>
</lifecycle>

Seam transaction management is useful even if you're using EJB 3.0 container-managed persistence contexts.
But it is especially useful if you use Seam outside a Java EE 5 environment, or in any other case where you
would use a Seam-managed persistence context.

JBoss Seam 1.3.0.A1 110

Seam and Object/Relational Mapping

8.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE 5 environment, you can't rely upon the container to manage the per-
sistence context lifecycle for you. Even if you are in an EE 5 environment, you might have a complex applica-
tion with many loosly coupled components that collaborate together in the scope of a single conversation, and
in this case you might find that propagation of the persistence context between component is tricky and error-
prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session (for Hibernate)
in your components. A Seam-managed persistence context is just a built-in Seam component that manages an
instance of Ent i t yManager Of Sessi on in the conversation context. You can inject it with @ n.

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam is able to perform
an optimization that EJB 3.0 specification does not allow containers to use for container-managed extended
persistence contexts. Seam supports transparent failover of extended persisence contexts, without the need to
replicate any persistence context state between nodes. (We hope to fix this oversight in the next revision of the
EJB spec.)

8.3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In conponent s. xni , we can write:

<cor e: managed- per si st ence- cont ext nane="booki ngDat abase"
auto-create="true"
persi stence-unit-jndi-nane="java:/EntityManager Fact ori es/ booki ngDhat a"/ >

This configuration creates a conversation-scoped Seam component named booki ngDat abase that manages the
lifecycle of EntityManager instances for the persistence unit (EntityManager Fact ory instance) with JNDI
namej ava: / Enti t yManager Fact ori es/ booki ngDat a.

Of course, you need to make sure that you have bound the Enti t yManager Fact ory into JNDI. In JBoss, you
can do this by adding the following property setting to per si st ence. xm .

<property nane="jboss.entity.nmanager.factory.jndi.nanme"
val ue="j ava: / Enti t yManager Fact ori es/ booki ngbDat a"/ >

Now we can have our Ent i t yManager injected using:

@n EntityManager booki ngDat abase;

8.3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions are similar. In conponent s. xm :

<cor e: hi ber nat e- sessi on-factory name="hi ber nat eSessi onFact ory"/ >
<cor e: managed- hi ber nat e- sessi on name="booki ngDat abase"

aut o-create="true"
sessi on-factory-jndi - nane="j ava: / booki ngSessi onFact ory"/ >

Wherej ava: / booki ngSessi onFact ory isthe name of the session factory specified in hi ber nate. cf g. xmi .

<sessi on-factory nane="j ava:/booki ngSessi onFact ory" >
<property nane="transaction.flush_before_conpletion">true</property>

JBoss Seam 1.3.0.A1 111

Seam and Object/Relational Mapping

<property nane="connection.rel ease_node">after_st at ement </ property>

<property nanme="transacti on. manager _| ookup_cl ass">org. hi bernate. transacti on. JBossTransact i onManag«
<property nane="transaction.factory_cl ass">org. hi bernate.transacti on. JTATransacti onFact or y</ pr opel
<property nanme="connecti on. dat asour ce">j ava: / booki ngDat asour ce</ property>

</ sessi on-factory>

Note that Seam does not flush the sesson, so you should aways enable hibern-
ate.transaction. fl ush_before_conpl eti on to ensure that the session is automatically flushed before the
JTA transaction commits.

We can now have a managed Hibernate Sessi on injected into our JavaBean components using the following
code:

@n Session booki ngDat abase;

8.3.3. Seam-managed persistence contexts and atomic conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions that span mul-
tiple requests to the server without the need to use the ner ge() operation , without the need to re-load data at
the beginning of each request, and without the need to wrestle with the Lazyl niti al i zati onException Of
NonUni queObj ect Excepti on.

As with any optimistic transaction management, transaction isolation and consistency can be achieved via use
of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy to use optimistic locking, by
providing the @/er si on annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of each transaction.
This is sometimes the desired behavior. But very often, we would prefer that all changes are held in memory
and only written to the database when the conversation ends successfully. This alows for truly atomic conver-
sations. As the result of atruly stupid and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase
members of the EJB 3.0 expert group, there is currently no simple, usable and portable way to implement atom-
ic conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor extension to
the FI ushmodeTypes defined by the specification, and it is our expectation that other vendors will soon provide
asimilar extension.

Seam lets you specify Fl ushMbdeType. MANUAL When beginning a conversation. Currently, this works only when
Hibernate is the underlying persistence provider, but we plan to support other equivalent vendor extensions.

@n EntityManager em //a Seam nmanaged persi stence context

@egi n(f | ushMode=MANUAL)
public void begi nCl ai MW zard() {

claim= emfind(daimclass, claind);
}

Now, the cl ai m object remains managed by the persistence context for the rest ot the conversation. We can
make changes to the claim:

public void addPartyTod ai m() {
Party party =;
cl ai maddParty(party);

}

But these changes will not be flushed to the database until we explicitly force the flush to occur:

JBoss Seam 1.3.0.A1 112

Seam and Object/Relational Mapping

@nd

public void conmitd ainm() {
em flush();

}

8.4. Using the JPA "delegate"

The Enti t yManager interface lets you access a vendor-specific APl via the get Del egat e() method. Naturally,
the most interesting vendor is Hibernate, and the most powerful delegate interface is or g. hi ber nat e. Sessi on.
Y ou'd be nuts to use anything else. Trust me, I'm not biased at all.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just not very
bright), you'll almost certainly want to use the delegate in your Seam components from time to time. One ap-
proach would be the following:

@n EntityManager entityManager;
@r eat e

public void init() {
((Session) entityManager.getDel egate()).enabl eFilter("currentVersions");
}

But typecasts are unguestionably the ugliest syntax in the Java language, so most people avoid them whenever
possible. Here's a different way to get at the delegate. First, add the following line to conponent s. xn :

<factory name="session"
scope="STATELESS"
aut o-create="true"
val ue="#{enti tyManager . del egate}"/ >

Now we can inject the session directly:

@n Session session;
@Cr eat e

public void init() {
sessi on. enabl eFi |l ter ("current Versions");
}

8.5. Using EL in EJB-QL/HQL

Seam proxies the Ent i t yManager Or Sessi on object whenever you use a Seam-managed persistence context or
inject a container managed persistence context using @er si st enceCont ext . This lets you use EL expressions
inyour query strings, safely and efficiently. For example, this:

User user = emcreateQery("from User where username=#{user.usernane}")
.get Si ngl eResul t();

is equivalent to:

User user = em createQuery("from User where username=: username")
. set Par anmet er ("user nane", user.getUsernane())
.get Si ngl eResul t();

Of course, you should never, ever writeit like this:

JBoss Seam 1.3.0.A1 113

Seam and Object/Relational Mapping

User user = emcreateQery("from User where usernanme=" + user.getUsernane()) //BAD
.get Si ngl eResul t ();

(Itisinefficient and vulnerable to SQL injection attacks.)

8.6. Using Hibernate filters

The coolest, and most unique, feature of Hibernate isfilters. Filters let you provide arestricted view of the data
in the database. Y ou can find out more about filters in the Hibernate documentation. But we thought we'd men-
tion an easy way to incorporate filters into a Seam application, one that works especially well with the Seam
Application Framework.

Seam-managed persistence contexts may have alist of filters defined, which will be enabled whenever an En-
ti tyManager or Hibernate Session is first created. (Of course, they may only be used when Hibernate is the
underlying persistence provider.)

<core:filter name="regionFilter">
<cor e: name>r egi on</ cor e: nanme>
<cor e: par anet er s>
<key>r egi onCode</ key>
<val ue>#{r egi on. code} </ val ue>
</ core: par anet er s>
</core:filter>

<core:filter name="currentFilter">
<cor e: name>cur r ent </ cor e: nanme>
<core: par anet er s>
<key>dat e</ key>
<val ue>#{ current Dat e} </ val ue>
</ core: par anet er s>
</core:filter>

<cor e: managed- per si st ence- cont ext name="per sonDat abase"
persi stence-unit-jndi-nanme="java:/EntityMinager Fact ori es/ per sonDat abase" >
<core:filters>
<val ue>#{regi onFi |l ter}</val ue>
<val ue>#{currentFilter}</val ue>
</core:filters>
</ cor e: managed- per si st ence- cont ext >

JBoss Seam 1.3.0.A1 114

Chapter 9. JSF form validation in Seam

In plain JSF, validation is defined in the view:

<h: f or m»
<h: messages/ >

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true">
<my: val i dat eCountry/ >
</ h:i nput Text >

</ di v>
<di v>
Zi p code:

<h:i nput Text val ue="#{l ocati on. zi p}" required="true">
<ny:val i dat ezi p/ >
</ h: i nput Text >
</div>

<h: commandBut t on/ >
</ h:fornmp

In practice, this approach usually violates DRY, since most "validation" actually enforces constraints that are
part of the data model, and exist all the way down to the database schema definition. Seam provides support for
model-based constraints defined using Hibernate Validator.

Let's start by defining our constraints, on our Locat i on class:

public class Location {
private String country;
private String zip;

@\ot Nul |

@.engt h(max=30)

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@\ot Nul |

@.engt h(max=6)

@attern("Md*$")

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints instead of the
ones built into Hibernate Validator:

public class Location {
private String country;
private String zip;

@\ot Nul |

@ountry

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@lot Nul |

@i pCode

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

JBoss Seam 1.3.0.A1 115

JSF form validation in Seam

Whichever route we take, we no longer need to specify the type of validation to be used in the JSF page. In-
stead, we can use<s: val i dat e> t0 validate against the constraint defined on the model object.

<h: f or m»
<h: nessages/ >

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true">
<s:validate/>
</ h: i nput Text >

</div>
<di v>
Zi p code:

<h:i nput Text val ue="#{l ocation. zip}" required="true">
<s:validate/>
</ h:i nput Text >
</ di v>
<h: conmandBut t on/ >
</ h: fornmp

Note: specifying @ot Nul I on the model does not eliminate the requirement for r equi red="t rue" to appear on
the control! Thisis due to alimitation of the JSF validation architecture.

This approach defines constraints on the model, and presents constraint violations in the view—a significantly
better design.

However, it is not much less verbose than what we started with, so let'stry <s: val i dat eAl | >:

<h: f or
<h: messages/ >

<s:val i dateAl | >

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true"/>
</ di v>
<di v>
Zi p code:
<h:i nput Text val ue="#{l ocation. zi p}" required="true"/>
</ di v>

<h: commandBut t on/ >
</s:validateAll>

</ h:fornmp

Thistag simply adds an <s: val i dat e> to every input in the form. For alarge form, it can save alot of typing!

Now we need to do something about displaying feedback to the user when validation fails. Currently we are
displaying all messages at the top of the form. What we would really like to do is display the message next to
the field with the error (thisis possible in plain JSF), highlight the field and label (thisis not possible) and, for
good measure, display some image next the the field (also not possible). We also want to display alittle colored
asterisk next to the label for each required form field.

That's quite a lot of functionality we need for each field of our form. We wouldn't want to have to specify hig-

JBoss Seam 1.3.0.A1 116

JSF form validation in Seam

lighting and the layout of the image, message and input field for every field on the form. So, instead, we'll spe-
cify the common layout in afacelets template:

<ui : conmposi tion xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: ui ="http://java. sun.con j sf/facel ets"
xm ns: h="http://java. sun.conljsf/htm"
xm ns: f="http://java. sun. conij sf/core"
xm ns:s="http://jboss. conm products/seamtaglib">

<di v>

<s: | abel styleC ass="#{invalid? error':""'}">

<ui :insert name="|abel"/>

<s:span styl eC ass="requi red" rendered="#{required}">*</s:span>
</s: | abel >

<h: graphi cl mage src="ing/error.gif" rendered="#{invalid}"/>
<s:validateAll >
<ui :insert/>
</s:validateAl l>
</ span>

<s: message styleC ass="error"/>
</ div>

</ ui : conposi tion>

We can include this template for each of our form fields using <s: decor at e>.

<h: f or m»
<h: nessages gl obal Onl y="true"/>

<s:decorate tenplate="edit.xhtm ">

<ui : defi ne name="| abel ">Country: </ ui: defi ne>

<h:i nput Text val ue="#{l ocation.country}" required="true"/>
</ s: decor at e>

<s:decorate tenplate="edit.xhtm ">

<ui : defi ne name="1abel ">Zi p code: </ ui : defi ne>

<h:i nput Text val ue="#{l ocati on. zi p}" required="true"/>
</ s: decor at e>

<h: commandBut t on/ >

</ h:fornmpe

Finally, we can use Ajax4JSF to display validation messages as the user is navigating around the form:

<h: f or n»
<h: messages gl obal Onl y="true"/>

<s:decorate id="countryDecoration" tenplate="edit.xhtm ">
<ui : defi ne nanme="I abel ">Country: </ ui : defi ne>
<h:i nput Text val ue="#{l ocation.country}" required="true">
<a: support event="onblur" reRender="countryDecoration" bypassUpdates="true"/>
</ h:i nput Text >
</ s: decor at e>

<s: decorate id="zi pDecoration" tenplate="edit.xhtm ">
<ui : define name="I| abel ">Zi p code: </ ui : defi ne>
<h: i nput Text val ue="#{l ocati on. zi p}" required="true">
<a:support event="onblur" reRender="zi pDecoration" bypassUpdates="true"/>
</ h: i nput Text >
</ s: decor at e>

JBoss Seam 1.3.0.A1 117

JSF form validation in Seam

<h: commandBut t on/ >

</ h:fornmp

It's better style to define explicit ids for important controls on the page, especialy if you want to do automated
testing for the Ul, using some toolkit like Selenium. If you don't provide explicit ids, JSF will generate them,
but the generated values will change if you change anything on the page.

<h:formid="forn>
<h: nessages gl obal Onl y="true"/>

<s: decorate id="countryDecoration" tenplate="edit.xhtm ">
<ui : defi ne name="| abel ">Country: </ ui: defi ne>
<h:i nput Text id="country" val ue="#{l ocation.country}" required="true">
<a: support event="onblur" reRender="countryDecoration" bypassUpdates="true"/>
</ h: i nput Text >
</ s: decor at e>

<s:decorate id="zipDecoration" tenplate="edit.xhtm ">
<ui : define name="1abel ">Zi p code: </ ui : defi ne>
<h:i nput Text id="zip" value="#{location.zip}" required="true">
<a: support event="onblur" reRender="zi pDecoration" bypassUpdates="true"/>
</ h:i nput Text >
</ s: decor at e>

<h: commandBut t on/ >

</ h: fornp

And what if you want to specify a different message to be displayed when validation fails? You can use the
Seam message bundle (and al it's goodies like el expressions inside the message, and per-view message
bundles) with the Hibernate Validator:

public class Location {
private String nane;
private String zip;

/|l Getters and setters for nanme

@\ot Nul |

@.engt h(max=6)

@i pCode(message="#{ nessages|[' | ocati on. zi pCode.invalid]}")
public String getZip() { return zip; }

public void setZip(String z) { zip = z; }

| ocation. zi pCode.invalid = The zip code is not valid for #{location. nane}

JBoss Seam 1.3.0.A1 118

Chapter 10. Groovy integration

One aspect of JBoss Seam is its RAD (Rapid Application Development) capability. While not synonymous
with RAD, one interesting tool in this space is dynamic languages. Until recently, choosing a dynamic language
was required choosing a completely different development platform (a development platform with a set of APIs
and a runtime so great that you would no longer want to use you old legacy Java [sic] APIs anymore, which
would be lucky because you would be forced to use those proprietary APIs anyway). Dynamic languages built
on top of the Java Virtual Machine, and Groovy [http://groovy.codehaus.org] in particular broke this approach
insilos.

JBoss Seam now unites the dynamic language world with the Java EE world by seamlessly integrating both
static and dynamic languages. JBoss Seam lets the application developer use the best tool for the task, without
context switching. Writing dynamic Seam components is exactly like writing regular Seam components. Y ou
use the same annotations, the same APIs, the same everything.

10.1. Groovy introduction

Groovy is an agile dynamic language based on the Java language but with additional features inspired by Py-
thon, Ruby and Smalltalk. The strengths of Groovy are twofold:

« Javasyntax is supported in Groovy: Java code is Groovy code, making the learning curve very smooth

e Groovy objects are Java objects, and Groovy classes are Java classes. Groovy integrates smoothly with ex-
isting Java libraries and frameworks.

TODO: write aquick overview of the Groovy syntax add-on

10.2. Writing Seam applications in Groovy

There is not much to say about it. Since a Groovy object is a Java object, you can virtually write any Seam
component, or any class for what it worth, in Groovy and deploy it. You can also mix Groovy classes and Java
classes in the same application.

10.2.1. Writing Groovy components

As you should have noticed by now, Seam uses annotations heavily. Be sure to use Groovy 1.1 Betal or above
for annotation support. Here are some exampl e of groovy code used in a Seam application.

10.2.1.1. Entity

@ntity
@Nane("hotel ")

class Hotel inplenents Serializable

{
@d @zener at edVal ue

Long id

@.engt h(max=50) @\ot Nul |
String nane

@engt h(max=100) @Not Nul |
String address

JBoss Seam 1.3.0.A1 119

http://groovy.codehaus.org

Groovy integration

@engt h(max=40) @Not Nul |
String city

@engt h(m n=2, max=10) @\ot Nul |
String state

@.engt h(m n=4, max=6) @Not Nul |
String zip

@engt h(m n=2, max=40) @\ot Nul |
String country

@Col umm(pr eci si on=6, scal e=2)
Bi gDeci mal price

@verride
String toString()
{

}

return "Hotel (${nane}, ${address}, ${city}, ${zi p})"

Groovy natively support the notion of properties (getter/setter), so there is no need to explicitly write verbose
getters and setters: in the previous example, the hotel class can be accessed from Javaashotel . get Gity(), the
getters and setters being generated by the Groovy compiler. This type of syntactic sugar makes the entity code
Very concise.

Some temporary gotchas: Groovy 1.1 Betal does not (yet) support generics. One negative effect of thisis that
entity relationships have no built-in type information. It is necessary to use the targetEntity attribute of the ap-
propriate @ ToMany annotation instead of simply using a generic type definition like Col | ect i on<Enti ty>. For
the same reason, you won't be able to benefit from the very useful Chapter 11, The Seam Application Frame-
work yet. The good news is that support for generics is targeted for Groovy 1.1 (Groovy 1.1 Beta2 at the time
of writing).

10.2.1.2. Seam component

Writing Seam components in Groovy isin no way different than in Java: annotations are used to mark the class
as a Seam component.

@cope(ScopeType. SESSI ON)
@Nane(" booki ngLi st™)
cl ass Booki ngLi st Action inplenents Serializable
{
@n EntityManager em
@n User user
@pat aModel Li st <Booki ng> booki ngs
@at aModel Sel ecti on Booki ng booki ng

@ogger Log |og

@-actory public void getBookings()

{
booki ngs = emcreateQuery('""'
sel ect b from Booking b
where b.user.usernanme = :usernane
order by b.checkinDate'"'")
. set Paranet er ("usernane", user.username)
.getResul tList()
}
public void cancel ()
{

| og.info("Cancel booking: #{bookingList.booking.id} for #{user.usernane}")
Booki ng cancel | ed = em fi nd(Booki ng. cl ass, booki ng. i d)
if (cancelled !'= null) emrenove(cancelled)

JBoss Seam 1.3.0.A1 120

Groovy integration

get Booki ngs()

FacesMessages. i nst ance() . add(" Booki ng cancell ed for confirmati on nunber #{booki ngLi st. booki ng.

10.2.2. seam-gen

Seam gen has a transparent integration with Groovy. Y ou can write Groovy code in seam-gen backed projects
without any additional infrastructure requirement. When writing a Groovy entity, smply place your . gr oovy
filesinsrc/ nodel . Unsurprisingly, when writing an action, ssimply place your . gr oovy filesinsrc/ acti on.

10.3. Deployment

Deploying Groovy classes is very much like deploying Java classes (surprisingly, no need to write nor comply
with a 3-letter composite specification to support a multi-language component framework).

Beyond standard deployments, JBoss Seam has the ability, at development time, to redeploy JavaBeans Seam
component classes without having to restart the application, saving alot of time in the development / test cycle.
The same support is provided for GroovyBeans Seam components when the . gr oovy files are deployed.

10.3.1. Deploying Groovy code

A Groovy classis aJava class, with a bytecode representation just like a Java class. To deploy, a Groovy entity,
a Groovy Session bean or a Groovy Seam component, a compilation step is necessary. A common approach is
to use the gr oovyc ant task. Once compiles, a Groovy classisin no way different than a Java class and the ap-
plication server will treat them equally. Note that this allow a seamless mix of Groovy and Java code.

10.3.2. Native .groovy file deployment at development time

JBoss Seam natively supports the deployment of . gr oovy files (ie without compilation) in incremental hotde-
ployment mode (development only). This enables a very fast edit/test cycle. To set up .groovy deployments,
follow the configuration at Section 2.7, “ Seam and incremental hot deployment” and deploy your Groovy code
(. groovy files) into the veB- | NF/ dev directory. The GroovyBean components will be picked up incrementally
with no need to restart the application (and obviously not the application server either).

Be aware that the native .groovy file deployment suffers the same limitations as the regular Seam hotdeploy-
ment:

« The components must be JavaBeans or GroovyBeans. They cannot be EJB3 bean
« Entities cannot be hotdepl oyed
* The hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/ dev

e Seam debug mode must be enabled

10.3.3. seam-gen

JBoss Seam 1.3.0.A1 121

Groovy integration

Seam-gen transparently supports Groovy files deployment and compilation. This includes the native . gr oovy
file deployment in devel opment mode (compilation-less). If you create a seam-gen project of type WAR, Java
and Groovy classes in src/ acti on will automatically be candidate for the incremental hot deployment. If you
are in production mode, the Groovy files will simply be compiled before deployment.

You will find a live example of the Booking demo written completely in Groovy and supporting incremental
hot deployment in exanpl es/ gr oovybooki ng.

JBoss Seam 1.3.0.A1 122

Chapter 11. The Seam Application Framework

Seam makes it really easy to create applications by writing plain Java classes with annotations, which don't
need to extend any special interfaces or superclasses. But we can simplify some common programming tasks
even further, by providing a set of pre-built components which can be re-used either by configuration in com
ponents. xn (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing basic database
access in aweb application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes that are easy to
understand and extend. The "magic" is in Seam itself—the same magic you use when creating any Seam ap-
plication even without using this framework.

11.1. Introduction

The components provided by the Seam application framework may be used in one of two different approaches.
The first way is to install and configure an instance of the component in conponents. xm , just like we have
done with other kinds of built-in Seam components. For example, the following fragment from conpon-
ents. xn installs acomponent which can perform basic CRUD operations for aPer son entity:

<framework: entity-home nane="personHone"
entity-cl ass="eg. Person"
entity- manager =" #{ per sonDat abase}" >
<f ramewor k: i d>#{ par am per sonl d} </ f ranewor k: i d>
</framework: entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@5t at ef ul

@Nane(" per sonHone")

public class PersonHonme extends EntityHome<Person> i npl enents Local Per sonHore {
@Request Paranmeter String personld;
@n EntityManager personDat abase;

public Qoject getld() { return personld; }
public EntityManager getEntityManager() { return personDatabase; }

The second approach has one huge advantage: you can easily add extra functionality, and override the built-in
functionality (the framework classes were carefully designed for extension and customization).

A second advantage is that your classes may be EJB stateful sessin beans, if you like. (They do not have to be,
they can be plain JavaBean componentsif you prefer.)

At this time, the Seam Application Framework provides just four built-in components. Enti t yHome and Hi -
ber nat eEnt i t yHome for CRUD, along with Ent i t yQuery and Hi ber nat eEnt i t yQuery for queries.

The Home and Query components are written so that they can function with a scope of session, event or con-
versation. Which scope you use depends upon the state model you wish to usein your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By default, the com-
ponents will ook for a persistence context named ent i t yManager .

JBoss Seam 1.3.0.A1 123

The Seam Application Framework

11.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our trusty Per son
class:

@ntity

public class Person {
@d private Long id;
private String firstName;
private String |astName;
private Country nationality;

/lgetters and setters...

We can define a per sonHone component either via configuration:

<franmewor k: entity- home nane="personHome" entity-class="eg. Person" />

Or viaextension:

@Nane(" per sonHone")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: per si st (), renove() , updat e() and get I nst ance() . Before
you can call therenove(), or updat e() operations, you must first set the identifier of the object you are inter-
ested in, using the set 1 d() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</hl>
<h: f ormp
<di v>Fi rst name: <h:inputText val ue="#{personHone.instance.firstName}"/></div>
<di v>Last name: <h:inputText val ue="#{personHone.instance.|astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}"/>
</ di v>
</ h:formr

Usually, it is much nicer to be able to refer to the Person merely as person, S0 let's make that possible by
adding aline to conponent s. xm :

<factory name="person"
val ue="#{ per sonHone. i nst ance}"/ >

<framework: entity-honme nane="personHone"
entity-cl ass="eg. Person" />

(If we are using configuration.) Or by adding a @act ory method to Per sonHonre:

@Nane(" per sonHonme")
public class PersonHone extends EntityHone<Person> {

@ actory("person")
public Person initPerson() { return getlnstance(); }

(If we are using extension.) This change simplifies our JSF page to the following:

JBoss Seam 1.3.0.A1 124

The Seam Application Framework

<h1>Cr eat e Person</hil>
<h: f or e
<di v>Fi rst name: <h:inputText val ue="#{person.firstNane}"/></div>
<di v>Last name: <h:inputText val ue="#{person.|astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}"/>
</ di v>
</ h:formp

WEell, that lets us create new Per son entries. Yes, that isall the code that is required! Now, if we want to be able
to display, update and delete pre-existing Per son entries in the database, we need to be able to pass the entry
identifier to the Per sonHone. Page parameters are a great way to do that:

<pages>
<page vi ewid="/editPerson.jsp">
<par am nane="per sonl d" val ue="#{personHone.id}"/>
</ page>
</ pages>

Now we can add the extra operations to our JSF page:

<hl>
<h: out put Text render ed="#{! per sonHone. nanaged}" val ue="Create Person"/>
<h: out put Text render ed="#{per sonHonme. managed}" val ue="Edit Person"/>
</ h1>
<h: f or m»
<di v>Fi rst name: <h:inputText val ue="#{person.firstNane}"/></div>
<di v>Last nane: <h:inputText val ue="#{person.| astName}"/></div>
<di v>
<h: conmandBut t on val ue="Create Person" action="#{personHone. persist}" rendered="#{! personHone.
<h: commandBut t on val ue="Updat e Person" acti on="#{personHone. update}" rendered="#{personHone. m
<h: conmandBut t on val ue="Del ete Person" action="#{personHone. renove}" rendered="#{personHone. m
</ div>
</ h: fornmp

When we link to the page with no request parameters, the page will be displayed as a "Create Person" page.
When we provide avalue for the per sonl d request parameter, it will be an "Edit Person" page.

Suppose we need to create Per son entries with their nationality initialized. We can do that easily, via configura-
tion:

<factory name="person"
val ue="#{per sonHone. i nst ance}"/ >

<franewor k: enti ty- honme nane="per sonHone"
entity-cl ass="eg. Person”
new i nst ance="#{ newPer son}"/ >
<conponent nane="newPer son"
cl ass="eg. Person" >

<property nane="nationality">#{country}</property>
</ conponent >

Or by extension:

@ame(" per sonHone")
public class PersonHonme extends EntityHome<Person> {

@n Country country;

@ actory("person")
public Person initPerson() { return getlnstance(); }

protected Person createl nstance() {

JBoss Seam 1.3.0.A1 125

The Seam Application Framework

return new Person(country);

Of course, the count ry could be an object managed by another Home object, for example, Count r yHone.
To add more sophisticated operations (association management, etc), we can just add methods to Per sonHone.

@ame(" per sonHone")
public class PersonHonme extends EntityHome<Person> {

@n Country country;

@ actory("person")
public Person initPerson() { return getlnstance(); }

protected Person createl nstance() {
return new Person(country);

}

public void mgrate()

{
getl nstance().set Country(country);
updat e();

}

The Home object automatically displays faces messages when an operation is successful. To customize these
messages we can, again, use configuration:

<factory nane="person"
val ue="#{ per sonHone. i nst ance}"/ >

<framework: entity-home nane="personHone"
entity-cl ass="eg. Person"
new- i nst ance="#{ newPer son}" >
<framewor k: cr eat ed- message>New per son #{person. firstName} #{person.|astNanme} created</framework: cl
<framewor k: del et ed- nessage>Per son #{person. firstNane} #{person.|astNane} del et ed</franework: del et «
<f ramewor k: updat ed- message>Per son #{person. firstName} #{person.|astName} updated</framework: updat
</framework: entity-home>

<conponent name="newPer son"
cl ass="eg. Person" >
<property name="nationality">#{country}</property>
</ conponent >

Or extension:

@Nane(" per sonHone")
public class PersonHone extends EntityHone<Person> {

@n Country country;

@actory("person")
public Person initPerson() { return getlnstance(); }

prot ect ed Person createlnstance() {
return new Person(country);

}

protected String getCreatedMessage() { return "New person #{person.firstNanme} #{person.|astNane} «
protected String getUpdat edMessage() { return "Person #{person.firstNanme} #{person.|astNane} updat
protected String getDel etedMessage() { return "Person #{person.firstName} #{person.|astNane} del et

JBoss Seam 1.3.0.A1 126

The Seam Application Framework

But the best way to specify the messages is to put them in a resource bundle known to Seam (the bundle named
nessages, by default).

Per son_cr eat ed=New person #{person. firstNane} #{person.|astNane} created
Per son_del et ed=Per son #{person.firstNane} #{person.|astNane} del eted
Per son_updat ed=Per son #{person. first Nane} #{person.|astNanme} updated

This enabl es internationalization, and keeps your code and configuration clean of presentation concerns.

The final step is to add validation functionality to the page, using <s: val i dat eAl | > and <s: decor at e>, but ['ll
leave that for you to figure out.

11.3. Query objects

If we need alist of al Per son instance in the database, we can use a Query object. For example:

<franmewor k: enti ty-query nane="peopl e"
ej bgl ="sel ect p from Person p"/>

We can use it from a JSF page:

<h1l>Li st of peopl e</hl>
<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col utm>
<s:link view="/editPerson.jsp" val ue="#{person. firstNane} #{person.|astNanme}">
<f: param nane="personld" val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

We probably need to support pagination:

<framework: entity-query nane="peopl e"
ej bgl ="sel ect p from Person p"
order="1 ast Nane"
max-resul t s="20"/>

WEe'l use a page parameter to determine the page to display:

<pages>
<page vi ew i d="/searchPerson.jsp">
<param nane="firstResult" val ue="#{people.firstResult}"/>
</ page>
</ pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<hl>Search for peopl e</hl>
<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col utm>
<s:link view="/editPerson.jsp" val ue="#{person. firstNane} #{person.|astNanme}">
<f:param nane="personl d' val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

<s:link view="/search.xhtm " rendered="#{peopl e. previ ousExi sts}" val ue="First Page">
<f:param nanme="firstResult" val ue="0"/>
</s:link>

JBoss Seam 1.3.0.A1 127

The Seam Application Framework

<s:link view="/search.xhtm " rendered="#{peopl e. previ ousExi sts}" val ue="Previ ous Page">
<f:param nane="firstResul t" val ue="#{peopl e. previ ousFirstResult}"/>
</s:link>

<s:link view="/search.xhtm " rendered="#{peopl e. next Exi sts}" val ue="Next Page">
<f:param nane="firstResult" val ue="#{peopl e. next FirstResult}"/>
</s:link>

<s:link view="/search.xhtm " rendered="#{peopl e. next Exi sts}" val ue="Last Page">
<f: param nanme="first Resul t" val ue="#{people.lastFirstResult}"/>
</s:link>

Real search screens let the user enter a bunch of optional search criteria to narrow the list of results returned.
The Query object lets you specify optional "restrictions' to support this important usecase:

<conmponent nane="exanpl ePerson" cl ass="Person"/>

<framework: entity-query nane="peopl e"
ej bql ="sel ect p from Person p"
order="1 ast Nane"
max-resul t s="20">
<framework:restrictions>
<val ue>l ower (firstName) |ike |ower(#{exanpl ePerson.firstName} + '%)</val ue>
<val ue>l ower (| ast Nane) |ike | ower(#{exanpl ePerson.|astNane} + '%)</val ue>
</framework:restrictions>
</framework: entity-query>

Notice the use of an "example" object.

<hl>Search for peopl e</hl>

<h: f or mp
<di v>Fi rst name: <h:inputText val ue="#{exanpl ePerson.firstName}"/></div>
<di v>Last nane: <h:inputText val ue="#{exanpl ePerson. | ast Nane}"/></di v>
<di v><h: conmandBut t on val ue="Search" action="/search.jsp"/></div>

</ h: fornm

<h: dat aTabl e val ue="#{peopl e.resultList}" var="person">
<h: col um>
<s:link view="/editPerson.jsp" val ue="#{person.firstNane} #{person.|astNane}">
<f: param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col utm>
</ h: dat aTabl e>

The examples in this section have al shown reuse by configuration. However, reuse by extension is equaly
possible for Query objects.

11.4. Controller objects

A totally optional part of the Seam Application Framework is the class Control | er and its subclassesEnt i ty-
Controll er HibernateEntityController and Busi nessProcessControl |l er. These classes provide nothing
more than some convenience methods for access to commonly used built-in components and methods of built-
in components. They help save a few keystrokes (characters can add up!) and provide a great launchpad for
new users to explore the rich functionality built in to Seam.

For example, hereiswhat Regi st er Act i on from the Seam registration example would look like:

@5t at el ess
@ame("regi ster")
public class RegisterAction extends EntityController inplenents Register

{

JBoss Seam 1.3.0.A1 128

The Seam Application Framework

@n private User user;

public String register()

{
Li st existing = createQuery("sel ect u.username from User u where u.usernane=: usernane")
. set Par anet er ("usernane", user.getUsernane())
.getResul tList();
if (existing.size()==0)
{
persi st (user);
i nfo("Regi stered new user #{user.usernane}");
return "/registered.jspx";
}
el se
{
addFacesMessage(" User #{user.usernane} already exists");
return null;
}
}

Asyou can seg, its not an earthshattering improvement...

JBoss Seam 1.3.0.A1 129

Chapter 12. Seam and JBoss Rules

Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM process definitions.

12.1. Installing rules

The first step is to make an instance of or g. drool s. Rul eBase available in a Seam context variable. In most
rules-driven applications, rules need to be dynamically deployable, so you will need to implement some solu-
tion that allows you to deploy rules and make them available to Seam (a future release of Drools will provide a
Rule Server that solves this problem). For testing purposes, Seam provides a built-in component that compiles a
static set of rules from the classpath. You can install this component viaconponent s. xni :

<dr ool s: rul e-base name="policyPrici ngRul es">
<drool s:rule-fil es>
<val ue>pol i cyPri ci ngRul es</ val ue>
</drools:rule-fil es>
</ dr ool s: rul e- base>

This component compiles rules from a set of . drl files and caches an instance of or g. dr ool s. Rul eBase in the
Seam APPLI CATI ON context. Note that it is quite likely that you will need to install multiple rule basesin arule-
driven application.

If you want to use aDrools DSL, you ase need to specify the DSL definition:

<dr ool s: rul e-base name="policyPricingRul es" dsl-file="policyPricing.dsl">
<drool s:rule-fil es>
<val ue>pol i cyPri ci ngRul es</val ue>
</drools:rule-fil es>
</ drool s: rul e- base>

Next, we need to make an instance of or g. dr ool s. Wr ki ngMenor y available to each conversation. (Each wer k-
i ngMeror y accumul ates facts relating to the current conversation.)

<dr ool s: managed- wor ki ng- nenory nane="pol i cyPri ci ngWr ki ngMenory" aut o-create="true" rul e-base="#{pol i (

Notice that we gave the pol i cyPri ci ngWr ki ngMenory a reference back to our rule base viathe r ul eBase con-
figuration property.

12.2. Using rules from a Seam component

We can now inject our Wor ki ngMenor y into any Seam component, assert facts, and fire rules:

@n Worki ngMenory pol i cyPrici ngWr ki ngMenory;

@n Policy policy;
@n Custoner custoner;

public void pricePolicy() throws FactException

{
pol i cyPri ci ngWor ki ngMenory. assert Cbj ect (pol i cy);
pol i cyPrici ngWor ki ngMenory. assert Cbj ect (cust oner) ;
pol i cyPrici ngWor ki ngMenory. fireAll Rul es();

}

JBoss Seam 1.3.0.A1 130

Seam and JBoss Rules

12.3. Using rules from a jJBPM process definition

You can even allow arule base to act as a jBPM action handler, decision handler, or assignment handler—in
either a pageflow or business process definition.

<deci si on nane="approval ">

<handl er cl ass="org.jboss. seam drool s. Dr ool sDeci si onHandl er" >
<wor ki ngMenor yNanme>or der Appr oval Rul esWr ki ngMenor y</ wor ki ngMenor yNane>
<assert Obj ect s>
<el enent >#{ cust oner } </ el enent >
<el enment >#{ or der } </ el enent >
<el enent >#{order. | i nel t ens} </ el enent >
</ assert Cbj ect s>
</ handl er >

<transition name="approved" to="ship">
<action class="org.jboss. seam dr ool s. Dr ool sActi onHandl er ">
<wor ki ngMenor yNanme>shi ppi ngRul esWor ki nghMenor y</ wor ki ngMenor yName>
<assert Cbj ect s>
<el enent >#{ cust oner } </ el enent >
<el ement >#{ or der} </ el ement >
<el ement >#{ order. | i nel t ens} </ el ement >
</ assert bj ect s>
</ action>
</transition>

<transition nane="rejected" to="cancelled"/>

</ deci si on>

The <assert Obj ect s> element specifies EL expressions that return an object or collection of objects to be as-
serted as factsinto the wor ki ngMenory.

Thereis aso support for using Drools for |JBPM task assignments.

<t ask- node name="revi ew'>
<task name="revi ew' descripti on="Revi ew O der">
<assi gnment handl er="org.j boss. seam dr ool s. Dr ool sAssi gnnent Handl er " >
<wor ki ngMenor yName>or der Appr oval Rul esWor ki ngMenor y</ wor ki ngMenor yNane>
<assert Qoj ect s>
<el ement >#{act or} </ el ement >
<el ement >#{ cust oner } </ el enent >
<el ement >#{ or der} </ el ement >
<el ement >#{ order. | i nel t ens} </ el ement >
</ assert Obj ect s>
</ assi gnnent >
</ task>
<transition name="rejected" to="cancelled"/>
<transiti on name="approved" to="approved"/>
</t ask- node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assi gnabl e, asassi gnabl e and a
Seam Decision object, as decision. Rules which handle decisions should call de-
ci sion.setQutconme("result") to determine the result of the decision. Rules which perform assignments
should set the actor id using the Assi gnabil e.

package org.j boss. seam exanpl es. shop
i mport org.jboss. seam drool s. Deci si on
gl obal Deci si on deci si on

rul e "Approve Order For Loyal Custoner"

JBoss Seam 1.3.0.A1 131

Seam and JBoss Rules

when
Custoner(loyaltyStatus == "GOLD")
Order (total Amount <= 10000)

t hen

deci si on. set Qut come(" approved");
end

package org.j boss. seam exanpl es. shop
i mport org.jbpmtaskngnt.exe. Assi gnabl e
gl obal Assignabl e assi gnabl e

rule "Assign Review For Small Order"
when
O der (total Ambunt <= 100)
then
assi gnabl e. set Pool edActors(new String[] {"reviewers"});
end

JBoss Seam 1.3.0.A1 132

Chapter 13. Security

The Seam Security API is an optional Seam feature that provides authentication and authorization features for
securing both domain and page resources within your Seam project.

13.1. Overview

Seam Security provides two different modes of operation:

« simplified mode - this mode supports authentication services and simple role-based security checks.
e advanced mode - this mode supports al the same features as the simplified mode, plus it offers rule-based

security checks using JBoss Rules.

13.1.1. Which mode is right for my application?

That al depends on the requirements of your application. If you have minimal security requirements, for ex-
ample if you only wish to restrict certain pages and actions to users who are logged in, or who belong to a cer-
tain role, then the simplified mode will probably be sufficient. The advantages of thisis a more simplified con-
figuration, significantly lesslibrariesto include, and a smaller memory footprint.

If on the other hand, your application requires security checks based on contextual state or complex business
rules, then you will require the features provided by the advanced mode.

13.2. Requirements

If using the advanced mode features of Seam Security, the following jar files are required to be configured as
modulesin appl i cati on. xni . If you are using Seam Security in simplified mode, these are not required:

» drools-compiler-4.0.0.MR2 jar
e drools-core-4.0.0.MR2.jar

* janino-2.5.6.jar

e antlr-3.0b7.jar

« mvel14-1.2betal6 jar

For web-based security, j boss- seam ui . j ar must also be included in the application's war file.

13.3. Disabling Security

In some situations it may be necessary to disable Seam Security, for example during unit tests. This can be
done by calling the static method | denti ty. set Securit yEnabl ed(fal se) to disable security checks. Doing
this prevents any security checks being performed for the following:

JBoss Seam 1.3.0.A1 133

Security

e Entity Security
e Hibernate Security Interceptor
e Seam Security Interceptor

e Pagerestrictions

13.4. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java Authentication and Authoriz-
ation Service), and as such provide a robust and highly configurable API for handling user authentication.
However, for less complex authentication requirements Seam offers a much more simplified method of authen-
tication that hides the complexity of JAAS.

13.4.1. Configuration

The simplified authentication method uses a built-in JAAS login module, Seaniogi nvbdul e, which delegates
authentication to one of your own Seam components. This login module is already configured inside Seam as
part of a default application policy and as such does not require any additional configuration files. It allows you
to write an authentication method using the entity classes that are provided by your own application. Configur-
ing this simplified form of authentication requires the i dentity component to be configured in conpon-
ents. xm :

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"

xm ns: core="http://jboss. con product s/ seanf core"

xm ns: security="http://jboss.con products/seam security"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schermalLocat i on=

"http://jboss. com products/seam core http://jboss. com products/seam core-1.3.xsd

http://jboss. com product s/ seam conponents http://jboss. com product s/ seam conponent s-
http://jboss. conl products/seam drools http://jboss. conl products/sean drool s-1. 3. xsd"
http://jboss. com products/seam security http://jboss. coni products/seanif security-1.3.;

<security:identity authenticate-nmethod="#{authenticator.authenticate}"/>

</ conponent s>

If you wish to use the advanced security features such as rule-based permission checks, all you needto doisin-
clude the Drools (JBoss Rules) jarsin your classpath, and add some additional configuration, described later.

The EL expression #{ aut henti cat or. aut henti cat e} iS a method binding indicating that the aut henti cate
method of the aut hent i cat or component will be used to authenticate the user.

13.4.2. Writing an authentication method

The aut hent i cat e- met hod property specified for i dentity in conponents. xm specifies which method will be
used by Seaniogi nMbdul e to authenticate users. This method takes no parameters, and is expected to return a
boolean indicating whether authentication is successful or not. The user's username and password can be ob-
tained from I dentity.instance().getUsernane() and Identity.instance().getPassword(), respectively.
Any roles that the user is a member of should be assigned using I dentity. i nstance(). addRol e() . Here's a
complete example of an authentication method inside a JavaBean component:

@ame("aut henticator")
public class Authenticator {

JBoss Seam 1.3.0.A1 134

Security

@n EntityManager entityManager;

publ i c bool ean aut henticate() {

try
{
User user = (User) entityManager.createQuery(
"from User where usernanme = :usernanme and password = :password")
. set Paranmet er ("usernane", ldentity.instance().getUsernane())
.set Paranet er ("password", ldentity.instance().getPassword())

.get Si ngl eResul t();

if (user.getRoles() !'= null)

{
for (UserRole nr : user.getRoles())

Identity.instance().addRol e(nr.get Nane());
}

return true;

catch (NoResul t Exception ex)
{

FacesMessages. i nstance().add("I nval id usernane/ password");
return false;

In the above example, both user and User Rol e are application-specific entity beans. The r ol es parameter is
populated with the roles that the user is a member of, which should be added to the Set as literal string values,
e.g. "admin", "user". In this case, if the user record is not found and a NoResul t Except i on thrown, the authen-
tication method returnsf al se to indicate the authentication failed.

13.4.3. Writing a login form

The 1 dentity component provides both user name and passwor d properties, catering for the most common au-
thentication scenario. These properties can be bound directly to the username and password fields on a login
form. Once these properties are set, calling thei dentity. 1 ogi n() method will authenticate the user using the
provided credentials. Here's an example of a simple login form:

<di v>

<h: out put Label for="nane" val ue="Usernane"/>

<h:i nput Text id="nanme" val ue="#{identity.usernane}"/>
</div>

<di v>

<h: out put Label for="password" val ue="Password"/>

<h:i nput Secret id="password" val ue="#{identity.password}"/>
</ di v>

<di v>
<h: conmandBut t on val ue="Logi n" action="#{identity.login}"/>
</div>

Similarly, logging out the user is done by calling #{i dentity. | ogout}. Caling this action will clear the secur-
ity state of the currently authenticated user.

13.4.4. Simplified Configuration - Summary

So to sum up, there are the three easy steps to configure authentication:

JBoss Seam 1.3.0.A1 135

Security

¢ Configure an authentication method in conponent s. xni .
¢ Write an authentication method.

* Writealogin form so that the user can authenticate.

13.4.5. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's recommended that
pages. xm is configured to redirect security errors to a more "pretty" page. The two main types of exceptions
thrown by the security API are:

* Not Logged! nExcept i on - This exception is thrown if the user attempts to access a restricted action or page
when they are not logged in.

e AuthorizationException - Thisexception isonly thrown if the user is already logged in, and they have at-
tempted to access arestricted action or page for which they do not have the necessary privileges.

In the case of aNot Logged! nExcept i on, it is recommended that the user is redirected to either alogin or regis-
tration page so that they can log in. For an Aut hor i zat i onExcept i on, it may be useful to redirect the user to an
error page. Here's an example of apages. xni file that redirects both of these security exceptions:

<pages>

<exception class="org.jboss. seam security. Not Loggedl nExcepti on">
<redirect viewid="/login.xhtm">
<nessage>You must be logged in to performthis action</nessage>
</redirect>
</ excepti on>

<exception class="org.jboss. seam security. Aut hori zati onExcepti on">
<end- conversation/ >
<redirect viewid="/security_error.xhtm">
<nessage>You do not have the necessary security privileges to performthis action.</nmessag
</redirect>
</ excepti on>
</ pages>
Most web applications require even more sophisticated handling of login redirection, so Seam includes some
special functionality for handling this problem.

13.4.6. Login Redirection

Y ou can ask Seam to redirect the user to alogin screen when an unauthenticated user tries to access a particular
view (or wildcarded view id) as follows:

<pages | ogi n-viewid="/Iogin.xhtm">

<page vi ewid="/nenbers/*" |ogin-required="true"/>

</ pages>

(Thisisless of ablunt instrument than the exception handler shown above, but should probably be used in con-

JBoss Seam 1.3.0.A1 136

Security

junction with it.)

After the user logs in, we want to automatically send them back where they came from, so they can retry the ac-
tion that required logging in. If you add the following event listeners to conponent s. xni , attempts to access a
restricted view while not logged in will be remembered, so that upon the user successfully logging in they will
be redirected to the originally requested view, with any page parameters that existed in the original request.

<event type="org.j boss.seam not Loggedl n">

<action expression="#{redirect.captureCurrentView"/>
</ event >
<event type="org.j boss.seam post Aut henti cate">

<action expression="#{redirect.returnToCapturedView"/>
</ event >

Note that login redirection is implemented as a conversation-scoped mechanism, so don't end the conversation
inyour aut henti cat e() method.

13.4.7. HTTP Authentication
Although not recommended for use unless absolutely necessary, Seam provides means for authenticating using

either HTTP Basic or HTTP Digest (RFC 2617) methods. To use either form of authentication, the aut hent i c-
ation-filter component must be enabled in components.xml:

<web: aut hentication-filter url-pattern="*.seanm auth-type="basic"/>

To enable the filter for basic authentication, set aut h-t ype to basi c, or for digest authentication, set it to di -
gest . If using digest authentication, the key and r eal mmust also be set:

<web: aut hentication-filter url-pattern="*.seant auth-type="digest" key="AA3JK34aSD kj" real m="My Apj

Thekey can be any String value. The r eal mis the name of the authentication realm that is presented to the user
when they authenticate.

Writing a Digest Authenticator

If using digest authentication, your authenticator class should extend the abstract class
org. j boss. seam security. di gest. Di gest Aut henti cat or, and use the val i dat ePasswor d() method to valid-
ate the user's plain text password against the digest request. Here is an example:

publ i ¢ bool ean aut henti cat e()

{
try
{
User user = (User) entityManager. createQuery(
"from User where username = :usernanme")
. set Paranet er ("usernane", identity.getUsernane())

.get Si ngl eResul t ();

return val i dat ePasswor d(user . get Password());

}
catch (NoResul t Excepti on ex)

{

return false;

JBoss Seam 1.3.0.A1 137

Security

13.4.8. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for addressing more complex
security requirements.

Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security API, you may in-
stead delegate to the default system JAAS configuration by providing aj aasConf i gName property in conpon-
ents. xm . For example, if you are using JBoss AS and wish to use the ot her policy (which uses the User -
sRol esLogi nWbdul e login module provided by JBoss AS), then the entry in conponents. xmi would look like
this:

<security:identity authenticate-nethod="#{authenticator.authenticate}"
j aas-confi g- nane="ot her"/>

13.5. Error Messages

The security API produces a number of default faces messages for various security-related events. The follow-
ing table lists the message keys that can be used to override these messages by specifying them in a nes-
sage. properti es resourcefile.

Table 13.1. Security Message Keys

org.jboss.seam | oginS Thismessageis produced when a user successfully logsin viathe security API.
uccessf ul

org.jboss.seam | ogi nF | This message is produced when the login process fails, either because the user
ailed provided an incorrect username or password, or because authentication failed in
some other way.

org.j boss. seam Not Log | This message is produced when a user attempts to perform an action or access a
gedin page that requires a security check, and the user is not currently authenticated.

13.6. Authorization

There are a number of authorization features provided by the Seam Security APl for securing access to com-
ponents, component methods, and pages. This section describes each of these. An important thing to note is that
if you wish to use any of the advanced features (such as rule-based permissions) then your conponent s. xn
must be configured to support this - see the Configuration section above.

13.6.1. Core concepts

JBoss Seam 1.3.0.A1 138

Security

Each of the authorization mechanisms provided by the Seam Security API are built upon the concept of a user
being granted roles and/or permissions. A roleis a group, or type, of user that may have been granted certain
privileges for performing one or more specific actions within an application. A permission on the other hand is
a privilege (sometimes once-off) for performing a single, specific action. It is entirely possible to build an ap-
plication using nothing but permissions, however roles offer a higher level of convenience when granting priv-
ileges to groups of users.

Roles are simple, consisting of only a name such as "admin”, "user", "customer", etc. Permissions consist of
both a name and an action, and are represented within this documentation in the form nane: acti on, for ex-
amplecust oner : del et e, OF custoner:insert.

13.6.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the @restri ct
annotation.

The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @restri ct annotation. If
both a method and it's declaring class are annotated with @rest ri ct, the method restriction will take preced-
ence (and the class restriction will not apply). If a method invocation fails a security check, then an exception
will be thrown as per the contract for 1 dentity. checkRestriction() (see Inline Restrictions). A @restri ct
on just the component classitself is equivaent to adding @rest ri ct to each of its methods.

Anempty @estrict implies apermission check of conponent Narre: net hodNane. Take for exampl e the foll ow-
ing component method:

@Nane("account ™)
public class AccountAction {
@Restrict public void delete() {

:

In this example, the implied permission required to call the del et e() method isaccount : del et e. The equival-
ent of thiswould be to write @rest ri ct (" #{ s: hasPer mi ssi on(' account', ' delete',null)}"). Now let'slook
at another example:

@Restrict @anme("account")
public class AccountAction {
public void insert() {

:
@Restrict("#{s:hasRole('adnmin')}")
public void delete() {

:

This time, the component class itself is annotated with @estrict. This means that any methods without an
overriding @Restri ct annotation require an implicit permission check. In the case of this example, the i n-
sert () method requires a permission of account : i nsert, while the del et e() method requires that the user isa
member of the adni n role.

Before we go any further, let's address the #{s: hasRol e()} expression seen in the above example. Both
s: hasRol e and s: hasPer ni ssi on are EL functions, which delegate to the correspondingly named methods of

JBoss Seam 1.3.0.A1 139

Security

the I denti ty class. These functions can be used within any EL expression throughout the entirety of the secur-
ity API.

Being an EL expression, the value of the @restri ct annotation may reference any objects that exist within a
Seam context. Thisis extremely useful when performing permission checks for a specific object instance. L ook
at this example:

@Nane("account ™)
public class AccountAction {
@n Account sel ectedAccount;
@Restrict("#{s: hasPerm ssion('account', ' nodify', sel ectedAccount)}")
public void nodify() {
sel ect edAccount . modi fy();
}

The interesting thing to note from this example is the reference to sel ect edAccount seen within the hasPer -
m ssi on() function call. The value of this variable will be looked up from within the Seam context, and passed
to the hasPer ni ssi on() method in 1 dentity, which in this case can then determine if the user has the required
permission for modifying the specified Account object.

Inline restrictions

Sometimes it might be desirable to perform a security check in code, without using the @est ri ct annotation.
Inthis situation, simply use I dentity. checkRestriction() toevaluate a security expression, like this:

public void del eteCustoner() {

Identity.instance().checkRestriction("#{s:hasPerm ssion('custoner','delete', sel ectedCustoner)}");
}

If the expression specified doesn't evaluatetot r ue, either

« if theuser isnot logged in, aNot Logged! nExcept i on exception isthrown or
» if theuserislogged in, an Aut hori zat i onExcept i on exception isthrown.
It isalso possibleto call the hasRol e() and hasPer ni ssi on() methods directly from Java code:

if (!ldentity.instance().hasRol e("adm n"))
t hrow new Aut hori zati onException("Mist be adnmin to performthis action");

if (!ldentity.instance().hasPerm ssion("custoner", "create", null))
t hrow new Aut hori zati onException("You may not create new customners");

13.6.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for which they
don't have the necessary privileges to use. Seam Security allows conditional rendering of either 1) sections of a
page or 2) individua controls, based upon the privileges of the user, using the very same EL expressions that
are used for component security.

Let's take alook at some examples of interface security. First of al, let's pretend that we have alogin form that
should only be rendered if the user is not already logged in. Using the i dentity. i sLoggedl n() property, we
can writethis:

<h: form cl ass="1 ogi nForm' rendered="#{not identity.| oggedln}">

JBoss Seam 1.3.0.A1 140

Security

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now let's pretend
there is a menu on the page that contains some actions which should only be accessible to users in the manager
role. Here's one way that these could be written:

<h: out put Li nk acti on="#{reports.|istMinagerReports}" rendered="#{s: hasRol e(' nanager')}">
Manager Reports
</ h: out put Li nk>

Thisis also quite straight forward. If the user is not a member of the manager role, then the outputLink will not
be rendered. Ther ender ed attribute can generally be used on the control itself, or on a surrounding <s: di v> or
<s: span> control.

Now for something more complex. Let's say you have a h: dat aTabl e control on a page listing records for
which you may or may not wish to render action links depending on the user's privileges. The
s: hasPer ni ssi on EL function allows us to passin an object parameter which can be used to determine whether
the user has the requested permission for that object or not. Here's how a dataTable with secured links might
look:

<h: dat aTabl e val ue="#{clients}" var="cl">
<h: col utm>
<f:facet nane="header">Nane</f:facet>
#{ cl . nane}
</ h: col utm>
<h: col um>
<f:facet name="header">City</f:facet>
#{cl.city}
</ h: col utm>
<h: col um>
<f:facet nane="header">Action</f:facet>
<s:link value="Mdify Cient" action="#{clientAction.nodify}"
render ed="#{s: hasPermi ssion('client'," nmodify',cl)"/>
<s:link value="Delete Cient" action="#{clientAction.delete}"
render ed="#{s: hasPerm ssion('client'," delete',cl)"/>
</ h: col um>
</ h: dat aTabl e>

13.6.4. Securing pages

Page security requires that the application is using apages. xni file, however is extremely simple to configure.
Simply include a<restrict/> element within the page elements that you wish to secure. If no explicit restric-
tion is specified by the restrict element, an implied permission of /vi ewl d. xht ni : render will be checked
when the page is accessed via a non-faces (GET) request, and a permission of / vi ew d. xht m : rest ore will be
required when any JSF postback (form submission) originates from the page. Otherwise, the specified restric-
tion will be evaluated as a standard security expression. Here's a couple of examples:

<page vi ewid="/settings.xhtm">
<restrict/>
</ page>

This page has an implied permission of / setti ngs. xht mi : render required for non-faces requests and an im-
plied permission of / set ti ngs. xht n : r est or e for faces requests.

<page viewid="/reports.xhtm ">
<restrict>#{s: hasRol e('admin')}</restrict>
</ page>

Both faces and non-faces requests to this page require that the user is a member of the adni n role.

JBoss Seam 1.3.0.A1 141

Security

13.6.5. Securing Entities

Seam security also makes it possible to apply security restrictions to read, insert, update and delete actions for
entities.

To secure al actions for an entity class, add a @est ri ct annotation on the class itself:

@ntity

@Nane(" cust omer")
@Restrict

public class Customner {

,

If no expression is specified in the @rest ri ct annotation, the default security check that is performed is a per-
mission check of entityNane: acti on, where entit yNane is the Seam component name of the entity (or the
fully-qualified class name if no @Name is specified), and the act i on iSeither read, i nsert, updat e Or del et e.

It is also possible to only restrict certain actions, by placing a @rest ri ct annotation on the relevent entity life-
cycle method (annotated as follows):

e @rost Load - Called after an entity instance is loaded from the database. Use this method to configure ar ead
permission.

* @rePersist - Called before a new instance of the entity is inserted. Use this method to configure an i n-
sert permission.

e @relpdat e - Caled before an entity is updated. Use this method to configure an updat e permission.

» @reRenpve - Cdled before an entity is deleted. Use this method to configure adel et e permission.

Here's an example of how an entity would be configured to perform a security check for any i nsert operations.
Please note that the method is not required to do anything, the only important thing in regard to security is how
it is annotated:

@°r ePersi st @Rrestrict
public void prePersist() {}

And here's an example of an entity permission rule that checks if the authenticated user is allowed to insert a
new Member Bl og record (from the seamspace example). The entity for which the security check is being made
is automatically asserted into the working memory (in this case Menber Bl og):

rul e I nsertMenber Bl og
no- | oop
activation-group "perm ssions"
when
check: Perm ssi onCheck(nane == "nenberBl og", action == "insert", granted == fal se)
Princi pal (princi pal Nane : nane)
Menber Bl og(menber : nenber -> (menber. get User nanme() . equal s(princi pal Nane)))
t hen
check. grant () ;
end;

This rule will grant the permission nenber Bl og: i nsert if the currently authenticated user (indicated by the
Princi pal fact) has the same name as the member for which the blog entry is being created. The "nane :
name" structure that can be seeninthe pri nci pal fact (and other places) is avariable binding - it binds the name

JBoss Seam 1.3.0.A1 142

Security

property of the Pri nci pal to avariable called nane. Variable bindings allow the value to be referred to in other
places, such as the following line which compares the member's username to the Pri nci pal name. For more
details, please refer to the JBoss Rules documentation.

Finally, we need to install a listener class that integrates Seam security with your JPA provider.

Entity security with JPA

Security checks for EJB3 entity beans are performed with an Enti t yLi st ener. You can install this listener by
using the following META- 1 NF/ or m xni file:

<?xm version="1.0" encodi ng="UTF-8"?>

<entity-mappi ngs xm ns="http://java. sun. com xm / ns/ per si st ence/ or nf
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocation="http://java. sun. com xm / ns/ persi stence/ orm http://java. sun. com xI
versi on="1.0">

<per si st ence- uni t - net adat a>
<persi stence-unit-defaul ts>
<entity-1listeners>
<entity-listener class="org.jboss.seam security.EntitySecurityListener"/>
</entity-listeners>
</ persi stence-unit-defaul ts>
</ persi st ence-uni t - net adat a>

</entity-mappi ngs>

Entity security with Hibernate

If you are using a Hibernate Sessi onFact ory configured via Seam, you don't need to do anything special to use
entity security.

13.7. Writing Security Rules

Up to this point there has been alot of mention of permissions, but no information about how permissions are
actually defined or granted. This section completes the picture, by explaining how permission checks are pro-
cessed, and how to implement permission checks for a Seam application.

13.7.1. Permissions Overview

So how does the security APl know whether a user has the cust oner : nodi fy permission for a specific custom-
er? Seam Security provides quite a novel method for determining user permissions, based on JBoss Rules. A
couple of the advantages of using arule engine are 1) a centralized location for the business logic that is behind
each user permission, and 2) speed - JBoss Rules uses very efficient algorithms for evaluating large numbers of
complex rulesinvolving multiple conditions.

13.7.2. Configuring a rules file

Seam Security expects to find a Rul eBase component called securi t yRul es which it uses to evaluate permis-
sion checks. Thisis configured in corponent s. xn asfollows:

<conponents xm ns="http://jboss. con product s/ sean conponent s"
xm ns: core="http://jboss. com product s/ seam core"
xm ns: security="http://jboss. conm products/seam security"
xm ns: drool s="http://jboss. conl product s/ seani dr ool s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance”

JBoss Seam 1.3.0.A1 143

Security

xsi : schemalLocat i on=
"http://jboss. com products/seam core http://jboss. com products/seam core-1. 3. xsd
http://jboss. com product s/ seam conponents http://jboss. com product s/ seam conponent s-
http://jboss. com products/seanidrools http://jboss. com products/seant drool s-1. 3. xsd"
http://jboss. com products/seam security http://jboss. conl products/seanif security-1.3.;

<dr ool s: rul e-base name="securityRul es">
<drool s:rule-fil es>
<val ue>/ META-| NF/ security.drl </val ue>
</drools:rule-fil es>
</ drool s: rul e- base>

</ conponent s>

Once the Rul eBase component is configured, it's time to write the security rules.

13.7.3. Creating a security rules file

For this step you need to create afile caled security. drl inthe/ META- I NF directory of your application's jar
file. In actual fact this file can be called anything you want, and exist in any location as long as it is configured
appropriately in conponent's. xm .

So what should the security rules file contain? At this stage it might be a good idea to at least skim through the
JBoss Rules documentation, however to get started here's an extremely simple example:

package MyAppli cati onPerm ssions;

i mport org.jboss.seam security. Perni ssi onCheck;
i mport org.jboss.seam security. Rol €;

rul e CanUser Del et eCust oner s

when
c: Perm ssi onCheck(nanme == "custoner", action == "del ete")
Rol e(nane == "adnin")

t hen
c.grant();

end;

Let's break this down. The first thing we see is the package declaration. A package in JBoss Rulesis essentially
acollection of rules. The package name can be anything you want - it doesn't relate to anything else outside the
scope of the rule base.

The next thing we can notice is a couple of import statements for the Per ni ssi onCheck and Rol e classes. These
imports inform the rules engine that wel'll be referencing these classes within our rules.

Finally we have the code for the rule. Each rule within a package should be given a unique name (usually de-
scribing the purpose of the rule). In this case our rule is called canUser Del et eCust oner s and will be used to
check whether a user is allowed to delete a customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is known as a
left hand side (LHS) and aright hand side (RHS). The LHS consists of the conditional part of therule, i.e. alist
of conditions which must be satisfied for the rule to fire. The LHS is represented by the when section. The RHS
is the consequence, or action section of the rule that will only be fired if all of the conditions in the LHS are
met. The RHS is represented by thet hen section. The end of the rule is denoted by the end; line.

If welook at the LHS of the rule, we see two conditions listed there. Let's examine the first condition:

c: Perm ssi onCheck(name == "custoner”, action == "delete")

JBoss Seam 1.3.0.A1 144

Security

In plain english, this condition is stating that there must exist a Per ni ssi onCheck object with a nane property
equal to "customer”, and an act i on property equal to "delete” within the working memory. What is the working
memory? It is a session-scoped object that contains the contextual information that is required by the rules en-
gine to make a decision about a permission check. Each time the haspPer ni ssi on() method is called, a tempor-
ary Per i ssi onCheck object, or Fact, is asserted into the working memory. This Per ni ssi onCheck corresponds
exactly to the permission that is being checked, so for example if you call hasPer i ssi on("account", "cre-
ate", null) then aPernissi onCheck object with aname equal to "account” and act i on equal to "create” will
be asserted into the working memory for the duration of the permission check.

So what else is in the working memory? Besides the short-lived temporary facts asserted during a permission
check, there are some longer-lived objects in the working memory that stay there for the entire duration of a
user being authenticated. These include any j ava. security. Princi pal objects that are created as part of the
authentication process, plus a or g. j boss. seam securi ty. Rol e object for each of the roles that the user is a
member of. It is also possible to assert additional long-lived facts into the working memory by calling Rul e-
Basedl dentity.instance().get SecurityContext().assertCbject (), passing the object as a parameter.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed withc: . Thisis
a variable binding, and is used to refer back to the object that is matched by the condition. Moving onto the
second line of our LHS, we seethis:

Rol e(nane == "adm n")

This condition simply states that there must be a Rol e object with a nane of "admin" within the working
memory. As mentioned, user roles are asserted into the working memory as long-lived facts. So, putting both
conditions together, this rule is essentially saying "l will fire if you are checking for the cust orrer : del et e per-
mission and the user is amember of the adni n role".

So what is the consequence of the rule firing? Let's take alook at the RHS of therule:

c.grant()

The RHS consists of Java code, and in this case is invoking the grant () method of the ¢ object, which as
already mentioned is a variable binding for the Per ni ssi onCheck object. Besides the nane and act i on proper-
ties of the Per i ssi onCheck oObject, there is also a grant ed property which is initially set to fal se. Calling
grant () ONnaPernissi onCheck setsthe grant ed property to t r ue, which means that the permission check was
successful, allowing the user to carry out whatever action the permission check was intended for.

Wildcard permission checks

It is possible to implement awildcard permission check (which allows all actions for a given permission name),
by omitting the act i on constraint for the Per i ssi onCheck in your rule, like this:

rul e CanDoAnyt hi ngToCust orer sl f YouAr eAnAdni n
when
c: Perm ssionCheck(nane == "custoner")
Rol e(nane == "adm n")
t hen
c.grant();
end;

This rule allows users with the adni n role to perform any action for any cust omer permission check.

13.8. SSL Security

JBoss Seam 1.3.0.A1 145

Security

Seam includes basic support for serving sensitive pages via the HTTPS protocol. This is easily configured by
specifying a schene for the page in pages. xni . The following example shows how the view /1 ogi n. xht ni is
configured to use HTTPS:

<page vi ewid="/1ogin.xhtm" schene="https">

This configuration is automatically extended to both s: 1i nk and s: but t on JSF controls, which (when specify-
ing the vi ew) will also render the link using the correct protocol. Based on the previous example, the following
link will use the HTTPS protocol because/ | ogi n. xht m is configured to useiit:

<s:link view="/1ogin.xhtm" val ue="Logi n"/>

Browsing directly to a view when using the incorrect protocol will cause a redirect to the same view using the
correct protocol. For example, browsing to a page that has scheme="ht t ps* using HTTP will cause a redirect
to the same page using HTTPS.

It isaso possible to configure a default scheme for all pages. Thisis useful if you wish to use HTTPS for aonly
few pages. If no default scheme is specified then the normal behavior is to continue use the current scheme. So
once the user accessed a page that required HTTPS, then HTTPS would continue to be used after the user nav-
igated away to other non-HTTPS pages. (While thisis good for security, it is not so great for performance!). To
define HTTP as the default schene, add thislineto pages. xni :

<page viewid="*" schene="http">

Of course, if none of the pages in your application use HTTPS then it is not required to specify a default
scheme.

You may configure Seam to automatically invalidate the current HTTP session each time the scheme changes.
Just add thislineto conponent s. xm :

<core:servl et-session invalidate-on-schene-change="true"/>

This option helps make your system less vulnerable to sniffing of the session id or leakage of sensitive data
from pages using HTTPS to other pages using HTTP.

13.9. Implementing a Captcha Test

Though strictly not part of the security AP, it might be useful in certain circumstances (such as new user regis-
trations, posting to a public blog or forum) to implement a Captcha (Completely Automated Public Turing test
to tell Computers and Humans Apart) to prevent automated bots from interacting with your application. Seam
provides seamless integration with JCaptcha, an excellent library for generating Captcha challenges. If you
wish to use the captcha feature in your application you need to include the jcaptcha-* jar file from the Seam lib
directory in your project, and register it in appl i cati on. xnl asajavamodule.

13.9.1. Configuring the Captcha Servlet

To get up and running, it is necessary to configure the Seam Resource Servlet, which will provide the Captcha
challenge images to your pages. Thisrequires the following entry in web. xm :

<servl et>

<servl et - nane>Seam Resour ce Servl et </servl et -nane>

<servl et-cl ass>org. j boss. seam servl et. Resour ceServl et </ servl et -cl ass>
</servl et>

JBoss Seam 1.3.0.A1 146

Security

<servl et - mappi ng>
<servl et - nane>Seam Resour ce Servl et </servl et -nane>
<url - pattern>/seaniresource/*</url-pattern>

</ servl et - mappi ng>

13.9.2. Adding a Captchato a page

Adding a captcha challenge to a page is extremely easy. Seam provides a page-scoped component, capt cha,
which provides everything that is required, including built-in captcha validation. Here's an example:

<di v>
<h: gr aphi cl mage val ue="/seani r esour ce/ capt cha?#{capt cha.id}"/>
</ di v>

<di v>
<h: out put Label for="verifyCaptcha">Enter the above |etters</h:outputLabel >
<h:i nput Text id="verifyCaptcha" val ue="#{captcha.response}" required="true">
<s:validate />
</ h:i nput Text >
<di v class="validationError"><h: nessage for="verifyCaptcha"/></div>
</div>

<di v>
<h: conmandBut t on acti on="#{regi ster.next}" val ue="Regi ster"/>
</div>

That's all thereisto it. The gr aphi ¢l mage control displays the Captcha challenge, and the i nput Text receives
the user's response. The response is automatically validated against the Captcha when the form is submitted.

JBoss Seam 1.3.0.A1 147

Chapter 14. Internationalization and themes

Seam makes it easy to build internationalized applications by providing several built-in components for hand-
ling multi-language Ul messages.

14.1. Locales

Each user login session has an associated instance of j ava. uti | . Local e (available to the application as a ses-
sion-scoped component named | ocal e). Under normal circumstances, you won't need to do any special config-
uration to set the locale. Seam just delegates to JSF to determine the active locale:

e If thereis alocale associated with the HTTP request (the browser locale), and that locale is in the list of
supported locales from f aces- confi g. xm , use that locale for the rest of the session.

e Otherwise, if adefault locale was specified in the f aces- confi g. xm , use that locale for the rest of the ses-
sion.

¢ Otherwise, use the default locale of the server.

It is possible to set the locae manually via the Seam configuration properties
org. j boss. seam core. | ocal eSel ector. | anguage, org.jboss.seam core.|ocal eSel ector.country and
org.j boss. seam core. | ocal eSel ector. vari ant, but we can't think of any good reason to ever do this.

It is, however, useful to allow the user to set the locale manually via the application user interface. Seam
provides built-in functionality for overriding the locale determined by the algorithm above. All you have to do
is add the following fragment to aform in your JSP or Facelets page:

<h: sel ect OneMenu val ue="#{l ocal eSel ect or. | anguage}" >
<f:selectltemitenlLabel ="English" itenVal ue="en"/>
<f:selectltemitenlLabel ="Deutsch" itenVal ue="de"/>
<f:selectltemitenlabel ="Francai s" itenValue="fr"/>
</ h: sel ect OneMenu>
<h: commandBut t on acti on="#{| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangelLanguage']}"/>

Or, if youwant alist of al supported locales from f aces- confi g. xn , just use:

<h: sel ect OneMenu val ue="#{l ocal eSel ector.|ocal eString}">
<f:selectltens val ue="#{l ocal eSel ect or. support edLocal es}"/>
</ h: sel ect OneMenu>
<h: commandBut t on acti on="#{| ocal eSel ector. sel ect}" val ue="#{nessages[' ChangeLanguage']}"/>

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF locales will be
overridden for the rest of the session.

14.2. Labels

JSF supports internationalization of user interface labels and descriptive text viathe use of <f: | cadBundl e />.
Y ou can use this approach in Seam applications. Alternatively, you can take advantage of the Seam nessages
component to display templated labels with embedded EL expressions.

14.2.1. Defining labels

JBoss Seam 1.3.0.A1 148

Internationalization and themes

Each login session has an associated instance of j ava. uti | . Resour ceBundl e (available to the application as a
session-scoped component named or g. j boss. seam cor e. r esour ceBundl e). You'll need to make your interna-
tionalized labels available via this specia resource bundle. By default, the resource bundle used by Seam is
named nessages and so you'll need to define your labels in files named nessages. properties, nes-
sages_en. properties, mnessages_en_AU. properti es, etc. These files usually belong in the WeB- I NF/ ¢l asses
directory.

S0, innessages_en. properties:

Hel | o=Hel | o

Andinnmessages_en_AU. properties:

Hel | 0=G day

You can select a different name for the resource bundle by setting the Seam configuration property named
org. j boss. seam core. resour ceBundl e. bundl eNanes. You can even specify alist of resource bundle names
to be searched (depth first) for messages.

<cor e: resour ce- bundl e>
<cor e: bundl e- nanes>
<val ue>myconpany_nessages</ val ue>
<val ue>st andar d_nessages</ val ue>
</ cor e: bundl e- nanes>
</ core: resource-bundl e>

If you want to define a message just for a particular page, you can specify it in a resource bundle with the same
name as the JSF view id, with the leading / and trailing file extension removed. So we could put our message in
wel cone/ hel | o_en. properti es if we only needed to display the message on/ wel cone/ hel | o. j sp.

Y ou can even specify an explicit bundle name in pages. xm :

<page vi ewid="/wel conme/ hell o.jsp" bundl e="Hel | oMessages"/ >

Then we could use messages defined in Hel | oMessages. properti es 0N/ wel come/ hel | 0. j sp.

14.2.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without having to type
<f:1o0adBundl e ... /> o0nevery page. Instead, you can smply type:

<h: out put Text val ue="#{nmessages['Hello']}"/>

or:

<h: out put Text val ue="#{messages. Hel | 0}"/>

Even better, the messages themselves may contain EL expressions:

Hel | o=Hel | o, #{user.firstNanme} #{user.| astNane}
Hel | 0=G day, #{user.firstNane}

Y ou can even use the messagesin your code:

JBoss Seam 1.3.0.A1 149

Internationalization and themes

@n private Map<String, String> nmessages;

@n("#{nessages['Hello']}") private String hel | oMessage;

14.2.3. Faces messages

The f acesMessages component is a super-convenient way to display success or failure messages to the user.
The functionality we just described also works for faces messages:

@ame("hel |1 0")

@t at el ess

public class HelloBean inplenents Hello {
@n FacesMessages facesMessages;

public String saylt() {
f acesMessages. addFr omResour ceBundl e(" Hel | 0") ;

}

Thiswill display Hel | o, Gavin King Or G day, Gavi n, depending upon the user'slocale.

14.3. Timezones

There is also a session-scoped instance of j ava. uti | . Ti nezone, named or g. j boss. seam core. ti nezone, and
a Seam component for changing the timezone named or g. j boss. seam core. ti mezoneSel ect or . By default,
the timezone is the default timezone of the server. Unfortunately, the JSF specification says that al dates and
times should be assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified using
<f: convert Dat eTi me>. Thisis an extremely inconvenient default behavior.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In addition, Seam provides
the <s: conver t Dat eTi me> tag which always performs conversions in the Seam timezone.

14.4. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the localization API, but of
course these two concerns are orthogonal, and some applications support both localization and themes.

First, configure the set of supported themes:

<t hene: t hene- sel ect or cooki e- enabl ed="t rue" >
<t hene: avai | abl e-t henes>
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</t hene: avai | abl e-t henes>
</t henme: t hene- sel ect or >

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example, the def aul t theme is
defined asa set of entriesin def aul t. properti es. For example, def aul t . properti es might define:

css ../ screen.css
tenpl ate /tenpl ate. xhtn

JBoss Seam 1.3.0.A1 150

Internationalization and themes

Usually the entries in a theme resource bundle will be paths to CSS styles or images and names of facelets tem-
plates (unlike localization resource bundles which are usualy text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the stylesheet in a facelets
page:

<link href="#{theme.css}" rel ="styl esheet" type="text/css" />

Or, when the page definition resides in a subdirectory:

<link href="#{facesCont ext.external Context.request Cont ext Pat h}#{t hene. css}"
rel ="styl esheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a<ui : conposi ti on>:

<ui : conposi tion xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: ui ="http://java. sun.com jsf/facel ets"
xm ns: h="http://java. sun. conljsf/htm "
xm ns: f="http://java. sun.com jsf/core"
tenpl ate="#{t hene. tenpl ate}">

Just like the locale selector, thereis a built-in theme selector to allow the user to freely switch themes:

<h: sel ect OneMenu val ue="#{t heneSel ect or. t heme}" >
<f:selectltens val ue="#{thenmeSel ector.thenes}"/>
</ h: sel ect OneMenu>
<h: conmandBut t on acti on="#{t heneSel ector. sel ect}" val ue="Sel ect Thene"/>

14.5. Persisting locale and theme preferences via cookies

The locale selector, theme selector and timezone selector all support persistence of locale and theme preference
to acookie. Simply set the cooki e- enabl ed property in conponent s. xm :

<t hene: t hene- sel ect or cooki e- enabl ed="t rue" >
<t hene: avai | abl e-t henes>
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</t heme: avai | abl e-t henes>
</t hene: t hene- sel ect or >

<core: |l ocal e-sel ector cooki e-enabl ed="true"/>

JBoss Seam 1.3.0.A1 151

Chapter 15. Seam Text

Collaboration-oriented websites require a human-friendly markup language for easy entry of formatted text in
forum posts, wiki pages, blogs, comments, etc. Seam provides the <s: f or mat t edText / > control for display of
formatted text that conforms to the Seam Text language. Seam Text is implemented using an ANTLR-based
parser. Y ou don't need to know anything about ANTLR to use it, however.

15.1. Basic fomatting

Hereisasimple example:

It's easy to naeke *bold text*, /italic text/, |nonospace|
~del eted text~, super”scripts® or _underlines_.

If we display thisusing <s: f or mat t edText / >, we will get the following HTML produced:

<p>

It's easy to make bold text <i>italic text</i> <tt>npnospace</tt>
del et ed text super^{scripts} or <u>underlines</u>.

</ p>

We can use ablank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading
You /nust/ have sone text follow ng a headi ng!

++This is a small er headi ng
This is the first paragraph. W can split it across nultiple
lines, but we nust end it with a blank Iine.

This is the second paragraph.

(Note that a simple newline is ignored, you need an additional blank line to wrap text into a new paragraph.)
Thisisthe HTML that results:

<h1>This is a big headi ng</hl>

<p>

You <i>nust</i> have sone text follow ng a heading!
</ p>

<h2>This is a smaller headi ng</h2>

<p>

This is the first paragraph. W can split it across nultiple
lines, but we nust end it with a blank |ine.

</ p>

<p>

This is the second paragraph.
</ p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered |ist:

#first item

#second item

#and even the /third/ item

An unordered |ist:

JBoss Seam 1.3.0.A1 152

Seam Text

=an item
=anot her item

<p>
An ordered |ist:
</ p>

first itenx/li>

second itenx/Ili>

and even the <i>third</i> itenx/li>
</ ol >

<p>

An unordered |ist:
</ p>

an itenx/li>

another itenx/li>
</ ul >

Quoted sections should be surrounded in double quotes:

The ot her guy said:

"Nyeah nyeah-nee
/ nyeah/ nyeah!"

But what do you think he neans by "nyeah-nee"?
<p>

The ot her guy said:

</ p>

<g>Nyeah nyeah- nee
<i >nyeah</i > nyeah! </ g>

<p>

But what do you think he nmeans by <qg>nyeah- nee</ q>?
</ p>

15.2. Entering code and text with special characters

Special characterssuch as*, | and #, along with HTML characters such as <, > and & may be escaped using\ :

You can wite down equations |ike 2*3\=6 and HTM. tags
l'i ke \<body\> using the escape character: \\.

<p>
You can wite down equations |ike 2*3=6 and HTM. tags
like & t;body> using the escape character: \.

</ p>

And we can quote code blocks using backticks:

My code doesn't work:

“for (int i=0; i<100; i--)
{

}

doSonet hi ng() ;

JBoss Seam 1.3.0.A1 153

Seam Text

Any i deas?

<p>

My code doesn't work:

</ p>

<pre>for (int i=0; i&t;100; i--)

{
doSonet hi ng();
} </ pre>

<p>
Any i deas?
</ p>

15.3. Links

A link may be created using the following syntax:

Go to the Seam website at [=>http://jboss. com products/sean.

Or, if you want to specify the text of the link:

Co to [the Seam website=>http://jboss. conl products/seani.

For advanced users, it is even possible to customize the Seam Text parser to understand wikiword links written
using this syntax.

15.4. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be safe from
cross-site scripting attacks). Thisis useful for creating links:

You might want to link to sonet hi ng
cool , or even include an inmage: <inmg src="/l|ogo.jpg"/>

And for creating tables:

<t abl e>
<tr><td>First nane: </td><td>Gvin</td></tr>
<tr><td>Last name: </td><td>Ki ng</td></tr>
</t abl e>

But you can do much more if you want!

JBoss Seam 1.3.0.A1 154

Chapter 16. iText PDF generation

Seam now includes an component set for generating documents using i Text. The primary focus of Seam's i Text
document support is for the generation of PDF doucuments, but Seam also offers basic support for RTF docu-
ment generation.

16.1. Using PDF Support

iText support is provided by j boss- seam pdf . j ar . ThisJAR contains the iText JSF controls, which are used to
construct views that can render to PDF, and the DocumentStore component, which serves the rendered docu-
ments to the user. To include PDF support in your application, included j boss-seam pdf.jar in your WeB-
I NF/ |'i b directory along with the iText JAR file. There is no further configuration needed to use Seam's i Text
support.

The Seam i Text module requires the use of Facelets as the view technology. Future versions of the library may
also support the use of JSP. Additionally, it requires the use of the seam-ui package.

The exanpl es/ i text project contains an example of the PDF support in action. It demonstrates proper deploy-
ment packaging, and it contains a number examples that demonstrate the key PDF generation features current
supported.

16.1.1. Creating a document

<p: docurment > Description

Documents are generated by facelets documents using tags in the ht-
tp://jboss. con product s/ seam pdf namespace. Documents should aways
have the docurent tag at the root of the document. The docunent tag prepares
Seam to generate a document into the DocumentStore and renders an HTML re-
direct to that stored content.

Attributes

* type — The type of the document to be produced. Valid values are PDF, RTF
and HTM. modes. Seam defaults to PDF generation, and many of the features
only work correctly when generating PDF documents.

* pageSi ze — The size of the page to be generate. The most commonly used
values would be LETTER and a4. A full list of supported pages sizes can be
found in com | owagie. text. PageSi ze class. Alternatively, pageSize can
provide the width and height of the page directly. The value "612 792", for
example, isequivalent to the LETTER page size.

* orientation — The orientation of the page. Valid values are portrait and
I andscape. In landscape mode, the height and width page size values are re-
versed.

» margi ns — Theleft, right, top and bottom margin values.

* marginMrroring — Indicates that margin settings should be reversed an a-

JBoss Seam 1.3.0.A1 155

iText PDF generation

ternating pages.

Metadata Attributes

e title

* subject
e keywords
* author

* creator
Usage

<p: docunment xm ns: p="http://jboss.com product s/ seam pdf ">
The docunent goes here.
</ p: docunent >

16.1.2. Basic Text Elements

Useful documents will need to contain more than just text; however, the standard Ul components are geared to-
wards HTML generation and are not useful for generating PDF content. Instead, Seam provides a special Ul
components for generating suitable PDF content. Tags like <p: i mage> and <p: par agr aph> are the basic found-
ations of simple documents. Tags like <p: f ont > provide style information to all the content surrounging them.

<p: par agr aph> Description

Most uses of text should be sectioned into paragraphs so that text fragments can
be flowed, formatted and styled in logical groups.

Attributes

e firstLinel ndent

* extraParagraphSpace

* J|eading

* nultipliedLeading

* spaci ngBef or e — The blank space to be inserted before the element.
* spaci ngAft er — The blank space to be inserted after the element.

* indentationLeft

* indentationRi ght

* keepToget her

JBoss Seam 1.3.0.A1 156

iText PDF generation

<p:text>

<p: font>

<p: newPage>

Usage

<p: par agraph al i gnnent ="j ustify">
This is a sinple document. It isn't very fancy.
</ p: par agr aph>

Description

The text tag alows text fragments to be produced from application data using
normal JSF converter mechanisms. It is very similar to the out put Text tag used
when rendering HTML documents.

Attributes

» val ue — The value to be displayed. Thiswill typically be avalue binding ex-
pression.

Usage

<p: par agr aph>
The item costs <p:text value="#{product.price}">
<f:convert Nunber type="currency" currencySynbol ="$"/>
</ p:text>
</ p: par agr aph>

Description
The font tag defines the default font to be used for all text inside of it.

Attributes

e fanilyName — The font family. One of: COURI ER, HELVETI CA, TI MES- ROVAN,
SYMBOL OF ZAPFDI NGBATS.

* size — Thepoint size of the font.

e style — The font styles. Any combination of : NORVAL, BOLD, | TALI C, CB-
LI QUE, UNDERLI NE, LI NE- THROUGH

Usage

<p:font size="24">
<p: par agr aph spaci ngAfter="50">M/ First Docunent</p: paragraph>
</ p:font>

Description

p: newPage inserts a page break.

JBoss Seam 1.3.0.A1

157

iText PDF generation

<p:i nage>

Usage

<p: newPage />

Description

p: i mage inserts an image into the document. Images can be be loaded from the
classpath or from the web application context using ther esour ce attribute.

Resources can aso be dynamically generated by application code. Thei mageDat a
attribute can specify avalue binding expression whose valueisaj ava. awt . | mage
object.

Attributes

» resource — The location of the image resource to be included. Resources
should be relative to the document root of the web application.

» val ue — A resource name or a method expression binding to an application-
generated image.

* rotation— Therotation of theimage in degrees.
* hei ght — The height of the image.
* wi dt h — The width of theimage.

e alignment— The alignment of the image. (see Section 16.1.7.2, “Alignment
Vaues’ for possible values)

e alt — Alternative text representation for the image.

* indentationLeft

* indentati onRi ght

* spaci ngBef or e — The blank space to be inserted before the element.
* spaci ngAfter — The blank space to be inserted after the element.

* Wi dt hPer cent age

* initialRotation

e dpi

» scal ePercent — The scaling factor (as a percentage) to use for the image.
This can be expressed as a single percentage value or as two percentage val-
ues representing separate x and y scaling percentages.

* wap

* underlying

JBoss Seam 1.3.0.A1

158

iText PDF generation

<p: anchor >

Usage

<p:i mage val ue="/j boss.jpg" />

<p:inmage val ue="#{i nmages.chart}" />

Description

p: anchor defines clickable links from a document. It supports the following at-
tributes:

Attributes

* name — The name of an in-document anchor destination.

» reference — The destination the link refers to. Links to other points in the
document should begin with a"#". For example, "#link1" to refer to an anchor
postion with a nare of I'i nk1. Links may also be a full URL to point to are-
source outside of the document.

Usage

<p:listltenmp<p:anchor reference="#reasonl">Reason 1</p:anchor></p:listlten>

<p: par agr aph>
<p: anchor nane="reasonl">lt's the quickest way to get "rich"</p:anchor>

</ p: par agr aph>

16.1.3. Headers and Footers

<p: header >

<p: footer>

Description

The p: header and p: f oot er components provide the ability to place header and
footer text on each page of a generated document, with the exception of the first
page. Header and footer declarations should appear near the top of a document.

Attributes

* alignment — The alignment of the header/footer box section. (see Sec-
tion 16.1.7.2, “Alignment Values® for alignment values)

* backgroundCol or — The background color of the header/footer box. (see
Section 16.1.7.1, “Color Values’ for color values)

* border Col or — The border color of the header/footer box. Individual border
sides can be set using bor der Col or Lef t, bor der Col or Ri ght , bor der Col or -
Top and bor der Col or Bot t om(See Section 16.1.7.1, “Color Vaues’ for color
values)

JBoss Seam 1.3.0.A1

159

iText PDF generation

* border Wdt h — The width of the border. Inidvidual border sides can be spe-
cified using border Wdt hLeft, border W dt hRi ght, border W dt hTop and
bor der W dt hBot t om

Usage

<p: facet nanme="header">
<p:font size="12">
<p: f oot er border Wdt hTop="1" border Col or Top="bl ue"
bor der W dt hBot t om=" 0" al i gnnment ="center ">
Wiy Sean? [<p: pageNumber />]
</ p: footer>
</ p:font>
</f:facet>

<p: pageNunber > Description

The current page number can be placed inside of a header or footer using the
p: pageNunber tag. The page number tag can only be used in the context of a
header or footer and can only be used once.

Usage

<p: footer border Wdt hTop="1" border Col or Top="bl ue"
bor der W dt hBot t om=" 0" al i gnnment ="center">
Wiy Sean? [<p: pageNunmber />]
</ p: footer>

16.1.4. Chapters and Sections

<p: chapt er > Description

<p: section> If the generated document follows a book/article structure, the p: chapter and
p: sect i on tags can be used to provide the necessary structure. Sections can only
be used inside of chapters, but they may be nested arbitrarily deep. Most PDF
viewers provide easy navigation between chapters and sections in a document.

Attributes

* alignment — The alignment of the header/footer box section. (see Sec-
tion 16.1.7.2, “ Alignment Values’ for alignment values)

* nunber — The chapter number. Every chapter should be assigned a chapter
number.

* nunberDepth — The depth of numbering for section. All sections are
numbered relative to their surrounding chapter/sections. The fourth section of
of the first section of chapter three would be section 3.1.4, if displayed at the
default number depth of three. To omit the chapter number, a number depth of
2 should be used. In that case, the section number would be displayed as 1.4.

JBoss Seam 1.3.0.A1 160

iText PDF generation

Usage

<p: docunent xm ns: p="http://jboss.com product s/ seam pdf"
title="Hello">

<p: chapter nunber="1">
<p: title><p: paragraph>Hel | o</ p: par agr aph></p:titl e>
<p: par agr aph>Hel | o #{user. nanme}! </ p: par agr aph>

</ p: chapter>

<p: chapt er nunber="2">
<p:title><p: paragraph>Goodbye</ p: par agraph></p:title>
<p: par agr aph>Goodbye #{user. nane}. </ p: par agr aph>

</ p: chapt er >

</ p: docunent >

<p: header > Description

Any chapter or section can contain ap: title. Thetitle will be displayed next to
the chapter/section number. The body of the title may contain raw text or may be
ap: par agr aph.

16.1.5. Lists

List structures can be displayed using the p: 1ist and p: 1istItemtags. Lists may contain arbitrarily-nested
sublists. List items may not be used outside of alist. he following document uses the ui : r epeat tag to to dis-
play alist of values retrieved from a Seam component.

<p: docunment xm ns: p="http://]boss. conl product s/ seani pdf"
xm ns: ui ="http://java. sun.con j sf/facel ets"
title="Hello">
<p:list style="nunbered">
<ui : repeat val ue="#{docunments}" var="doc">
<p:listltenmp#{doc. name}</p:listltenr
</ ui :repeat >
</p:list>
</ p: docunent >

<p:list> Attributes

* style — The ordering/bulleting style of list. One of: NUVBERED, LETTERED,
GREEK, ROMAN, ZAPFDI NGBATS, ZAPFDI NGBATS_NUMBER. If no style is given, the
list items are bulleted.

e |istSymbol — For bulleted lists, specifiesthe bullet symbol.
* indent — Theindentation level of thelist.

* | owerCase — For list styles using letters, indicates whether the letters should
be lower case.

e charNunber — For ZAPFDINGBATS, indicates the character code of the

JBoss Seam 1.3.0.A1 161

iText PDF generation

<p:listltens

16.1.6. Tables

bullet character.

* nunber Type — For ZAPFDINGBATS _NUMBER, indicates the numbering
style.

Usage

<p:list style="nunbered">
<ui : repeat val ue="#{docunents}" var="doc">
<p:listltemr#{doc. nane}</p:listltenr
</ ui : repeat >
</p:list>

Description
p: li st 1t emsupports the following attributes:

Attributes

* alignment — The alignment of the header/footer box section. (see Sec-
tion 16.1.7.2, “ Alignment Values” for alignment values)

 alignment — The dignment of the list item. (See Section 16.1.7.2,
“Alignment Values’ for possible values)

* indentationLeft — Theleft indentation amount.
* indentationRi ght — Theright indentation amount.

* |istSynmbol — Overridesthe default list symbol for thislist item.

Usage

Table structures can be created using the p: t abl e and p: cel | tags. Unlike many table structures, thereis no ex-
plicit row declaration. If atable has 3 columns, then every 3 cells will automatically form a row. Header and
footer rows can be declared, and the headers and footers will be repeated in the event a table structure spans

multiple pages.

<p: docunent xm ns: p="http://jboss. con products/seant pdf"

xm ns: ui ="http://java. sun.com jsf/facel ets"
title="Hello">

<p:tabl e col ums="3" header Rows="1">

<p: cel | >nane</ p: cel | >

<p: cel | >owner </ p:cel |l >

<p:cel | >si ze</ p: cel | >

<ui : repeat val ue="#{docunents}" var="doc">
<p: cel | >#{doc. nanme} </ p: cel | >
<p: cel | >#{doc. user. nane} </ p: cel | >
<p: cel | >#{doc. si ze} </ p: cel | >

JBoss Seam 1.3.0.A1

162

iText PDF generation

</ ui :repeat >
</ p:tabl e>
</ p: docunent >

<p:tabl e>

Description
p: t abl e supports the following attributes.

Attributes

col ums — The number of columns (cells) that make up atable row.

wi dt hs — The relative widths of each column. There should be one value for
each column. For example: widths="2 1 1" would indicate that there are 3
columns and the first column should be twice the size of the second and third
column.

header Rows — The initial number of rows which are considered to be headers
or footer rows and should be repeated if the table spans multiple pages.

f oot er Rows — The number of rows that are considered to be footer rows.
This value is subtracted from the header Rows value. If document has 2 rows
which make up the header and one row that makes up the footer, header Rows
should be set to 3 and f oot er Rows should be setto 1

wi dt hPer cent age — The percentage of the page width that the table spans.

hori zontal Ali gnment — The horizontal alignment of the table. (See Sec-
tion 16.1.7.2, “Alignment Values® for possible values)

ski pFi r st Header

runDirection

| ockedW dt h

spl it Rows

spaci ngBef or e — The blank space to be inserted before the element.
spaci ngAf t er — The blank space to be inserted after the element.
ext endLast Row

header sl nEvent

splitlLate

keepToget her

Usage

JBoss Seam 1.3.0.A1

163

iText PDF generation

<p:cel | > Description
p: cel | supports the following attributes.

Attributes

e col span — Célls can span more than one column by declaring a col span
greater than 1. Tables do not have the ability to span across multiple rows.

e horizontal Alignment — The horizontal alignment of the cell. (see Sec-
tion 16.1.7.2, “Alignment Values® for possible values)

e wvertical Aignment — The vertical alignment of the cel. (see Sec-
tion 16.1.7.2, “Alignment Values’ for possible values)

» paddi ng — Padding on a given side can also be specified using paddi ngLeft,
paddi ngRi ght , paddi ngTop and paddi ngBot t om

* useBorder Paddi ng
* J|eading

* nultipliedLeading
* indent

e vertical Alignnent
* extraParagraphSpace
e fixedHei ght

* noWap

* m ni nunHei ght

e follow ngl ndent

* rightlndent

* spaceCharRatio

e runDirection

* arabicOptions

* useAscender

e grayFill

e rotation

Usage

JBoss Seam 1.3.0.A1 164

iText PDF generation

16.1.7. Document Constants

This section documents some of the constants shared by attributes on multiple tags.

16.1.7.1. Color Values

Seam documents do not yet support afull color specification. Currently, only named colors are supported. They
are: whi te, gray, | i ght gray, dar kgr ay, bl ack, r ed, pi nk, yel | ow, gr een, magent a, cyan and bl ue.

16.1.7.2. Alignment Values

Where alignment values are used, the Seam PDF supports the following horizontal alignment values: 1 eft,
right, center, justify and justifyall. The vertica alignment values are top, middle, bottom and
basel i ne.

16.1.8. Configuring iText

Document generation works out of the box with no additional configuration needed. However, there are a few
points of configuration that are needed for more serious applications.

The default implementation serves PDF documents from a generic URL, / seam doc. seam Many browsers (and
users) would prefer to see URLS that contain the actual PDF name like / nyDocunent . pdf . This capability re-
quires some configuration. To serve PDF files, all *.pdf resources should be mapped to the Seam Servlet Filter
and to the DocumentStoreServlet:

<filter>
<filter-nane>Seam Servlet Filter</filter-name>
<filter-class>org.jboss.seam servlet. SeanServletFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-name>Seam Servlet Filter</filter-nane>
<url -pattern>*. pdf </url-pattern>
</filter-mapping>

<servl et >

<servl et - name>Docunent Store Servlet</servlet-nanme>

<servl et -cl ass>org. j boss. seam pdf . Docunent St or eSer vl et </ servl et - cl ass>
</servl et>

<servl et - mappi ng>
<servl et - nane>Docunent Store Servl et </servl et-name>
<url -pattern>*. pdf </url-pattern>

</ servl et - mappi ng>

The useExt ensi ons option on the document store component completes the functionality by instructing the
document store to generate URL s with the correct filename extension for the document type being generated.

<conponents xm ns="http://jboss. con product s/ sean conponent s"
xm ns: pdf ="http://jboss. conf product s/ seant pdf ">
<pdf: docunent St or e useExt ensi ons="true" />
</ conponent s>

Generated documents are stored in conversation scope and will expire when the conversation ends. At that
point, references to the document will be invalid. To You can specify a default view to be shown when a docu-
ment does not exist using the er r or Page property of the documentStore.

<pdf: docunent St or e useExt ensi ons="true" errorPage="/pdf M ssi ng. seant’ />

JBoss Seam 1.3.0.A1 165

iText PDF generation

16.2. Charting

<p: barchart > Description
Displays a bar chart.

Attributes

¢ donmui nGidlinesVisible
* domui nGridlinePaint

¢ donumi nGidlineStroke
* rangeGidlinesVisible
* rangeGidlinesVisible
* rangeGidlinePaint

* rangeGidlinePaint

e title

* categoryAxi sLabel

* val ueAxi sLabel

* orientation

* |egend

* is3D

Usage

<p: linechart > Description
Displays aline chart.

Attributes

e donui nGidlinesVisible
¢ donumi nGi dl i nePai nt

* donmi nGidlineStroke

* rangeGidlinesVisible

* rangeGidlinesVisible

JBoss Seam 1.3.0.A1 166

iText PDF generation

* rangeGidlinePaint
* rangeGidlinePaint
e title

¢ donmi nAxi sLabel

* rangeAxi sLabel

* orientation

* |egend

* is3D

Usage

<p: pi echart >

Description

Displays a pie chart.

Attributes
e title
* | abel
* |egend
* is3D

* | abel Li nkMargi n

* | abel Li nkPai nt

* | abel Li nkStroke

* | abel Li nksVisi bl e

* | abel QutlinePaint

* |abel QutlineStroke

* | abel ShadowPai nt

* | abel Pai nt

e |abel Gap

* | abel Backgr oundPai nt

* startAngle

JBoss Seam 1.3.0.A1

167

iText PDF generation

e circular

e direction

* sectionQutlinePaint

* sectionQutlineStroke

* sectionQutlinesVisible
* baseSectionQutlinePaint
* baseSecti onPai nt

* baseSectionCQutlineStroke

Usage

<p: series> Description

Category data can be broken down into series. The series tag is used to categorize
aset of datawith a series and apply styling to the entire series.

Attributes

* key — The series name.
* seriesPaint

* seriesFillPaint

* seriesCQutlinePaint

* seriesCQutlineStroke

®* seriesStroke

* seriesVisible

* seriesVisiblelnLegend
Usage

<p: barchart title="Bar Chart3D"'>
<p:series key="datal">
<ui : repeat val ue="#{data. pi eDatal}" var="itenl>
<p: data col umKey="#{item nane}" val ue="#{item val ue}" />
</ ui : repeat >
</ p:series>
<p:series key="data2" seriesPaint="green" seriesStroke="dot2">
<ui : repeat val ue="#{data. pi eData2}" var="iteni>
<p: data col umKey="#{item nanme}" val ue="#{item val ue}" />
</ ui : repeat >
</ p:series>
</ p: barchart >

JBoss Seam 1.3.0.A1 168

iText PDF generation

<p: dat a> Description
The data tag describes each data point to be displayed in the graph.

Attributes

* key

* col umKey

* rowKey

* value

* expl odedPer cent

* sectionPaint

* sectionCQutlinePaint
* sectionCQutlineStroke

Usage

<p: col or > Description

The color component declares a color or gradient than can be referenced when
drawing filled shapes.

Attributes

* col or — The color value. For gradient colors, this the starting color. ?7??
» col or2 — For gradient colors, thisisthe color that ends the gradient.

* poi nt — The co-ordinates where the gradient color begins.

* poi nt 2— The co-ordinates where the gradient color ends.

Usage

<p: col or id="foo" col or="#0ff00f"/>
<p: col or id="bar" color="#ff00ff" col or 2="#00f f 00"
poi nt ="50 50" poi nt2="300 300"/ >

<p: stroke> Description

Describes a stroke used to draw linesin a chart.

JBoss Seam 1.3.0.A1 169

iText PDF generation

Attributes

* wi dt h — The width of the stroke.

» cap — Theline cap type. Valid valuesarebut t, r ound and squar e

e join— Thelinejointype. Valid valuesareniter, round and bevel

* nmiterLinmt — For miter joins, thisvalueisthe limit of the size of the join.

e dash — The dash value sets the dash pattern to be used to draw the line. The
space separated integers indicate the length of each aternating drawn and un-
drawn segments.

* dashPhase — The dash phase indicates the offset into the dash pattern that the
the line should be drawn with.

Usage

<p: stroke id="dot2" w dth="2" cap="round" join="bevel" dash="2 3" />

16.3. Bar codes

<p: bar code> Description
Attributes
* type
* code
* xpos
* ypos

* rotDegrees

* barHei ght

* textSize

* nminBarWdth

* barMiltiplier

Usage

JBoss Seam 1.3.0.A1 170

iText PDF generation

16.4. Further documentation

For further information on i Text, see:

e iText Home Page [http://www.lowagie.com/i Text/]

* iTextin Action [http://www.manning.com/lowagie/]

JBoss Seam 1.3.0.A1 171

http://www.lowagie.com/iText/
http://www.manning.com/lowagie/

Chapter 17. Email

Seam now includes an optional components for templating and sending emails.

Email support is provided by j boss-seam mai | . j ar. This JAR contains the mail JSF controls, which are used
to construct emails, and the mai | Sessi on manager component.

The examples/mail project contains an example of the email support in action. It demonstrates proper pack-
aging, and it contains a number of example that demonstrate the key features currently supported.

17.1. Creating a message

Y ou don't need to learn awhole new templating language to use Seam Mail—an email is just facelet!

<m nmessage xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: m="http://jboss. conf products/seant nail "
xm ns: h="http://java. sun.com jsf/htm ">

<m from name="Pet er" address="peter @xanpl e. coni' />
<mto nane="#{person.firstnane} #{person.|astnane}">#{person. address}</mto>
<m subj ect >Try out Seamnl </ m subj ect >

<m body>
<p><h: out put Text val ue="Dear #{person.firstnanme}" />, </p>
<p>You can try out Seam by visiting
http://|abs.|boss. conljbossseanx/ a>. </ p>
<p>Regar ds, </ p>
<p>Pet er </ p>
</ m body>

</ m nessage>

The <m message> tag wraps the whole message, and tells Seam to start rendering an email. Inside the
<m nessage> tag we use an <m frome tag to set who the message is from, a <m t o> tag to specify a sender
(notice how we use EL aswe would in a normal facelet), and a<m subj ect > tag.

The <m body> tag wraps the body of the email. You can use regular HTML tags inside the body as well as JSF
components.

So, now you have your email template, how do you go about sending it? Well, at the end of rendering the
m nessage the mai | Sessi on is called to send the email, so all you haveto do is ask Seam to render the view:

@n(create=true)
private Renderer renderer;

public void send() {

try {
renderer. render ("/sinple. xhtm");
facesMessages. add(" Emai | sent successful ly");

catch (Exception e) {
facesMessages. add("Emai | sending failed: " + e.getMessage());
}

}

If, for example, you entered an invalid email address, then an exception would be thrown, which is caught and
then displayed to the user.

JBoss Seam 1.3.0.A1 172

Emalil

17.1.1. Attachments

Seam makes it easy to attach files to an email. It supports most of the standard java types used when working
with files.

If you wanted to email thej boss-seam i | . j ar:

<m attachnent val ue="/WEB-INF/Iib/jboss-seammail.jar"/>

Seam will load the file from the classpath, and attach it to the email. By default it would be attached asj boss-
seam i | . j ar; if you wanted it to have another name you would just add thef i | eNarre attribute:

<m attachnment val ue="/WEB-INF/Iib/jboss-seammail.jar" fileNane="this-is-so-cool.jar"/>

You could also attach aj ava. i 0. Fi l e, @j ava. net. URL:

<m attachnent val ue="#{nunbers}"/>

Or abyte[] Or ajava.io. | nput Stream

<m attachnent val ue="#{person. photo}" content Type="i nage/ png"/>

You'll notice that for abyte[] and aj ava. i o. | nput St reamyou need to specify the MIME type of the attach-
ment (as that information is not carried as part of thefile).

And it gets even better, you can attach a Seam generated PDF, or any standard JSF view, just by wrapping a
<m at t achnent > around the normal tags you would use:

<m attachment fileName="tiny. pdf">
<p: docunent >
A very tiny PDF
</ p: docunent >
</ m attachnent >

If you had a set of files you wanted to attach (for example a set of pictures loaded from a database) you can just
use a<ui : repeat >:

<ui:repeat val ue="#{people}" var="person">
<m attachnment val ue="#{person. photo}" content Type="i mage/ | peg" fil eName="#{person. firstnane}_#{pel
</ ui : repeat >

17.1.2. HTML/Text alternative part

Whilst most mail readers nowadays support HTML, some don't, so you can add a plain text alternative to your
email body:

<m body>

<f:facet nane="alternative">Sorry, your enmil reader can't show our fancy enuail,
pl ease go to http://I|abs.jboss.com jbossseamto expl ore Seam </f: facet>
</ m body>

17.1.3. Multiple recipients

Often you'll want to send an email to a group of recipients (for example your users). All of the recipient mail

JBoss Seam 1.3.0.A1 173

Emalil

tags can be placed inside a <ui : r epeat >:

<ui :repeat val ue="#{all Users} var="user">
<mto nanme="#{user.firstnane} #{user.|astnane}" address="#{user.email Address}" />
</ ui : repeat >

17.1.4. Multiple messages

Sometimes, however, you need to send a dightly different message to each recipient (e.g. a password reset).
The best way to do thisis to place the whole message inside a <ui : r epeat >:

<ui : repeat val ue="#{people}" var="p">
<m nessage>
<m from name="#{ person. firstname} #{person.|astname}">#{person. address}</mfronp
<mto nanme="#{p.firstname}">#{p. address}</ mto>

</ m nmessage>
</ ui:repeat>

17.1.5. Templating

The mail templating example shows that facel ets templating Just Works with the Seam mail tags.
Our tenpl ate. xht m contains.

<m nessage>
<m from nanme="Seant address="do-not-repl y@ boss.coni />
<mto name="#{person.firstnanme} #{person.|astnane}">#{person. address}</mto>
<m subj ect >#{ subj ect } </ m subj ect >
<m body>
<htm >
<body>
<ui :insert name="body">This is the default body, specified by the tenplate.</ui:insert:
</ body>
</htm >
</ m body>
</ m nessage>

Our t enpl ati ng. xht ni contains:

<ui : param nane="subj ect" val ue="Tenplating with Seam Mail"/>
<ui : defi ne name="body" >

<p>Thi s exanpl e denpbnstrates that you can easily use <i>facelets tenplating</i> in emil!</p>
</ ui : defi ne>

17.1.6. Internationalisation

Seam supports sending internationalised messages. By default, the encoding provided by JSF is used, but this
can be overridden on the template:

<m nmessage charset="UTF-8">

</ m nessage>

The body, subject and recipient (and from) name will be encoded. You'll need to make sure facelets uses the
correct charset for parsing your pages by setting encoding of the template:

<?xm version="1.0" encodi ng="UTF-8""?>

JBoss Seam 1.3.0.A1 174

Emalil

17.1.7. Other Headers

Sometimes you'll want to add other headers to your email. Seam provides support for some (see Section 17.5,
“Tags’). For example, we can set the importance of the email, and ask for aread receipt:

<m nmessage xm ns: m"http://jboss. com products/seam mail"
i mport ance="1 ow'
request ReadRecei pt ="true"/>

Otherise you can add any header to the message using the <m header > tag:

<m header nane="X- Sent - Fronf val ue="JBoss Seant'/>

17.2. Receiving emails

If you are using EJB then you can use a MDB (Message Driven Bean) to receive email. Seam comes with an
improved version of mai | -ra. rar asdistributed in JBoss AS; until the improvements make there way into are-
leased version of JBoss AS, replacing the default r ar with the one distributed with Seam is recommended.

Y ou can configure it like this:

@kssageDriven(activati onConfi g={
@Act i vati onConfi gProperty(propertyNanme="nmil Server", propertyVal ue="1ocal host"),
@Act i vati onConfi gProperty(propertyNane="nai | Fol der”, propertyVal ue="1NBOX"),
@Act i vati onConfi gProperty(propertyName="storeProtocol", propertyVal ue="pop3"),
@A\ct i vati onConf i gProperty(propertyName="user Nane", propertyVal ue="seant'),
@A\ct i vati onConfi gProperty(propertyNane="password", propertyVal ue="seant')

})

@Resour ceAdapter("mail-ra.rar")
@ame("nai |l Li stener")
public class MilListener MDB inpl enents MilListener {

@n(create=true)
private O derProcessor orderProcessor;

public void onMessage(Message nessage) {
/'l Process the nessage
or der Processor. process(message. get Subj ect ());

}

Each message received will cause onMessage(Message nessage) to be called. Most seam annotations will
work inside aMDB but you musn't access the persistence context.

You can find more information on the default mail -ra.rar at ht-
tp://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail. The version distributed with Seam also includes a
debug property to enable JavaMail debugging, a f1ush property (by default true) to disable flushing a PoP3
mailbox after successfullying delivering a message to your MDB and a port property to override the default
TCP port. Beware that the api for this may be altered as changes make there way into JBoss AS.

If you aren't using JBoss AS you can still use mai | -ra. rar (included with Seam in the mail directory), or you
may find your application server includes a similar adapter.

17.3. Configuration

JBoss Seam 1.3.0.A1 175

http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail
http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail

Emalil

To include Email support in your application, includej boss-seam mai | . j ar in your WEB-INF/lib directory. If
you are using JBoss AS there is no further configuration needed to use Seam's email support. Otherwise you
need to make sure you have the JavaMail API, an implementation of the JavaMail API present (the APl and im-
pl used in JBoss AS are distributed with seam as i b/ mai | . j ar), and a copy of the Java Activation Framework
(distributed with seam as | i b/ acti vation. j ar.

The Seam Email module requires the use of Facelets as the view technology. Future versions of the library may
also support the use of JSP. Additionaly, it requires the use of the seam-ui package.

The mai | Sessi on component uses JavaMail to talk to a'real' SMTP server.

17.3.1. mai | Sessi on

A JavaMail Session may be available via a JINDI lookup if you are working in an JEE environment or you can
use a Seam configured Session.

The mailSession component's properties are described in more detail in Section 24.8, “Mail-related compon-
ents’.

17.3.1.1. INDI lookup in JBoss AS

The JBossAS depl oy/ mai | - servi ce. xm configures a JavaMail session binding into JNDI. The default service
configuration will need altering for your network. http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail describes
the service in more detail .

<conponents xm ns="http://jboss. conl product s/ sean conponent s"
xm ns: core="http://jboss. com products/seanm core"
xm ns: mai |l ="http://]jboss. conf product s/ seani mai | ">
<mai | : mai | - sessi on sessi on-j ndi - name="j ava: / Mai |l "/ >

</ conponent s>
Here wetell Seam to get the mail session bound to j ava: / Mai | from JNDI.

17.3.1.2. Seam configured Session

A mail session can be configured via conponent s. xn . Here we tell Seam to use snt p. exanpl e. com as the
smtp server,

<conponents xm ns="http://jboss. con product s/ seanf conponent s"
xm ns: core="http://jboss. com products/sean core"
xm ns: mai |l ="http://]boss. conf product s/ seani mai | ">
<mai | : mai | - sessi on host="snt p. exanpl e. coni'/ >

</ conponent s>

17.4. Meldware

Seam's mail examples use Meldware (from buni.org [http://buni.org]) as a mail server. Meldware is a group-
ware package that provides smre, PoP3, | MAP, webmail, a shared calendar and an graphical admin tool; it's writ-
ten as a JEE application so can be deployed onto JBoss AS alongside your Seam application.

JBoss Seam 1.3.0.A1 176

http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail
http://buni.org

Emalil

The version of Meldware distributed with Seam (in the i | / buni - el dwar e folder is specially tailored for de-
velopment - mailboxes, users and aliases (email addresses) are created everytime the the application deploys. If
you want to use Meldware for anything more than sending emails in production it's recommended you a vanilla
copy. To create mailboxes, users and aliaes, you can use the nel dwar e component:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: core="http://jboss.com products/seanm core"
xm ns: mai |l ="http://]boss. conl product s/ seani mai | ">

<mai | : mai | - sessi on host="snt p. exanpl e. coni'/ >

<mai | : mel dwar e>
<mai | : user s>
<val ue>#{duke} </ val ue>
<val ue>#{r oot} </ val ue>
</ mail : users>
</ mai | : mel dwar e>

<mai | : mel dwar e- user nane="duke" user nanme="duke" password="duke">
<mai | : al i ases>
<val ue>duke@ boss. or g</ val ue>
<val ue>duke@ boss. conx/ val ue>
</nuil:aliases>
<mai | : mel dwar e- user nane="root" usernanme="root" password="root" adm nistrator="true" />
</ conponent s>

Here we've created two users, duke, who has two email addresses and an administrator with the usernamer oot .

17.5. Tags

Emails are generated using tagsin theht t p: / / j boss. cont pr oduct s/ seam mai | namespace. Documents should
always have the nessage tag at the root of the message. The message tag prepares Seam to generate an email.

The standard templating tags of facelets can be used as normal. Inside the body you can use any JSF tag which

doesn't require access to external resources (stylesheets, javascript).

<m:message>
Root tag of amail message

* inportance — low, normal or high. By default normal, this sets the importance of the mail message.
e precedence — Sets the precedence of the message (e.g. bulk).

* request ReadRecei pt — by default false, if set, aread receipt will be request will be added, with the
read receipt being sent to the Fr om address.

e url Base — If set, the value is prepended to the r equest Cont ext Pat h allowing you to use components
such as <h: gr aphi cl mage> in your emails.

<m:from>
Set's the From: address for the email. Y ou can only have one of these per email.

¢ name — the name the email should come from.

* address — the email address the email should come from.

JBoss Seam 1.3.0.A1 177

Emalil

<m:replyTo>
Set's the Reply-to: address for the email. Y ou can only have one of these per email.

* address — the email address the email should come from.

<m:to>
Add arecipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can be safely placed
inside arepeat tag such as <ui:repeat>.
¢ nanme — the name of the recipient.

* address — the email address of the recipient.

<m:cc>
Add a cc recipient to the email. Use multiple <m:cc> tags for multiple ccs. This tag can be safely placed in-
side arepeat tag such as <ui:repeat>.
e name — the name of the recipient.

e address — the email address of the recipient.

<m:bcc>
Add a bcc recipient to the email. Use multiple <m:bcc> tags for multiple bees. This tag can be safely
placed inside a repeat tag such as <ui:repeat>.

¢ name — the name of the recipient.
e address — the email address of the recipient.

<m:header>
Add a header to the email (e.g. X- Sent- From JBoss Seam

* nanme — The name of the header to add (e.g. X- Sent - Fr om).
e val ue — Thevalue of the header to add (e.g. JBoss Seam).

<m:attachment>
Add an attachment to the email.

¢ val ue — Thefileto attach:

* String— A string isinterpreted as a path to file within the classpath
e java.io.File— AnEL expression can reference aFi | e object
* java.net.URL — An EL expression can reference a URL object

e java.io.lnputStream— An EL expression can reference an | nput St ream In this case both afi -
| eNarme and acont ent Type must be specified.

e byte[] — An EL expression can reference an byt e[] . In this case both afi | eNane and acont ent -
Type must be specified.

JBoss Seam 1.3.0.A1 178

Emalil

If the value attribute is ommitted:

e If this tag contains a <p: docunent > tag, the document described will be generated and attached to
theemail. A fi | eName should be specfied.

e If thistag contains other JSF tags a HTML document will be generated from them and attached to
theemail. A fi | eName should be specfied.

* fil eName — Specify the file name to use for the attached file.

e content Type — Specify the MIME type of the attached file

<m:subject>
Set's the subject for the email.

<m:body>

Set's the body for the email. Supports an al t er nat i ve facet which, if an HTML email is generated can con-
tain aternative text for amail reader which doesn't support html.

e type — If settopl ai n then aplain text email will be generated otherwise an HTML email is generated.

JBoss Seam 1.3.0.A1 179

Chapter 18. Asynchronicity and messaging

Seam makes it very easy to perform work asynchronously from a web regquest. When most people think of
asynchronicity in Java EE, they think of using IMS. Thisis certainly one way to approach the problem in Seam,
and is the right way when you have strict and well-defined quality of service requirements. Seam makes it easy
to send and recieve JM S messages using Seam components.

But for many usecases, JMS is overkill. Seam layers a simple asynchronous method and event facility over
your choice of dispatchers:

e java.util.concurrent. Schedul edThr eadPool Execut or (by default)
» the EJB timer service (for EJB 3.0 environments)

e Quartz

18.1. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations as the underlying dis-
patcher mechanism. The default dispatcher, based upon a Schedul edThr eadPool Execut or performs efficiently
but provides no support for persistent asynchronous tasks, and hence no guarantee that a task will ever actually
be executed. If you're working in an environment that supports EJB 3.0, and add the following line to conpon-
ents. xm :

<core:tiner-service-di spatcher/>

then your asynchronous tasks will be processed by the container's EJB timer service. If you're not familiar with
the Timer service, don't worry, you don't need to interact with it directly if you want to use asynchronous meth-
ods in Seam. The important thing to know is that any good EJB 3.0 implementation will have the option of us-
ing persistent timers, which gives some guarantee that the tasks will eventually be processed.

Another alternative is to use the open source Quartz library to manage asynchronous method. You need to
bundle the Quartz library JAR (found in the i b directory) in your EAR and declare it as a Java module in ap-
plication.xn . In addition, you need to add the following line to conponent s. xn to install the Quartz dis-
patcher.

<conmponent name="org.j boss. seam core. di spat cher"
cl ass="org.j boss. seam core. Quart zDi spat cher"/ >

The Seam AP for the default Schedul edThr eadPool Execut or , the EJB3 Ti ner, and the Quartz Schedul er are
largely the same. They can just "plug and play" by adding alineto conponent s. xn as we shown above.

18.1.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in a different
thread) from the caller. We usually use an asynchronous call when we want to return an immediate response to
the client, and let some expensive work be processed in the background. This pattern works very well in applic-
ations which use AJAX, where the client can automatically poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed asynchronously.

JBoss Seam 1.3.0.A1 180

Asynchronicity and messaging

@.ocal

public interface PaynentHandl er

{
@\synchr onous

public void processPaynent (Paynent paynent);

(For JavaBean components we can annotate the component implementation classif we like.)
The use of asynchronicity is transparent to the bean class:

@t at el ess
@Nane(" paynent Handl er ")
public class Paynent Handl er Bean i npl enents Paynment Handl er

{

public void processPaynent (Paynent paynent)

{
}

//do sone wor k!

And also transparent to the client:

@5t at ef ul
@ame(" paynment Acti on")
public class CreatePaynment Action

{
@n(create=true) PaynentHandl er paynent Handl er;

@n Bill bill;

public String pay()
{

payment Handl er. processPaynment (new Paynent (bill));
return "success";

The asynchronous method is processed in a completely new event context and does not have access to the ses-
sion or conversation context state of the caller. However, the business process context is propagated.

Asynchronous method calls may be scheduled for later execution using the @urati on, @xpiration and
@ nt er val Dur at i on annotations.

@.ocal
public interface PaynentHandl er
{

@\synchr onous

public void processSchedul edPaynent (Paynent paynment, @xpiration Date date);

@\synchr onous
public void processRecurringPaynent (Paynment paynent,
@xpiration Date date,
@nterval Duration Long interval)'

@5t at ef ul

@Nane(" paynent Acti on")

public class CreatePaynent Action

{
@n(create=true) PaynentHandl er paynent Handl er;
@n Bill bill;

public String schedul ePaynent ()

{
paynent Handl er . pr ocessSchedul edPaynent (new Paynment (bill), bill.getDueDate());

JBoss Seam 1.3.0.A1 181

Asynchronicity and messaging

return "success";

}
public String schedul eRecurringPaynent ()
{
payment Handl er . processRecurri ngPaynent (new Paynent (bill), bill.getDueDate(),
ONE_MONTH) ;
return "success";
}

Both client and server may access the Ti mer object associated with the invocation. The Ti mer object shown be-
low is the EJB3 timer when you use the EJB3 dispatcher. For the default Schedul edThr eadPool Execut or , the
returned object is Fut ur e from the JDK. For the Quartz dispatcher, it returns Quart zTri gger Handl e, which we
will discussin the next section.

@ocal
public interface Paynent Handl er

{
@\synchr onous

public Tinmer processSchedul edPayment (Payment paynent, @xpiration Date date);

@t at el ess
@Nane(" paynent Handl er ")
public class Paynent Handl er Bean i npl enents Paynment Handl er

{

@n Tinmer tiner;

public Timer processSchedul edPayment (Paynent paynent, @txpiration Date date)

{
//do some wor k!
return tiner; //note that return value is conpletely ignored
}
}
@5t at ef ul

@ame(" paynment Acti on")
public class CreatePaynment Action

{
@n(create=true) PaynentHandl er paynent Handl er;
@n Bill bill;
public String schedul ePaynment ()
{
Ti mer tiner = paynent Handl er. processSchedul edPaynent (new Paynent (bill),
bill.getDueDate());
return "success";
}
}

Asynchronous methods cannot return any other value to the caller.

18.1.2. Asynchronous methods with the Quartz Dispatcher

The Quartz dispatcher (see earlier on how to install it) allows you to use the @synchronous, @urati on,
@xpiration, and @ nt erval Dur ati on annotations as above. But it has some powerful additional features. The
Quartz dispatcher supports a new @r on annotation that supports Unix cron job syntax for task scheduling. For
instance, the following asynchronous method runs at 2:10pm and at 2:44pm every Wednesday in the month of
March.

JBoss Seam 1.3.0.A1 182

Asynchronicity and messaging

String cron = "0 10,44 14 ? 3 WED';

@\synchr onous

public QuartzTriggerHandl e schedul ePaynent (@xpi rati on Date when,
@xon String cron,
Paynment paynent)

/1 do the repeating or long running task

The @r on annotation and the @ nt er val Dur at i on annotation are mutually exclusive. If they are used in the
same method, the @ on annotation will be used, and the @ nt er val Dur at i on discarded.

Note that the method returns the Quart zTri gger Handl e object, which you can use later to stop, pause, and re-
sume the scheduler. The Quart zTri gger Handl e object is serializable, so you can save it into the database if you
need to keep it around for extended period of time.

Quart zTri gger Handl e handl e =
processor. schedul ePaynent (paynment . get Paynent Dat e() ,
paynent . get Paynent Cron(),
paynent)
paynent . set Quart zTri gger Handl e(handl e);
// Save paynent to DB

/1l later ...

/'l Retrieve paynent from DB
/1 Cancel the remaining schedul ed tasks
payment . get Quart zTri gger Handl e() . cancel ();

18.1.3. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous processing, simply
call the rai seAsynchronousEvent () method of the Event s class. To schedule a timed event, call the rai se-
Ti medEvent () method, passing a schedule object (for the default dispatcher or timer service dispatcher, use
Ti mer Schedul). Components may observe asynchronous events in the usual way, but remember that only the
business process context is propagated to the asynchronous thread.

18.2. Messaging in Seam

Seam makes it easy to send and receive JIM'S messages to and from Seam components.

18.2.1. Configuration

To configure Seam's infrastructure for sending JMS messages, you need to tell Seam about any topics and
queues you want to send messages to, and also tell Seam where to find the QueueConnect i onFact ory and/or
Topi cConnect i onFactory.

Seam defaults to using Ul L2Connect i onFact ory Which is the usual connection factory for use with JBossMQ.
If you are using some other JMS provider, you need to set one or both of queueConnec-
ti on. queueConnect i onFactoryJndi Name and topi cConnecti on. t opi cConnect i onFact oryJndi Nane in
seam properties,web. xm Or conponents. xni .

You also need to list topics and queues in conmponents. xm to install Seam managed Topi cPubl i sher S and
QueueSender S.

JBoss Seam 1.3.0.A1 183

Asynchronicity and messaging

<j ms: managed-t opi c- publ i sher name="st ockTi cker Publ i sher"
aut o-create="true"
topi c-j ndi - name="t opi c/ st ockTi cker Topi c'

<j ms: managed- queue- sender name="paynment QueueSender"
aut o-create="true"
queue-j ndi - name="queue/ paynent Queue"/ >

18.2.2. Sending messages
Now, you can inject a JMS Topi cPubl i sher and Topi cSessi on into any component:

@n
private Topi cPublisher stockTi ckerPublisher;

@n

private Topi cSessi on topi cSession;

public void publish(StockPrice price) {
try
{

t opi cPubl i sher. publ i sh(topi cSessi on. creat eCbj ect Message(price));

catch (Exception ex)

{

t hrow new Runti meExcepti on(ex);

}

Or, for working with a queue:

@n

private QueueSender paynent QueueSender;
@n

private QueueSessi on queueSessi on;

public void publish(Paynent paynent) {
try
{

paynent QueueSender . send(queueSessi on. cr eat eCbj ect Message(paynent));
catch (Exception ex)

{

t hrow new Runti neException(ex);

}

18.2.3. Receiving messages using a message-driven bean

You can process messages using any EJB3 message driven bean. Message-driven beans may even be Seam
components, in which caseit is possible to inject other event and application scoped Seam components.

18.2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described in the next
chapter.

JBoss Seam 1.3.0.A1 184

Chapter 19. Caching

In amost all enterprise applications, the database is the primary bottleneck, and the least scalable tier of the
runtime environment. People from a PHP/Ruby environment will try to tell you that so-called "shared nothing"
architectures scale well. While that may be literaly true, | don't know of many interesting multi-user applica-
tions which can be implemented with no sharing of resources between different nodes of the cluster. What these
silly people are really thinking of is a "share nothing except for the database" architecture. Of course, sharing
the database is the primary problem with scaling a multi-user application—so the claim that this architecture is
highly scalable is absurd, and tells you a lot about the kind of applications that these folks spend most of their
time working on.

Almost anything we can possibly do to share the database less often is worth doing.

This calls for a cache. Well, not just one cache. A well designed Seam application will feature a rich, multi-
layered caching strategy that impacts every layer of the application:

e The database, of course, has its own cache. This is super-important, but can't scale like a cache in the ap-
plication tier.

¢ Your ORM solution (Hibernate, or some other JPA implementation) has a second-level cache of data from
the database. Thisis a very powerful capability, but is often misused. In a clustered environment, keeping
the data in the cache transactionally consistent across the whole cluster, and with the database, is quite ex-
pensive. It makes most sense for data which is shared between many users, and is updated rarely. In tradi-
tional stateless architectures, people often try to use the second-level cache for conversational state. Thisis
aways bad, and is especially wrong in Seam.

e The Seam conversation context is a cache of conversational state. Components you put into the conversa-
tion context can hold and cache state relating to the current user interaction.

e In particular, the Seam-managed persistence context (or an extended EJB container-managed persistence
context associated with a conversation-scoped stateful session bean) acts as a cache of data that has been
read in the current conversation. This cache tends to have a pretty high hitrate! Seam optimizes the replica-
tion of Seam-managed persistence contexts in a clustered environment, and there is no requirement for
transactional consistency with the database (optimistic locking is sufficient) so you don't need to worry too
much about the performance implications of this cache, unless you read thousands of objects into a single
persi stence context.

« The application can cache non-transactional state in the Seam application context. State kept in the applica-
tion context is of course not visible to other nodesin the cluster.

» The application can cache transactional state using the Seam poj oCache component, which integrates
JBossCache into the Seam environment. This state will be visible to other nodes if you run JBoss cachein a
clustered mode.

« Finaly, Seam lets you cache rendered fragments of a JSF page. Unlike the ORM second-level cache, this
cache is not automatically invalidated when data changes, so you need to write application code to perform
explicit invalidation, or set appropriate expiration policies.

For more information about the second-level cache, you'll need to refer to the documentation of your ORM
solution, since this is an extremely complex topic. In this section welll discuss the use of JBossCache directly,
viathe poj oCache component, or as the page fragment cache, viathe <s: cache> control.

JBoss Seam 1.3.0.A1 185

Caching

19.1. Using JBossCache in Seam

The built-in poj oCache component manages an instance of or g. j boss. cache. aop. Poj oCache. You can safely
put any immutable Java abject in the cache, and it will be replicated across the cluster (assuming that replica-
tion is enabled). If you want to keep mutable objects in the cache, you'll need to run the JBossCache bytecode
preprocessor to ensure that changes to the objects will be automatically detected and replicated.

To use poj oCache, al you need to do is put the JBossCache jars in the classpath, and provide a resource named
treecache. xmi with an appropriate cache configuration. JBossCache has many scary and confusing configura-
tion settings, so we won't discuss them here. Please refer to the JBossCache documentation for more informa:
tion.

For an EAR depoyment of Seam, we recommend that the JBossCache jars and configuration go directly into
the EAR. Make sure you declarethe jarsin appl i cati on. xm .

Now you can inject the cache into any Seam component:

@ame(" chat r oont')
public class Chatroom {
@n Poj oCache poj oCache;

public void join(String username) {
try
{
Set <String> userList = (Set<String>) pojoCache. get("chatroon, "userList");
i f (userlList==null)

{

userList = new HashSet<String>();
poj oCache. put ("chatroont', "userList", userlList);

}

user Li st. put (usernane) ;

catch (CacheException ce)
{

t hrow new Runti meException(ce);
}
}

If you want to have multiple JBossCache configurationsin your application, use conponent s. xn :

<cor e: poj o- cache nane="nyCache" cfg-resource-nane="myown/ cache. xm "/>

19.2. Page fragment caching

The most interesting user of JBossCache isthe <s: cache> tag, Seam's solution to the problem of page fragment
caching in JSF. <s: cache> USeS poj oCache internally, so you need to follow the steps listed above before you
can useit. (Put thejarsin the EAR, wade through the scary configuration options, etc.)

<s: cache> is used for caching some rendered content which changes rarely. For example, the welcome page of
our blog displays the recent blog entries:

<s:cache key="recentEntries-#{blog.id}" regi on="wel conePageFr agnent s">
<h: dat aTabl e val ue="#{bl og.recentEntri es}" var="bl ogEntry">
<h: col utm>
<h3>#{bl ogEntry.titl e}</h3>
<di v>
<s:formattedText val ue="#{bl ogEntry. body}"/>
</ di v>

JBoss Seam 1.3.0.A1 186

Caching

</ h: col um>
</ h: dat aTabl e>
</ s: cache>

Thekey let's you have multiple cached versions of each page fragment. In this case, there is one cached version
per blog. The r egi on determines the JBossCache node that all version will be stored in. Different nodes may
have different expiry policies. (That's the stuff you set up using the aforementioned scary configuration op-
tions.)

Of course, the big problem with <s: cache> is that it is too stupid to know when the underlying data changes
(for example, when the blogger posts a new entry). So you need to evict the cached fragment manually:

public void post() {

ent it yManager . persi st (bl ogEntry);
poj oCache. r enove(" wel conePageFr agnent s", "recentEntries-" + blog.getld());

Alternatively, if it is not critical that changes are immediately visible to the user, you could set a short expiry
time on the JoossCache node.

JBoss Seam 1.3.0.A1 187

Chapter 20. Remoting

Seam provides a convenient method of remotely accessing components from a web page, using AJAX
(Asynchronous Javascript and XML). The framework for this functionality is provided with amaost no up-front
development effort - your components only require simple annotating to become accessible via AJAX. This
chapter describes the steps required to build an AJAX-enabled web page, then goes on to explain the features of
the Seam Remoting framework in more detail.

20.1. Configuration

To use remoting, the Seam Resource servlet must first be configured in your web. xm file:

<servl et >

<servl et - name>Seam Resour ce Servl et </ servl et - nane>

<servl et-cl ass>org.j boss. seam servl et. ResourceServl et </ servl et -cl ass>
</servl et>

<servl et - mappi ng>
<servl et - nane>Seam Resour ce Servl et </servl et-nane>
<url - pattern>/seaniresource/*</url-pattern>

</ servl et - mappi ng>

The next step is to import the necessary Javascript into your web page. There are a minimum of two scripts that
must be imported. The first one contains all the client-side framework code that enables remoting functionality:

<script type="text/javascript" src="seam resource/renoting/resource/renote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call. It is generated
dynamically based on the local interface of your components, and includes type definitions for al of the classes
that can be used to call the remotable methods of the interface. The name of the script reflects the name of your
component. For example, if you have a stateless session bean annotated with @iame(" cust oner Acti on") , then
your script tag should look like this:

<script type="text/javascript"
src="seam resource/renoting/interface.js?custonmerAction"></script>

If you wish to access more than one component from the same page, then include them all as parameters of
your script tag:

<script type="text/javascript"
src="seam resource/renoting/interface.js?custonerActi on&ccount Acti on"></scri pt >

20.2. The "Seam" object

Client-side interaction with your components is all performed via the seam Javascript object. This object is
definedinrenote. j s, and you'll be using it to make asynchronous calls against your component. It is split into
two areas of functionality; Seam Conponent contains methods for working with components and
Seam Renot i ng contains methods for executing remote requests. The easiest way to become familiar with this
object isto start with a simple example.

20.2.1. A Hello World example

JBoss Seam 1.3.0.A1 188

Remoting

Let's step through a simple exampl e to see how the seamobject works. First of al, let's create a new Seam com-
ponent called hel | oActi on

@t at el ess
@anme(" hel | oAction")
public class Hell oAction inplenents HelloLocal {
public String sayHel | o(String nanme) {
return "Hello, " + name;
}

Y ou also need to create alocal interface for our new component - take special note of the @ebRenot e annota-
tion, asit's required to make our method accessible via remoting:

@oca
public interface HelloLocal ({
@\¥bRenot e
public String sayHello(String nane);
}

That's all the server-side code we need to write. Now for our web page - create a new page and import the fol-
lowing scripts:

<script type="text/javascript" src="seanm resource/renoting/resource/remte.js"></script>
<script type="text/javascript”
src="seam resource/renoting/interface.js?hell oActi on"></script>

To make this afully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hel | o</ button>

Well also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">
/] <!'[CDATA[

function sayHel lo() {

var name = pronpt("Wat is your name?");

Seam Conponent . get | nst ance(" hel | oActi on") . sayHel | o(name, sayHel | oCal | back) ;
}

function sayHel | oCal | back(result) {
alert(result);
}

/11 11>
</script>

We're done! Deploy your application and browse to your page. Click the button, and enter a name when promp-
ted. A message box will display the hello message confirming that the call was successful. If you want to save
some time, youll find the full source code for this Hello World example in Seam's /ex-

anpl es/ renot i ng/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start with, you can
see from the Javascript code listing that we have implemented two methods - the first method is responsible for
prompting the user for their name and then making a remote request. Take alook at the following line:

Seam Conponent . get | nst ance(" hel | oActi on") . sayHel | o(name, sayHel | oCal | back) ;

The first section of thisline, Seam Conponent . get | nst ance(" hel | oActi on") returnsaproxy, or "stub" for our

JBoss Seam 1.3.0.A1 189

Remoting

hel | oAct i on component. We can invoke the methods of our component against this stub, which is exactly what
happens with the remainder of theline: sayHel | o(name, sayHel | oCal | back) ; .

What this line of code in its completeness does, is invoke the sayHel | o method of our component, passing in
name as a parameter. The second parameter, sayHel | oCal | back isn't a parameter of our component's sayHel | o
method, instead it tells the Seam Remoting framework that once it receives the response to our request, it
should pass it to the sayHel | oCal | back Javascript method. This callback parameter is entirely optional, so feel
freeto leaveit out if you're calling a method with avoi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops up an alert mes-
sage displaying the result of our method call.

20.2.2. Seam.Component

The seam Conponent Javascript object provides a number of client-side methods for working with your Seam
components. The two main methods, newl nst ance() and get | nst ance() are documented in the following sec-
tions however their main difference is that newl nst ance() will always create a new instance of a component
type, and get | nst ance() will return asingleton instance.

Seam.Component.newlinstance()

Use this method to create a new instance of an entity or Javabean component. The object returned by this meth-
od will have the same getter/setter methods as its server-side counterpart, or aternatively if you wish you can
accessitsfields directly. Take the following Seam entity component for example:

@Nane(" cust omer")
@ntity
public class Customer inplenents Serializable

{

private |nteger custonerld;
private String firstNang;
private String |astName;

@ol utm public Integer getCustonerld() ({
return custonerld;
}

public void setCustonerld(lnteger custonerld} {
this.custonerld = custonerld;

}

@Col utm public String getFirstName() {
return firstName;
}

public void setFirstName(String firstName) {
this.firstName = firstNane;

}

@ol um public String getlLastNane() {
return | ast Nane;

}

public void setlLastName(String | ast Nane) {
this.last Nane = | ast Nane;

}

}

To create a client-side Customer you would write the following code:

var customer = Seam Conponent.new nst ance("custoner");

JBoss Seam 1.3.0.A1 190

Remoting

Then from here you can set the fields of the customer object:

cust oner. set Fi rst Nane("John");
/1 O you can set the fields directly
custoner.lastNane = "Snmith";

Seam.Component.getinstance()

The get I nst ance() method is used to get a reference to a Seam session bean component stub, which can then
be used to remotely execute methods against your component. This method returns a singleton for the specified
component, so calling it twice in a row with the same component name will return the same instance of the
component.

To continue our example from before, if we have created a new cust oner and we now wish to save it, we
would passit to the saveCust oner () method of our cust oner Act i on component:

Seam Conponent . get | nst ance(" cust oner Acti on") . saveCust oner (cust oner);

Seam.Component.getComponentName()

Passing an object into this method will return its component nameif it is acomponent, or nul | if it isnot.

i f (Seam Conponent . get Conponent Nane(i nst ance) == "custoner")
alert("Custoner");
el se if (Seam Conponent. get Conmponent Nane(i nstance) == "staff")

alert("Staff menber");

20.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam Renot i ng object. While
you shouldn't need to directly call most of its methods, there are a couple of important ones worth mentioning.

Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may need to create these
types on the client side to pass as parameters into your component method. Use the creat eType() method to
create an instance of your type. Passin the fully qualified Java class name as a parameter:

var w dget = Seam Renoti ng. createType("com acre. w dgets. MW dget ") ;

Seam.Remoting.getTypeName()

This method is the equivalent of Seam Conponent . get Conponent Narme() but for non-component types. It will
return the name of the type for an object instance, or nul | if the type is not known. The name is the fully quali-
fied name of the type's Java class.

20.3. Client Interfaces

In the configuration section above, the interface, or "stub" for our component is imported into our page via
seanfresource/renoting/interface.js:

<script type="text/javascript"
src="sean resour ce/renoting/interface.js?custonerActi on"></scri pt>

JBoss Seam 1.3.0.A1 191

Remoting

By including this script in our page, the interface definitions for our component, plus any other components or
types that are required to execute the methods of our component are generated and made available for the re-
moting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs. Executable stubs
are behavioural, and are used to execute methods against your session bean components, while type stubs con-
tain state and represent the types that can be passed in as parameters or returned as a resullt.

The type of client stub that is generated depends on the type of your Seam component. If the component is a
session bean, then an executable stub will be generated, otherwise if it's an entity or JavaBean, then atype stub
will be generated. There is one exception to this rule; if your component is a JavaBean (ie it is not a session
bean nor an entity bean) and any of its methods are annotated with @WebRemote, then an executable stub will
be generated for it instead of a type stub. This allows you to use remoting to call methods of your JavaBean
components in anon-EJB environment where you don't have access to session beans.

20.4. The Context

The Seam Remoting Context contains additional information which is sent and received as part of a remoting
request/response cycle. At this stage it only contains the conversation ID but may be expanded in the future.

20.4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to read or set the
conversation 1D in the Seam Remoting Context. To read the conversation ID after making a remote request call
Seam Renot i ng. get Cont ext () . get Conversationl d(). To set the conversation ID before making a request,
call Seam Renot i ng. get Cont ext (). set Conver sati onl d() .

If the conversation ID hasn't been explicitly set with Seam Renot i ng. get Cont ext () . set Conver sati onl d(),
then it will be automatically assigned the first valid conversation ID that is returned by any remoting call. If you
are working with multiple conversations within your page, then you may need to explicitly set the conversation
ID before each call. If you are working with just a single conversation, then you don't need to do anything spe-
cia.

20.4.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current view's conver-
sation. To do this, you must explicitly set the conversation ID to that of the view before making the remote call.
This small snippet of JavaScript will set the conversation ID that is used for remoting calls to the current view's
conversation ID:

Seam Renot i ng. get Cont ext () . set Conversationl d(#{conversationld});

20.5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is recommended that
this feature is used wherever it is appropriate to reduce network traffic.

The method seam Renoti ng. startBatch() will start a new batch, and any component calls executed after
starting a batch are queued, rather than being sent immediately. When all the desired component calls have

JBoss Seam 1.3.0.A1 192

Remoting

been added to the batch, the Seam Renot i ng. execut eBat ch() method will send a single request containing all
of the queued calls to the server, where they will be executed in order. After the calls have been executed, a
single response containining all return values will be returned to the client and the callback functions (if
provided) triggered in the same order as execution.

If you start a new batch via the startBatch() method but then decide you don't want to send it, the
Seam Renot i ng. cancel Bat ch() method will discard any calls that were queued and exit the batch mode.

To see an example of abatch being used, take alook at / exanpl es/ r emot i ng/ chat r oom

20.6. Working with Data types

20.6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are generally compatible
with either their primitive type or their corresponding wrapper class.

String

Simply use Javascript String objects when setting String parameter values.

Number

There is support for all number types supported by Java. On the client side, number values are always serialized
astheir String representation and then on the server side they are converted to the correct destination type. Con-
version into either a primitive or wrapper type is supported for Byt e, Doubl e, Fl oat, | nt eger, Long and Short

types.
Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java boolean.

20.6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-component class. Use
the appropriate method (either Seam Conponent.new nstance() for Seam components or
Seam Renmt i ng. creat eType() for everything else) to create a new instance of the object.

It is important to note that only objects that are created by either of these two methods should be used as para-
meter values, where the parameter is not one of the other valid types mentioned anywhere else in this section.
In some situations you may have a component method where the exact parameter type cannot be determined,
such as:

@Nane(" nyAction")
public class MyAction inplenents M/ActionLocal {
public void doSonet hi ngWthObj ect (Obj ect obj) {
/'l code

}
}

In this case you might want to pass in an instance of your myw dget component, however the interface for ny-
Act i on won't include nyw dget asitisnot directly referenced by any of its methods. To get around this, MW d-

JBoss Seam 1.3.0.A1 193

Remoting

get needsto be explicitly imported:

<script type="text/javascript"
src="seam resource/renoting/interface.js?myActi on&yW dget " ></

This will then allow a myw dget object to be created with Seam Conponent . new nst ance(" nyW dget "), which
can then be passed to nyAct i on. doSonet hi ngW t hQbj ect () .

20.6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the client side, use
a Javascript Date object to work with date values. On the server side, use any j ava. uti | . Dat e (Or descendent,
such asj ava. sql . Dat e Or j ava. sql . Ti mest anp class.

20.6.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum parameter, simply
use the String representation of the enum. Take the following component as an example:

@anme(" pai nt Action")
public class paintAction inplenents paintLocal {
public enum Col or {red, green, blue, yellow orange, purple};

public void paint(Color color) {
/'l code

}
}

To cal the pai nt () method with the color r ed, pass the parameter value as a String literal:

Seam Conponent . get | nst ance(" pai nt Acti on").paint("red");

Theinverse is also true - that is, if a component method returns an enum parameter (or contains an enum field
anywhere in the returned object graph) then on the client-side it will be represented as a String.

20.6.5. Collections

Bags

Bags cover al collection types including arrays, collections, lists, sets, (but excluding Maps - see the next sec-
tion for those), and are implemented client-side as a Javascript array. When calling a component method that
accepts one of these types as a parameter, your parameter should be a Javascript array. If a component method
returns one of these types, then the return value will also be a Javascript array. The remoting framework is clev-
er enough on the server side to convert the bag to an appropriate type for the component method call.

Maps

As there is no native support for Maps within Javascript, a smple Map implementation is provided with the
Seam Remoting framework. To create a Map which can be used as a parameter to a remote call, create a new
Seam Renmt i ng. Map object:

var map = new Seam Renoti ng. Map();

This Javascript implementation provides basic methods for working with Maps: si ze(), i sEnpty() , keySet (),

JBoss Seam 1.3.0.A1 194

Remoting

val ues(), get (key), put (key, val ue), remove(key) and cont ai ns(key) . Each of these methods are equival-
ent to their Java counterpart. Where the method returns a collection, such as keySet () and val ues(), a Javas-
cript Array object will be returned that contains the key or value objects (respectively).

20.7. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents of all the
packets send back and forth between the client and server in a popup window. To enable debug mode, either
execute the set Debug() method in Javascript:

Seam Renot i ng. set Debug(true);
Or configure it viacomponents.xml:

<renoting: renoting debug="true"/>

To turn off debugging, call set Debug(fal se). If you want to write your own messages to the debug log, call
Seam Renoti ng. | og(nmessage) .

20.8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified, its rendering
customised or even turned off completely.

20.8.1. Changing the message

n

To change the message from the default "Please Wait...
Seam Renot i ng. | oadi ngMessage:

to something different, set the value of
Seam Renoti ng. | oadi ngMessage = "Loadi ng...";

20.8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of di spl ayLoad-
i ngMessage() and hi deLoadi ngMessage() With functions that instead do nothing:

/1 don't display the |oading indicator
Seam Renot i ng. di spl ayLoadi ngMessage = function() {};
Seam Renot i ng. hi deLoadi ngMessage = function() {};

20.8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else that you want.
To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage() messages with your own im-
plementation:

Seam Renot i ng. di spl ayLoadi ngMessage = function() {
/1 Wite code here to display the indicator

H

Seam Renot i ng. hi deLoadi ngMessage = function() {

JBoss Seam 1.3.0.A1 195

Remoting

/1 Wite code here to hide the indicator

H

20.9. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned to the client.
This response is then unmarshaled by the client into a Javascript object. For complex types (i.e. Javabeans) that
include references to other objects, all of these referenced objects are also serialized as part of the response.
These objects may reference other objects, which may reference other objects, and so forth. If left unchecked,
this object "graph" could potentially be enormous, depending on what relationships exist between your objects.
And as a side issue (besides the potential verbosity of the response), you might also wish to prevent sensitive
information from being exposed to the client.

Seam Remoting provides a ssmple meansto "constrain” the object graph, by specifying the excl ude field of the
remote method's @ebRenot e annotation. This field accepts a String array containing one or more paths spe-
cified using dot notation. When invoking a remote method, the objects in the result's object graph that match
these paths are excluded from the serialized result packet.

For al our examples, we'll use the following W dget class:

@Nanme("w dget")
public class Wdget

{

private String val ue;

private String secret;

private Wdget child;

private Map<String, Wdget > w dget Map;
private List<Wdget> w dgetlList;

/'l getters and setters for all fields

20.9.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secr et field because it
contains sensitive information, you would constrain it like this:

@\ébRenot e(excl ude = {"secret"})
public Wdget getWdget();

The value "secret” refers to the secret field of the returned object. Now, suppose that we don't care about ex-
posing this particular field to the client. Instead, notice that the w dget value that is returned has afield chi | d
that is also a w dget . What if we want to hide the chi | d'ssecret value instead? We can do this by using dot
notation to specify this field's path within the result's object graph:

@\ébRenot e(exclude = {"child.secret"})

public Wdget getWdget();

20.9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of collection (Li st ,
Set , Array, etc). Collections are easy, and are treated like any other field. For example, if our w dget contained
alist of other w dget sin itswi dget Li st field, to constrain the secret field of the w dget s in this list the an-

JBoss Seam 1.3.0.A1 196

Remoting

notation would look like this:

@\¥bRenot e(excl ude = {"wi dgetList.secret"})
public Wdget getWdget();

To constrain a Map's key or value, the notation is dightly different. Appending [key] after the map's field name
will constrain the map's key object values, while [val ue] will constrain the value object values. The following
example demonstrates how the values of the wi dget Map field have their secr et field constrained:

@\ébRenot e(excl ude = {"w dget Map[val ue] . secret"})

public Wdget getWdget();

20.9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of atype of object no matter where in the res-
ult's object graph it appears. This notation uses either the name of the component (if the object is a Seam com-
ponent) or the fully qualified class name (only if the object is not a Seam component) and is expressed using
square brackets:

@\ebRenot e(excl ude = {"[w dget].secret"})
public Wdget getWdget();

20.9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@\ébRenot e(excl ude = {"w dgetList.secret"”, "w dget Map[val ue].secret"})
public Wdget getWdget();

20.10. JMS Messaging

Seam Remoting provides experimental support for IMS Messaging. This section describes the IMS support that
is currently implemented, but please note that this may change in the future. It is currently not recommended
that this feature is used within a production environment.

20.10.1. Configuration

Before you can subscribe to a IM S topic, you must first configure alist of the topics that can be subscribed to
by Seam Remoting. List the topics under
org. j boss. seam renoti ng. nessagi ng. subscri pti onRegi stry. al | owedTopi cs in seam properties,
web. xm O conponent s. xmi .

<renoting:renoting poll-tineout="5" poll-interval ="1"/>

20.10.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribeto aJM S Topic:

function subscriptionCall back(nessage)

{

i f (message instanceof Seam Renpti ng. Text Message)
al ert ("Recei ved nessage: " + nessage. getText());

JBoss Seam 1.3.0.A1 197

Remoting

}

Seam Renot i ng. subscri be("topi cNanme", subscriptionCall back);

The seam Renot i ng. subscri be() method accepts two parameters, the first being the name of the IMS Topic to
subscribe to, the second being the callback function to invoke when a message is received.

There are two types of messages supported, Text messages and Object messages. If you need to test for the type
of message that is passed to your callback function you can use the i nst anceof operator to test whether the
message iS a Seam Renot i ng. Text Message OF Seam Renot i ng. bj ect Message. A Text Message contains the
text value in itstext field (or alternatively call get Text () on it), while an bj ect Message contains its object
valueinitsval ue field (or cal itsget val ue() method).

20.10.3. Unsubscribing from a Topic

To unsubscribe from atopic, call Seam Renot i ng. unsubscri be() and passin the topic name:

Seam Renot i ng. unsubscri be("t opi cNane");

20.10.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam Renot i ng. pol | I nterval , which controls how long to wait between subsequent polls for new messages.
This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam Renot i ng. pol | Ti meout , and is also expressed as seconds. It controls how long a
reguest to the server should wait for a new message before timing out and sending an empty response. Its de-
fault is O seconds, which means that when the server is polled, if there are no messages ready for delivery then
an empty response will be immediately returned.

Caution should be used when setting a high pol | Ti mreout value; each request that has to wait for a message
means that a server thread is tied up until amessage is received, or until the request times out. If many such re-
quests are being served simultaneously, it could mean alarge number of threads become tied up because of this
reason.

It is recommended that you set these options via components.xml, however they can be overridden via Javas-
cript if desired. The following example demonstrates how to configure the polling to occur much more aggress-
ively. You should set these parameters to suitable values for your application:

Via components.xml:

<renoting:renoting poll-tineout="5" poll-interval ="1"/>

ViaJavaScript:

/1 Only wait 1 second between receiving a poll response and sending the next poll request.
Seam Renpti ng. pol | I nterval = 1;

/1l Wait up to 5 seconds on the server for new nessages
Seam Renot i ng. pol | Ti meout = 5;

JBoss Seam 1.3.0.A1 198

Chapter 21. Spring Framework integration

The Spring integration module alows easy migration of Spring-based projects to Seam and allows Spring ap-
plications to take advantage of key Seam features like conversations and Seam's more sophisticated persistence
context management.

Seam's support for Spring provides the ability to:

* inject Seam component instances into Spring beans

* inject Spring beansinto Seam components

e turn Spring beans into Seam components

e alow Spring beansto live in any Seam context

e start aspring WebA pplicationContext with a Seam component

» provides a Seam managed replacement for Spring's OpenEnt i t yManager | nVi ewFi | t er

21.1. Injecting Seam components into Spring beans

Injecting Seam component instances into Spring beans is accomplished using the <seaminstance/>
namespace handler. To enable the Seam namespace handler, the Seam namespace must be added to the Spring
beans definition file:

<beans xm ns="htt p://ww. spri ngframework. or g/ scherma/ beans"
xm ns: seam="http://j boss. com product s/ seam spri ng- seant
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schere- i nst ance"
xsi : schenalLocati on="http://ww. spri ngframewor k. or g/ schena/ beans
htt p: // ww. spri ngfranmewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd
http://jboss. conl product s/ seani spri ng- seam
http://jboss. com product s/ seam spring-seam 1. 3. xsd" >

Now any Seam component may be injected into any Spring bean:

<bean i d="soneSpri ngBean" cl ass="SomeSpri ngBeanC ass" scope="pr ot otype">
<property nane="sonmeProperty">
<seam i nst ance nanme="soneConponent"/>
</ property>
</ bean>

An EL expression may be used instead of a component name:

<bean i d="soneSpri ngBean" cl ass="SomeSpri ngBeand ass" scope="pr ot otype">
<property nane="sonmeProperty">
<seam i nst ance nane="#{soneExpression}"/>
</ property>
</ bean>

Seam component instances may even be made available for injection into Spring beans by a Spring bean id.

<seam i nst ance nanme="soneConponent" i d="sonmeSeanConponent | nstance"/>

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeand ass" scope="pr ot otype">
<property nanme="soneProperty" ref="someSeanConponent | nstance">
</ bean>

JBoss Seam 1.3.0.A1 199

Spring Framework integration

Now for the caveat!

Seam was designed from the ground up to support a stateful component model with multiple contexts. Spring
was not. Unlike Seam bijection, Spring injection does not occur at method invocation time. Instead, injection
happens only when the Spring bean is instantiated. So the instance available when the bean is instantiated will
be the same instance that the bean uses for the entire life of the bean. For example, if a Seam COWERSATI O\
scoped component instance is directly injected into a singleton Spring bean, that singleton will hold a reference
to the same instance long after the conversation is over! We call this problem scope impedance. Seam bijection
ensures that scope impedance is maintained naturally as an invocation flows through the system. In Spring, we
need to inject a proxy of the Seam component, and resolve the reference when the proxy isinvoked.

The<seam i nst ance/ > tag |lets us automatically proxy the Seam component.

<seam i nst ance i d="seanmVanagedEM' nane="sonmeManagedEMConponent" proxy="true"/>

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanC ass" >
<property nanme="entityManager" ref="seanVanagedEM >
</ bean>

This example shows one way to use a Seam-managed persistence context from a Spring bean. (For a more ro-
bust way to use Seam-managed persistence contexts as a replacement for the Spring penEnt i t yManager | n-
Vi ewfilter see section on Using a Seam Managed Persistence Context in Spring)

21.2. Injecting Spring beans into Seam components

It is even easier to inject Spring beans into Seam component instances. Actualy, there are two possible ap-
proaches:

* inject a Spring bean using an EL expression
» make the Spring bean a Seam component
WEe'll discuss the second option in the next section. The easiest approach isto access the Spring beans viaEL.

The Spring Del egat i ngVar i abl eResol ver is an integration point Spring provides for integrating Spring with
JSF. This vari abl eResol ver makes all Spring beans available in EL by their bean id. You'll need to add the
Del egat i ngVari abl eResol ver tOfaces-config. xn :

<appl i cati on>
<vari abl e-resol ver>
org. spri ngframewor k. web. j sf. Del egati ngVari abl eResol ver
</vari abl e-resol ver >
</ appl i cati on>

Then you can inject Spring beansusing @ n:

@ n("#{booki ngService}")
private Booki ngServi ce booki ngServi ce;

The use of Spring beans in EL is not limited to injection. Spring beans may be used anywhere that EL expres-
sions are used in Seam: process and pageflow definitions, working memory assertions, etc...

JBoss Seam 1.3.0.A1 200

Spring Framework integration

21.3. Making a Spring bean into a Seam component

The <seam conponent / > namespace handler can be used to make any Spring bean a Seam component. Just
place the <seam conponent / > tag within the declaration of the bean that you wish to be a Seam component:

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeand ass" scope="pr ot otype">
<seam conponent />
</ bean>

By default, <seam conponent / > will create a STATELESS Seam component with class and name provided in the
bean definition. Occasionally, such as when a Fact or yBean is used, the class of the Spring bean may not be the
class appearing in the bean definition. In such cases the cl ass should be explicitly specified. A Seam compon-
ent name may be explicitly specified in cases where there is potential for a naming conflict.

The scope attribute of <seam conponent / > may be used if you wish the Spring bean to be managed in a partic-
ular Seam scope. The Spring bean must be scoped to pr ot ot ype if the Seam scope specified is anything other
than STATELESS. Pre-existing Spring beans usually have a fundamentally stateless character, so this attribute is
not usually needed.

21.4. Seam-scoped Spring beans

The Seam integration package also lets you use Seam's contexts as Spring 2.0 style custom scopes. This lets
you declare any Spring bean in any of Seam's contexts. However, note once again that Spring's component
model was never architected to support statefulness, so please use this feature with great care. In particular,
clustering of session or conversation scoped Spring beans is deeply problematic, and care must be taken when
injecting a bean or component from awider scope into a bean of a narrower scope.

By specifying <seam conf i gur e- scopes/ > once in a Spring bean factory configuration, all of the Seam scopes
will be available to Spring beans as custom scopes. To associate a Spring bean with a particular Seam scope,
specify the Seam scope in the scope attribute of the bean definition.

<I-- Only needs to be specified once per bean factory-->
<seam confi gur e- scopes/ >

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanC ass" scope="seam CONVERSATI ON'/ >

The prefix of the scope name may be changed by specifying the prefi x attribute in the confi gur e- scopes
definition. (The default prefix isseam)

Seam-scoped Spring beans defined this way can be injected into other Spring beans without the use of
<seam i nst ance/ >. However, care must be taken to ensure scope impedance is maintained. The normal ap-
proach used in Spring is to specify <aop: scoped- proxy/ > in the bean definition. However, Seam-scoped
Spring beans are not compatible with <aop: scoped- proxy/ >. So if you need to inject a Seam-scoped Spring
bean into asingleton, <seam i nst ance/ > must be used:

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanC ass" scope="seam CONVERSATI ON'/ >

<bean i d="soneSi ngl et on" >
<property nanme="soneSeantScopedSpri ngBean" >
<seam i nst ance name="soneSpri ngBean" proxy="true"/>
</ property>
</ bean>

JBoss Seam 1.3.0.A1 201

Spring Framework integration

21.5. Using a Seam Managed Persistence Context in Spring

One of the most powerful features of Seam is its conversation scope and the ability to have an EntityManager
open for the life of a conversation. This eliminates many of the problems associated with the detachment and
re-attachment of entities as well as mitigates occurrences of the dreaded Lazyl nitializationException.
Spring does not provide a way to manage an persistence context beyond the scope of a single web request
(penEnt i t yManager | nVi ewFi | ter). So, it would be nice if Spring developers could have access to a Seam
managed persistence context using all of the same tools Spring provides for integration with JPA(e.g. Per si st -
enceAnnot at i onBeanPost Processor, JpaTenpl at e, etc.)

Seam provides a way for Spring to access a Seam managed persistence context with Spring's provided JPA
tools bringing conversation scoped persistence context capabilities to Spring applications.

This integration work provides the following functionality:

e transparent access to a Seam managed persistence context using Spring provided tools

e access to Seam conversation scoped persistence contexts in a hon web request (e.g. asynchronous quartz
job)

« alows for using Seam managed persistence contexts with Spring managed transactions (will need to flush
the persistence context manually)

Spring's persistence context propagation model allows only one open EntityManager per EntityM anagerFactory
so the Seam integration works by wrapping an EntityManagerFactory around a Seam managed persistence con-
text.

<bean i d="seanEntityManager Factory" cl ass="org.jboss.seami oc. spri ng. SeamvanagedEnt i t yManager Fact or y Bk
<property nane="persi stenceCont ext Nane" val ue="entityManager"/>
</ bean>

Where 'persistenceContextName' is the name of the Seam managed persistence context component. By default
this EntityManagerFactory has a unitName equal to the Seam component name or in this case 'entityManager'.
If you wish to provide a different unitName you can do so by providing a persistenceUnitName like so:

<bean i d="seanEntityManager Factory" class="org.jboss.seami oc. spri ng. SeanivanagedEnt i t yManager Fact or yBi
<property nane="persi stenceCont ext Nane" val ue="entityManager"/>
<property nane="persistenceUnitNane" val ue="booki ngDat abase: ext ended"/ >
</ bean>

This EntityManagerFactory can then be used in any Spring provided tools. For example, using Spring's Per -
si st enceAnnot at i onBeanPost Processor iSthe exact same as before.

<bean cl ass="org. spri ngfranmewor k. orm j pa. support. Persi st enceAnnot ati onBeanPost Processor"/ >

If you define your real EntityManagerFactory in Spring but wish to use a Seam managed persistence context
you can tell the Per si st enceAnnot at i onBeanPost Pr ocessor Which persistenctUnitName you wish to use by
default by specifying the def aul t Per si st enceUni t Nane property.

Theappl i cati onCont ext . xmi might look like:

<bean i d="entityManager Factory" class="org. springfranmework.orm jpa. Local EntityManager Fact or yBean">
<property nane="persistenceUnitNane" val ue="booki ngDat abase"/>
</ bean>
<bean i d="seanEntityManager Factory" cl ass="org.jboss.seami oc. spring. SeamvanagedEnt it yManager Fact or yBt
<property nane="persi stenceCont ext Nane" val ue="entityManager"/>

JBoss Seam 1.3.0.A1 202

Spring Framework integration

<property nanme="persistenceUnitNane" val ue="booki ngDat abase: ext ended"/ >

</ bean>

<bean cl ass="org. spri ngfranewor k. orm j pa. support . Persi st enceAnnot at i onBeanPost Processor" >
<property nanme="def aul t Persi st enceUni t Nane" val ue="booki ngDat abase: ext ended"/ >

</ bean>

The conponent . xmi might ook like:

<cor e: managed- per si st ence- cont ext name="entityManager"
auto-create="true" entity-nmanager-factory="#{entityManager Factory}"/>

JpaTenpl at e and JpaDaoSupport are configured the same way for a Seam managed persistence context as they
would be fore a Seam managed persistence context.

<bean i d="booki ngServi ce" cl ass="org.jboss. seam exanpl e. spri ng. Booki ngSer vi ce" >
<property nane="entityManager Factory" ref="seankEntityManagerFactory"/>
</ bean>

21.6. Spring Application Context as a Seam Component

Although it is possible to use the Spring Cont ext Loader Li st ener t0 start your application's Spring Applica
tionContext there are a couple of limitations.

» the Spring ApplicationContext must be started after the Seanti st ener
e it can betricky starting a Spring ApplicationContext for use in Seam unit and integration tests

To overcome these two limitations the Spring integration includes a Seam component that will start a Spring
ApplicationContext. To use this Seam component place the <spri ng: cont ext - | oader / > definition in the com
ponent s. xn . Specify your Spring context file location in the confi g-1ocati ons attribute. If more than one
config file is needed you can place them in the nested <spri ng: confi g- 1 ocat i ons/ > element following stand-
ard conponent s. xmi multi value practices.

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: spring="http://jboss. com product s/ seam spri ng"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://jboss. com product s/ seam conponent s
http://jboss. com product s/ seam conponent s-1. 3. xsd
http://jboss. con products/sean spring
http://jboss. com product s/ seam spring-1. 3. xsd">

<spring: cont ext -1 oader context-Iocations="/WEB-| N/ applicationContext.xm"/>

</ conponent s>

JBoss Seam 1.3.0.A1 203

Chapter 22. Configuring Seam and packaging Seam
applications

Configuration is avery boring topic and an extremely tedious pastime. Unfortunately, several lines of XML are
required to integrate Seam into your JSF implementation and servlet container. There's no need to be too put off
by the following sections; you'll never need to type any of this stuff yourself, since you can just copy and paste
from the example applications!

22.1. Basic Seam configuration

First, let'slook at the basic configuration that is needed whenever we use Seam with JSF.

22.1.1. Integrating Seam with JSF and your servlet container

Seam requires the following entry in your web. xni file:

<listener>
<listener-class>org.jboss. seam servl et. Seanli stener</1|i stener-class>
</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application contexts.

To integrate with the JSF request lifecycle, we also need a JSF Phaseli st ener registered in in the f aces- con-
fig.xn file

<lifecycl e>
<phase-|i stener>org.jboss. seam j sf. SeanPhaseli st ener </ phase-| i st ener>
</lifecycle>

The actual listener class here varies depending upon how you want to manage transaction demarcation (more
on this below).

If you are using Sun's JSF 1.2 reference implementation, you should also add thisto f aces- confi g. xm :

<appl i cati on>
<el -resol ver>org. j boss. seam j sf. SeanELResol ver </ el -r esol ver >
</ application>

(Thisline should not strictly speaking be necessary, but it works around a minor bug in the RI.)

Some JSF implementations have a broken implementation of server-side state saving that interferes with
Seam's conversation propagation. If you have problems with conversation propagation during form submis-
sions, try switching to client-side state saving. You'll need thisin web. xm :

<cont ext - par an>
<par am nane>j avax. f aces. STATE_SAVI NG_METHOD</ par am nanme>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an>

22.1.2. Seam Resource Servlet

The Seam Resource Servlet provides resources used by Seam Remoting, captchas (see the security chapter) and

JBoss Seam 1.3.0.A1 204

Configuring Seam and packaging Seam applications

some JSF Ul controls. Configuring the Seam Resource Servlet requires the following entry inweb. xm :

<servl et >

<ser vl et - name>Seam Resour ce Servl et </servl et -nane>

<servl et-cl ass>org.j boss. seam servl et. ResourceServl et </ servl et -cl ass>
</servl et >

<servl et - mappi ng>
<servl et - nane>Seam Resource Servl et </servl et-nane>
<url - pattern>/seam resource/*</url-pattern>

</ servl et - mappi ng>

22.1.3. Seam servlet filters

Seam doesn't need any servlet filters for basic operation. However, there are severa features which depend
upon the use of filters. To make things easier for you guys, Seam lets you add and configure servlet filters just
like you would configure other built-in Seam components. To take advantage of this feature, we must first in-
stall amaster filter inweb. xm :

<filter>
<filter-nane>Seam Filter</filter-nanme>
<filter-class>org.jboss. seam web. SeanFilter</filter-class>
</filter>
<filter-mappi ng>
<filter-nane>Seam Filter</filter-nanme>

<url-pattern>/*</url-pattern>
</filter-mappi ng>

The Seam master filter must be the first filter specified inweb. xni . Thisensuresit isrun first.

Adding the master filter enables the following built-in filters.

Exception handling

Thisfilter provides the exception mapping functionality in pages. xn (almost all applications will need this). It
also takes care of rolling back uncommitted transactions when uncaught exceptions occur. (According to the
Java EE specification, the web container should do this automatically, but we've found that this behavior cannot
berelied upon in all application servers. And it is certainly not required of plain servlet engines like Tomcat.)

By default, the exception handling filter will process all requests, however this behavior may be adjusted by
adding a <web: exception-filter> entry to conponent s. xm , as shown in this example:

<conponents xm ns="http://jboss. conl product s/ seanf conponent s"
xm ns: web="http://jboss. conl product s/ seanm web" >

<web: exception-filter url-pattern="*.seani/>

</ conponent s>

e url-pattern— Used to specify which requests are filtered, the default is all requests.

Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It intercepts any
browser redirects and adds a request parameter that specifies the Seam conversation identifier.

JBoss Seam 1.3.0.A1 205

Configuring Seam and packaging Seam applications

The redirect filter will process all requests by default, but this behavior can also be adjusted in
conponents. xm :

<web:redirect-filter url-pattern="*.sean'/>

e url-pattern— Usedto specify which requests are filtered, the default is all requests.

Multipart form submissions

This feature is necessary when using the Seam file upload JSF control. It detects multipart form requests and
processes them according to the multipart/form-data specification (RFC-2388). To override the default settings,
add the following entry to conponent s. xni :

<web: nul tipart-filter create-tenp-files="true"
max- r equest - si ze="1000000"
url -pattern="*.seant'/>

e create-tenp-files — If set to true, uploaded files are written to a temporary file (instead of held in
memory). This may be an important consideration if large file uploads are expected. The default setting is
fal se.

e max-request -si ze — If the size of afile upload request (determined by reading the Cont ent - Lengt h head-
er in the request) exceeds this value, the request will be aborted. The default setting is 0 (no size limit).

e url-pattern— Used to specify which requests are filtered, the default is all requests.

Character encoding
Sets the character encoding of submitted form data.
Thisfilter isnot installed by default and requires an entry in conponent s. xni to enableiit:

<web: charact er-encodi ng-filter encodi ng="UTF-16"
override-client="true"
url -pattern="*.sean/>

* encodi ng — The encoding to use.

* override-client — If thisis set to t r ue, the request encoding will be set to whatever is specified by en-
codi ng ho matter whether the request already specifies an encoding or not. If set to f al se, the request en-
coding will only be set if the request doesn't already specify an encoding. The default setting isf al se.

e url-pattern— Used to specify which requests are filtered, the default is all requests.

Ajax4jsf

If Ajax4jsf is used in your project, Seam will install the Ajax4jsf filter for you, making sure to install it before
all other built-in filters. You don't need to install the Ajax4jsf filter inweb. xn yourself.

To override the default settings, add the following entry to conponent s. xm . The options are the same as those
specified in the Ajax4jsf Developer Guide:

<web: aj ax4j sf-filter force-parser="true"
enabl e- cache="t r ue"

JBoss Seam 1.3.0.A1 206

Configuring Seam and packaging Seam applications

log4j-init-file="custom! og4j.xm"
url -pattern="*.seant'/>

e force-parser — forces all JSF pages to be validated by Ajax4jsf's XML syntax checker. If fal se, only
AJAX responses are validated and converted to well-formed XML. Setting f or ce- parser to fal se im-
proves performance, but can provide visual artifacts on AJAX updates.

* enabl e- cache — enables caching of framework-generated resources (e.g. javascript, CSS, images, etc).
When developing custom javascript or CSS, setting to true prevents the browser from caching the resource.

* log4j-init-file—isusedto setup per-application logging. A path, relative to web application context, to
the log4j.xml configuration file should be provided.

e url-pattern— Usedto specify which requests are filtered, the default is all requests.

Context management for custom servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the JSF lifecycle, so
Seam provides a servlet filter that can be applied to any other servlet that needs access to Seam components.

This filter allows custom servlets to interact with the Seam contexts. It sets up the Seam contexts at the begin-
ning of each request, and tears them down at the end of the request. Y ou should make sure that thisfilter is nev-
er applied to the JSF FacesSer vl et . Seam uses the phase listener for context management in a JSF request.

Thisfilter isnot installed by default and requires an entry in conponent s. xni to enableit:

<web: context-filter url-pattern="/medial/*"/>

e url-pattern — Used to specify which requests are filtered, the default is al requests. If the url-pattern is
specified for the context filter, then the filter will be enabled (unless explicitly disabled).

The context filter expects to find the conversation id of any conversation context in a request parameter named
conver sati onl d. You are responsible for ensuring that it gets sent in the request.

Y ou are also responsible for ensuring propagation of any new conversation id back to the client. Seam exposes
the conversation id as a property of the built in component conver sat i on.

Adding custom filters

Seam can install your filters for you, allowing you to specify where in the chain your filter is placed (the servlet
specification doesn't provide awell defined order if you specify your filtersin aweb. xn). Just add the @i | t er
annotation to your Seam component (which must implement j avax. servl et. Fil ter):

@t art up

@cope(APPL| CATI ON)

@Nane("org.jboss.seamweb. multipartFilter")

@ nt er cept (NEVER)

@ilter(w thin="org.jboss.seam web. aj ax4jsfFilter")
public class MiultipartFilter extends AbstractFilter {

Adding the @st art up annotation means thar the component is available during Seam startup; bijection isn't
available here (@ nt er cept (NEVER)); and the filter should be further down the chain than the Ajax4jsf filter
(@ilter(within="org.boss.seam web. aj ax4j sfFilter")).

JBoss Seam 1.3.0.A1 207

Configuring Seam and packaging Seam applications

22.1.4. Integrating Seam with your EJB container

We need to apply the Seant nt er cept or to our Seam components. The simplest way to do this across an entire
application isto add the following interceptor configurationin ej b-j ar. xm :

<i nt er cept or s>
<i nterceptor>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nterceptor-cl ass>
</interceptor>
</interceptors>

<assenbl y-descri pt or>
<i nt er cept or - bi ndi ng>
<ej b- name>* </ ej b- nane>
<i nterceptor-cl ass>org.j boss. seam ej b. Seanl nt ercept or</i nterceptor-cl ass>
</i nt er cept or - bi ndi ng>
</ assenbl y-descri pt or >

Seam needs to know where to go to find session beans in JINDI. One way to do this is specify the @ndi Nane
annotation on every session bean Seam component. However, thisis quite tedious. A better approach isto spe-
cify a pattern that Seam can use to calculate the JINDI name from the EJB name. Unfortunately, there is no
standard mapping to global JNDI defined in the EJB3 specification, so this mapping is vendor-specific. We
usually specify thisoption in conponent s. xni .

For JBoss AS, the following pattern is correct:

<core:init jndi-nanme="nyEar Nane/ #{ej bNane}/| ocal " />

Where nyEar Narre is the name of the EAR in which the bean is deployed.

Outside the context of an EAR (when using the JBoss Embeddable EJB3 container), the following pattern is the
one to use:

<core:init jndi-name="#{ej bNane}/|ocal" />

You'll have to experiment to find the right setting for other application servers. Note that some servers (such as
GlassFish) require you to specify INDI names for all EJB components explicitly (and tediously). In this case,
you can pick your own pattern ;-)

22.1.5. Using facelets

If you want follow our advice and use facelets instead of JSP, add the following linesto f aces- confi g. xni :

<appl i cati on>
<vi ew handl er >com sun. f acel et s. Facel et Vi ewHandl| er </ vi ew handl er >
</ application>

And the following linesto web. xm :

<cont ext - par an>
<par am nane>j avax. f aces. DEFAULT_SUFFI X</ par am namne>
<par am val ue>. xht n </ par am val ue>

</ cont ext - par an>

22.1.6. Don't forget!

JBoss Seam 1.3.0.A1 208

Configuring Seam and packaging Seam applications

There is one fina item you need to know about. You must place a seam properties, META-
| NF/ seam properti es Of META-1 NF/ component s. xnd file in any archive in which your Seam components are
deployed (even an empty properties file will do). At startup, Seam will scan any archives with
seam properti es filesfor seam components.

In aweb archive (WAR) file, you must place aseam properti es filein the VEB- | NF/ cl asses directory if you
have any Seam components included here.

That's why all the Seam examples have an empty seam properti es file. You can't just delete this file and ex-
pect everything to still work!

Y ou might think this is silly and what kind of idiot framework designers would make an empty file affect the
behavior of their software?? Well, thisis aworkaround for alimitation of the VM—if we didn't use this mech-
anism, our next best option would be to force you to list every component explicitly in conponents. xm , just
like some other competing frameworks do! | think you'll like our way better.

22.2. Configuring Seam in Java EE 5

J5P / Facelets

JSF

Seam

EJB 3

Java EE 5

If you're running in a Java EE 5 environment, thisis all the configuration required to start using Seam!

22.2.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something like this:

nmy-application. ear/
j boss-seam j ar
j boss-el .jar
META- | NF/
MANI FEST. MF
appl i cation. xm
nmy-appl i cati on. war/
MVETA- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
conponent s. xm
faces-config. xm
l'i b/
jsf-facelets.jar
j boss-seamui . j ar
I ogin.jsp

JBoss Seam 1.3.0.A1 209

Configuring Seam and packaging Seam applications

register.jsp

ny- application.jar/
META- | NF/
MANI FEST. MF
persi st ence. xni
seam properties
org/
j boss/
nmyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

You must include j boss-seam j ar, jboss-el .jar and el -ri.jar inthe EAR classpath. Make sure you refer-
ence all of these JARsfrom appl i cati on. xm .

If you want to use jBPM or Drools, you must include the needed jars in the EAR classpath. Make sure you ref-
erence al of the jarsfrom appl i cati on. xni .

If you want to use facelets (our recommendation), you must includej sf-facel ets. jar inthe Wes- I NF/1i b dir-
ectory of the WAR.

If you want to use the Seam tag library (most Seam applications do), you must include j boss- seam ui . j ar in
the VEB- I NF/ | i b directory of the WAR. If you want to use the PDF or email tag libraries, you need to put
j boss- seam pdf . jar Of jboss-seam mail .jar iNVWEB-I NF/1ib.

If you want to use the Seam debug page (only works for applications using facelets), you must include j boss-
seam debug. j ar inthe WeB- I NF/ 1 i b directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that supports EJB
3.0.

| really wish that was al there was to say on the topic of configuration but unfortunately we're only about a
third of the way there. If you're too overwhelmed by al this tedious configuration stuff, feel free to skip over
therest of this section and come back to it later.

22.3. Configuring Seam in Java SE, with the JBoss Embed-
dable EJB3 container

The JBoss Embeddable EJB3 container lets you run EJB3 components outside the context of the Java EE 5 ap-
plication server. Thisis especialy, but not only, useful for testing.

The Seam booking example application includes a TestNG integration test suite that runs on the Embeddable
EJB3 container.

JBoss Seam 1.3.0.A1 210

Configuring Seam and packaging Seam applications

Seam

JBoss Embeddable EJB 3

TestNG

The booking exampl e application may even be deployed to Tomcat.

J5P / Facelets

J5F

Seam

JBoss Embeddable EJB 3

Tomcat

22.3.1. Installing the Embeddable EJB3 container

Seam ships with a build of the Embeddable EJB3 container in the enbedded- ej b directory. To use the Embed-
dable EJB3 container with Seam, add the embedded- ej b/ conf directory, and all jarsinthelib and enbedded-
ej b/ i b directories to your classpath. Then, add the following line to conponent s. xm :

<core:ejb />

This setting installs the built-in component named or g. j boss. seam cor e. ej b. This component is responsible
for bootstrapping the EJB container when Seam is started, and shutting it down when the web application is un-
deployed.

22.3.2. Configuring a datasource with the Embeddable EJB3 container

Y ou should refer to the Embeddable EJB3 container documentation for more information about configuring the
container. You'll probably at least need to set up your own datasource. Embeddable EJB3 is implemented using
the JBoss Microcontainer, so it's very easy to add new services to the minimal set of services provided by de-
fault. For example, | can add a new datasource by putting thisj boss- beans. xni filein my classpath:

<?xm version="1.0" encodi ng="UTF-8"?>

<depl oynent xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="urn: j boss: bean- depl oyer bean-depl oyer _1 0. xsd"
xm ns="ur n:j boss: bean- depl oyer" >

<bean name="booki ngDat asour ceBoot st r ap"
cl ass="org.j boss. resource. adapt er. j dbc. | ocal . Local TxDat aSour ce" >
<property nanme="driverd ass">org. hsql db. j dbcDri ver </ property>

JBoss Seam 1.3.0.A1 211

Configuring Seam and packaging Seam applications

<property nanme="connecti onURL">j dbc: hsql db: . </ property>
<property nanme="user Name">sa</ property>
<property nane="j ndi Nane">j ava: / booki ngDat asour ce</ pr operty>
<property name="nmi nSi ze">0</ property>
<property name="maxSi ze">10</ property>
<property name="bl ocki ngTi meout">1000</ property>
<property nanme="idl eTi meout " >100000</ pr operty>
<property name="transacti onManager" >
<i nj ect bean="Transacti onManager"/>
</ property>
<property nane="cachedConnecti onManager">
<i nj ect bean="CachedConnecti onManager"/ >
</ property>
<property nane="initi al ContextProperties">
<i nj ect bean="Initi al Cont extProperties"/>
</ property>
</ bean>

<bean name="booki ngDat asour ce" cl ass="j ava. | ang. Obj ect ">
<constructor factoryMethod="get Dat asource">
<factory bean="booki ngDat asour ceBoot strap"/ >
</ constructor>
</ bean>

</ depl oynent >

22.3.3. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look something like
this:

nmy-appl i cati on. war/
META- | NF/
MANI FEST. MF
V\EB- | NF/
web. xm
conponent s. xn
faces-config. xm
l'i b/
j boss-seam j ar
j boss-seamui . jar
j boss-el .jar
jsf-facelets.jar
jsf-api.jar
jsf-inmpl.jar
j boss-ej b3.jar
j boss-jca.jar
j boss-j 2ee. jar

nc-conf.jar/
ej b3-interceptors-aop. xn
enbedded- j boss- beans. xm
def aul t. persi stence. properties
j ndi.properties
| ogi n-config. xn
security-beans. xn

| 0g4j . xm
nmy-application.jar/

META- | NF/
MANI FEST. MF

per si st ence. xn
j boss- beans. xni
| 0g4j . xm
seam properties
org/
j boss/
nyappl i cati on/
User. cl ass

JBoss Seam 1.3.0.A1 212

Configuring Seam and packaging Seam applications

Logi n. cl ass

Logi nBean. cl ass
Regi ster. cl ass

Regi st er Bean. cl ass

l ogin.jsp
register.jsp

The nc-conf. jar just contains the standard JBoss Microcontainer configuration files for Embeddable EJB3.

Y ou won't usually need to edit these files yoursalf.

Most of the Seam example applications may be deployed to Tomcat by running ant depl oy. t ontat .

22.4. Configuring Seam in J2EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you would use Hibern-
ate3 or JPA instead of EJB 3.0 persistence, and plain JavaBeans instead of session beans. You'll miss out on
some of the nice features of session beans but it will be very easy to migrate to EJB 3.0 when you're ready and,
in the meantime, you'll be able to take advantage of Seam's unique declarative state management architecture.

JSP / Facelets

JSF

Seam

Hibernate

JavaEE S5/ J2EE

Seam JavaBean components do not provide declarative transaction demarcation like session beans do. You
could manage your transactions manually using the JTA User Transacti on (you could even implement your
own declarative transaction management in a Seam interceptor). But most applications will use Seam managed
transactions when using Hibernate with JavaBeans. Follow the instructions in the persistence chapter to install
Tr ansact i onal SeanPhaselLi st ener.

The Seam distribution includes a version of the booking example application that uses Hibernate3 and Java-
Beans instead of EJB3, and another version that uses JPA and JavaBeans. These example applications are ready
to deploy into any J2EE application server.

22.4.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate Sessi onFact ory from your hi bernat e. cf g. xni file if you install a built-in
component:

<cor e: hi ber nat e- sessi on-factory name="hi ber nat eSessi onFact ory"/ >

JBoss Seam 1.3.0.A1 213

Configuring Seam and packaging Seam applications

Y ou will also need to configure a managed session if you want a Seam managed Hibernate Sessi on to be avail-
ableviainjection.

22.4.2. Boostrapping JPA in Seam

Seam will bootstrap a JPA Ent i t yManager Fact ory from your persi st ence. xm file if you install this built-in
component:

<core:entity-manager-factory name="entityManager Factory"/>

Y ou will also need to configure a managed per sistencece context if you want a Seam managed JPA Ent i t yMan-
ager to be available viainjection.

22.4.3. Packaging

We can package our application asa WAR, in the following structure:

nmy-appl i cati on. war/
META- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
conponent s. xml
faces-config. xn
l'i b/
j boss-seam j ar
j boss-seam ui . j ar
el -api.jar
el-ri.jar
jsf-facelets.jar
hi bernat e3. j ar
hi ber nat e- annot ati ons. j ar

my-application.jar/
META- | NF/
MANI FEST. MF
seam properties
hi ber nat e. cf g. xm
org/
j boss/
nyappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

| ogin.jsp
register.jsp

If we want to deploy Hibernate in a non-J2EE environment like Tomcat or TestNG, we need to do a little bit
more work.

22.5. Configuring Seam in Java SE, with the JBoss Microcon-
tainer

The Seam support for Hibernate and JPA requires JTA and a JCA datasource. If you are running in a non-EE
environment like Tomcat or TestNG you can run these services, and Hibernate itself, in the JBoss Microcon-

JBoss Seam 1.3.0.A1 214

Configuring Seam and packaging Seam applications

tainer.

Y ou can even deploy the Hibernate and JPA versions of the booking example in Tomcat.

JSP [/ Facelets

JSF

Seam

Hibernate

JBoss JTA JBoss JCA

JBoss Microcontainer

Tomcat

Seam ships with an example Microcontainer configuration in ni crocont ai ner/ conf/j boss-beans. xm that
provides al the things you need to run Seam with Hibernate in any non-EE environment. Just add the ni cr o-
cont ai ner/ conf directory, and al jarsinthelib and ni crocontai ner/1i b directoriesto your classpath. Refer
to the documentation for the JBoss Microcontainer for more information.

22.5.1. Using Hibernate and the JBoss Microcontainer

The built-in Seam component named or g. j boss. seam cor e. ni crocont ai ner bootstraps the microcontainer.
As before, we probably want to use a Seam managed session.

<core: m crocont ai ner/ >

<cor e: managed- hi ber nat e- sessi on name="booki ngDat abase" auto-create="true"
sessi on-factory-jndi - nane="j ava: / booki ngSessi onFact ory"/ >

Where j ava: / booki ngSessi onFact ory iS the name of the Hibernate session factory specified in hi bern-
ate.cfg. xm .

You'll need to provide aj boss- beans. xm filethat installs INDI, JTA, your JCA datasource and Hibernate into
the microcontainer:

<?xm version="1.0" encodi ng="UTF-8"?>

<depl oynment xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="ur n: j boss: bean- depl oyer bean-depl oyer _1 0. xsd"
xm ns="ur n: j boss: bean- depl oyer" >

<bean name="Nami ng" cl ass="org.]jnp.server. Si ngl et onNam ngServer"/>

<bean nane="Transacti onManager Fact ory"
cl ass="org. j boss. seam mi crocont ai ner. Tr ansact i onManager Fact ory"/ >

JBoss Seam 1.3.0.A1 215

Configuring Seam and packaging Seam applications

<bean nane="Transacti onManager" cl ass="java.l ang. Obj ect">
<constructor factoryMethod="get Transacti onManager" >
<factory bean="Transacti onManager Fact ory"/>
</ const ruct or >
</ bean>

<bean nane="booki ngDat asour ceFact ory"
cl ass="org.j boss. seam mi crocont ai ner. Dat aSour ceFact ory" >
<property name="driverC ass">org. hsqgl db. j dbcDri ver </ property>
<property nane="connectionUrl">jdbc: hsql db: . </ property>
<property name="user Nanme">sa</ property>
<property nane="j ndi Nane" >j ava: / hi ber nat eDat asour ce</ property>
<property nane="ni nSi ze" >0</ property>
<property nanme="maxSi ze">10</ property>
<property nane="Dbl ocki ngTi neout " >1000</ pr operty>
<property nane="idl eTi neout " >100000</ pr operty>
<property nane="transacti onManager" ><i nj ect bean="Transacti onManager"/ ></ property>
</ bean>
<bean name="booki ngDat asour ce" cl ass="j ava. | ang. Obj ect ">
<constructor factoryMethod="get Dat aSour ce" >
<factory bean="booki ngDat asour ceFact ory"/ >
</ constructor>
</ bean>

<bean name="booki ngSessi onFact or yFact or y"
cl ass="org.j boss. seam m crocont ai ner. H ber nat eFactory"/>
<bean nane="booki ngSessi onFact ory" cl ass="j ava. | ang. Obj ect">
<constructor factoryMethod="get Sessi onFactory">
<factory bean="booki ngSessi onFact oryFactory"/>
</ constructor>
<depends>booki ngDat asour ce</ depends>
</ bean>

</ depl oynent >

22.5.2. Packaging

The WAR could have the following structure:

ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
conponent s. xn
faces-config. xm
l'i b/
j boss-seam j ar
j boss-seam ui . j ar
j boss-el .jar
jsf-facelets.jar
hi bernat e3.j ar

j boss-m crocont ai ner.jar
j boss-jca.jar

jsf-api.jar
jsf-inmpl.jar
nc- conf . jar/

j ndi . properties

| 0og4j . xn
nmy-application.jar/
VETA- | NF/
MANI FEST. MF

j boss- beans. xni
seam properties
hi ber nat e. cf g. xn
| og4j . xm

JBoss Seam 1.3.0.A1 216

Configuring Seam and packaging Seam applications

org/
j boss/
myappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

| ogin.jsp
register.jsp

22.6. Configuring jJBPM in Seam

Seam's jBPM integration is not installed by default, so you'll need to enable jBPM by installing a built-in com-
ponent. Y ou'll also need to explicitly list your process and pageflow definitions. In component s. xm :

<core:j bpnp
<cor e: pagef | ow defini ti ons>
<val ue>cr eat eDocunent . j pdl . xm </ val ue>
<val ue>edi t Docunent . j pdl . xm </ val ue>
<val ue>appr oveDocunent . j pdl . xm </ val ue>
</ core: pagef| ow definitions>
<core: process-definitions>
<val ue>docunent Li f ecycl e. j pdl . xm </ val ue>
</ core: process-definitions>
</core:jbpnm

No further special configuration is needed if you only have pageflows. If you do have business process defini-
tions, you need to provide a jBPM configuration, and a Hibernate configuration for jBPM. The Seam DVD
Store demo includes example j bpm cf g. xml and hi ber nat e. cf g. xnl filesthat will work with Seam:

<j bpm confi gurati on>

<j bpm cont ext >
<servi ce nanme="persi stence">
<factory>
<bean cl ass="org.j bpm persi stence. db. DbPer si st enceSer vi ceFact ory" >
<field name="isTransacti onEnabl ed" ><f al se/ ></fi el d>
</ bean>
</factory>
</ servi ce>
<servi ce nane="nessage" factory="org.jbpm nsg. db. DbMessageServi ceFactory" />
<servi ce nanme="schedul er" factory="org.jbpm schedul er. db. DbSchedul er Servi ceFactory" />
<servi ce nane="| oggi ng" factory="org.jbpm | oggi ng. db. DbLoggi ngServi ceFactory" />
<servi ce nane="aut hentication"
factory="org.j bpm security. aut henti cati on. Def aul t Aut henti cati onServi ceFactory" />
</j bpm cont ext >

</j bpm confi gurati on>

The most important thing to notice here is that jJBPM transaction control is disabled. Seam or EJB3 should con-
trol the JTA transactions.

22.6.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow definition
files. In the Seam examples we've decided to simply package al these files into the root of the EAR. In future,
we will probably design some other standard packaging format. So the EAR looks something like this:

ny- appl i cati on. ear/

JBoss Seam 1.3.0.A1 217

Configuring Seam and packaging Seam applications

j boss-seam j ar
j boss-el .jar
jbpm3.1.jar
META- | NF/
MANI FEST. MF
application. xm
ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
V\EB- | NF/
web. xm
conponent s. xm
faces-config. xm
I'i b/
jsf-facelets.jar
j boss-seamui . jar
| ogin.jsp
register.jsp
nmy-application.jar/
META- | NF/
MANI FEST. MF
persi st ence. xm
seam properties
org/
j boss/
nyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster.cl ass
Regi st er Bean. cl ass

j bpm cf g. xm

hi ber nat e. cf g. xm

creat eDocunent . j pdl . xm
edi t Docurent . j pdl . xm

appr oveDocunent . j pdl . xmi
docunent Li fecycl e. j pdl . xm

Remember to add j bpm 3. 1. j ar to the manifest of your EJB-JAR and WAR.

22.7. Configuring Seam in a Portal

To run a Seam application as a portlet, you'll need to provide certain portlet metadata (port! et . xm , etc) in ad-
dition to the usual Java EE metadata. See the exanpl es/ port al directory for an example of the booking demo
preconfigured to run on JBoss Portal.

In addition, you'll need to use a portlet-specific phase listener instead of SeanPhaselLi st ener Or Transact i on-
al SeanPhaselLi st ener. The SeanPort| et PhaseLi st ener and Transacti onal SeanPort| et Phaseli st ener are
adapted to the portlet lifecycle. | would like to offer my sincerest apologies for the name of that last class. |
really couldn't think of anything better. Sorry.

22.8. Configuring SFSB and Session Timeouts in JBoss AS

It is very important that the timeout for Stateful Session Beans is set higher than the timeout for HTTP Ses-
sions, otherwise SFSB's may time out before the user's HTTP session has ended. JBoss Application Server has
a default sesson bean timeout of 30 minutes, which is configured in server/de-
faul t/ conf/ st andar dj boss. xm (replace default with your own configuration).

JBoss Seam 1.3.0.A1 218

Configuring Seam and packaging Seam applications

The default SFSB timeout can be adjusted by modifying the value of nax- bean-1i f e in the LRUSt at ef ul Con-
t ext CachePol i cy cache configuration:

<cont ai ner - cache- conf >
<cache- pol i cy>org. j boss. ej b. pl ugi ns. LRUSt at ef ul Cont ext CachePol i cy</ cache- pol i cy>
<cache- pol i cy- conf >
<m n- capaci t y>50</ m n- capaci ty>
<max- capaci t y>1000000</ max- capaci t y>
<renover - peri 0d>1800</ r enover - peri od>

<!-- SFSB tineout in seconds; 1800 seconds == 30 m nutes -->
<max- bean-1|i f e>1800</ max- bean-1i f e>

<over ager - per i 0d>300</ over ager - peri od>
<max- bean- age>600</ max- bean- age>
<resi zer - peri 0d>400</r esi zer - peri od>
<max- cache- m ss- peri 0d>60</ max- cache- m ss- peri od>
<m n- cache- m ss- peri od>1</ ni n-cache-m ss- peri od>
<cache- | oad- f act or >0. 75</ cache- | oad- f act or >
</ cache- pol i cy- conf >
</ cont ai ner - cache- conf >

The default HTTP session timeout can be modified in server/ de-
faul t/ depl oy/j bossweb-t ontat 55. sar/ conf/ web. xm for JBoss 4.0x, or in server/de-
faul t/ depl oy/ j boss- web. depl oyer/ conf/web. xmi for JBoss 4.2.x. The following entry in this file controls
the default session timeout for all web applications:

<sessi on-confi g>
<l-- HITP Session tinmeout, in mnutes -->
<sessi on-ti nmeout >30</ sessi on-ti meout >

</ sessi on-confi g>

To override this value for your own application, simply include this entry in your application's own web. xm .

JBoss Seam 1.3.0.A1 219

Chapter 23. Seam annotations

When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations to achieve a
declarative style of programming. Most of the annotations you'll use are defined by the EJB 3.0 specification.
The annotations for data validation are defined by the Hibernate Validator package. Finally, Seam defines its
own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package or g. j boss. seam annot at i ons.

23.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on the component
class.

@Nane

@ame(" conponent Nanme")

Defines the Seam component name for a class. This annotation is required for all Seam components.
@scope

@scope(ScopeType. CONVERSATI ON)

Defines the default context of the component. The possible values are defined by the ScopeType enumera-
tion: EVENT, PAGE, CONVERSATI ON, SESSI ON, BUSI NESS_PROCESS, APPLI CATI ON, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For stateless session
beans, the default is STATELESS. For entity beans and stateful session beans, the default is CONVERSATI ON.
For JavaBeans, the default is EVENT.

@Rol e

@Rol e(name="r ol eNane", scope=ScopeType. SESSI ON)

Allows a Seam component to be bound to multiple contexts variables. The @ame/@cope annotations
define a"default role". Each @rol e annotation defines an additional role.

* name — the context variable name.

* scope — the context variable scope. When no scope is explicitly specified, the default depends upon
the component type, as above.

@Rol es

@Rol es({
@Rol e(name="user", scope=ScopeType. CONVERSATI ON),
@Rol e(name="current User", scope=ScopeType. SESSI ON)
b

Allows specification of multiple additional roles.

JBoss Seam 1.3.0.A1 220

Seam annotations

@ nt er cept

@ntercept (I ntercepti onType. ALWAYS)

Determines when Seam interceptors are active. The possible values are defined by the I nt er cept i onType
enumeration: ALWAYS, AFTER RESTORE_VI EW AFTER UPDATE_MODEL_VALUES, | NVOKE_APPLI CATI ON,
NEVER.

When no interception type is explicitly specified, the default depends upon the component type. For entity
beans, the default is NEVER. For session beans, message driven beans and JavaBeans, the default is ALWAYS.

@ndi Nane

@ndi Nane(" nmy/ j ndi / nane")

Specifies the INDI name that Seam will use to look up the EJB component. If no JNDI name is explicitly
specified, Seam will use the INDI pattern specified by or g. j boss. seam core.init.jndi Pattern.

@conver sat i onal

@Conver sati onal (i f Not BegunQut cone="error")

Specifies that a conversation scope component is conversational, meaning that no method of the component
can be called unless a long-running conversation started by this component is active (unless the method
would begin a new long-running conversation).

@5t art up

@t art up(depends={"org. j boss.core.jndi", "org.jboss.core.jta"})

Specifies that an application scope component is started immediately at initialization time. This is mainly
used for certain built-in components that bootstrap critical infrastructure such as JNDI, datasources, etc.

@t art up

Specifies that a session scope component is started immediately at session creation time.

e depends — specifies that the named components must be started first, if they areinstalled.
@nstall

@nstall (fal se)

Specifies whether or not a component should be installed by default. The lack of an @Install annotation in-
dicates a component should be installed.

@ nst al | (dependenci es="org.] boss. seam core.j bpni')

Specifies that a component should only be stalled if the components listed as dependencies are aso in-
stalled.

@nst al | (generi cDependenci es=ManagedQueueSender . cl ass)

Specifies that a component should only be installed if a component that is implemented by a certain classis

JBoss Seam 1.3.0.A1 221

Seam annotations

installed. Thisis useful when the dependency doesn't have a single well-known name.

@nst al | (cl assDependenci es="or g. hi ber nat e. Sessi on")

Specifies that a component should only be installed if the named classisin the classpath.

@nstal | (precedence=BU LT_I N)

Specifies the precedence of the component. If multiple components with the same name exist, the one with
the higher precedence will be installed. The defined precendence values are (in ascending order):

e BUILT_I N— Precedence of al built-in Seam components
* FRAMEWORK — Precedence to use for components of frameworks which extend Seam
e APPLI CATI ON— Predence of application components (the default precedence)

e DEPLOYMENT — Precedence to use for components which override application components in a particu-
lar deployment

* Mock — Precedence for mock objects used in testing
@ynchr oni zed

@ynchroni zed(ti neout =1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam should serialize re-
quests. If arequest is not able to obtain its lock on the component in the given timeout period, an exception
will be raised.

@ReadOnl y

@ReadOnl y

Specifies that a JavaBean component or component method does not require state replication at the end of
the invocation.

23.2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance variables or property
accessor methods.

@n

@n

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an exception will be thrown.

@n(required=fal se)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-

JBoss Seam 1.3.0.A1 222

Seam annotations

ponent invocation. The context variable may be null.

@n(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning of each com-
ponent invocation. If the context variable is null, an instance of the component isinstantiated by Seam.

@ n(val ue="cont ext Vari abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

@n(val ue="#{cust oner. addr esses["' shipping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at the beginning of
each component invocation.

* val ue — specifies the name of the context variable. Default to the name of the component attribute. Al-
ternatively, specifies a JSF EL expression, surrounded by #{. . .}.

e creat e — specifies that Seam should instantiate the component with the same name as the context vari-
able if the context variable is undefined (null) in al contexts. Default to false.

e required — specifies Seam should throw an exception if the context variable is undefined in al con-
texts.

@out

@ut

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. If the attribute is null, an exception is thrown.

@ut (requi red=f al se)

Specifies that a component attribute that is a Seam component is to be outjected to its context variable at
the end of the invocation. The attribute may be null.

@ut (scope=ScopeType. SESSI ON)

Specifies that a component attribute that is not a Seam component type isto be outjected to a specific scope
at the end of the invocation.

Alternatively, if no scopeis explicitly specified, the scope of the component with the @ut attribute is used
(or the EVENT scope if the component is statel ess).

@ut (val ue="cont ext Vari abl eNane")
Specifies the name of the context variable explicitly, instead of using the annotated instance variable name.

* val ue — specifies the name of the context variable. Default to the name of the component attribute.

* required — specifies Seam should throw an exception if the component attribute is null during outjec-
tion.

JBoss Seam 1.3.0.A1 223

Seam annotations

Note that it is quite common for these annotations to occur together, for example:

@n(create=true) @ut private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that manages the life-
cycle of an instance of some other class that isto be injected. It appears on a component getter method.

@Jnwr ap

@Jnwr ap

Specifies that the object returned by the annotated getter method is the thing that is injected instead of the
component instance itself.

The next annotation supports the factory component pattern, where a Seam component is responsible for initial-
izing the value of a context variable. Thisis especially useful for initializing any state needed for rendering the
response to a non-faces request. It appears on a component method.

@actory

@-actory("processl nstance")

Specifies that the method of the component is used to initialize the value of the named context variable,
when the context variable has no value. This styleis used with methods that return voi d.

@actory("processl nstance", scope=CONVERSATI ON)

Specifies that the method returns a value that Seam should use to initialize the value of the named context
variable, when the context variable has no value. This style is used with methods that return a value. If no
scope is explicitly specified, the scope of the component with the @act ory method is used (unless the
component is stateless, in which case the EVENT context is used).

» val ue — gpecifies the name of the context variable. If the method is a getter method, default to the
JavaBeans property name.

* scope — specifies the scope that Seam should bind the returned value to. Only meaningful for factory
methods which return avalue.

This annotation lets you inject aLog:
@ogger
@.ogger (" cat egor yNane")

Specifies that a component field is to be injected with an instance of or g. j boss. seam | og. Log. For entity
beans, the field must be declared as static.

« val ue — specifies the name of the log category. Default to the name of the component class.

The last annotation lets you inject arequest parameter value:

JBoss Seam 1.3.0.A1 224

Seam annotations

@Request Par anet er

@Request Par anet er (" par anmet er Nanme")

Specifies that a component attribute is to be injected with the value of a request parameter. Basic type con-
versions are performed automatically.

e val ue — specifies the name of the request parameter. Default to the name of the component attribute.

23.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods of the com-
ponent. There may be only one of each per component class.
@Cr eat e

@Cr eat e

Specifies that the method should be called when an instance of the component is instantiated by Seam.
Note that create methods are only supported for JavaBeans and stateful session beans.

@est r oy

@est r oy

Specifies that the method should be called when the context ends and its context variables are destroyed.
Note that create methods are only supported for JavaBeans and stateful session beans.

Note that all stateful session bean components must define a method annotated @est roy @renove in order
to guarantee destruction of the stateful bean when a context ends.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any exception that
propagates out of a destroy method.

@bserver

@ser ver (" sonet hi ngChanged")

Specifies that the method should be called when a component-driven event of the specified type occurs.

@ser ver (val ue="sonet hi ngChanged", cr eat e=f al se)
Specifies that the method should be called when an event of the specified type occurs but that an instance

should not be created if one doesn't exist. If an instance does not exist and create is false, the event will not
be observed. The default value for createistrue.

23.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of Seam compon-
ents, usually action listener methods.

JBoss Seam 1.3.0.A1 225

Seam annotations

Every web request has a conversation context associated with it. Most of these conversations end at the end of
the request. If you want a conversation that span multiple requests, you must "promote" the current conversa
tion to along-running conversation by calling a method marked with @egi n.
@egi n

@egi n

Specifies that along-running conversation begins when this method returns a non-null outcome without ex-
ception.

@Begi n(i f Qut cone={"success", "continue"})

Specifies that a long-running conversation begins when this action listener method returns with one of the
given outcomes.

@Begi n(j oi n=true)

Specifies that if a long-running conversation is aready in progress, the conversation context is simply
propagated.

@egi n(nest ed=t r ue)

Specifies that if along-running conversation is aready in progress, a new nested conversation context be-
gins. The nested conversation will end when the next @nd is encountered, and the outer conversation will
resume. It is perfectly legal for multiple nested conversations to exist concurrently in the same outer con-
versation.

@egi n(pagef | ow="process definition name")

Specifies ajBPM process definition name that defines the pageflow for this conversation.

@egi n(f | ushMode=Fl ushivbdeType. MANUAL)

Specify the flush mode of any Seam-managed persistence contexts. f | ushMode=Fl ushModeType. MANUAL
supports the use of atomic conversations where al write operations are queued in the conversation context
until an explicit call tof1 ush() (which usually occurs at the end of the conversation).

e ifoutcome — specifies the JSF outcome or outcomes that result in a new long-running conversation
context.

e joi n — determines the behavior when a long-running conversation is already in progress. If t r ue, the
context is propagated. If f al se, an exception is thrown. Default to f al se. This setting is ignored when
nest ed=t r ue is specified

* nested — specifies that a nested conversation should be started if a long-running conversation is
already in progress.

* flushMde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

e pageflow — a process definition name of a jBPM process definition deployed via
org.j boss. seam core. j bpm pagef | owDefi ni tions.

JBoss Seam 1.3.0.A1 226

Seam annotations

@nd

@:nd

Specifies that a long-running conversation ends when this method returns a non-null outcome without ex-
ception.

@nd(i f Qut come={"success", "error"}, evenlfException={SoneException.class, O herException.cl ass})

Specifies that a long-running conversation ends when this action listener method returns with one of the
given outcomes or throws one of the specified classes of exception.

e ifoutcome — specifies the JSF outcome or outcomes that result in the end of the current long-running
conversation.

e beforeRedirect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting bef or eRedi r ect =t r ue specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@t art Task

@t art Task

"Starts' a jBPM task. Specifies that a long-running conversation begins when this method returns a non-
null outcome without exception. This conversation is associated with the jBPM task specified in the named
request parameter. Within the context of this conversation, a business process context is also defined, for
the business process instance of the task instance.

The jBPM Taskl nst ance will be available in a request context variable named t askl nst ance. The jPBM
Processl nstance Will be available in a request context variable named processl nst ance. (Of course,
these objects are available for injection via@n.)

e taskldParameter — the name of a request parameter which holds the id of the task. Default to
"t askl d", which is also the default used by the Seam t askLi st JSF component.

e flushMde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

@Begi nTask

@egi nTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation begins when this
method returns a non-null outcome without exception. This conversation is associated with the jJBPM task
specified in the named request parameter. Within the context of this conversation, a business process con-
text is aso defined, for the business process instance of the task instance.

The jBPM org. j bpm t askmgnt . exe. Taskl nst ance Will be available in a request context variable named
taskl nst ance. The jPBM org. j bpm graph. exe. Process! nst ance Will be available in a request context
variable named pr ocessl nst ance.

JBoss Seam 1.3.0.A1 227

Seam annotations

e taskldParaneter — the name of a request parameter which holds the id of the task. Default to
"taskl d", which is also the default used by the Seam t askLi st JSF component.

e flushvde — set the flush mode of any Seam-managed Hibernate sessions or JPA persistence contexts
that are created during this conversation.

@ndTask

@ndTask

"Ends' ajBPM task. Specifies that a long-running conversation ends when this method returns a non-null
outcome, and that the current task is complete. Triggers a jBPM transition. The actual transition triggered
will be the default transition unless the application has called Tr ansi ti on. set Nane() on the built-in com-
ponent named t r ansi ti on.

@ndTask(transition="transiti onNane")

Triggersthe given jBPM transition.

@ndTask(i f Qut come={"success", "continue"})

Specifies that the task ends when this method returns one of the listed outcomes.

e transition — the name of the jBPM transition to be triggered when ending the task. Defaults to the
default transition.

e i fout come — specifies the JSF outcome or outcomes that result in the end of the task.

e beforeRedi rect — by default, the conversation will not actually be destroyed until after any redirect
has occurred. Setting bef or eRedi r ect =t r ue Specifies that the conversation should be destroyed at the
end of the current request, and that the redirect will be processed in a new temporary conversation con-
text.

@Cr eat eProcess

@Cr eat eProcess(definiti on="process definition nane")

Creates a new jBPM process instance when the method returns a non-null outcome without exception. The
Processl nst ance object will be available in a context variable named pr ocessl nst ance.

e definition — the name of the jBPM process definition deployed via
org.j boss.seam core. j bpm processDefinitions.

@ResunePr ocess

@ResunmePr ocess(processl dPar anet er =" processl d")

Re-enters the scope of an existing jBPM process instance when the method returns a non-null outcome
without exception. The Processl nst ance object will be available in a context variable named pr ocessl n-
st ance.

e process! dPar amet er — the name arequest parameter holding the processid. Default to " process! d".

JBoss Seam 1.3.0.A1 228

Seam annotations

23.5. Annotations for transaction demarcation

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain action listener out-
comes.

@Rol | back

@Rol | back(i fQutcone={"failure", "not-found"})

If the outcome of the method matches any of the listed outcomes, or if no outcomes are listed, set the trans-
action to rollback only when the method compl etes.

e ifautcome — the JSF outcomes that cause a transaction rollback (no outcomes is interpreted to mean
any outcome).

@r ansact i onal

@r ansact i onal

Specifies that a JavaBean component should have a similar transactional behavior to the default behavior of
a session bean component. ie. method invocations should take place in a transaction, and if no transaction
exists when the method is called, a transaction will be started just for that method. This annotation may be
applied at either class or method level. Do not use this annotations on EJB 3.0 components, use
@t ansacti onAttri but el

These annotations are mostly useful for JavaBean Seam components. If you use EJB 3.0 components, you
should use the standard @rr ansact i onAt t ri but e annotation.

23.6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of a Seam com-
ponent.

@Redi rect

@Redirect (view d="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.

* view d — specifiesthe JSF view id to redirect to.
* nmessage — amessage to be displayed, default to the exception message.
« end — gpecifiesthat the long-running conversation should end, default to f al se.

@t t pError

@t t pError (error Code=404)

Specifies that the annotated exception causesaHTTP error to be sent.

JBoss Seam 1.3.0.A1 229

Seam annotations

e errorCode —the HTTP error code, default to 500.
* nessage — amessage to be sent with the HTTP error, default to the exception message.

» end — specifies that the long-running conversation should end, default to f al se.

23.7. Annotations for validation

This annotation triggers Hibernate Validator. It appears on a method of a Seam component, almost always an
action listener method.

Please refer to the documentation for the Hibernate Annotations package for information about the annotations
defined by the Hibernate Validator framework.

Note that use of @ f I nval i d is now semi-deprecated and <s: val i dat eAl | > isnow preferred.

@flnvalid

@flnvalid(outcone="invalid", refreshEntities=true)

Specifies that Hibernate Validator should validate the component before the method is invoked. If the in-
vocation fails, the specified outcome will be returned, and the validation failure messages returned by Hi-
bernate Validator will be added to the FacesCont ext . Otherwise, the invocation will proceed.

* out come — the JSF outcome when validation fails.

e refreshEntities — specifiesthat any invalid entity in the managed state should be refreshed from the
database when validation fails. Default to f al se. (Useful with extended persistence contexts.)

23.8. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following annotation:

@\ebRenpt e

@\ébRenot e(excl ude="pat h. t 0. excl ude")

Indicates that the annotated method may be called from client-side JavaScript. The excl ude property is op-
tional and allows objects to be excluded from the result's object graph (see the Remoting chapter for more
details).

23.9. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the annotations required
for EJB interceptor definition.

JBoss Seam 1.3.0.A1 230

Seam annotations

@ nt er cept or
@nterceptor(statel ess=true)
Specifies that thisinterceptor is stateless and Seam may optimize replication.
@ nt er cept or (t ype=CLI ENT)
Specifies that thisinterceptor isa"client-side” interceptor that is called before the EJB container.
@ nt er cept or (ar ound={ Sonel nt ercept or. cl ass, G herlnterceptor.class})

Specifies that thisinterceptor is positioned higher in the stack than the given interceptors.

@ nterceptor(wthin={Sonel nterceptor.class, Oherlnterceptor.class})

Specifies that thisinterceptor is positioned deeper in the stack than the given interceptors.

23.10. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

@\synchronous public void scheduleAlert(Al ert alert, @xpiration Date date) { ... }

@synchronous public Timer schedul eAlerts(Alert alert,
@Expiration Date date,
@nterval Duration long interval) { ... }

@\synchronous

@\synchr onous

Specifies that the method call is processed asynchronously.
@ur at i on

@ur at i on

Specifies that a parameter of the asynchronous call is the duration before the call is processed (or first pro-
cessed for recurring calls).

@xpiration
@Expi ration

Specifies that a parameter of the asynchronous call is the datetime at which the call is processed (or first
processed for recurring calls).

@nterval Duration

@nterval Duration

JBoss Seam 1.3.0.A1 231

Seam annotations

Specifies that an asynchronous method call recurs, and that the annotationed parameter is duration between
recurrences.

23.11. Annotations for use with JSF

The following annotations make working with JSF easier.

@onverter
Allows a Seam component to act as a JSF converter. The annotated class must be a Seam component, and
must implement j avax. f aces. convert. Converter.

e id— the JSF converter id. Defaults to the component name.

e ford ass — if specified, register this component as the default converter for atype.

@/al i dat or
Allows a Seam component to act as a JSF validator. The annotated class must be a Seam component, and
must implement j avax. f aces. val i dat or. Val i dat or .

e id— theJSF validator id. Defaults to the component name.

23.11.1. Annotations for use with dat aTabl e

The following annotations make it easy to implement clickable lists backed by a stateful session bean. They ap-
pear on attributes.

@at aMbdel

@at aModel (" vari abl eNanme")

Exposes an attribute of type Li st, Map, Set Or Qvj ect[] as aJSF Dat aMbdel into the scope of the owning
component (or the EVENT scope if the owning component is STATELESS). In the case of Map, each row of the
Dat aMbdel iSaMap. Entry.

* val ue — name of the conversation context variable. Default to the attribute name.

» scope — if scope=ScopeType. PAGE is explicitly specified, the Dat amodel will be kept in the PAGE con-
text.

@at aMbdel Sel ecti on

@pat aModel Sel ecti on

Injects the selected value from the JSF Dat ambdel (this is the element of the underlying collection, or the
map value).

* val ue — name of the conversation context variable. Not needed if there is exactly one @at aModel in
the component.

JBoss Seam 1.3.0.A1 232

Seam annotations

@at aMbdel Sel ecti onl ndex

@at aModel Sel ect i onl ndex

Exposes the selection index of the JSF Dat ambdel as an attribute of the component (this is the row number
of the underlying collection, or the map key).

* val ue — name of the conversation context variable. Not needed if there is exactly one @at avbdel in
the component.

23.12. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @pataMdel and
@at aMbdel Sel ect i on for other datastructures apart from lists.

@at aBi nder C ass

@pat aBi nder Cl ass(Dat aMbdel Bi nder. cl ass)

Specifies that an annotation is a databinding annotation.
@at aSel ect or d ass

@at aSel ect or A ass(Dat aMbdel Sel ect or. cl ass)

Specifies that an annotation is a datasel ection annotation.

23.13. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that are packaged
together. It can be applied to any Java package.
@\anespace

@amespace(val ue="http://jboss. com product s/ seanf exanpl e/ seanpay")

Specifies that components in the current package are associated with the given namespace. The declared
namespace can be used as an XML namespace in aconponent s. xm file to simplify application configura-
tion.

@amespace(val ue="http://jboss. com products/seanf core", prefix="org.jboss.seam core")

Specifies a namespace to associate with a given package. Additionally, it specifies a component name pre-
fix to be applied to component names specified in the XML file. For example, an XML element named i -
crocont ai ner that is associated with this namespace would be understood to actually refere to a compon-
ent named or g. j boss. seam cor e. ni cr ocont ai ner .

23.14. Annotations for integrating with the servlet container

JBoss Seam 1.3.0.A1 233

Seam annotations

These annotations allow you to integrate your Seam components with the servlet container.

@ilter
Use the Seam component (which implementsj avax. servl et . Fi | t er) annotated with @i | t er as a servlet
filter. It will be executed by Seam's master filter.

@il ter(around={"seanmConmponent", "other SeanConponent"})

Specifies that thisfilter is positioned higher in the stack than the given filters.

@il ter(wthin={"seanConponent", "other SeanConponent"})

Specifies that thisfilter is positioned deeper in the stack than the given filters.

JBoss Seam 1.3.0.A1 234

Chapter 24. Built-in Seam components

This chapter describes Seam'’s built-in components, and their configuration properties. The built-in components
will be created even if they are not listed in your conponent s. xm file, but if you need to override default prop-
erties or specify more than one component of a certain type, conponent s. xnl isused.

Note that you can replace any of the built in components with your own implementations simply by specifying
the name of one of the built in components on your own class using @ane.

Note also that even though all the built in components use a qualified name, most of them are aliased to ungual-
ified names by default. These aliases specify aut o-create="true", SO you do not need to use creat e=t r ue
when injecting built-in components by their unqualified name.

24.1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects. For example,
the following component instance variable would have the Seam session context object injected:

@n private Context sessionContext;
org. j boss. seam core. event Cont ext
Manager component for the event context object

org. j boss. seam cor e. pageCont ext
Manager component for the page context object

org. j boss. seam core. conver sati onCont ext
Manager component for the conversation context object

org. j boss. seam core. sessi onCont ext
Manager component for the session context object

org. j boss. seam core. appl i cati onCont ext
Manager component for the application context object

org. j boss. seam cor e. met hodCont ext
Manager component for the method context object

org.j boss. seam cor e. busi nessPr ocessCont ext
Manager component for the business process context object

org.j boss. seam cor e. f acesCont ext
Manager component for the FacesCont ext context object (not a true Seam context)

All of these components are aways installed.

24.2. Utility components

These components are merely useful.

JBoss Seam 1.3.0.A1 235

Built-in Seam components

org.j boss. seam core. facesMessages
Allows faces success messages to propagate across a browser redirect.

e add(FacesMessage facesMessage) — add a faces message, which will be displayed during the next
render response phase that occursin the current conversation.

e add(String nessageTenpl ate) — add a faces message, rendered from the given message template
which may contain EL expressions.

e add(Severity severity, String nessageTenpl ate) — add afaces message, rendered from the giv-
en message template which may contain EL expressions.

e addFronResour ceBundl e(String key) — add a faces message, rendered from a message template
defined in the Seam resource bundle which may contain EL expressions.

e addFronResour ceBundl e(Severity severity, String key) — add afaces message, rendered from a
message template defined in the Seam resource bundle which may contain EL expressions.

e clear() — clear all messages.

org.j boss. seam core. redirect
A convenient APl for performing redirects with parameters (this is especially useful for bookmarkable
search results screens).

e redirect.view d —the JSF view id to redirect to.

e redirect.conversationPropagationEnabl ed — determines whether the conversation will propagate
across the redirect.

* redirect.paranmeters — amap of request parameter name to value, to be passed in the redirect re-
quest.

» execut e() — perform the redirect immediately.

e captureCurrent Request () — storesthe view id and request parameters of the current GET request (in
the conversation context), for later use by calling execut e() .

org.j boss. seam core. htt pError
A convenient API for sending HTTP errors.

org.j boss. seam core. events
An API for raising events that can be observed via @bserver methods, or method bindings in conpon-
ents. xm .

* raiseEvent (String type) — raisean event of aparticular type and distribute to all observers.

e raiseAsynchronousEvent (String type) — raise an event to be processed asynchronously by the
EJB3 timer service.

e raiseTinedEvent (String type,) — schedule an event to be processed asynchronously by the
EJB3 timer service.

e addListener(String type, String nethodBi ndi ng) — add an observer for a particular event type.

JBoss Seam 1.3.0.A1 236

Built-in Seam components

org. j boss. seam core. i nterpol at or
An API for interpolating the values of JSF EL expressionsin Strings.

e interpolate(String tenplate) — scan the template for JSF EL expressions of the form #{. ..} and
replace them with their evaluated values.

org. j boss. seam cor e. expressi ons
An APl for creating value and method bindings.

e createVal ueBi ndi ng(String expressi on) — create avalue binding object.
e createMet hodBi ndi ng(String expressi on) — create a method binding object.

org.j boss. seam cor e. poj oCache
Manager component for a JBoss Cache Poj oCache instance.

* poj oCache. cf gResour ceNare — the name of the configuration file. Default to t r eecache. xni .

org. j boss. seam core. ui Conponent
Allows access to a JSF U Component by its id from the EL. For example, we can write
@ n("#{ui Conponent [' nyForm address'].val ue}").

All of these components are always installed.

24.3. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using Seam.

org.j boss.seam core. |l ocal e

The Seam locale. Thelocale is session scoped.

org.j boss.seam core.ti nezone
The Seam timezone. The timezone is session scoped.

org.j boss. seam core. resour ceBundl e
The Seam resource bundle. The resource bundle is session scoped. The Seam resource bundle performs a
depth-first search for keysin alist of Javaresource bundles.

* resourceBundl e. bundl eNames — the names of the Java resource bundles to search. Default to nes-
sages.

org. j boss. seam core. | ocal eSel ect or
Supports selection of the locale either at configuration time, or by the user at runtime.

* select () — select the specified locale.
* local eSel ector.local e —theactua java. util . Local e.

e local eSel ector. | ocal eSt ri ng — the stringified representation of the locale.

JBoss Seam 1.3.0.A1 237

Built-in Seam components

e local eSel ector. | anguage — the language for the specified locale.
* local eSel ector. count ry — the country for the specified locale.
* local eSel ector. vari ant — the variant for the specified locale.

e local eSel ect or. supportedLocal es — alist of Sel ect | t ens representing the supported locales listed
injsf-config.xm.

e local eSel ect or. cooki eEnabl ed — specifies that the local e selection should be persisted via a cookie.

org. j boss. seam core.ti mezoneSel ect or
Supports selection of the timezone either at configuration time, or by the user at runtime.

e select () — select the specified locale.
* timezoneSel ector.tinezone —theactual j ava. util. Ti nezone.
* timezoneSel ector.timeZonel d — the stringified representation of the timezone.

* timezoneSel ector. cooki eEnabl ed — specifies that the timezone selection should be persisted via a
cookie.

org.j boss. seam cor e. nessages
A map containing internationalized messages rendered from message templates defined in the Seam re-
source bundle.

org. j boss. seam t hene. t heneSel ect or
Supports selection of the theme either at configuration time, or by the user at runtime.

e sel ect () — select the specified theme.

* thene. avai | abl eThemes — thelist of defined themes.

* themeSel ector. t heme — the selected theme.

* theneSel ector.t hemes — alist of Sel ect I t ens representing the defined themes.

* themeSel ector. cooki eEnabl ed — specifies that the theme selection should be persisted via a cookie.

org.j boss. seam t hene. t hene
A map containing theme entries.

All of these components are always installed.

24.4. Components for controlling conversations

The next group of components allow control of conversations by the application or user interface.

org.j boss. seam core. conversation
API for application control of attributes of the current Seam conversation.

JBoss Seam 1.3.0.A1 238

Built-in Seam components

e getld() — returnsthe current conversation id

* isNested() — isthe current conversation a nested conversation?

* isLongRunni ng() — isthe current conversation along-running conversation?
e getld() — returnsthe current conversation id

e getParent|d() — returnsthe conversation id of the parent conversation

* getRoot|d() — returnsthe conversation id of the root conversation

* setTimeout(int tinmeout) — Setsthetimeout for the current conversation

e setView d(String outcone) — setsthe view id to be used when switching back to the current conver-
sation from the conversation switcher, conversation list, or breadcrumbs.

* setDescription(String description) — sets the description of the current conversation to be dis-
played in the conversation switcher, conversation list, or breadcrumbs.

* redirect() — redirect to the last well-defined view id for this conversation (useful after login chal-
lenges).

* leave() — exit the scope of this conversation, without actually ending the conversation.
* begi n() — begin along-running conversation (equivalent to @egi n).

* beginPagefl ow(String pageflowName) — begin a long-running conversation with a pageflow
(equivalent to @egi n(pagef | ow="...")).

e end() — end along-running conversation (equivalent to @nd).

e pop() — pop the conversation stack, returning to the parent conversation.

* root () — return to the root conversation of the conversation stack.

* changeFl ushMde(Fl ushMbdeType flushMode) — change the flush mode of the conversation.

org.j boss. seam core. conversati onLi st
Manager component for the conversation list.

org.j boss. seam core. conversati onSt ack
Manager component for the conversation stack (breadcrumbs).

org.j boss. seam core. switcher
The conversation switcher.

All of these components are aways installed.

24.5. iBPM-related components

These components are for use with jBPM.

org.j boss. seam cor e. pagef | ow

API control of Seam pageflows.

JBoss Seam 1.3.0.A1 239

Built-in Seam components

e islnProcess() — returnstrue if thereis currently a pageflow in process

e getProcesslnstance() — returnsjBPM Processl nst ance for the current pageflow

* begin(String pagefl owName) — begin a pageflow in the context of the current conversation
e reposition(String nodeNane) — reposition the current pageflow to a particular node

org. j boss. seam core. act or
API for application control of attributes of the JBPM actor associated with the current session.

e setld(String actorld) — setsthejBPM actor id of the current user.

e getGoupActorlds() — returnsaset towhich jBPM actor ids for the current users groups may be ad-
ded.

org.j boss.seamcore.transition
API for application control of the jBPM transition for the current task.

e setName(String transitionName) — Setsthe jBPM transition name to be used when the current task
is ended via @ndTask.

org. j boss. seam core. busi nessProcess
API for programmatic control of the association between the conversation and business process.

* businessProcess. t askl d — theid of the task associated with the current conversation.
* businessProcess. processl d — theid of the process associated with the current conversation.
* businessProcess. hasCurrent Task() — isatask instance associated with the current conversation?

e businessProcess. hasCurrent Process() — iSaprocess instance associated with the current conversa-
tion.

e createProcess(String name) — create an instance of the named process definition and associate it
with the current conversation.

e startTask() — start the task associated with the current conversation.

* endTask(String transitionNane) — end the task associated with the current conversation.

* resunmeTask(Long id) — associate the task with the given id with the current conversation.

e resuneProcess(Long i d) — associate the process with the given id with the current conversation.
e transition(String transitionNane) — trigger the transition.

org.j boss. seam core. t askl nst ance
Manager component for the jBPM Task! nst ance.

org.j boss. seam core. processl nst ance
Manager component for the JBPM Pr ocessl nst ance.

org.j boss. seam cor e. j bpnCont ext
Manager component for an event-scoped JbpnCont ext .

JBoss Seam 1.3.0.A1 240

Built-in Seam components

org. j boss. seam core. t askl nst ancelLi st

Manager component for the jBPM task list.

org. j boss. seam core. pool edTaskl nst anceli st

Manager component for the jBPM pooled task list.

org. j boss. seam core. t askl nst ancelLi st For Type
Manager component for the jBPM task lists.

org. j boss. seam core. pool edTask
Action handler for pooled task assignment.

org. j boss. seam core. processl nst anceFi nder
Manager for the process instance task list.

org. j boss. seam core. processl nst anceli st
The process instance task list.

All of these components are installed whenever the component or g. j boss. seam cor e. j bpmisinstalled.

24.6. Security-related components

These components relate to web-tier security.

org.j boss. seam core. user Pri nci pal
Manager component for the current user Pri nci pal .

org.j boss.seam core.isUserlnRol e
Allows JSF pages to choose to render a control, depending upon the roles available to the current principal.
<h: commandButt on val ue="edit" rendered="#{i sUserlnRole['adnm n']}"/>.

24.7. IMS-related components

These components are for use with managed Topi cPubl i sher Sand QueueSender S (see below).

org.j boss. seam j ns. queueSessi on
Manager component for aJM S QueueSessi on .

org.j boss.seamj ns. t opi cSessi on
Manager component for aJMS Topi cSessi on .

24.8. Mail-related components

These components are for use with Seam's Email support

org.jboss. seam mai | . mai | Sessi on
Manager component for a JavaMail Sessi on. The session can be either looked up in the INDI context (by
setting the sessi onJdndi Nane property) or it can created from the configuration options in which case the
host ismandatory.

JBoss Seam 1.3.0.A1 241

Built-in Seam components

* org.jboss.seam mail . mai | Sessi on. host — the hostname of the SMTP server to use

* org.jboss.seam mail . mail Sessi on. port — the port of the SMTP server to use

* org.jboss.seam nail . mai| Sessi on. user nanme — the username to use to connect to the SMTP server.
e org.jboss.seam nail . mail Sessi on. passwor d — the password to use to connect to the SMTP server

e org.jboss.seam mail . mil Sessi on. debug — enable JavaMail debugging (very verbose)

* org.jboss.seam mail . mail Session. ssI — enable SSL connection to SMTP (will default to port 465)

e org.jboss.seam mail . mail Sessi on. sessi onJndi Name — name under which a javax.mail.Session is
bound to INDI. If supplied, all other properties will beignored.

24.9. Infrastructural components

These components provide critical platform infrastructure. Y ou can install a component which isn't installed by
default by setting i nst al I ="t rue" on the component in conponent s. xm .

org.jboss.seamcore.init
Initialization settings for Seam. Always installed.

* org.jboss.seamcore.init.jndi Pattern— the INDI pattern used for looking up session beans
e org.jboss.seamcore.init.debug — enable Seam debug mode

* org.jboss.seamcore.init.clientSideConversations —if settotrue, Seam will save conversation
context variables in the client instead of in the Ht t pSessi on.

* org.jboss.seam core.init.userTransacti onName — the INDI name to use when looking up the JTA
User Tr ansact i on object.

org. j boss. seam cor e. manager
Internal component for Seam page and conversation context management. Always installed.

* org.jboss. seam core. manager . conver sati onTi meout — the conversation context timeout in milli-
seconds.

* org.jboss. seam core. manager . concur r ent Request Ti meout — maximum wait time for a thread at-
tempting to gain alock on the long-running conversation context.

e org.|boss. seam core. manager. conver sat i onl dPar anet er — the request parameter used to propag-
ate the conversation id, default to conver sati onl d.

* org.jboss.seam core. manager. conver sati onl sLongRunni ngPar ameter — the request parameter
used to propagate information about whether the conversation is long-running, default to conver sa-
tionl sLongRunni ng.

org.j boss. seam cor e. pages
Internal component for Seam workspace management. Always installed.

JBoss Seam 1.3.0.A1 242

Built-in Seam components

e org.jboss. seam core. pages. noConversati onVi em d — global setting for the view id to redirect to
when a conversation entry is not found on the server side.

org.j boss.seamcore.ejb

Bootstraps the JBoss Embeddable EJB3 container. Install as class or g. j boss. seam core. Ej b. Thisis use-
ful when using Seam with EJB components outside the context of a Java EE 5 application server.

The basic Embedded EJB configuration is defined in j boss- enbedded- beans. xni . Additional microcon-
tainer configuration (for example, extra datasources) may be specified by j boss-beans. xml OF META-
| NF/ j boss- beans. xni in the classpath.

org.j boss. seam core. m crocont ai ner

Bootstraps the JBoss microcontainer. Install as class or g. j boss. seam core. M crocont ai ner. Thisis use-
ful when using Seam with Hibernate and no EJB components outside the context of a Java EE application
server. The microcontainer can provide a partial EE environment with JNDI, JTA, a JCA datasource and
Hibernate.

The microcontainer configuration may be specified by j boss- beans. xni Or META- | NF/ j boss- beans. xnl in
the classpath.

org. j boss.seam core.jbpm

Bootstraps aJbpnConf i gur ati on. Install asclassorg. j boss. seam core. Jbpm

e org.jboss.seam core.jbpm processDefinitions — alist of resource names of jPDL filesto be used
for orchestration of business processes.

e org.jboss.seam core.jbpm pagef | owDefinitions — a list of resource names of jPDL files to be
used for orchestration of conversation page flows.

org.j boss. seam core. conversati onEntries

Internal session-scoped component recording the active long-running conversations between requests.

org.j boss. seam core. facesPage

Internal page-scoped component recording the conversation context associated with a page.

org.j boss. seam cor e. persi st enceCont ext s

Internal component recording the persistence contexts which were used in the current conversation.

org.j boss. seam j ns. queueConnecti on

Manages a JMS QueueConnect i on. Installed whenever managed managed QueueSender isinstalled.

* org.jboss.seam | ms. queueConnect i on. queueConnect i onFact or yJndi Nane — the JNDI name of a
JMS QueueConnect i onFact ory. Default to Ul L2Connect i onFact ory

org.j boss. seam j ns. t opi cConnecti on

Manages a JMS Topi cConnect i on. Installed whenever managed managed Topi cPubl i sher isinstalled.

* org.jboss.seam | ms. t opi cConnecti on. t opi cConnect i onFact or yJndi Nane — the JNDI name of a
JMS Topi cConnect i onFact ory. Default to Ul L2Connect i onFact ory

org. j boss. seam persi st ence. persi st enceProvi der

Abstraction layer for non-standardized features of JPA provider.

JBoss Seam 1.3.0.A1 243

Built-in Seam components

org. j boss.seam core. validation
Internal component for Hibernate Validator support.

org. j boss. seam debug. i ntrospect or

Support for the Seam Debug Page.

org. j boss. seam debug. cont ext s

Support for the Seam Debug Page.

org. j boss. seam core. exceptions
Internal component for exception handling.

org. j boss.seam core.jbossELl nstall er
Installs JBoss EL as the default EL in the JSF RI.

org.j boss.seam core.transacti onLi st ener
Temporary solution for getting JTA transaction lifecycle callbacks. Once all appservers support the new
EE5 APIs, thiswill be removed.

org.j boss.seam core. val i dators
Cachesinstances of Hibernate Validator ClassValidator.

org.j boss. seam core. saf eActi ons
Decides if an action expression in an incomming URL is safe. Thisis done by checking that the action ex-
pression existsin the view.

24.10. Miscellaneous components

These components don't fit into

org.j boss. seam cor e. di spat cher
Dispatcher stateless session bean for asynchronous methods.

org.j boss. seam core. i mage
Image manipulation and interrogation.

org. j boss. seam core. poj oCache
Manager component for a PojoCache instance.

org. j boss. seam core. ui Conponent
Manages a map of UlComponents keyed by component id.

24.11. Special components

Certain special Seam component classes are installable multiple times under names specified in the Seam con-
figuration. For example, the following linesin conponent s. xm install and configure two Seam components:

<conponent nane="booki ngDat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property nane="persi stenceUnitJndi Name" >j ava: / conp/ enf / booki ngPer si st ence</ property>

JBoss Seam 1.3.0.A1 244

Built-in Seam components

</ conponent >
<conmponent name="user Dat abase"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >

<property nane="persistenceUnitJndi Nane">j ava: / conp/ enf/ user Per si st ence</ property>
</ conponent >

The Seam component names are booki ngDat abase and user Dat abase.

<entityManager >, org.j boss. seam cor e. ManagedPer si st enceCont ext
Manager component for a conversation scoped managed Ent i t yManager With an extended persistence con-
text.

e <entityManager>. entityManager Fact ory — avalue binding expression that evaluates to an instance
of Entit yManager Factory.

<ent i t yManager >. per si st enceUni t Jndi Name — the INDI name of the entity manager factory, default

t0j ava: / <managedPer si st enceCont ext >.

<entityManager Fact ory>, org.j boss. seam core. Entit yManager Fact ory
Manages a JPA Enti t yManager Fact ory. Thisis most useful when using JPA outside of an EJB 3.0 sup-

porting environment.

* entityManager Fact ory. persi st enceUni t Name — the name of the persistence unit.

See the API JavaDoc for further configuration properties.

<sessi on>, org. j boss. seam cor e. ManagedSessi on
Manager component for a conversation scoped managed Hibernate Sessi on.
e <session>. sessi onFact ory — a value binding expression that evaluates to an instance of Sessi on-

Factory.

<sessi on>. sessi onFact oryJndi Name — the JNDI name of the session factory, default to

j ava: / <managedSessi on>.

<sessi onFact ory>, org. j boss. seam cor e. H ber nat eSessi onFact ory
Manages a Hibernate Sessi onFact ory.

e <sessionFact ory>. cf gResourceNane — the path to the configuration file. Default to hi bern-
ate.cfg. xm.

See the API JavaDoc for further configuration properties.

<managedQueueSender >, or g. j boss. seam j ns. ManagedQueueSender
Manager component for an event scoped managed JMS QueueSender .

e <managedQueueSender >. queueJndi Narre — the INDI name of the IMS queue.

<managedTopi cPubl i sher >, org. j boss. seam j ns. ManagedTopi cPubl i sher
Manager component for an event scoped managed JM S Topi cPubl i sher .

JBoss Seam 1.3.0.A1 245

Built-in Seam components

e <mmnagedTopi cPubl i sher>. t opi cJndi Nane — the INDI name of the IMStopic.

<managedWr ki ngMenor y>, or g. j boss. seam dr ool s. ManagedWr ki nghenory
Manager component for a conversation scoped managed Drools Wor ki ngMenory.

e <managedWr ki ngMenor y>. rul eBase — avalue expression that evaluates to an instance of Rul eBase.

<rul eBase>, org. j boss. seam dr ool s. Rul eBase
Manager component for an application scoped Drools Rul eBase. Note that this is not really intended for
production usage, since it does not support dynamic installation of new rules.

e <rul eBase>. rul eFi | es — alist of files containing Drools rules.
<rul eBase>. dsl Fi | e — aDrools DSL definition.
<entityHone>, org.j boss. seam franmewor k. Enti t yHone
<hi ber nat eEnti t yHome>, or g. j boss. seam f ramewor k. Hi ber nat eEnti t yHone
<entityQuery>,org.jboss. seam franework. EntityQuery

<hi bernat eEnti t yQuery>, org. j boss. seam franmewor k. Hi ber nat eEntityQuery

JBoss Seam 1.3.0.A1 246

Chapter 25. Seam JSF controls

Seam includes a number of JSF controls that are useful for working with Seam. These are intended to comple-
ment the built-in JSF controls, and controls from other third-party libraries. We recommend the Ajax4JSF and
ADF faces (now Trinidad) tag libraries for use with Seam. We do not recommend the use of the Tomahawk tag

library.

To use these controls, define the "s" namespace in your page as follows (facelets only):

<htm xm ns="http://ww. w3. org/ 1999/ xhtm "
xm ns:s="http://jboss. com products/seam taglib">

The ui example demonstrates the use of a number of these tags.

Table 25.1. Seam JSF Control Reference

<s: button>

Description

A button that supports invocation of an action with control over conversation
propagation. Does not submit the form.

Attributes

* val ue —thelabdl.

* acti on — amethod binding that specified the action listener.
* view— the JSF view id to link to.

» fragnment — the fragment identifier to link to.

 disabl ed — isthelink disabled?

* propagati on — determines the conversation propagation style: begi n, j oi n,
nest , none Of end.

* pageflow — a pageflow definition to begin. (This is only useful when
pr opagat i on="begi n" Of propagati on="j oi n".)

Usage

<s:button id="cancel" val ue="Cancel "
acti on="#{hot el Booki ng. cancel }"/>

<s: cache>

Description

Cache the rendered page fragment using JBoss Cache. Note that <s: cache> actu-
aly uses the instance of JBoss Cache managed by the built-in poj oCache com-
ponent.

Attributes

» key — the key to cache rendered content, often a value expression. For ex-

JBoss Seam 1.3.0.A1

247

Seam JSF controls

ample, if we were caching a page fragment that displays a document, we
might use key="Docurment - #{ docurent . i d} " .

* enabl ed — avalue expression that determinesif the cache should be used.

* regi on — aJBoss Cache node to use (different nodes can have different ex-
piry policies).

Usage

<s:cache key="entry-#{bl ogEntry.id}" regi on="pageFragnments">
<di v cl ass="bl ogEntry">
<h3>#{ bl ogEntry.titl e} </ h3>
<di v>
<s:formattedText val ue="#{bl ogEntry. body}"/>
</ div>
<p>
[Post ed on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTime timezone="#{bl og.ti meZone}" | ocal e="#{bl og. | ocal e}’
type="both"/>
</ h: out put Text >]
</ p>
</ div>
</ s: cache>

<s: conversationl d> Description
Add the conversation id to an output link (or similar JSF control). Facelets only.
Attributes

None.

<s: conversati onPropag Description

ation>
Customize the conversation propagation for a command link or button (or similar
JSF control). Facelets only.
Attributes
* propagati on — determines the conversation propagation style: begi n, j oi n,
nest, none Or end.
» pageflow — a pageflow definition to begin. (This is only useful when
pr opagat i on="begi n" Of propagati on="j oi n".)
Usage
<h: commandBut t on val ue="Appl y" acti on="#{per sonHone. updat e} " >
<s:conversationPropagation type="join" />
</ h: cormmandBut t on>
<s: conver t Dat eTi me> Description

Perform date or time conversions in the Seam timezone.

JBoss Seam 1.3.0.A1 248

Seam JSF controls

<s:convertEntity>

Attributes
None.
Usage

<h: out put Text val ue="#{item orderDate}">
<s:convertDateTi ne type="both" dateStyle="full"/>
</ h: out put Text >

Description

Assigns an entity converter to the current component. Thisis primarily useful for
radio button and dropdown controls.

The converter works with any entity which has an @ d annotation - either simple
or composite.

Attributes
None.
Configuration

You must use Seam managed transactions (see Section 8.2, “Seam managed
transactions’) with <s: convertEntity />.

If your Managed Persistence Context isn't called ent i t ymanager , then you need
to set it in components.xmil:

<component nane="or(g.j boss.seam ui.entityConverter">
<property nanme="entityManager" >#{en} </ property>
</ conponent >

Usage

<h: sel ect OneMenu val ue="#{person.continent}" required="true">
<s:selectltens value="#{continents.resultList}" var="continent"
| abel ="#{conti nent. nane}"
noSel ecti onLabel =" Pl ease Select..."/>
<s:convertEntity />
</ h: sel ect OneMenu>

<s:convert Enunp

Description

Assigns an enum converter to the current component. Thisis primarily useful for
radio button and dropdown controls.

Attributes
None.
Usage

<h: sel ect OneMenu val ue="#{ person. honorific}">
<s:selectltens val ue="#{honorifics}" var="honorific"
| abel ="#{honorific.|abel }"
noSel ecti onLabel =" Pl ease sel ect" />

JBoss Seam 1.3.0.A1

249

Seam JSF controls

<s: convert Enum />
</ h: sel ect OneMenu>

<s: decorat e>

Description

"Decorate” a JSF input field when validation fails or when requi red="true" is

set.

Attributes

* tenpl at e — the facelets template to use to decorate the component
Usage

<f:facet name="afterlnvalidField" >
<s:span>
 Error:
<s: message/ >
</ s: span>
</f:facet>
<f:facet nanme="aroundl nvali dFi el d">
<s:span styleC ass="errors"/>
</f:.facet>

<s: decor at e>

<h:i nput Text val ue="#{bl ogEntry.id}" size="20" naxl engt h="20"

requi red="true" id="id"/>
</ s: decor at e>

<s:div>

Description

Render aHTML <di v>.
Attributes

None.

Usage

<s:div rendered="#{sel ectedMenber == null}">
Sorry, but this nenber does not exist.
</s:div>

<s:enumtenp

Description
Creates a Sel ect | t emfrom an enum value.

Attributes

* enunval ue — the string representation of the enum value.
* | abel — thelabel to be used when rendering the Sel ect I t em
Usage

<h: sel ect OneRadi o i d="radi oLi st"
| ayout ="1ineDirection"

JBoss Seam 1.3.0.A1

250

Seam JSF controls

<s:fil eUpl oad>

val ue="#{ newPaynent . paynment Fr equency}" >
<s:convert Enum />
<s:enunm t em enunmval ue="ONCE" | abel ="Only Once" />
<s: enunm t em enunVal ue="EVERY_M NUTE" | abel ="Every M nute" />

<s: enunl t em enunmval ue=" HOURLY" | abel =" Every Hour" />
<s: enum t em enunVal ue=" DAl LY" | abel ="Every Day" />
<s: enum t em enunVal ue="WEEKLY" | abel ="Every Week" />

</ h: sel ect OneRadi o>

Description

Renders afile upload control. This control must be used within aform with an en-
coding type of nul ti part/formdata, i.€

<h: form enctype="nul ti part/formdata">

For multipart requests, the Seam Multipart servlet filter must also be configured
inweb. xni :

<filter>
<filter-name>Seam Filter</filter-nanme>
<filter-class>org.jboss. seam web. SeanFilter</filter-class>
</filter>

<filter-mappi ng>
<filter-name>Seam Filter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mpping>

Configuration

The following configuration options for multipart requests may be configured in
components.xml:

* createTenpFil es — if this option is set to true, uploaded files are streamed
to atemporary file instead of in memory.

* maxRequest Si ze — the maximum size of afile upload request, in bytes.
Here's an example:

<conponent cl ass="org.jboss.seam web. Mul tipartFilter">
<property nane="creat eTenpFi |l es">true</ property>
<property nanme="maxRequest Si ze">1000000</ pr operty>
</ conponent >

Attributes

» data — this value binding receives the binary file data. The receiving field
should be declared asabyt e[] Or I nput St r eam(required).

* content Type — this value binding receives the file's content type (optional).
e fil eName — thisvalue binding receives the filename (optional).

* accept — acomma-separated list of content types to accept, may not be sup-
ported by the browser. E.g. "i mages/ png, i mages/ j pg", "i mages/ *" .

JBoss Seam 1.3.0.A1

251

Seam JSF controls

* style — Thecontrol's style
* styl eC ass — Thecontrol's style class
Usage

<s:fileUpload id="picture" data="#{register.picture}"
accept ="i mage/ png"
cont ent Type="#{regi st er. pi ct ureCont ent Type}" />

<s: format t edText > Description

Outputs Seam Text, a rich text markup useful for blogs, wikis and other applica-
tions that might use rich text. See the Seam Text chapter for full usage.

Attributes

» val ue — an EL expression specifying the rich text markup to render.
Usage

<s:formattedText val ue="#{blog.text}"/>
Example

+Laorem ipsum -

a elitl. -5y

nis id arcy o

..... * fdolor sit amet/, [cor
ra wiverra™. _Fuscein i

Preview Lorem ipsum

Lorem ipsum dodor 5 amet, consectetuer adipiscing elit,

-Suspendisse a risus- U lorem pharetra viverra p\oce in jnsurm, Narm et
turpis id arcu lobortis dapibus,

Curabitur et sem vel quam
1. wenenatis mattis,
2. Nulla hendrerit arci ut massa.
3. Donec condimentum,
+ libero in iaculis hendrerit,
+ risus dolor congue nualla,
+ non accurmsan ante risus et ipsur,

"“Suspendisse dui. Maecenas lorem. Maecenas sit amet purus nec metus
sodales saqittis. Phasellus warius lacus nec velit, *

<s: fragment > Description

A non-rendering component useful for enabling/disabling rendering of it's chil-
dren.

Attributes
None.

Usage

JBoss Seam 1.3.0.A1 252

Seam JSF controls

<s: graphi cl nage>

<s:fragment rendered="#{auction. highBidder ne null}">
Current bid:
</ s: fragment>

Description

An extended <h: graphi cl mage> that allows the image to be created in a Seam
Component; further transforms can be applied to the image. Facelets only.

All attributes for <h: gr aphi ¢l rage> are supported, as well as:

Attributes

» val ue — image to display. Can be a path st ri ng (loaded from the classpath),
abyte[],ajava.io.File,ajava.io.|nputStreamoOr ajava. net. URL. Cur-
rently supported image formats arei mage/ png, i mage/ j peg and i mage/ gi f .

* fileName — if not specified the served image will have a generated file name.
If you want to name your file, you should specify it here. This name should be
unique

Transformations

To apply atransform to the image, you would nest a tag specifying the transform
to apply. Seam currently supports these transforms:

<s:transforn nageSi ze>

e wi dt h — new width of theimage
* hei ght — new height of theimage

* mintainRati o — if true, and one of wi dt h/hei ght are specified, theim-
age will be resized with the dimension not specified being calculated to
maintain the aspect ratio.

» factor — scaletheimage by the given factor

<s:transform mageBl ur >

* radi us — perform a convolution blur with the given radius

<s:transform mageType>

* content Type — alter the type of the image to either i mage/ j peg or i m
age/ png

It's easy to create your own transform - create a Ul Conponent Which i npl enent s
org.j boss. seam ui . gr aphi cl mage. | mageTransform Inside the appl yTrans-
f or m() method usei mage. get Buf f er edl mage() to get the original image and i m
age. set Buf f er edl mage() to set your transformed image. Transforms are applied
in the order specified in the view.

JBoss Seam 1.3.0.A1

253

Seam JSF controls

Usage

<s: graphi cl nage rendered="#{auction.inmge ne null}"
val ue="#{auction. i mage. data}" >
<s:transform mageSi ze w dt h="200" nmaintai nRati o="true"/>
</ s: graphi cl nage>

<s:|ink>

<s: nmessage>

<s: sel ect Dat e>

Description

A link that supports invocation of an action with control over conversation
propagation. Does not submit the form.

Attributes

* val ue —thelabdl.

» acti on — amethod binding that specified the action listener.
* view— the JSF view id to link to.

* fragment — the fragment identifier to link to.

* disabl ed — isthelink disabled?

* propagati on — determines the conversation propagation style: begi n, j oi n,
nest, none Of end.

* pageflow — a pageflow definition to begin. (This is only useful when
pr opagat i on="begi n" Of propagati on="j oi n".)

Usage

<s:link id="register" view="/register.xhtm"
val ue="Regi ster New User"/>

Description

"Decorate” a JSF input field with the validation error message.
Attributes

None.

Usage

<f:facet name="afterlnvalidField" >
<s: span>
 Error: &4#160;
<s: message/ >
</ s: span>
</f:.facet>

Description

Displays a dynamic date picker component that selects a date for the specified in-
put field. The body of the sel ect Dat e element should contain HTML elements,

JBoss Seam 1.3.0.A1

254

Seam JSF controls

such as text or an image, that prompt the user to click to display the date picker.
The date picker must be styled using CSS. An example CSS file can be found in
the Seam booking demo as dat e. css, or can be generated using seam-gen. The
CSS styles used to control the appearance of the date picker are also described be-

low.

Attributes

 for — Theid of the input field that the date picker will insert the selected

date into.

* dateFormat — The date format string. This should match the date format of

the input field.
* startYear — The popup year selector range will start at this year.

* endYear — The popup year selector range will end at thisyear.

Usage

<div class="row'>

<h: out put Label for="dob">Date of birth<enr*</enpr</h:out putLabel >

<h:i nput Text id="dob" val ue="#{user.dob}" required="true">
<s:convert Dat eTi ne pattern="MJ dd/yyyy"/>

</ h:i nput Text >

<s:sel ectDate for="dob" startYear="1910" endYear="2007">

</ s: sel ect Dat e>

<di v class="validationError"><h: message for="dob"/></div>

</div>

Example
< March 2007 =
January
February
March 1 z 3
4 April 7 8 9 10
Ma
11 " ha 15 18 17
June
18 Jully 21 22 23 24
o5 AUOWEL be o zp @
September
October [ch 2007
MNovermnber
Decernber
CSSSyling

The following list describes the CSS class names that are used to control the style

of the selectDate control.

» seamdate — Thisclassis applied to the outer di v containing the popup cal-

JBoss Seam 1.3.0.A1

255

Seam JSF controls

endar. (1) It is also applied to the t abl e that controls the inner layout of the
calendar. (2)

seam dat e- header — This class is applied to the calendar header table row
(tr) and header table cells (t d). (3)

seam dat e- header - prevMonth — This class is applied to the "previous
month" table cell, (& d), which when clicked causes the calendar to display the
month prior to the one currently displayed. (4)

seam dat e- header - next Mont h — This class is applied to the "next month"
table cell, (t d), which when clicked causes the calendar to display the month
following the one currently displayed. (5)

seam dat e- header Days — This class is applied to the calendar days header
row (t r), which contains the names of the week days. (6)

seam dat e-f oot er — This class is applied to the calendar footer row (tr),
which displays the current date. (7)

seam dat e-i nMonth — This class is applied to the table cell (td) elements
that contain a date within the month currently displayed. (8)

seam dat e- out Mont h — This class is applied to the table cell (t d) elements
that contain a date outside of the month currently displayed. (9)

seam dat e- sel ected — This class is applied to the table cell (td) element
that contains the currently selected date. (10)

seam dat e- dayCf f -i nMont h — This classis applied to the table cell (t d) ele-
ments that contain a "day off" date (i.e. weekend days, Saturday and Sunday)
within the currently selected month. (11)

seam dat e- dayOf f - out Mont h — This class is applied to the table cell (t d)
elements that contain a "day off" date (i.e. weekend days, Saturday and
Sunday) outside of the currently selected month. (12)

seam dat e- hover — This class is applied to the table cell (t d) element over
which the cursor is hovering. (13)

seam dat e- nont hNames — This class is applied to the di v control that con-
tains the popup month selector. (14)

seam dat e- nont hNanmeLi nk — This class is applied to the anchor (a) controls
that contain the popup month names. (15)

seam dat e-years — Thisclassis applied to the di v control that contains the
popup year selector. (16)

seam dat e- year Li nk — This class is applied to the anchor (a) controls that
contain the popup years. (15)

JBoss Seam 1.3.0.A1

256

Seam JSF controls

<s:sel ectltens>

<s: span>

Fs

b

o 2 13 ®\
o ST = Febrin o
= March | 2007 5 sbruary b 1959
ﬂr—"| |"“‘6 Le March E-’:f:': 1970
[6 Apri 10710
& L2 3 -8 e 197
4 5 & 7 8§ u9=T10 June 1973 -
o July 1074
11 12 13 14 15 16 17 August 1975
B |15 10 20 2l 244 Septernber
October
o 25 27 28 29 30 3 ~0 Noverher
i %/ 21 March 2007 | December
Description

Creates aLi st <Sel ect | t em» from aList, Set, DataModel or Array.

Attributes

val ue —

an EL expression specifying the data that backs the
Li st<Sel ectl ten®

var — defines the name of the local variable that holds the current object dur-
ing iteration

I abel — the label to be used when rendering the Sel ect It em Can reference
thevar variable

di sabl ed — if true the Sel ect I t emWwill be rendered disabled. Can reference
thevar variable

noSel ecti onLabel — specifies the (optional) label to place at the top of list
(if required="true" is also specified then selecting this value will cause a

validation error)

* hideNoSel ectionLabel — if true, the noSel ecti onLabe

when avalue is selected
Usage

<h: sel ect OneMenu val ue="#{ per son. age}"
converter="#{converters. ageConverter}">
<s:sel ectltens val ue="#{ages}" var="age" | abel ="#{age}" />
</ h: sel ect OneMenu>

Description

Render aHTML .
Attributes

None.

Usage

<s:span styl eC ass="required" rendered="#{required}">*</s: span>

will be hidden

JBoss Seam 1.3.0.A1

257

Seam JSF controls

<s:taskld>

<s:val i date>

<s:validateAll>

Description

Add the task id to an output link (or similar JSF control), when the task is avail-
ablevia#{task}. Facelets only.

Attributes

None.

Description

A non-visual control, validates a JSF input field against the bound property using
Hibernate Validator.

Attributes
None.
Usage

<h: i nput Text id="user Nane" required="true"
val ue="#{ cust oner. user Nane} " >
<s:validate />
</ h:i nput Text >
<h: message for="user Nanme" styleC ass="error" />

Description

A non-visual control, validates all child JSF input fields against their bound prop-
erties using Hibernate Validator.

Attributes
None.
Usage

<s:validateA | >

<div class="entry">
<h: out put Label for="usernane">User nane: </ h: out put Label >
<h:i nput Text id="usernane" val ue="#{user.usernane}"

requi red="true"/>

<h: message for="usernane" styleC ass="error" />

</ div>

<div class="entry">
<h: out put Label for="password">Password: </ h: out put Label >
<h:i nput Secret id="password" val ue="#{user. password}"

requi red="true"/>

<h: message for="password" styleC ass="error" />

</ di v>

<div class="entry">
<h: out put Label for="verify">Verify Password: </ h: out put Label >
<h:input Secret id="verify" value="#{register.verify}"

requi red="true"/>

<h: message for="verify" styleCd ass="error" />

</ di v>

</s:validateAl l>

JBoss Seam 1.3.0.A1

258

Chapter 26. Expression language enhancements

Seam provides an extension to the standard Unified Expression Language (EL) called JBoss EL. JBoss EL
provides a number of enhancements that increase the expressiveness and power of EL expressions.

26.1. Parameterized Method Bindings

Standard EL assumes that any parameters to a method expression will be provided by Java code. This means
that a method with parameters cannot be used as a JSF method binding. Seam provides an enhancement to the
EL that allows parameters to be included in a method expression itself. This applies to any Seam method ex-
pression, including any JSF method binding, for example:

<h: conmandBut t on acti on="#{hot el Booki ng. bookHot el (hotel)}" val ue="Book Hotel "/>

26.1.1. Usage

Parameters are surrounded by parentheses, and separated by commas:

<h: commandBut t on acti on="#{ hot el Booki ng. bookHot el (hotel, user)}" val ue="Book Hotel "/>

The parameters hot el and user will be evaluated as value expressions and passed to the bookHot el () method
of the component. This gives you an aternative to the use of @n.

Any value expression may be used as a parameter:

<h: conmandBut t on acti on="#{ hot el Booki ng. bookHot el (hotel .id, user.usernane)}"
val ue="Book Hotel"/>

Note: You can not pass objects as arguments! All that is passed is names, for example, hotel .id and
user . user nane. If you check the rendered code of the previous example, you will see that the command button
contains these names. These name arguments will be submitted to the server when you press the button, and
Seam will look up and resolve these names (in any available context) before the action method is called. If the
arguments can not be resolved at that time (because hot el and user variables can not be found in any available
context) the action method will be called with nul | arguments!

Y ou may however pass litera strings using single or double quotes:
<h: conmandLi nk action="#{printer.println('Hello world!"')}" value="Hello"/>
<h: commandLi nk action="#{printer.printlin('Hello again')} value="Hello"/>
Y ou might even want to use this notation for all your action methods, even when you don't have parameters to

pass. This improves readability by making it clear that the expression is a method expression and not a value
expression:

<s:link val ue="Cancel " action="#{hot el Booki ng. cancel ()}"/>

26.1.2. Limitations

Please be aware of the following limitations:

JBoss Seam 1.3.0.A1 259

Expression language enhancements

26.1.2.1. Incompatibility with JSP 2.1

This extension is not currently compatible with JSP 2.1. So if you want to use this extension with JSF 1.2, you
will need to use Facelets. The extension works correctly with JSP 2.0.

26.1.2.2. Calling a Met hodExpr essi on from Java code

Normally, when a Met hodExpr essi on Or Met hodBi ndi ng IS created, the parameter types are passed in by JSF. In
the case of a method binding, JSF assumes that there are no parameters to pass. With this extension, we can't
know the parameter types until after the expression has been evaluated. This has two minor consequences:

¢ When you invoke a Met hodExpr essi on in Java code, parameters you pass may be ignored. Parameters
defined in the expression will take precedence.

e Ordinarily, it is safeto call net hodExpr essi on. get Met hodl nf o() . get Par anTypes() at any time. For an ex-
pression with parameters, you must first invoke the Met hodExpr essi on before calling get Par anifypes() .

Both of these cases are exceedingly rare and only apply when you want to invoke the Met hodExpr essi on by
hand in Java code.

26.2. Parameterized Value Bindings

Standard EL only allows access to properties that follow the JavaBean naming conventions. For example, the
expression #{ per son. nare} requires aget Name() be present. Many objects, however, don't have appropriately
named property accessors or require parameters. These values can be retrieved using the method syntax, which
work similarly to parameterized method bindings. For example, the following expression returns the size of a
string using thel engt h() method.

#{ person. nane. | engt h()}

Y ou can access the size of a collection in asimilar manner.

#{searchResul ts. si ze()}

In general any expression of the form #{obj.property} would be identicad to the expression
#{ obj.getProperty()} .

Parameters are aso alowed, and they follow the same restrictions as with method bindings. The following ex-
ample callsthe pr oduct sByCol or Met hod with aliteral string argument.

#{control | er. product sByCol or (' bl ue')}

26.3. Projection

JBoss EL supports alimited projection syntax. It isimportant to note that this syntax cannot be parsed by Face-
lets or by JavaServer Pages and thus cannot be used in xhtml or JSP files. We anticipate that the projection syn-
tax will change in future versions of JBoss EL.

A projection expression maps a sub-expression across a multi-valued (list, set, etc...) expression. For instance,
the expression

JBoss Seam 1.3.0.A1 260

Expression language enhancements

#{ conpany. depart nent s}

might return a list of departments. If you only need a list of department names, your only option is to iterate
over thelist to retrieve the values. JBoss EL allows this with a projection expression.

#{ conpany. depart nent s. {d| d. nane}}

The subexpression is enclosed in braces. In this example, the expression d. nare is evaluated for each depart-
ment, using d as an aias to the department object. The result of this expression will be alist of String values.

Any valid expression can be used in an expression, so it would be perfectly valid to write the following, assum-
ing you had a use for the lengths of all the department names in a company.

#{conmpany. departnents. {d| d. si ze()}}

Projections can be nested. The following expression returns the last names of every employee in every depart-
ment.

#{ conpany. depart ment s. {d| d. enpl oyees. { enp| enp. | ast Nane}}}

Nested projections can be dightly tricky, however. The following expression looks like it returns alist of all the
employeesin all the departments.

#{ conpany. depart nent s. {d| d. enpl oyees}}

However, it actually returns a list containing a list of the employees for each individual department. To com-
bine the values, it is necessary to use adightly longer expression.

#{ conpany. depart nents. {d| d. enpl oyees. {e| e}}}

JBoss Seam 1.3.0.A1 261

Chapter 27. Testing Seam applications

Most Seam applications will need at least two kinds of automated tests: unit tests, which test a particular Seam
component in isolation, and scripted integration tests which exercise al Java layers of the application (that is,
everything except the view pages).

Both kinds of tests are very easy to write.

27.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing. And since Seam
emphasises the use of bijection for inter-component interactions and access to contextual objects, it's very easy
to test a Seam component outside of its normal runtime environment.

Consider the following Seam component:

@t at el ess
@scope(EVENT)
@Nane("register")
public class RegisterAction inplenents Register
{
private User user;
private EntityManager em

@n
public void setUser(User user) {
this.user = user;

}

@er si st enceCont ext

public voi d set Booki ngDat abase(EntityManager em {
this.em= em

}

public String register()
{
Li st existing = emcreateQuery("sel ect usernane from User where username=: usernane")
. set Paranet er ("usernane", user.getUsernane())
.getResul tList();
if (existing.size()==0)
{
em persi st (user);
return "success";
}

el se

{
}

return null;

}

We could write a TestNG test for this component as follows:

public class Regi sterActionTest

{

@est
public testRegisterAction()

{
EntityManager em = get EntityManager Factory().creat eEntityManager();

em get Transacti on() . begi n();

JBoss Seam 1.3.0.A1 262

Testing Seam applications

User gavin = new User();

gavi n. set Nane(" Gavi n Ki ng");
gavi n. set User Nanme(" lovt haf ew') ;
gavi n. set Password("secret");

Regi sterActi on acti on = new Regi sterAction();
action. set User (gavi n);
acti on. set Booki ngDat abase(emn ;

assert "success".equal s(action.register());

em get Transaction().comit();
em cl ose();

private EntityManager Factory enf;

public EntityManagerFactory get EntityManager Factory()
{

}

@onfi gurati on(beforeTest Cl ass=true)
public void init()
{

}

@onfiguration(afterTestCl ass=true)
public void destroy()

{
}

return enf;

enf = Persistence. createEntityManager Fact ory("myResourcelLocal EntityManager");

enf. close();

Seam components don't usually depend directly upon container infrastructure, so most unit testing as as easy as
that!

27.2. Integration testing Seam components

Integration testing is slightly more difficult. In this case, we can't eliminate the container infrastructure; indeed,
that is part of what is being tested! At the same time, we don't want to be forced to deploy our application to an
application server to run the automated tests. We need to be able to reproduce just enough of the container in-
frastructure inside our testing environment to be able to exercise the whole application, without hurting per-
formance too much.

The approach taken by Seam is to let you write tests that exercise your components while running inside a
pruned down container environment (Seam, together with the JBoss Embeddable EJB container).

public class RegisterTest extends SeanTest

{

@est
public void testRegi sterConmponent() throws Exception

{

new Conponent Test () {

protected void testConponents() throws Exception
{

set Val ue("#{user.usernane}", "lovthafew');

JBoss Seam 1.3.0.A1 263

Testing Seam applications

set Val ue("#{user.nane}", "Gavin King");

set Val ue("#{user. password}", "secret");

assert invokeMet hod("#{register.register}").equal s("success");
assert getVal ue("#{user.usernane}"). equal s("21lovt hafew');
assert getVal ue("#{user.nane}").equal s("Gavin King");

assert getVal ue("#{user.password}").equal s("secret");

}
}.run();

27.2.1. Using mocks in integration tests

Occasionally, we need to be able to replace the implementation of some Seam component that depends upon re-
sources which are not available in the integration test environment. For example, suppose we have some Seam
component which is afacade to some payment processing system:

@anme(" paynment Processor")
public class Paynent Processor {
publ i c bool ean processPaynment (Paynent paynent) { }

}

For integration tests, we can mock out this component as follows:

@\ane(" paynment Processor")
@ nst al | (pr ecedence=MOCK)
public class MbckPaynent Processor extends Paynent Processor {
public void processPaynent (Paynent paynent) {
return true;
}

Since the Mock precedence is higher than the default precedence of application components, Seam will install
the mock implementation whenever it isin the classpath. When deployed into production, the mock implement-
ation is absent, so the real component will be installed.

27.3. Integration testing Seam application user interactions

An even harder problem is emulating user interactions. A third problem is where to put our assertions. Some
test frameworks let us test the whole application by reproducing user interactions with the web browser. These
frameworks have their place, but they are not appropriate for use at development time.

<Iteral>SeamTest</Iteral>

lets you write scripted tests, in a simulated JSF environment. The role of a scripted test is to reproduce the in-
teraction between the view and the Seam components. In other words, you get to pretend you are the JSF im-
plementation!

This approach tests everything except the view.
Let's consider a JSP view for the component we unit tested above:

<htm >
<head>

JBoss Seam 1.3.0.A1 264

Testing Seam applications

<title>Regi ster New User</title>
</ head>
<body>
<f:view>
<h: f or m»
<t abl e border="0">
<tr>
<t d>User nane</t d>
<t d><h: i nput Text val ue="#{user.username}"/></td>
</tr>
<tr>
<t d>Real Nane</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h:i nput Secret val ue="#{user.password}"/></td>
</tr>
</t abl e>
<h: messages/ >
<h: commandButton type="subnit" val ue="Register" action="#{register.register}"/>
</ h: form
</f:view
</ body>
</htm >

We want to test the registration functionality of our application (the stuff that happens when the user clicks the
Register button). We'll reproduce the JSF request lifecycle in an automated TestNG test:

public class Regi sterTest extends SeanTest

{
@est
public void testRegister() throws Exception
{
new FacesRequest () {
@verride
protected void processValidations() throws Exception
{
val i dat eVal ue("#{user.usernane}", "lovthafew');
val i dat eVal ue("#{user.nane}", "Gavin King");
val i dat eval ue("#{user. password}", "secret");
assert l!isValidationFailure();
}
@verride
protected voi d updat eModel Val ues() throws Exception
{
set Val ue("#{user. usernane}", "lovthafew');
set Val ue("#{user.nane}", "Gavin King");
set Val ue("#{user. password}", "secret");
}
@verride
protected void i nvokeApplication()
{
assert invokeMet hod("#{register.register}").equal s("success");
}
@verride
protected void render Response()
{
assert getVal ue("#{user.usernane}"). equal s("21lovt hafew');
assert getVal ue("#{user.nane}").equal s("Gavin King");
assert getVal ue("#{user.password}").equal s("secret");
}

JBoss Seam 1.3.0.A1 265

Testing Seam applications

}.run();

Notice that we've extended SeanTest , which provides a Seam environment for our components, and written our
test script as an anonymous class that extends Seanfrest . FacesRequest , which provides an emulated JSF re-
quest lifecycle. (There is al'so a Seanrest . NonFacesRequest for testing GET requests.) We've written our code
in methods which are named for the various JSF phases, to emulate the calls that JSF would make to our com-
ponents. Then we've thrown in various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate more complex
cases. There are instructions for running these tests using Ant, or using the TestNG plugin for eclipse:

JBoss Seam 1.3.0.A1 266

Testing Seam applications

=

3 fnutline JUnitm o | QBY =8

IResults of running suite

Suites: 1/1 Tests: 1/1

Methods: 2/2

Passed: 2 B Failed: 0 8 Skipped: 0

% All Tests| o Failed Tests|
= He Registration (2/0/0/0)
=gl Register (2/0/0/0)
----- rel org.jboss.seam.example.numberguess.test. \umberGues
- org.jboss.seam.example.numberguess.test. NumberGues

< | 111

Failure Exception

7 v

JBoss Seam 1.3.0.A1

267

Chapter 28. Seam tools

28.1.]BPM designer and viewer

The |BPM designer and viewer will let you design and view in a nice way your business processes and your
pageflows. This convenient tool is part of JBoss Eclipse IDE and more details can be found in the jJBPM's doc-

umentation (http://docs.jboss.com/jbpm/v3/gpd/)

28.1.1. Business process designer

Thistool lets you design your own business process in a graphical way.

2 start
% State
B End

[}3 Fork

g]-o Jein

L:?J Decision
Mode

\" Task Made
1% Process State
3% Super State

Marques

—+ Transition

Diagram | Swimlanes | Design | Source

Wt <<Task Node>>
= process

G =<Start State==

wt <<Task Node==
= approval

approve
reject

shipped

] ==End States>
complete

28.1.2. Pageflow viewer

This tool let you design to some extend your pageflows and let you build graphical views of them so you can
easily share and compare ideas on how it should be designed.

JBoss Seam 1.3.0.A1

268

Seam tools

—
) start

L:?J Decision

Margues O ==Start State==
start

E FPage

— Transition
= =<=fages=>

BZ| ,.
=l displayGuess

guess false
islan Sl
lv'.?_l eblEb false L:?J ==lecision==
ERRINIFETEN evaluateRemainingGues
true true
= <<fage==> = ==fage=>
HE B

win lose

Diagrarm | Design | Source

28.2. CRUD-application generator

This chapter, will give you a short overview of the support for Seam that is available in the Hibernate Tools.
Hibernate Tools is a set of tools for working with Hibernate and related technologies, such as JBoss Seam and
EJB3. Thetools are available as a set of eclipse plugins and Ant tasks. Y ou can download the Hibernate Tools
from the JBoss Eclipse IDE or Hibernate Tools websites.

The specific support for Seam that is currently available is generation of a fully functional Seam based CRUD-
application. The CRUD-application can be generated based on your existing Hibernate mapping files or EJB3
annotated POJO's or even fully reverse engineered from your existing database schema.

The following sections is focused on the features required to understand for usage with Seam. The content is
derived from the the Hibernate Tools reference documentation. Thus if you need more detailed information
please refer to the Hibernate Tools documentation.

28.2.1. Creating a Hibernate configuration file

To be able to reverse engineer and generate code a hibernate.properties or hibernate.cfg.xml file is needed. The
Hibernate Tools provide awizard for generating the hibernate.cfg.xml fileif you do not already have such file.

Start the wizard by clicking "New Wizard" (Ctrl+N), select the Hibernate/Hibernate Configuration file
(cfg.xml) wizard and press "Next". After selecting the wanted location for the hibernate.cfg.xml file, you will
see the following page:

JBoss Seam 1.3.0.A1 269

Seam tools

¢ x
Hibernate Configuration File {cfg.xml) ‘ ’

This wizard creates a new configuratien file to use with Hibemate,

Container: Jhibernatetook-demo/src

File name: hibernate.cig.xmi

Session factory name: |

Database dialect: | HSQL |
Driver dass: | org.hsgidb.jdbcDriver -
Connection LRL: | jdbe:hsgidb:hsqk:/flocalhost -]
Default Schema: |

Default Catalog: |

Lisermarme: |sa

Password: |

[v Create a consoke configuration

=y

< Back Hext = Cancel

Tip: The contents in the combo boxes for the JIDBC driver class and JDBC URL change automatically, depend-
ing on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can be found in Hi-
bernate reference documentation.

Press "Finish" to create the configuration file, after optionaly creating a Console onfiguration, the hibern-
ate.cfg.xml will be automatically opened in an editor. The last option "Create Console Configuration™” is en-
abled by default and when enabled i will automatically use the hibernate.cfg.xml for the basis of a "Console
Configuration”

28.2.2. Creating a Hibernate Console configuration

A Console Configuration describes to the Hibernate plugin which configuration files should be used to config-
ure hibernate, including which classpath is needed to load the POJO's, JDBC drivers etc. It is required to make
usage of query prototyping, reverse engineering and code generation. Y ou can have multiple named console
configurations. Normally you would just need one per project, but more (or less) is definitly possible.

You create a console configuration by running the Console Configuration wizard, shown in the following
screenshot. The same wizard will also be used if you are coming from the hibernate.cfg.xml wizard and had en-
abled " Create Console Configuration”.

JBoss Seam 1.3.0.A1 270

Seam tools

f

X

Create Hibernate Console Configuration

This wizard allows you to create a configuration for Hibernate Console,

@
&>

Name: | hibernatetools-demo

Property fle: | Browse... |
Configuration fie: | Browse...|
Entity resoiver: | Browse...

[Enable hibernate ejb3/annotations (requires running eclipse with a Java 5 runtime)

Mapping files
Name Add.
REMovE
up

Classpath (onby add path for POIO and driver - No Hibernate jars!)
Hame

Add JARSDr...
Shibernatetools-demay/buid/ecipse
Jhibernatetoolks-demoyib/jdbc/hsqgldb.jar Add External JARS. .
Remove
Up
< 3 Drowm
........... ‘: BE"'"I" [Einish Cancel

The following table describes the relevant settings. The wizard can automatically detect default values for most
of these if you started the Wizard with the relevant java project selected

Table 28.1. Hibernate Console Configuration Parameters

Parameter Description Auto detected
value
Name The unique name of the configuration Name of the selec-
ted project

JBoss Seam 1.3.0.A1 271

Seam tools

Parameter Description Auto detected
value

Property file Path to a hibernate.propertiesfile First hibern-

ate.properties file
found in the selec-
ted project

Configuration file | Path to ahibernate.cfg.xml file First hibern-

ate.cfg.xml file
found in the selec-
ted project

Enable Hibernate Selecting this option enables usage of annotated classes. Not enabled

€jb3/annotations hbm.xml files are of course till possible to use too. This feature
requires running the Eclipse IDE with a JDK 5 runtime, other-
wise you will get classloading and/or version errors.

Mapping files List of additional mapping files that should be loaded. Note: A | If no hibern-
hibernate.cfg.xml can also contain mappings. Thus if these adu- ate.cfg.xml file is
plicated here, you will get "Duplicate mapping" errors when us- found, al hbm.xml
ing the consol e configuration. filesfound in the se-

lected project

Classpath The classpath for loading POJO and JDBC drivers. Do not add The default build

Hibernate core libraries or dependencies, they are already in-
cluded. If you get ClassNotFound errors then check this list for
possible missing or redundant directories/jars.

output directory and
any JARs with a
class implementing

javasgl.Driver in
the selected project
Clicking "Finish" creates the configuration and shows it in the "Hibernate Configurations' view
JBoss Seam 1.3.0.A1 272

Seam tools

= Hibernate Configu... X =0

=S8 hibernatetools-demo

[#, Configuration

- Database

=85 [YBLIC

+- [CUSTOMER

T CUSTOMERORDER
= LINEITEM
3 PRODUCT
3 SIMPLECUSTOMERORDER
=] SIMPLELINEITEM

+

+

+

+

+

28.2.3. Reverse engineering and code generation

A very simple "click-and-generate” reverse engineering and code generation facility is available. It is this facil-
ity that allows you to generate the skeleton for afull Seam CRUD application.

To start working with this process, start the "Hibernate Code Generation" which is available in the toolbar via
the Hibernate icon or viathe "Run/Hibernate Code Generation" menu item.

28.2.3.1. Code Generation Launcher

When you click on "Hibernate Code Generation™" the standard Eclipse launcher dialog will appear. In this dia-
log you can create, edit and delete named Hibernate code generation "launchers’.

avigate Search Project Run XML Wi

LRl | -F oo
Run As s
¥4 Hibernate Code Generation...... !
Lﬂrganize Favorites... - f{
] "http:/

B = TR 1

The dialog has the standard tabs "Refresh” and "Common" that can be used to configure which directories
should be automatically refreshed and various general settings launchers, such as saving them in a project for
sharing the launcher within a team.

JBoss Seam 1.3.0.A1 273

Seam tools

 Hibernate Code Generation... g|
Create, manage, and run configurations ‘
& [Exporters]: Al least one exporter option must be selected ’

Configurations: Name: | New_configuration

=- ¥4 Hibernate Code Generation

Fs New_configuration o i |q. Expnrters| 7S Refnsh| o Eﬂﬂmﬂﬂ|

Console configuralsgn: |hibernatetook-demo -

Output directory: | \hibernatetook-demalsrc Browse... |

[+ Reverse engineer from JDBC Connection

Package: | com.bz.model
reveng.xmi: I Setup...
reveng. strategy: | Browse... |

[+ Generate basic typed composite ids

s

Uise custom templates

Negy Delete | Apply | Reyert

|

The first time you create a code generation launcher you should give it a meaningfull name, otherwise the de-
fault prefix "New_Generation” will be used.

Note: The "At least one exporter option must be selected" is just a warning stating that for this launch to work
you heed to select an exporter on the Exporter tab. When an exporter has been selected the warning will disap-
pear.

On the "Main" tab you the following fields:

Table 28.2. Code generation "Main" tab fields

Field Description

Console Configuration The name of the console configuration which should be used when code generat-
ing.

Output directory Path to a directory into where all output will be written by default. Be aware that
existing fileswill be overwritten, so be sure to specify the correct directory.

Reverse engineer from If enabled the tools will reverse engineer the database available via the connec-
JDBC Connection tion information in the selected Hibernate Console Configuration and generate
code based on the database schema. If not enabled the code generation will just
be based on the mappings already specified in the Hibernate Console configura-
tion.

JBoss Seam 1.3.0.A1 274

Seam tools

Field

Package

reveng.xmi

reveng. strategy

Generate basic typed
composite ids

Description

The package name here is used as the default package name for any entities found
when reverse engineering.

Path to areveng.xml file. A reveng.xml file allows you to control certain aspects
of the reverse engineering. e.g. how jdbc types are mapped to hibernate types and
especially important which tables are included/excluded from the process. Click-
ing "setup” allows you to select an existing reveng.xml file or create a new one..

If reveng.xml does not provide enough customization you can provide your own
implementation of an ReverseEngineeringStrategy. The class need to be in the
claspath of the Console Configuration, otherwise you will get class not found ex-
ceptions.

This field should aways be enabled when generating the Seam CRUD applica
tion. A table that has a multi-colum primary key a <composite-id> mapping will
always be created. If this option is enabled and there are matching foreign-keys
each key column is still considered a 'basic' scalar (string, long, etc.) instead of a
reference to an entity. If you disable this option a <key-many-to-one> instead.
Note: a <many-to-one> property is still created, but is ssmply marked as non-
updatable and non-insertable.

Use custom templ ates

If enabled, the Template directory will be searched first when looking up the ve-
locity templates, allowing you to redefine how the individual templates process
the hibernate mapping model.

Template directory

28.2.3.2. Exporters

A path to adirectory with custom vel ocity templates.

The exporters tab is used to specify which type of code that should be generated. Each selection represents an
"Exporter” that are responsible for generating the code, hence the name.

JBoss Seam 1.3.0.A1

275

Seam tools

Hibernate Code Generation...

Create, manage, and run configurations ‘ ’

Select or configure a code generation

Confiqurations: Mame: lflew_l:unflgurarmn ---
= "4 Hibernate Code Generation
T New_configuration

* Main % Expurtersg i Refresh | [Common

[Generate domain code (.java)

r

r

[T Generate DAO code (.java)

[Generate mappings (hbm.xml)

| Generate hibernate configuration (hibernate.cfig.xml)
[Generate schema htmkdocumentation

— pelete | Apply | Revert |
Bun ; Close |

The following table describes in short the various exporters. The most relevant for Seam is of course the "JBoss
Seam Skeleton app".

Table 28.3. Code generation " Exporter"” tab fields

Field Description

Generate domain code Generates POJO's for all the persistent classes and components found in the given
Hibernate configuration.

JDK 1.5 constructs When enabled the POJO's will use JDK 1.5 constructs.

EJB3/ISR-220 annota- When enabled the POJO's will be annotated according to the EJB3/JSR-220 per-
tions sistency specification.

Generate DAO code Generates a set of DAO's for each entity found.

Generate Mappings Generate mapping (hbm.xml) files for each entity

Generate hibernate con- Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml uptodate
figuration file with any new found mapping files.

Generate schema html- Generates set of html pages that documents the database schema and some of the

JBoss Seam 1.3.0.A1 276

Seam tools

Field Description

documentation mappings.

Generate JBoss Seam Generates a complete JBoss Seam skeleton app. The generation will include an-
skeleton app (beta) notated POJO's, Seam controller beans and a JSP for the presentation layer. See
the generated readme.txt for how to useiit.

Note: this exporter generates a full application, including a build.xml thus you
will get the best results if you use an output directory which is the root of your
project.

28.2.3.3. Generating and using the code

When you have finished filling out the settings, simply press "Run" to start the generation of code. This might
take alittle while if you are reverse engineering from a database.

When the generation have finished you should now have a complete skeleton Seam application in the output

directory. In the output directory there is areadne. t xt file describing the steps needed to deploy and run the
example.

If you want to regenerate/update the skeleton code then simply run the code generation again by selecting the
"Hibernate Code Generation" in the toolbar or "Run" menu. Enjoy.

JBoss Seam 1.3.0.A1 277

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	Chapter 1. Seam Tutorial
	1.1. Try the examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the examples on Tomcat
	1.1.3. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The Seam component deployment descriptor: components.xml
	1.2.1.5. The web deployment description: web.xml
	1.2.1.6. The JSF configration: faces-config.xml
	1.2.1.7. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.8. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.9. The view: register.jsp and registered.jsp
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.jsp

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam UI control library
	1.6.5. The Seam Debug Page

	1.7. A complete application featuring Seam and jBPM: the DVD Store example
	1.8. A complete application featuring Seam workspace management: the Issue Tracker example
	1.9. An example of Seam with Hibernate: the Hibernate Booking example
	1.10. A RESTful Seam application: the Blog example
	1.10.1. Using "pull"-style MVC
	1.10.2. Bookmarkable search results page
	1.10.3. Using "push"-style MVC in a RESTful application

	Chapter 2. Getting started with Seam, using seam-gen
	2.1. Before you start
	2.2. Setting up a new Eclipse project
	2.3. Creating a new action
	2.4. Creating a form with an action
	2.5. Generating an application from an existing database
	2.6. Deploying the application as an EAR
	2.7. Seam and incremental hot deployment
	2.8. Using Seam with JBoss 4.0
	2.8.1. Install JBoss 4.0
	2.8.2. Install the JSF 1.2 RI

	Chapter 3. The contextual component model
	3.1. Seam contexts
	3.1.1. Stateless context
	3.1.2. Event context
	3.1.3. Page context
	3.1.4. Conversation context
	3.1.5. Session context
	3.1.6. Business process context
	3.1.7. Application context
	3.1.8. Context variables
	3.1.9. Context search priority
	3.1.10. Concurrency model

	3.2. Seam components
	3.2.1. Stateless session beans
	3.2.2. Stateful session beans
	3.2.3. Entity beans
	3.2.4. JavaBeans
	3.2.5. Message-driven beans
	3.2.6. Interception
	3.2.7. Component names
	3.2.8. Defining the component scope
	3.2.9. Components with multiple roles
	3.2.10. Built-in components

	3.3. Bijection
	3.4. Lifecycle methods
	3.5. Conditional installation
	3.6. Logging
	3.7. The Mutable interface and @ReadOnly
	3.8. Factory and manager components

	Chapter 4. Configuring Seam components
	4.1. Configuring components via property settings
	4.2. Configuring components via components.xml
	4.3. Fine-grained configuration files
	4.4. Configurable property types
	4.5. Using XML Namespaces

	Chapter 5. Events, interceptors and exception handling
	5.1. Seam events
	5.1.1. Page actions
	Page parameters
	Navigation
	Fine-grained files for definition of navigation, page actions and parameters

	5.1.2. Component-driven events
	5.1.3. Contextual events

	5.2. Seam interceptors
	5.3. Managing exceptions
	5.3.1. Exceptions and transactions
	5.3.2. Enabling Seam exception handling
	5.3.3. Using annotations for exception handling
	5.3.4. Using XML for exception handling

	Chapter 6. Conversations and workspace management
	6.1. Seam's conversation model
	6.2. Nested conversations
	6.3. Starting conversations with GET requests
	6.4. Using <s:link> and <s:button>
	6.5. Success messages
	6.6. Using an "explicit" conversation id
	6.7. Workspace management
	6.7.1. Workspace management and JSF navigation
	6.7.2. Workspace management and jPDL pageflow
	6.7.3. The conversation switcher
	6.7.4. The conversation list
	6.7.5. Breadcrumbs

	6.8. Conversational components and JSF component bindings

	Chapter 7. Pageflows and business processes
	7.1. Pageflow in Seam
	7.1.1. The two navigation models
	7.1.2. Seam and the back button

	7.2. Using jPDL pageflows
	7.2.1. Installing pageflows
	7.2.2. Starting pageflows
	7.2.3. Page nodes and transitions
	7.2.4. Controlling the flow
	7.2.5. Ending the flow

	7.3. Business process management in Seam
	7.4. Using jPDL business process definitions
	7.4.1. Installing process definitions
	7.4.2. Initializing actor ids
	7.4.3. Initiating a business process
	7.4.4. Task assignment
	7.4.5. Task lists
	7.4.6. Performing a task

	Chapter 8. Seam and Object/Relational Mapping
	8.1. Introduction
	8.2. Seam managed transactions
	8.2.1. Enabling Seam-managed transactions

	8.3. Seam-managed persistence contexts
	8.3.1. Using a Seam-managed persistence context with JPA
	8.3.2. Using a Seam-managed Hibernate session
	8.3.3. Seam-managed persistence contexts and atomic conversations

	8.4. Using the JPA "delegate"
	8.5. Using EL in EJB-QL/HQL
	8.6. Using Hibernate filters

	Chapter 9. JSF form validation in Seam
	Chapter 10. Groovy integration
	10.1. Groovy introduction
	10.2. Writing Seam applications in Groovy
	10.2.1. Writing Groovy components
	10.2.1.1. Entity
	10.2.1.2. Seam component

	10.2.2. seam-gen

	10.3. Deployment
	10.3.1. Deploying Groovy code
	10.3.2. Native .groovy file deployment at development time
	10.3.3. seam-gen

	Chapter 11. The Seam Application Framework
	11.1. Introduction
	11.2. Home objects
	11.3. Query objects
	11.4. Controller objects

	Chapter 12. Seam and JBoss Rules
	12.1. Installing rules
	12.2. Using rules from a Seam component
	12.3. Using rules from a jBPM process definition

	Chapter 13. Security
	13.1. Overview
	13.1.1. Which mode is right for my application?

	13.2. Requirements
	13.3. Disabling Security
	13.4. Authentication
	13.4.1. Configuration
	13.4.2. Writing an authentication method
	13.4.3. Writing a login form
	13.4.4. Simplified Configuration - Summary
	13.4.5. Handling Security Exceptions
	13.4.6. Login Redirection
	13.4.7. HTTP Authentication
	Writing a Digest Authenticator

	13.4.8. Advanced Authentication Features
	Using your container's JAAS configuration

	13.5. Error Messages
	13.6. Authorization
	13.6.1. Core concepts
	13.6.2. Securing components
	The @Restrict annotation
	Inline restrictions

	13.6.3. Security in the user interface
	13.6.4. Securing pages
	13.6.5. Securing Entities
	Entity security with JPA
	Entity security with Hibernate

	13.7. Writing Security Rules
	13.7.1. Permissions Overview
	13.7.2. Configuring a rules file
	13.7.3. Creating a security rules file
	Wildcard permission checks

	13.8. SSL Security
	13.9. Implementing a Captcha Test
	13.9.1. Configuring the Captcha Servlet
	13.9.2. Adding a Captcha to a page

	Chapter 14. Internationalization and themes
	14.1. Locales
	14.2. Labels
	14.2.1. Defining labels
	14.2.2. Displaying labels
	14.2.3. Faces messages

	14.3. Timezones
	14.4. Themes
	14.5. Persisting locale and theme preferences via cookies

	Chapter 15. Seam Text
	15.1. Basic fomatting
	15.2. Entering code and text with special characters
	15.3. Links
	15.4. Entering HTML

	Chapter 16. iText PDF generation
	16.1. Using PDF Support
	16.1.1. Creating a document
	16.1.2. Basic Text Elements
	16.1.3. Headers and Footers
	16.1.4. Chapters and Sections
	16.1.5. Lists
	16.1.6. Tables
	16.1.7. Document Constants
	16.1.7.1. Color Values
	16.1.7.2. Alignment Values

	16.1.8. Configuring iText

	16.2. Charting
	16.3. Bar codes
	16.4. Further documentation

	Chapter 17. Email
	17.1. Creating a message
	17.1.1. Attachments
	17.1.2. HTML/Text alternative part
	17.1.3. Multiple recipients
	17.1.4. Multiple messages
	17.1.5. Templating
	17.1.6. Internationalisation
	17.1.7. Other Headers

	17.2. Receiving emails
	17.3. Configuration
	17.3.1. mailSession
	17.3.1.1. JNDI lookup in JBoss AS
	17.3.1.2. Seam configured Session

	17.4. Meldware
	17.5. Tags

	Chapter 18. Asynchronicity and messaging
	18.1. Asynchronicity
	18.1.1. Asynchronous methods
	18.1.2. Asynchronous methods with the Quartz Dispatcher
	18.1.3. Asynchronous events

	18.2. Messaging in Seam
	18.2.1. Configuration
	18.2.2. Sending messages
	18.2.3. Receiving messages using a message-driven bean
	18.2.4. Receiving messages in the client

	Chapter 19. Caching
	19.1. Using JBossCache in Seam
	19.2. Page fragment caching

	Chapter 20. Remoting
	20.1. Configuration
	20.2. The "Seam" object
	20.2.1. A Hello World example
	20.2.2. Seam.Component
	Seam.Component.newInstance()
	Seam.Component.getInstance()
	Seam.Component.getComponentName()

	20.2.3. Seam.Remoting
	Seam.Remoting.createType()
	Seam.Remoting.getTypeName()

	20.3. Client Interfaces
	20.4. The Context
	20.4.1. Setting and reading the Conversation ID
	20.4.2. Remote calls within the current conversation scope

	20.5. Batch Requests
	20.6. Working with Data types
	20.6.1. Primitives / Basic Types
	String
	Number
	Boolean

	20.6.2. JavaBeans
	20.6.3. Dates and Times
	20.6.4. Enums
	20.6.5. Collections
	Bags
	Maps

	20.7. Debugging
	20.8. The Loading Message
	20.8.1. Changing the message
	20.8.2. Hiding the loading message
	20.8.3. A Custom Loading Indicator

	20.9. Controlling what data is returned
	20.9.1. Constraining normal fields
	20.9.2. Constraining Maps and Collections
	20.9.3. Constraining objects of a specific type
	20.9.4. Combining Constraints

	20.10. JMS Messaging
	20.10.1. Configuration
	20.10.2. Subscribing to a JMS Topic
	20.10.3. Unsubscribing from a Topic
	20.10.4. Tuning the Polling Process

	Chapter 21. Spring Framework integration
	21.1. Injecting Seam components into Spring beans
	21.2. Injecting Spring beans into Seam components
	21.3. Making a Spring bean into a Seam component
	21.4. Seam-scoped Spring beans
	21.5. Using a Seam Managed Persistence Context in Spring
	21.6. Spring Application Context as a Seam Component

	Chapter 22. Configuring Seam and packaging Seam applications
	22.1. Basic Seam configuration
	22.1.1. Integrating Seam with JSF and your servlet container
	22.1.2. Seam Resource Servlet
	22.1.3. Seam servlet filters
	Exception handling
	Conversation propagation with redirects
	Multipart form submissions
	Character encoding
	Ajax4jsf
	Context management for custom servlets
	Adding custom filters

	22.1.4. Integrating Seam with your EJB container
	22.1.5. Using facelets
	22.1.6. Don't forget!

	22.2. Configuring Seam in Java EE 5
	22.2.1. Packaging

	22.3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container
	22.3.1. Installing the Embeddable EJB3 container
	22.3.2. Configuring a datasource with the Embeddable EJB3 container
	22.3.3. Packaging

	22.4. Configuring Seam in J2EE
	22.4.1. Boostrapping Hibernate in Seam
	22.4.2. Boostrapping JPA in Seam
	22.4.3. Packaging

	22.5. Configuring Seam in Java SE, with the JBoss Microcontainer
	22.5.1. Using Hibernate and the JBoss Microcontainer
	22.5.2. Packaging

	22.6. Configuring jBPM in Seam
	22.6.1. Packaging

	22.7. Configuring Seam in a Portal
	22.8. Configuring SFSB and Session Timeouts in JBoss AS

	Chapter 23. Seam annotations
	23.1. Annotations for component definition
	23.2. Annotations for bijection
	23.3. Annotations for component lifecycle methods
	23.4. Annotations for context demarcation
	23.5. Annotations for transaction demarcation
	23.6. Annotations for exceptions
	23.7. Annotations for validation
	23.8. Annotations for Seam Remoting
	23.9. Annotations for Seam interceptors
	23.10. Annotations for asynchronicity
	23.11. Annotations for use with JSF
	23.11.1. Annotations for use with dataTable

	23.12. Meta-annotations for databinding
	23.13. Annotations for packaging
	23.14. Annotations for integrating with the servlet container

	Chapter 24. Built-in Seam components
	24.1. Context injection components
	24.2. Utility components
	24.3. Components for internationalization and themes
	24.4. Components for controlling conversations
	24.5. jBPM-related components
	24.6. Security-related components
	24.7. JMS-related components
	24.8. Mail-related components
	24.9. Infrastructural components
	24.10. Miscellaneous components
	24.11. Special components

	Chapter 25. Seam JSF controls
	Chapter 26. Expression language enhancements
	26.1. Parameterized Method Bindings
	26.1.1. Usage
	26.1.2. Limitations
	26.1.2.1. Incompatibility with JSP 2.1
	26.1.2.2. Calling a MethodExpression from Java code

	26.2. Parameterized Value Bindings
	26.3. Projection

	Chapter 27. Testing Seam applications
	27.1. Unit testing Seam components
	27.2. Integration testing Seam components
	27.2.1. Using mocks in integration tests

	27.3. Integration testing Seam application user interactions

	Chapter 28. Seam tools
	28.1. jBPM designer and viewer
	28.1.1. Business process designer
	28.1.2. Pageflow viewer

	28.2. CRUD-application generator
	28.2.1. Creating a Hibernate configuration file
	28.2.2. Creating a Hibernate Console configuration
	28.2.3. Reverse engineering and code generation
	28.2.3.1. Code Generation Launcher
	28.2.3.2. Exporters
	28.2.3.3. Generating and using the code

