Seam - Contextual Components

A Framework for
Enterprise Java

2.0.2.CR2

by Gavin King (Project Lead), Pete Muir, Norman Richards, Shane
Bryzak, Michael Yuan, Mike Youngstrom, Christian Bauer, Jay
Balunas, Dan Allen, Max Rydahl Andersen, and Emmanuel Bernard

edited by Samson Kittoli

and thanks to James Cobb (Graphic Design), Cheyenne
Weaver (Graphic Design), Mark Newton, and Steve Ebersole

INtrOdUCTION 10 JBOSS SEAIM ..eueiiiiiiieee e e e e e e e e et e et e et et et et et eaeeaaes XV

I @0 |] o 10) (=T (o RS T =T o XiX
ST g o B U (Y - | PR 1
1.1, Try the @XAmMPIES ..ot e 1
1.1.1. Running the examples 0n JBOSS AScccouiiiiiiiiiiii e 1
1.1.2. Running the examples 0N TOMCALvviiiiiiiiiiiee e 1
1.1.3. Running the example tESISoiiiiiiii e 2

1.2. Your first Seam application: the registration exampleccccooviiiiiniiiiiinee. 2
1.2.1. Understanding the COEoiiiiiiiiiiiii e 2
1.2.2. HOW 0t WOTKS .ot e e e 14

1.3. Clickable lists in Seam: the messages examplecccooeviiviiiiiiiii i, 15
1.3.1. Understanding the COUEcoiuuiiiiiiiiii e 15
1.3.2. HOW Bt WOTKS .ot e s 21

1.4. Seam and jBPM: the todo list @Xamplecooiviiiiiiiiiiiii e 21
1.4.1. Understanding the COUEoiiiiiiiiiiiiii e 22
I o o YA | A Yo PP 29

1.5. Seam pageflow: the numberguess examplecccccoiiiiiiiiii i, 29
1.5.1. Understanding the COUEcoouuiiiiiiiiiei e 30
1.5.2. HOW Bt WOTKS .ot e s 38

1.6. A complete Seam application: the Hotel Booking examplecccoccoiveiiiivinnenann. 38
700 O [11 o To [o 1T PPN 38
1.6.2. Overview of the booking example ..o 40
1.6.3. Understanding Seam CONVErSatioNScoeevuuieiinieriiieeiiieeiiiieeieeeaieeannns 40
1.6.4. The Seam Ul control iBraryccoovoiiiiiii e 49
1.6.5. The Seam Debug Pageccoiiiiiiiiii e 49

1.7. A complete application featuring Seam and jBPM: the DVD Store example 50
1.8. An example of Seam with Hibernate: the Hibernate Booking example 52
1.9. A RESTful Seam application: the Blog exampleccooveiiiiiiiiiiiniiiiieeeeenn, 53
1.9.1. Using "pull=style MVCcooiiiiiii i 53
1.9.2. Bookmarkable search resultS pagecccoooeeviviiieiiiiiinec e 55
1.9.3. Using "push"-style MVC in a RESTful applicationccooveviieennn. 58

2. Getting started with Seam, USING SEAM-gENuiiiiiiiiiieiiii e 63
D 1= (o] (=T oTU TS 7 T o 63
2.2. Setting up @ NeW EClPSE PrOJECT ...covuuiiiiii e 64
2.3. Creating @ NEW ACHIONiiii e e e e e e e e e e e e aanas 67
2.4. Creating a form with @n actionoooiiiiiiiiii e 68
2.5. Generating an application from an existing databasecccooeeiiiiiiiiien e, 69
2.6. Generating an application from existing JPA/EJB3 entitieScccoeevviviieeinnennnnn. 70
2.7. Deploying the application as an EARcccoiiiiiiiiiiie e 70
2.8. Seam and incremental hot deploymeNtcooiiiiiiiiiiii e 70
2.9. Using Seam With JBOSS 4.0ccuuiiiiiiiiiiici e e s 71
2.9.1. INStAll JBOSS 4.0 ..enniiiiieiiiee e e 71
2.9.2. Install the JSF 1.2 Rl cooouuiiiiii e 72

3. Getting started with Seam, using JB0OSS TOOISocoiiiiiiiiiiii e 73

Seam - Contextual Components

TN 1= (o] £ ST o T TS - T o A 73
3.2. Setting Up @ NEW SEAM PrOJECT ...cviiuiieiiiiii ettt 73
3.3. Creating @ NEW ACHIONiiiii e e e e e e e e e e e e aanas 89
3.4. Creating a form with @n acCtionooeiiiiiiiiiiii e 91
3.5. Generating an application from an existing databasecccooeviiiiiiinieneennn. 92
3.6. Seam and incremental hot deployment with JBOSS TOOIScccevviiiiiiiiineeiinnnnnn. 94
4. The contextual component MOlcooiiiiiiiiii e 95
4.1, SEAIM CONIEXES ...uieiiit ittt e e e et e e e e et e et e ea e et e et e et e et eeneenns 95
4. 1.1, StAtelESS CONIEXE ...uiiiiii e e e e eaanns 95
4.1.2. EVENT CONTEXE ..ottt et et e e e e e e e e e een 96
4.1.3. PAge CONIEXE ..ouiiiiiiii e e e e e e 96
4.1.4. ConVersation CONTEXTiiiuuiiiiieeii e e e e 96
4.1.5. SESSION CONMEXL ..oeiiitiieeiiiii ettt e e e e et e e et e e e et eeeaan s 97
4.1.6. BUSINESS PrOCESS CONMLEXL ...eiiiiiieiiiiiie et e ettt e e 97

20 AN o] o] [107 i o] g T o0] (=)« ST 97
4.1.8. Context variablesooouiiii e 97
4.1.9. Context SEArCh Prioritycouuiiiii e 98
4.1.10. COoNCUITENCY MOUEI ..ottt e 98

4.2, SEAM COMPONENTS ..uiiuiiiiie ettt e e e e e e e et e e et e e e aneaeaaanas 99
4.2.1. Stateless SeSSION DEANSoiiiiiiiii i 99
4.2.2. Stateful SESSION DEANSouuiiiiiiii i 99
4.2.3. ENLILY DEANS ... 100
4.2.4. JAVABRANSiiiiiiiii i 100
4.2.5. Message-drivVen DEANSccoouuii i 101
T 11 (=T o =Y o (T o PN 101
4.2.7. COMPONENT NAMES ...oiiiiiiiiieii ettt e e e e e e 102
4.2.8. Defining the COMPONENt SCOPEccovuiviiniiiiiiei e 103
4.2.9. Components with multiple rolescooooiiiiiii e 103
4.2.10. BUIlt-INn COMPONENES ...uuiiitiiiii e e e e e e e e aaeees 104

R T = 1] 1= Tod 1 o] I PSPPSR 104
4.4, Lifecycle MEtNOASc.uiiiiii e 107
4.5. Conditional INStallationoiiiiii e 108
G T o T o |1 o PPt 109
4.7. The Mut abl e interface and @ReadOnl Yooveuiiiiiiiii e 110
4.8. Factory and manager COMPONENTSccuuuiiiinieiiieiiieeiee et e e et e e e e e eaaaens 113
5. Configuring Seam COMPONENTSoiiiiiiiiiiii et 117
5.1. Configuring components via property Settingsccovevviieiiiiiiiiieei e, 117
5.2. Configuring components via component S. XMoiiiiiiiiiiiiiiii e 117
5.3. Fine-grained configuration filescccooiiiiiii i, 121
5.4. Configurable Property tYPES ... 122
5.5. USING XML NAMESPACES ...ccvuieiiiniiiineeiiieeie e et eeataeeete e st ae st e e e e estnae et eeaneeaes 123
6. Events, interceptors and exception handlingcooiiiiiiii 129
6.1, SEAM BVENLS ...ttt ettt et 129
6.2. PAJE GCHONS ...eeitiiiiiii et 130

(O B = T [o T= T = 11 0[] (= T PP 131

6.3.1. Mapping request parameters to the modelccooviiiiiiiiiiiiiieen. 131

6.4. Propagating requeSst Parametersuiieiuuieeiiieieiiee e ee e e e e e e e e e eaneens 131
6.5. Conversion and Validationco.ioiiioiiiie e 132
oI N F= AV o = L4 o o N 133
6.7. Fine-grained files for definition of navigation, page actions and parameters 137
6.8. COMPONEN-ArIVEN EVENLSccviiiiiiieiie e e e e e e e e e e e e e e e ees 137
6.9. CoNLEXIUAL BVENTS ..ot e e e e e e e 139
6.10. SEAM INLEICEPIOIS ..vuiiiii et e e e e e e e e e e e e et e et e e e eeeas 141
6.11. Managing EXCEPLIONScceeuuueiiiii ettt ettt e e et e e e e e e e e e eanans 143
6.11.1. Exceptions and tranSactionsccoceuieiiiiiiiiieeiii e e 143
6.11.2. Enabling Seam exception handlingcooooiiiiiiiniii e, 144
6.11.3. Using annotations for exception handlingcccoccoviiiiiiiiiiiieeeis 144
6.11.4. Using XML for exception handlingocoouiiiiiiiiiiiiiii e, 145
6.11.5. Some COMMON EXCEPLIONSuiiuuiiiiieiii e e e e e e e e e eaaeees 147

7. Conversations and workspace managementc.oiveiiiiiieieiiiii e 149
7.1. Seam's CONVErsation MOE!uviiiiiiiiiiiii e 149
7.2. NeSted CONVEISALIONScieeieiiiieii et e e e e e e e e e e e e eean e 152
7.3. Starting conversations with GET reqUEeSstScccouiiiiiiiiiiiiiiiii e 152
7.4.Using <s: 1ink>and <S: DUt ON> .o 154
7.5, SUCCESS IMESSATERS vuituitnitneinttntietetetetae et ae ettt e e et te e aneenans 155
7.6. Natural conversation idSoiiiiiiiiii e 156
7.7. Creating a natural CONVEISAtIONiiiiiieiiii e e e e e e e eaens 157
7.8. Redirecting to @ natural CONVErSAtioNovvviiiiiiiiiiiiieeeii e 158
7.9. WOrkspace ManagEmMENTiiiuuieiiiieiii et e e e e e e e e e e e e e e et e et e e e e eaenas 159
7.9.1. Workspace management and JSF navigationccccooeeieiiniieineeeinnns 159
7.9.2. Workspace management and jPDL pageflowccoooviiiiiiiiiiiicnnennn, 160
7.9.3. The conversation SWItChETcoiiiiiiiii e 160
7.9.4. The conversation liStc.uiiiiiiiiiiie e e e 161
7.9.5. BreadCrumbs ... oo 162
7.10. Conversational components and JSF component bindingsccoovevveennnnn. 162
7.11. Concurrent calls to conversational COMPONENTScooeviviiieiiiiiiieeiiiieeeeiinen 163
00 R T g = (o T A - P 165

8. Pageflows and DUSINESS PrOCESSES ...ooiuiiiiiiii e 167
8.1. Pageflow in SEaMoiii i 167
8.1.1. The two navigation MOdelSc.uiiiiiiiiiiii e 167
8.1.2. Seam and the back button ... 171

8.2. USINg JPDL PAgEflOWSouiiiiiiiiieii e 172
8.2.1. Installing pageflowscociuiiiiii i 172
8.2.2. Starting pageflows 173
8.2.3. Page nodes and tranSitioNSccocvuiiiiiiiiiiii e 174
8.2.4. Controlling the fIOWcouuuiiiii e 175
8.2.5. ENding the flOWiiiiii i 175
8.2.6. Pageflow COMPOSILIONiiiiiiiiiiii e 176

Seam - Contextual Components

8.3. Business process management in SEaMcovvuieiiiieeiiieeiii e e e 176

8.4. Using jPDL business process definitionsocoiiiiiiiiiiiiiiiici e 177
8.4.1. Installing process definitioNsccccoviviiiiiiiiii e 177

8.4.2. INitializing @CTOr QdScevvuieiiiii e 178

8.4.3. Initiating a bUSINESS PrOCESSccvvuiiiiieiiieei e e e 178

8.4.4. TaSK @SSIGNMENTcoouiiiiiiiii ettt eeeaes 179

8.4.5. TASK lISIS it 179

8.4.6. Performing @ taSKc.uuiiiiiiiii e 180

9. Seam and Object/Relational Mappingcocouieiiiiiiii e 183
LS TR0 I 1o o To 11 o3 1T o I PP 183

9.2. Seam managed tranSACIONSccuuiiiiiieiiiiee e e e e e 184
9.2.1. Disabling Seam-managed transactionsccoeevvviiiieiiiiineeeeiiineeeeiinnnn, 185

9.2.2. Configuring a Seam transaction Managerc.ccvveveiieeerieeiiiieeieeeaneeenn 185

9.2.3. Transaction SyNChronNizationcoocieuiiiiiiiiinei e 186

9.3. Seam-managed PersiStENCE CONEXLScvevuuiiiiieiiiieeii e e e e e e e 186
9.3.1. Using a Seam-managed persistence context with JPAccccoci. 187

9.3.2. Using a Seam-managed Hibernate Sessionc.cccovvviiiiiiiiciiineeinneens 187

9.3.3. Seam-managed persistence contexts and atomic conversations 188

9.4. Using the JPA "delegate”ccooiiiiiiiiii e 190

9.5. Using EL in EIB-QL/HQL ...coiiiiiiiiii et e e e et e e eaia e e e 191

9.6. Using Hibernate filterscccouiiiiiiii e 191

10. JSF form validation iN SEAIMoiiiiiiii e 193
i T o To XY A YA Y (=T | = L o] o I 199
11.2. GrooVy INFOAUCTIONiiiiiiee it 199
11.2. Writing Seam applications iN GrOOVYcocevuieiiiiiiiiiieiii e ee e e e e e 199
11.2.1. Writing GrooVY COMPONENTSuuiiiiiiieieiiieeeeiiin e eeni e e et eeene e eenanns 199

10.2.2, SEAM GBI ettt 201

11.3. DEPIOYMENT ...ttt ettt e e e eaaans 201
11.3.1. Deploying GrooVY COUEccuuiiiiiiiiiiieiii et e e e e e e 202

11.3.2. Native .groovy file deployment at development timeccccceevevennnn. 202

103,38, SBAIM -GN ittt 202

12. The Seam Application FrameWork ... 203
2 O 111 o T [o 1o o I PP 203
12.2. HOME ODJECTS ...ttt ettt ettt e e e et e aeees 205
R T @ V1Y oY Ao oY= ot N 210
12.4. Controller ODJECLSn i 213

13. Seam and JBOSS RUIESiiiiiiiiiiiii e e e e e 215
13.2. INSLAllING TUIES ..ot 215
13.2. Using rules from a Seam COMPONENTuiiiiiiiiiieiiie e e e e e e e e 216
13.3. Using rules from a jBPM process definitioncccooviiiiiiiiiiiiinieiece, 217
Y- o] U1 1 Y/ 221
I @ V=T V1= PSR 221
14.1.1. Which mode is right for my application?ccccccoiiiiiiiiiiiiccinee e, 221

14.2. REQUINEIMENES ...iitiieiiiii ettt ettt ettt ettt e et e et et e e e e et e e e eate e e e enbn e eeenes 221

vi

I B B T 1T o] [T To TS =T o [| N 222
I N 0 1 1= =i o] o P 222
14.4.1. ConfiQUIAtioNiiiieee e 222
14.4.2. Writing an authentication methodooooiiiiiii e, 223
14.4.3. Writing a 10gin fOrm ... 225
14.4.4. Simplified Configuration - SUMMATIYcoveiiiiiiiiiiii e 226
14.4.5. Handling Security EXCEPLIONSccvvviiiiiieiiii e e e e e e 226
14.4.6. LOQIN REINECHIONciiiiiieeiii e 227
14.4.7. HTTP AUtRENLICAtION ...uiiiiiiiii e 228
14.4.8. Advanced Authentication FEaturescooveuiviiiiiiiiiiiiii e 229
T4.5. EITON MESSAGES ..ivuiiitiiiiitiiiiii ettt ettt et et e et e et e et e e e eneeans 229
I G A 01 oo = 1 o] o R 230
T14.6.1. COIE CONCEPLS ouiiniitiiii ittt e e et e e e e en 230
14.6.2. SECUING COMPONENTS ...coutuiiiiii ettt et e e et e e e e e e e eaeans 230
14.6.3. Security in the user INtErfacecoovvvii i 232
14.6.4. SECUIMNG PAGES ..eevrniieitn i etieii ettt e et ettt e e e et e e e b e eeba e e ennan s 233
14.6.5. SeCUNNG ENLILIESuiiiiicii e e 234
14.7. Writing Security RUIES ... 237
14.7.1. PErmiSSIONS OVEIVIEWiiiuiiieiiiiiiieteiia e e et e e et e et e e et e e e eana s 237
14.7.2. Configuring @ rules file ..o 237
14.7.3. Creating a security rules filecoooiiiiiiiii e 238
TA.8. SSL SECUMLY .vuueitiii ettt ettt e e et e et e e e et eeeba s 240
14,9, CAP T CHA e 241
14.9.1. Configuring the CAPTCHA ServIetcoiviiiiiiiiiiii e 241
14.9.2. Adding a CAPTCHA t0 @ fOrMcoviiiiii e 242
14.9.3. Customising the CAPTCHA algorithmccoiiiiiiiiiiiieees 242
14.10. SECUNMLY EVENS ...iiiiiiiiiiei et e e e e e e e e e e e 243
I T 1] PP 243
14.12. Extending the Identity COMPONENLviiiiiiiii i 244
15. Internationalization and themes ... 247
15,0, LOCAIES ..ovtneeeiii et 247
T2 I o 1= PP 248
15.2.1. Defining 1abelscoouiiiiii e 248
15.2.2. Displaying 1abels ... 249
15.2.3. FACES MESSAGES .uituiiniiniineie e e et e e e e a e e e enns 250
BT T I 4 1= .0 1= P 250
L 30 S I 1= T T PSSP 250
15.5. Persisting locale and theme preferences via cookiescccooeiveiiiiiiieiinnnnnn. 252
ST =T- 1 B =) A PP TPTPPRPRT 253
16.1. BASIC FOMALIING ...vuuieeiiiiieeeit e e 253
16.2. Entering code and text with special charactersccooooiiiiiiiiii i, 255
G R IR 2P 256
G o1 (=T o N I Y PP 257
17. ITeXt PDF QENEIATIONuiiiiii ettt ettt e e et e e e e eneas 259

Vii

Seam - Contextual Components

A I U =TT] YU o] oo o 259
17.1.1. Creating @ AOCUMENTcouuuiiiiiiii ettt e eeaans 259
17.1.2. Basic Text EIEMENTSooiiiiiiiiiiiii e 260
17.1.3. Headers and FOOLEISooouiiiiieiii et 265
17.1.4. Chapters and SECHONSoiiiiiiiiiiee e 266
0 T T I PPN 267
17.0.6. TADIES ..ooeiiie e 268
17.1.7. DOCUMENT CONSLANTS ...ceuieiiiteit et e e e e e e aaas 271
17.1.8. Configuring iTEXE ..covuiiii e 271

B ©1 o= 15 110 Vo PO TOP PR 272

R C T =TT oo To =SSP 280

17.4. Rendering SWiNg/AWT COMPONENTSccovuiiiiiiiiiieiiiiie et 281

17.5. Further doCUMENTALIONuuuiiiiiii et e et eeeeaa e eeees 282

ST o 1T 1 PP 283

18.1. Creating @ MESSATE ...ccuueiinieiiiieeii e ettt et e e e e e e e e e e st e et e e et e est e e et eaaneenen 283
18.1.1. AACHMENTS ... 284
18.1.2. HTML/Text alternative Partcccoveveiiiiiiiiiiii e 286
18.1.3. MUItIPIE TECIPIENIS ...t 286
18.1.4. MUIIPIE MESSAGES ...uvviiieii e e a e aeas 286
18.1.5. TEMPIALING evvuieeeie et 286
18.1.6. InternationaliSationoiieiiiiiiiiei e 287
18.1.7. Other HEAEBIS ... e e 288

18.2. RECEIVING EMAIIS ...uuiiiiiiii e e e e e e e 288

18.3. CONFIGUIALION ..ottt et et e e s 289
18.3.1. MBI | SESST ON e 289

18.4. MEIAWAIE ...t e e e et e e e e eenas 290

RS 70 TR 1= T L PP 291

19. AsynchronicCity and MESSAGINGcieuuuiiiiii e 295

S R N Y Tod o o] o 1o Y/ 295
19.1.1. Asynchronous mMethodsSccouuiiiiiiiiiiiiii e 296
19.1.2. Asynchronous methods with the Quartz Dispatcherc..cccevevnnnien 299
19.1.3. ASYNCRIONOUS EVENTScceitiiiiiiiiieiiiii et 302

19.2. MESSAQING IN SEAIM ...ouuiiiiiiiii e e e e e e e e e e e e e aanas 302
19.2.1. CONFIQUIALIONceeetiieeiii et 302
19.2.2. SENAING MESSAGES ...evvneiiiiieitee it e e e e e e e e e e e e e e et e e e ernes 302
19.2.3. Receiving messages using a message-driven beancccceeveeeennnnn. 303
19.2.4. Receiving messages inthe clientc.occoiiiiiiiiiie e, 303

20. CACRING it e 305
20.1. Using JBOSSCAChe iN SEAIMcovuiiiiiiiiiiieei et e e e e e 306
20.2. Page fragment CaChINGiiiiiiiiiiiii e 307

21, WED SBIVICES uuiiiiiiii ettt e e ettt e e ettt e e e et e e e ea e e ear e aae 309

21.1. Configuration and Packagingooeieiuiiiiiiiiiieii e 309

21.2. Conversational Webh SEervVICESoovuuuiiiiiiiiiis e 309
21.2.1. A Recommended SIrategyocoeuuuiiiemiieeiiiiie et 310

viii

21.3. AN eXample WED SEIVICEuiiiiiiiiie et 311

22, REIMOLING ittt ettt et et et e a e 313
b7 W O T 1 = 1o) o [313
22.2. The "SEaM" ODJECT ..uuniiiii e 314

22.2.1. A Hello World @Xampleooiiiiiiiiii e e 314
22.2.2. SAM.COMPONENT ..eiiiiiit ettt eee s 316
22.2.3. SEAM.REMOLING ..ovvuiiiiieiiiiee e e e e e e e e e e e e e eanaees 318
22.3. Evaluating EL EXPreSSIONScccuuuiiiiiiiiaiiiii et ettt et e e e eenees 318
22.4. CHENt INTEITACES ...iiiiiiii e e aaens 319
22.5. ThE CONEXL ...eiiiieeei ettt e e e et e e e e e et e e e ean e eeen 320
22.5.1. Setting and reading the Conversation IDc.cccoiviiiiieiiiieiin e, 320
22.5.2. Remote calls within the current conversation SCopecccevviverennnnn. 320
22.6. BAtCh REQUESES ...uuiiiiiii e e e e e e e e e e e e e e e eaen 320
22.7. Working With Data tYPeScovuniiiiiiiiiee it 321
22.7.1. Primitives / BASIC TYPES ..cevuuiiiiiieii e et e et e e e et e e e e et e e eeaen 321
22.7.2. JAVABEANS .. .o 321
22.7.3. DAteS aNd TIMES ..uuuiiiiiiieiiiite et e e et e e aa e 322
22.7. 4. ENUIMS L. ettt e e eans 322
22.7.5. COlECHONS . .eevtiieeeiii ettt e e e et eeanens 323
22.8. DEDUGGING ..ttt 323
22.9. The Loading MESSAUEuiiuuieiiiietiie et ettt et e e e e e e e e e e et e e e e et e eaaaees 324
22.9.1. Changing the MESSATEccuuuiiiiiiiieiiii et 324
22.9.2. Hiding the 10ading MESSAJEiivviiiiiiieiie e e e 324
22.9.3. A Custom Loading INAiCAtOrcccuuuiiiiiiiieiii e 324
22.10. Controlling what data is returnedcooveviiiiiiiiiiie e 324
22.10.1. Constraining normal fieldsoiiiiiiii e 325
22.10.2. Constraining Maps and ColleCtioNSccccviveiiiieiii e 326
22.10.3. Constraining objects of a Specific typecoouviviiiiiiiiiiie e, 326
22.10.4. Combining CONSIIAINESuuiiiiiiiiieeie e e e 326
22,10, IMS MESSAGING -.eertneetitin ettt ettt e et ettt e et e e et e e 327
22.11.1. CoNfIQUIALIONuieiieii e e e e e 327
22.11.2. Subscribing t0 @ JMS TOPIC ...cevvvunieiiiiiieee it 327
22.11.3. Unsubscribing from @ TOPICuvviiniiiiiiciie e 327
22.11.4. Tuning the PolliNg PrOCESScccuuiiiiiiiiiie et 328

23. Seam and the Google Web TOOIKIitccocoeuiiiiiiii e 329
P B B O] o110 [] 7= 11T] o PP PRSPPI 329
23.2. Preparing your COMPONENTiiiieeiiiieiii e e e e e e e e e e e et e e e e eanas 329
23.3. Hooking up a GWT widget to the Seam COmMpPONENtcoveeviviieeiiiiineeeeiinnnn. 330
234, GWT AN TaAIgOES vttt e e e e e e e e e 332

24. Spring Framework iNtegration ... 335
24.1. Injecting Seam components iNto SPring beansccccccceeveviieviii i 335
24.2. Injecting Spring beans into Seam COMPONENESc.uiiiiiiiiiieiiiiineeeei e 337
24.3. Making a Spring bean into a Seam componentcooveviiieiiii i 337
24.4. Seam-scoped Spring DEaNS ..o 338

Seam - Contextual Components

24.5. Using Spring PlatformTransactionManagementc.coevevviieiinieeiiieciineeiieens 339
24.6. Using a Seam Managed Persistence Context in SPringcccoovevveviiieeeiiinnenens 340
24.7. Using a Seam Managed Hibernate Session in SPringc..ccoevevvieeiiiieeiieeennnn, 342
24.8. Spring Application Context as a Seam COMPONENToceevvuiiiiiiiiiiieiiineeeennn. 342
24.9. Using a Spring TaskExecutor for @ASYNChronousSccooevvveiiiniiiiiieeieeennnn, 343
25. HIDernate SEarCh ... e 345
b5 T I 1 o o (U T 1 o] o R PP 345
25.2. CONFIQUIALION ..tiiiiiii ettt e et e e 345
25,3, U S A0 ittt 347
26. Configuring Seam and packaging Seam applicationscc.c.occviiieiiiiinieiiiiinneeenns 351
26.1. Basic Seam Configurationccccouiiiiiiiiiii e e e e 351
26.1.1. Integrating Seam with JSF and your servlet containercc......... 351
26.1.2. USING TACEIELS .. ceviiiiiici e 352
26.1.3. Seam ReSOUICE SEIVIETc.uiiiiiiii e 352
26.1.4. Seam servlet filters ..o 353
26.1.5. Integrating Seam with your EJB containerccccooevvviiieiiiiinnenininnnnn. 357
26.1.6. DON't fOrgEt! oo 358
26.2. Using Alternate JPA ProVIOEIScoouiuiiiiiiiiieeeei et 358
26.3. Configuring Seam in JaVA EE 5 ..o, 359
26.3.1. PACKAGING .. eeiiiiieiiii e 359
26.4. Configuring Seam iN J2EEoiiiiiiiii e 361
26.4.1. Boostrapping Hibernate in Seam ..o 362
26.4.2. Boostrapping JPA iN SEAMccivviiiiiieiii e e 362
26.4.3. PACKAGING ... ceiiiiieiiii e e 362
26.5. Configuring Seam in Java SE, without JBoss Embeddedccoeeeiinnnis 363
26.6. Configuring Seam in Java SE, with JBoss Embeddedcccccoveiiiiiiiiiinnnnnn. 364
26.6.1. Installing Embedded JBOSScocceuiiiiiiiiii i 364
26.6.2. PACKAGING ... ciiiiiieiiii e e 365
26.7. Configuring [BPM N SEAIMciiiiiiiiici et e e 366
26.7.0. PACKAGING ... eeiitiieiiiii e e 367
26.8. Configuring SFSB and Session Timeouts in JBOSS AScoovvvieviiiieiiieeeieee, 368
26.9. Running Seam in @ POrtIetoooiiiiiiii e 369
27. SeamM ANNOTALIONS ..uuiiiiiii e e e et e e e et 371
27.1. Annotations for component definitionccoooiiiiiiii 371
27.2. Annotations for DiJECHIONo.viiiiii e 374
27.3. Annotations for component lifecycle methodsccviiiiiiiiiiiiii s 378
27.4. Annotations for context demarCationooeuuiiieriiineeieiiie e 379
27.5. Annotations for use with Seam JavaBean components in a J2EE environment... 383
27.6. ANNOtations fOr EXCEPLIONSvuiiiiii i e e e e e s 384
27.7. Annotations for Seam RemMOLNGc.uuiiiiiiiiieiii e 384
27.8. Annotations for Seam INtErCEPLONSiiviiiiii e e 385
27.9. Annotations for asynChroniCityocoeuuiiiiiiiiii e 385
27.10. Annotations for uUse WIth JSFcoouiiiiiiii e 386
27.10.1. Annotations for use with dat aTabl €ccveuiiiiiiiiiiiiii e 387

27.11. Meta-annotations for databindingcoooeiiiiiiiiii i 388

27.12. ANNnotations for PACKAGINGuvuiiiiiie i 388
27.13. Annotations for integrating with the servlet containerccc.cccoeveviieenne. 389

28. BUIlt-iN SEAM COMPONENTS ...uiiiiiiii it e eenens 391
28.1. Context iNJection COMPONENESiiiieiiiieei e e e e e e e e e e aanas 391
28.2. ULty COMPONENTSeiiiiiiiieeet et e e e e e 391
28.3. Components for internationalization and themesccooveviiiiiiiiie e, 393
28.4. Components for controlling CONVErsationsccccivieiiiiiineiiiiiieeei e 394
28.5. [BPM-related COMPONENLScciviiiiiiieii e e e e e e e e eas 395
28.6. Security-related COMPONENTSociiiuiieiiiie e 397
28.7. IMS-related COMPONENLSuiiiiiieiii e e e e e e e e e e e e e e e eanees 397
28.8. Mail-related COMPONENTSuiiiiiiiieiii et 398
28.9. Infrastructural COMPONENLSoiiuiiiiiii i e e e aans 398
28.10. Miscellaneous COMPONENTSiiirruneieiii et e ettt e e e e 401
28.11. Special COMPONENLScivuiiiii i e e e e e e e e ean s 401

29. SEAM JSF CONTIOIS i e e e e e e eanns 405
D24 T I = o 1= PR 405
29.1.1. Navigation CONMIOISuiiiiiiiieiiii e e 405

29.1.2. Converters and Validatorsccooiieiiiiiiiiiiieeeeeeeee e 408

29.1.3. FOIMALING ..eeeetiieiiii e e e e e e e e eeaens 411

29.1.4. SEAM TEXLE ..uviiiiiiiii i 414

29.1.5. DIOPUOWNSeiitieeeitti ettt ettt e e et e e et e e et e e e eab e e e enbaneaaees 415

20.0.6. OLNET ...t 416

A I A g g To] =1 1 o] o 1= PP 420

30. JBOSS EL ittt 423
30.1. Parameterized EXPreSSIONScciiiiiiiiiiiiiiieieiie e 423
B0, L. L USBOE couiiiiiiiiiii et 423

30.1.2. Limitations and HiNtSoooeiiiiiii e 424

30.2. PrOJECHON ouiiiieii e 425

31. Testing Seam apPliCAIONS ... e 427
31.1. Unit testing Seam COMPONENLSuueiernieiiiieiiieeeiie e e e e e e e e e e e e e aeeaes 427
31.2. Integration testing Seam COMPONENTSeiieriiieiiiiee e 428
31.2.1. Using mocks in integration teStSccvevuiiiviiieeii e 429

31.3. Integration testing Seam application user interactionsccccceveevevineeiennnnnn. 430
31 IR 5 I @) o U =1 1o T 434

31.3.2. Using SeamTest with another test frameworkccccooveiiiiinieiennnnnn. 434

31.3.3. Integration Testing with Mock Dataccocoeieiiiiiiiiiecie e, 435

31.3.4. Integration Testing Seam Maiilcooiiiiiiiiiiiiii 436

32, SEAM LT0OIS ..ttt 439
32.1. |BPM deSigner @nd VIEWETuiiiiiiiiieiiii ettt 439
32.1.1. BUSINESS ProCeSS UESIONENucvirniiiiieeiieeei et e e e e e e e e e e e ean s 439

32.1.2. PAgEflOW VIBWET ...ttt 439

33..SeaM 0N OCAT ..o 441
33.1. Installation and operation Of OCA4Jcoouuiiiiiiiiiieiei e 441

Xi

Seam - Contextual Components

33.2. The j ee5/ booki NG EXAMPIE ..vuiiii e e e 442
33.2.1. Booking Example Dependenciesoovevieuiiieieiiiiieeeii e 442
33.2.2. Configuration file Changesccccoiiiiii i 444
33.2.3. Building the j ee5/ booki ng examplecccooiiiiiiiiiiiiii e 444

33.3. Deploying the Seam application t0 OCA4Jccoiiviiiiiiiieie e 445

33.4. Deploying an application created using seam gen t0 OC4Jc.occvvviiieevinnnnnn. 446
33.4.1. Generating a basic seam gen applicationccocccoveiiiiiiiiiiieeiis 447
33.4.2. Changes needed for deployment t0 OC4Jcoveiiiiiiiiiiiiinieiiiineeeenen 449
33.4.3. Building and deploying the seam-gen'd application to OC4J 454
33.4.4. Extending example with reverse engineered CRUD and Drools 455

GG T T 101 1o TR o TP 457

34. Seam 0N BEA'S WEDIOGIC ...oiiiiiiiiiiii e 459

34.1. Installation and operation of WebIlogiCcooviiiiiiiiiiii e 459
34.1.1. InStalliNg 10.3.TP ..oeiiiiiiiiiiiiei e e et e eeeeeees 459
34.1.2. Creating your WeblogiC dOmaincoeevuieiiiiieiiieeiii e 460
34.1.3. How to Start/Stop/Access Your dOmainccoevevuiieiiiiinieiiiineeeeiiee. 461

34.2. The j ee5/ booki NG EXAMPIE ...uiiii e e e 462
34.2.1. EJB Blockers with WebIlogiCcoooiiiiiiiiii e 462
34.2.2. The j ee5/ booki Ng €XamMPIEcoviiiiiiieii e 463

34.3. The j pa booking example ... 466
34.3.1. Building and deploying j pa booking examplecccoeeviiiiiiieeinneenn, 466
34.3.2. What's different with WeblogiC 10.Xcccuuiiiiiiiiiiiiiiiieeiei e 467

34.4. Deploying an application created using seam gen on Weblogic 10.X 469
34.4.1. RUNNING SEAM gEN SEIUD .evvuuiiiiii et e et e e et eeeani e 469
34.4.2. What to change for Weblogic 10.Xcccoviiiiiieiiiiiiieee e 471
34.4.3. Building and Deploying your applicationcccoooeviiiiiiiiiiiiineeiennnnn. 474

35. Seam 0N IBM'S WEDBSPREreoovii i 475

35.1. Websphere environment and deployment informationcccooevviiiiiniiennnnn. 475
35.1.1. Installation versions and tiPsc.oveviiieiiiiiiii e 475
35.1.2. Required CUSIOM PrOPEITIESccvvuiiiiiiiieeiiii ettt e e 476

35.2. The j ee5/ booki NG EXAMPIE ..uiiiii e e 476
35.2.1. Configuration file Changescooooiiiiiiiiiiii e 476
35.2.2. Building the j ee5/ booki ng eXampleccccoiveiiiiiiiiiiiiieee e, 480
35.2.3. Deploying the application to Webspherec.cooooiiiiiiiiiiie, 482

35.3. The j pa booking eXxampleoooiiiiiiii i 484
35.3.1. Building the j pa eXamplec.oiiiiiiiiiiiiii e 484
35.3.2. Deploying the j pa eXamplecoooeiiiiiiiiii e 485
35.3.3. Whats different for Websphere 6.1ccoviiiiiiiiiiiiiii e, 485

35.4. Deploying an application created using seam gen on Websphere 6.1.0.13 487
35.4.1. RUNNING SEaM gEN SEIUP ..ievtiniiiiii ettt 487
35.4.2. Changes needed for deployment to Webspherecccoooeiiiviiiiinn, 489

36. DEPENUENCIES ..otniiiiiti ettt ettt e et e e et e e et e e e 497

36.1. Project DEPENUENCIESuuiiiiiieiii et e e e e e e e et eeaaaeees 497

LG 701 O { JPUUPTTTPRSR 497

Xii

36.1.2. RICNFACES ...eeiiiiie e 498

36.1.3. Seam Mallooeniii e 498
36.1.4. SEAM PDF ..ot 498
36.1.5. JBOSS RUIES ..oiiiiiiiiii e e 498
36.1.6. IBPM ..t 499
LG T80 O A €11 PPN 499
1G] 0 I S T o 1 Vo TP 499
36.1.9. GIOOVY ..eniiiiiiii ettt 499
36.2. Dependency Management uUSing MavVENccccuuieiiiieiiiiieiiiee e e e 500

Xiii

Xiv

Introduction to JBoss Seam

Seam is an application framework for Enterprise Java. It is inspired by the following principles:

One kind of "stuff"
Seam defines a uniform component model for all business logic in your application. A
Seam component may be stateful, with the state associated with any one of several well-
defined contexts, including the long-running, persistent, business process context and the
conversation context, which is preserved across multiple web requests in a user interaction.

There is no distinction between presentation tier components and business logic components
in Seam. You can layer your application according to whatever architecture you devise, rather
than being forced to shoehorn your application logic into an unnatural layering scheme forced
upon you by whatever combination of stovepipe frameworks you're using today.

Unlike plain Java EE or J2EE components, Seam components may simultaneously access
state associated with the web request and state held in transactional resources (without the
need to propagate web request state manually via method parameters). You might object that
the application layering imposed upon you by the old J2EE platform was a Good Thing. Well,
nothing stops you creating an equivalent layered architecture using Seam—the difference is
that you get to architect your own application and decide what the layers are and how they
work together.

Integrate JSF with EJB 3.0

JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new
component model for server side business and persistence logic. Meanwhile, JSF is a great
component model for the presentation tier. Unfortunately, neither component model is able
to solve all problems in computing by itself. Indeed, JSF and EJB3 work best used together.
But the Java EE 5 specification provides no standard way to integrate the two component
models. Fortunately, the creators of both models foresaw this situation and provided standard
extension points to allow extension and integration with other frameworks.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting the
developer think about the business problem.

It is possible to write Seam applications where "everything" is an EJB. This may come as a
surprise if you're used to thinking of EJBs as coarse-grained, so-called "heavyweight" objects.
However, version 3.0 has completely changed the nature of EJB from the point of view of
the developer. An EJB is a fine-grained object—nothing more complex than an annotated
JavaBean. Seam even encourages you to use session beans as JSF action listeners!

On the other hand, if you prefer not to adopt EJB 3.0 at this time, you don't have to. Virtually
any Java class may be a Seam component, and Seam provides all the functionality that you
expect from a "lightweight" container, and more, for any component, EJB or otherwise.

XV

Introduction to JBoss Seam

Integrated AJAX

Seam supports the best open source JSF-based AJAX solutions: JBoss RichFaces and
ICEfaces. These solutions let you add AJAX capability to your user interface without the need
to write any JavaScript code.

Alternatively, Seam provides a built-in JavaScript remoting layer that lets you call components
asynchronously from client-side JavaScript without the need for an intermediate action layer.
You can even subscribe to server-side JMS topics and receive messages via AJAX push.

Neither of these approaches would work well, were it not for Seam's built-in concurrency and
state management, which ensures that many concurrent fine-grained, asynchronous AJAX
requests are handled safely and efficiently on the server side.

Business process as a first class construct

Optionally, Seam provides transparent business process management via jBPM. You
won't believe how easy it is to implement complex workflows, collaboration and and task
management using jBPM and Seam.

Seam even allows you to define presentation tier pageflow using the same language (jPDL)
that jBPM uses for business process definition.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this
model by exposing jBPM's business process related events via exactly the same event
handling mechanism, providing a uniform event model for Seam's uniform component model.

Declarative state management

We're all used to the concept of declarative transaction management and declarative
security from the early days of EJB. EJB 3.0 even introduces declarative persistence context
management. These are three examples of a broader problem of managing state that is
associated with a particular context, while ensuring that all needed cleanup occurs when the
context ends. Seam takes the concept of declarative state management much further and
applies it to application state. Traditionally, J2EE applications implement state management
manually, by getting and setting servlet session and request attributes. This approach to state
management is the source of many bugs and memory leaks when applications fail to clean
up session attributes, or when session data associated with different workflows collides in
a multi-window application. Seam has the potential to almost entirely eliminate this class of
bugs.

Declarative application state management is made possible by the richness of the
context model defined by Seam. Seam extends the context model defined by the servlet
spec—request, session, application—with two new contexts—conversation and business
process—that are more meaningful from the point of view of the business logic.

You'll be amazed at how many things become easier once you start using conversations. Have
you ever suffered pain dealing with lazy association fetching in an ORM solution like Hibernate
or JPA? Seam's conversation-scoped persistence contexts mean you'll rarely have to see a
Lazyl nitializati onExcepti on. Have you ever had problems with the refresh button? The

XVi

back button? With duplicate form submission? With propagating messages across a post-
then-redirect? Seam's conversation management solves these problems without you even
needing to really think about them. They're all symptoms of the broken state management
architecture that has been prevalent since the earliest days of the web.

Bijection

The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as
well as in numerous so-called "lightweight containers". Most of these containers emphasize
injection of components that implement stateless services. Even when injection of stateful
components is supported (such as in JSF), it is virtually useless for handling application
state because the scope of the stateful component cannot be defined with sufficient flexibility,
and because components belonging to wider scopes may not be injected into components
belonging to narrower scopes.

Bijection differs from IoC in that it is dynamic, contextual, and bidirectional. You can think of
it as a mechanism for aliasing contextual variables (names in the various contexts bound to
the current thread) to attributes of the component. Bijection allows auto-assembly of stateful
components by the container. It even allows a component to safely and easily manipulate the
value of a context variable, just by assigning it to an attribute of the component.

Workspace management and multi-window browsing
Seam applications let the user freely switch between multiple browser tabs, each associated
with a different, safely isolated, conversation. Applications may even take advantage of
workspace management, allowing the user to switch between conversations (workspaces) in
a single browser tab. Seam provides not only correct multi-window operation, but also multi-
window-like operation in a single window!

Prefer annotations to XML
Traditionally, the Java community has been in a state of deep confusion about precisely what
kinds of meta-information counts as configuration. J2EE and popular "lightweight" containers
have provided XML-based deployment descriptors both for things which are truly configurable
between different deployments of the system, and for any other kinds or declaration which
can not easily be expressed in Java. Java 5 annotations changed all this.

EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to provide
information to the container in a declarative form. Unfortunately, JSF is still heavily dependent
on verbose XML configuration files. Seam extends the annotations provided by EJB 3.0 with
a set of annotations for declarative state management and declarative context demarcation.
This lets you eliminate the noisy JSF managed bean declarations and reduce the required
XML to just that information which truly belongs in XML (the JSF navigation rules).

Integration testing is easy
Seam components, being plain Java classes, are by nature unit testable. But for complex
applications, unit testing alone is insufficient. Integration testing has traditionally been a messy
and difficult task for Java web applications. Therefore, Seam provides for testability of Seam
applications as a core feature of the framework. You can easily write JUnit or TestNG tests

XVii

Introduction to JBoss Seam

The

The

that reproduce a whole interaction with a user, exercising all components of the system apart
from the view (the JSP or Facelets page). You can run these tests directly inside your IDE,
where Seam will automatically deploy EJB components using JBoss Embedded.

specs ain't perfect

We think the latest incarnation of Java EE is great. But we know it's never going to be perfect.
Where there are holes in the specifications (for example, limitations in the JSF lifecycle for
GET requests), Seam fixes them. And the authors of Seam are working with the JCP expert
groups to make sure those fixes make their way back into the next revision of the standards.

re's more to a web application than serving HTML pages

Today's web frameworks think too small. They let you get user input off a form and into
your Java objects. And then they leave you hanging. A truly complete web application
framework should address problems like persistence, concurrency, asynchronicity, state
management, security, email, messaging, PDF and chart generation, workflow, wikitext
rendering, webservices, caching and more. Once you scratch the surface of Seam, you'll be
amazed at how many problems become simpler...

Seam integrates JPA and Hibernate3 for persistence, the EJB Timer Service and Quartz for
lightweight asychronicity, jBPM for workflow, JBoss Rules for business rules, Meldware Malil
for email, Hibernate Search and Lucene for full text search, JMS for messaging and JBoss
Cache for page fragment caching. Seam layers an innovative rule-based security framework
over JAAS and JBoss Rules. There's even JSF tag libraries for rendering PDF, outgoing
email, charts and wikitext. Seam components may be called synchronously as a Web Service,
asynchronously from client-side JavaScript or Google Web Toolkit or, of course, directly from
JSF.

Get started now!
Seam works in any Java EE application server, and even works in Tomcat. If your environment
supports EJB 3.0, great! If it doesn't, no problem, you can use Seam's built-in transaction
management with JPA or Hibernate3 for persistence. Or, you can deploy JBoss Embedded
in Tomcat, and get full support for EJB 3.0.
JSP Facelets | | Portal Presentation Tier
JSF Request Controller
Seam Context Management
EJB 3 JBoss jEPM || Hibernate State Management
Farwas EE 5
It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex

web application in Java. You won't believe how little code is required!

XViii

Contribute to Seam

1. Contribute to Seam

Visit SeamFramework.org [http://www.seamframework.org/Community/Contribute] to find out
how to contribute to Seam!

XiX

http://www.seamframework.org/Community/Contribute
http://www.seamframework.org/Community/Contribute

XX

Chapter 1.

Seam Tutorial

1.1. Try the examples

In this tutorial, we'll assume that you have downloaded JBoss AS 4.2. You should also have a
copy of Seam downloaded and extracted to a work directory.

The directory structure of each example in Seam follows this pattern:

* Web pages, images and stylesheets may be found in exanpl es/regi strati on/ vi ew

* Resources such as deployment descriptors and data import scripts may be found in exanpl es/
regi stration/resources

» Java source code may be found in exanpl es/ regi stration/src

e The Ant build script is exanpl es/ regi strati on/ bui | d. xn

1.1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOME and $JAVA_HOME set correctly.
Next, make sure you set the location of your JBoss AS 4.2 installation in the bui | d. properti es
file in the root folder of your Seam installation. If you haven't already done so, start JBoss AS now
by typing bi n/ run. sh or bi n/ run. bat in the root directory of your JBoss installation.

Now, build and deploy the example by typing ant depl oy in the exanpl es/regi stration
directory.

Try it out by accessing http://1 ocal host: 8080/ seam regi stration/ [http://localhost:8080/
seam-registration/] with your web browser.

1.1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $ANT_HOMVE and $JAVA_HOME set correctly.
Next, make sure you set the location of your Tomcat 6.0 installation in the bui | d. properti es file
in the root folder of your Seam installation. You will need to follow the instructions in Section 26.6.1,
“Installing Embedded JBoss” for installing JBoss Embedded on Tomcat 6.0. JBoss Embedded is
required to run the Seam demo applications on Tomcat. (However, it is possible to use Seam on
Tomcat without JBoss Embedded.)

Now, build and deploy the example by typing ant t ontat . depl oy inthe exanpl es/ regi strati on
directory.

Finally, start Tomcat.

Try it out by accessing http://local host:8080/jboss-seamregistration/ [http://
localhost:8080/jboss-seam-registration/] with your web browser.

http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/jboss-seam-registration/
http://localhost:8080/jboss-seam-registration/
http://localhost:8080/jboss-seam-registration/

Chapter 1. Seam Tutorial

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss
Embeddable EJB3 container, a complete standalone EJB3 container environment.

1.1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the
testsis to run ant t est exanpl e inside the exanpl es/ r egi st r at i on directory. It is also possible
to run the tests inside your IDE using the TestNG plugin.

1.2. Your first Seam application: the registration
example

The registration example is a fairly trivial application that lets a new user store his username,
real name and password in the database. The example isn't intended to show off all of the cool
functionality of Seam. However, it demonstrates the use of an EJB3 session bean as a JSF action
listener, and basic configuration of Seam.

We'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then
submitting the form. This will save a user object in the database.

) Register New User - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

@ M II> M % @ @ |@ http://localhost:8080/seam-registration/register.seam V| @ Go ||Qv
| Chapter 1. Seam Tutorial | [Register New User |[#3Boss DVD Store

Username |93Vi”
Real Name |Gavin King
Password |m'm1

1.2.1. Understanding the code

The example is implemented with two JSP pages, one entity bean and one stateless session bean.

Understanding the code

Let's take a look at the code, starting from the "bottom".

1.2.1.1. The entity bean: user.java

We need an EJB entity bean for user data. This class defines persistence and validation
declaratively, via annotations. It also needs some extra annotations that define the class as a
Seam component.

Example 1.1.

@Entity <co id="registration-entity-annotation"/>

@Name("user") q:'
@Scope(SESSION) @:'
@Table(name="users") 3
public class User implements Serializable

{

private static final long serialVersionUID = 1881413500711441951L,;

Chapter 1. Seam Tutorial

private String username;
private String password;
private String name;

public User(String name, String password, String username)

{

this.name = name;
this.password = password;
this.username = username;

}

public User() {} 5

@NotNull @Length(min=5, max=15)
public String getPassword()
{

return password;

}

public void setPassword(String password)

{

this.password = password;

}

@NotNull
public String getName()

{

return name;

public void setName(String name)

{

this.name = name;

}

@Id @NotNull @Length(min=5, max=15)
public String getUsername()
{

return username;

public void setUsername(String username)

Understanding the code

{

regi

this.username = username;

sfraedadB3 standard @nt i t y annotation indicates that the User class is an entity bean.

entity-

ann
???

1

The

otation:

A Seam component needs a component name specified by the @anme annotation. This
name must be unique within the Seam application. When JSF asks Seam to resolve a context
variable with a name that is the same as a Seam component name, and the context variable
is currently undefined (null), Seam will instantiate that component, and bind the new instance
to the context variable. In this case, Seam will instantiate a User the first time JSF encounters
a variable named user .

Whenever Seam instantiates a component, it binds the new instance to a context variable
in the component's default context. The default context is specified using the @scope
annotation. The User bean is a session scoped component.

The EJB standard @rabl e annotation indicates that the User class is mapped to the users
table.

name, password and user nane are the persistent attributes of the entity bean. All of our
persistent attributes define accessor methods. These are needed when this component is
used by JSF in the render response and update model values phases.

An empty constructor is both required by both the EJB specification and by Seam.

The @t Nul I and @ engt h annotations are part of the Hibernate Validator framework. Seam
integrates Hibernate Validator and lets you use it for data validation (even if you are not using
Hibernate for persistence).

The EJB standard @ d annotation indicates the primary key attribute of the entity bean.

most important things to notice in this example are the @lane and @cope annotations. These

annotations establish that this class is a Seam component.

We'
are

Il see below that the properties of our User class are bound directly to JSF components and
populated by JSF during the update model values phase. We don't need any tedious glue

code to copy data back and forth between the JSP pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't

use

this component as a JSF action listener. For that we need a session bean.

1.2.1.2. The stateless session bean class: RegisterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead
if you like).

Chapter 1. Seam Tutorial

We have exactly one JSF action in our application, and one session bean method attached to it.
In this case, we'll use a stateless session bean, since all the state associated with our action is
held by the User bean.

This is the only really interesting code in the example!

Example 1.2.

@Stateless 1
@Name("register")
public class RegisterAction implements Register

{

@In 2

private User user;

@PersistenceContext
private EntityManager em;

@Logger
private Log log;

public String register()
{

List existing = em.createQuery(

"select username from User where username=#{user.username}")
.getResultList();

if (existing.size()==0)
{

em.persist(user);
log.info("Registered new user #{user.username}");

return “/registered.xhtml";

}

else

{
0, @

FacesMessages.instance().add("User #{user.username} already exists
return null;

Understanding the code

1 The EJB standard @t at el ess annotation marks this class as a stateless session bean.

2 The @n annotation marks an attribute of the bean as injected by Seam. In this case, the
attribute is injected from a context variable named user (the instance variable name).

3 The EJB standard @persi st enceContext annotation is used to inject the EJB3 entity
manager.

4 The Seam @uogger annotation is used to inject the component's Log instance.

5 The action listener method uses the standard EJB3 EntityManager API to interact with
the database, and returns the JSF outcome. Note that, since this is a session bean, a
transaction is automatically begun when the r egi st er () method is called, and committed
when it completes.

& Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this
results in an ordinary JPA set Par anet er () call on the standard JPA Query object. Nice,
huh?

7 The Log API lets us easily display templated log messages.

g JSF action listener methods return a string-valued outcome that determines what page will
be displayed next. A null outcome (or a void action listener method) redisplays the previous
page. In plain JSF, it is normal to always use a JSF navigation rule to determine the JSF view
id from the outcome. For complex application this indirection is useful and a good practice.
However, for very simple examples like this one, Seam lets you use the JSF view id as the
outcome, eliminating the requirement for a navigation rule. Note that when you use a view
id as an outcome, Seam always performs a browser redirect.

s Seam provides a number of built-in components to help solve common problems. The
FacesMessages component makes it easy to display templated error or success messages.
Built-in Seam components may be obtained by injection, or by calling ani nst ance() method.

Note that we did not explicitly specify a @cope this time. Each Seam component type has a default
scope if not explicitly specified. For stateless session beans, the default scope is the stateless
context. Actually, all stateless session beans belong in the stateless context.

Our session bean action listener performs the business and persistence logic for our mini-
application. In more complex applications, we might need to layer the code and refactor
persistence logic into a dedicated data access component. That's perfectly trivial to do. But notice
that Seam does not force you into any particular strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with
the web request (the form values in the User object, for example), and state held in transactional
resources (the Ent i t yManager object). This is a break from traditional J2EE architectures. Again,
if you are more comfortable with the traditional J2EE layering, you can certainly implement that in
a Seam application. But for many applications, it's simply not very useful.

Chapter 1. Seam Tutorial

1.2.1.3. The session bean local interface: Rregister.java

Naturally, our session bean needs a local interface.

Example 1.3.

@Local
public interface Register
{

public String register();
}

That's the end of the Java code. Now onto the deployment descriptors.
1.2.1.4. The Seam component deployment descriptor: conponents. xn

If you've used many Java frameworks before, you'll be used to having to declare all your
component classes in some kind of XML file that gradually grows more and more unmanageable
as your project matures. You'll be relieved to know that Seam does not require that application
components be accompanied by XML. Most Seam applications require a very small amount of
XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some
components (particularly the components built in to Seam). You have a couple of options here,
but the most flexible option is to provide this configuration in a file called conponent s. xn , located
in the VEB- | NF directory. We'll use the conponents. xn file to tell Seam how to find our EJB
components in JNDI:

Example 1.4.

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.1.xsd
http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.1.xsd">

<core:init jndi-pattern="@jndiPattern@"/>

</components>

Understanding the code

This code configures a property named j ndi Pattern of a built-in Seam component named
org. j boss. seam core. init. The funny @symbols are there because our Ant build script puts
the correct JNDI pattern in when we deploy the application.

1.2.1.5. The web deployment description: web. xn

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web
deployment descriptor.

Example 1.5.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_ 5.xsd">

<l-- Seam -->

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

<l-- JSF -->

<listener>
<listener-class>com.sun.faces.config.ConfigureListener</listener-class>
</listener>

<context-param>
<param-name>javax.faces.DEFAULT _SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>

Chapter 1. Seam Tutorial

</servlet-mapping>

<session-config>
<session-timeout>10</session-timeout>
</session-config>

</web-app>

This web. xnl file configures Seam and JSF. The configuration you see here is pretty much
identical in all Seam applications.

1.2.1.6. The JSF configration: faces-config. xn

Most Seam applications use JSF views as the presentation layer. So usually we'll need f aces-
confi g. xnl . In our case, we are going to use Facelets for defining our views, so we need to tell
JSF to use Facelets as its templating engine.

Example 1.6.

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="1.2"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-facesconfig_1 2.xsd">

<!-- Facelets support -->

<application>
<view-handler>com.sun.facelets.FaceletViewHandler</view-handler>

</application>

</faces-config>

Note that we don't need any JSF managed bean declarations! Our managed beans are annotated
Seam components. In Seam applications, the f aces- confi g. xm is used much less often than
in plain JSF.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you
add new functionality to a Seam application is orchestration: navigation rules or jBPM process
definitions. Seam takes the view that process flow and configuration data are the only things that
truly belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the
view id in our action code.

10

Understanding the code

1.2.1.7. The EJB deployment descriptor: ejb-jar. xni

The ej b-jar.xnm file integrates Seam with EJB3, by attaching the Seami nterceptor to all
session beans in the archive.

<ejb-jar xmlIns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3 0.xsd"
version="3.0">

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>
</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

</ejb-jar>

1.2.1.8. The EJB persistence deployment descriptor: persi stence. xn

The persi st ence. xni file tells the EJB persistence provider where to find the datasource, and
contains some vendor-specific settings. In this case, enables automatic schema export at startup
time.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmIns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
version="1.0">

<persistence-unit name="userDatabase">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>

11

Chapter 1. Seam Tutorial

<property name="hibernate.hbm2ddl.auto” value="create-drop"/>
</properties>
</persistence-unit>

</persistence>

1.2.1.9. The view: regi ster.xhtni and regi stered. xht n

The view pages for a Seam application could be implemented using any technology that supports
JSF. In this example we use Facelets, because we think it's better than JSP.

Example 1.7.

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtml"
xmins:s="http://jboss.com/products/seam/taglib"
xmlns:h="http://java.sun.com/jsf/html|"
xmins:f="http://java.sun.com/jsf/core">

<head>
<title>Register New User</title>
</head>
<body>
<fview>
<h:form>
<s:validateAll>
<h:panelGrid columns="2">
Username: <h:inputText value="#{user.username}" required="true"/>
Real Name: <h:inputText value="#{user.name}" required="true"/>
Password: <h:inputSecret value="#{user.password}" required="true"/>
</h:panelGrid>
</s:validateAll>
<h:messages/>
<h:commandButton value="Register" action="#{register.register}"/>
</h:form>
</f.view>
</body>

</html>

12

Understanding the code

The only thing here that is specific to Seam is the <s: val i dat eAl | > tag. This JSF component tells
JSF to validate all the contained input fields against the Hibernate Validator annotations specified
on the entity bean.

Example 1.8.

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml|1/DTD/xhtml1-transitional.dtd">
<html xmiIns="http://www.w3.0rg/1999/xhtml"
xmins:f="http://java.sun.com/jsf/core">

<head>
<title>Successfully Registered New User</title>
</head>
<body>
<f.view>
Welcome, #{user.name}, you are successfully registered as #{user.username}.
</f:view>
</body>

</html>

This is a boring old Facelets page using some embedded EL. There is nothing specific to Seam

here.

1.2.1.10. The EAR deployment descriptor: application. xni

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Example 1.9. registration application

<?xml version="1.0" encoding="UTF-8"?>

<application xmIns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application_5.xsd"
version="5">

<display-name>Seam Registration</display-name>

<module>
<web>

13

Chapter 1. Seam Tutorial

<web-uri>jboss-seam-registration.war</web-uri>
<context-root>/seam-registration</context-root>
</web>
</module>
<module>
<ejb>jboss-seam-registration.jar</ejb>
</module>
<module>
<ejb>jboss-seam.jar</ejb>
</module>
<module>
<java>jboss-el.jar</java>
</module>

</application>

This deployment descriptor links modules in the enterprise archive and binds the web application
to the context root / seam r egi strati on.

We've now seen all the files in the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is no
value already bound to that name (in any Seam context), Seam instantiates the user component,
and returns the resulting User entity bean instance to JSF after storing it in the Seam session
context.

The form input values are now validated against the Hibernate Validator constraints specified on
the User entity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the
form input values to properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er . Seam finds the Regi st er Acti on
stateless session bean in the stateless context and returns it. JSF invokes the r egi st er () action
listener method.

Seam intercepts the method call and injects the User entity from the Seam session context, before
continuing the invocation.

The r egi st er () method checks if a user with the entered username already exists. If so, an error
message is queued with the FacesMessages component, and a null outcome is returned, causing
a page redisplay. The FacesMessages component interpolates the JSF expression embedded in
the message string and adds a JSF FacesMessage to the view.

If no user with that username exists, the "/regi stered. xht ml " outcome triggers a browser
redirect to the r egi st er ed. xht Ml page. When JSF comes to render the page, it asks Seam to

14

Clickable lists in Seam: the messages example

resolve the variable named user and uses property values of the returned User entity from Seam's
session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that
Seam provides special functionality on top of JSF to make it easier to query data using EJB-QL
or HQL and display it as a clickable list using a JSF <h: dat aTabl e>. The messages example
demonstrates this functionality.

) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

Ga@-o -8) [0 http:/fiocahost:s080 | @ Go [[GL

B3 Latest Headlines £33 The World Clock B XE Currency Converter ' Hibernate JIRA
|[] Chapter 1. Seam Tutorial | LI Messages \

Message List

Read Title Date/Time
Greetings Earthling Feb 4, 2006 9:40 AM
Hello World Jan 2, 2006 7:00 AM

Greetings Earthling

This is another example of a message.

1.3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessagelLi st Bean
and one JSP.

15

Chapter 1. Seam Tutorial

1.3.1.1. The entity bean: wmessage. java

The Message entity defines the title, text, date and time of a message, and a flag indicating whether
the message has been read:

Example 1.10.

@Entity
@Name("'message")
@Scope(EVENT)
public class Message implements Serializable
{
private Long id;
private String title;
private String text;
private boolean read;
private Date datetime;

@Ild @GeneratedValue

public Long getld() {
return id;

}

public void setld(Long id) {
this.id = id;

}

@NotNull @Length(max=100)
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}

@NotNull @Lob
public String getText() {
return text;

}
public void setText(String text) {

this.text = text;

}

@NotNull
public boolean isRead() {

16

Understanding the code

return read,;

}

public void setRead(boolean read) {
this.read = read;

}

@NotNull
@Basic @Temporal(TemporalType. TIMESTAMP)
public Date getDatetime() {
return datetime;
}
public void setDatetime(Date datetime) {
this.datetime = datetime;

1.3.1.2. The stateful session bean: messageManager Bean. j ava

Just like in the previous example, we have a session bean, MessageManager Bean, which defines
the action listener methods for the two buttons on our form. One of the buttons selects a message
from the list, and displays that message. The other button deletes a message. So far, this is not
so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we
navigate to the message list page. There are various ways the user could navigate to the page,
and not all of them are preceded by a JSF action—the user might have bookmarked the page, for
example. So the job of fetching the message list takes place in a Seam factory method, instead
of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this
a stateful session bean.

Example 1.11.

@ Stateful

@Scope(SESSION)

@Name("messageManager")

public class MessageManagerBean implements Serializable, MessageManager

{

@DataModel 1
private List<Message> messagelList;

17

Chapter 1. Seam Tutorial

@DataModelSelection 2

@Out(required=false)
private Message message;

@PersistenceContext(type=EXTENDED)
private EntityManager em;

@Factory("messageList")
public void findMessages()
{
messageList = em.createQuery("from Message msg order by msg.datetime desc")
.getResultList();

public void select()

{

message.setRead(true);

public void delete()

{
messageList.remove(message);
em.remove(message);
message=null;

@Remove
public void destroy() {}

1 The @at aMbdel annotation exposes an attibute of type j ava. util . Li st to the JSF page
as an instance of j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF
<h: dat aTabl e> with clickable links for each row. In this case, the Dat aMbdel is made
available in a session context variable named nessagelLi st .

2 The @pataMbdel Sel ection annotation tells Seam to inject the List element that
corresponded to the clicked link.

18

Understanding the code

The @ut annotation then exposes the selected value directly to the page. So ever time a row
of the clickable list is selected, the Message is injected to the attribute of the stateful bean,
and the subsequently outjected to the event context variable named nessage.

This stateful bean has an EJB3 extended persistence context. The messages retrieved in the
guery remain in the managed state as long as the bean exists, so any subsequent method
calls to the stateful bean can update them without needing to make any explicit call to the
Enti t yManager.

The first time we navigate to the JSP page, there will be no value in the nessageLi st context
variable. The @act or y annotation tells Seam to create an instance of MessageManager Bean
and invoke the fi ndMessages() method to initialize the value. We call fi ndMessages() a
factory method for nessages.

The sel ect () action listener method marks the selected Message as read, and updates it
in the database.

The del et e() action listener method removes the selected Message from the database.

All stateful session bean Seam components must have a method with no parameters marked
@enove that Seam uses to remove the stateful bean when the Seam context ends, and
clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session,
and all requests from a login session share the same instance of the component. (In Seam
applications, we usually use session-scoped components sparingly.)

1.3.1.3. The session bean local interface: messagemanager . j ava

All session beans have a business interface, of course.

@Local
public interface MessageManager

{

}

public void findMessages();
public void select();

public void delete();

public void destroy();

From now on, we won't show local interfaces in our code examples.

Let's skip over conponent s. xm , per si st ence. xml , web. xm , ej b-j ar. xnl , faces-confi g. xm
and appl i cati on. xnl since they are much the same as the previous example, and go straight
to the JSP.

1.3.1.4. The view: nmessages. j sp

The JSP page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing
specific to Seam.

19

Chapter 1. Seam Tutorial

Example 1.12.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<html>
<head>
<title>Messages</title>
</head>
<body>
<f.view>
<h:form>
<h2>Message List</h2>
<h:outputText value="No messages to display"
rendered="#{messageList.rowCount==0}"/>
<h:dataTable var="msg" value="#{messageList}"
rendered="#{messageList.rowCount>0}">
<h:column>
<f.facet name="header">
<h:outputText value="Read"/>
</f.facet>
<h:selectBooleanCheckbox value="#{msg.read}" disabled="true"/>
</h:column>
<h:column>
<f.facet name="header">
<h:outputText value="Title"/>
</f.facet>
<h:commandLink value="#{msg.title}" action="#{messageManager.select}"/>
</h:column>
<h:column>
<f.facet name="header">
<h:outputText value="Date/Time"/>
</f.facet>
<h:outputText value="#{msg.datetime}">
<f:convertDateTime type="both" dateStyle="medium" timeStyle="short"/>
</h:outputText>
</h:column>
<h:column>
<h:commandButton value="Delete" action="#{messageManager.delete}"/>
</h:column>
</h:dataTable>
<h3><h:outputText value="#{message.title}"/></h3>
<div><h:outputText value="#{message.text}"/></div>
</h:form>

20

How it works

</f:view>
</body>
</html!>

1.3.2. How it works

The first time we navigate to the messages. j sp page, whether by a JSF postback (faces request)
or a direct browser GET request (non-faces request), the page will try to resolve the nessagelLi st
context variable. Since this context variable is not initialized, Seam will call the factory method
fi ndMessages(), which performs a query against the database and results in a Dat aMbdel being
outjected. This Dat aMbdel provides the row data needed for rendering the <h: dat aTabl e>.

When the user clicks the <h: conmandLi nk>, JSF calls the sel ect () action listener. Seam
intercepts this call and injects the selected row data into the nessage attribute of the
messageManager component. The action listener fires, marking the selected Message as read. At
the end of the call, Seam outjects the selected Message to the context variable named nessage.
Next, the EJB container commits the transaction, and the change to the Message is flushed to
the database. Finally, the page is re-rendered, redisplaying the message list, and displaying the
selected message below it.

If the user clicks the <h: commandBut t on>, JSF calls the del et e() action listener. Seam intercepts
this call and injects the selected row data into the nessage attribute of the nmessagelLi st
component. The action listener fires, removing the selected Message from the list, and also
calling renove() onthe Enti t yManager . At the end of the call, Seam refreshes the nessagelLi st
context variable and clears the context variable named nessage. The EJB container commits
the transaction, and deletes the Message from the database. Finally, the page is re-rendered,
redisplaying the message list.

1.4. Seam and |BPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste
of how jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing
lists of tasks is such core functionality for BPM, there is hardly any Java code at all in this example.

21

Chapter 1. Seam Tutorial

Y Todo List - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<&~ - &) @) [ntip:/fiocahost:8080/seam-todo/todo.seam v| @ 6o G

[| Chapter 1. Seam Tutoral [Todo List |[#3Boss DVD Store

Todo List

Description Created Priority Due Date
[Book flight o sreal |Jm13=2005 |

Getthe stupid Seam release finished! | Jan 13, 2006 117/06

Haircut Jan13,20063 | |

Review Hibernate in Action second edition	Jan 13,2006
Kick Roy out of my office	Ja.n 13, 2006
Blog aboutworkspace management	Jam 13, 2006

Update ltems

| |[Create New ltem]

1.4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSPs and two trivial
JavaBeans (There was no reason to use session beans, since they do not access the database,
or have any other transactional behavior). Let's start with the process definition:

Example 1.13.

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>
</start-state>

<task-node name="todo">
<task name="todo" description="#{todoList.description}">

<assignment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>

22

Understanding the code

<ftask-node>

<end-state name="done"/>

</process-definition>

11 The <start-state> node represents the logical start of the process. When the process
starts, it immediately transitions to the t odo node.

2. The <t ask- node> node represents a wait state, where business process execution pauses,
waiting for one or more tasks to be performed.

a3 The <t ask> element defines a task to be performed by a user. Since there is only one task
defined on this node, when it is complete, execution resumes, and we transition to the end
state. The task gets its description from a Seam component named t odoLi st (one of the
JavaBeans).

4 Tasks need to be assigned to a user or group of users when they are created. In this case,
the task is assigned to the current user, which we get from a built-in Seam component named
act or . Any Seam component may be used to perform task assignment.

5 The <end- st at e> node defines the logical end of the business process. When execution
reaches this node, the process instance is destroyed.

If we view this process definition using the process definition editor provided by JBossIDE, this
is what it looks like:

<=5Sfart State==
start

. “<Task Node>>
todo

<<fnd State>>
[
done

23

Chapter 1. Seam Tutorial

This document defines our business process as a graph of nodes. This is the most trivial possible
business process: there is one task to be performed, and when that task is complete, the business
process ends.

The first JavaBean handles the login screen | ogi n. j sp. Its job is just to initialize the jBPM actor
id using the act or component. (In a real application, it would also need to authenticate the user.)

Example 1.14.

@Name("login™)
public class Login {

@In
private Actor actor;

private String user;

public String getUser() {
return user;

public void setUser(String user) {
this.user = user;

}

public String login()
{
actor.setld(user);
return "/todo.jsp";
}
}

Here we see the use of @ n to inject the built-in Act or component.

The JSP itself is trivial:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="{"%>
<html>

<head>

<title>Login</title>

</head>

<body>

24

Understanding the code

<h1>Login</h1>
<fview>
<h:form>
<div>
<h:inputText value="#{login.user}"/>
<h:commandButton value="Login" action="#{login.login}"/>
</div>
</h:form>
</fview>
</body>
</html>

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.15.

@Name("todoList")
public class TodoList {

private String description;

public String getDescription()
{

return description;

}

public void setDescription(String description) {
this.description = description;

}

@CreateProcess(definition="todo")
public void createTodo() {}

@StartTask @EndTask 3
public void done() {}

11 The description property accepts user input form the JSP page, and exposes it to the process
definition, allowing the task description to be set.

25

Chapter 1. Seam Tutorial

2z The Seam @r eat ePr ocess annotation creates a new jBPM process instance for the named
process definition.

2 The Seam @t art Task annotation starts work on a task. The @ndTask ends the task, and
allows the business process execution to resume.

In a more realistic example, @t art Task and @ndTask would not appear on the same method,
because there is usually work to be done using the application in order to complete the task.

Finally, the meat of the application is in t odo. j sp:

Example 1.16.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>
<html>
<head>
<title>Todo List</title>
</head>
<body>
<h1>Todo List</h1>
<f:view>
<h:form id="list">
<div>
<h:outputText value="There are no todo items."
rendered="#{empty taskinstanceList}"/>
<h:dataTable value="#{taskIinstanceList}" var="task"
rendered="#{not empty taskinstanceList}">
<h:column>
<f:facet name="header">
<h:outputText value="Description"/>
</f:facet>
<h:inputText value="#{task.description}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Created"/>
</f:facet>
<h:outputText value="#{task.taskMgmtinstance.processinstance.start}">
<f:convertDateTime type="date"/>
</h:outputText>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Priority"/>

26

Understanding the code

</f.facet>
<h:inputText value="#{task.priority}" style="width: 30"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Due Date"/>
</f:facet>
<h:inputText value="#{task.dueDate}" style="width: 100">
<f.convertDateTime type="date" dateStyle="short"/>
</h:inputText>
</h:column>
<h:column>
<s:button value="Done" action="#{todoList.done}" taskinstance="#{task}"/>
</h:column>
</h:dataTable>
</div>
<div>
<h:messages/>
</div>
<div>
<h:commandButton value="Update Items" action="update"/>
</div>
</h:form>
<h:form id="new">
<div>
<h:inputText value="#{todoL.ist.description}"/>
<h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>
</div>
</h:form>
</f.view>
</body>
</html>

Let's take this one piece at a time.

The page renders a list of tasks, which it gets from a built-in Seam component named
t askl nst anceLi st . The list is defined inside a JSF form.

Example 1.17.

<h:form id="list">
<div>
<h:outputText value="There are no todo items." rendered="#{empty taskinstanceList}"/>
<h:dataTable value="#{tasklnstanceList}" var="task"

27

Chapter 1. Seam Tutorial

rendered="#{not empty taskinstanceList}">

</h:dataTable>
</div>
</h:form>

Each element of the list is an instance of the jBPM class Taskl nst ance. The following code simply
displays the interesting properties of each task in the list. For the description, priority and due
date, we use input controls, to allow the user to update these values.

<h:column>
<f:.facet name="header">
<h:outputText value="Description"/>
</f.facet>
<h:inputText value="#{task.description}"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Created"/>
</f.facet>
<h:outputText value="#{task.taskMgmtinstance.processinstance.start}">
<f.convertDateTime type="date"/>
</h:outputText>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Priority"/>
</f.facet>
<h:inputText value="#{task.priority}" style="width: 30"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Due Date"/>
</f.facet>
<h:inputText value="#{task.dueDate}" style="width: 100">
<f.convertDateTime type="date" dateStyle="short"/>
</h:inputText>
</h:column>

This button ends the task by calling the action method annotated @t art Task @ndTask. It passes
the task id to Seam as a request parameter:

28

How it works

<h:column>
<s:button value="Done" action="#{todoList.done}" taskinstance="#{task}"/>
</h:column>

(Note that this is using a Seam <s: but t on> JSF control from the seam ui . j ar package.)

This button is used to update the properties of the tasks. When the form is submitted, Seam and
jBPM will make any changes to the tasks persistent. There is no need for any action listener
method:

<h:commandButton value="Update Items" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated
@r eat eProcess.

<h:form id="new">
<div>
<h:inputText value="#{todoL.ist.description}"/>
<h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>
</div>
</h:form>

There are several other files needed for the example, but they are just standard jBPM and Seam
configuration and not very interesting.

1.4.2. How it works

TODO

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules are
a perfectly good way to define the page flow. For applications with a more constrained style of
navigation, especially for user interfaces which are more stateful, navigation rules make it difficult
to really understand the flow of the system. To understand the flow, you need to piece it together
from the view pages, the actions and the navigation rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number guessing
example shows how this is done.

29

Chapter 1. Seam Tutorial

©) Guess a number... - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

@I ¥ E:} e |§ @ [http:/flocalhost:8080/seam-numberguess/numberGuess.seam?conversationld=1

| |#] Guess a number... }

| [l Chapter 1. Seam Tutorial

Guess a number...

Lower!
I'm thinking of a number between 1 and 49. You have 9 guesses.
‘ [Guess]

Your guess: |50

1.5.1. Understanding the code

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow

definition. Let's begin with the pageflow:

Example 1.18.

<pageflow-definition
xmlns="http://jboss.com/products/seam/pageflow"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://jboss.com/products/seam/pageflow
http://jboss.com/products/seam/pageflow-2.1.xsd"

name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jspx"> 1
<redirect/>
<transition name="guess" to="evaluateGuess"> 2
3

<action expression="#{numberGuess.guess}"/>
</transition>
<transition name="giveup" to="giveup"/>
</start-page>
<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}"> 4

<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

30

Understanding the code

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">
<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="giveup" view-id="/giveup.jspx">
<redirect/>
<transition name="yes" to="lose"/>
<transition name="no" to="displayGuess"/>
</page>

<page name="win" view-id="/win.jspx">
<redirect/>
<end-conversation/>

</page>

<page name="lose" view-id="/lose.jspx">
<redirect/>
<end-conversation/>

</page>

</pageflow-definition>

11 The <page> element defines a wait state where the system displays a particular JSF view
and waits for user input. The vi ewi d is the same JSF view id used in plain JSF navigation
rules. The redirect attribute tells Seam to use post-then-redirect when navigating to the
page. (This results in friendly browser URLS.)

2. The <transition> element names a JSF outcome. The transition is triggered when a JSF
action results in that outcome. Execution will then proceed to the next node of the pageflow
graph, after invocation of any jBPM transition actions.

3 Atransition <acti on> is just like a JSF action, except that it occurs when a jBPM transition
occurs. The transition action can invoke any Seam component.

4 A <deci si on> node branches the pageflow, and determines the next node to execute by
evaluating a JSF EL expression.

Here is what the pageflow looks like in the JBoss Developer Studio pageflow editor:

31

Chapter 1. Seam Tutorial

=<l T
o Start State

start
==Page=>
displayGuess
guess false

2 =<Decision== false 2 ==Decision=>
“evaluateGuess "~ evaluateRemainingGuesses

true true

e {-{Pa:ge?}.‘} e =<Page=>
win lose

Now that we have seen the pageflow, it is very, very easy to understand the rest of the application!

Here is the main page of the application, nunber Guess. j spx:

Example 1.19.

<<?xml version="1.0"?>
<jsp:root xmlIns:jsp="http://java.sun.com/JSP/Page"
xmins:h="http://java.sun.com/jsf/html|"
xmlins:f="http://java.sun.com/jsf/core"
xmins:s="http://jpboss.com/products/seam/taglib"
xmlns="http://www.w3.0rg/1999/xhtm|"
version="2.0">
<jsp:output doctype-root-element="html"
doctype-public="-//W3C//[DTD XHTML 1.0 Transitional//EN"
doctype-system="http://www.w3c.org/TR/xhtm|1/DTD/xhtml1-transitional.dtd"/>
<jsp:directive.page contentType="text/html|"/>
<html>
<head>
<title>Guess a number...</title>
<link href="niceforms.css" rel="stylesheet" type="text/css" />
<script language="javascript" type="text/javascript" src="niceforms.js" />

32

Understanding the code

</head>

<body>
<h1>Guess a number...</h1>
<fview>

<h:form styleClass="niceform">

<div>
<h:messages globalOnly="true"/>
<h:outputText value="Higher!"
rendered="#{numberGuess.randomNumber gt numberGuess.currentGuess}"/>
<h:outputText value="Lower!"
rendered="#{numberGuess.randomNumber It numberGuess.currentGuess}"/>
</div>

<div>
I'm thinking of a number between
<h:outputText value="#{numberGuess.smallest}"/> and
<h:outputText value="#{numberGuess.biggest}'/>. You have
<h:outputText value="#{numberGuess.remainingGuesses}"/> guesses.
</div>

<div>
Your guess:
<h:inputText value="#{numberGuess.currentGuess}" id="inputGuess"
required="true" size="3"
rendered="#{(humberGuess.biggest-numberGuess.smallest) gt 20}">
<f.validateLongRange maximum="#{numberGuess.biggest}"
minimum="#{numberGuess.smallest}"/>
</h:inputText>
<h:selectOneMenu value="#{numberGuess.currentGuess}"
id="selectGuessMenu" required="true"
rendered="#{(numberGuess.biggest-numberGuess.smallest) le 20 and
(numberGuess.biggest-numberGuess.smallest) gt 4}">
<s:selectltems value="#{numberGuess.possibilities}" var="i" label="#{i}"/>
</h:selectOneMenu>
<h:selectOneRadio value="#{numberGuess.currentGuess}" id="selectGuessRadio
required="true"
rendered="#{(numberGuess.biggest-numberGuess.smallest) le 4}">
<s:selectltems value="#{numberGuess.possibilities}" var="i" label="#{i}"/>
</h:selectOneRadio>
<h:commandButton value="Guess" action="guess"/>
<s:button value="Cheat" view="/confirm.jspx"/>
<s:button value="Give up" action="giveup"/>
</div>

33

Chapter 1. Seam Tutorial

<div>
<h:message for="inputGuess" style="color: red"/>
</div>

</h:form>
</fview>
</body>
</html>
</jsp:root>

Notice how the command button names the guess transition instead of calling an action directly.

The wi n. j spx page is predictable:

Example 1.20.

<jsp:root xmlins:jsp="http://java.sun.com/JSP/Page"
xmlns:h="http://java.sun.com/jsf/html|"
xmlins:f="http://java.sun.com/jsf/core"
xmins="http://www.w3.0rg/1999/xhtm|"
version="2.0">
<jsp:output doctype-root-element="html"
doctype-public="-//W3C//[DTD XHTML 1.0 Transitional//EN"
doctype-system="http://www.w3c.org/TR/xhtm|1/DTD/xhtml1-transitional.dtd"/>
<jsp:directive.page contentType="text/html|"/>
<html>
<head>
<title>You won!</title>
<link href="niceforms.css" rel="stylesheet" type="text/css" />
</head>
<body>
<h1>You won!</h1>
<fview>
Yes, the answer was <h:outputText value="#{numberGuess.currentGuess}" />.
It took you <h:outputText value="#{numberGuess.guessCount}" /> guesses.
<h:outputText value="But you cheated, so it doesn't count!"
rendered="#{numberGuess.cheat}"/>
Would you like to play again?
</f.view>
</body>
</html|>
</jsp:root>

34

Understanding the code

As is lose.jspx (which | can't be bothered copy/pasting).

component:

Example 1.21.

@Name("numberGuess")
@Scope(ScopeType.CONVERSATION)
public class NumberGuess implements Serializable {

private int randomNumber;
private Integer currentGuess;
private int biggest;

private int smallest;

private int guessCount;
private int maxGuesses;
private boolean cheated,;

@Create 1
public void begin()
{

randomNumber = new Random().nextint(100);
guessCount = 0;

biggest = 100;

smallest = 1;

}

public void setCurrentGuess(Integer guess)

{

this.currentGuess = guess;

}

public Integer getCurrentGuess()

{

return currentGuess;

public void guess()

{

if (currentGuess>randomNumber)

{

biggest = currentGuess - 1;

}

if (currentGuess<randomNumber)

Finally, the JavaBean Seam

35

Chapter 1. Seam Tutorial

{
smallest = currentGuess + 1;
}
guessCount ++;
}

public boolean isCorrectGuess()

{

return currentGuess==randomNumber;

public int getBiggest()
{

return biggest;

}

public int getSmallest()
{

return smallest;

public int getGuessCount()
{

return guessCount;

}

public boolean isLastGuess()

{

return guessCount==maxGuesses;

public int getRemainingGuesses() {
return maxGuesses-guessCount;

public void setMaxGuesses(int maxGuesses) {
this.maxGuesses = maxGuesses;

}

public int getMaxGuesses() {
return maxGuesses;

public int getRandomNumber() {

36

Understanding the code

return randomNumber;

}
public void cheated()
{
cheated = true;
}

public boolean isCheat() {
return cheated,;

public List<Integer> getPossibilities()

{
List<Integer> result = new ArrayList<Integer>();
for(int i=smallest; i<=biggest; i++) result.add(i);
return result;

1. The first time a JSP page asks for a nunber Guess component, Seam will create a new one
for it, and the @r eat e method will be invoked, allowing the component to initialize itself.

The pages. xn file starts a Seam conversation (much more about that later), and specifies the
pageflow definition to use for the conversation's page flow.

<?xml version="1.0" encoding="UTF-8"?>
<pages xmlns="http://jboss.com/products/seam/pages"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://jboss.com/products/seam/pages http://jpboss.com/products/
seam/pages-2.1.xsd">

<page view-id="/numberGuess.jspx">
<begin-conversation join="true" pageflow="numberGuess"/>
</page>

<page view-id="/confirm.jspx">
<begin-conversation nested="true" pageflow="cheat"/>

</page>

</pages>

37

Chapter 1. Seam Tutorial

As you can see, this Seam component is pure business logic! It doesn't need to know anything at
all about the user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

TODO

1.6. A complete Seam application: the Hotel Booking
example

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following
features:

» User registration

e Login

* Logout

e Set password

» Hotel search

» Hotel selection

* Room reservation

» Reservation confirmation

« Existing reservation list

38

Introduction

jboss suites

State management in
Seam

State In Seam is contextual.
When you click "Find
Hotels", the application
retrieves a list of hotels
from the database and
caches it in the session
context. When you navigate
to one of the hotel records
by clicking the "View Hotel"
link, a conversation begins.
The conversation is
attached to a particular
tab, in a particular browser
window. You can navigate
to multiple hotels using
"open in new tab" or "open
in new window" in your web
browser. Each window will
execute in the context of a
different conversation. The
application keeps state
associated with your hotel
booking in the conversation
context, which ensures that
the concurrent
conversations do not
interfere with each other.

How does the search page

work?

seam framework demo

Thank you, Gavin King, your confimation number for Doubletree is 1

Search Hotels

Aflanta

Maximum results: 10¥

Name Address

Marriott Tower Place,

Courtyard Buckhead
Tower Place

Doubletree '
Buckhead

Ritz Carlton Peachtree Rd,

Buckhead

Current Hotel Bookings

City
Name Address r
State
Tower
Doubletree Place, 'égaﬂta;
Buckhead

Find Hotels

Check
in
date

Apr 16,
2006

City, State

Atlanta, GA,
usa

Atlanta, GA,
usa

Atlanta, GA,
usa

Zip Action
30305 %
30305 %
30326 %

Check .

out Confirmation Action
number

date

Apr 17,

2006 1 Cancel

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There
is also a port of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is extremely
robust. You can play with back buttons and browser refresh and opening multiple windows and
entering nonsensical data as much as you like and you will find it very difficult to make the

39

Chapter 1. Seam Tutorial

application crash. You might think that we spent weeks testing and fixing bugs to achive this.
Actually, this is not the case. Seam was designed to make it very straightforward to build robust
web applications and a lot of robustness that you are probably used to having to code yourself
comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works,
observe how the declarative state management and integrated validation has been used to
achieve this robustness.

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please
refer to Section 1.1, “Try the examples”. Once you've successfully started the application, you
can access it by pointing your browser to http://| ocal host: 8080/ seam booki ng/ [http://
localhost:8080/seam-booking/]

Just nine classes (plus six session beans local interfaces) where used to implement this
application. Six session bean action listeners contain all the business logic for the listed features.

* Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.
* ChangePasswor dAct i on updates the password of the currently logged in user.

» Hot el Booki ngActi on implements the core functionality of the application: hotel room
searching, selection, booking and booking confirmation. This functionality is implemented as a
conversation, so this is the most interesting class in the application.

+ Regi st er Acti on registers a new system user.

Three entity beans implement the application's persistent domain model.

e Hot el is an entity bean that represent a hotel
* Booki ng is an entity bean that represents an existing booking

* User is an entity bean to represents a user who can make hotel bookings

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate
upon one particular piece of functionality: hotel search, selection, booking and confirmation. From
the point of view of the user, everything from selecting a hotel to confirming a booking is one
continuous unit of work, a conversation. Searching, however, is not part of the conversation. The
user can select multiple hotels from the same search results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This
causes enormous problems managing state associated with the conversation. Usually, Java web
applications use a combination of two techniques: first, some state is thrown into the Ht t pSessi on;
second, persistable state is flushed to the database after every request, and reconstructed from
the database at the beginning of each new request.

40

http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/

Understanding Seam conversations

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of
scalability. Added latency is also a problem, due to the extra traffic to and from the database on
every request. To reduce this redundant traffic, Java applications often introduce a data (second-
level) cache that keeps commonly accessed data between requests. This cache is necessarily
inefficient, because invalidation is based upon an LRU policy instead of being based upon when
the user has finished working with the data. Furthermore, because the cache is shared between
many concurrent transactions, we've introduced a whole raft of problem's associated with keeping
the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. By very careful programming, we might be able
to control the size of the session data. This is a lot more difficult than it sounds, since web browsers
permit ad hoc non-linear navigation. But suppose we suddenly discover a system requirement
that says that a user is allowed to have mutiple concurrent conversations, halfway through the
development of the system (this has happened to me). Developing mechanisms to isolate session
state associated with different concurrent conversations, and incorporating failsafes to ensure
that conversation state is destroyed when the user aborts one of the conversations by closing a
browser window or tab is not for the faint hearted (I've implemented this stuff twice so far, once
for a client application, once for Seam, but I'm famously psychotic).

Now there is a better way.

Seam introduces the conversation context as a first class construct. You can safely keep
conversational state in this context, and be assured that it will have a well-defined lifecycle. Even
better, you won't need to be continually pushing data back and forth between the application
server and the database, since the conversation context is a natural cache of data that the user
is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We can
also keep entity beans and JavaBeans in the conversation context.) There is an ancient canard in
the Java community that stateful session beans are a scalability killer. This may have been true
in 1998 when WebFoobar 1.0 was released. It is no longer true today. Application servers like
JBoss AS have extremely sophisticated mechanisms for stateful session bean state replication.
(For example, the JBoss EJB3 container performs fine-grained replication, replicating only those
bean attribute values which actually changed.) Note that all the traditional technical arguments
for why stateful beans are inefficient apply equally to the Ht t pSessi on, so the practice of shifting
state from business tier stateful session bean components to the web session to try and improve
performance is unbelievably misguided. It is certainly possible to write unscalable applications
using stateful session beans, by using stateful beans incorrectly, or by using them for the wrong
thing. But that doesn't mean you should never use them. Anyway, Seam guides you toward a safe
usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can
collaborate together to achieve complex behaviors. The main page of the booking application
allows the user to search for hotels. The search results are kept in the Seam session scope. When

41

Chapter 1. Seam Tutorial

the user navigates to one of these hotels, a conversation begins, and a conversation scoped
component calls back to the session scoped component to retrieve the selected hotel.

The booking example also demonstrates the use of RichFaces Ajax to implement rich client
behavior without the use of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to
the one we saw in the message list example above.

Example 1.22.

@Stateful 1
@Name("hotelSearch")
@Scope(ScopeType.SESSION)

@Restrict("#{identity.loggedIn}") 2
public class HotelSearchingAction implements HotelSearching

{

@PersistenceContext
private EntityManager em;

private String searchString;
private int pageSize = 10;
private int page;

@DataModel 3
private List<Hotel> hotels;

public void find()
{
page = 0;
gueryHotels();

}
public void nextPage()

{
page++;
queryHotels();
}

private void queryHotels()

{

hotels =
em.createQuery("select h from Hotel h where lower(h.name) like #{pattern} " +

42

Understanding Seam conversations

"or lower(h.city) like #{pattern} " +
"or lower(h.zip) like #{pattern} " +
"or lower(h.address) like #{pattern}")
.setMaxResults(pageSize)
.setFirstResult(page * pageSize)
.getResultList();

public boolean isNextPageAvailable()

{

return hotels!=null && hotels.size()==pageSize;

}

public int getPageSize() {
return pageSize;

}

public void setPageSize(int pageSize) {
this.pageSize = pageSize;
}

@Factory(value="pattern", scope=ScopeType.EVENT)
public String getSearchPattern()

{

return searchString==null ?
"%" : '%' + searchString.toLowerCase().replace(™, '%'") + '%';

public String getSearchString()
{

return searchString;

}

public void setSearchString(String searchString)
{

this.searchString = searchString;

}

@Remove
public void destroy() {}

}

43

Chapter 1. Seam Tutorial

The EJB standard @t at ef ul annotation identifies this class as a stateful session bean.
Stateful session beans are scoped to the conversation context by default.

The @restri ct annotation applies a security restriction to the component. It restricts access
to the component allowing only logged-in users. The security chapter explains more about
security in Seam.

The @pat aMbdel annotation exposes a Li st as a JSF Li st Dat aMbdel . This makes it easy
to implement clickable lists for search screens. In this case, the list of hotels is exposed to
the page as a Li st Dat aMbdel in the conversation variable named hot el s.

The EJB standard @renove annotation specifies that a stateful session bean should be
removed and its state destroyed after invocation of the annotated method. In Seam, all
stateful session beans must define a method with no parameters marked @enove. This

method will be called when Seam destroys the session context.

The main page of the application is a Facelets page. Let's look at the fragment which relates to

searching for hotels:

Example 1.23.

<div class="section">

<h:messages globalOnly="true"/>

<h1>Search Hotels</h1>

<h:form id="searchCriteria">
<fieldset>
<h:inputText id="searchString" value="#{hotelSearch.searchString}"
style="width: 165px;">
<a:support event="onkeyup" actionListener="#{hotelSearch.find}"

reRender="searchResults" /> 1

</h:inputText>

<a:commandButton id="findHotels" value="Find Hotels" action="#{hotelSearch.find}"
reRender="searchResults"/>

<a:status>
<f:.facet name="start">
<h:graphiclmage value="/img/spinner.gif"/>
</f:facet>
</a:status>

44

Understanding Seam conversations

<h:outputLabel for="pageSize">Maximum results:</h:outputLabel>
<h:selectOneMenu value="#{hotelSearch.pageSize}" id="pageSize">
<f:selectltem itemLabel="5" itemValue="5"/>
<f:selectltem itemLabel="10" itemValue="10"/>
<f:selectltem itemLabel="20" itemValue="20"/>
</h:selectOneMenu>
</fieldset>
</h:form>

</div>

<a:outputPanel id="searchResults">
<div class="section">
<h:outputText value="No Hotels Found"
rendered="#{hotels != null and hotels.rowCount==0}"/>
<h:dataTable id="hotels" value="#{hotels}" var="hot"
rendered="#{hotels.rowCount>0}">

<h:column>
<f:facet name="header">Name</f:facet>
#{hot.name}

</h:column>

<h:column>
<f:.facet name="header">Address</f:facet>
#{hot.address}

</h:column>

<h:column>
<f.facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}

</h:column>

<h:column>
<f.facet name="header">Zip</f:facet>
#{hot.zip}

</h:column>

<h:column>
<f:.facet name="header">Action</f.facet>

<s:link id="viewHotel" value="View Hotel"
action="#{hotelBooking.selectHotel(hot)}"/>
</h:column>
</h:dataTable>
<s:link value="More results" action="#{hotelSearch.nextPage}"
rendered="#{hotelSearch.nextPageAvailable}"/>
</div>

45

Chapter 1. Seam Tutorial

</a:outputPanel>

The RichFaces Ajax <a: support > tag allows a JSF action event listener to be called by
asynchronous XMLHt t pRequest when a JavaScript event like onkeyup occurs. Even better,
the r eRender attribute lets us render a fragment of the JSF page and perform a partial page
update when the asynchronous response is received.

The RichFaces Ajax <a: st at us> tag lets us display a cheesy annimated image while we
wait for asynchronous requests to return.

The RichFaces Ajax <a: out put Panel > tag defines a region of the page which can be re-
rendered by an asynchronous request.

The Seam <s: | i nk> tag lets us attach a JSF action listener to an ordinary (non-JavaScript)
HTML link. The advantage of this over the standard JSF <h: commandLi nk> is that it preserves
the operation of "open in new window" and "open in new tab". Also notice that we use
a method binding with a parameter: #{hot el Booki ng. sel ect Hot el (hot)}. This is not
possible in the standard Unified EL, but Seam provides an extension to the EL that lets you
use parameters on any method binding expression.

If you're wondering how navigation occurs, you can find all the rules in WEB- | NF/ pages. xn ;
this is discussed in Section 6.6, “Navigation”.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass
itto the sel ect Hot el () method of the Hot el Booki ngAct i on, which is where the really interesting
stuff is going to happen.

Now let's see how the booking example application uses a conversation-scoped stateful session
bean to achieve a natural cache of persistent data related to the conversation. The following code
example is pretty long. But if you think of it as a list of scripted actions that implement the various
steps of the conversation, it's understandable. Read the class from top to bottom, as if it were
a story.

Example 1.24.

@ Stateful

@Name("hotelBooking")

@Restrict("#{identity.loggedIn}")

public class HotelBookingAction implements HotelBooking

{

@PersistenceContext(type=EXTENDED) 1
private EntityManager em;

@In
private User user;

46

Understanding Seam conversations

@In(required=false) @Out
private Hotel hotel;

@In(required=false)

@Out(required=false)
private Booking booking;

@In
private FacesMessages facesMessages;

@In

private Events events;

@Logger
private Log log;

private boolean bookingValid;

@Begin
public void selectHotel(Hotel selectedHotel)

{

hotel = em.merge(selectedHotel);

}

public void bookHotel()

{
booking = new Booking(hotel, user);
Calendar calendar = Calendar.getinstance();
booking.setCheckinDate(calendar.getTime());
calendar.add(Calendar.DAY_OF_MONTH, 1);
booking.setCheckoutDate(calendar.getTime());

public void setBookingDetails()
{

Calendar calendar = Calendar.getinstance();
calendar.add(Calendar.DAY_OF_MONTH, -1);
if (booking.getCheckinDate().before(calendar.getTime()))

{

facesMessages.addToControl("checkinDate", "Check in date must be a future date");

bookingValid=false;

}
else if ('booking.getCheckinDate().before(booking.getCheckoutDate()))

47

Chapter 1. Seam Tutorial

{

facesMessages.addToControl("checkoutDate",
"Check out date must be later than check in date");
bookingValid=false;
}
else
{
bookingValid=true;
}
}

public boolean isBookingValid()
{

return bookingValid;

}

@End 4
public void confirm()
{
em.persist(booking);
facesMessages.add("Thank you, #{user.name}, your confimation number " +
" for #{hotel.name} is #{booki g.id}");
log.info("New booking: #{booking.id} for #{user.username}");
events.raiseTransactionSuccessEvent("bookingConfirmed");

}

@End
public void cancel() {}

@Remove
public void destroy() {}

11 This bean uses an EJB3 extended persistence context, so that any entity instances remain
managed for the whole lifecycle of the stateful session bean.

2z The @ut annotation declares that an attribute value is outjected to a context variable after
method invocations. In this case, the context variable named hot el will be set to the value
of the hot el instance variable after every action listener invocation completes.

3 The @Begin annotation specifies that the annotated method begins a long-running
conversation, so the current conversation context will not be destroyed at the end of the
request. Instead, it will be reassociated with every request from the current window, and
destroyed either by timeout due to conversation inactivity or invocation of a matching @nd
method.

48

The Seam Ul control library

4 The @nd annotation specifies that the annotated method ends the current long-running
conversation, so the current conversation context will be destroyed at the end of the request.

5 This EJB remove method will be called when Seam destroys the conversation context. Don't
forget to define this method!

Hot el Booki ngAct i on contains all the action listener methods that implement selection, booking
and booking confirmation, and holds state related to this work in its instance variables. We think
you'll agree that this code is much cleaner and simpler than getting and setting Ht t pSessi on
attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run
a search, and navigate to different hotel pages in multiple browser tabs. You'll be able to work
on creating two different hotel reservations at the same time. If you leave any one conversation
inactive for long enough, Seam will eventually time out that conversation and destroy its state. If,
after ending a conversation, you backbutton to a page of that conversation and try to perform an
action, Seam will detect that the conversation was already ended, and redirect you to the search

page.
1.6.4. The Seam Ul control library

If you check inside the WAR file for the booking application, you'll find seam ui . j ar in the WEB-
I NF/ 1ib directory. This package contains a number of JSF custom controls that integrate with
Seam. The booking application uses the <s: | i nk> control for navigation from the search screen
to the hotel page:

<s:link value="View Hotel" action="#{hotelBooking.selectHotel(hot)}"/>

The use of <s: | i nk> here allows us to attach an action listener to a HTML link without breaking
the browser's "open in new window" feature. The standard JSF <h: cormandLi nk> does not work
with "open in new window". We'll see later that <s: | i nk> also offers a number of other useful
features, including conversation propagation rules.

The booking application uses some other Seam and RichFaces Ajax controls, especially on
the / book. xht M page. We won't get into the details of those controls here, but if you want
to understand this code, please refer to the chapter covering Seam's functionality for JSF form
validation.

1.6.5. The Seam Debug Page

The WAR also includes seam debug. j ar. The Seam debug page will be availabled if this jar is
deployed in VEB- | NF/ | i b, along with the Facelets, and if you set the debug property of the i ni t
component:

<core:init jndi-pattern="@jndiPattern@" debug="true"/>

49

Chapter 1. Seam Tutorial

This page lets you browse and inspect the Seam components in any of the Seam contexts
associated with your current login session. Just point your browser at htt p: // 1 ocal host : 8080/
seam booki ng/ debug. seam [http://localhost:8080/seam-booking/debug.seam].

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:51:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook.xhtml Select conversation context

- Component (booking)

checkinDate Fri Jan 20 20:52:20 EST 2006

checkoutDate SatJan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking. Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel{Towar Place, Buckhead, Atlanta,30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context

Empty business process context
+ Session Context

+ Application Context

1.7. A complete application featuring Seam and jBPM:
the DVD Store example

The DVD Store demo application shows the practical usage of jBPM for both task management
and pageflow.

The user screens take advantage of a jPDL pageflow to implement searching and shopping cart
functionality.

50

http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

Search for Movies My Orders

Search Results

A complete application featuring Seam and
jBPM: the DVD Store example

m Welcome, Harry

Add to cart Title Actor Price Thank you for choosing
E Life is Beautiful Roberto Benini £12.00 the DVD Store
] Finding Nemo Albert Brooks $22.49 Logout
| March of the Penguins Morgan Freeman $16.98
| Indiana Jones and the Temple of Doom Harisson Ford $19.99)
] Clear and Present Danger Harisson Ford $19.99 Search for DVDs:
L] Roman Holiday Audrey Hepburn $12.99
] Breakfast at Tiffany's Audrey Hepburn $12.99
] Sabrina Audrey Hepburn $12.99
E Sabrina Harrison Ford £19.99
| Kill Bill vol. 1 Uma Thurman £$19.99 T
O Kill Bill vaol. 2 Uma Thurman $19.99 v |
E Lost in Translation Bill Murray £19.99 Results Per Page:
F Broken Flowers Bill Murray £$19.99 b |
] Better Off Dead John Cusak $8.99 Search
E Grosse Pointe Blank John Cusak £11.99
N——
¥ High Fidelity John Cusak $14.99))
O Somewhere in Time Christopher Reeve $11.24 Shopping Cart
| Superman - The Movie Christopher Reeve $14.99 1 Napoleon Dynamite
] Superman II Christopher Reeve 314,99
. Superman III Christopher Reeve $14.99 Total:$14.06
Update Shopping Cart Checkout
L
Done

The administration screens take use jBPM to manage the approval and shipping cycle for
orders. The business process may even be changed dynamically, by selecting a different process
definition!

51

Chapter 1. Seam Tutorial

Manage Orders

Order Management

Welcome, Albus

Pending orders are shown here on the order management screen for the store Thank you for choosing
manager to process. Rather than being data-driven, order management is the DVD Store
process-driven. A JBoss JBPM process assigns fulfillment tasks to the manager

based on the wversion of the process loaded. The manager can change the ‘
version of the process at any time using the admin options box to the right.

Logout |

* Order process 1 sends orders immediately to shipping, where the manager should
ship the order and record the tracking number for the user to see.

* Order process 2 adds an approval step where the manager is first given the Inventory .
. - s 28 sold, 2473 in stock
chance to approve the order before sending it to shipping. In each case, the S

. . X i
status of the order is shown in the customer's order list. $437.63 from 7 orders

* Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.

i Admin Options

Task Assignment
Process Management
Order Id Order Amount Customer Task | ordermanagement3 v |

° $12.99 Hsert ship ‘ Switch Order Process |
7 577.70 user2 ship

Order Acceptance

There are no orders to be accepted.

Shipping
Order Id Order Amount Customer
5 94,95 userl
Done
TODO

Look in the dvdst or e directory.

1.8. An example of Seam with Hibernate: the Hibernate
Booking example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative architecture
that uses Hibernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hi ber nat e directory.

52

A RESTful Seam application: the Blog example

1.9. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side.
However, server-side state is not always appropriate, especially in for functionality that serves
up content. For this kind of problem we often need to let the user bookmark pages and have a
relatively stateless server, so that any page can be accessed at any time, via the bookmark. The
Blog example shows how to a implement RESTful application using Seam. Every page of the
application can be bookmarked, including the search results page.

) JBoss Seam Blog - Mozilla Firefox
Fle Edit View Go Bookmarks Tools Help delicio.us £

@ 0D

*. http://localhost:8080/seam-blog/entry.seam?blogEntryld=i18n ~| @ co

| |[Search]

JBoss Seam Blog

An example of a RESTful Seam application

Internationalizaetion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolere magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laberis nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mallit anim id est laborum.

[Posted on 5/01/2006 17:03:00]

1Boss Seam Blog: [Al posts][Recent posts|[VWrite new post]
Total pageviews: 1007

The Blog example demonstrates the use of "pull"-style MVC, where instead of using action listener
methods to retrieve data and prepare the data for the view, the view pulls data from components
as it is being rendered.

1.9.1. Using "pull"-style MVC

This snippet from the i ndex. xht nl facelets page displays a list of recent blog entries:

53

Chapter 1. Seam Tutorial

Example 1.25.

<h:dataTable value="#{blog.recentBlogEntries}" var="blogEntry" rows="3">
<h:column>
<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>
<h:outputText escape="false"
value="#{blogEntry.excerpt==null ? blogEntry.body : blogEntry.excerpt}"/>
</div>
<p>
<h:outputLink value="entry.seam" rendered="#{blogEntry.excerpt!=null}">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
Read more...
</h:outputLink>
</p>
<p>
[Posted on
<h:outputText value="#{blogEntry.date}">
<f.convertDateTime timeZone="#{blog.timeZone}"
locale="#{blog.locale}" type="both"/>
</h:outputText>]

<h:outputLink value="entry.seam">[Link]
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
</h:outputLink>
</p>
</div>
</h:column>
</h:dataTable>

If we navigate to this page from a bookmark, how does the data used by the <h: dat aTabl e>
actually get initialized? Well, what happens is that the Bl og is retrieved lazily—"pulled"—when
needed, by a Seam component named bl og. This is the opposite flow of control to what is usual
in traditional web action-based frameworks like Struts.

Example 1.26.

@Name("blog")
@Scope(ScopeType.STATELESS)
@AutoCreate

public class BlogService

54

Bookmarkable search results page

@In EntityManager entityManager;

@Unwrap
public Blog getBlog()
{
return (Blog) entityManager.createQuery("select distinct b from Blog b left join fetch
b.blogEntries")
.setHint("org.hibernate.cacheable", true)
.getSingleResult();

11 This component uses a seam-managed persistence context. Unlike the other examples
we've seen, this persistence context is managed by Seam, instead of by the EJB3 container.
The persistence context spans the entire web request, allowing us to avoid any exceptions
that occur when accessing unfetched associations in the view.

2 The @nw ap annotation tells Seam to provide the return value of the method—the
Bl og—instead of the actual Bl ogSer vi ce component to clients. This is the Seam manager
component pattern.

This is good so far, but what about bookmarking the result of form submissions, such as a search
results page?

1.9.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog
entries. This is defined in a file, menu. xht m , included by the facelets template, t enpl at e. xht ni :

Example 1.27.

<div id="search">
<h:form>
<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="/search.xhtml"/>
</h:form>
</div>

To implement a bookmarkable search results page, we need to perform a browser redirect after
processing the search form submission. Because we used the JSF view id as the action outcome,

55

Chapter 1. Seam Tutorial

Seam automatically redirects to the view id when the form is submitted. Alternatively, we could
have defined a navigation rule like this:

<navigation-rule>
<navigation-case>
<from-outcome>searchResults</from-outcome>
<to-view-id>/search.xhtml</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

Then the form would have looked like this:

<div id="search">
<h:form>
<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="searchResults"/>
</h:form>
</div>

But when we redirect, we need to include the values submitted with the form as
request parameters, to get a bookmarkable URL like http://1 ocal host: 8080/ seam bl og/
sear ch. seanPsear chPat t er n=seam JSF does not provide an easy way to do this, but Seam
does. We use a Seam page parameter, defined in VEB- | NF/ pages. xni :

Example 1.28.

<pages>
<page view-id="/search.xhtml">
<param name="searchPattern" value="#{searchService.searchPattern}"/>
</page>

</pages>
This tells Seam to include the value of #{searchService.searchPattern} as a request

parameter named sear chPat t er n when redirecting to the page, and then re-apply the value of
that parameter to the model before rendering the page.

The redirect takes us to the sear ch. xht mi page:

56

Bookmarkable search results page

<h:dataTable value="#{searchResults}" var="blogEntry">
<h:column>
<div>
<h:outputLink value="entry.seam">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
#{blogEntry.title}
</h:outputLink>
posted on
<h:outputText value="#{blogEntry.date}">
<f.convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>
</div>
</h:column>
</h:dataTable>

Which again uses "pull”-style MVC to retrieve the actual search results:

@Name("searchService")
public class SearchService

{

@In
private EntityManager entityManager;

private String searchPattern;

@Factory("searchResults")
public List<BlogEntry> getSearchResults()

{
if (searchPattern==null)
{
return null;
}
else
{
return entityManager.createQuery("select be from BlogEntry be ™ +
"where lower(be.title) like :searchPattern " +
"lower(be.body) like :searchPattern order by be.date desc")
.setParameter("searchPattern", getSqlSearchPattern())
.setMaxResults(100)
.getResultList();
}

57

Chapter 1. Seam Tutorial

private String getSqlSearchPattern()
{

return searchPattern==null ? " :
'%' + searchPattern.toLowerCase().replace(™, '%").replace('?',' ") + '%";

public String getSearchPattern()
{

return searchPattern;

public void setSearchPattern(String searchPattern)

{

this.searchPattern = searchPattern;

}

1.9.3. Using "push"-style MVC in a RESTful application

Very occasionally, it makes more sense to use push-style MVC for processing RESTful pages,
and so Seam provides the notion of a page action. The Blog example uses a page action for the
blog entry page, ent ry. xht nl . Note that this is a little bit contrived, it would have been easier to
use pull-style MVC here as well.

The ent ryAct i on component works much like an action class in a traditional push-MVC action-
oriented framework like Struts:

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction

{

@In(create=true)
private Blog blog;

@Out
private BlogEntry blogEntry;

public void loadBlogEntry(String id) throws EntryNotFoundException

{
blogEntry = blog.getBlogEntry(id);
if (blogEntry==null) throw new EntryNotFoundException(id);

58

Using "push”-style MVC in a RESTful
application

Page actions are also declared in pages. xni :

<pages>

<page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry(blogEntry.id)}">
<param name="blogEntryld" value="#{blogEntry.id}"/>
</page>

<page view-id="/post.xhtml" action="#{loginAction.challenge}'/>
<page view-id="*" action="#{blog.hitCount.hit}"/>

</pages>

Notice that the example is using page actions for some other functionality—the login challenge,
and the pageview counter. Also notice the use of a parameter in the page action method binding.
This is not a standard feature of JSF EL, but Seam lets you use it, not just for page actions, but
also in JSF method bindings.

When the entry. xht nl page is requested, Seam first binds the page parameter bl ogEntryl d
to the model, then runs the page action, which retrieves the needed data—the bl ogEnt r y—and
places it in the Seam event context. Finally, the following is rendered:

<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>
<h:outputText escape="false" value="#{blogEntry.body}"/>
</div>
<p>
[Posted on
<h:outputText value="#{blogEntry.date}">
<f.convertDateTime timezone="#{blog.timeZone}"
locale="#{blog.locale}" type="both"/>
</h:outputText>]
</p>
</div>

59

Chapter 1. Seam Tutorial

If the blog entry is not found in the database, the Ent r yNot FoundExcept i on exception is thrown.
We want this exception to result in a 404 error, not a 505, so we annotate the exception class:

@ApplicationException(rollback=true)
@HTttpError(errorCode=HttpServletResponse.SC_NOT_FOUND)
public class EntryNotFoundException extends Exception

{
EntryNotFoundException(String id)
{
super("entry not found: " + id);
}
}

An alternative implementation of the example does not use the parameter in the method binding:

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction

{

@In(create=true)
private Blog blog;

@In @Out
private BlogEntry blogEntry;

public void loadBlogEntry() throws EntryNotFoundException

{
blogEntry = blog.getBlogEntry(blogEntry.getld());
if (blogEntry==null) throw new EntryNotFoundException(id);

}

<pages>

<page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry}">
<param name="blogEntryld" value="#{blogEntry.id}"/>
</page>

60

Using "push”-style MVC in a RESTful
application
</pages>

It is a matter of taste which implementation you prefer.

61

62

Chapter 2.

Getting started with Seam, using
seam-gen

The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse
project, generate some simple Seam skeleton code, and reverse engineer an application from a
preexisting database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next
time you find yourself trapped in an elevator with one of those tedious Ruby guys ranting about
how great and wonderful his new toy is for building totally trivial applications that put things in
databases.

In this release, seam-gen works best for people with JBoss AS. You can use the generated project
with other J2EE or Java EE 5 application servers by making a few manual changes to the project
configuration.

You can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in
conjunction with Eclipse for debugging and integration testing. If you don't want to install Eclipse,
you can still follow along with this tutorial—all steps can be performed from the command line.

Seam-gen is basically just a big ugly Ant script wrapped around Hibernate Tools, together with
some templates. That makes it easy to customize if you need to.

2.1. Before you start

Make sure you have JDK 5 or JDK 6, JBoss AS 4.2 and Ant 1.6, along with recent versions of
Eclipse, the JBoss IDE plugin for Eclipse and the TestNG plugin for Eclipse correctly installed
before starting. Add your JBoss installation to the JBoss Server View in Eclipse. Start JBoss in
debug mode. Finally, start a command prompt in the directory where you unzipped the Seam
distribution.

JBoss has sophisticated support for hot re-deployment of WARs and EARs. Unfortunately,
due to bugs in the JVM, repeated redeployment of an EAR—which is common during
development—eventually causes the JVM to run out of perm gen space. For this reason, we
recommend running JBoss in a JVM with a large perm gen space at development time. If you're
running JBoss from JBoss IDE, you can configure this in the server launch configuration, under
"VM arguments”. We suggest the following values:

-Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512

If you don't have so much memory available, the following is our minimum recommendation:

63

Chapter 2. Getting started wi...

-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256

If you're running JBoss from the command line, you can configure the JVM options in bi n/

run. conf.

If you don't want to bother with this stuff now, you don't have to—come back to it later, when you
get your first Qut Of Menor yExcept i on.

2.2. Setting up a new Eclipse project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation
directory, Eclipse workspace, and database connection. It's easy, just type:

cd jboss-seam-2.0.x
seam setup

And you will be prompted for the needed information:

~/workspace/jboss-seam$./seam setup
Buildfile: build.xml

init;

setup:

[echo] Welcome to seam-gen :-)

[input] Enter your Java project workspace (the directory that contains your Seam projects)

[C:/Projects] [C:/Projects]
/Users/pmuir/workspace

[input] Enter your JBoss home directory [C:/Program Files/jboss-4.2.2.GA] [C:/Program Files/
jboss-4.2.2.GA]
/Applications/jboss-4.2.2.GA

[input] Enter the project name [myproject] [myproject]
helloworld

[echo] Accepted project name as: helloworld

[input] Select a RichFaces skin (not applicable if using ICEFaces) [blueSky] ([blueSky], classic,
ruby, wine, deepMarine, emeraldTown, sakura, DEFAULT)

[input] Is this project deployed as an EAR (with EJB components) or a WAR (with no EJB
support) [ear] ([ear], war,)

[input] Enter the Java package name for your session beans [com.mydomain.helloworld]
[com.mydomain.helloworld]

64

Setting up a new Eclipse project

org.jboss.helloworld
[input] Enter the Java package name for your entity beans [org.jboss.helloworld]
[org.jboss.helloworld]

[input] Enter the Java package name for your test cases [org.jboss.helloworld.test]
[org.jboss.helloworld.test]

[input] What kind of database are you using? [hsql] ([hsql], mysql, oracle, postgres, mssq|,
db2, sybase, enterprisedb, h2)
mysq|

[input] Enter the Hibernate dialect for your database [org.hibernate.dialect. MySQLDialect]
[org.hibernate.dialect. MySQLDialect]

[input] Enter the filesystem path to the JDBC driver jar [lib/hsgldb.jar] [lib/hsqldb.jar]
/Users/pmuir/java/mysql.jar
[input] Enter JDBC driver class for your database [com.mysql.jdbc.Driver]
[com.mysql.jdbc.Driver]

[input] Enter the JDBC URL for your database [jdbc:mysql:///test] [jdbc:mysql:///test]
jdbc:mysql:///helloworld

[input] Enter database username [sa] [sa]
pmuir

[input] Enter database password [] []

[input] skipping input as property hibernate.default_schema.new has already been set.
[input] Enter the database catalog name (it is OK to leave this blank) [] []

[input] Are you working with tables that already exist in the database? [n] (y, [n],)

y

[input] Do you want to drop and recreate the database tables and data in import.sgl each time
you deploy? [n] (y, [n],)
n

[input] Enter your ICEfaces home directory (leave blank to omit ICEfaces) [] []

[propertyfile] Creating new property file: /Users/pmuir/workspace/jboss-seam/seam-gen/
build.properties

[echo] Installing JDBC driver jar to JBoss server

[echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

Total time: 1 minute 32 seconds
~/workspace/jboss-seam $

The tool provides sensible defaults, which you can accept by just pressing enter at the prompt.

65

Chapter 2. Getting started wi...

The most important choice you need to make is between EAR deployment and WAR deployment
of your project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support
EJB 3.0, but may be deployed to a J2EE environment. The packaging of a WAR is also simpler to
understand. If you installed an EJB3-ready application server like JBoss, choose ear . Otherwise,
choose war . We'll assume that you've chosen an EAR deployment for the rest of the tutorial, but
you can follow exactly the same steps for a WAR deployment.

If you are working with an existing data model, make sure you tell seam-gen that the tables already
exist in the database.

The settings are stored in seam gen/ bui | d. properti es, but you can also modify them simply
by running seam set up a second time.

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new-project

C:\Projects\jboss-seam>seam new-project
Buildfile: build.xml

new-project:
[echo] A new Seam project named 'helloworld' was created in the C:\Projects directory
[echo] Type 'seam explode' and go to http://localhost:8080/helloworld
[echo] Eclipse Users: Add the project into Eclipse using File > New > Project and select General
> Project (not Java Project)
[echo] NetBeans Users: Open the project in NetBeans

BUILD SUCCESSFUL
Total time: 7 seconds
C:\Projects\jboss-seam>

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and
generates all needed resources and configuration files, a facelets template file and stylesheet,
along with Eclipse metadata and an Ant build script. The Eclipse project will be automatically
deployed to an exploded directory structure in JBoss AS as soon as you add the project using
New -> Project... -> General -> Project -> Next,typingthe Proj ect nane (hell oworld
in this case), and then clicking Fi ni sh. Do not select Java Pr oj ect from the New Project wizard.

If your default JDK in Eclipse is not a Java SE 5 or Java SE 6 JDK, you will need to select a Java
SE 5 compliant JDK using Proj ect -> Properties -> Java Conpil er.

Alternatively, you can deploy the project from outside Eclipse by typing seam expl ode.

66

Creating a new action

Go to http://1ocal host: 8080/ hel | owor | d to see a welcome page. This is a facelets page,
vi ew horre. xht nl , using the template vi ew/ | ayout / t enpl at e. xht m . You can edit this page,
or the template, in eclipse, and see the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project
directory. They are mostly standard Java EE stuff, the stuff you need to create once and then
never look at again, and they are 90% the same between all Seam projects. (They are so easy
to write that even seam-gen can do it.)

The generated project includes three database and persistence configurations. The
persi stence-test.xnm and inport-test.sqgl files are used when running the TestNG unit
tests against HSQLDB. The database schema and the test data in i nport-test.sql is always
exported to the database before running tests. The nyproj ect - dev-ds. xnl , persi stence-
dev. xm and inport-dev.sqgl files are for use when deploying the application to your
development database. The schema might be exported automatically at deployment, depending
upon whether you told seam-gen that you are working with an existing database. The nypr oj ect -
prod-ds. xm , per si st ence- prod. xm andi nport - pr od. sql files are for use when deploying the
application to your production database. The schema is not exported automatically at deployment.

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can
create a simple web page with a stateless action method in Java. If you type:

seam new-action

Seam will prompt for some information, and generate a new facelets page and Seam component
for your project.

C:\Projects\jboss-seam>seam new-action
Buildfile: build.xml

validate-workspace:
validate-project:
action-input:
[input] Enter the Seam component hame
ping
[input] Enter the local interface name [Ping]

[input] Enter the bean class name [PingBean)

[input] Enter the action method name [ping]

67

Chapter 2. Getting started wi...

[input] Enter the page name [ping]

setup-filters:

new-action:
[echo] Creating a new stateless session bean component with an action method
[copy] Copying 1 file to C:\Projects\helloworld\src\action\org\jboss\helloworld
[copy] Copying 1 file to C:\Projects\helloworld\src\action\org\jboss\helloworld
[copy] Copying 1 file to C:\Projects\helloworld\src\action\org\jboss\helloworld\test
[copy] Copying 1 file to C:\Projects\helloworld\src\action\org\jboss\helloworld\test
[copy] Copying 1 file to C:\Projects\helloworld\view
[echo] Type 'seam restart' and go to http://localhost:8080/helloworld/ping.seam

BUILD SUCCESSFUL
Total time: 13 seconds
C:\Projects\jboss-seam>

Because we've added a new Seam component, we need to restart the exploded directory
deployment. You can do this by typing seam restart, or by running the rest art target in the
generated project bui | d. xm file from inside Eclipse. Another way to force a restart is to edit
the file r esour ces/ META- | NF/ appl i cati on. xm in Eclipse. Note that you do not need to restart
JBoss each time you change the application.

Now go to http:/ /1 ocal host: 8080/ hel | owor | d/ pi ng. seamand click the button. You can see
the code behind this action by looking in the project sr ¢ directory. Put a breakpoint in the pi ng()
method, and click the button again.

Finally, locate the Pi ngTest . xn file in the test package and run the integration tests using the
TestNG plugin for Eclipse. Alternatively, run the tests using seam t est or the t est target of the
generated build.

2.4. Creating a form with an action

The next step is to create a form. Type:

seam new-form

C:\Projects\jboss-seam>seam new-form
Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

68

Generating an application from an existing
database

validate-project:

action-input:

[input] Enter the Seam component name
hello

[input] Enter the local interface name [Hello]

[input] Enter the bean class name [HelloBean]
[input] Enter the action method name [hello]

[input] Enter the page name [hello]

setup-filters:

new-form:
[echo] Creating a new stateful session bean component with an action method
[copy] Copying 1 file to C:\Projects\hello\src\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\com\hello\test
[copy] Copying 1 file to C:\Projects\hello\view
[copy] Copying 1 file to C:\Projects\hello\src\com\hello\test
[echo] Type 'seam restart' and go to http://localhost:8080/hello/hello.seam

BUILD SUCCESSFUL
Total time: 5 seconds
C:\Projects\jboss-seam>

Restart the application again, and go to http://1 ocal host: 8080/ hel | owor | d/ hel | 0. seam
Then take a look at the generated code. Run the test. Try adding some new fields to the form and
Seam component (remember to restart the deployment each time you change the Java code).

2.5. Generating an application from an existing
database

Manually create some tables in your database. (If you need to switch to a different database, just
run seam set up again.) Now type:

seam generate-entities

69

Chapter 2. Getting started wi...

Restart the deployment, and go to htt p://1 ocal host: 8080/ hel | owor | d. You can browse the
database, edit existing objects, and create new objects. If you look at the generated code, you'l
probably be amazed how simple it is! Seam was designed so that data access code is easy to
write by hand, even for people who don't want to cheat by using seam-gen.

2.6. Generating an application from existing JPA/EJB3
entities

Place your existing, valid entity classes inside the sr ¢/ nodel . Now type
seam generate-ui

Restart the deployment, and go to htt p: / /| ocal host : 8080/ hel | owor | d.

2.7. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First,
we need to remove the exploded directory by running seam unexpl ode. To deploy the EAR, we
can type seam depl oy at the command prompt, or run the depl oy target of the generated project
build script. You can undeploy using seam undepl oy or the undepl oy target.

By default, the application will be deployed with the dev profile. The EAR will include the
persi stence-dev.xm and i nport-dev. sql files, and the nyproj ect - dev-ds. xnm file will be
deployed. You can change the profile, and use the prod profile, by typing

seam -Dprofile=prod deploy

You can even define new deployment profiles for your application. Just add appropriately
named files to your project—for example, per si st ence- st agi ng. xm , i mpor t - st agi ng. sql and
nmypr oj ect - st agi ng- ds. xnl —and select the name of the profile using - Dpr of i | e=st agi ng.

2.8. Seam and incremental hot deployment

When you deploy your Seam application as an exploded directory, you'll get some support for
incremental hot deployment at development time. You need to enable debug mode in both Seam
and Facelets, by adding this line to conponent s. xm :

<core:init debug="true">

Now, the following files may be redeployed without requiring a full restart of the web application:

70

Using Seam with JBoss 4.0

« any facelets page
e any pages. xni file

But if we want to change any Java code, we still need to do a full restart of the application. (In JBoss
this may be accomplished by touching the top level deployment descriptor: appl i cati on. xn for
an EAR deployment, or web. xm for a WAR deployment.)

But if you really want a fast edit/compile/test cycle, Seam supports incremental redeployment
of JavaBean components. To make use of this functionality, you must deploy the JavaBean
components into the WEB- | NF/ dev directory, so that they will be loaded by a special Seam
classloader, instead of by the WAR or EAR classloader.

You need to be aware of the following limitations:

« the components must be JavaBean components, they cannot be EJB3 beans (we are working
on fixing this limitation)

* entities can never be hot-deloyed

« components deployed via conponent s. xmi may not be hot-deployed

« the hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/
dev

* Seam debug mode must be enabled and j boss- seam debug. j ar must be in VEB- I NF/ | i b
* You must have the Seam filter installed in web.xml
* You may see errors if the system is placed under any load and debug is enabled.

If you create a WAR project using seam-gen, incremental hot deployment is available out of
the box for classes in the src/acti on source directory. However, seam-gen does not support
incremental hot deployment for EAR projects.

2.9. Using Seam with JBoss 4.0

Seam 2.0 was developed for JavaServer Faces 1.2. When using JBoss AS, we recommend using
JBoss 4.2, which bundles the JSF 1.2 reference implementation. However, it is still possible to use
Seam 2.0 on the JBoss 4.0 platform. There are two basic steps required to do this: install an EJB3-
enabled version of JBoss 4.0 and replace MyFaces with the JSF 1.2 reference implementation.
Once you complete these steps, Seam 2.0 applications can be deployed to JBoss 4.0.

2.9.1. Install JBoss 4.0

JBoss 4.0 does not ship a default configuration compatible with Seam. To run Seam, you must
install JBoss 4.0.5 using the JEMS 1.2 installer with the ejb3 profile selected. Seam will not run
with an installation that doesn't include EJB3 support. The JEMS installer can be downloaded
from http://labs.jboss.com/jemsinstaller/downloads.

71

http://labs.jboss.com/jemsinstaller/downloads

Chapter 2. Getting started wi...

2.9.2. Install the JSF 1.2 RI

The web configuration for JBoss 4.0 can be found in the server/ def aul t/ depl oy/ j bossweb-
tontat 55. sar. You'll need to delete nyf aces-api . j ar any nyfaces-inpl.jar from the j sf-
li bs directory. Then, you'll need to copy j sf-api.jar,jsf-inpl.jar, el-api.jar, and el -
ri.jar tothatdirectory. The JSF JARs can be found in the Seam | i b directory. The el JARs can
be obtained from the Seam 1.2 release.

You'll also need to edit the conf/ web. xni , replacing nyf aces-i npl . j ar withjsf-inpl.jar.

72

Chapter 3.

Getting started with Seam, using
JBoss Tools

JBoss Tools is a collection of Eclipse plugins. JBoss Tools a project creation wizard for Seam,
Content Assist for the Unified Expression Language (EL) in both facelets and Java code, a
graphical editor for jPDL, a graphical editor for Seam configuration files, support for running Seam
integration tests from within Eclipse, and much more.

In short, if you are an Eclipse user, then you'll want JBoss Tools!

JBoss Tools, as with seam-gen, works best with JBoss AS, but it's possible with a few tweaks to
get your app running on other application servers. The changes are much like those described
for seam-gen later in this reference manual.

3.1. Before you start

Make sure you have JDK 5, JBoss AS 4.2, Eclipse 3.3, the JBoss Tools plugins (at least Seam
Tools, the Visual Page Editor, jJBPM Tools and JBoss AS Tools) and the TestNG plugin for Eclipse
correctly installed before starting.

TODO - detail where the update sites are.

3.2. Setting up a new Seam project

Start up Eclipse and select the Seam perspective.

Go to File -> New -> Seam Web Project.

73

Chapter 3. Getting started wi...

Show In EW 2
Copy =4
Copy Qualified Name
- Paste BV
& Delete E3
Build Path 2
£43 Import...
4 5 Export...
29 Refresh F5
=< Properties A

m

Lerver

First, enter a name for your new project. For this tutorial, we're going to use hel | owor 1 d .

l

& Interface
&7 Source Folder
" Folder
¥ File
Seam Action
Seam Form
Seam Entity
Seam Conversation
Seam Cenerate Entities

% Example...

= Other...

B 53N

Now, we need to tell JBoss Tools about JBoss AS. This is a two stage process, first we need to
define a runtime, make sure you select JBoss AS 4.2:

74

Setting up a new Seam project

88 New Server Runtime

Mew Server Runtime

Define a new installed server runtime environment

Runtimes are used at build time to compile projects.

Download additional server adapters

Select the runtime type:

type filter text

b = Apache

b [Basic

b [Caucho

b = IBM

¥ [JBoss, a division of Red Hat
".J JBoss 3.2 Runtime
".J JBoss 4.0 Runtime
".J JBoss 4.2 Runtime

<J IRnss Menlov-0nlv Runtime

JBoss Application Server 4.2

E Also create new local server

(P——

4|

@ e ()

Enter a name for the runtime, and locate it on your hard drive:

Firish

Cancel

75

Chapter 3. Getting started wi...

MMM New Server Runtime

JBoss Runtime Wizard

] L]
e 4.2
A JBoss Server runtime references a JBoss installation directory.
It can be used to set up classpaths for projects which depend on this runtime,
as well as by a "server” which will be able to start and stop instances of JBoss.
Mame
|Boss AS 4.2.2.CA
Home Directory
fApplications/jboss-4.2.2.04 Browse...
JIRE
VM 1.5.0 (MacOS X Default) v IRE
Configuration
1 all
'ﬁ default
'ﬁ minimal
) < Back Next = Finish Cance
P

Next, we need to define a server JBoss Tools can deploy the project to. Make sure to again select
JBoss AS 4.2, and also the runtime you just defined:

76

Setting up a new Seam project

MY M

MNew Server

Define a New Server

Choose the type of server to create

Lerver's host name: |ocalhost

Select the server type:

w

Diown load additional server adapters

type filter text

=~ Apache

= Basic

= Caucho

(== IBM

=~ JBoss, a division of Red Hat
“J JBoss AS 3.2
“J JBoss AS 4.0
“J JBoss AS 4.2

",J JBoss Deploy-0Only Server
(=T [y Ai =

JBoss Application Server 4.2

Server runtime: JBoss AS 4.2.2.GA

s < Back

On the next screen give the server a name, and hit Finish:

MNext >

e

. Installed Runtimes...

Finish Cance

77

Chapter 3. Getting started wi...

OO0 New Server

Create a new JBoss Server B

o 4.2

A JBoss Server manages starting and stopping instances of JBoss.
It manages command line arguments and keeps track of which modules have been deployed.

Marme
|Boss 4.2.2.C8 Server

Runtime Information

If the runtime information below is incorrect, please press back, Installed Runtimes...,
and then Add to create a new runtime from a different location.

Home Directory fApplications/jboss-4.2.2.GA
JRE JSystem/Library/Frameworks /JavavM.framework /Versions/1.5.0/Home
Configuration default

Login Credentials

JMX Console Access

User Mame

Password

Ceployment

Deploy Directory fApplications/jboss-4.2.2.GA/server/default/deploy Browse...
(7) < Back Next > Finish Cance

Make sure the runtime and server you just created are selected, select Dynamic Web Project with
Seam 2.0 (technology preview) and hit Next:

78

Setting up a new Seam project

L8NS New Seam Project

Seam Web Project

Create standalone Seam Web Project

Project name: helloworld

Project contents:

1"' Use default

Directory: JfUsers/pmuir/workspace-jbug/helloworld [Browse... |

Target Runtime

| New.. |

IBoss AS 4.2.2.GA =
Target Server
|Boss 4.2.2.CA Server = [New.. |
Configurations
Dynamic Web Project with Seam 2.0 (technology preview) =
@ < Back MNext = Finish Cancel

The next 3 screens allow you to further customize your new project, but for us the defaults are
fine. So just hit

<empahsis>Next</empahsis>

until you reach the final screen.

79

Chapter 3. Getting started wi...

The first step here is to tell JBoss Tools about the Seam download you want to use. Add a new
Seam Runtime - make sure to give it a name, and select 2.0 as the version:

Mew Seam Runtime

Seam Runtime

Create a Seam Runtime

Marmne: Seam 2.0.2.CR1

Version: 2.0

rd
o
el

Home Folder: JUsers/pmuir/workspace /jboss-seam _R1

The most important choice you need to make is between EAR deployment and WAR deployment
of your project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support
EJB 3.0, but may be deployed to a J2EE environment. The packaging of a WAR is also simpler to
understand. If you installed an EJB3-ready application server like JBoss, choose EAR. Otherwise,
choose WAR. We'll assume that you've chosen a WAR deployment for the rest of the tutorial, but
you can follow exactly the same steps for a EAR deployment.

Next, select your database type. We'll assume you have MySQL installed, with an existing
schema. You'll need to tell JBoss Tools about the database, select MySQL as the database, and
create a new connection profile. Select Generic JDBC Connection:

80

1 ¥

Setting up a new Seam project

MY M MNew Connection Profile

Wizard Selection Page

Please select the connection profile type:

E4 Derby Embedded Database
£4 Generic JDBC Connection

Ej HSQLDE Connection Profile
Ej PostgreSQL JDBC Connection
£4 Sybase ASA

L3 < Back MNext

Give it a name:

Finish

Cance

81

=
-
Bt
g

Chapter 3. Getting started wi...

OO New JDBC Connection Profile

Create connection profile

Please enter detailed information

Marme: MySQL Hellowaorld

Description(optional):

p— Auto-connect at startup.

| < Back Next =

Finish

_""M;‘l.-"

Cancel

82

Setting up a new Seam project

JBoss Tools doesn't come with drivers for any databases, so you need to tell JBoss Tools where

the MySQL JDBC driver is. Tell it about the driver by clicking

Locate MySQL 5, and hit Add...:

YOy Oy Driver Definitions

Available Driver Definitions

Add, edit, or remove driver definitions to manage available driver definitions.

-

E‘%‘ MySQL Add...
C& 4.0 .
E,Eﬁ 41 Edit...
3 5.0
Remowve
G sa
E;@a Dracle Copy
7 Cance 0K
Pl
Choose the MySQL JDBC Driver template:
OO0 New Driver Definition
Specify a Driver Template and Definition Name
Select an available driver template and provide a name for the new driver definition.
Available Driver Templates
E%e Database
0% mysaL
£% 5.0
MySQL JDBC Driver
Driver Name:
MySQL JDBC Driver
f Edit Mew Driver Definition Immediately
[_‘E] Cance OK
P

83

Chapter 3. Getting started wi...

Locate the jar on your computer by choosing Edit Jar/Zip:

Provide Driver Details

Edit Driver Definition

Madify details in the fields below to provide a unigue name, a list of required jars, and set any available and applicable property values.

Driver Name

MySQL JOBC Driver
Driver Type:

MySQL JOBC Driver
Driver File(s):

SUsersfpmuir/java/mysgl.jar

g
Properties:

Property

Ceneral
Connection URL
Database Name
Driver Class
Password
User ID

jdbc:mysqgl:/ flocalhost:3306/database
database
com.mysql.jdbe.Driver

root

Edit Jar/Zip

Remove Jar/Zip

Review the username and password used to connect, and if correct, hit Ok.

Finally, choose the newly created driver:

84

Setting up a new Seam project

Driver Definitions

Available Driver Definitions

Add, edit, or remove driver definitions to manage available driver definitions,

L MySOL .
G a0

O 4.1 Edit...

Gk 5.0

s

MySQL JDBC Driver Remove

G 5.1

o

i R i o nY

7

n
|'_'h

If you are working with an existing data model, make sure you tell JBoss Tools that the tables
already exist in the database.

Review the username and password used to connect, test the connection using the Test
Connection button, and if it works, hit Finish:

Finally, review the package names for your generated beans, and if you are happy, click Finish:

85

Chapter 3. Getting started wi...

Mew Seam Project

Seam Facet

Configure Seam Facet Settings

General

Seam Runtime: Seam 2.0.1.CA =

Deploy as: | WAR EAR

Database

Database Type: MyS0L

Connection profile: MySOL Hellowarld = Edit.. ey

Database Schema Name:

Catabase Catalog Name:

DB Tables already exists in database:

Recreate database tables and data on deploy:
Code Generation

Session Bean Package Name: helloworld.session
Entity Bean Package Name: helloworld.entity

Test Package Name: helloworld. test

JBoss has sophisticated support for hot re-deployment of WARs and EARs. Unfortunately,
due to bugs in the JVM, repeated redeployment of an EAR—which is common during
development—eventually causes the JVM to run out of perm gen space. For this reason, we
recommend running JBoss in a JVM with a large perm gen space at development time. We
suggest the following values:

86

4k

Setting up a new Seam project

-Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512

If you don't have so much memory available, the following is our minimum recommendation:

-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256

Locate the server in the JBoss Server View, right click on the server and select Edit Launch
Configuration:

Clean...

& Twiddle Server
22 Edit Launch Configuration

Server State I Add and Remove Projects...
“J JBoss 4.2.2.GA Serve | o Stopped

[EA Problems

Seam Componen

Then, alter the VM arguements:

87

Chapter 3. Getting started wi...

OO0 Properties for JBoss 4.2.2.CA Server

Edit launch configuration properties
Below is the launch configuration properties for starting, stopping, and polling JBoss Servers for their status. t I ;a

If your server issecure, you will want to ensure the appropriate password parameters are passed in.

Name: |Boss 4.2.2.CA Server

(= Arguments ™. % Classpath\l T:E.._/; Snurce\l E Envirnnmenﬂ E@JRE} E=| Cnmmorﬂ

Program arguments:
--configuration=default
Variables...
WM arguments:
-Xms5Ll2m -XmxL024m -¥X:PermSize=256m -XX:MaxPermSize=512
Variables...
Working directory:
) Default: fApplications/jbdevstudio/eclipse/Eclipse.app /Contents /Mac05
i Other: fApplications/jboss-4.2.2.G4A/bin
Waorkspace... File System... Variables...
Apply Revert
Cance 0K

If you don't want to bother with this stuff now, you don't have to—come back to it later, when you
get your first Qut Of Menmor yExcept i on.

To start JBoss, and deploy the project, just right click on the server you created, and click Start,
(or Debug to start in debug mode):

88

Creating a new action

~ psat
%5 Debug
W Stop
L Publish
Clean...

& Twiddle Server

2. Problems |~ZI 1) Edit Launch Configuration m

Server [y Add and Remove Projects... |
“J JBoss 4.2.

Don't get scared by the XML configuration documents that were generated into the project
directory. They are mostly standard Java EE stuff, the stuff you need to create once and then
never look at again, and they are 90% the same between all Seam projects.

3.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can
create a simple web page with a stateless action method in Java.

First, select New -> Seam Action:

| ' .
ve h*”"“‘“;_ (2 Seam Web Project
» Zsrel 0 Into F

—

b B srcf _ T Project...

> EEJRE! Open in New Window # Package

= =LAl Open Type Hierarchy F4 & Class

> EiWeb Show In EW -
&= buil | & Interface

b = resq [iZ Copy %C 7 Source Folder
(= sre Copy Qualified Name (% Folder

b= Well & pagre 3BV ¥ File

i hlelc % Delete & ¥ Seam Action

Now, enter the name of the Seam component. JBoss Tools selects sensible defaults for other
fields:

89

Chapter 3. Getting started wi...

Mew Seam Action

Seam Action

Create a new Seam action

Seam Project: helloworld Browse...

Seam component name: ping

POJO class name: Ping

Bean name: FingBean

Method name: ping

Fage name: ping

Package mame: helloworld.session Browse...
(7 Cance Finish

Finally, hit Finish.

Now go to http:/ /I ocal host : 8080/ hel | owor | d/ pi ng. seamand click the button. You can see
the code behind this action by looking in the project sr ¢ directory. Put a breakpoint in the pi ng()
method, and click the button again.

Finally, open the hel | owor | d-t est project, locate Pi ngTest class, right click on it, and choose
Run As -> TestNG Test:

90

Creating a form with an action

. = L0 udalmea Marme
v '[5"'- helloworld-test B= Py

k [test-src LE Paste ®V

v #H helloworld.test # Delete 3

> PingTest.java
) PingTestja Build Path >
|X| PinaTestxml _

b (= META-INF Source LHS >
components.prope Refactor BT >
seam.properties

tug Import...
b =i Referenced Libraries s Imp
. 3 Export...
p =0 JRE System Library VM
r & lib - References >
PEEE——— .
Declarations >
= Properties B3 (= ::
... — &
Property value | ¥ SEfrESh F5
¥ Info Assign Working Sets...
derived false
editable true
last modified | April 12, 2| Debug As >
linked false Prﬂ_ﬁ|E As >
——— tiemeeimd Validate

3.4. Creating a form with an action

The first step is to create a form. Select New -> Seam Form:

b > hellowarld | T
b & helloworld-te AL A
Co Into
Open in New Window
Open Type Hierarchy F4
Show In HEW »
= Copy #C
Copy Qualified Name
- Paste BV
Delete =
Build Path »

Now, enter the name of the Seam component. JBoss Tools
fields:

pnal action methods

w-| 1 Run on Server
" 2 TestNG Test

GXXR
XX N

(2 Open Run Dialog...

> Searmn Web Project
© Project...

H# Package

(& Class

& Interface

&7 Source Folder
[Folder

| File

Seam Action

© Seam Form

™~ _ _ _ F__als

selects sensible defaults for other

91

Chapter 3. Getting started wi...

o T e R e ¥

Mew Seam Form

Seam Form

Create a new Seam form

Seam Project: helloworld Browse...

Seam component name: hello

POJO class name: Hello

Bean name:; HelloBean

Method name: hello

Fage name: hello

Package mame: helloworld.session Browse...
(7) Cance Finish

Go to http:/ /1 ocal host: 8080/ hel | owor | d/ hel | 0. seam Then take a look at the generated
code. Run the test. Try adding some new fields to the form and Seam component (note, you don't
need to restart the app server each time you change the code in src/ act i on as Seam hot reloads
the component for you Section 3.6, “Seam and incremental hot deployment with JBoss Tools”).

3.5. Generating an application from an existing

database

Manually create some tables in your database. (If you need to switch to a different database, create
a new project, and select the correct database). Then, select New -> Seam Generate Entities:

92

Generating an application from an existing
database

|I_I‘=|.?- “

b 2= helloworld — .
b & hetloworid- ML - Seam Web Project o

Go Into Y Project...

Open in New Window ! # Package

Open Type Hierarchy F4 @ Class

Show In HEW > . . & Interface)

2 Copy 3#C & Source Folder

Copy Qualified Name % Folder

‘2 Paste A % File

Delete 32 Seam Action |
Seam Form kL

Build Path) > Seam Entity Ih

SOUTCE -‘faﬂs " Seam Conversation

Refactor NET >

. Seam Generate Entities

JBoss Tools gives you the option to either reverse engineer entities, components and views from a
database schema or to reverse engineer components and views from existing JPA entities. We're
going to do Reverse engieneer from database.

Restart the deployment:
L

r - =
(e JBoss Servg View EE\[L Problems | v Taskq - Seam Com|

Server State Status
-,J JBoss 4.2.2.C0A Serve E‘p Started Synchro

k4 -T- Modules
=L fhelloworld fresources fhelloworld-ds. xmil

—
| helloworld pe
i Event Log J Remove

R PR o Full Publish

- File Filters 54 Incremental Publish

Then go to http://1 ocal host: 8080/ hel | owor | d. You can browse the database, edit existing
objects, and create new objects. If you look at the generated code, you'll probably be amazed
how simple it is! Seam was designed so that data access code is easy to write by hand, even for
people who don't want to cheat by using reverse engineering.

93

Chapter 3. Getting started wi...

3.6. Seam and incremental hot deployment with JBoss
Tools

JBoss Tools supports incremental hot deployment of:

« any facelets page
e any pages. xni file
out of the box.

But if we want to change any Java code, we still need to do a full restart of the application by
doing a Full Publish.

But if you really want a fast edit/compile/test cycle, Seam supports incremental redeployment
of JavaBean components. To make use of this functionality, you must deploy the JavaBean
components into the WEB- | NF/ dev directory, so that they will be loaded by a special Seam
classloader, instead of by the WAR or EAR classloader.

You need to be aware of the following limitations:

» the components must be JavaBean components, they cannot be EJB3 beans (we are working
on fixing this limitation)

« entities can never be hot-deloyed

« components deployed via conponent s. xni may not be hot-deployed

« the hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/
dev

« Seam debug mode must be enabled and j boss- seam debug. j ar must be in VEB- I NF/ | i b
« You must have the Seam filter installed in web.xml
* You may see errors if the system is placed under any load and debug is enabled.

If you create a WAR project using JBoss Tools, incremental hot deployment is available out of
the box for classes in the src/ acti on source directory. However, JBoss Tools does not support
incremental hot deployment for EAR projects.

94

Chapter 4.

The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component.
Components are stateful objects, usually EJBs, and an instance of a component is associated
with a context, and given a name in that context. Bijection provides a mechanism for aliasing
internal component names (instance variables) to contextual names, allowing component trees to
be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

4.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control
context demarcation via explicit Java API calls. Context are usually implicit. In some cases,
however, contexts are demarcated via annotations.

The basic Seam contexts are:

» Stateless context

« Event (or request) context
» Page context

» Conversation context

+ Session context

* Business process context
* Application context

You will recognize some of these contexts from servlet and related specifications. However, two of
them might be new to you: conversation context, and business process context. One reason state
management in web applications is so fragile and error-prone is that the three built-in contexts
(request, session and application) are not especially meaningful from the point of view of the
business logic. A user login session, for example, is a fairly arbitrary construct in terms of the
actual application work flow. Therefore, most Seam components are scoped to the conversation
or business process contexts, since they are the contexts which are most meaningful in terms
of the application.

Let's look at each context in turn.

4.1.1. Stateless context

Components which are truly stateless (stateless session beans, primarily) always live in the
stateless context (this is really a non-context). Stateless components are not very interesting, and
are arguably not very object-oriented. Nevertheless, they are important and often useful.

95

Chapter 4. The contextual com...

4.1.2. Event context

The event context is the "narrowest" stateful context, and is a generalization of the notion of the
web request context to cover other kinds of events. Nevertheless, the event context associated
with the lifecycle of a JSF request is the most important example of an event context, and the
one you will work with most often. Components associated with the event context are destroyed
at the end of the request, but their state is available and well-defined for at least the lifecycle of
the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created
and destroyed just for the invocation.

4.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page.
You can initialize state in your event listener, or while actually rendering the page, and then have
access to it from any event that originates from that page. This is especially useful for functionality
like clickable lists, where the list is backed by changing data on the server side. The state is
actually serialized to the client, so this construct is extremely robust with respect to multi-window
operation and the back button.

4.1.4. Conversation context

The conversation context is a truly central concept in Seam. A conversation is a unit of work from
the point of view of the user. It might span several interactions with the user, several requests,
and several database transactions. But to the user, a conversation solves a single problem. For
example, "book hotel", "approve contract", "create order" are all conversations. You might like to
think of a conversation implementing a single "use case" or "user story", but the relationship is

not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single
user may have multiple conversations in progress at any point in time, usually in multiple windows.
The conversation context allows us to ensure that state from the different conversations does not
collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But
once you get used to it, we think you'll love the notion, and never be able to not think in terms
of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must
be demarcated using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-
running business process, and has the potential to trigger a business process state transition when
it is successfully completed. Seam provides a special set of annotations for task demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation.
This is an advanced feature.

96

Session context

Usually, conversation state is actually held by Seam in the servlet session between
requests. Seam implements configurable conversation timeout, automatically destroying inactive
conversations, and thus ensuring that the state held by a single user login session does not grow
without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running
conversation context, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

4.1.5. Session context

A session context holds state associated with the user login session. While there are some cases
where it is useful to share state between several conversations, we generally frown on the use of
session context for holding components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

4.1.6. Business process context

The business process context holds state associated with the long running business process. This
state is managed and made persistent by the BPM engine (JBoss jBPM). The business process
spans multiple interactions with multiple users, so this state is shared between multiple users, but
in a well-defined manner. The current task determines the current business process instance, and
the lifecycle of the business process is defined externally using a process definition language, so
there are no special annotations for business process demarcation.

4.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context
is mainly useful for holding static information such as configuration data, reference data or
metamodels. For example, Seam stores its own configuration and metamodel in the application
context.

4.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session
or request attributes in the servlet spec. You may bind any value you like to a context variable,
but usually we bind Seam component instances to context variables.

So, within a context, a component instance is identified by the context variable name (this is
usually, but not always, the same as the component name). You may programatically access a
named component instance in a particular scope via the Cont ext s class, which provides access
to several thread-bound instances of the Cont ext interface:

User user = (User) Contexts.getSessionContext().get("'user");

97

Chapter 4. The contextual com...

You may also set or change the value associated with a name:

Contexts.getSessionContext().set("user", user);

Usually, however, we obtain components from a context via injection, and put component
instances into a context via outjection.

4.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other
times, all stateful scopes are searched, in priority order. The order is as follows:

* Event context

» Page context

» Conversation context

» Session context

» Business process context
» Application context

You can perform a priority search by calling Contexts. | ookupl nStateful Contexts().
Whenever you access a component by name from a JSF page, a priority search occurs.

4.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests
originating from the same client. The servlet container simply lets all threads run concurrently
and leaves enforcing threadsafeness to application code. The EJB container allows stateless
components to be accessed concurrently, and throws an exception if multiple threads access a
stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-
grained, synchronous requests. But for modern applications which make heavy use of many fine-
grained, asynchronous (AJAX) requests, concurrency is a fact of life, and must be supported by
the programming model. Seam weaves a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent
requests in a context to be processed concurrently. The event and page contexts are by nature
single threaded. The business process context is strictly speaking multi-threaded, but in practice
concurrency is sufficiently rare that this fact may be disregarded most of the time. Finally, Seam
enforces a single thread per conversation per process model for the conversation context by
serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope
components are always protected by Seam from concurrent access. Seam serializes requests to

98

Seam components

session scope session beans and JavaBeans by default (and detects and breaks any deadlocks
that occur). This is not the default behaviour for application scoped components however, since
application scoped components do not usually hold volatile state and because synchronization at
the global level is extremely expensive. However, you can force a serialized threading model on
any session bean or JavaBean component by adding the @ynchr oni zed annotation.

This concurrency model means that AJAX clients can safely use volatile session and
conversational state, without the need for any special work on the part of the developer.

4.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or
EJB 3.0 enterprise beans. While Seam does not require that components be EJBs and can even
be used without an EJB 3.0 compliant container, Seam was designed with EJB 3.0 in mind and
includes deep integration with EJB 3.0. Seam supports the following component types.

EJB 3.0 stateless session beans

EJB 3.0 stateful session beans

EJB 3.0 entity beans
« JavaBeans

« EJB 3.0 message-driven beans

4.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations.
Therefore, they usually work by operating upon the state of other components in the various
Seam contexts. They may be used as JSF action listeners, but cannot provide properties to JSF
components for display.

Stateless session beans always live in the stateless context.

Stateless session beans can be accessed concurrently as a new instance is used for each
request. Assigning the instance to the request is the responsibility of the EJB3 container (normally
instances will be allocated from a reusable pool meaning that you may find any instance variables
contain data from previous uses of the bean).

Stateless session beans are the least interesting kind of Seam component.

Seam stateless session bean components may be instantiated using Conponent . get | nst ance()
or @n(create=true). They should not be directly instantiated via JNDI lookup or the new
operator.

4.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of
the bean, but also across multiple requests. Application state that does not belong in the database

99

Chapter 4. The contextual com...

should usually be held by stateful session beans. This is a major difference between Seam
and many other web application frameworks. Instead of sticking information about the current
conversation directly in the Ht t pSessi on, you should keep it in instance variables of a stateful
session bean that is bound to the conversation context. This allows Seam to manage the lifecycle
of this state for you, and ensure that there are no collisions between state relating to different
concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide
properties to JSF components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be
bound to the page or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam.

Seam stateful session bean components may be instantiated using Conponent . get | nst ance()
or @n(create=true). They should not be directly instantiated via JNDI lookup or the new
operator.

4.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because
entities have a persistent identity in addition to their contextual identity, entity instances are usually
bound explicitly in Java code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of
an entity bean trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans
that provide properties to JSF components for display or form submission. In particular, it is
common to use an entity as a backing bean, together with a stateless session bean action listener
to implement create/update/delete type functionality.

By default, entity beans are bound to the conversation context. They may never be bound to the
stateless context.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to
a conversation or session scoped Seam context variable than it would be to hold a reference to
the entity bean in a stateful session bean. For this reason, not all Seam applications define entity
beans to be Seam components.

Seam entity bean components may be instantiated using Conponent. getlnstance(),
@n(create=true) or directly using the new operator.

4.2.4. JavaBeans

Javabeans may be used just like a stateless or stateful session bean. However, they do not provide
the functionality of a session bean (declarative transaction demarcation, declarative security,
efficient clustered state replication, EJB 3.0 persistence, timeout methods, etc).

100

Message-driven beans

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In
this use case, components are JavaBeans instead of session beans. Note, however, that in many
application servers it is somewhat less efficient to cluster conversation or session scoped Seam
JavaBean components than it is to cluster stateful session bean components.

By default, JavaBeans are bound to the event context.
Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

Seam JavaBean components may be instantiated using Conponent. getlnstance() or
@n(create=true). They should not be directly instantiated using the new operator.

4.2.5. Message-driven beans

Message-driven beans may function as a seam component. However, message-driven beans
are called quite differently to other Seam components - instead of invoking them via the context
variable, they listen for messages sent to a JMS queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the
session or conversation state of their "caller". However, they do support bijection and some other
Seam functionality.

Message-driven beans are never instantiated by the application. They are instantiated by the EJB
container when a message is received.

4.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept
component invocations. For JavaBeans, Seam is in full control of instantiation of the component,
and no special configuration is needed. For entity beans, interception is not required since bijection
and context demarcation are not defined. For session beans, we must register an EJB interceptor
for the session bean component. We could use an annotation, as follows:

@Stateless
@Interceptors(Seaminterceptor.class)
public class LoginAction implements Login {

But a much better way is to define the interceptor in ej b-j ar. xm .

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>

101

Chapter 4. The contextual com...

</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jpboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

4.2.7. Component names

All seam components need a name. We can assign a name to a component using the @iane
annotation:

@Name("loginAction")
@Stateless
public class LoginAction implements Login {

This name is the seam component name and is not related to any other name defined by the EJB
specification. However, seam component names work just like JSF managed bean names and
you can think of the two concepts as identical.

@\arre is not the only way to define a component name, but we always need to specify the name
somewhere. If we don't, then none of the other Seam annotations will function.

Just like in JSF, a seam component instance is usually bound to a context variable with the
same name as the component name. So, for example, we would access the Logi nAct i on using
Cont ext s. get St at el essCont ext (). get ("l ogi nActi on"). In particular, whenever Seam itself
instantiates a component, it binds the new instance to a variable with the component name.
However, again like JSF, it is possible for the application to bind a component to some other
context variable by programmatic API call. This is only useful if a particular component serves
more than one role in the system. For example, the currently logged in User might be bound to
the current User session context variable, while a User that is the subject of some administration
functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Name("com.jboss.myapp.loginAction™)
@Stateless
public class LoginAction implements Login {

102

Defining the component scope

We may use the qualified component name both in Java code and in JSF's expression language:

<h:commandButton type="submit" value="Login"
action="#{com.jboss.myapp.loginAction.login}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified hame to a simple name.
Add a line like this to the conponent s. xm file:

<factory name="loginAction" scope="STATELESS" value="#{com.jboss.myapp.loginAction}"/>

All of the built-in Seam components have qualified names, but most of them are aliased to a simple
name by the conponent s. xni file included in the Seam jar.

4.2.8. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This
lets us define what context a component instance is bound to, when it is instantiated by Seam.

@Name("user")
@Entity
@Scope(SESSION)
public class User {

org. j boss. seam ScopeType defines an enumeration of possible scopes.

4.2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we often
have a User class which is usually used as a session-scoped component representing the current
user but is used in user administration screens as a conversation-scoped component. The @Rol e
annotation lets us define an additional named role for a component, with a different scope—it lets
us bind the same component class to different context variables. (Any Seam component instance
may be bound to multiple context variables, but this lets us do it at the class level, and take
advantage of auto-instantiation.)

@Name("user")

103

Chapter 4. The contextual com...

@Entity

@Scope(CONVERSATION)
@Role(name="currentUser", scope=SESSION)
public class User {

The @Rol es annotation lets us specify as many additional roles as we like.

@Name("user")

@Entity

@Scope(CONVERSATION)

@Roles({@Role(name="currentUser", scope=SESSION),
@Role(name="tempUser", scope=EVENT)})

public class User {

4.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of
built-in Seam interceptors (see later) and Seam components. This makes it easy for applications
to interact with built-in components at runtime or even customize the basic functionality of Seam
by replacing the built-in components with custom implementations. The built-in components are
defined in the Seam namespace or g. j boss. seam cor e and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide
convenient static i nst ance() methods:

FacesMessages.instance().add("Welcome back, #{user.name}!");

4.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers.
Dependency injection allows a component to obtain a reference to another component by
having the container "inject" the other component to a setter method or instance variable. In all
dependency injection implementations that we have seen, injection occurs when the component
is constructed, and the reference does not subsequently change for the lifetime of the component
instance. For stateless components, this is reasonable. From the point of view of a client, all
instances of a particular stateless component are interchangeable. On the other hand, Seam
emphasizes the use of stateful components. So traditional dependency injection is no longer a

104

Bijection

very useful construct. Seam introduces the notion of bijection as a generalization of injection. In
contrast to injection, bijection is:

 contextual - bijection is used to assemble stateful components from various different contexts (a
component from a "wider" context may even have a reference to a component from a "narrower"
context)

« bidirectional - values are injected from context variables into attributes of the component being
invoked, and also outjected from the component attributes back out to the context, allowing the
component being invoked to manipulate the values of contextual variables simply by setting its
own instance variables

e dynamic - since the value of contextual variables changes over time, and since Seam
components are stateful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by
specifying that the value of the instance variable is injected, outjected, or both. Of course, we use
annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@Name("loginAction™)

@Stateless

public class LoginAction implements Login {
@In User user;

or into a setter method:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
User user;

@In
public void setUser(User user) {
this.user=user;

105

Chapter 4. The contextual com...

By default, Seam will do a priority search of all contexts, using the name of the property or instance
variable that is being injected. You may wish to specify the context variable name explicitly, using,
for example, @ n("current User").

If you want Seam to create an instance of the component when there is no existing component
instance bound to the named context variable, you should specify @ n(cr eat e=t r ue) . If the value
is optional (it can be null), specify @ n(r equi r ed=f al se) .

For some components, it can be repetitive to have to specify @ n(cr eat e=t r ue) everywhere they
are used. In such cases, you can annotate the component @ut oCr eat e, and then it will always
be created, whenever needed, even without the explicit use of cr eat e=t r ue.

You can even inject the value of an expression:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
@In("#{user.username}") String username;

Injected values are disinjected (i.e, set to nul ') immediately after method completion and
outjection.

(There is much more information about component lifecycle and injection in the next chapter.)

The @ut annotation specifies that an attribute should be outjected, either from an instance
variable:

@Name("loginAction™)

@Stateless

public class LoginAction implements Login {
@Out User user;

or from a getter method:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
User user;

106

Lifecycle methods

@Out
public User getUser() {
return user;

An attribute may be both injected and outjected:

@Name("loginAction™)

@Stateless

public class LoginAction implements Login {
@In @Out User user;

or:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
User user;

@In
public void setUser(User user) {
this.user=user,;

@Out
public User getUser() {
return user;

4.4, Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle
callback (@Post Const ruct , @r eDest r oy, etc). But Seam also supports the use of any of these

107

Chapter 4. The contextual com...

callbacks with JavaBean components. However, since these annotations are not available in
a J2EE environment, Seam defines two additional component lifecycle callbacks, equivalent to
@vost Const ruct and @r eDestr oy.

The @r eat e method is called after Seam instantiates a component. Components may define only
one @ eat e method.

The @est roy method is called when the context that the Seam component is bound to ends.
Components may define only one @est r oy method.

In addition, stateful session bean components must define a method with no parameters annotated
@enove. This method is called by Seam when the context ends.

Finally, a related annotation is the @5t ar t up annotation, which may be applied to any application
or session scoped component. The @t ar t up annotation tells Seam to instantiate the component
immediately, when the context begins, instead of waiting until it is first referenced by a
client. It is possible to control the order of instantiation of startup components by specifying
@5t artup(depends={....}).

4.5. Conditional installation

The @ nst al | annotation lets you control conditional installation of components that are required
in some deployment scenarios and not in others. This is useful if:

* You want to mock out some infrastructural component in tests.

* You want change the implementation of a component in certain deployment scenarios.

e You want to install some components only if their dependencies are available (useful for
framework authors).

@nst al | works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to
install when there are multiple classes with the same component name in the classpath. Seam
will choose the component with the higher precendence. There are some predefined precedence
values (in ascending order):

1. BUI LT_I N— the lowest precedece components are the components built in to Seam.

2. FRAMBWORK — components defined by third-party frameworks may override built-in
components, but are overridden by application components.

3. APPLI CATI ON— the default precedence. This is appropriate for most application components.
4. DEPLOYMENT — for application components which are deployment-specific.

5. MOCK — for mock objects used in testing.

108

Logging

Suppose we have a component named nmessageSender that talks to a JMS queue.

@Name("messageSender")
public class MessageSender {
public void sendMessage() {
//do something with IMS

In our unit tests, we don't have a JMS queue available, so we would like to stub out this method.
We'll create a mock component that exists in the classpath when unit tests are running, but is
never deployed with the application:

@Name("messageSender")
@Install(precedence=MOCK)
public class MockMessageSender extends MessageSender {
public void sendMessage() {
//[do nothing!

The precedence helps Seam decide which version to use when it finds both components in the
classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing
a reusable framework with many dependecies, | don't want to have to break that framework
across many jars. | want to be able to decide which components to install depending upon
what other components are installed, and upon what classes are available in the classpath. The
@nstal | annotation also controls this functionality. Seam uses this mechanism internally to
enable conditional installation of many of the built-in components. However, you probably won't
need to use it in your application.

4.6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

public Order createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled()) {
log.debug("Creating new order for user: " + user.username() +
" product: " + product.name()

109

Chapter 4. The contextual com...

+ " quantity: " + quantity);
}

return new Order(user, product, quantity);

It is difficult to imagine how the code for a simple log message could possibly be more verbose.
There is more lines of code tied up in logging than in the actual business logic! | remain totally
astonished that the Java community has not come up with anything better in 10 years.

Seam provides a logging API that simplifies this code significantly:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
log.debug("Creating new order for user: #0 product: #1 quantity: #2", user.username(),
product.name(), quantity);
return new Order(user, product, quantity);

It doesn't matter if you declare the | og variable static or not—it will work either way, except for
entity bean components which require the | og variable to be static.

Note that we don't need the noisy if (|og.isDebugEnabled()) guard, since string
concatenation happens inside the debug() method. Note also that we don't usually need to specify
the log category explicitly, since Seam knows what component it is injecting the Log into.

If User and Product are Seam components available in the current contexts, it gets even better:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {

log.debug("Creating new order for user: #{user.username} product: #{product.name} quantity:
#0", quantity);

return new Order(user, product, quantity);

Seam logging automagically chooses whether to send output to log4j or JDK logging. If log4j is in
the classpath, Seam with use it. If it is not, Seam will use JDK logging.

4.7. The mtavi e iInterface and @readoniy

Many application servers feature an amazingly broken implementation of Ht t pSessi on clustering,
where changes to the state of mutable objects bound to the session are only replicated when the

110

The Mt abl e interface and @rReadOnl y

application calls set Attri but e() explicitly. This is a source of bugs that can not effectively be
tested for at development time, since they will only manifest when failover occurs. Furthermore,
the actual replication message contains the entire serialized object graph bound to the session
attribute, which is inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of
mutable state and a sophisticated EJB container can introduce optimizations such as attribute-
level replication. Unfortunately, not all Seam users have the good fortune to be working in an
environment that supports EJB 3.0. So, for session and conversation scoped JavaBean and entity
bean components, Seam provides an extra layer of cluster-safe state management over the top
of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication
to occur by calling set Attri but e() once in every request that the component was invoked by
the application. Of course, this strategy is inefficient for read-mostly components. You can control
this behavior by implementing the org. j boss. seam cor e. Mut abl e interface, or by extending
org.j boss. seam core. Abstract Mut abl e, and writing your own dirty-checking logic inside the
component. For example,

@Name("account")
public class Account extends AbstractMutable

{

private BigDecimal balance;

public void setBalance(BigDecimal balance)

{

setDirty(this.balance, balance);
this.balance = balance;

public BigDecimal getBalance()

{

return balance;

Or, you can use the @eadOnl y annotation to achieve a similar effect:

@Name("account")
public class Account

111

Chapter 4. The contextual com...

private BigDecimal balance;

public void setBalance(BigDecimal balance)

{

this.balance = balance;

@ReadOnly
public BigDecimal getBalance()

{

return balance;

For session or conversation scoped entity bean components, Seam automatically forces
replication to occur by calling set At t ri but e() once in every request, unless the (conversation-
scoped) entity is currently associated with a Seam-managed persistence context, in which case no
replication is needed. This strategy is not necessarily efficient, so session or conversation scope
entity beans should be used with care. You can always write a stateful session bean or JavaBean
component to "manage" the entity bean instance. For example,

@Stateful
@Name("account")
public class AccountManager extends AbstractMutable

{

private Account account; // an entity bean

@Unwrap
public void getAccount()

{

return account;

112

Factory and manager components

Note that the Ent i t yHone class in the Seam Application Framework provides a great example of
managing an entity bean instance using a Seam component.

4.8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to
inject them into our components using @ n and use them in value and method binding expressions,
etc. Sometimes, we even need to tie them into the Seam context lifecycle (@est r oy, for example).
So the Seam contexts can contain objects which are not Seam components, and Seam provides a
couple of nice features that make it easier to work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component
object. A factory method will be called when a context variable is referenced but has no value
bound to it. We define factory methods using the @act or y annotation. The factory method binds
a value to the context variable, and determines the scope of the bound value. There are two styles
of factory method. The first style returns a value, which is bound to the context by Seam:

@Factory(scope=CONVERSATION)
public List<Customer> getCustomerList() {
return ... ;

The second style is a method of type voi d which binds the value to the context variable itself:

@DataModel List<Customer> customerList;

@Factory("customerList")
public void initCustomerList() {
customerList = ... ;

In both cases, the factory method is called when we reference the cust oner Li st context variable
and its value is null, and then has no further part to play in the lifecycle of the value. An even more
powerful pattern is the manager component pattern. In this case, we have a Seam component
that is bound to a context variable, that manages the value of the context variable, while remaining
invisible to clients.

A manager component is any component with an @nw ap method. This method returns the value
that will be visable to clients, and is called every time a context variable is referenced.

@Name("customerList”)
@Scope(CONVERSATION)

113

Chapter 4. The contextual com...

public class CustomerListManager

{

@Unwrap
public List<Customer> getCustomerList() {
return ... ;

The manager component pattern is especially useful if we have an object where you need more
control over the lifecycle of the component. For example, if you have a heavyweight object that
needs a cleanup operation when the context ends you could @nw ap the object, and perform
cleanup in the @est r oy method of the manager component.

@Name("hens")
@Scope(APPLICATION)
public class HenHouse {

Set<Hen> hens;

@In(required=false) Hen hen;

@Unwrap
public List<Hen> getHens() {
if (hens == null) {
/I Setup our hens

}

return hens;

@Observer({"chickBorn", "chickenBoughtAtMarket"})
public addHen() {
hens.add(hen);

@Observer("chickenSoldAtMarket")
public removeHen() {
hens.remove(hen);

@Observer("foxGetsIn®)
public removeAllHens() {

114

Factory and manager components

hens.clear();

Here the managed component observes many events which change the underlying object. The
component manages these actions itself, and because the object is unwrapped on every access,
a consistent view is provided.

115

116

Chapter 5.

Configuring Seam components

The philosophy of minimizing XML-based configuration is extremely strong in Seam.
Nevertheless, there are various reasons why we might want to configure a Seam component
using XML: to isolate deployment-specific information from the Java code, to enable the creation
of re-usable frameworks, to configure Seam's built-in functionality, etc. Seam provides two basic
approaches to configuring components: configuration via property settings in a properties file or
in web. xm , and configuration via conponent s. xm .

5.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context
parameters, or via a properties file named seam properti es in the root of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods
for the configurable attributes. If a Seam component named com j boss. nyapp. settings
has a setter method named setlLocale(), we can provide a property named
com j boss. nyapp. settings.locale in the seam properties file or as a servlet context
parameter, and Seam will set the value of the | ocal e attribute whenever it instantiates the
component.

The same mechanism is used to configure Seam itself. For example, to set the conversation
timeout, we provide a value for org.jboss.seam core. manager. conversati onTi meout
in web.xm or seamproperties. (There is a built-in Seam component named
org. j boss. seam cor e. manager with a setter method named set Conver sati onTi neout () .)

5.2. Configuring components via conponents. xni
The conponent s. xm file is a bit more powerful than property settings. It lets you:

e Configure components that have been installed automatically—including both built-in
components, and application components that have been annotated with the @ame annotation
and picked up by Seam's deployment scanner.

« Install classes with no @anme annotation as Seam components—this is most useful for certain
kinds of infrastructural components which can be installed multiple times different names (for
example Seam-managed persistence contexts).

« Install components that do have a @ane annotation but are not installed by default because of
an @ nst al | annotation that indicates the component should not be installed.

» Override the scope of a component.

A conponent s. xn file may appear in one of three different places:

e The VEB- | NF directory of a war .

e The META- | NF directory of a j ar.

117

Chapter 5. Configuring Seam c...

< Any directory of aj ar that contains classes with an @lane annotation.

Usually, Seam components are installed when the deployment scanner discovers a class
with a @lame annotation sitting in an archive with a seam properties file or a META- | NF/
component s. xnl file. (Unless the component has an @ nst al | annotation indicating it should not
be installed by default.) The conponent s. xn file lets us handle special cases where we need
to override the annotations.

For example, the following conponent s. xni file installs jBPM:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:bpm="http://jboss.com/products/seam/bpm">

<bpm:jbpm/>
</components>

This example does the same thing:

<components>
<component class="org.jboss.seam.bpm.Jbpm"/>
</components>

This one installs and configures two different Seam-managed persistence contexts:

<components xmlns="http://jposs.com/products/seam/components"
xmlns:persistence="http://jboss.com/products/seam/persistence"

<persistence:managed-persistence-context name="customerDatabase"
persistence-unit-jndi-name="java:/customerEntityManagerFactory"/>

<persistence:managed-persistence-context name="accountingDatabase"
persistence-unit-jndi-name="java:/accountingEntityManagerFactory"/>

</components>

As does this one:

<components>
<component name="customerDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">

118

Configuring components via conponent s. xni

<property name="persistenceUnitJndiName">java:/customerEntityManagerFactory</
property>
</component>

<component name="accountingDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/accountingEntityManagerFactory</
property>
</component>
</components>

This example creates a session-scoped Seam-managed persistence context (this is not
recommended in practice):

<components xmlns="http://jposs.com/products/seam/components”
xmlns:persistence="http://jpboss.com/products/seam/persistence"

<persistence:managed-persistence-context name="productDatabase"
scope="session"

persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

<component name="productDatabase"
scope="session"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>
</component>

</components>

It is common to use the aut o- cr eat e option for infrastructural objects like persistence contexts,
which saves you from having to explicitly specify cr eat e=t r ue when you use the @ n annotation.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:persistence="http://jpboss.com/products/seam/persistence”

<persistence:managed-persistence-context name="productDatabase"

119

Chapter 5. Configuring Seam c...

auto-create="true"
persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>
<component name="productDatabase"
auto-create="true"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>

</component>

</components>

The <f act or y> declaration lets you specify a value or method binding expression that will be
evaluated to initialize the value of a context variable when it is first referenced.

<components>

<factory name="contact" method="#{contactManager.loadContact}"
scope="CONVERSATION"/>

</components>

You can create an "alias" (a second name) for a Seam component like so:

<components>

<factory name="user" value="#{actor}" scope="STATELESS"/>

</components>

You can even create an "alias" for a commonly used expression:

<components>

<factory name="contact" value="#{contactManager.contact}" scope="STATELESS"/>

120

Fine-grained configuration files

</components>
It is especially common to see the use of aut o- cr eat e="t r ue" with the <f act or y> declaration:

<components>

<factory name="session" value="#{entityManager.delegate}' scope="STATELESS" auto-
create="true"/>

</components>

Sometimes we want to reuse the same conponents. xm file with minor changes during
both deployment and testing. Seam lets you place wildcards of the form @i | dcard@in the
conponent s. xn file which can be replaced either by your Ant build script (at deployment time) or
by providing a file named conponent s. properti es in the classpath (at development time). You'll
see this approach used in the Seam examples.

5.3. Fine-grained configuration files

If you have a large number of components that need to be configured in XML, it makes much
more sense to split up the information in conponent s. xm into many small files. Seam lets you
put configuration for a class named, for example, com hel | owor | d. Hel | o in a resource named
com hel | owor | d/ Hel | 0. conponent . xnl . (You might be familiar with this pattern, since it is the
same one we use in Hibernate.) The root element of the file may be either a <conponent s> or
<conponent > element.

The first option lets you define multiple components in the file:

<components>
<component class="com.helloworld.Hello" hame="hello">
<property name="name">#{user.name}</property>
</component>
<factory name="message" value="#{hello.message}"/>
</components>

The second option only lets you define or configure one component, but is less noisy:

<component name="hello">
<property name="name">#{user.name}</property>
</component>

121

Chapter 5. Configuring Seam c...

In the second option, the class name is implied by the file in which the component definition
appears.

Alternatively, you may put configuration for all classes in the com hel | owor | d package in com
hel | owor | d/ conponent s. xmi .

5.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org.jboss.seam.core.manager.conversationTimeout 60000

<core:manager conversation-timeout="60000"/>

<component name="org.jboss.seam.core.manager">
<property name="conversationTimeout">60000</property>
</component>

Arrays, sets and lists of strings or primitives are also supported:

org.jboss.seam.bpm.jbpm.processDefinitions order.jpdl.xml, return.jpdl.xml, inventory.jpdl.xml

<bpm:jbpm>
<bpm:process-definitions>
<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>
</bpm:process-definitions>
</bpm:jbpm>

<component name="org.jboss.seam.bpm.jbpm">
<property name="processDefinitions">
<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>
</property>

122

Using XML Namespaces

</component>
Even maps with String-valued keys and string or primitive values are supported:

<component name="issueEditor">
<property name="issueStatuses">
<key>open</key> <value>open issue</value>
<key>resolved</key> <value>issue resolved by developer</value>
<key>closed</key> <value>resolution accepted by user</value>
</property>
</component>

Finally, you may wire together components using a value-binding expression. Note that this is
quite different to injection using @ n, since it happens at component instantiation time instead of
invocation time. It is therefore much more similar to the dependency injection facilities offered by
traditional loC containers like JSF or Spring.

<drools:managed-working-memory name="policyPricingWorkingMemory" rule-
base="#{policyPricingRules}"/>

<component name="policyPricingWorkingMemory"
class="org.jboss.seam.drools.ManagedWorkingMemaory">
<property name="ruleBase">#{policyPricingRules}</property>
</component>

5.5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components: with
and without the use of XML namespaces. The following shows a typical conponent s. xnl file
without namespaces:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"

xsi:schemal ocation="http://jboss.com/products/seam/components http://jboss.com/
products/seam/components-2.1.xsd">

<component class="org.jboss.seam.core.init">
<property name="debug">true</property>
<property name="jndiPattern">@jndiPattern@</property>

123

Chapter 5. Configuring Seam c...

</component>

</components>

As you can see, this is somewhat verbose. Even worse, the component and attribute names
cannot be validated at development time.

The namespaced version looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.1.xsd
http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.1.xsd">

<core:init debug="true" jndi-pattern="@jndiPattern@"/>

</components>

Even though the schema declarations are verbose, the actual XML content is lean and easy to
understand. The schemas provide detailed information about each component and the attributes
available, allowing XML editors to offer intelligent autocomplete. The use of namespaced elements
makes generating and maintaining correct conponent s. xm files much simpler.

Now, this works great for the built-in Seam components, but what about user components? There
are two options. First, Seam supports mixing the two models, allowing the use of the generic
<conponent > declarations for user components, along with namespaced declarations for built-
in components. But even better, Seam allows you to quickly declare namespaces for your own
components.

Any Java package can be associated with an XML namespace by annotating the package with
the @lanespace annotation. (Package-level annotations are declared in a file nhamed package-
i nf 0. j ava in the package directory.) Here is an example from the seampay demo:

@Namespace(value="http://jposs.com/products/seam/examples/seampay")
package org.jpboss.seam.example.seampay;

import org.jboss.seam.annotations.Namespace;

124

Using XML Namespaces

That is all you need to do to use the namespaced style in conponent s. xm ! Now we can write:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pay="http://jposs.com/products/seam/examples/seampay"
">

<pay:payment-home new-instance="#{newPayment}"
created-message="Created a new payment to #{newPayment.payee}" />

<pay:payment name="newPayment"
payee="Somebody"
account="#{selectedAccount}"
payment-date="#{currentDatetime}"
created-date="#{currentDatetime}" />

</components>

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pay="http://jposs.com/products/seam/examples/seampay"
o>

<pay:payment-home>
<pay:new-instance>"#{newPayment}"</pay:new-instance>
<pay:created-message>Created a new payment to #{newPayment.payee}</pay:created-
message>
</pay:payment-home>

<pay:payment name="newPayment">
<pay:payee>Somebody"</pay:payee>
<pay:account>#{selectedAccount}</pay:account>
<pay:payment-date>#{currentDatetime}</pay:payment-date>
<pay:created-date>#{currentDatetime}</pay:created-date>
</pay:payment>

</components>

These examples illustrate the two usage models of a namespaced element. In the first declaration,
the <pay: paynent - hone> references the payment Hone component:

125

Chapter 5. Configuring Seam c...

package org.jpboss.seam.example.seampay;

@Name("paymentHome™")
public class PaymentController
extends EntityHome<Payment>

The element name is the hyphenated form of the component name. The attributes of the element
are the hyphenated form of the property names.

In the second declaration, the <pay: payment > element refers to the Payment class in the
org. j boss. seam exanpl e. seanpay package. In this case Payment is an entity that is being
declared as a Seam component:

package org.jpboss.seam.example.seampay;

@Entity
public class Payment
implements Serializable

If we want validation and autocompletion to work for user-defined components, we will need a
schema. Seam does not yet provide a mechanism to automatically generate a schema for a set of
components, so it is necessary to generate one manually. The schema definitions for the standard
Seam packages can be used for guidance.

The following are the the namespaces used by Seam:

e components — http://j boss. com product s/ seanf conponent s
e core—http://jboss. coni products/seani core

e drools —http://jboss. com product s/ seam dr ool s

« framework — http://j boss. conf product s/ seam f r anewor k

e jms—http://jboss. com products/sean j ns

e remoting — http://jboss. com products/seani renoting

e theme — http://jboss. com product s/ seanit heme

126

Using XML Namespaces

security — htt p: //j boss. conl product s/ seam security
mail — http: //j boss. com product s/ sean mai |

web — http://jboss. com product s/ seam web

pdf — htt p: //j boss. com product s/ seant pdf

spring — http://j boss. com product s/ sean spring

127

128

Chapter 6.

Events, interceptors and exception
handling

Complementing the contextual component model, there are two further basic concepts that
facilitate the extreme loose-coupling that is the distinctive feature of Seam applications. The first
is a strong event model where events may be mapped to event listeners via JSF-like method
binding expressions. The second is the pervasive use of annotations and interceptors to apply
cross-cutting concerns to components which implement business logic.

6.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to
enable the development of fine-grained, loosely-coupled components in a fine-grained eventing
model. Events in Seam come in several types, most of which we have already seen:

JSF events

jBPM transition events

e Seam page actions

e Seam component-driven events
* Seam contextual events

All of these various kinds of events are mapped to Seam components via JSF EL method binding
expressions. For a JSF event, this is defined in the JSF template:

<h:commandButton value="Click me!" action="#{hellowWorld.sayHello}"/>

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

<start-page name="hello" view-id="/hello.jsp">
<transition to="hello">
<action expression="#{helloWorld.sayHello}"/>
</transition>
</start-page>

You can find out more information about JSF events and jBPM events elsewhere. Let's
concentrate for now upon the two additional kinds of events defined by Seam.

129

Chapter 6. Events, intercepto...

6.2. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions
in VEB- | NF/ pages. xnl . We can define a page action for either a particular JSF view id:

<pages>
<page view-id="/hello.jsp" action="#{helloWorld.sayHello}"/>
</pages>

Or we can use a * wildcard as a suffix to the vi ew- i d to specify an action that applies to all view
ids that match the pattern:

<pages>
<page view-id="/hello/*" action="#{helloWorld.sayHello}"/>
</pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in
order of least-specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will use the
defined navigation rules to navigate to a view.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or
Facelets page! So, we can reproduce the functionality of a traditional action-oriented framework
like Struts or WebWork using page actions. For example:

TODO: translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for
example, HTTP GET requests).

Multiple or conditional page actions my be specified using the <act i on> tag:

<pages>
<page view-id="/hello.jsp">
<action execute="#{helloWorld.sayHello}" if="#{not validation.failed}"/>
<action execute="#{hitCount.increment}"/>
</page>
</pages>

130

Page parameters

6.3. Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and
"parameters” (input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request
parameters. (Unlike JSF form inputs, which are anything but!)

You can use page parameters with or without an action method.

6.3.1. Mapping request parameters to the model

Seam lets us provide a value binding that maps a named request parameter to an attribute of a
model object.

<pages>
<page view-id="/hello.jsp" action="#{helloworld.sayHello}">
<param name="firstName" value="#{person.firstName}"/>
<param name="lastName" value="#{person.lastName}"/>
</page>
</pages>

The <par an» declaration is bidirectional, just like a value binding for a JSF input:

* When a non-faces (GET) request for the view id occurs, Seam sets the value of the named
request parameter onto the model object, after performing appropriate type conversions.

e Any <s: |ink> or <s: but t on> transparently includes the request parameter. The value of the
parameter is determined by evaluating the value binding during the render phase (when the
<s: | i nk>is rendered).

« Any navigation rule with a <redirect/> to the view id transparently includes the request
parameter. The value of the parameter is determined by evaluating the value binding at the end
of the invoke application phase.

» The value is transparently propagated with any JSF form submission for the page with the given
view id. This means that view parameters behave like PAGE-scoped context variables for faces
requests.

The essential idea behind all this is that however we get from any other page to / hel | o. j sp (or
from / hel | 0. j sp back to / hel | 0. j sp), the value of the model attribute referred to in the value
binding is "remembered", without the need for a conversation (or other server-side state).

6.4. Propagating request parameters

If just the nane attribute is specified then the request parameter is propagated using the PAGE
context (it isn't mapped to model property).

131

Chapter 6. Events, intercepto...

<pages>
<page view-id="/hello.jsp" action="#{helloWorld.sayHello}">
<param name="firstName" />
<param name="lastName" />
</page>
</pages>

Propagation of page parameters is especially useful if you want to build multi-layer master-detalil
CRUD pages. You can use it to "remember" which view you were previously on (e.g. when
pressing the Save button), and which entity you were editing.

« Any<s:|ink>or<s: button>transparently propagates the request parameter if that parameter
is listed as a page parameter for the view.

« The value is transparently propagated with any JSF form submission for the page with the given
view id. (This means that view parameters behave like PAGE-scoped context variables for faces
requests.

This all sounds pretty complex, and you're probably wondering if such an exotic construct is really
worth the effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the
time to understand this stuff. Page parameters are the most elegant way to propagate state across
a non-faces request. They are especially cool for problems like search screens with bookmarkable
results pages, where we would like to be able to write our application code to handle both POST
and GET requests with the same code. Page parameters eliminate repetitive listing of request
parameters in the view definition and make redirects much easier to code.

6.5. Conversion and Validation

You can specify a JSF converter for complex model propreties:

<pages>
<page view-id="/calculator.jsp" action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converterld="com.my.calculator.OperatorConverter"
value="#{calculator.op}"'/>
</page>
</pages>

Alternatively:

<pages>

132

Navigation

<page view-id="/calculator.jsp" action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>
</page>
</pages>

JSF validators, and r equi red="t r ue" may also be used:

<pages>
<page view-id="/blog.xhtml">
<param name="date"
value="#{blog.date}"
validatorld="com.my.blog.PastDate"
required="true"/>
</page>
</pages>

Alternatively:

<pages>
<page view-id="/blog.xhtml">
<param name="date"
value="#{blog.date}"
validator="#{pastDateValidator}"
required="true"/>
</page>
</pages>

Even better, model-based Hibernate validator annotations are automatically recognized and
validated.

When type conversion or validation fails, a global FacesMessage is added to the FacesCont ext .

6.6. Navigation

You can use standard JSF navigation rules defined in f aces- confi g. xnl in a Seam application.
However, JSF navigation rules have a number of annoying limitations:

« Itis not possible to specify request parameters to be used when redirecting.

« ltis not possible to begin or end conversations from a rule.

133

Chapter 6. Events, intercepto...

» Rules work by evaluating the return value of the action method; it is not possible to evaluate
an arbitrary EL expression.

A further problem is that "orchestration" logic gets scattered between pages. xnl and f aces-
confi g. xnl . It's better to unify this logic into pages. xm .

This JSF navigation rule:

<navigation-rule>
<from-view-id>/editDocument.xhtml</from-view-id>

<navigation-case>
<from-action>#{documentEditor.update}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/viewDocument.xhtml</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Can be rewritten as follows:

<page view-id="/editDocument.xhtm|">

<navigation from-action="#{documentEditor.update}">
<rule if-outcome="success">
<redirect view-id="/viewDocument.xhtml"/>
</rule>
</navigation>

</page>

But it would be even nicer if we didn't have to pollute our Docurent Edi t or component with string-
valued return values (the JSF outcomes). So Seam lets us write:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}"
evaluate="#{documentEditor.errors.size}">
<rule if-outcome="0">
<redirect view-id="/viewDocument.xhtml["/>
</rule>

134

Navigation

</navigation>

</page>

Or even:

<page view-id="/editDocument.xhtm|">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<redirect view-id="/viewDocument.xhtml|"/>
</rule>
</navigation>

</page>

The first form evaluates a value binding to determine the outcome value to be used by the
subsequent rules. The second approach ignores the outcome and evaluates a value binding for
each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We can
do that like this:

<page view-id="/editDocument.xhtm|">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<end-conversation/>
<redirect view-id="/viewDocument.xhtml|"/>
</rule>
</navigation>

</page>

As we've ended conversation any subsequent requests won't know which document we are
interested in. We can pass the document id as a request parameter which also makes the view
bookmarkable:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">

135

Chapter 6. Events, intercepto...

<rule if="#{documentEditor.errors.empty}">
<end-conversation/>
<redirect view-id="/viewDocument.xhtm|">
<param name="documentld" value="#{documentEditor.documentld}"/>
</redirect>
</rule>
</navigation>

</page>

Null outcomes are a special case in JSF. The null outcome is interpreted to mean "redisplay the
page". The following navigation rule matches any non-null outcome, but not the null outcome:

<page view-id="/editDocument.xhtml">
<navigation from-action="#{documentEditor.update}">
<rule>
<render view-id="/viewDocument.xhtml"/>
</rule>

</navigation>

</page>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page view-id="/editDocument.xhtml">
<navigation from-action="#{documentEditor.update}">
<render view-id="/viewDocument.xhtml"/>

</navigation>

</page>

The view-id may be given as a JSF EL expression:

<page view-id="/editDocument.xhtml">

<navigation>
<rule if-outcome="success">
<redirect view-id="/#{userAgent}/displayDocument.xhtml"/>

136

Fine-grained files for definition of navigation,

page actions and parameters
</rule>

</navigation>

</page>

6.7. Fine-grained files for definition of navigation, page
actions and parameters

If you have a lot of different page actions and page parameters, or even just a lot of navigation
rules, you will almost certainly want to split the declarations up over multiple files. You can define
actions and parameters for a page with the view id / cal ¢/ cal cul ator. j sp in a resource named
cal c/ cal cul at or. page. xm . The root element in this case is the <page> element, and the view
id is implied:

<page action="#{calculator.calculate}">

<param name="x" value="#{calculator.lhs}"/>

<param name="y" value="#{calculator.rhs}"/>

<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>
</page>

6.8. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components may
even implement the observer/observable pattern. But to enable components to interact in a more
loosely-coupled fashion than is possible when the components call each others methods directly,
Seam provides component-driven events.

We specify event listeners (observers) in conponent s. xmi .

<components>
<event type="hello">
<action execute="#{helloListener.sayHelloBack}"/>
<action execute="#{logger.logHello}"/>
</event>
</components>

Where the event type is just an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear
in conponent s. xm . How does a component raise an event? Seam provides a built-in component
for this.

137

Chapter 6. Events, intercepto...

@Name("helloworld")
public class HelloWorld {
public void sayHello() {
FacesMessages.instance().add("Hello World!");
Events.instance().raiseEvent("hello");

Or you can use an annotation.

@Name("hellowWorld")
public class HelloWorld {
@RaiseEvent("hello")
public void sayHello() {
FacesMessages.instance().add("Hello World!");

Notice that this event producer has no dependency upon event consumers. The event listener
may now be implemented with absolutely no dependency upon the producer:

@Name("helloListener")
public class HelloListener {
public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

The method binding defined in conponent s. xnl above takes care of mapping the event to the
consumer. If you don't like futzing about in the conponent s. xm file, you can use an annotation
instead:

@Name("helloListener")
public class HelloListener {
@Observer("hello")
public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

138

Contextual events

You might wonder why I've not mentioned anything about event objects in this discussion. In
Seam, there is no need for an event object to propagate state between event producer and listener.
State is held in the Seam contexts, and is shared between components. However, if you really
want to pass an event object, you can:

@Name("helloworld")
public class HelloWorld {
private String name;
public void sayHello() {
FacesMessages.instance().add("Hello World, my name is #0.", name);
Events.instance().raiseEvent("hello", name);

@Name("helloListener")
public class HelloListener {
@Observer("hello")
public void sayHelloBack(String nhame) {
FacesMessages.instance().add("Hello #0!", name);

6.9. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds of
framework integration. The events are:

e org.jboss.seam val i dati onFai | ed — called when JSF validation fails

* org.jboss. seam noConversati on — called when there is no long running conversation and
a long running conversation is required

* org.jboss.seam preSet Vari abl e. <name> — called when the context variable <name> is set
e org.jboss. seam post Set Vari abl e. <nane>— called when the context variable <name> is set

e org.jboss. seam preRenoveVari abl e. <name> — called when the context variable <name> is
unset

* org.jboss. seam post RenoveVari abl e. <nanme> — called when the context variable <name>
is unset

e org.jboss. seam preDestroyCont ext . <SCOPE> — called before the <SCOPE> context is
destroyed

139

Chapter 6. Events, intercepto...

* org.j boss.
destroyed

* org.jboss.
* org.jboss.

* org.jboss.

seam post Dest r oyCont ext . <SCOPE> — called after the <SCOPE> context is

seam begi nConver sat i on — called whenever a long-running conversation begins
seam endConver sati on — called whenever a long-running conversation ends

seam conver sati onTi mneout — called when a conversation timeout occurs. The

conversation id is passed as a parameter.

* org.jboss.
* org.jboss.
* org.jboss.
* org.jboss.
* org.j boss.
* org.jboss.

* org.jboss.

seam begi nPagef | ow — called when a pageflow begins

seam begi nPagef | ow. <name> — called when the pageflow <name> begins
seam endPagef | ow — called when a pageflow ends

seam endPagef | ow. <name> — called when the pageflow <name> ends
seam cr eat eProcess. <name> — called when the process <name> is created
seam endPr ocess. <nanme> — called when the process <name> ends

seam i ni t Process. <nane> — called when the process <name> is associated

with the conversation

* org.jboss.

seam i ni t Task. <name> — called when the task <name> is associated with the

conversation

* org.j boss.
* org.jboss.
* org.jboss.
* org.jboss.
* org.j boss.
* org.jboss.

* org.jboss.

seam st art Task. <name> — called when the task <name> is started

seam endTask. <nane> — called when the task <name> is ended

seam post Cr eat e. <nanme> — called when the component <name> is created
seam pr eDest r oy. <name> — called when the component <name> is destroyed
seam bef or ePhase — called before the start of a JSF phase

seam af t er Phase — called after the end of a JSF phase

seam post I nitialization — called when Seam has initialized and started up

all components

* org.jboss.

* org.jboss.
user

* org.jboss.
required

* org.jboss.

* org.jboss.

seam post Aut hent i cat e. <nane> — called after a user is authenticated

seam pr eAut hent i cat e. <nane> — called before attempting to authenticate a

seam not Loggedl n — called there is no authenticated user and authentication is

seam r emenber Me — occurs when Seam security detects the username in a cookie

seam except i onHandl ed. <t ype> — called when an uncaught exception is

handled by Seam

140

Seam interceptors

e org.jboss. seam excepti onHandl ed — called when an uncaught exception is handled by
Seam

e org.j boss. seam excepti onNot Handl ed — called when there was no handler for an uncaught
exception

e org.jboss.seam after Transacti onSuccess — called when a transaction succeeds in the
Seam Application Framework

e org.jboss.seam aft er Transact i onSuccess. <name> — called when a transaction succeeds
in the Seam Application Framework which manages an entity called <name>

Seam components may observe any of these events in just the same way they observe any other
component-driven events.

6.10. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an
interceptor to a bean, you need to write a class with a method annotated @\ oundl nvoke and
annotate the bean with an @ nt er cept or s annotation that specifies the name of the interceptor
class. For example, the following interceptor checks that the user is logged in before allowing
invoking an action listener method:

public class Loggedininterceptor {

@Aroundinvoke
public Object checkLoggedIn(InvocationContext invocation) throws Exception {

boolean isLoggedin = Contexts.getSessionContext().get("loggedin")!=null;
if (isLoggedIn) {

/lthe user is already logged in

return invocation.proceed();

}

else {
/lthe user is not logged in, fwd to login page
return "login";

}

To apply this interceptor to a session bean which acts as an action listener, we must
annotate the session bean @ nt er cept or s(Logged! nl nt er cept or. cl ass) . This is a somewhat
ugly annotation. Seam builds upon the interceptor framework in EJB3 by allowing you

141

Chapter 6. Events, intercepto...

to use @nterceptors as a meta-annotation for class level interceptors (those annotated
@rar get (TYPE)). In our example, we would create an @ ogged! n annotation, as follows:

@Target(TYPE)

@Retention(RUNTIME)
@Interceptors(LoggedIininterceptor.class)
public @interface Loggedin {}

We can now simply annotate our action listener bean with @.oggedI n to apply the interceptor.

@Stateless

@Name("changePasswordAction")

@LoggedIn

@Interceptors(Seaminterceptor.class)

public class ChangePasswordAction implements ChangePassword {

public String changePassword() { ... }

If interceptor ordering is important (it usually is), you can add @ nt er cept or annotations to your
interceptor classes to specify a partial order of interceptors.

@Interceptor(around={Bijectioninterceptor.class,
ValidationInterceptor.class,
Conversationinterceptor.class},

within=Removelnterceptor.class)

public class Loggedininterceptor

{

You can even have a "client-side" interceptor, that runs around any of the built-in functionality
of EJB3:

@Interceptor(type=CLIENT)
public class Loggedininterceptor

{

142

Managing exceptions

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept. For
interceptors which do not need to maintain state, Seam lets you get a performance optimization
by specifying @ nt er cept or (st at el ess=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including
the interceptors named in the previous example. You don't have to explicitly specify these
interceptors by annotating your components; they exist for all interceptable Seam components.

You can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @r oundl nvoke), but also for
the lifecycle methods @ost Const ruct, @r eDest r oy, @r ePassi vat e and @ost Acti ve. Seam
supports all these lifecycle methods on both component and interceptor not only for EJB3 beans,
but also for JavaBean components (except @r eDest r oy which is not meaningful for JavaBean
components).

6.11. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this
problem, Seam lets you define how a particular class of exception is to be treated by annotating
the exception class, or declaring the exception class in an XML file. This facility is meant to
be combined with the EJB 3.0-standard @\ppl i cati onExcepti on annotation which specifies
whether the exception should cause a transaction rollback.

6.11.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately
marks the current transaction for rollback when it is thrown by a business method of the
bean: system exceptions always cause a transaction rollback, application exceptions do not
cause a rollback by default, but they do if @wpplicationException(rollback=true) is
specified. (An application exception is any checked exception, or any unchecked exception
annotated @\ppl i cati onExcept i on. A system exception is any unchecked exception without an
@\ppl i cati onExcepti on annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it
back. The exception rules say that the transaction should be marked rollback only, but it may still
be active after the exception is thrown.

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

But these rules only apply in the Seam component layer. What about an exception that is uncaught
and propagates out of the Seam component layer, and out of the JSF layer? Well, it is always
wrong to leave a dangling transaction open, so Seam rolls back any active transaction when an
exception occurs and is uncaught in the Seam component layer.

143

Chapter 6. Events, intercepto...

6.11.2. Enabling Seam exception handling

To enable Seam's exception handling, we need to make sure we have the master servlet filter
declared in web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet. SeamFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>*.seam</url-pattern>
<[filter-mapping>

You may also need to disable Facelets development mode in web. xmi and Seam debug mode in
conponent s. xnl if you want your exception handlers to fire.

6.11.3. Using annotations for exception handling

The following exception results in a HTTP 404 error whenever it propagates out of the Seam
component layer. It does not roll back the current transaction immediately when thrown, but the
transaction will be rolled back if it the exception is not caught by another Seam component.

@HTttpError(errorCode=404)
public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component
layer. It also ends the current conversation. It causes an immediate rollback of the current
transaction.

@Redirect(viewld="/failure.xhtml", end=true)
@ApplicationException(rollback=true)
public class UnrecoverableApplicationException extends RuntimeException { ... }

Note that @Redi rect does not work for exceptions which occur during the render phase of the
JSF lifecycle.

You can also use EL to specify the vi ew d to redirect to.

This exception results in a redirect, along with a message to the user, when it propagates out of
the Seam component layer. It also immediately rolls back the current transaction.

144

Using XML for exception handling

@Redirect(viewld="/error.xhtml", message="Unexpected error")
public class SystemException extends RuntimeException{ ... }

6.11.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets
us specify this functionality in pages. xni .

<pages>

<exception class="javax.persistence.EntityNotFoundException">
<http-error error-code="404"/>
</exception>

<exception class="javax.persistence.PersistenceException">
<end-conversation/>
<redirect view-id="/error.xhtml">
<message>Database access failed</message>
</redirect>
</exception>

<exception>
<end-conversation/>
<redirect view-id="/error.xhtm|">
<message>Unexpected failure</message>
</redirect>
</exception>

</pages>

The last <except i on> declaration does not specify a class, and is a catch-all for any exception
for which handling is not otherwise specified via annotations or in pages. xn .

You can also use EL to specify the vi ew i d to redirect to.

You can also access the handled exception instance through EL, Seam places it in the
conversation context, e.g. to access the message of the exception:

throw new AuthorizationException("You are not allowed to do this!");

<pages>

145

Chapter 6. Events, intercepto...

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/error.xhtml">
<message severity="WARN">#{org.jboss.seam.handledException.message}</message>
</redirect>
</exception>

</pages>

org. j boss. seam handl edExcepti on holds the nested exception that was actually handled
by an exception handler. The outermost (wrapper) exception is also available, as
org. j boss. seam excepti on.

6.11.4.1. Suppressing exception logging

For the exception handlers defined in pages. xmi , it is possible to declare the logging level at
which the exception will be logged, or to even suppress the exception being logged altogether. The
attributes | og and | ogLevel can be used to control exception logging. By setting | og="f al se" as
per the following example, then no log message will be generated when the specified exception
occurs:

<exception class="org.jboss.seam.security.NotLoggedInException" log="false">
<redirect view-id="/register.xhtml|">
<message severity="warn">You must be a member to use this feature</message>
</redirect>
</exception>

If the | og attribute is not specified, then it defaults to t rue (i.e. the exception will be logged).
Alternatively, you can specify the | ogLevel to control at which log level the exception will be
logged:

<exception class="org.jboss.seam.security.NotLoggedInException" logLevel="info">
<redirect view-id="/register.xhtml">
<message severity="warn">You must be a member to use this feature</message>
</redirect>
</exception>

The acceptable values for | ogLevel are:fatal, error, warn, info, debugortrace. If the
| ogLevel is not specified, or if an invalid value is configured, then it will default to err or .

146

Some common exceptions

6.11.5. Some common exceptions

If you are using JPA:

<exception class="javax.persistence.EntityNotFoundException">
<redirect view-id="/error.xhtml|">
<message>Not found</message>
</redirect>
</exception>

<exception class="javax.persistence.OptimisticLockException">
<end-conversation/>
<redirect view-id="/error.xhtml|">
<message>Another user changed the same data, please try again</message>
</redirect>
</exception>

If you are using the Seam Application Framework:

<exception class="org.jboss.seam.framework.EntityNotFoundException">
<redirect view-id="/error.xhtml|">
<message>Not found</message>
</redirect>
</exception>

If you are using Seam Security:

<exception class="org.jboss.seam.security.AuthorizationException">
<redirect>
<message>You don't have permission to do this</message>
</redirect>
</exception>

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtm|">
<message>Please log in first</message>
</redirect>
</exception>

And, for JSF:

147

Chapter 6. Events, intercepto...

<exception class="javax.faces.application.ViewExpiredException">
<redirect view-id="/error.xhtm|">
<message>Your session has timed out, please try again</message>
</redirect>
</exception>

A Vi ewExpi r edExcept i on occurs if the user posts back to a page once their session has expired.
no- conversation-viewid and conversati on-required give you finer grained control over
session expiration if you are inside a conversation.

148

Chapter 7.

Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation" came about as a merger of three different ideas:

» Theidea of a workspace, which | encountered in a project for the Victorian government in 2002.
In this project | was forced to implement workspace management on top of Struts, an experience
| pray never to repeat.

» Theidea of an application transaction with optimistic semantics, and the realization that existing
frameworks based around a stateless architecture could not provide effective management of
extended persistence contexts. (The Hibernate team is truly fed up with copping the blame for
Lazyl nitializati onExcepti ons, which are not really Hibernate's fault, but rather the fault of
the extremely limiting persistence context model supported by stateless architectures such as
the Spring framework or the traditional stateless session facade (anti)pattern in J2EE.)

* The idea of a workflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct
that lets us build richer and more efficient applications with less code than before.

7.1. Seam's conversation model

The examples we have seen so far make use of a very simple conversation model that follows
these rules:

e There is always a conversation context active during the apply request values, process
validations, update model values, invoke application and render response phases of the JSF
request lifecycle.

« At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore
any previous long-running conversation context. If none exists, Seam creates a new temporary
conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to
a long running conversation.

« When an @nd method is encountered, any long-running conversation context is demoted to
a temporary conversation.

« Atthe end of the render response phase of the JSF request lifecycle, Seam stores the contents
of a long running conversation context or destroys the contents of a temporary conversation
context.

149

Chapter 7. Conversations and ...

« Any faces request (a JSF postback) will propagate the conversation context. By default, non-
faces requests (GET requests, for example) do not propagate the conversation context, but see
below for more information on this.

« If the JSF request lifecycle is foreshortened by a redirect, Seam transparently stores and
restores the current conversation context—unless the conversation was already ended via
@End(bef or eRedi rect =t rue) .

Seam transparently propagates the conversation context (including the temporary conversation
context) across JSF postbacks and redirects. If you don't do anything special, a non-faces request
(a GET request for example) will not propagate the conversation context and will be processed in
a new temporary conversation. This is usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly

code the Seam conversation id as a request parameter:

Continue

Or, the more JSF-ish:

<h:outputLink value="main.jsf">
<f:param name="conversationld" value="#{conversation.id}"/>
<h:outputText value="Continue"/>

</h:outputLink>

If you use the Seam tag library, this is equivalent:

<h:outputLink value="main.jsf">
<s:conversationld/>
<h:outputText value="Continue"/>
</h:outputLink>

If you wish to disable propagation of the conversation context for a postback, a similar trick is used:

<h:commandLink action="main" value="Exit">
<f:param name="conversationPropagation” value="none"/>
</h:commandLink>

If you use the Seam tag library, this is equivalent:

150

Seam's conversation model

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="none"/>
</h:commandLink>

Note that disabling conversation context propagation is absolutely not the same thing as ending

the conversation.

The conver sat i onPropagat i on request parameter, or the <s: conver sat i onPr opagat i on> tag
may even be used to begin and end conversation, or begin a nested conversation.

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="end"/>
</h:commandLink>

<h:commandLink action="main" value="Select Child">
<s:conversationPropagation type="nested"/>
</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="begin"/>
</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="join"/>
</h:commandLink>

This conversation model makes it easy to build applications which behave correctly with respect
to multi-window operation. For many applications, this is all that is needed. Some complex
applications have either or both of the following additional requirements:

« A conversation spans many smaller units of user interaction, which execute serially or even
concurrently. The smaller nested conversations have their own isolated set of conversation

state, and also have access to the state of the outer conversation.

« The user is able to switch between many conversations within the same browser window. This

feature is called workspace management.

151

Chapter 7. Conversations and ...

7.2. Nested conversations

A nested conversation is created by invoking a method marked @egi n(nest ed=t rue) inside
the scope of an existing conversation. A nested conversation has its own conversation context,
and also has read-only access to the context of the outer conversation. (It can read the
outer conversation's context variables, but not write to them.) When an @nd is subsequently
encountered, the nested conversation will be destroyed, and the outer conversation will resume,
by "popping" the conversation stack. Conversations may be nested to any arbitrary depth.

Certain user activity (workspace management, or the back button) can cause the outer
conversation to be resumed before the inner conversation is ended. In this case it is possible
to have multiple concurrent nested conversations belonging to the same outer conversation.
If the outer conversation ends before a nested conversation ends, Seam destroys all nested
conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the
application to capture a consistent continuable state at various points in a user interaction, thus
insuring truly correct behavior in the face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you
backbutton.

Usually, if a component exists in a parent conversation of the current nested conversation, the
nested conversation will use the same instance. Occasionally, it is useful to have a different
instance in each nested conversation, so that the component instance that exists in the parent
conversation is invisible to its child conversations. You can achieve this behavior by annotating
the component @er Nest edConver sat i on.

7.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a
non-faces request (for example, a HTTP GET request). This can occur if the user bookmarks the
page, or if we navigate to the page via an <h: out put Li nk>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is ho
JSF action method, we can't solve the problem in the usual way, by annotating the action with
@egi n.

A further problem arises if the page needs some state to be fetched into a context variable. We've
already seen two ways to solve this problem. If that state is held in a Seam component, we can
fetch the state in a @ eat e method. If not, we can define a @act ory method for the context
variable.

If none of these options works for you, Seam lets you define a page action in the pages. xni file.

<pages>
<page view-id="/messageList.jsp" action="#{messageManager.list}"/>

152

Starting conversations with GET requests

</pages>

This action method is called at the beginning of the render response phase, any time the page
is about to be rendered. If a page action returns a non-null outcome, Seam will process any
appropriate JSF and Seam navigation rules, possibly resulting in a completely different page being
rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in
action method that does just that:

<pages>
<page view-id="/messageList.jsp" action="#{conversation.begin}"/>

</pages>

Note that you can also call this built-in action from a JSF control, and, similarly, you can use
#{ conver sat i on. end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a
pageflow or an atomic conversation, you should use the <begi n- conver sat i on> element.

<pages>
<page view-id="/messageList.jsp">
<begin-conversation nested="true" pageflow="Addltem"/>
<page>

</pages>
There is also an <end- conver sat i on> element.

<pages>
<page view-id="/home.jsp">
<end-conversation/>
<page>

</pages>

To solve the first problem, we now have five options:

* Annotate the @r eat e method with @egi n

153

Chapter 7. Conversations and ...

Annotate the @act or y method with @egi n

Annotate the Seam page action method with @egi n
» Use <begi n-conversati on> in pages. xm .

» Use #{conver sati on. begi n} as the Seam page action method

7.4, Using <s:1ink> and <s:button>

JSF command links always perform a form submission via JavaScript, which breaks the web
browser's "open in new window" or "open in new tab" feature. In plain JSF, you need to
use an <h: out put Li nk> if you need this functionality. But there are two major limitations to
<h: out put Li nk>.

« JSF provides no way to attach an action listener to an <h: out put Li nk>.

« JSF does not propagate the selected row of a Dat aMbdel since there is no actual form
submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing
to help us with the second problem. We could work around this by using the RESTful approach
of passing a request parameter and requerying for the selected object on the server side. In
some cases—such as the Seam blog example application—this is indeed the best approach. The
RESTful style supports bookmarking, since it does not require server-side state. In other cases,
where we don't care about bookmarks, the use of @at aMbdel and @at avbdel Sel ect i on is just
so convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to manage,
Seam provides the <s: | i nk> JSF tag.
The link may specify just the JSF view id:

<s:link view="/login.xhtml|" value="Login"/>

Or, it may specify an action method (in which case the action outcome determines the page that
results):

<s:link action="#{login.logout}" value="Logout"/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action
method returns a non-null outcome:

<s:link view="/loggedOut.xhtml" action="#{login.logout}" value="Logout"/>

154

Success messages

The link automatically propagates the selected row of a Dat aMbdel using inside <h: dat aTabl e>:
<s:link view="/hotel.xhtml" action="#{hotelSearch.selectHotel}" value="#{hotel.name}"/>

You can leave the scope of an existing conversation:

<s:link view="/main.xhtml" propagation="none"/>

You can begin, end, or nest conversations:

<s:link action="#{issueEditor.viewComment}" propagation="nest"/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{documentEditor.getDocument}" propagation="begin"
pageflow="EditDocument"/>

The t askl nst ance attribute if for use in jBPM task lists:
<s:link action="#{documentApproval.approveOrReject}" taskinstance="#{task}"/>

(See the DVD Store demo application for examples of this.)

Finally, if you need the "link" to be rendered as a button, use <s: but t on>:

<s:button action="#{login.logout}" value="Logout"/>

7.5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. Itis
convenient to use a JSF FacesMessage for this. Unfortunately, a successful action often requires
a browser redirect, and JSF does not propagate faces messages across redirects. This makes it
quite difficult to display success messages in plain JSF.

The built in conversation-scoped Seam component hamed f acesMessages solves this problem.
(You must have the Seam redirect filter installed.)

155

Chapter 7. Conversations and ...

@Name("editDocumentAction")

@Stateless

public class EditDocumentBean implements EditDocument {
@In EntityManager em;
@In Document document;
@In FacesMessages facesMessages;

public String update() {
em.merge(document);
facesMessages.add("Document updated");

Any message added to f acesMessages is used in the very next render response phase for the
current conversation. This even works when there is no long-running conversation since Seam
preserves even temporary conversation contexts across redirects.

You can even include JSF EL expressions in a faces message summary:

facesMessages.add("Document #{document.titie} was updated");

You may display the messages in the usual way, for example:

<h:messages globalOnly="true"/>

7.6. Natural conversation ids

When working with conversations that deal with persistent objects, it may be desirable to use the
natural business key of the object instead of the standard, "surrogate” conversation id:

Easy redirect to existing conversation

It can be useful to redirect to an existing conversation if the user requests the same operation
twice. Take this example: “ You are on ebay, half way through paying for an item you just won as
a Christmas present for your parents. Lets say you're sending it straight to them - you enter your
payment details but you can't remember their address. You accidentally reuse the same browser
window finding out their address. Now you need to return to the payment for the item. ”

With a natural conversation its really easy to have the user rejoin the existing conversation, and
pick up where they left off - just have them to rejoin the payForltem conversation with the itemid
as the conversation id.

156

Creating a natural conversation

User friendly URLs

For me this consists of a navigable hierarchy (I can navigate by editing the url) and a meaningful
URL (like this Wiki uses - so don't identify things by random ids). For some applications user
friendly URLSs are less important, of course.

With a natural conversations, when you are building your hotel booking system (or,
of course, whatever your app is) you can generate a URL like http://seam hotel s/
book. seanfhot el =Best West er nAnt wer pen (of course, whatever parameter hot el maps to on
your domain model must be unigue) and with URLRewrite easily transform this to http://seam-
hotels/book/BestWesternAntwerpen.

Much better!

7.7. Creating a natural conversation

Natural conversations are defined in pages. xni :

<conversation name="PlaceBid"
parameter-name="auctionld"
parameter-value="#{auction.auctionld}"/>

The first thing to note from the above definition is that the conversation has a name, in this case
Pl aceBi d. This name uniquely identifies this particular named conversation, and is used by the
page definition to identify a named conversation to participate in.

The next attribute, par anet er - nane defines the request parameter that will contain the natural
conversation id, in place of the default conversation id parameter. In this example, the par anet er -
nane is auct i onl d. This means that instead of a conversation parameter like ci d=123 appearing
in the URL for your page, it will contain auct i onl d=765432 instead.

The last attribute in the above configuration, par anet er - val ue, defines an EL expression used
to evaluate the value of the natural business key to use as the conversation id. In this example,
the conversation id will be the primary key value of the auct i on instance currently in scope.

Next, we define which pages will participate in the named conversation. This is done by specifying
the conver sati on attribute for a page definition:

<page view-id="/bid.xhtml" conversation="PlaceBid" login-required="true">
<navigation from-action="#{bidAction.confirmBid}">
<rule if-outcome="success">
<redirect view-id="/auction.xhtm|">
<param name="id" value="#{bidAction.bid.auction.auctionld}"/>
</redirect>

157

Chapter 7. Conversations and ...

</rule>
</navigation>
</page>

7.8. Redirecting to a natural conversation

When starting, or redirecting to, a natural conversation there are a number of options for specifying
the natural conversation name. Let's start by looking at the following page definition:

<page view-id="/auction.xhtml[">
<param name="id" value="#{auctionDetail.selectedAuctionld}"/>

<navigation from-action="#{bidAction.placeBid}">
<redirect view-id="/bid.xhtml"/>
</navigation>
</page>

From here, we can see that invoking the action #{bi dActi on. pl aceBi d} from our auction view
(by the way, all these examples are taken from the seamBay example in Seam), that we will be
redirected to/ bi d. xht nl , which, as we saw previously, is configured with the natural conversation
Pl aceBi d. The declaration for our action method looks like this:

@Begin(join = true)
public void placeBid()

When named conversations are specified in the <page/ > element, redirection to the named
conversation occurs as part of navigation rules, after the action method has already been invoked.
This is a problem when redirecting to an existing conversation, as redirection needs to be occur
before the action method is invoked. Therefore it is necessary to specify the conversation name
when the action is invoked. One way of doing this is by using the s: conver sat i onNane tag:

<h:commandButton id="placeBidWithAmount" styleClass="placeBid"
action="#{bidAction.placeBid}">
<s:conversationName value="PlaceBid"/>
</h:commandButton>

Another alternative is to specify the conver sati onNane attribute when using either s: 1i nk or
S: button:

158

Workspace management

<s:link value="Place Bid" action="#{bidAction.placeBid}" conversationName="PlaceBid"/>

7.9. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam
makes workspace management completely transparent at the level of the Java code. To enable
workspace management, all you need to do is:

« Provide description text for each view id (when using JSF or Seam navigation rules) or page
node (when using jPDL pageflows). This description text is displayed to the user by the
workspace switchers.

 Include one or more of the standard workspace switcher JSP or facelets fragments in your
pages. The standard fragments support workspace management via a drop down menu, a list
of conversations, or breadcrumbs.

7.9.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring
the current vi ewi d for that conversation. The descriptive text for the workspace is defined in
a file called pages. xm that Seam expects to find in the VEB- | NF directory, right next to f aces-

config.xm:

<pages>

<page view-id="/main.xhtml">

<description>Search hotels: #{hotelBooking.searchString}</description>
</page>
<page view-id="/hotel.xhtml">

<description>View hotel: #{hotel.name}</description>
</page>
<page view-id="/book.xhtml">

<description>Book hotel: #{hotel.name}</description>
</page>
<page view-id="/confirm.xhtml">

<description>Confirm: #{booking.description}</description>
</page>
</pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only
missing functionality will be the ability to switch workspaces.

159

Chapter 7. Conversations and ...

7.9.2. Workspace management and jPDL pageflow

When you use a jPDL pageflow definition, Seam switches to a conversation by restoring the
current jBPM process state. This is a more flexible model since it allows the same vi ew i d to have
different descriptions depending upon the current <page> node. The description text is defined
by the <page> node:

<pageflow-definition name="shopping">

<start-state name="start">
<transition to="browse"/>
</start-state>

<page name="browse" view-id="/browse.xhtml">
<description>DVD Search: #{search.searchPattern}</description>
<transition to="browse"/>
<transition name="checkout" to="checkout"/>

</page>

<page name="checkout" view-id="/checkout.xhtml">
<description>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

<page name="complete" view-id="/complete.xhtml">
<end-conversation />
</page>

</pageflow-definition>

7.9.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets you
switch to any current conversation, or to any other page of the application:

<h:selectOneMenu value="#{switcher.conversationldOrOutcome}">
<f:selectltem itemLabel="Find Issues" itemValue="findlssue"/>
<f:selectltem itemLabel="Create Issue" itemValue="editIssue"/>
<f:selectltems value="#{switcher.selectltems}"/>

</h:selectOneMenu>

<h:commandButton action="#{switcher.select}" value="Switch"/>

160

The conversation list

In this example, we have a menu that includes an item for each conversation, together with two

additional items that let the user begin a new conversation.

Only conversations with a description (specified in pages. xm) will be included in the drop-down

menu.

CummentunIssue[‘l]farF‘mJect[HHH] =
Find Issues
Create lssue
Browse Projects

Create Project
ME | |5sue [1] for Project [HHH]

in K Project [HHH
Comment on Issue [1] for Project [HHH]

7.9.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as

a table:

<h:dataTable value="#{conversationList}" var="entry"
rendered="#{not empty conversationList}">
<h:column>
<f:.facet name="header">Workspace</f:facet>
<h:commandLink action="#{entry.select}" value="#{entry.description}"/>
<h:outputText value="[current]" rendered="#{entry.current}"/>

</h:column>
<h:column>
<f.facet name="header">Activity</f.facet>
<h:outputText value="#{entry.startDatetime}">
<f.convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>
<h:outputText value="-"/>
<h:outputText value="#{entry.lastDatetime}">
<f.convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>
</h:column>
<h:column>
<f.facet name="header">Action</f.facet>
<h:commandButton action="#{entry.select}" value="#{msg.Switch}"/>
<h:commandButton action="#{entry.destroy}" value="#{msg.Destroy}"/>

161

Chapter 7. Conversations and ...

</h:column>
</h:dataTable>

We imagine that you will want to customize this for your own application.

Workspace Workspace activity
Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM
Issue [1] for Project [HHH] 01:18 PM - 01:18 PM
Project [HHH 01:18 PM - 01:18 PM

Only conversations with a description will be included in the list.

Notice that the conversation list lets the user destroy workspaces.

7.9.5. Breadcrumbs

Action

[Switch][Destroy]
[Switch][Destroy]
[Switch][Destroy]

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs

are a list of links to conversations in the current conversation stack:

<ui:crepeat value="#{conversationStack}" var="entry">

<h:commandLink value="#{entry.description}" action="#{entry.select}"/>

</ui:repeat

Home | Find Issues | Create Issue | Project [HHH] | Issue [1] for Project [HHH]

—Issue Attributes ,

7.10. Conversational components and JSF component

bindings

Conversational components have one minor limitation: they cannot be used to hold bindings to
JSF components. (We generally prefer not to use this feature of JSF unless absolutely necessary,
since it creates a hard dependency from application logic to the view.) On a postback request,
component bindings are updated during the Restore View phase, before the Seam conversation

context has been restored.

To work around this use an event scoped component to store the component bindings and inject

it into the conversation scoped component that requires it.

@Name("grid")

162

Concurrent calls to conversational components

@Scope(ScopeType.EVENT)
public class Grid

{
private HtmlIPanelGrid htmIPanelGrid;

Il getters and setters

@Name("gridEditor™)
@Scope(ScopeType. CONVERSATION)
public class GridEditor
{

@In(required=false)

private Grid grid;

Also, you can't inject a conversation scoped component into an event scoped component which
you bind a JSF control to. This includes Seam built in components like f acesMessages.

Alternatively, you can access the JSF component tree through the implicit ui Conponent handle.
The following example accesses get Rowl ndex() of the Ul Dat a component which backs the data
table during iteration, it prints the current row number:

<h:dataTable id="lineltemTable" var="lineltem" value="#{orderHome.lineltems}">
<h:column>
Row: #{uiComponent['lineltemTable".rowindex}
</h:column>

</h:dataTable>

JSF Ul components are available with their client identifier in this map.

7.11. Concurrent calls to conversational components

A general discussion of concurrent calls to Seam components can be found in Section 4.1.10,
“Concurrency model”. Here we will discuss the most common situation in which you will encounter
concurrency — accessing conversational components from AJAX requests. We're going to

163

Chapter 7. Conversations and ...

discuss the options that a Ajax client library should provide to control events originating at the
client — and we'll look at the options RichFaces gives you.

Conversational components don't allow real concurrent access therefore Seam queues each
request to process them serially. This allows each request to be executed in a deterministic
fashion. However, a simple queue isn't that great — firstly, if a method is, for some reason, taking a
very long time to complete, running it over and over again whenever the client generates a request
is bad idea (potential for Denial of Service attacks), and, secondly, AJAX is often to used to provide
a quick status update to the user, so continuing to run the action after a long time isn't useful.

Therefore Seam queues the action event for a period of time (the concurrent request timeout); if
it can't process the event in time, it creates a temporary conversation and prints out a message
to the user to let them know what's going on. It's therefore very important not to flood the server
with AJAX events!

We can set a sensible default for the concurrent request timeout (in ms) in components.xml:

<core:manager concurrent-request-timeout="500" />

So far we've discussed "synchronous” AJAX requests - the client tells the server that an event has
occur, and then rerenders part of the page based on the result. This approach is great when the
AJAX request is lightweight (the methods called are simple e.g. calculating the sum of a column
of numbers). But what if we need to do a complex computation?

For heavy computation we should use a truly asynchronous (poll based) approach — the client
sends an AJAX request to the server, which causes action to be executed asynchronously on
the server (so the the response to the client is immediate); the client then polls the server for
updates. This is useful when you have a long-running action for which it is important that every
action executes (you don't want some to be dropped as duplicates, or to timeout).

How should we design our conversational AJAX application?

Well first, you need to decide whether you want to use the simpler "synchronous" request or
whether you want to add using a poll-style approach.

If you go for a "synchronous" approach, then you need to make an estimate of how long your
AJAX request will take to complete - is it much shorter than the concurrent request timeout? If not,
you probably want to alter the concurrent request timeout for this method (as discussed above).
Next you probably want a queue on the client side to prevent flooding the server with requests. If
the event occurs often (e.g. a keypress, onblur of input fields) and immediate update of the client
is not a priority you should set a request delay on the client side. When working out your request
delay, factor in that the event may also be queued on the server side.

Finally, the client library may provide an option to abort unfinished duplicate requests in favor of
the most recent. You need to be careful with this option as it can lead to flooding of the server with
requests if the server is not able to abort the unfinished request.

164

RichFaces Ajax

Using a poll-style design requires less fine-tuning. You just mark your action method

@synchr onous and decide on a polling interval:

int total;

/I This method is called when an event occurs on the client
/I It takes a really long time to execute
@Asynchronous
public void calculateTotal() {
total = someReallyComplicatedCalculation();

}

/I This method is called as the result of the poll
I It's very quick to execute
public int getTotal() {

return total;

7.11.1. RichFaces Ajax

RichFaces Ajax is the AJAX library most commonly used with Seam, and provides all the controls

discussed above:

event sQueue — provide a queue in which events are placed. All events are queued and
requests are sent to the server serially. This is useful if the request can to the server can take
some time to execute (e.g. heavy computation, retrieving information from a slow source) as
the server isn't flooded.

i gnor eDupResponses — ignore the response produced by the request if a more recent 'similar'
requestis already in the queue. ignoreDupResponses="true" does not cancel the the processing
of the request on the server side — just prevents unnecessary updates on the client side.

This option should be used with care with Seam's conversations as it allows multiple concurrent
requests to be made.

request Del ay — defines the time (in ms.) that the request will be remain on the queue. If
the request has not been processed by after this time the request will be sent (regardless of
whether a response has been received) or discarded (if there is a more recent similar event
on the queue).

This option should be used with care with Seam's conversations as it allows multiple concurrent
requests to be made. You need to be sure that the delay you set (in combination with the
concurrent request timeout) is longer than the action will take to execute.

165

Chapter 7. Conversations and ...

e <a:poll reRender="total" interval ="1000" /> — Polls the server, and rerenders an area
as needed

166

Chapter 8.

Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM
lets you represent a business process or user interaction as a graph of nodes representing wait
states, decisions, tasks, web pages, etc. The graph is defined using a simple, very readable, XML
dialect called jPDL, and may be edited and visualised graphically using an eclipse plugin. jPDL
is an extensible language, and is suitable for a range of problems, from defining web application
page flow, to traditional workflow management, all the way up to orchestration of services in a
SOA environment.

Seam applications use jBPM for two different problems:

« Defining the pageflow involved in complex user interactions. A jPDL process definition defines
the page flow for a single conversation. A Seam conversation is considered to be a relatively
short-running interaction with a single user.

« Defining the overarching business process. The business process may span multiple
conversations with multiple users. Its state is persistent in the jJBPM database, so it is considered
long-running. Coordination of the activities of multiple users is a much more complex problem
than scripting an interaction with a single user, so jBPM offers sophisticated facilities for task
management and dealing with multiple concurrent paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity. Pageflow,
conversation and task all refer to a single interaction with a single user. A business process spans
many tasks. Futhermore, the two applications of jBPM are totally orthogonal. You can use them
together or independently or not at all.

You don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using
JSF or Seam navigation rules, and if your application is more data-driven that process-driven,
you probably don't need jBPM. But we're finding that thinking of user interaction in terms of a
well-defined graphical representation is helping us build more robust applications.

8.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

* Using JSF or Seam navigation rules - the stateless navigation model
» Using jPDL - the stateful navigation model

Very simple applications will only need the stateless navigation model. Very complex applications
will use both models in different places. Each model has its strengths and weaknesses!

8.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly
to the resulting page of the view. The navigation rules are entirely oblivious to any state held by the

167

Chapter 8. Pageflows and busi...

application other than what page was the source of the event. This means that your action listener
methods must sometimes make decisions about the page flow, since only they have access to
the current state of the application.

Here is an example page flow definition using JSF navigation rules:

<navigation-rule>
<from-view-id>/numberGuess.jsp</from-view-id>

<navigation-case>
<from-outcome>guess</from-outcome>
<to-view-id>/numberGuess.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>win</from-outcome>
<to-view-id>/win.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>lose</from-outcome>
<to-view-id>/lose.jsp</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Here is the same example page flow definition using Seam navigation rules:

<page view-id="/numberGuess.jsp">

<navigation>
<rule if-outcome="guess">
<redirect view-id="/numberGuess.jsp"/>
</rule>
<rule if-outcome="win">
<redirect view-id="/win.jsp"/>
</rule>
<rule if-outcome="lose">
<redirect view-id="/lose.jsp"/>
</rule>

168

The two navigation models

</navigation>

</page>

If you find navigation rules overly verbose, you can return view ids directly from your action listener
methods:

public String guess() {
if (guess==randomNumber) return "/win.jsp";
if (++guessCount==maxGuesses) return "/lose.jsp";
return null;

Note that this results in a redirect. You can even specify parameters to be used in the redirect:

public String search() {
return "/searchResults.jsp?searchPattern=#{searchAction.searchPattern}";

The stateful model defines a set of transitions between a set of named, logical application states.
In this model, it is possible to express the flow of any user interaction entirely in the jPDL
pageflow definition, and write action listener methods that are completely unaware of the flow of
the interaction.

Here is an example page flow definition using jPDL:

<pageflow-definition name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</start-page>

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">

169

Chapter 8. Pageflows and busi...

<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>
</decision>

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation />

</page>

<page name="lose" view-id="/lose.jsp">
<redirect/>
<end-conversation />

</page>

</pageflow-definition>

= 0| 5= outline 22 = B
[x Select Sl
4, Marquee e e +-@ numberGuess
Q Start start
ChDecision
E=E| Page {{P&Qe:}
— Transition Edigmayﬁuess
guess false
o ==Decisions== false i ==Decision==
" evaluateGuess * evaluateRemainingGuesses
frue frue
Page==
E=. ==Pgge== [= =l
& Win &l lose

Diagram | Design | Source

There are two things we notice immediately here:

e The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the
underlying Java code is more complex.)

» The jPDL makes the user interaction immediately understandable, without us needing to even
look at the JSP or Java code.

170

Seam and the back button

In addition, the stateful model is more constrained. For each logical state (each step in the page
flow), there are a constrained set of possible transitions to other states. The stateless model is
an ad hoc model which is suitable to relatively unconstrained, freeform navigation where the user
decides where he/she wants to go next, not the application.

The stateful/stateless navigation distinction is quite similar to the traditional view of modal/
modeless interaction. Now, Seam applications are not usually modal in the simple sense of
the word - indeed, avoiding application modal behavior is one of the main reasons for having
conversations! However, Seam applications can be, and often are, modal at the level of a particular
conversation. It is well-known that modal behavior is something to avoid as much as possible; it
is very difficult to predict the order in which your users are going to want to do things! However,
there is no doubt that the stateful model has its place.

The biggest contrast between the two models is the back-button behavior.

8.1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back,
forward and refresh buttons. It is the responsibility of the application to ensure that conversational
state remains internally consistent when this occurs. Experience with the combination of web
application frameworks like Struts or WebWork - that do not support a conversational model -
and stateless component models like EJB stateless session beans or the Spring framework has
taught many developers that this is close to impossible to do! However, our experience is that
in the context of Seam, where there is a well-defined conversational model, backed by stateful
session beans, it is actually quite straightforward. Usually it is as simple as combining the use
of no- conversati on-vi ew i d with null checks at the beginning of action listener methods. We
consider support for freeform navigation to be almost always desirable.

In this case, the no-conversation-vi ewi d declaration goes in pages. xm . It tells Seam to
redirect to a different page if a request originates from a page rendered during a conversation,
and that conversation no longer exists:

<page view-id="/checkout.xhtml"
no-conversation-view-id="/main.xhtml"/>

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition
back to a previous state. Since the stateful model enforces a defined set of transitions from the
current state, back buttoning is by default disallowed in the stateful model! Seam transparently
detects the use of the back button, and blocks any attempt to perform an action from a previous,
"stale" page, and simply redirects the user to the "current” page (and displays a faces message).
Whether you consider this a feature or a limitation of the stateful model depends upon your point
of view: as an application developer, it is a feature; as a user, it might be frustrating! You can
enable backbutton navigation from a particular page node by setting back="enabl ed".

171

Chapter 8. Pageflows and busi...

<page name="checkout"
view-id="/checkout.xhtml"
back="enabled">
<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

This allows backbuttoning from the checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered
during a pageflow, and the conversation with the pageflow no longer exists. In this case, the
no- conver sati on-vi ew i d declaration goes into the pageflow definition:

<page name="checkout"
view-id="/checkout.xhtml"
back="enabled"
no-conversation-view-id="/main.xhtml">
<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when
to prefer one model over the other.

8.2. Using jPDL pageflows

8.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and tell them where to find our pageflow
definition. We can specify this Seam configuration in conponent s. xni .

<bpm:jbpm>
<bpm:pageflow-definitions>
<value>pageflow.jpdl.xml</value>
</bpm:pageflow-definitions>
</bpm:jbpm>

The first line installs jBPM, the second points to a jPDL-based pageflow definition.

172

Starting pageflows

8.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a @egi n,
@Begi nTask or @t art Task annotation:

@Begin(pageflow="numberguess")
public void begin() { ... }

Alternatively we can start a pageflow using pages.xml:

<page>
<begin-conversation pageflow="numberguess"/>
</page>

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @actory or
@r eat e method, for example—we consider ourselves to be already at the page being rendered,
and use a <st art - page> node as the first node in the pageflow, as in the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action
listener determines which is the first page to be rendered. In this case, we use a <start - st at e>
as the first node in the pageflow, and declare a transition for each possible outcome:

<pageflow-definition name="viewEditDocument">

<start-state name="start">
<transition name="documentFound" to="displayDocument"/>
<transition name="documentNotFound" to="notFound"/>
</start-state>

<page name="displayDocument" view-id="/document.jsp">
<transition name="edit" to="editDocument"/>
<transition name="done" to="main"/>

</page>

<page name="notFound" view-id="/404.jsp">
<end-conversation/>
</page>

</pageflow-definition>

173

Chapter 8. Pageflows and busi...

8.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</page>

The vi ewi d is the JSF view id. The <r edi r ect / > element has the same effect as <redi rect />
in a JSF navigation rule: namely, a post-then-redirect behavior, to overcome problems with the
browser's refresh button. (Note that Seam propagates conversation contexts over these browser
redirects. So there is no need for a Ruby on Rails style "flash" construct in Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or
command link in nunber Guess. j sp.

<h:commandButton type="submit" value="Guess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action
by calling the guess() method of the nunber Guess component. Notice that the syntax used for
specifying actions in the jPDL is just a familiar JSF EL expression, and that the transition action
handler is just a method of a Seam component in the current Seam contexts. So we have exactly
the same event model for jBPM events that we already have for JSF events! (The One Kind of
Stuff principle.)

In the case of a null outcome (for example, a command button with no act i on defined), Seam will
signal the transition with no name if one exists, or else simply redisplay the page if all transitions
have names. So we could slightly simplify our example pageflow and this button:

<h:commandButton type="submit" value="Guess"/>

Would fire the following un-named transition:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>

174

Controlling the flow

</page>

It is even possible to have the button call an action method, in which case the action outcome will
determine the transition to be taken:

<h:commandButton type="submit" value="Guess" action="#{numberGuess.guess}'/>

<page name="displayGuess" view-id="/numberGuess.jsp">
<transition name="correctGuess" to="win"/>
<transition name="incorrectGuess" to="evaluateGuess"/>
</page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow
out of the pageflow definition and back into the other components. It is much better to centralize
this concern in the pageflow itself.

8.2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do need
the <deci si on> node, however:

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

8.2.5. Ending the flow

We end the conversation using <end- conver sat i on> or @nd. (In fact, for readability, use of both
is encouraged.)

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation/>

</page>

175

Chapter 8. Pageflows and busi...

Optionally, we can end a task, specify a jJBPM transi ti on name. In this case, Seam will signal
the end of the current task in the overarching business process.

<page name="win" view-id="/win.jsp">
<redirect/>
<end-task transition="success"/>
</page>

8.2.6. Pageflow composition

It is possible to compose pageflows and have one pageflow pause pause while another pageflow
executes. The <process- st at e> node pauses the outer pageflow, and begins execution of a
named pageflow:

<process-state name="cheat">
<sub-process name="cheat"/>
<transition to="displayGuess"/>
</process-state>

The inner flow begins executing at a <start - st at e> node. When it reaches an <end- st at e>
node, execution of the inner flow ends, and execution of the outer flow resumes with the transition
defined by the <pr ocess- st at e> element.

8.3. Business process management in Seam

A business process is a well-defined set of tasks that must be performed by users or software
systems according to well-defined rules about who can perform a task, and when it should
be performed. Seam's |BPM integration makes it easy to display lists of tasks to users and
let them manage their tasks. Seam also lets the application store state associated with the
business process in the BUSI NESS_PROCESS context, and have that state made persistent via jBPM
variables.

A simple business process definition looks much the same as a page flow definition (One Kind
of Stuff), except that instead of <page> nodes, we have <t ask- node> nodes. In a long-running
business process, the wait states are where the system is waiting for some user to log in and
perform a task.

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>
</start-state>

176

Using jPDL business process definitions

<task-node name="todo">
<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>

</task>

<transition to="done"/>

</task-node>

<end-state name="done"/>

</process-definition>

B resources X

|[§ Select
4 Marquee

2 start
o State
= End

of[2 Fork

obe Join

7 Decision
% Node

¥ Task Node

—+ Transition

<=Start Stafe==
o start

< Tas.k MNode==
% todo

=<fEnd State==

= done

D'Lagraml Swimlanes‘ Design| 50urce|

It is perfectly possible that we might have both jPDL business process definitions and jPDL
pageflow definitions in the same project. If so, the relationship between the two is that a single
<t ask> in a business process corresponds to a whole pageflow <pagef | ow def i ni ti on>

8.4. Using jPDL business process definitions

8.4.1. Installing process definitions

We need to install jBPM, and tell it where to find the business process definitions:

<bpm:jbpm>

<bpm:process-definitions>

177

El Properties 52 73 =0

BEEN

Property Value &

Name =
Source start
Target todo

Chapter 8. Pageflows and busi...

<value>todo.jpdl.xml</value>
</bpm:process-definitions>
</bpm:jbpm>

As jBPM processes are persistent across application restarts, when using Seam in a production
environment you won't want to install the process definition every time the application starts.
Therefore, in a production environment, you'll need to deploy the process to jBPM outside of
Seam. In other words, only install process definitions from conponent s. xmi when developing your
application.

8.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and
group actor ids. We specify the current actor ids using the built in Seam component named act or :

@In Actor actor;
public String login() {

actor.setld(user.getUserName());
actor.getGroupActorlds().addAll(user.getGroupNames());

8.4.3. Initiating a business process

To initiate a business process instance, we use the @r eat ePr ocess annotation:

@CreateProcess(definition="todo")
public void createTodo() { ... }

Alternatively we can initiate a business process using pages.xml:

<page>
<create-process definition="todo" />
</page>

178

Task assignment

8.4.4. Task assignment

When a process reaches a task node, task instances are created. These must be assigned to
users or user groups. We can either hardcode our actor ids, or delegate to a Seam component:

<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>
</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to
a pool:

<task name="todo" description="#{todoList.description}">
<assignment pooled-actors="employees"/>
</task>

8.4.5. Task lists

Several built-in Seam components make it easy to display task lists. The
pool edTaskl nst ancelLi st is a list of pooled tasks that users may assign to themselves:

<h:dataTable value="#{pooledTasklInstanceList}" var="task">
<h:column>
<f.facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{pooledTask.assignToCurrentActor}" value="Assign" taskinstance="#{task}"/

</h:column>
</h:dataTable>

Note that instead of <s: | i nk> we could have used a plain JSF <h: commandLi nk>:

<h:commandLink action="#{pooledTask.assignToCurrentActor}">
<f:param name="taskld" value="#{task.id}"/>
</h:commandLink>

179

Chapter 8. Pageflows and busi...

The pool edTask component is a built-in component that simply assigns the task to the current
user.

The t askl nst anceLi st For Type component includes tasks of a particular type that are assigned
to the current user:

<h:dataTable value="#{taskinstanceListForType['todo']}" var="task">
<h:column>
<f.facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{todoList.start}" value="Start Work" taskinstance="#{task}"/>
</h:column>
</h:dataTable>

8.4.6. Performing a task

To begin work on a task, we use either @t art Task or @egi nTask on the listener method:

@StartTask
public String start() { ... }

Alternatively we can begin work on a task using pages.xml:

<page>
<start-task />
</page>

These annotations begin a special kind of conversation that has significance in terms of the
overarching business process. Work done by this conversation has access to state held in the
business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@EndTask(transition="completed")
public String completed() { ... }

Alternatively we can use pages.xml:

180

Performing a task

<page>
<end-task transition="completed" />
</page>

You can also use EL to specify the transition in pages.xml.

At this point, jBPM takes over and continues executing the business process definition. (In more
complex processes, several tasks might need to be completed before process execution can
resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features
that jBPM provides for managing complex business processes.

181

182

Chapter 9.

Seam and Object/Relational Mapping

Seam provides extensive support for the two most popular persistence architectures for Java:
Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique state-
management architecture allows the most sophisticated ORM integration of any web application
framework.

9.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of the
previous generation of Java application architectures. The state management architecture of
Seam was originally designed to solve problems relating to persistence—in particular problems
associated with optimistic transaction processing. Scalable online applications always use
optimistic transactions. An atomic (database/JTA) level transaction should not span a user
interaction unless the application is designed to support only a very small number of concurrent
clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence
context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no
construct for representing an optimistic transaction. So, instead, these architectures provided
persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems
for users, and is the cause of the number one user complaint about Hibernate: the dreaded
Lazyl nitializationException. What we need is a construct for representing an optimistic
transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful
session bean) with an extended persistence context scoped to the lifetime of the component. This
is a partial solution to the problem (and is a useful construct in and of itself) however there are
two problems:

» The lifecycle of the stateful session bean must be managed manually via code in the web tier
(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

» Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components
scoped to the conversation. (Most conversations actually represent optimistic transactions in the
data layer.) This is sufficient for many simple applications (such as the Seam booking demo)
where persistence context propagation is not needed. For more complex applications, with many
loosly-interacting components in each conversation, propagation of the persistence context across
components becomes an important issue. So Seam extends the persistence context management
model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

183

Chapter 9. Seam and Object/Re...

9.2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start
a transaction transparently when the bean is invoked, and end it when the invocation ends. If we
write a session bean method that acts as a JSF action listener, we can do all the work associated
with that action in one transaction, and be sure that it is committed or rolled back when we finish
processing the action. This is a great feature, and all that is needed by some Seam applications.

However, there is a problem with this approach. A Seam application may not perform all data
access for a request from a single method call to a session bean.

» The request might require processing by several loosly-coupled components, each of which is
called independently from the web layer. It is common to see several or even many calls per
request from the web layer to EJB components in Seam.

» Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation
problems when our application is processing many concurrent requests. Certainly, all write
operations should occur in the same transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In
the Hibernate community, "open session in view" was historically even more important because
frameworks like Spring use transaction-scoped persistence contexts. So rendering the view would
cause Lazyl nitial i zati onExcepti ons when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request. There
are several problems with this implementation, the most serious being that we can never be sure
that a transaction is successful until we commit it—but by the time the "open session in view"
transaction is committed, the view is fully rendered, and the rendered response may already have
been flushed to the client. How can we notify the user that their transaction was unsuccessful?

Seam solves both the transaction isolation problem and the association fetching problem, while
working around the problems with "open session in view". The solution comes in two parts:

e use an extended persistence context that is scoped to the conversation, instead of to the
transaction

* use two transactions per request; the first spans the beginning of the restore view phase (some
transaction managers begin the transaction later at the beginning of the apply request vaues
phase) until the end of the invoke application phase; the second spans the render response
phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But
first we need to tell you how to enable Seam transaction management. Note that you can use
conversation-scoped persistence contexts without Seam transaction management, and there are
good reasons to use Seam transaction management even when you're not using Seam-managed

184

Disabling Seam-managed transactions

persistence contexts. However, the two facilities were designed to work together, and work best
when used together.

Seam transaction management is useful even if you're using EJB 3.0 container-managed
persistence contexts. But it is especially useful if you use Seam outside a Java EE 5 environment,
or in any other case where you would use a Seam-managed persistence context.

9.2.1. Disabling Seam-managed transactions

Seam transaction management is enabled by default for all JSF requests. If you want to disable
this feature, you can do it in conponent s. xm :

<core:init transaction-management-enabled="false"/>

<transaction:no-transaction />

9.2.2. Configuring a Seam transaction manager

Seam provides a transaction management abstraction for beginning, committing, rolling back,
and synchronizing with a transaction. By default Seam uses a JTA transaction component that
integrates with Container Managed and programmatic EJB transactions. If you are working
in a Java EE 5 environment, you should install the EJB synchronization component in
conponent s. xm :

<transaction:ejb-transaction />

However, if you are working in a non EE 5 container, Seam will try auto detect the transaction
synchronization mechanism to use. However, if Seam is unable to detect the correct transaction
synchronization to use, you may find you need configure one of the following:

« JPA RESOURCE_LOCAL transactions with the j avax. persistence. EntityTransaction
interface. EntityTransacti on begins the transaction at the beginning of the apply request
values phase.

* Hibernate managed transactions with the org. hibernate. Transaction interface.
H ber nat eTr ansact i on begins the transaction at the beginning of the apply request values
phase.

e Spring managed transactions with the
org. springframework.transaction. Pl at f or nifr ansact i onManager interface. The Spring
Pl at f or niTr ansact i onManagenent manager may begin the transaction at the beginning of the
apply request values phase if the user Conver sat i onCont ext attribute is set.

» Explicitly disable Seam managed transactions

185

Chapter 9. Seam and Object/Re...

Configure JPA RESOURCE_LOCAL transaction management by adding the following to your
components.xml where #{ en} is the hame of the per si st ence: managed- per si st ence- cont ext
component. If your managed persistence context is named ent i t yManager , you can opt to leave
out the enti ty- nanager attribute. (see Seam-managed persistence contexts)

<transaction:entity-transaction entity-manager="#{em}"/>

To configure Hibernate managed transactions declare the following in your components.xml where
#{ hi ber nat eSessi on} is the name of the project's per si st ence: nanaged- hi ber nat e- sessi on
component. If your managed hibernate session is hamed sessi on, you can opt to leave out the
sessi on attribute. (see Seam-managed persistence contexts)

<transaction:hibernate-transaction session="#{hibernateSession}"/>
To explicitly disable Seam managed transactions declare the following in your components.xml:
<transaction:no-transaction />

For configuring Spring managed transactions see using Spring PlatformTransactionManagement .

9.2.3. Transaction synchronization

Transaction synchronization provides callbacks for transaction related events such as
bef oreConpl eti on() and after Conpl etion(). By default, Seam uses it's own transaction
synchronization component which requires explicit use of the Seam transaction component when
committing a transaction to ensure synchronization callbacks are correctly executed. If in a Java
EE 5 environment the <transacti on: ej b-transacti on/ > component should be be declared
in conponents. xm to ensure that Seam synchronization callbacks are correctly called if the
container commits a transaction outside of Seam's knowledge.

9.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE 5 environment, you can't rely upon the container to
manage the persistence context lifecycle for you. Even if you are in an EE 5 environment, you
might have a complex application with many loosly coupled components that collaborate together
in the scope of a single conversation, and in this case you might find that propagation of the
persistence context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session
(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam
component that manages an instance of Ent i t yManager or Sessi on in the conversation context.
You can inject it with @ n.

186

Using a Seam-managed persistence context

with JPA

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam

is able to perform an optimization that EJB 3.0 specification does not allow containers to use

for container-managed extended persistence contexts. Seam supports transparent failover of

extended persisence contexts, without the need to replicate any persistence context state between
nodes. (We hope to fix this oversight in the next revision of the EJB spec.)

9.3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In conponent s. xnl , we can write:

<persistence:managed-persistence-context name="bookingDatabase"
auto-create="true"
persistence-unit-jndi-name="java:/EntityManagerFactories/bookingData"/>

This configuration creates a conversation-scoped Seam component named booki ngDat abase
that manages the lifecycle of EntityManager instances for the persistence unit
(Enti tyManager Factory instance) with JNDI name java:/EntityManagerFactories/
booki ngDat a.

Of course, you need to make sure that you have bound the Ent i t yManager Fact ory into JNDI. In
JBoss, you can do this by adding the following property setting to per si st ence. xmi .

<property name="jboss.entity.manager.factory.jndi.name"
value="java:/EntityManagerFactories/bookingData"/>

Now we can have our Ent i t yManager injected using:

@In EntityManager bookingDatabase;

If you are using EJB3 and mark your class or method @ ansacti onAt t ri but e(REQUI RES_NEW
then the transaction and persistence context shouldn't be propagated to method calls on this
object. However as the Seam-managed persistence context is propagated to any component
within the conversation, it will be propagated to methods marked REQUI RES_NEW Therefore,
if you mark a method REQUI RES_NEW then you should access the entity manager using
@PersistenceContext.

9.3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions are similar. In conponent s. xni :

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

187

Chapter 9. Seam and Object/Re...

<persistence:managed-hibernate-session name="bookingDatabase"
auto-create="true"
session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/booki ngSessi onFactory is the name of the session factory specified in
hi bernate. cfg. xm .

<session-factory name="java:/bookingSessionFactory">
<property name="transaction.flush_before_completion">true</property>
<property name="connection.release_mode">after_statement</property>
<property

property>
<property

property>
<property name="connection.datasource">java:/bookingDatasource</property>

</session-factory>

Note that Seam does not flush the session, so you should always enable
hi bernat e. transacti on. fl ush_bef or e_conpl et i on to ensure that the session is automatically
flushed before the JTA transaction commits.

We can now have a managed Hibernate Sessi on injected into our JavaBean components using
the following code:

@In Session bookingDatabase;

9.3.3. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions
that span multiple requests to the server without the need to use the ner ge() operation , without
the need to re-load data at the beginning of each request, and without the need to wrestle with
the Lazyl niti al i zati onExcepti on or NonUni queQbj ect Excepti on.

As with any optimistic transaction management, transaction isolation and consistency can be
achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy
to use optimistic locking, by providing the @/er si on annotation.

188

Seam-managed persistence contexts and

atomic conversations
By default, the persistence context is flushed (synchronized with the database) at the end of

each transaction. This is sometimes the desired behavior. But very often, we would prefer
that all changes are held in memory and only written to the database when the conversation
ends successfully. This allows for truly atomic conversations. As the result of a truly stupid
and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase members of the EJB
3.0 expert group, there is currently no simple, usable and portable way to implement atomic
conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor
extension to the Fl ushMbdeTypes defined by the specification, and it is our expectation that other
vendors will soon provide a similar extension.

Seam lets you specify Fl ushMbdeType. MANUAL when beginning a conversation. Currently, this
works only when Hibernate is the underlying persistence provider, but we plan to support other
equivalent vendor extensions.

@In EntityManager em; //a Seam-managed persistence context

@Begin(flushMode=MANUAL)
public void beginClaimWizard() {
claim = em.find(Claim.class, claimld);

Now, the cl ai m object remains managed by the persistence context for the rest ot the
conversation. We can make changes to the claim:

public void addPartyToClaim() {
Party party =;
claim.addParty(party);

But these changes will not be flushed to the database until we explicitly force the flush to occur:

@End
public void commitClaim() {
em.flush();

Of course, you could set the f | ushibde to MANUAL from pages.xml, for example in a navigation
rule:

189

Chapter 9. Seam and Object/Re...

<begin-conversation flush-mode="MANUAL" />

9.4. Using the JPA "delegate”

The EntityManager interface lets you access a vendor-specific APl via the get Del egat e()
method. Naturally, the most interesting vendor is Hibernate, and the most powerful delegate
interface is or g. hi ber nat e. Sessi on. You'd be nuts to use anything else. Trust me, I'm not biased
at all. If you must use a different JPA provider see Using Alternate JPA Providers.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just
not very bright), you'll almost certainly want to use the delegate in your Seam components from
time to time. One approach would be the following:

@In EntityManager entityManager;

@Create
public void init() {
((Session) entityManager.getDelegate()).enableFilter("currentVersions");

But typecasts are unquestionably the ugliest syntax in the Java language, so most people avoid
them whenever possible. Here's a different way to get at the delegate. First, add the following
line to conponent s. xn :

<factory name="session"
scope="STATELESS"
auto-create="true"
value="#{entityManager.delegate}"/>

Now we can inject the session directly:

@In Session session;

@Create
public void init() {
session.enableFilter("currentVersions");

190

Using EL in EJB-QL/HQL

9.5. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-
managed persistence context or inject a container managed persistence context using
@er si stenceCont ext. This lets you use EL expressions in your query strings, safely and
efficiently. For example, this:

User user = em.createQuery("from User where username=#{user.username}")
.getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")
.setParameter("username", user.getUsername())
.getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!
.getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

9.6. Using Hibernate filters

The coolest, and most unique, feature of Hibernate is filters. Filters let you provide a restricted view
of the data in the database. You can find out more about filters in the Hibernate documentation.
But we thought we'd mention an easy way to incorporate filters into a Seam application, one that
works especially well with the Seam Application Framework.

Seam-managed persistence contexts may have a list of filters defined, which will be enabled
whenever an Ent i t yManager or Hibernate Sessi on is first created. (Of course, they may only be
used when Hibernate is the underlying persistence provider.)

<persistence:filter name="regionFilter">
<persistence:name>region</persistence:name>
<persistence:parameters>
<key>regionCode</key>
<value>#{region.code}</value>
</persistence:parameters>

191

Chapter 9. Seam and Object/Re...

</persistence:filter>

<persistence:filter name="currentFilter">
<persistence:name>current</persistence:name>
<persistence:parameters>
<key>date</key>
<value>#{currentDate}</value>
</persistence:parameters>
</persistence:filter>

<persistence:managed-persistence-context name="personDatabase"
persistence-unit-jndi-name="java:/EntityManagerFactories/personDatabase">
<core:filters>
<value>#{regionFilter}</value>
<value>#{currentFilter}</value>
</core:filters>
</persistence:managed-persistence-context>

192

Chapter 10.

JSF form validation in Seam

In plain JSF, validation is defined in the view:

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">
<my:validateCountry/>
</h:inputText>
</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">
<my:validateZip/>
</h:inputText>
</div>

<h:commandButton/>
</h:form>

In practice, this approach usually violates DRY, since most "validation" actually enforces
constraints that are part of the data model, and exist all the way down to the database schema
definition. Seam provides support for model-based constraints defined using Hibernate Validator.

Let's start by defining our constraints, on our Locat i on class:

public class Location {
private String country;
private String zip;

@NotNull

@Length(max=30)

public String getCountry() { return country; }
public void setCountry(String c) { country =c; }

@NotNull
@Length(max=6)
@Pattern("MN\d*$")

193

Chapter 10. JSF form validati...

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints
instead of the ones built into Hibernate Validator:

public class Location {
private String country;
private String zip;

@NotNull

@Country

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@NotNull

@ZipCode

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Whichever route we take, we no longer need to specify the type of validation to be used in the
JSF page. Instead, we can use <s: val i dat e> to validate against the constraint defined on the
model object.

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">
<s:validate/>
</h:inputText>
</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">
<s:validate/>
</h:inputText>
</div>

194

<h:commandButton/>

</h:form>

Note: specifying @ot Nul | on the model does not eliminate the requirement for r equi r ed="t r ue"
to appear on the control! This is due to a limitation of the JSF validation architecture.

This approach defines constraints on the model, and presents constraint violations in the view—a
significantly better design.

However, it is not much less verbose than what we started with, so let's try <s: val i dat eAl | >:

<h:form>

<h:messages/>

<s:validateAll>

<div>

Country:

<h:inputText value="#{location.country}" required="true"/>
</div>

<div>

Zip code:

<h:inputText value="#{location.zip}" required="true"/>
</div>

<h:commandButton/>

</s:validateAll>

</h:form>

This tag simply adds an <s: val i dat e> to every input in the form. For a large form, it can save
a lot of typing!

Now we need to do something about displaying feedback to the user when validation fails.
Currently we are displaying all messages at the top of the form. What we would really like to do is
display the message next to the field with the error (this is possible in plain JSF), highlight the field
and label (this is not possible) and, for good measure, display some image next to the field (also
not possible). We also want to display a little colored asterisk next to the label for each required
form field.

195

Chapter 10. JSF form validati...

That's quite a lot of functionality we need for each field of our form. We wouldn't want to have to
specify higlighting and the layout of the image, message and input field for every field on the form.
So, instead, we'll specify the common layout in a facelets template:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlins:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core"
xmins:s="http://jboss.com/products/seam/taglib">

<div>
<s:label styleClass="#{invalid?'error"."}">
<uicinsert name="label"/>
<s:span styleClass="required" rendered="#{required}">*</s:span>
</s:label>

<h:graphiclmage value="/img/error.gif" rendered="#{invalid}"/>
<s:validateAll>
<ui:insert/>
</s:validateAll>

<s:message styleClass="error"/>

</div>

</ui:composition>

We can include this template for each of our form fields using <s: decor at e>.

<h:form>
<h:messages globalOnly="true"/>
<s:decorate template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true"/>

</s.decorate>

<s:decorate template="edit.xhtml">

196

<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true"/>
</s:decorate>

<h:commandButton/>

</h:form>

Finally, we can use RichFaces Ajax to display validation messages as the user is navigating
around the form:

<h:form>

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtmI">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true">
<a:support event="onblur" reRender="countryDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtml[">
<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true">
<a:support event="onblur" reRender="zipDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<h:commandButton/>

</h:form>

It's better style to define explicit ids for important controls on the page, especially if you want to
do automated testing for the Ul, using some toolkit like Selenium. If you don't provide explicit ids,
JSF will generate them, but the generated values will change if you change anything on the page.

<h:form id="form">

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtmI">

197

Chapter 10. JSF form validati...

<ui:define name="label">Country:</ui:define>
<h:inputText id="country" value="#{location.country}" required="true">
<a:support event="onblur" reRender="countryDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtml">
<ui:define name="label">Zip code:</ui:define>
<h:inputText id="zip" value="#{location.zip}" required="true">
<a:support event="onblur" reRender="zipDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<h:commandButton/>

</h:form>

And what if you want to specify a different message to be displayed when validation fails? You
can use the Seam message bundle (and all it's goodies like el expressions inside the message,
and per-view message bundles) with the Hibernate Validator:

public class Location {
private String name;
private String zip;

/I Getters and setters for name

@NotNull

@Length(max=6)
@ZipCode(message="#{messages|['location.zipCode.invalid]}")
public String getZip() { return zip; }

public void setZip(String z) { zip = z; }

location.zipCode.invalid = The zip code is not valid for #{location.name}

198

Chapter 11.

Groovy integration

One aspect of JBoss Seam is its RAD (Rapid Application Development) capability. While not
synonymous with RAD, one interesting tool in this space is dynamic languages. Until recently,
choosing a dynamic language was required choosing a completely different development platform
(a development platform with a set of APIs and a runtime so great that you would no longer want to
use you old legacy Java [sic] APIs anymore, which would be lucky because you would be forced to
use those proprietary APls anyway). Dynamic languages built on top of the Java Virtual Machine,
and Groovy [http://groovy.codehaus.org] in particular broke this approach in silos.

JBoss Seam now unites the dynamic language world with the Java EE world by seamlessly
integrating both static and dynamic languages. JBoss Seam lets the application developer use
the best tool for the task, without context switching. Writing dynamic Seam components is exactly
like writing regular Seam components. You use the same annotations, the same APls, the same
everything.

11.1. Groovy introduction

Groovy is an agile dynamic language based on the Java language but with additional features
inspired by Python, Ruby and Smalltalk. The strengths of Groovy are twofold:

« Java syntax is supported in Groovy: Java code is Groovy code, making the learning curve very
smooth

« Groovy objects are Java objects, and Groovy classes are Java classes: Groovy integrates
smoothly with existing Java libraries and frameworks.

TODO: write a quick overview of the Groovy syntax add-on

11.2. Writing Seam applications in Groovy

There is not much to say about it. Since a Groovy object is a Java object, you can virtually write
any Seam component, or any class for what it worth, in Groovy and deploy it. You can also mix
Groovy classes and Java classes in the same application.

11.2.1. Writing Groovy components

As you should have noticed by now, Seam uses annotations heavily. Be sure to use Groovy 1.1 or
above for annotation support. Here are some example of groovy code used in a Seam application.

11.2.1.1. Entity

@Entity
@Name("hotel")
class Hotel implements Serializable

199

http://groovy.codehaus.org
http://groovy.codehaus.org

Chapter 11. Groovy integration

@ld @GeneratedValue
Long id

@Length(max=50) @NotNull
String name

@Length(max=100) @NotNull
String address

@Length(max=40) @NotNull
String city

@Length(min=2, max=10) @NotNull
String state

@Length(min=4, max=6) @NotNull
String zip

@Length(min=2, max=40) @NotNull
String country

@Column(precision=6, scale=2)
BigDecimal price

@Override
String toString()

{
return "Hotel(${name},${address},${city}, ${zip})"

Groovy natively support the notion of properties (getter/setter), so there is no need to explicitly
write verbose getters and setters: in the previous example, the hotel class can be accessed from
Java as hot el . get G ty(), the getters and setters being generated by the Groovy compiler. This
type of syntactic sugar makes the entity code very concise.

11.2.1.2. Seam component

Writing Seam components in Groovy is in no way different than in Java: annotations are used to
mark the class as a Seam component.

@Scope(ScopeType.SESSION)
@Name("bookingList")

200

seam-gen

class BookingListAction implements Serializable
{
@In EntityManager em
@In User user
@DataModel List<Booking> bookings
@DataModelSelection Booking booking
@Logger Log log

@Factory public void getBookings()
{

bookings = em.createQuery(
select b from Booking b
where b.user.username = :username
order by b.checkinDate™)
.setParameter("username", user.username)
.getResultList()

public void cancel()

{

log.info("Cancel booking: #{bookingList.booking.id} for #{user.username}")
Booking cancelled = em.find(Booking.class, booking.id)
if (cancelled != null) em.remove(cancelled)
getBookings()
FacesMessages.instance().add("Booking cancelled for confirmation number
#{bookingList.booking.id}", new Object[0])
}

11.2.2. seam-gen

Seam gen has a transparent integration with Groovy. You can write Groovy code in seam-gen
backed projects without any additional infrastructure requirement. When writing a Groovy entity,
simply place your . gr oovy filesin sr ¢/ nodel . Unsurprisingly, when writing an action, simply place
your . gr oovy files in src/ acti on.

11.3. Deployment

Deploying Groovy classes is very much like deploying Java classes (surprisingly, no need to
write nor comply with a 3-letter composite specification to support a multi-language component
framework).

Beyond standard deployments, JBoss Seam has the ability, at development time, to redeploy
JavaBeans Seam component classes without having to restart the application, saving a lot of time

201

Chapter 11. Groovy integration

in the development/ test cycle. The same support is provided for GroovyBeans Seam components
when the . gr oovy files are deployed.

11.3.1. Deploying Groovy code

A Groovy class is a Java class, with a bytecode representation just like a Java class. To deploy,
a Groovy entity, a Groovy Session bean or a Groovy Seam component, a compilation step is
necessary. A common approach is to use the gr oovyc ant task. Once compiles, a Groovy class
is in no way different than a Java class and the application server will treat them equally. Note
that this allow a seamless mix of Groovy and Java code.

11.3.2. Native .groovy file deployment at development time

JBoss Seam natively supports the deployment of . groovy files (ie without compilation) in
incremental hotdeployment mode (development only). This enables a very fast edit/test cycle. To
set up .groovy deployments, follow the configuration at Section 2.8, “Seam and incremental hot
deployment” and deploy your Groovy code (. gr oovy files) into the WEB- | NF/ dev directory. The
GroovyBean components will be picked up incrementally with no need to restart the application
(and obviously not the application server either).

Be aware that the native .groovy file deployment suffers the same limitations as the regular Seam
hotdeployment:

« The components must be JavaBeans or GroovyBeans. They cannot be EJB3 bean

 Entities cannot be hotdeployed

» The hot-deployable components will not be visible to any classes deployed outside of WVEB- | NF/
dev

* Seam debug mode must be enabled

11.3.3. seam-gen

Seam-gen transparently supports Groovy files deployment and compilation. This includes the
native . gr oovy file deployment in development mode (compilation-less). If you create a seam-gen
project of type WAR, Java and Groovy classes in src/ act i on will automatically be candidate for
the incremental hot deployment. If you are in production mode, the Groovy files will simply be
compiled before deployment.

You will find a live example of the Booking demo written completely in Groovy and supporting
incremental hot deployment in exanpl es/ gr oovybooki ng.

202

Chapter 12.

The Seam Application Framework

Seam makes it really easy to create applications by writing plain Java classes with annotations,
which don't need to extend any special interfaces or superclasses. But we can simplify some
common programming tasks even further, by providing a set of pre-built components which can
be re-used either by configuration in conponent s. xm (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing
basic database access in a web application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes
that are easy to understand and extend. The "magic" is in Seam itself—the same magic you use
when creating any Seam application even without using this framework.

12.1. Introduction

The components provided by the Seam application framework may be used in one of two
different approaches. The first way is to install and configure an instance of the component
in conponent s. xni , just like we have done with other kinds of built-in Seam components. For
example, the following fragment from conponent s. xm installs a component which can perform
basic CRUD operations for a Per son entity:

<framework:entity-home name="personHome"
entity-class="eg.Person"
entity-manager="#{personDatabase}">
<framework:id>#{param.personld}</framework:id>
</framework:entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In EntityManager personDatabase;

public EntityManager getEntityManager() {
return personDatabase;

203

Chapter 12. The Seam Applicat...

The second approach has one huge advantage: you can easily add extra functionality, and
override the built-in functionality (the framework classes were carefully designed for extension
and customization).

A second advantage is that your classes may be EJB stateful session beans, if you like. (They
do not have to be, they can be plain JavaBean components if you prefer.) If you are using JBoss
AS, you'll need 4.2.2.GA or later:

@Stateful
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

You can also make your classes stateless session beans. In this case you must use injection to
provide the persistence context, even if it is called ent i t yManager :

@Stateless
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

@In EntityManager entityManager;

public EntityManager getPersistenceContext() {
entityManager;

At this time, the Seam Application Framework provides four main built-in components:
EntityHome and HibernateEntityHome for CRUD, along with EntityQuery and
Hi ber nat eEnt i t yQuery for queries.

The Home and Query components are written so that they can function with a scope of session,
event or conversation. Which scope you use depends upon the state model you wish to use in
your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By
default, the components will look for a persistence context named ent i t yManager .

204

Home objects

12.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our
trusty Per son class:

@Entity

public class Person {
@Id private Long id;
private String firstName;
private String lastName;
private Country nationality;

/lgetters and setters...

We can define a per sonHome component either via configuration:
<framework:entity-home name="personHome" entity-class="eg.Person" />
Or via extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: persist(), renove(), update() and
get I nst ance() . Before you can call the r enove() , or updat e() operations, you must first set the
identifier of the object you are interested in, using the set | d() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</h1>

<h:form>
<div>First name: <h:inputText value="#{personHome.instance.firstName}"/></div>
<div>Last name: <h:inputText value="#{personHome.instance.lastName}"/></div>
<div>

<h:commandButton value="Create Person" action="#{personHome.persist}"/>

</div>

</h:form>

205

Chapter 12. The Seam Applicat...

Usually, it is much nicer to be able to refer to the Per son merely as per son, so let's make that
possible by adding a line to conmponent s. xni :

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person" />

(If we are using configuration.) Or by adding a @act or y method to Per sonHone:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@Factory("person™)
public Person initPerson() { return getinstance(); }

(If we are using extension.) This change simplifies our JSF page to the following:

<h1>Create Person</h1>
<h:form>
<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>
<h:commandButton value="Create Person" action="#{personHome.persist}"/>
</div>
</h:form>

Well, that lets us create new Per son entries. Yes, that is all the code that is required! Now, if we
want to be able to display, update and delete pre-existing Per son entries in the database, we
need to be able to pass the entry identifier to the Per sonHore. Page parameters are a great way
to do that:

<pages>
<page view-id="/editPerson.jsp">
<param name="personld" value="#{personHome.id}"/>
</page>

206

Home objects

</pages>

Now we can add the extra operations to our JSF page:

<h1>
<h:outputText rendered="#{!personHome.managed}" value="Create Person"/>
<h:outputText rendered="#{personHome.managed}" value="Edit Person"/>
</h1>
<h:form>
<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>
<h:commandButton value="Create Person" action="#{personHome.persist}"
rendered="#{!personHome.managed}"/>
<h:commandButton value="Update Person" action="#{personHome.update}"
rendered="#{personHome.managed}"/>
<h:commandButton value="Delete Person" action="#{personHome.remove}"
rendered="#{personHome.managed}"/>
</div>
</h:form>

When we link to the page with no request parameters, the page will be displayed as a "Create
Person” page. When we provide a value for the per sonl d request parameter, it will be an "Edit
Person" page.

Suppose we need to create Per son entries with their nationality initialized. We can do that easily,
via configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}"/>

<component name="newPerson"
class="eg.Person">
<property name="nationality">#{country}</property>
</component>

Or by extension:

207

Chapter 12. The Seam Applicat...

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {
return new Person(country);

Of course, the Country could be an object managed by another Home object, for example,
Count r yHone.

To add more sophisticated operations (association management, etc), we can just add methods
to Per sonHone.

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {
return new Person(country);

public void migrate()

{

getinstance().setCountry(country);
update();

The Home object raises an org.jboss. seam afterTransacti onSuccess event when a
transaction succeeds (a call to persi st (), updat e() orrenove() succeeds). By observing this

208

Home objects

event we can refresh our queries when the underlying entities are changed. If we only want to
refresh certain queries when a particular entity is persited, updated or removed we can observe
the org. j boss. seam af t er Transact i onSuccess. <nanme> event (where <name> is the name of
the entity).

The Home object automatically displays faces messages when an operation is successful. To
customize these messages we can, again, use configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}">
<framework:created-message>New person #{person.firstName} #{person.lastName} created</
framework:created-message>
<framework:deleted-message>Person #{person.firstName} #{person.lastName} deleted</
framework:deleted-message>
<framework:updated-message>Person #{person.firstName} #{person.lastName} updated</
framework:updated-message>
</framework:entity-home>

<component name="newPerson"
class="eg.Person">

<property name="nationality">#{country}</property>
</component>

Or extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {

return new Person(country);

protected String getCreatedMessage() { return "New person #{person.firstName}
#{person.lastName} created"; }

209

Chapter 12. The Seam Applicat...

protected String getUpdatedMessage() { return "Person #{person.firstName}
#{person.lastName} updated”; }

protected String getDeletedMessage() { return "Person #{person.firstName}
#{person.lastName} deleted"; }

But the best way to specify the messages is to put them in a resource bundle known to Seam (the
bundle named nessages, by default).

Person_created=New person #{person.firstName} #{person.lastName} created
Person_deleted=Person #{person.firstName} #{person.lastName} deleted
Person_updated=Person #{person.firstName} #{person.lastName} updated

This enables internationalization, and keeps your code and configuration clean of presentation
concerns.

The final step is to add validation functionality to the page, using <s:validateAl | > and
<s: decor at e>, but I'll leave that for you to figure out.

12.3. Query objects

If we need a list of all Per son instance in the database, we can use a Query object. For example:

<framework:entity-query name="people"
ejbql="select p from Person p"/>

We can use it from a JSF page:

<hl>List of people</h1>
<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

We probably need to support pagination:

210

Query objects

<framework:entity-query name="people"
ejbgl="select p from Person p"
order="lastName"
max-results="20"/>

We'll use a page parameter to determine the page to display:

<pages>
<page view-id="/searchPerson.jsp">
<param name="firstResult" value="#{people.firstResult}"/>
</page>
</pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<h1>Search for people</h1>
<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="First Page">
<f:param name="firstResult" value="0"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="Previous Page">
<f:param name="firstResult" value="#{people.previousFirstResult}"'/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Next Page">
<f:param name="firstResult" value="#{people.nextFirstResult}"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Last Page">
<f:param name="firstResult" value="#{people.lastFirstResult}"/>
</s:link>

211

Chapter 12. The Seam Applicat...

Real search screens let the user enter a bunch of optional search criteria to narrow the list of
results returned. The Query object lets you specify optional "restrictions" to support this important
usecase:

<component name="examplePerson" class="Person"/>

<framework:entity-query name="people"
ejbql="select p from Person p"
order="lastName"
max-results="20">
<framework:restrictions>
<value>lower(firstName) like lower(concat(#{examplePerson.firstName},'%"))</value>
<value>lower(lastName) like lower(concat(#{examplePerson.lastName},'%"))</value>
</framework:restrictions>
</framework:entity-query>

Notice the use of an "example" object.

<h1>Search for people</h1>

<h:form>
<div>First name: <h:inputText value="#{examplePerson.firstName}"/></div>
<div>Last name: <h:inputText value="#{examplePerson.lastName}"/></div>
<div><h:commandButton value="Search" action="/search.jsp"/></div>

</h:form>

<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

To refresh the query when the underlying entities change we observe the
org.j boss. seam aft er Transact i onSuccess event:

<event type="org.jboss.seam.afterTransactionSuccess">
<action execute="#{people.refresh}" />
</event>

212

Controller objects

Or, to just refresh the query when the person entity is persisted, updated or removed through
Per sonHone:

<event type="org.jboss.seam.afterTransactionSuccess.Person">
<action execute="#{people.refresh}" />
</event>

Unfortunately Query objects don't work well with join fetch queries - the use of pagination with
these queries is not recomended, and you'll have to implement your own method of calculating
the total number of results (by overriding get Count Ej bgl () .

The examples in this section have all shown reuse by configuration. However, reuse by extension
is equally possible for Query objects.

12.4. Controller objects

A totally optional part of the Seam Application Framework is the class
Controller and its subclasses EntityController HibernateEntityController and
Busi nessProcessControl | er. These classes provide nothing more than some convenience
methods for access to commonly used built-in components and methods of built-in components.
They help save a few keystrokes (characters can add up!) and provide a great launchpad for new
users to explore the rich functionality built in to Seam.

For example, here is what Regi st er Act i on from the Seam registration example would look like:

@Stateless
@Name("register")
public class RegisterAction extends EntityController implements Register

{

@In private User user;

public String register()
{
List existing = createQuery("select u.username from User u where u.username=:username")
.setParameter("username", user.getUsername())
.getResultList();

if (existing.size()==0)

{
persist(user);
info("Registered new user #{user.username}");
return "/registered.jspx";

213

Chapter 12. The Seam Applicat...

else

{

addFacesMessage("User #{user.username} already exists");
return null;

As you can see, its not an earthshattering improvement...

214

Chapter 13.

Seam and JBoss Rules

Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM
process definitions.

13.1. Installing rules

The first step is to make an instance of org. drool s. Rul eBase available in a Seam context
variable. For testing purposes, Seam provides a built-in component that compiles a static set of
rules from the classpath. You can install this component via conponent s. xm :

<drools:rule-base name="policyPricingRules">
<drools:rule-files>
<value>policyPricingRules.drl</value>
</drools:rule-files>
</drools:rule-base>

This component compiles rules from a set of .drl files and caches an instance of
org. drool s. Rul eBase in the Seam APPLI CATI ON context. Note that it is quite likely that you will
need to install multiple rule bases in a rule-driven application.

If you want to use a Drools DSL, you alse need to specify the DSL definition:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl">
<drools:rule-files>
<value>policyPricingRules.drl</value>
</drools:rule-files>
</drools:rule-base>

In most rules-driven applications, rules need to be dynamically deployable, so a production
application will want to use a Drools RuleAgent to manage the RuleBase. The RuleAgent can
connect to a Drools rule server (BRMS) or hot deploy rules packages from a local file repository.
The RulesAgent-managed RuleBase is also configurable in conponent s. xni :

<drools:rule-agent name="insuranceRules"
configurationFile="/WEB-INF/deployedrules.properties" />

The properties file contains properties specific to the RulesAgent. Here is an example
configuration file from the Drools example distribution.

215

Chapter 13. Seam and JBoss Rules

newlnstance=true
url=http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/
fmeyer
localCacheDir=/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-examples-
brms/cache

poll=30

name=insuranceconfig

It is also possible to configure the options on the component directly, bypassing the configuration
file.

<drools:rule-agent name="insuranceRules"
url="http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/
fmeyer"
local-cache-dir="/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-
examples-brms/cache"
poll="30"
configuration-name="insuranceconfig" />

Next, we need to make an instance of org.drools. WrkingMenory available to each
conversation. (Each Wr ki ngMenor y accumulates facts relating to the current conversation.)

<drools:managed-working-memory name="policyPricingWorkingMemory" auto-create="true"
rule-base="#{policyPricingRules}"/>

Notice that we gave the pol i cyPri ci ngWor ki ngMenory a reference back to our rule base via the
rul eBase configuration property.

13.2. Using rules from a Seam component

We can now inject our Wr ki ngMenor y into any Seam component, assert facts, and fire rules:

@In WorkingMemory policyPricingWorkingMemory;

@In Policy policy;
@In Customer customer;

public void pricePolicy() throws FactException

{
policyPricingWorkingMemory.assertObject(policy);

216

Using rules from a jBPM process definition

policyPricingWorkingMemory.assertObject(customer);
policyPricingWorkingMemory.fireAlIRules();

13.3. Using rules from a jBPM process definition

You can even allow a rule base to act as a jBPM action handler, decision handler, or assignment
handler—in either a pageflow or business process definition.

<decision name="approval">

<handler class="org.jboss.seam.drools.DroolsDecisionHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
<assertObjects>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</handler>

<transition name="approved" to="ship">
<action class="org.jboss.seam.drools.DroolsActionHandler">
<workingMemoryName=>shippingRulesWorkingMemory</workingMemoryName>
<assertObjects>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</action>
</transition>

<transition name="rejected" to="cancelled"/>

</decision>

The <assert Obj ect s> element specifies EL expressions that return an object or collection of
objects to be asserted as facts into the Wor ki ngMenory.
There is also support for using Drools for jBPM task assignments:

<task-node name="review">
<task name="review" description="Review Order">

217

Chapter 13. Seam and JBoss Rules

<assignment handler="org.jboss.seam.drools.DroolsAssignmentHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
<assertObjects>
<element>#{actor}</element>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</assignment>
</task>
<transition name="rejected" to="cancelled"/>
<transition name="approved" to="approved"/>
</task-node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assi gnabl e, as
assi gnabl e and a Seam Deci si on object, as deci si on. Rules which handle decisions should call
deci si on. set Qut come("resul t") to determine the result of the decision. Rules which perform
assignments should set the actor id using the Assi gnabl e.

package org.jboss.seam.examples.shop

import org.jboss.seam.drools.Decision

global Decision decision
rule "Approve Order For Loyal Customer"
when
Customer(loyaltyStatus == "GOLD")
Order(totalAmount <= 10000)
then
decision.setOutcome("approved”);
end

package org.jboss.seam.examples.shop

import org.jbpm.taskmgmt.exe.Assignable

global Assignable assignable

rule "Assign Review For Small Order"
when

218

Using rules from a jBPM process definition

Order(totalAmount <= 100)
then
assignable.setPooledActors(new String[] {"reviewers"});
end

219

220

Chapter 14.

Security

The Seam Security APl is an optional Seam feature that provides authentication and authorization
features for securing both domain and page resources within your Seam project.

14.1. Overview

Seam Security provides two different modes of operation:

« simplified mode - this mode supports authentication services and simple role-based security
checks.

« advanced mode - this mode supports all the same features as the simplified mode, plus it offers
rule-based security checks using JBoss Rules.

14.1.1. Which mode is right for my application?

That all depends on the requirements of your application. If you have minimal security
requirements, for example if you only wish to restrict certain pages and actions to users who are
logged in, or who belong to a certain role, then the simplified mode will probably be sufficient. The
advantages of this is a more simplified configuration, significantly less libraries to include, and a
smaller memory footprint.

If on the other hand, your application requires security checks based on contextual state or
complex business rules, then you will require the features provided by the advanced mode.

14.2. Requirements

If using the advanced mode features of Seam Security, the following jar files are required to be
configured as modules in appl i cati on. xni . If you are using Seam Security in simplified mode,
these are not required:

« drools-compiler.jar
« drools-core.jar

* janino.jar
 antlr-runtime.jar

e mvelld.jar

For web-based security, j boss- seam ui . j ar must also be included in the application's war file.

221

Chapter 14. Security

14.3. Disabling Security

In some situations it may be necessary to disable Seam Security, for example during unit tests.
This can be done by calling the static method | dent i ty. set Securi t yEnabl ed(f al se) to disable
security checks. Doing this prevents any security checks being performed for the following:

Entity Security

Hibernate Security Interceptor
e Seam Security Interceptor

» Page restrictions

14.4. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java Authentication
and Authorization Service), and as such provide a robust and highly configurable API for handling
user authentication. However, for less complex authentication requirements Seam offers a much
more simplified method of authentication that hides the complexity of JAAS.

14.4.1. Configuration

The simplified authentication method uses a built-in JAAS login module, Seam_ogi nModul e, which
delegates authentication to one of your own Seam components. This login module is already
configured inside Seam as part of a default application policy and as such does not require any
additional configuration files. It allows you to write an authentication method using the entity
classes that are provided by your own application. Configuring this simplified form of authentication
requires the i dent i t y component to be configured in conponent s. xm :

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:security="http://jboss.com/products/seam/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.1.xsd
http://jboss.com/products/seam/security http://jboss.com/products/seam/security-
2.1.xsd">

<security:identity authenticate-method="#{authenticator.authenticate}"/>

</components>

222

Writing an authentication method

If you wish to use the advanced security features such as rule-based permission checks, all you
need to do is include the Drools (JBoss Rules) jars in your classpath, and add some additional
configuration, described later.

The EL expression #{aut henti cat or. aut henti cate} is a method binding indicating that the
aut hent i cat e method of the aut hent i cat or component will be used to authenticate the user.

14.4.2. Writing an authentication method

The aut henticate-nethod property specified for i dentity in conponents.xml specifies
which method will be used by Seaniogi nMbdul e to authenticate users. This method
takes no parameters, and is expected to return a boolean indicating whether
authentication is successful or not. The user's username and password can be obtained
from Identity.instance().getUsernane() and Identity.instance().getPassword(),
respectively. Any roles that the user is a member of should be assigned using
Identity.instance().addRol e(). Here's a complete example of an authentication method
inside a JavaBean component:

@Name("authenticator")
public class Authenticator {
@In EntityManager entityManager;

public boolean authenticate() {
try
{

User user = (User) entityManager.createQuery(
"from User where username = :username and password = :password")
.setParameter("username", Identity.instance().getUsername())
.setParameter("password", Identity.instance().getPassword())
.getSingleResult();

if (user.getRoles() != null)

{

for (UserRole mr : user.getRoles())
Identity.instance().addRole(mr.getName());

return true;

}

catch (NoResultException ex)

{

return false;

223

Chapter 14. Security

In the above example, both User and User Rol e are application-specific entity beans. The rol es
parameter is populated with the roles that the user is a member of, which should be added
to the Set as literal string values, e.g. "admin”, "user". In this case, if the user record is not
found and a NoResul t Except i on thrown, the authentication method returns f al se to indicate the

authentication failed.
14.4.2.1. Identity.addRole()

The Il dentity. addRol e() method behaves differently depending on whether the current session
is authenticated or not. If the session is not authenticated, then addRol e() should only be called
during the authentication process. When called here, the role name is placed into a temporary
list of pre-authenticated roles. Once authentication is successful, the pre-authenticated roles then
become "real" roles, and calling | denti ty. hasRol e() for those roles will then return true. The
following sequence diagram represents the list of pre-authenticated roles as a first class object to
show more clearly how it fits in to the authentication process.

Lser Identi Pre-authenticated roles JAAS LoginContext Authenticator

. i |
L tileging o) 1.1: clear() |

|
|
|
1.2 loging |
= L 121 invoked

—

4

|
|
! 1.2.1.1: addRaled
I
|

.

1.3: pre-auth roles hecu:urlne real rolesd

e

224

Writing a login form

14.4.2.2. Special Considerations

When writing an authenticator method, it is important that it is kept minimal and free from any side-
effects. This is because there is no guarantee as to how many times the authenticator method will
be called by the security API, and as such it may be invoked multiple times during a single request.
Because of this, any special code that should execute upon a successful or failed authentication
should be written by implementing an event observer. See the section on Security Events further
down in this chapter for more information about which events are raised by Seam Security.

To give an example, let's say that upon a successful login that some user
statistics must be updated. We would do this by writing an event observer for the
org.j boss. seam security. | ogi nSuccessful event, like this:

@In UserStats userStats;

@Observer("org.jboss.seam.security.loginSuccessful")
public void updateUserStats()
{
userStats.setLastLoginDate(new Date());
userStats.incrementLoginCount();

}

14.4.3. Writing a login form

The | dent i t y component provides both user name and passwor d properties, catering for the most
common authentication scenario. These properties can be bound directly to the username and
password fields on a login form. Once these properties are set, calling the i dentity. | ogi n()
method will authenticate the user using the provided credentials. Here's an example of a simple
login form:

<div>
<h:outputLabel for="name" value="Username"/>
<h:inputText id="name" value="#{identity.username}"/>
</div>

<div>
<h:outputLabel for="password" value="Password"/>
<h:inputSecret id="password" value="#{identity.password}"/>
</div>

<div>
<h:commandButton value="Login" action="#{identity.login}"/>

225

Chapter 14. Security

</div>

Similarly, logging out the user is done by calling #{i dentity. | ogout}. Calling this action will
clear the security state of the currently authenticated user.

14.4.4. Simplified Configuration - Summary

So to sum up, there are the three easy steps to configure authentication:

» Configure an authentication method in conponent s. xm .
« Write an authentication method.

» Write a login form so that the user can authenticate.

14.4.5. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's
recommended that pages. xm is configured to redirect security errors to a more "pretty” page.
The two main types of exceptions thrown by the security API are:

* Not Logged! nExcepti on - This exception is thrown if the user attempts to access a restricted
action or page when they are not logged in.

e Aut hori zati onExcepti on - This exception is only thrown if the user is already logged in, and
they have attempted to access a restricted action or page for which they do not have the
necessary privileges.

In the case of a Not Logged| nExcept i on, it is recommended that the user is redirected to either
a login or registration page so that they can log in. For an Aut hori zat i onExcepti on, it may be
useful to redirect the user to an error page. Here's an example of a pages. xni file that redirects
both of these security exceptions:

<pages>

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtml">
<message>You must be logged in to perform this action</message>
</redirect>
</exception>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/security_error.xhtml">

226

Login Redirection

<message>You do not have the necessary security privileges to perform this action.</
message>
</redirect>
</exception>

</pages>

Most web applications require even more sophisticated handling of login redirection, so Seam
includes some special functionality for handling this problem.

14.4.6. Login Redirection

You can ask Seam to redirect the user to a login screen when an unauthenticated user tries to
access a particular view (or wildcarded view id) as follows:

<pages login-view-id="/login.xhtm[">

<page view-id="/members/*" login-required="true"/>

</pages>

(This is less of a blunt instrument than the exception handler shown above, but should probably
be used in conjunction with it.)

After the user logs in, we want to automatically send them back where they came from, so they can
retry the action that required logging in. If you add the following event listeners to conponent s. xm ,
attempts to access a restricted view while not logged in will be remembered, so that upon the
user successfully logging in they will be redirected to the originally requested view, with any page
parameters that existed in the original request.

<event type="org.jboss.seam.security.notLoggedIn™>
<action execute="#{redirect.captureCurrentView}"/>
</event>

<event type="org.jboss.seam.security.postAuthenticate">
<action execute="#{redirect.returnToCapturedView}"/>
</event>

Note that login redirection is implemented as a conversation-scoped mechanism, so don't end the
conversation in your aut hent i cat e() method.

227

Chapter 14. Security

14.4.7. HTTP Authentication

Although not recommended for use unless absolutely necessary, Seam provides means for
authenticating using either HTTP Basic or HTTP Digest (RFC 2617) methods. To use either form
of authentication, the aut henti cati on-filter component must be enabled in components.xmi:

<web:authentication-filter url-pattern="*.seam" auth-type="basic"/>

To enable the filter for basic authentication, set aut h-t ype to basi c, or for digest authentication,
set it to di gest . If using digest authentication, the key and r eal mmust also be set:

<web:authentication-filter url-pattern="*.seam" auth-type="digest” key="AA3JK34aSDIkj"
realm="My App"/>

The key can be any String value. The real mis the name of the authentication realm that is
presented to the user when they authenticate.

14.4.7.1. Writing a Digest Authenticator

If using digest authentication, your authenticator class should extend the abstract class
org.j boss. seam security. di gest. Di gest Aut henti cat or, and use the val i dat ePasswor d()
method to validate the user's plain text password against the digest request. Here is an example:

public boolean authenticate()
{

try

{

User user = (User) entityManager.createQuery(
"from User where username = :username")
.setParameter("username", identity.getUsername())
.getSingleResult();

return validatePassword(user.getPassword());

}

catch (NoResultException ex)

{

return false;

228

Advanced Authentication Features

14.4.8. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for addressing
more complex security requirements.

14.4.8.1. Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security API,
you may instead delegate to the default system JAAS configuration by providing a j aas- confi g-
nane property in conponent s. xnl . For example, if you are using JBoss AS and wish to use the
ot her policy (which uses the User sRol esLogi nMbdul e login module provided by JBoss AS), then
the entry in conponent s. xnml would look like this:

<security:identity jaas-config-name="other"/>

Please keep in mind that doing this does not mean that your user will be authenticated in whichever
container your Seam application is deployed in. It merely instructs Seam Security to authenticate
itself using the configured JAAS security policy.

14.5. Error Messages

The security API produces a number of default faces messages for various security-related events.
The following table lists the message keys that can be used to override these messages by
specifying them in a message. properti es resource file. To suppress the message, just put the
key with an empty value in the resource file.

Table 14.1. Security Message Keys

Message Key Description

org.j boss. seam | ogi nSuccessful This message is produced when a user successfully logs
in via the security API.

org. j boss. seam | ogi nFai | ed This message is produced when the login process fails,
either because the user provided an incorrect username
or password, or because authentication failed in some
other way.

org. j boss. seam Not Logged! n This message is produced when a user attempts to
perform an action or access a page that requires
a security check, and the user is not currently
authenticated.

229

Chapter 14. Security

Message Key Description

org.j boss. seam Al readyLoggedl n This message is produced when a user that is already
authenticated attempts to log in again.

14.6. Authorization

There are a number of authorization features provided by the Seam Security API for securing
access to components, component methods, and pages. This section describes each of these. An
important thing to note is that if you wish to use any of the advanced features (such as rule-based
permissions) then your conponent s. xm must be configured to support this - see the Configuration
section above.

14.6.1. Core concepts

Each of the authorization mechanisms provided by the Seam Security API are built upon the
concept of a user being granted roles and/or permissions. A role is a group, or type, of user that
may have been granted certain privileges for performing one or more specific actions within an
application. A permission on the other hand is a privilege (sometimes once-off) for performing a
single, specific action. It is entirely possible to build an application using nothing but permissions,
however roles offer a higher level of convenience when granting privileges to groups of users.

Roles are simple, consisting of only a name such as "admin”, "user", "customer", etc. Permissions
consist of both a name and an action, and are represented within this documentation in the form
nane: act i on, for example cust oner : del et e, Or cust omer : i nsert.

14.6.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the
@Restrict annotation.

14.6.2.1. The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @Restri ct
annotation. If both a method and it's declaring class are annotated with @Restrict, the
method restriction will take precedence (and the class restriction will not apply). If a method
invocation fails a security check, then an exception will be thrown as per the contract for
Identity.checkRestriction() (see Inline Restrictions). A @Restrict on just the component
class itself is equivalent to adding @rest ri ct to each of its methods.

An empty @Restrict implies a permission check of conponent Nane: net hodNane. Take for
example the following component method:

@Name("account")
public class AccountAction {
@Restrict public void delete() {

230

Securing components

In this example, the implied permission required to call the delete()
method is account:delete. The equivalent of this would be to write
@Restrict("#{s: hasPermni ssion('account','delete' ,null)}"). Now let's look at another
example:

@Restrict @Name("account")
public class AccountAction {
public void insert() {

}
@Restrict("#{s:hasRole(‘admin’)}")
public void delete() {

This time, the component class itself is annotated with @Rest ri ct . This means that any methods
without an overriding @restri ct annotation require an implicit permission check. In the case
of this example, the i nsert () method requires a permission of account:insert, while the
del et e() method requires that the user is a member of the adni n role.

Before we go any further, let's address the #{s: hasRol e()} expression seen in the above
example. Both s: hasRol e and s: hasPerni ssion are EL functions, which delegate to the
correspondingly named methods of the I dent i t y class. These functions can be used within any
EL expression throughout the entirety of the security API.

Being an EL expression, the value of the @est ri ct annotation may reference any objects that
exist within a Seam context. This is extremely useful when performing permission checks for a
specific object instance. Look at this example:

@Name("account")
public class AccountAction {
@In Account selectedAccount;
@Restrict("#{s:hasPermission(‘account’,'modify',selectedAccount)}")
public void modify() {
selectedAccount.modify();

231

Chapter 14. Security

The interesting thing to note from this example is the reference to sel ect edAccount seen within
the hasPermi ssi on() function call. The value of this variable will be looked up from within the
Seam context, and passed to the hasPer mi ssi on() method in I denti ty, which in this case can
then determine if the user has the required permission for modifying the specified Account object.

14.6.2.2. Inline restrictions

Sometimes it might be desirable to perform a security check in code, without using the @Rest ri ct
annotation. In this situation, simply use I dentity. checkRestriction() to evaluate a security
expression, like this:

public void deleteCustomer() {

Identity.instance().checkRestriction("#{s:hasPermission(‘customer','delete’,selectedCustomer)}");

}

If the expression specified doesn't evaluate to t r ue, either

« if the user is not logged in, a Not Logged| nExcept i on exception is thrown or
« if the user is logged in, an Aut hori zat i onExcept i on exception is thrown.

It is also possible to call the hasRol e() and hasPer ni ssi on() methods directly from Java code:

if (!ldentity.instance().hasRole("admin"))
throw new AuthorizationException("Must be admin to perform this action");
if (!ldentity.instance().hasPermission("customer”, "create”, null))
throw new AuthorizationException("You may not create new customers");

14.6.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for
which they don't have the necessary privileges to use. Seam Security allows conditional rendering
of either 1) sections of a page or 2) individual controls, based upon the privileges of the user,
using the very same EL expressions that are used for component security.

Let's take a look at some examples of interface security. First of all, let's pretend that we
have a login form that should only be rendered if the user is not already logged in. Using the
i dentity.isLoggedl n() property, we can write this:

<h:form class="loginForm" rendered="#{not identity.loggedIn}">

232

Securing pages

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now let's
pretend there is a menu on the page that contains some actions which should only be accessible
to users in the nanager role. Here's one way that these could be written:

<h:outputLink action="#{reports.listManagerReports}" rendered="#{s:hasRole('manager')}">
Manager Reports
</h:outputLink>

This is also quite straight forward. If the user is not a member of the manager role, then the
outputLink will not be rendered. The r ender ed attribute can generally be used on the control itself,
or on a surrounding <s: di v> or <s: span> control.

Now for something more complex. Let's say you have a h: dat aTabl e control on a page listing
records for which you may or may not wish to render action links depending on the user's
privileges. The s: hasPer nmi ssi on EL function allows us to pass in an object parameter which can
be used to determine whether the user has the requested permission for that object or not. Here's
how a dataTable with secured links might look:

<h:dataTable value="#{clients}" var="cl">
<h:column>
<f:.facet name="header">Name</f.facet>
#{cl.name}
</h:column>
<h:column>
<f.facet name="header">City</f:facet>
#{cl.city}
</h:column>
<h:column>
<f:.facet name="header">Action</f:facet>
<s:link value="Modify Client" action="#{clientAction.modify}"
rendered="#{s:hasPermission(‘client','modify',cl)"/>
<s:link value="Delete Client" action="#{clientAction.delete}"
rendered="#{s:hasPermission(‘client','delete’,cl)"/>
</h:column>
</h:dataTable>

14.6.4. Securing pages

Page security requires that the application is using a pages. xni file, however is extremely simple
to configure. Simply include a <restri ct/> element within the page elements that you wish to
secure. If no explicit restriction is specified by the restri ct element, an implied permission of /
vi ew d. xht ni : r ender will be checked when the page is accessed via a hon-faces (GET) request,

233

Chapter 14. Security

and a permission of /vi ewl d. xht 1 : rest ore will be required when any JSF postback (form
submission) originates from the page. Otherwise, the specified restriction will be evaluated as a
standard security expression. Here's a couple of examples:

<page view-id="/settings.xhtml">
<restrict/>
</page>

This page has an implied permission of /settings.xhtnl:render required for non-faces
requests and an implied permission of / set t i ngs. xht nl : r est or e for faces requests.

<page view-id="/reports.xhtml">
<restrict>#{s:hasRole(‘admin’)}</restrict>
</page>

Both faces and non-faces requests to this page require that the user is a member of the adni n role.

14.6.5. Securing Entities

Seam security also makes it possible to apply security restrictions to read, insert, update and
delete actions for entities.

To secure all actions for an entity class, add a @rRest ri ct annotation on the class itself:

@Entity
@Name("customer")
@Restrict

public class Customer {

If no expression is specified in the @Restrict annotation, the default security check that is
performed is a permission check of entityNane: action, where entityName is the Seam
component name of the entity (or the fully-qualified class name if no @Name is specified), and
the acti on is either read, i nsert, updat e or del et e.

Itis also possible to only restrict certain actions, by placing a @Rest ri ct annotation on the relevent
entity lifecycle method (annotated as follows):

e @ost Load - Called after an entity instance is loaded from the database. Use this method to
configure a r ead permission.

234

Securing Entities

e @rePersist - Called before a new instance of the entity is inserted. Use this method to
configure ani nsert permission.

e @relUpdate - Called before an entity is updated. Use this method to configure an update
permission.

e @reRenove - Called before an entity is deleted. Use this method to configure a del ete
permission.

Here's an example of how an entity would be configured to perform a security check for anyi nsert
operations. Please note that the method is not required to do anything, the only important thing
in regard to security is how it is annotated:

@PrePersist @Restrict
public void prePersist() {}

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlIns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
version="1.0">

<entity class="Customer">
<pre-persist method-name="prePersist" />

</entity>

</entity-mappings>

And here's an example of an entity permission rule that checks if the authenticated user is allowed
to insert a new Menber Bl og record (from the seamspace example). The entity for which the
security check is being made is automatically inserted into the working memory (in this case
Menber Bl og):

235

Chapter 14. Security

rule InsertMemberBlog
no-loop
activation-group "permissions”
when
check: PermissionCheck(name == "memberBlog", action == "insert", granted == false)
Principal(principalName : name)
MemberBlog(member : member -> (member.getUsername().equals(principalName)))
then
check.grant();
end;

This rule will grant the permission nmenber Bl og: i nsert if the currently authenticated user
(indicated by the Pri nci pal fact) has the same name as the member for which the blog entry is
being created. The "pri nci pal Name : nane" structure that can be seen in the Pri nci pal fact
(and other places) is a variable binding - it binds the name property of the Pri nci pal to a variable
called pri nci pal Nare. Variable bindings allow the value to be referred to in other places, such
as the following line which compares the member's username to the Pri nci pal name. For more
details, please refer to the JBoss Rules documentation.

Finally, we need to install a listener class that integrates Seam security with your JPA provider.

14.6.5.1. Entity security with JPA

Security checks for EJB3 entity beans are performed with an Entit yLi st ener. You can install
this listener by using the following META- | NF/ or m xni file:

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/
xml/ns/persistence/orm_1 0.xsd"
version="1.0">

<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="org.jboss.seam.security.EntitySecurityListener"/>
</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>

</entity-mappings>

236

Writing Security Rules

14.6.5.2. Entity security with a Managed Hibernate Session

If you are using a Hibernate Sessi onFact ory configured via Seam, and are using annotations,
or orm xn , then you don't need to do anything special to use entity security.

14.7. Writing Security Rules

Up to this point there has been a lot of mention of permissions, but no information about how
permissions are actually defined or granted. This section completes the picture, by explaining
how permission checks are processed, and how to implement permission checks for a Seam
application.

14.7.1. Permissions Overview

So how does the security APl know whether a user has the custoner: nodi fy permission
for a specific customer? Seam Security provides quite a novel method for determining user
permissions, based on JBoss Rules. A couple of the advantages of using a rule engine are 1)
a centralized location for the business logic that is behind each user permission, and 2) speed -
JBoss Rules uses very efficient algorithms for evaluating large numbers of complex rules involving
multiple conditions.

14.7.2. Configuring a rules file

Seam Security expects to find a Rul eBase component called securit yRul es which it uses to
evaluate permission checks. This is configured in conponent s. xnl as follows:

<components xmlns="http://jposs.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:security="http://jboss.com/products/seam/security"
xmins:drools="http://jboss.com/products/seam/drools"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.1.xsd
http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.1.xsd
http://jboss.com/products/seam/drools http://jboss.com/products/seam/drools-2.1.xsd"
http://jboss.com/products/seam/security http://jboss.com/products/seam/security-
2.1.xsd">

<drools:rule-base name="securityRules">
<drools:rule-files>
<value>/META-INF/security.drl</value>
</drools:rule-files>
</drools:rule-base>

237

Chapter 14. Security

</components>

Once the Rul eBase component is configured, it's time to write the security rules.

14.7.3. Creating a security rules file

For this step you need to create a file called security. drl in the / META- | NF directory of your
application's jar file. In actual fact this file can be called anything you want, and exist in any location
as long as it is configured appropriately in conponent s. xm .

So what should the security rules file contain? At this stage it might be a good idea to at least
skim through the JBoss Rules documentation, however to get started here's an extremely simple
example:

package MyApplicationPermissions;

import org.jboss.seam.security.PermissionCheck;
import org.jboss.seam.security.Role;

rule CanUserDeleteCustomers

when
c¢: PermissionCheck(name == "customer", action == "delete")
Role(hame == "admin")

then
c.grant();

end;

Let's break this down. The first thing we see is the package declaration. A package in JBoss Rules
is essentially a collection of rules. The package name can be anything you want - it doesn't relate
to anything else outside the scope of the rule base.

The next thing we can notice is a couple of import statements for the Per i ssi onCheck and Rol e
classes. These imports inform the rules engine that we'll be referencing these classes within our
rules.

Finally we have the code for the rule. Each rule within a package should be given a
unigue name (usually describing the purpose of the rule). In this case our rule is called
CanUser Del et eCust omers and will be used to check whether a user is allowed to delete a
customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is
known as a left hand side (LHS) and a right hand side (RHS). The LHS consists of the conditional
part of the rule, i.e. a list of conditions which must be satisfied for the rule to fire. The LHS is

238

Creating a security rules file

represented by the when section. The RHS is the consequence, or action section of the rule that
will only be fired if all of the conditions in the LHS are met. The RHS is represented by the t hen
section. The end of the rule is denoted by the end; line.

If we look at the LHS of the rule, we see two conditions listed there. Let's examine the first condition:

c¢: PermissionCheck(name == "customer", action == "delete")

In plain english, this condition is stating that there must exist a Per mi ssi onCheck object with a
nanme property equal to "customer"”, and an act i on property equal to "delete" within the working
memory.

So what is the working memory? Also known as a "stateful session” in Drools terminology,
the working memory is a session-scoped object that contains the contextual information that
is required by the rules engine to make a decision about a permission check. Each time the
hasPer m ssi on() method is called, a temporary Per ni ssi onCheck object, or Fact, is inserted
into the working memory. This Per ni ssi onCheck corresponds exactly to the permission that is
being checked, so for example if you call hasPer i ssi on("account”, "create", null) then
a Per ni ssi onCheck object with a name equal to "account" and act i on equal to "create" will be
inserted into the working memory for the duration of the permission check.

Besides the Per i ssi onCheck facts, there is also a org. j boss. seam security. Rol e fact for
each of the roles that the authenticated user is a member of. These Rol e facts are synchronized
with the user's authenticated roles at the beginning of every permission check. As a consequence,
any Rol e object that is inserted into the working memory during the course of a permission check
will be removed before the next permission check occurs, if the authenticated user is not a member
of that role. Besides the Per ni ssi onCheck and Rol e facts, the working memory also contains the
java.security. Princi pal objectthat was created during the authentication process.

It is also possible to insert additional long-lived facts
into the working memory by calling ((Rul eBasedl dentity)
Rul eBasedl dentity.instance()).getSecurityContext().insert(), passingthe objectasa
parameter. The exception to this is Rol e objects, which as already discussed are synchronized
at the start of each permission check.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed
with c: . This is a variable binding, and is used to refer back to the object that is matched by the
condition. Moving onto the second line of our LHS, we see this:

Role(hame == "admin")

This condition simply states that there must be a Rol e object with a nane of "admin” within the
working memory. As mentioned, user roles are inserted into the working memory at the beginning
of each permission check. So, putting both conditions together, this rule is essentially saying "I

239

Chapter 14. Security

will fire if you are checking for the cust omer : del et e permission and the user is a member of
the admi n role".

So what is the consequence of the rule firing? Let's take a look at the RHS of the rule:
c.grant()

The RHS consists of Java code, and in this case is invoking the gr ant () method of the ¢ object,
which as already mentioned is a variable binding for the Per mi ssi onCheck object. Besides the
nanme and acti on properties of the Per nmi ssi onCheck object, there is also a gr ant ed property
which is initially set to f al se. Calling gr ant () on a Per ni ssi onCheck sets the gr ant ed property
to t rue, which means that the permission check was successful, allowing the user to carry out
whatever action the permission check was intended for.

14.7.3.1. Wildcard permission checks

It is possible to implement a wildcard permission check (which allows all actions for a given
permission name), by omitting the act i on constraint for the Per i ssi onCheck in your rule, like
this:

rule CanDoAnythingToCustomersIfYouAreAnAdmin
when
c¢: PermissionCheck(name == "customer")
Role(name == "admin")
then
c.grant();
end;

This rule allows users with the adni n role to perform any action for any cust omer permission
check.

14.8. SSL Security

Seam includes basic support for serving sensitive pages via the HTTPS protocol. This is easily
configured by specifying a scheme for the page in pages. xnl . The following example shows how
the view / | ogi n. xht nl is configured to use HTTPS:

<page view-id="/login.xhtml" scheme="https"/>

This configuration is automatically extended to both s: 1 i nk and s: but t on JSF controls, which
(when specifying the vi ew) will also render the link using the correct protocol. Based on the

240

CAPTCHA

previous example, the following link will use the HTTPS protocol because /1 ogi n. xhtnl is
configured to use it:

<s:link view="/login.xhtml" value="Login"/>

Browsing directly to a view when using the incorrect protocol will cause a redirect to the same
view using the correct protocol. For example, browsing to a page that has schenme="ht t ps" using
HTTP will cause a redirect to the same page using HTTPS.

It is also possible to configure a default scheme for all pages. This is useful if you wish to use
HTTPS for a only few pages. If no default scheme is specified then the normal behavior is to
continue use the current scheme. So once the user accessed a page that required HTTPS, then
HTTPS would continue to be used after the user navigated away to other non-HTTPS pages.
(While this is good for security, it is not so great for performance!). To define HTTP as the default
schene, add this line to pages. xni :

<page view-id="*"scheme="http" />

Of course, if none of the pages in your application use HTTPS then it is not required to specify
a default scheme.

You may configure Seam to automatically invalidate the current HTTP session each time the
scheme changes. Just add this line to conponent s. xm :

<core:servlet-session invalidate-on-scheme-change="true"/>

This option helps make your system less vulnerable to sniffing of the session id or leakage of
sensitive data from pages using HTTPS to other pages using HTTP.

14.9. CAPTCHA

Though strictly not part of the security API, Seam provides a built-in CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart) algorithm to prevent
automated processes from interacting with your application.

14.9.1. Configuring the CAPTCHA Servlet

To get up and running, it is necessary to configure the Seam Resource Servlet, which will provide
the Captcha challenge images to your pages. This requires the following entry in web. xni :

<servlet>

241

Chapter 14. Security

<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet. SeamResourceServlet</serviet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</serviet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

14.9.2. Adding a CAPTCHA to a form

Adding a CAPTCHA challenge to a form is extremely easy. Here's an example:

<h:graphiclmage value="/seam/resource/captcha"/>

<h:inputText id="verifyCaptcha" value="#{captcha.response}" required="true">
<s:validate />

</h:inputText>

<h:message for="verifyCaptcha"/>

That's all there is to it. The gr aphi cl mage control displays the CAPTCHA challenge, and the
i nput Text receives the user's response. The response is automatically validated against the
CAPTCHA when the form is submitted.

14.9.3. Customising the CAPTCHA algorithm

You may customize the CAPTCHA algorithm by overriding the built-in component:

@Name("org.jboss.seam.captcha”)
@Scope(SESSION)
public class HitchhikersCaptcha extends Captcha
{
@Override @Create
public void init()
{
setChallenge("What is the answer to life, the universe and everything?");
setCorrectResponse("42");

}

@Override
public Bufferedimage renderChallenge()

{

Bufferedlmage img = super.renderChallenge();

242

Security Events

img.getGraphics().drawOval(5, 3, 60, 14); //add an obscuring decoration

return img;

14.10. Security Events

The following table describes a number of events (see Chapter 6, Events, interceptors and

exception handling) raised by Seam Security.

Table 14.2. Security Events

Event Key

org.j boss. seam security. | ogi nSuccessf ul

org.j boss. seam security. | oginFail ed

org.j boss. seam security. al readyLoggedln

org.j boss. seam security. not Loggedl n

org.j boss. seam security. not Aut hori zed

org.j boss. seam security. preAut henticate

org.j boss. seam security. post Aut henticate
org.j boss. seam security. | oggedCut

org.j boss. seam security.credential sUpdat ed

org.j boss. seam security. remenber Me

14.11. Run As

Description

Raised when a login attempt is
successful.

Raised when a login attempt fails.

Raised when a user that is already
authenticated attempts to log in
again.

Raised when a security check fails
when the user is not logged in.

Raised when a security check fails
when the user is logged in however
doesn't have sufficient privileges.

Raised just prior to user
authentication.

Raised just after user authentication.
Raised after the user has logged out.

Raised when the user's credentials
have been changed.

Raised when the Identity's
rememberMe property is changed.

Sometimes it may be necessary to perform certain operations with elevated privileges, such
as creating a new user account as an unauthenticated user. Seam Security supports such a
mechanism via the RunAsQper at i on class. This class allows either the Pri nci pal or Subj ect,
or the user's roles to be overridden for a single set of operations.

243

Chapter 14. Security

The following code example demonstrates how RunAsQperati on is used, by overriding its
get Rol es() method to specify a set of roles to masquerade as for the duration of the operation.
The execut e() method contains the code that will be executed with the elevated privileges.

new RunAsOperation() {
@Override
public String[] getRoles() {
return new String[] { "admin" };

}

public void execute() {
executePrivilegedOperation();
}
}.run();

In a similar way, the get Pri nci pal () or get Subj ect () methods can also be overriden to specify
the Pri nci pal and Subj ect instances to use for the duration of the operation. Finally, the r un()
method is used to carry out the RunAsQper at i on.

14.12. Extending the ldentity component

Sometimes it might be necessary to extend the Identity component if your application has special
security requirements. For example, users might be required to authenticate using a Company or
Department ID, along with their usual username and password. If permission-based security is
required then RuleBasedldentity should be extended, otherwise Identity should be extended.

The following example shows an extended Identity component with an additional conpanyCode
field. The install precendence of APPLI CATI ON ensures that this extended Identity gets installed
in preference to the built-in Identity.

@Name("org.jboss.seam.security.identity")
@Scope(SESSION)

@Install(precedence = APPLICATION)
@BypasslInterceptors

@Startup

public class Customldentity extends Identity

{
private static final LogProvider log = Logging.getLogProvider(Customldentity.class);

private String companyCode;

public String getCompanyCode()
{

244

Extending the Identity component

return companyCode;

}

public void setCompanyCode(String companyCode)
{

this.companyCode = companyCode;

}

@Override
public String login()
{
log.info("###### CUSTOM LOGIN CALLED ###H#HH#");
return super.login();
}
}

245

246

Chapter 15.

Internationalization and themes

Seam makes it easy to build internationalized applications by providing several built-in
components for handling multi-language Ul messages.

15.1. Locales

Each user login session has an associated instance of java. util.Local e (available to the
application as a component named | ocal e). Under normal circumstances, you won't need to do
any special configuration to set the locale. Seam just delegates to JSF to determine the active
locale:

« If there is a locale associated with the HTTP request (the browser locale), and that locale is in
the list of supported locales from f aces- conf i g. xn , use that locale for the rest of the session.

« Otherwise, if a default locale was specified in the f aces-confi g. xm , use that locale for the
rest of the session.

+ Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam configuration
properties org.j boss.seaminternational .| ocal eSel ector. | anguage,
org.j boss.seaminternational .l ocal eSel ector. country and
org.j boss.seaminternational.local eSel ector.variant, but we can't think of any good
reason to ever do this.

Itis, however, useful to allow the user to set the locale manually via the application user interface.
Seam provides built-in functionality for overriding the locale determined by the algorithm above.
All you have to do is add the following fragment to a form in your JSP or Facelets page:

<h:selectOneMenu value="#{localeSelector.language}">
<f:selectltem itemLabel="English" itemValue="en"/>
<f:selectltem itemLabel="Deutsch" itemValue="de"/>
<f:selectltem itemLabel="Francais" itemValue="fr"/>
</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}" value="#{messages['ChangelLanguage']}"/
>

Or, if you want a list of all supported locales from f aces- confi g. xml , just use:

<h:selectOneMenu value="#{localeSelector.localeString}">
<f:selectltems value="#{localeSelector.supportedLocales}"'/>

247

Chapter 15. Internationalizat...

</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}" value="#{messages['ChangeLanguage']}"/
>

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF
locales will be overridden for the rest of the session.

15.2. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of
<f: 1 oadBundl e />. You can use this approach in Seam applications. Alternatively, you can take
advantage of the Seam nessages component to display templated labels with embedded EL
expressions.

15.2.1. Defining labels

Seam provides a java.util.ResourceBundle (available to the application as a
org. j boss. seam core. resour ceBundl e). You'll need to make your internationalized labels
available via this special resource bundle. By default, the resource bundle used by Seam is
named nessages and so you'll need to define your labels in files named nessages. properti es,
nmessages_en. properties, nessages_en_AU. properti es, etc. These files usually belong in the
VEB- | NF/ ¢l asses directory.

So, in messages_en. properti es:

Hello=Hello

And in nessages_en_AU. properti es:

Hello=G'day

You can select a different name for the resource bundle by setting the Seam configuration property
named or g. j boss. seam cor e. resour ceLoader . bundl eNanes. You can even specify a list of
resource bundle names to be searched (depth first) for messages.

<core:resource-loader>
<core:bundle-names>
<value>mycompany_messages</value>
<value>standard_messages</value>
</core:bundle-names>
</core:resource-loader>

248

Displaying labels

If you want to define a message just for a particular page, you can specify it in a resource bundle
with the same name as the JSF view id, with the leading / and trailing file extension removed. So
we could put our message in wel cone/ hel | o_en. properti es if we only needed to display the
message on / wel cone/ hel | 0. j sp.

You can even specify an explicit bundle name in pages. xni :

<page view-id="/welcome/hello.jsp" bundle="HelloMessages"/>

Then we could use messages defined in Hel | oMessages. properti es on/wel cone/ hel | 0. sp.

15.2.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without having
to type <f: 1 oadBundl e ... /> on every page. Instead, you can simply type:

<h:outputText value="#{messages['Hello"]}"/>

or:

<h:outputText value="#{messages.Hello}"/>

Even better, the messages themselves may contain EL expressions:

Hello=Hello, #{user.firstName} #{user.lastName}

Hello=G'day, #{user.firstName}

You can even use the messages in your code:

@In private Map<String, String> messages;

@In("#{messages['Hello']}") private String helloMessage;

249

Chapter 15. Internationalizat...

15.2.3. Faces messages

The f acesMessages component is a super-convenient way to display success or failure messages
to the user. The functionality we just described also works for faces messages:

@Name("hello")

@Stateless

public class HelloBean implements Hello {
@In FacesMessages facesMessages;

public String saylt() {
facesMessages.addFromResourceBundle("Hello");

This will display Hel | o, Gavin King or G day, Gavi n, depending upon the user's locale.

15.3. Timezones

There is also a session-scoped instance of java.util.Tinmezone, named
org.j boss. seaminternational.tinezone,and a Seam component for changing the timezone
named or g. j boss. seam i nternational . ti mezoneSel ect or. By default, the timezone is the
default timezone of the server. Unfortunately, the JSF specification says that all dates and times
should be assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified
using <f : convert Dat eTi ne>. This is an extremely inconvenient default behavior.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In addition,
Seam provides the <s: convert Dat eTi me> tag which always performs conversions in the Seam
timezone.

15.4. Themes

Seam applications are also very easily skinnable. The theme APl is very similar to the localization
API, but of course these two concerns are orthogonal, and some applications support both
localization and themes.

First, configure the set of supported themes:

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>
<value>default</value>
<value>accessible</value>
<value>printable</value>

250

Themes

</theme:available-themes>
</theme:theme-selector>

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example,
the default theme is defined as a set of entries in default. properties. For example,
def aul t. properti es might define:

CSs ../screen.css
template /template.xhtml

Usually the entries in a theme resource bundle will be paths to CSS styles or images and names
of facelets templates (unlike localization resource bundles which are usually text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the stylesheet
in a facelets page:

<link href="#{theme.css}" rel="stylesheet" type="text/css" />

Or, when the page definition resides in a subdirectory:

<link href="#{facesContext.externalContext.requestContextPath}#{theme.css}"
rel="stylesheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a <ui : conposi ti on>:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlins:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/ntml"
xmins:f="http://java.sun.com/jsf/core"
template="#{theme.template}">

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch
themes:

<h:selectOneMenu value="#{themeSelector.theme}"'>
<f:selectltems value="#{themeSelector.themes}"/>
</h:selectOneMenu>

251

Chapter 15. Internationalizat...

<h:commandButton action="#{themeSelector.select}" value="Select Theme"/>

15.5. Persisting locale and theme preferences via
cookies

The locale selector, theme selector and timezone selector all support persistence of locale and
theme preference to a cookie. Simply set the cooki e- enabl ed property in conponent s. xm :

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>
<value>default</value>
<value>accessible</value>
<value>printable</value>
</theme:available-themes>
</theme:theme-selector>

<international:locale-selector cookie-enabled="true"/>

252

Chapter 16.

Seam Text

Collaboration-oriented websites require a human-friendly markup language for easy entry
of formatted text in forum posts, wiki pages, blogs, comments, etc. Seam provides the
<s: formatt edText/> control for display of formatted text that conforms to the Seam Text
language. Seam Text is implemented using an ANTLR-based parser. You don't need to know
anything about ANTLR to use it, however.

16.1. Basic fomatting

Here is a simple example:

It's easy to make *emphasis*, [monospace|,
~deleted text~, super”~scripts”® or _underlines_.

If we display this using <s: f or mat t edText / >, we will get the following HTML produced:

<p>
It's easy to make <i>emphasis</i>, <tt>monospace</tt>

deleted text, super^{scripts} or <u>underlines</u>.
</p>

We can use a blank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading
You /must/ have some text following a heading!

++This is a smaller heading
This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.

This is the second paragraph.

(Note that a simple newline is ignored, you need an additional blank line to wrap text into a new
paragraph.) This is the HTML that results:

<h1>This is a big heading</h1>
<p>
You <i>must</i> have some text following a heading!

253

Chapter 16. Seam Text

</p>

<h2>This is a smaller heading</h2>

<p>

This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.

</p>

<p>
This is the second paragraph.
</p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered list:

#first item
#second item
#and even the /third/ item

An unordered list:

=an item
=another item

<p>
An ordered list:
</p>

first item

second item

and even the <i>third</i> item

<p>
An unordered list:
</p>

an item

254

Entering code and text with special characters

another item

Quoted sections should be surrounded in double quotes:

The other guy said:

"Nyeah nyeah-nee
/nyeah/ nyeah!"

But what do you think he means by "nyeah-nee"?

<p>
The other guy said:
</p>

<g>Nyeah nyeah-nee
<i>nyeah</i> nyeah!</q>

<p>
But what do you think he means by <g>nyeah-nee</q>?
</p>

16.2. Entering code and text with special characters

Special characters such as *, | and #, along with HTML characters such as <, > and & may be
escaped using \ :

You can write down equations like 2*3\=6 and HTML tags
like \<body\> using the escape character: \\.

<p>
You can write down equations like 2*3=6 and HTML tags
like &It;body> using the escape character: \.

</p>

And we can quote code blocks using backticks:

255

Chapter 16. Seam Text

My code doesn't work:

“for (int i=0; i<100; i--)
{
doSomething();

y

Any ideas?

<p>
My code doesn't work:
</p>
<pre>for (int i=0; i&It;100; i--)
{
doSomething();
}</pre>
<p>
Any ideas?
</p>

Note that inline monospace formatting always escapes (most monospace formatted text is in fact
code or tags with many special characters). So you can, for example, write:

This is a |<tag attribute="value"/>| example.

without escaping any of the characters inside the monospace bars. The downside is that you can't
format inline monospace text in any other way (italics, underscore, and so on).

16.3. Links

A link may be created using the following syntax:

Go to the Seam website at [=>http://jboss.com/products/seam].

Or, if you want to specify the text of the link:

256

Entering HTML

Go to [the Seam website=>http://jboss.com/products/seam].

For advanced users, it is even possible to customize the Seam Text parser to understand wikiword
links written using this syntax.

16.4. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be
safe from cross-site scripting attacks). This is useful for creating links:

You might want to link to something
cool, or even include an image:

And for creating tables:

<table>
<tr><td>First name:</td><td>Gavin</td></tr>
<tr><td>Last name:</td><td>King</td></tr>
</table>

But you can do much more if you want!

257

258

Chapter 17.

IText PDF generation

Seam now includes a component set for generating documents using iText. The primary focus of
Seam's iText document support is for the generation of PDF doucuments, but Seam also offers
basic support for RTF document generation.

17.1. Using PDF Support

iText support is provided by j boss-seam pdf.j ar. This JAR contains the iText JSF controls,
which are used to construct views that can render to PDF, and the DocumentStore component,
which serves the rendered documents to the user. To include PDF support in your application,
included j boss- seam pdf . j ar in your WEB- | NF/ | i b directory along with the iText JAR file. There
is no further configuration needed to use Seam's ciText supportfon.

The Seam iText module requires the use of Facelets as the view technology. Future versions of the
library may also support the use of JSP. Additionally, it requires the use of the seam-ui package.

The exanpl es/ i t ext project contains an example of the PDF support in action. It demonstrates
proper deployment packaging, and it contains a number examples that demonstrate the key PDF
generation features current supported.

17.1.1. Creating a document

<p: docunent > Description

Documents are generated by facelet XHTML files using tags in
the htt p: //j boss. coni product s/ seanf pdf hamespace. Documents
should always have the docunent tag at the root of the document.
The docunent tag prepares Seam to generate a document into the
DocumentStore and renders an HTML redirect to that stored content.

Attributes

* type — The type of the document to be produced. Valid values
are PDF, RTF and HTM. modes. Seam defaults to PDF generation,
and many of the features only work correctly when generating PDF
documents.

* pageSize — The size of the page to be generate. The
most commonly used values would be LETTER and A4.
A full list of supported pages sizes can be found in
com | owagi e. t ext . PageSi ze class. Alternatively, pageSize can
provide the width and height of the page directly. The value "612 792",
for example, is equivalent to the LETTER page size.

259

Chapter 17. iText PDF generation

orientati on — The orientation of the page. Valid values are
portrait and | andscape. In landscape mode, the height and width
page size values are reversed.

mar gi ns — The left, right, top and bottom margin values.

margi nM rroring — Indicates that margin settings should be
reversed an alternating pages.

di sposi ti on — When generating PDFs in a web browser, this
determines the HTTP Cont ent - Di sposi ti on of the document. Valid
values arei nl i ne, which indicates the document should be displayed
in the browser window if possible, and at t achment , which indicates
that the document should be treated as a download. The default value
isinline.

Metadata Attributes

title
subj ect
keywor ds
aut hor

creator

Usage

<p:document xmlins:p="http://jboss.com/products/seam/pdf">

The document goes here.

</p:document>

17.1.2. Basic Text Elements

Useful documents will need to contain more than just text; however, the standard Ul components
are geared towards HTML generation and are not useful for generating PDF content. Instead,
Seam provides a special Ul components for generating suitable PDF content. Tags like <p: i mage>
and <p: par agr aph> are the basic foundations of simple documents. Tags like <p: f ont > provide
style information to all the content surrounging them.

<p: par agr aph> Description

260

Basic Text Elements

<p:text>

Most uses of text should be sectioned into paragraphs so that text
fragments can be flowed, formatted and styled in logical groups.

Attributes

e firstLinel ndent

* extraParagraphSpace
* | eadi ng

e nultipliedLeading

» spaci ngBefore — The blank space to be inserted before the
element.

» spaci ngAft er — The blank space to be inserted after the element.
* indentationLeft

* indentati onRi ght

* keepToget her

Usage

<p:paragraph alignment="justify">
This is a simple document. It isn't very fancy.
</p:paragraph>

Description

The t ext tag allows text fragments to be produced from application
data using normal JSF converter mechanisms. It is very similar to the
out put Text tag used when rendering HTML documents.

Attributes
» val ue — The value to be displayed. This will typically be a value
binding expression.

Usage

<p:paragraph>
The item costs <p:text value="#{product.price}">
<f:convertNumber type="currency" currencySymbol="$"/>

261

Chapter 17. iText PDF generation

<p:htm >

<p: font>

</p:text>
</p:paragraph>
Description
The ht nl tag renders HTML content into the PDF.

Attributes

* val ue — The text to be displayed.

Usage

<p:html value="This is HTML with some markup." />
<p:html>
<h1>This is more complex HTML</h1>

one
two
three

</p:html>

<p:html>
<s:formattedText value="*This* is |Seam Text| as HTML. It's
very“cool*." />
</p:htmI>
Description
The font tag defines the default font to be used for all text inside of it.
Attributes
» nane — The font name, for example: COURI ER, HELVETI CA, Tl MES-
ROVAN, SYMBCL or ZAPFDI NGBATS.

* si ze — The point size of the font.

» styl e — The font styles. Any combination of : NORVAL, BOLD, | TALI C,
OBLI QUE, UNDERLI NE, LI NE- THROUGH

» encodi ng — The character set encoding.

Usage

262

Basic Text Elements

<p:font name="courier" style="bold" size="24">
<p:paragraph>My Title</p:paragraph>
</p:font>

<p: newPage> Description
p: newPage inserts a page break.

Usage

<p:newPage />

<p: i mage> Description

p: i mage inserts an image into the document. Images can be be loaded
from the classpath or from the web application context using the val ue
attribute.

Resources can also be dynamically generated by application code.
The i mageDat a attribute can specify a value binding expression whose
value is aj ava. awt . | mage object.

Attributes

e val ue — A resource name or a method expression binding to an
application-generated image.

* rotati on — The rotation of the image in degrees.

» hei ght — The height of the image.

e wi dt h — The width of the image.

* al i gnment — The alignment of the image. (see Section 17.1.7.2,
“Alignment Values” for possible values)

» alt — Alternative text representation for the image.
* indentationLeft
* indentationRi ght

» spaci ngBefore — The blank space to be inserted before the
element.

» spaci ngAft er — The blank space to be inserted after the element.

263

Chapter 17. iText PDF generation

<p: anchor >

* wi dt hPer cent age
* initial Rotation
e dpi

» scal ePercent — The scaling factor (as a percentage) to use for
the image. This can be expressed as a single percentage value or
as two percentage values representing separate x and y scaling
percentages.

* wrap
* underlying

Usage

<p:image value="/jboss.jpg" />

<p:image value="#{images.chart}" />

Description

p: anchor defines clickable links from a document. It supports the
following attributes:

Attributes

* name — The name of an in-document anchor destination.

» ref erence — The destination the link refers to. Links to other points
in the document should begin with a "#". For example, "#link1" to refer
to an anchor postion with a nane of | i nk1. Links may also be a full
URL to point to a resource outside of the document.

Usage

<p:listitem><p:anchor reference="#reasonl">Reason 1</p:anchor></
p:listitem>

<p:paragraph>
<p:anchor name="reasonl">It's the quickest way to get "rich"</
p:anchor>

264

Headers and Footers

</p:paragraph>

17.1.3. Headers and Footers

<p: header >

<p: footer>

<p: pageNunber >

Description

The p: header and p: f oot er components provide the ability to place
header and footer text on each page of a generated document, with
the exception of the first page. Header and footer declarations should
appear near the top of a document.

Attributes

al i gnment — The alignment of the header/footer box section. (see
Section 17.1.7.2, “Alignment Values” for alignment values)

backgr oundCol or — The background color of the header/footer box.
(see Section 17.1.7.1, “Color Values” for color values)

borderColor — The border color of the header/
footer box. Individual border sides can be set using
bor der Col orLeft, borderCol orRi ght, borderColorTop and
bor der Col or Bot t om(see Section 17.1.7.1, “Color Values” for color
values)

border Wdt h — The width of the border. Inidvidual border sides
can be specified using border WdthLeft, border Wdt hRi ght,
bor der W dt hTop and bor der W dt hBot t om

Usage

<p:facet name="header">
<p:font size="12">

<p:footer borderWidthTop="1" borderColorTop="blue"
borderwWidthBottom="0" alignment="center">
Why Seam? [<p:pageNumber />]
</p:footer>

</p:font>
</f:facet>

Description

The current page number can be placed inside of a header or footer
using the p: pageNunber tag. The page number tag can only be used in
the context of a header or footer and can only be used once.

265

Chapter 17. iText PDF generation

17.1.4. Chapters

<p: chapt er>

<p: section>

Usage

<p:footer borderWidthTop="1" borderColorTop="blue"
borderWidthBottom="0" alignment="center">
Why Seam? [<p:pageNumber />]
</p:footer>

and Sections

Description

If the generated document follows a book/article structure, the
p: chapt er and p: secti on tags can be used to provide the necessary
structure. Sections can only be used inside of chapters, but they may
be nested arbitrarily deep. Most PDF viewers provide easy navigation
between chapters and sections in a document.

Attributes

» al i gnment — The alignment of the header/footer box section. (see
Section 17.1.7.2, “Alignment Values” for alignment values)

* nunber — The chapter number. Every chapter should be assigned
a chapter number.

* nunber Dept h — The depth of numbering for section. All sections are
numbered relative to their surrounding chapter/sections. The fourth
section of of the first section of chapter three would be section 3.1.4,
if displayed at the default number depth of three. To omit the chapter
number, a number depth of 2 should be used. In that case, the section
number would be displayed as 1.4.

Usage

<p:document xmins:p="http://jboss.com/products/seam/pdf"
titte="Hello">

<p:chapter number="1">
<p:title><p:paragraph>Hello</p:paragraph></p:title>
<p:paragraph>Hello #{user.name}!</p:paragraph>
</p:chapter>

<p:chapter number="2">

266

Lists

<p:title><p:paragraph>Goodbye</p:paragraph></p:title>
<p:paragraph>Goodbye #{user.name}.</p:paragraph>
</p:chapter>

</p:document>

<p: header > Description

Any chapter or section can containap: ti t| e. The title will be displayed
next to the chapter/section number. The body of the title may contain
raw text or may be a p: par agr aph.

17.1.5. Lists

List structures can be displayed using the p:1ist and p:listltemtags. Lists may contain
arbitrarily-nested sublists. List items may not be used outside of a list. he following document uses
the ui : repeat tag to to display a list of values retrieved from a Seam component.

<p:document xmlIns:p="http://jboss.com/products/seam/pdf"
xmins:ui="http://java.sun.com/jsf/facelets"
title="Hello">
<p:list style="numbered">
<ui:repeat value="#{documents}" var="doc">
<p:listitem>#{doc.name}</p:listitem>
</ui:repeat>
</p:list>
</p:document>

<p:list> Attributes

» style — The ordering/bulleting style of list. One of: NUMBERED,
LETTERED, GREEK, ROVAN, ZAPFDI NGBATS, ZAPFDI NGBATS_NUMBER. If
no style is given, the list items are bulleted.

* |istSynbol — For bulleted lists, specifies the bullet symbol.
» indent — The indentation level of the list.

* | ower Case — For list styles using letters, indicates whether the letters
should be lower case.

» char Nunber — For ZAPFDINGBATS, indicates the character code
of the bullet character.

267

Chapter 17. iText PDF generation

e nunber Type — For ZAPFDINGBATS NUMBER, indicates the
numbering style.

Usage

<p:list style="numbered">
<ui:repeat value="#{documents}" var="doc">
<p:listlitem>#{doc.name}</p:listitem>
</ui:repeat>
</p:list>

<p:listltenr Description
p: l'i st1temsupports the following attributes:
Attributes
« alignment — The alignment of the header/footer box section. (see
Section 17.1.7.2, “Alignment Values” for alignment values)

» al i gnment — The alignment of the list item. (See Section 17.1.7.2,
“Alignment Values” for possible values)

* indentationLeft — The left indentation amount.
* indentati onRi ght — The right indentation amount.
* |istSynbol — Overrides the default list symbol for this list item.

Usage

17.1.6. Tables

Table structures can be created using the p: t abl e and p: cel | tags. Unlike many table structures,
there is no explicit row declaration. If a table has 3 columns, then every 3 cells will automatically
form a row. Header and footer rows can be declared, and the headers and footers will be repeated
in the event a table structure spans multiple pages.

<p: tabl e> Description
p: t abl e supports the following attributes.

Attributes

268

Tables

col ums — The number of columns (cells) that make up a table row.

wi dt hs — The relative widths of each column. There should be one
value for each column. For example: widths="2 1 1" would indicate
that there are 3 columns and the first column should be twice the size
of the second and third column.

header Rows — The initial number of rows which are considered to
be headers or footer rows and should be repeated if the table spans
multiple pages.

f oot erRows — The number of rows that are considered to be
footer rows. This value is subtracted from the header Rows value. If
document has 2 rows which make up the header and one row that
makes up the footer, header Rows should be setto 3 and f oot er Rows
should be setto 1

wi dt hPer cent age — The percentage of the page width that the table
spans.

hori zont al Al i gnnent — The horizontal alignment of the table. (See
Section 17.1.7.2, “Alignment Values” for possible values)

ski pFi r st Header
runDirection

| ockedW dt h
spl it Rows

spaci ngBef ore — The blank space to be inserted before the
element.

spaci ngAf t er — The blank space to be inserted after the element.
ext endLast Row

header sl nEvent

splitlLate

keepToget her

Usage

<p:table columns="3" headerRows="1">

<p:cell>name</p:cell>

269

Chapter 17. iText PDF generation

<p:cell>

<p:cell>owner</p:cell>
<p:cell>size</p:cell>
<ui:repeat value="#{documents}" var="doc">
<p:cell>#{doc.name}</p:cell>
<p:cell>#{doc.user.name}</p:cell>
<p:cell>#{doc.size}</p:cell>
</ui:repeat>
</p:table>
Description
p: cel | supports the following attributes.
Attributes
* col span — Cells can span more than one column by declaring a

col span greater than 1. Tables do not have the ability to span across
multiple rows.

* horizontal Ali gnment — The horizontal alignment of the cell. (see
Section 17.1.7.2, “Alignment Values” for possible values)

e vertical Alignment — The vertical alignment of the cell. (see
Section 17.1.7.2, “Alignment Values” for possible values)

» paddi ng — Padding on a given side can also be specified using
paddi ngLef t, paddi ngRi ght, paddi ngTop and paddi ngBot t om

* useBor der Paddi ng

* | eadi ng

* multipliedLeadi ng

* i ndent

e vertical Al'i gnnment

* extraPar agr aphSpace
e fixedHei ght

* noW ap

* m ni nunmHei ght

e foll ow ngl ndent

* rightlndent

270

Document Constants

* spaceCharRatio
e runDirection

e arabicOptions
* useAscender

e grayFill

e rotation

Usage

<p:cell>...</p:cell>

17.1.7. Document Constants
This section documents some of the constants shared by attributes on multiple tags.
17.1.7.1. Color Values

Seam documents do not yet support a full color specification. Currently, only named colors are
supported. They are: white, gray, |ightgray, darkgray, bl ack, red, pink, yel | ow, green,
magent a, cyan and bl ue.

17.1.7.2. Alignment Values

Where alignment values are used, the Seam PDF supports the following horizontal alignment
values: | eft, right, center,justify andjustifyall. The vertical alignment values are t op,
m ddl e, bot t om and basel i ne.

17.1.8. Configuring iText

Document generation works out of the box with no additional configuration needed. However,
there are a few points of configuration that are needed for more serious applications.

The default implementation serves PDF documents from a generic URL, / seam doc. seam
Many browsers (and users) would prefer to see URLs that contain the actual PDF name like
/ nyDocunent . pdf . This capability requires some configuration. To serve PDF files, all *.pdf
resources should be mapped to the DocumentStoreServlet:

<servlet>
<servlet-name>Document Store Servlet</serviet-name>
<servlet-class>org.jboss.seam.pdf.DocumentStoreServlet</serviet-class>
</servlet>

271

Chapter 17. iText PDF generation

<servlet-mapping>
<servlet-name>Document Store Servlet</servlet-name>
<url-pattern>*.pdf</url-pattern>

</servlet-mapping>

The use- ext ensi ons option on the document store component completes the functionality by
instructing the document store to generate URLs with the correct filename extension for the
document type being generated.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pdf="http://jpboss.com/products/seam/pdf'>
<pdf:document-store use-extensions="true" />
</components>

Generated documents are stored in conversation scope and will expire when the conversation
ends. At that point, references to the document will be invalid. To You can specify a default view to
be shown when a document does not exist using the er r or - page property of the documentStore.

<pdf:document-store use-extensions="true" error-page="/pdfMissing.seam" />

17.2. Charting

Charting support is also provided with jboss-seam pdf.jar. Charts can be used in PDF
documents or can be used as images in an HTML page. Charting requires the JFreeChart library
(jfreechart.jar andjcomon.jar) to be added to the VEB- | NF/ | i b directory. Three types of
charts are currently supported: pie charts, bar charts and line charts.

<p: barchart > Description
Displays a bar chart.
Attributes
* border Visi bl e — Controls whether or not a border is displayed
around the entire chart.
* bor der Pai nt — The color of the border, if visible;

* border BackgroundPai nt — The default background color of the
chart.

e border Stroke —

272

Charting

domai nAxi sLabel — The text label for the domain axis.
domai nAxi sPai nt — The color of the domain axis label.

domai nGri dl i nesVi si bl e— Controls whether or not gridlines for the
domain axis are shown on the chart.

domai nGri dl i nePai nt — The color of the domain gridlines, if visible.

domai nGri dl i neSt r oke — The stroke style of the domain gridleines,
if visible.

hei ght — The height of the chart.
wi dt h — The width of the chart.

i s3D— A boolean value indicating that the chart should be rendered
in 3D instead of 2D.

| egend — A boolean value indicating whether or not the chart should
include a legend.

| egendl t enPai nt — The default color of the text labels in the legend.

| egendl t enBackgoundPai nt — The background color for the legend,
if different from the chart background color.

orientati on — The orientation of the plot, either vertical (the
default) or hori zont al .

pl ot Backgr oundPai nt — The color of the plot background.

pl ot Backgr oundAl pha— The alpha (transparency) level of the
plot background. It should be a number between 0 (completely
transparent) and 1 (completely opaque).

pl ot For egr oundAl pha— The alpha (transparency) level of the plot.
It should be a number between O (completely transparent) and 1
(completely opaque).

pl ot Qut | i nePai nt — The color of the range gridlines, if visible.

pl ot Qutli neStroke — The stroke style of the range gridleines, if
visible.

rangeAxi sLabel — The text label for the range axis.

r angeAxi sPai nt — The color of the range axis label.

273

Chapter 17. iText PDF generation

<p:linechart>

rangeG i dl i nesVi si bl e— Controls whether or not gridlines for the
range axis are shown on the chart.

rangeG i dl i nePai nt — The color of the range gridlines, if visible.

rangeG i dl i neSt r oke — The stroke style of the range gridleines, if
visible.

titl e — The chart title text.
titl ePai nt — The color of the chart title text.

titl eBackgroundPai nt — The background color around the chart
title.

wi dt h — The width of the chart.

Usage

<p:barchart title="Bar Chart" legend="true"

width="500" height="500">
<p:series key="Last Year">
<p:data columnKey="Joe" value="100" />
<p:data columnKey="Bob" value="120" />
</p:series> <p:series key="This Year">
<p:data columnKey="Joe" value="125" />
<p:data columnKey="Bob" value="115" />
</p:series>

</p:barchart>

Description

Displays a line chart.

Attributes

bor der Vi si bl e — Controls whether or not a border is displayed
around the entire chart.

bor der Pai nt — The color of the border, if visible;

bor der Backgr oundPai nt — The default background color of the
chart.

bor der St r oke —

domai nAxi sLabel — The text label for the domain axis.

274

Charting

domai nAxi sPai nt — The color of the domain axis label.

domai nGri dl i nesVi si bl e— Controls whether or not gridlines for the
domain axis are shown on the chart.

domai nGri dl i nePai nt — The color of the domain gridlines, if visible.

domai nGri dl i neSt r oke — The stroke style of the domain gridleines,
if visible.

hei ght — The height of the chart.
wi dt h — The width of the chart.

i s3D— A boolean value indicating that the chart should be rendered
in 3D instead of 2D.

| egend — A boolean value indicating whether or not the chart should
include a legend.

| egendl t enPai nt — The default color of the text labels in the legend.

| egendl t enBackgoundPai nt — The background color for the legend,
if different from the chart background color.

orientati on — The orientation of the plot, either vertical (the
default) or hori zontal .

pl ot Backgr oundPai nt — The color of the plot background.

pl ot Backgr oundAl pha— The alpha (transparency) level of the
plot background. It should be a number between 0 (completely
transparent) and 1 (completely opaque).

pl ot For egr oundAl pha— The alpha (transparency) level of the plot.
It should be a number between 0 (completely transparent) and 1
(completely opaque).

pl ot Qut I i nePai nt — The color of the range gridlines, if visible.

pl ot Qutli neStroke — The stroke style of the range gridleines, if
visible.

rangeAxi sLabel — The text label for the range axis.
rangeAxi sPai nt — The color of the range axis label.

rangeG i dl i nesVi si bl e— Controls whether or not gridlines for the
range axis are shown on the chart.

275

Chapter 17. iText PDF generation

<p: pi echart >

* rangeG i dl i nePai nt — The color of the range gridlines, if visible.

* rangeG i dl i neStroke — The stroke style of the range gridleines, if
visible.

e title— The chart title text.
* titl ePai nt — The color of the chart title text.

» titl eBackgroundPai nt — The background color around the chart
title.

e wi dt h — The width of the chart.

Usage

<p:linechart title="Line Chart"
width="500" height="500">
<p:series key="Prices">
<p:data columnKey="2003" value="7.36" />
<p:data columnKey="2004" value="11.50" />
<p:data columnKey="2005" value="34.625" />
<p:data columnKey="2006" value="76.30" />
<p:data columnKey="2007" value="85.05" />
</p:series>
</p:linechart>

Description
Displays a pie chart.

Attributes

* title— The chart title text.
» | abel — The default label text for pie sections.

* | egend— A boolean value indicating whether or not the chart should
include a legend. Default value is true

* i s3D—A boolean value indicating that the chart should be rendered
in 3D instead of 2D.

* | abel Li nkMar gi n— The link margin for labels.

* | abel Li nkPai nt — The paint used for the label linking lines.

276

Charting

| abel Li nkSt r oke— he stroke used for the label linking lines.

| abel Li nksVi si bl e— A flag that controls whether or not the label
links are drawn.

| abel Qut | i nePai nt — The paint used to draw the outline of the
section labels.

| abel Qut | i neSt roke— The stroke used to draw the outline of the
section labels.

| abel ShadowPai nt — The paint used to draw the shadow for the
section labels.

| abel Pai nt — The color used to draw the section labels

| abel Gap— The gap between the labels and the plot as a percentage
of the plot width.

| abel Backgr oundPai nt — The color used to draw the background of
the section labels. If this is null, the background is not filled.

st art Angl e— The starting angle of the first section.

ci r cul ar— A boolean value indicating that the chart should be drawn
as acircle. If false, the chart is drawn as an ellipse. The default is true.

directi on— The direction the pie section are drawn. One of:
cl ockwi se or anti cl ockwi se. The default is cl ockwi se.

secti onQut | i nePai nt — The outline paint for all sections.
sectionQutlineStroke— The outline stroke for all sections

sectionQutlinesVisi bl e— Indicates whether an outline is drawn
for each section in the plot.

baseSecti onQut | i nePai nt — The base section outline paint.
baseSect i onPai nt — The base section paint.

baseSecti onCQut | i neSt r oke— The base section outline stroke.

Usage

<p:piechart title="Pie Chart" circular="false" direction="anticlockwise"
startAngle="30" labelGap="0.1" labelLinkPaint="red">
<p:series key="Prices">

<p:data key="2003" columnKey="2003" value="7.36" />

277

Chapter 17. iText PDF generation

<p: series>

<p: dat a>

<p:data key="2004" columnKey="2004" value="11.50" />
<p:data key="2005" columnKey="2005" value="34.625" />
<p:data key="2006" columnKey="2006" value="76.30" />
<p:data key="2007" columnKey="2007" value="85.05" />
</p:series>
</p:piechart>

Description

Category data can be broken down into series. The series tag is used
to categorize a set of data with a series and apply styling to the entire
series.

Attributes

» key — The series name.
* seriesPai nt — The color of each item in the series
» seriesQutlinePai nt — The outline color for each item in the series.

» seriesQutlineStroke — The stroke used to draw each item in the
series.

» seriesVisi ble — A boolean indicating if the series should be
displayed.

e seriesVisi bl el nLegend — A boolean indiciating if the series should
be listed in the legend.

Usage

<p:series key="datal">
<ui:repeat value="#{data.pieDatal}" var="item">
<p:data columnKey="#{item.name}" value="#{item.value}" />
</ui:repeat>
</p:series>
Description

The data tag describes each data point to be displayed in the graph.

Attributes

» key — The name of the data item.

278

Charting

<p: col or >

e series — The series name, when not embedded inside a

<p:series>.
* val ue — The numeric data value.

* expl odedPer cent — For pie charts, indicates how exploded a from
the pie a piece is.

* sectionQutlinePai nt — For bar charts, the color of the section
outline.

* sectionQutlineStroke — For bar charts, the stroke type for the
section outline.

* sectionPai nt — For bar charts, the color of the section.

Usage

<p:data key="foo" value="20" sectionPaint="#111111"
explodedPercent=".2" />

<p:data key="bar" value="30" sectionPaint="#333333" />

<p:.data key="baz" value="40" sectionPaint="#555555"
sectionOutlineStroke="my-dot-style" />

Description

The color component declares a color or gradient than can be
referenced when drawing filled shapes.

Attributes

» col or — The color value. For gradient colors, this the starting color.
Section 17.1.7.1, “Color Values”

 col or 2 — For gradient colors, this is the color that ends the gradient.

* poi nt — The co-ordinates where the gradient color begins.

* poi nt 2 — The co-ordinates where the gradient color ends.

Usage

<p:color id="foo" color="#0ff00f"/>
<p:color id="bar" color="#ffOOff" color2="#00ff00"
point="50 50" point2="300 300"/>

279

Chapter 17. iText PDF generation

<p: stroke>

17.3. Bar codes

Description
Describes a stroke used to draw lines in a chart.

Attributes

wi dt h — The width of the stroke.
cap — The line cap type. Valid values are but t , r ound and squar e
j oi n — The line join type. Valid values are ni t er, r ound and bevel

mi terLi mt — For miter joins, this value is the limit of the size of
the join.

dash — The dash value sets the dash pattern to be used to draw
the line. The space separated integers indicate the length of each
alternating drawn and undrawn segments.

dashPhase — The dash phase indicates the offset into the dash
pattern that the the line should be drawn with.

Usage

<p:stroke id="dot2" width="2" cap="round" join="bevel" dash="2 3" />

Seam can use iText to generate barcodes in a wide variety of formats. These barcodes can be
embedded in a PDF document or displayed as an image on a web page. Note that when used
with HTML images, barcodes can not currently display barcode text in the barcode.

<p: bar Code>

Description
Displays a barcode image.

Attributes

type — A barcode type supported by iText. Valid values include:
EAN13, EAN8, UPCA, UPCE, SUPP2, SUPP5, POSTNET, PLANET, CODE128,
CODE128_UCC, CODE128_RAWand CODABAR.

code— The value to be encoded by the barcode.
xpos— For PDFs, the absolute y position of the barcode on the page.

ypos— For PDFs, the absolute y position of the barcode on the page.

280

Rendering Swing/AWT components

» rot Degrees — For PDFs, the rotation factor of the barcode in
degrees.

* bar Hei ght — The height of the bars in the barCode
* mi nBar W dt h — The minimum bar width.

* barMuil tiplier — The bar multiplier for wide bars or the distance
between bars for POSTNET and PLANET code.

* bar Col or — The color to draw the bars.

* text Col or — The color of any text on the barcode.
* text Si ze — The size of the barcode text, if any.

* altText — The al t text for HTML image links.

Usage

<p:barCode type="codel128"
barHeight="80"
textSize="20"
code="(10)45566(17)040301"
codeType="codel28 ucc"
altText="My BarCode" />

17.4. Rendering Swing/AWT components

Seam now provides experimental support for rendering Swing components to into a PDF image.
Some Swing look and feels supports, notably ones that use native widgets, will not render
correctly.

<p: sw ng> Description
Renders a Swing component into a PDF document.

Attributes

e wi dt h — The width of the component to be rendered.

* hei ght — ..The height of the component to be rendered.

* conponent — An expression whose value is a Swing or AWT
component.

Usage

281

Chapter 17. iText PDF generation

<p:swing width="310" height="120" component="#{aButton}" />

17.5. Further documentation

For further information on iText, see:

e iText Home Page [http://www.lowagie.com/iText/]

e [Text in Action [http://www.manning.com/lowagie/]

282

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/
http://www.manning.com/lowagie/
http://www.manning.com/lowagie/

Chapter 18.

Email

Seam now includes an optional components for templating and sending emails.

Email support is provided by j boss-seam mai | . j ar. This JAR contains the mail JSF controls,
which are used to construct emails, and the mai | Sessi on manager component.

The examples/mail project contains an example of the email support in action. It demonstrates
proper packaging, and it contains a number of example that demonstrate the key features currently
supported.

You can also test your mail's using Seam's integration testing environment. See Section 31.3.4,
“Integration Testing Seam Mail”.

18.1. Creating a message

You don't need to learn a whole new templating language to use Seam Mail — an email is just
facelet!

<m:message xmins="http://www.w3.0rg/1999/xhtml"
xmins:m="http://jposs.com/products/seam/mail"
xmlns:h="http://java.sun.com/jsf/html|">

<m:from name="Peter" address="peter@example.com" />
<m:to name="#{person.firsthame} #{person.lastname}">#{person.address}</m:to>
<m:subject>Try out Seam!</m:subject>

<m:body>
<p><h:outputText value="Dear #{person.firstname}" />,</p>
<p>You can try out Seam by visiting
http://labs.jboss.com/jbossseam.</p>
<p>Regards,</p>
<p>Pete</p>
</m:body>

</m:message>

The <m nessage> tag wraps the whole message, and tells Seam to start rendering an email. Inside
the <m message> tag we use an <m f r on» tag to set who the message is from, a <m t o> tag to
specify a sender (notice how we use EL as we would in a normal facelet), and a <m subj ect > tag.

The <m body> tag wraps the body of the email. You can use regular HTML tags inside the body
as well as JSF components.

283

Chapter 18. Email

So, now you have your email template, how do you go about sending it? Well, at the end of
rendering the m nessage the mai | Sessi on is called to send the email, so all you have to do is
ask Seam to render the view:

@In(create=true)
private Renderer renderer;

public void send() {

try {
renderer.render("/simple.xhtml");

facesMessages.add("Email sent successfully");

}

catch (Exception e) {
facesMessages.add("Email sending failed: " + e.getMessage());

If, for example, you entered an invalid email address, then an exception would be thrown, which
is caught and then displayed to the user.

18.1.1. Attachments

Seam makes it easy to attach files to an email. It supports most of the standard java types used
when working with files.
If you wanted to email the j boss- seam mai | . j ar:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar"/>

Seam will load the file from the classpath, and attach it to the email. By default it would be attached
asj boss-seam mai | . j ar ; if you wanted it to have another name you would just add the f i | eNane
attribute:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar" fileName="this-is-so-cool.jar"/>

You could also attach aj ava.io. Fil e, ajava. net. URL:

<m:attachment value="#{numbers}"/>

Orabyte[] orajava.io.lnputStream

284

Attachments

<m:attachment value="#{person.photo}" contentType="image/png"/>

You'll notice that for a byte[] and aj ava.i o. I nput St r eamyou need to specify the MIME type
of the attachment (as that information is not carried as part of the file).

And it gets even better, you can attach a Seam generated PDF, or any standard JSF view, just
by wrapping a <m at t achnment > around the normal tags you would use:

<m:attachment fileName="tiny.pdf">
<p:document>
A very tiny PDF
</p:document>
</m:attachment>

If you had a set of files you wanted to attach (for example a set of pictures loaded from a database)
you can just use a <ui : r epeat >:

<ui:repeat value="#{people}" var="person">

<m:attachment value="#{person.photo}" contentType="image/jpeg"
fileName="#{person.firstname}_#{person.lastname}.jpg"/>
</ui:repeat>

And if you want to display an attached image inline:

<m:attachment
value="#{person.photo}"
contentType="image/jpeg"
fileName="#{person.firstname}_#{person.lastname}.jpg"
status="personPhoto"
disposition="inline" />

You may be wondering what ci d: #{. ..} does. Well, the IETF specified that by putting this as
the src for your image, the attachments will be looked at when trying to locate the image (the
Cont ent - | D's must match) — magic!

You must declare the attachment before trying to access the status object.

285

Chapter 18. Email

18.1.2. HTML/Text alternative part

Whilst most mail readers nowadays support HTML, some don't, so you can add a plain text
alternative to your email body:

<m:body>

<f:.facet name="alternative">Sorry, your email reader can't show our fancy email,
please go to http://labs.jboss.com/jbossseam to explore Seam.</f:facet>
</m:body>

18.1.3. Multiple recipients
Often you'll want to send an email to a group of recipients (for example your users). All of the

recipient mail tags can be placed inside a <ui : r epeat >:

<uirrepeat value="#{allUsers} var="user">
<m:to name="#{user.firsthame} #{user.lastname}" address="#{user.emailAddress}" />
</ui:repeat>

18.1.4. Multiple messages
Sometimes, however, you need to send a slightly different message to each recipient (e.g. a

password reset). The best way to do this is to place the whole message inside a <ui : r epeat >:

<uicrepeat value="#{people}" var="p">
<m:message>
<m:from name="#{person.firstname} #{person.lastname}">#{person.address}</m:from>
<m:to name="#{p.firstname}">#{p.address}</m:to>

</m:message>

</uirepeat>

18.1.5. Templating

The mail templating example shows that facelets templating Just Works with the Seam mail tags.

Our t enpl at e. xht nl contains:

<m:message>
<m:from name="Seam" address="do-not-reply@jboss.com" />

286

Internationalisation

<m:to name="#{person.firstname} #{person.lastname}">#{person.address}</m:to>
<m:subject>#{subject}</m:subject>
<m:body>
<html>
<body>
<uicinsert name="body">This is the default body, specified by the template.</ui:insert>
</body>
</html|>
</m:body>
</m:message>

Ourtenpl ating. xht M contains:

<ui:param name="subject" value="Templating with Seam Mail"/>
<ui:define name="body">

<p>This example demonstrates that you can easily use <i>facelets templating</i> in email!'</p>
</ui:define>

You can also use facelets source tags in your email, but you must place them in a jar in WEB- | NF/
l'i b-referencingthe.taglib.xm fromweb. xn isn't reliable when using Seam Mail (if you send
your mail asynchrounously Seam Mail doesn't have access to the full JSF or Servlet context, and
so doesn't know about web. xm configuration parameters).

If you do need more configure Facelets or JSF when sending mail, you'll need to override the
Renderer component and do the configuration programmatically - only for advanced users!

18.1.6. Internationalisation

Seam supports sending internationalised messages. By default, the encoding provided by JSF is
used, but this can be overridden on the template:

<m:message charset="UTF-8">

</m:message>

The body, subject and recipient (and from) name will be encoded. You'll need to make sure facelets
uses the correct charset for parsing your pages by setting encoding of the template:

<?xml version="1.0" encoding="UTF-8"?>

287

Chapter 18. Email

18.1.7. Other Headers

Sometimes you'll want to add other headers to your email. Seam provides support for some (see
Section 18.5, “Tags”). For example, we can set the importance of the email, and ask for a read
receipt:

<m:message xmins:m="http://jboss.com/products/seam/mail"
importance="low"
requestReadReceipt="true"/>

Otherise you can add any header to the message using the <m header > tag:

<m:header name="X-Sent-From" value="JBoss Seam"/>

18.2. Receiving emails

If you are using EJB then you can use a MDB (Message Driven Bean) to receive email. JBoss
provides a JCA adaptor — mai | -ra. rar — but the version distributed with JBoss AS has a
number of limitations (and isn't bundled in some versions) therefore we recommend using the
mai | -ra. rar distributed with Seam is recommended (it's in the ext ras/ directory in the Seam
bundle). mai | -ra. rar should be placed in $IBOSS_HOVE/ ser ver / def aul t / depl oy; if the version
of JBoss AS you use already has this file, replace it.

You can configure it like this:

@MessageDriven(activationConfig={
@ActivationConfigProperty(propertyName="mailServer", propertyValue="localhost"),
@ActivationConfigProperty(propertyName="mailFolder", propertyValue="INBOX"),
@ActivationConfigProperty(propertyName="storeProtocol", propertyValue="pop3"),
@ActivationConfigProperty(propertyName="userName", propertyValue="seam"),
@ActivationConfigProperty(propertyName="password", propertyValue="seam"

)

@ResourceAdapter("mail-ra.rar")

@Name("mailListener")

public class MailListenerMDB implements MailListener {

@In(create=true)
private OrderProcessor orderProcessor;

public void onMessage(Message message) {
/I Process the message

288

Configuration

orderProcessor.process(message.getSubject());

}

Each message received will cause onMessage(Message nessage) to be called. Most Seam
annotations will work inside a MDB but you musn't access the persistence context.

You <can find more information onmail-ra.rar at http://wiki.jpboss.org/wiki/
Wiki.jsp?page=InboundJavaMail.

If you aren't using JBoss AS you can still use mai | - ra. r ar or you may find your application server
includes a similar adapter.

18.3. Configuration

To include Email support in your application, include j boss- seam mai | . j ar in your WEB- | NF/
I'i b directory. If you are using JBoss AS there is no further configuration needed to use Seam's
email support. Otherwise you need to make sure you have the JavaMail API, an implementation
of the JavaMail API present (the APl and impl used in JBoss AS are distributed with seam as
lib/mail.jar), and a copy of the Java Activation Framework (distributed with Seam as |i b/

activation.jar.

The Seam Email module requires the use of Facelets as the view technology. Future versions
of the library may also support the use of JSP. Additionally, it requires the use of the seam-ui
package.

The mai | Sessi on component uses JavaMalil to talk to a 'real' SMTP server.

18.3.1. mail Session

A JavaMail Session may be available via a INDI lookup if you are working in an JEE environment
or you can use a Seam configured Session.

The mailSession component's properties are described in more detail in Section 28.8, “Mail-
related components”.

18.3.1.1. INDI lookup in JBoss AS

The JB0sSSAS depl oy/ mai | - servi ce. xnl configures a JavaMail session binding into JNDI.
The default service configuration will need altering for your network. http://wiki.jboss.org/wiki/
Wiki.jsp?page=JavaMail describes the service in more detail.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jposs.com/products/seam/core"
xmlns:mail="http://jboss.com/products/seam/mail">

289

http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail
http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail
http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail
http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail

Chapter 18. Email

<mail:mail-session session-jndi-name="java:/Mail"/>

</components>

Here we tell Seam to get the mail session bound to j ava: / Mai | from JNDI.

18.3.1.2. Seam configured Session

A mail session can be configured via conponents.xm . Here we tell Seam to use
snt p. exanpl e. comas the smtp server:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jposs.com/products/seam/core"
xmlIns:mail="http://jboss.com/products/seam/mail">

<mail:mail-session host="smtp.example.com"/>

</components>

18.4. Meldware

Seam's mail examples use Meldware (from buni.org [http://buni.org]) as a mail server. Meldware
is a groupware package that provides SMIP, POP3, | MAP, webmail, a shared calendar and an
graphical admin tool; it's written as a JEE application so can be deployed onto JBoss AS alongside
your Seam application.

The version of Meldware distributed with Seam (in the mai | / buni - nel dwar e folder) is specially
tailored for development - mailboxes, users and aliases (email addresses) are created every time
the application deploys. If you want to use Meldware in production you should install the latest
release from buni.org [http://buni.org].

To create mailboxes, users and aliases, you can use the nel dwar e component:

<components xmlns="http://jboss.com/products/seam/components"
xmins:core="http://jboss.com/products/seam/core"
xmlns:mail="http://jboss.com/products/seam/mail">

<mail:mail-session host="smtp.example.com"/>
<mail:meldware>

<mail:users>
<value>#{duke}</value>

290

http://buni.org
http://buni.org
http://buni.org
http://buni.org

Tags

<value>#{root}</value>
</mail:users>
</mail:meldware>

<mail:meldware-user name="duke" username="duke" password="duke">
<mail:aliases>
<value>duke@jboss.org</value>
<value>duke@jboss.com</value>
</mail:aliases>
<mail:meldware-user name="root" username="root" password="root" administrator="true" />
</components>

Here we've created two users, duke, who has two email addresses and an administrator with the
username r oot .

18.5. Tags

Emails are generated using tags in the htt p: //j boss. coni product s/ sean nai | namespace.
Documents should always have the nessage tag at the root of the message. The message tag
prepares Seam to generate an email.

The standard templating tags of facelets can be used as normal. Inside the body you can use
any JSF tag; if it requires access to external resources (stylesheets, javascript) then be sure to
set the ur | Base.

<m:message>
Root tag of a mail message

* i mport ance — low, normal or high. By default normal, this sets the importance of the mail
message.

» precedence — sets the precedence of the message (e.g. bulk).

e request ReadRecei pt — by default false, if set, a read receipt request will be will be added,
with the read receipt being sent to the Fr om address.

« url Base — If set, the value is prepended to the r equest Cont ext Pat h allowing you to use
components such as <h: gr aphi cl mage> in your emails.

<m:from>
Set's the From: address for the email. You can only have one of these per email.

* nane — the name the email should come from.
* addr ess — the email address the email should come from.

<m:replyTo>
Set's the Reply-to: address for the email. You can only have one of these per email.

291

Chapter 18. Email

* addr ess — the email address the email should come from.

<m:to>
Add a recipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can be
safely placed inside a repeat tag such as <ui:repeat>.

* name — the name of the recipient.
* addr ess — the email address of the recipient.

<m:cc>
Add a cc recipient to the email. Use multiple <m:cc> tags for multiple ccs. This tag can be
safely placed inside a iterator tag such as <ui:repeat>.

« nane — the name of the recipient.
* address — the email address of the recipient.

<m:bcc>
Add a bcc recipient to the email. Use multiple <m:bcc> tags for multiple bccs. This tag can be
safely placed inside a repeat tag such as <ui:repeat>.

* name — the name of the recipient.
* addr ess — the email address of the recipient.

<m:header>
Add a header to the email (e.g. X- Sent - From JBoss Seam)

« nane — The name of the header to add (e.g. X- Sent - Fr om).
e val ue — The value of the header to add (e.g. JBoss Sean).

<m:attachment>
Add an attachment to the email.

* val ue — The file to attach:
e String — A Stringis interpreted as a path to file within the classpath
e java.io. Fil e — An EL expression can reference a Fi | e object
* java. net.URL — An EL expression can reference a URL object

* java.io. I nput Stream— An EL expression can reference an | nput St r eam In this case
both a fi | eName and a cont ent Type must be specified.

* byte[] — An EL expression can reference an byt e[] . In this case both afi | eNarmre and
a cont ent Type must be specified.

If the value attribute is ommitted:

292

Tags

« If this tag contains a <p: docunent > tag, the document described will be generated and
attached to the email. A fi | eNane should be specfied.

« If this tag contains other JSF tags a HTML document will be generated from them and
attached to the email. A fi | eNanme should be specfied.

« fil eNane — Specify the file name to use for the attached file.
» cont ent Type — Specify the MIME type of the attached file

<m:subject>
Set's the subject for the email.

<m:body>
Set's the body for the email. Supports an al ter nati ve facet which, if an HTML email is
generated can contain alternative text for a mail reader which doesn't support html.

* type — If set to pl ai n then a plain text email will be generated otherwise an HTML email
is generated.

293

294

Chapter 19.

Asynchronicity and messaging

Seam makes it very easy to perform work asynchronously from a web request. When most people
think of asynchronicity in Java EE, they think of using JMS. This is certainly one way to approach
the problem in Seam, and is the right way when you have strict and well-defined quality of service
requirements. Seam makes it easy to send and recieve JMS messages using Seam components.

But for many usecases, JMS is overkill. Seam layers a simple asynchronous method and event
facility over your choice of dispatchers:

e java. util.concurrent. Schedul edThr eadPool Execut or (by default)
« the EJB timer service (for EJB 3.0 environments)

¢ Quartz

19.1. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations
as the underlying dispatcher mechanism. The default dispatcher, based upon a
Schedul edThr eadPool Execut or performs efficiently but provides no support for persistent
asynchronous tasks, and hence no guarantee that a task will ever actually be executed. If you're
working in an environment that supports EJB 3.0, and add the following line to conponent s. xm :

<async:timer-service-dispatcher/>

then your asynchronous tasks will be processed by the container's EJB timer service. If you're not
familiar with the Timer service, don't worry, you don't need to interact with it directly if you want
to use asynchronous methods in Seam. The important thing to know is that any good EJB 3.0
implementation will have the option of using persistent timers, which gives some guarantee that
the tasks will eventually be processed.

Another alternative is to use the open source Quartz library to manage asynchronous method.
You need to bundle the Quartz library JAR (found in the | i b directory) in your EAR and declare
it as a Java module in application.xm . In addition, you need to add the following line to
conponent s. xnl to install the Quartz dispatcher.

<async:quartz-dispatcher/>

The Seam API for the default Schedul edThr eadPool Execut or, the EJB3 Timer, and the
Quartz Schedul er are largely the same. They can just "plug and play" by adding a line to
conponents. xm .

295

Chapter 19. Asynchronicity an...

19.1.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in a
different thread) from the caller. We usually use an asynchronous call when we want to return an
immediate response to the client, and let some expensive work be processed in the background.
This pattern works very well in applications which use AJAX, where the client can automatically
poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed
asynchronously.

@Local
public interface PaymentHandler

{

@Asynchronous
public void processPayment(Payment payment);

(For JavaBean components we can annotate the component implementation class if we like.)

The use of asynchronicity is transparent to the bean class:

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler

{

public void processPayment(Payment payment)

{

/l[do some work!

And also transparent to the client:

@ Stateful
@Name("paymentAction™)
public class CreatePaymentAction

{

@In(create=true) PaymentHandler paymentHandler;
@!In Bill bill;

public String pay()

296

Asynchronous methods

paymentHandler.processPayment(new Payment(bill));
return "success";

The asynchronous method is processed in a completely new event context and does not have
access to the session or conversation context state of the caller. However, the business process
context is propagated.

Asynchronous method calls may be scheduled for later execution using the @urati on,
@xpirationand @ nterval Durati on annotations.

@Local
public interface PaymentHandler
{
@Asynchronous
public void processScheduledPayment(Payment payment, @Expiration Date date);

@Asynchronous

public void processRecurringPayment(Payment payment,
@Expiration Date date,
@IntervalDuration Long interval)'

@ Stateful

@Name("paymentAction”)

public class CreatePaymentAction

{
@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String schedulePayment()

{
paymentHandler.processScheduledPayment(new Payment(bill), bill.getDueDate());
return "success";

public String scheduleRecurringPayment()

{

paymentHandler.processRecurringPayment(new Payment(bill), bill.getDueDate(),
ONE_MONTH);

297

Chapter 19. Asynchronicity an...

return "success";

Both client and server may access the Ti mer object associated with the invocation. The Ti mer
object shown below is the EJB3 timer when you use the EJB3 dispatcher. For the default
Schedul edThr eadPool Execut or, the returned object is Fut ure from the JDK. For the Quartz
dispatcher, it returns Quart zTr i gger Handl e, which we will discuss in the next section.

@Local
public interface PaymentHandler

{

@Asynchronous
public Timer processScheduledPayment(Payment payment, @Expiration Date date);

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler

{

@In Timer timer;

public Timer processScheduledPayment(Payment payment, @Expiration Date date)

{

/[do some work!

return timer; /note that return value is completely ignored

@Stateful
@Name("paymentAction™)
public class CreatePaymentAction

{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String schedulePayment()
{

298

Asynchronous methods with the Quartz
Dispatcher
Timer timer = paymentHandler.processScheduledPayment(new Payment(bill),
bill.getDueDate());
return "success";

Asynchronous methods cannot return any other value to the caller.

19.1.2. Asynchronous methods with the Quartz Dispatcher

The Quartz dispatcher (see earlier on how to install it) allows you to use the @synchronous,
@ur at i on, @xpiration, and @nterval Duration annotations as above. But it has some
powerful additional features. The Quartz dispatcher supports three new annotations.

The @i nal Expi r ati on annotation specifies an end date for the recurring task.

/I Defines the method in the "processor” component

@Asynchronous

public QuartzTriggerHandle schedulePayment(@Expiration Date when,
@IntervalDuration Long interval,
@FinalExpiration Date endDate,
Payment payment)

/I do the repeating or long running task until endDate

/I Schedule the task in the business logic processing code

/I Starts now, repeats every hour, and ends on May 10th, 2010

Calendar cal = Calendar.getinstance ();

cal.set (2010, Calendar.MAY, 10);

processor.schedulePayment(new Date(), 60*60*1000, cal.getTime(), payment);

Note that the method returns the Quart zTri gger Handl e object, which you can use later to stop,
pause, and resume the scheduler. The Quart zTri gger Handl e object is serializable, so you can
save it into the database if you need to keep it around for extended period of time.

QuartzTriggerHandle handle =
processor.schedulePayment(payment.getPaymentDate(),
payment.getPaymentCron(),
payment);

299

Chapter 19. Asynchronicity an...

payment.setQuartzTriggerHandle(handle);
/I Save payment to DB

/I later ...

/I Retrieve payment from DB
/I Cancel the remaining scheduled tasks
payment.getQuartzTriggerHandle().cancel();

The @ nt er val Cr on annotation supports Unix cron job syntax for task scheduling. For instance,
the following asynchronous method runs at 2:10pm and at 2:44pm every Wednesday in the month
of March.

/I Define the method

@Asynchronous

public QuartzTriggerHandle schedulePayment(@Expiration Date when,
@IntervalCron String cron,
Payment payment)

/I do the repeating or long running task

/I Schedule the task in the business logic processing code
QuartzTriggerHandle handle =
processor.schedulePayment(new Date(), "0 10,44 14 ? 3 WED", payment);

The @ nt er val Busi nessDay annotation supports invocation on the "nth Business Day" scenario.
For instance, the following asynchronous method runs at 14:00 on the 2nd business day of each
month. By default, it excludes all weekends and US federal holidays until 2010 from the business
days.

/I Define the method

@Asynchronous

public QuartzTriggerHandle schedulePayment(@Expiration Date when,
@IntervalBusinessDay NthBusinessDay nth,
Payment payment)

/I do the repeating or long running task

300

Asynchronous methods with the Quartz
Dispatcher

/I Schedule the task in the business logic processing code
QuartzTriggerHandle handle =
processor.schedulePayment(new Date(),
new NthBusinessDay(2, "14:00", WEEKLY), payment);

The Nt hBusi nessDay object contains the configuration of the invocation trigger. You can specify
more holidays (e.g., company holidays, non-US holidays etc.) via the addi ti onal Hol i days

property.

public class NthBusinessDay implements Serializable
{

int n;

String fireAtTime;

List <Date> additionalHolidays;

BusinessDaylntervalType interval;

boolean excludeWeekends;

boolean excludeUsFederalHolidays;

public enum BusinessDaylIntervalType { WEEKLY, MONTHLY, YEARLY }

public NthBusinessDay ()

{
n=1,;
fireAtTime = "12:00";
additionalHolidays = new ArrayList <Date> ();
interval = BusinessDaylntervalType.WEEKLY;
excludeWeekends = true;
excludeUsFederalHolidays = true;

The @nterval Duration, @nterval Cron, and @ nt erval Nt hBusi nessDay annotations are
mutually exclusive. If they are used in the same method, a Runt i neExcept i on will be thrown.

301

Chapter 19. Asynchronicity an...

19.1.3. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous
processing, simply call the rai seAsynchronousEvent () method of the Events class. To
schedule a timed event, call the r ai seTi medEvent () method, passing a schedule object (for the
default dispatcher or timer service dispatcher, use Ti mer Schedul €). Components may observe
asynchronous events in the usual way, but remember that only the business process context is
propagated to the asynchronous thread.

19.2. Messaging in Seam

Seam makes it easy to send and receive JMS messages to and from Seam components.

19.2.1. Configuration

To configure Seam's infrastructure for sending JMS messages, you need to tell Seam about
any topics and queues you want to send messages to, and also tell Seam where to find the
QueueConnect i onFact ory and/or Topi cConnecti onFact ory.

Seam defaults to wusing U L2ConnectionFactory which is the wusual connection
factory for use with JBossMQ. If you are using some other JMS provider, you
need to set one or both of queueConnection. queueConnecti onFact oryJndi Name and
t opi cConnect i on. t opi cConnect i onFact oryJndi Name in seam properties, web.xm or

conponent s. xmi .

You also need to list topics and queues in conponents.xml to install Seam managed
Topi cPubl i sher s and QueueSender s:

<jms:managed-topic-publisher name="stockTickerPublisher"
auto-create="true"
topic-jndi-name="topic/stockTickerTopic"/>

<jms:managed-queue-sender name="paymentQueueSender"
auto-create="true"
gueue-jndi-name="queue/paymentQueue"/>

19.2.2. Sending messages

Now, you can inject a JMS Topi cPubl i sher and Topi cSessi on into any component:

@In
private TopicPublisher stockTickerPublisher;

@In
private TopicSession topicSession;

302

Receiving messages using a message-driven
bean

public void publish(StockPrice price) {
try
{

stockTickerPublisher.publish(topicSession.createObjectMessage(price));

}

catch (Exception ex)

{

throw new RuntimeException(ex);

}

Or, for working with a queue:

@In
private QueueSender paymentQueueSender;

@In
private QueueSession queueSession;

public void publish(Payment payment) {
try
{

paymentQueueSender.send(queueSession.createObjectMessage(payment));

}

catch (Exception ex)

{

throw new RuntimeException(ex);

}

19.2.3. Receiving messages using a message-driven bean

You can process messages using any EJB3 message driven bean. Message-driven beans may
even be Seam components, in which case it is possible to inject other event and application
scoped Seam components.

19.2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described
in Chapter 22, Remoting.

303

304

Chapter 20.

Caching

In almost all enterprise applications, the database is the primary bottleneck, and the least scalable
tier of the runtime environment. People from a PHP/Ruby environment will try to tell you that
so-called "shared nothing" architectures scale well. While that may be literally true, | don't know of
many interesting multi-user applications which can be implemented with no sharing of resources
between different nodes of the cluster. What these silly people are really thinking of is a "share
nothing except for the database" architecture. Of course, sharing the database is the primary
problem with scaling a multi-user application—so the claim that this architecture is highly scalable
is absurd, and tells you a lot about the kind of applications that these folks spend most of their
time working on.

Almost anything we can possibly do to share the database less often is worth doing.

This calls for a cache. Well, not just one cache. A well designed Seam application will feature a
rich, multi-layered caching strategy that impacts every layer of the application:

« The database, of course, has its own cache. This is super-important, but can't scale like a cache
in the application tier.

« Your ORM solution (Hibernate, or some other JPA implementation) has a second-level cache
of data from the database. This is a very powerful capability, but is often misused. In a clustered
environment, keeping the data in the cache transactionally consistent across the whole cluster,
and with the database, is quite expensive. It makes most sense for data which is shared between
many users, and is updated rarely. In traditional stateless architectures, people often try to use
the second-level cache for conversational state. This is always bad, and is especially wrong
in Seam.

« The Seam conversation context is a cache of conversational state. Components you put into
the conversation context can hold and cache state relating to the current user interaction.

« In particular, the Seam-managed persistence context (or an extended EJB container-managed
persistence context associated with a conversation-scoped stateful session bean) acts as a
cache of data that has been read in the current conversation. This cache tends to have a
pretty high hitrate! Seam optimizes the replication of Seam-managed persistence contexts
in a clustered environment, and there is no requirement for transactional consistency with
the database (optimistic locking is sufficient) so you don't need to worry too much about the
performance implications of this cache, unless you read thousands of objects into a single
persistence context.

« The application can cache non-transactional state in the Seam application context. State kept
in the application context is of course not visible to other nodes in the cluster.

» The application can cache transactional state using the Seam poj oCache component, which
integrates JBossCache into the Seam environment. This state will be visible to other nodes if
you run JBoss cache in a clustered mode.

305

Chapter 20. Caching

« Finally, Seam lets you cache rendered fragments of a JSF page. Unlike the ORM second-level
cache, this cache is not automatically invalidated when data changes, so you need to write
application code to perform explicit invalidation, or set appropriate expiration policies.

For more information about the second-level cache, you'll need to refer to the documentation of
your ORM solution, since this is an extremely complex topic. In this section we'll discuss the use
of JBossCache directly, via the poj oCache component, or as the page fragment cache, via the
<s: cache> control.

20.1. Using JBossCache in Seam

The built-in poj oCache component manages an instance of or g. j boss. cache. aop. Poj oCache.
You can safely put any immutable Java object in the cache, and it will be replicated across the
cluster (assuming that replication is enabled). If you want to keep mutable objects in the cache,
you'll need to run the JBossCache bytecode preprocessor to ensure that changes to the objects
will be automatically detected and replicated.

To use poj oCache, all you need to do is put the JBossCache jars in the classpath, and provide a
resource named t r eecache. xm with an appropriate cache configuration. JBossCache has many
scary and confusing configuration settings, so we won't discuss them here. Please refer to the
JBossCache documentation for more information.

You can find a sample t reecache. xm in exanpl es/ bl og/ r esour ces/ treecache. xn .

For an EAR depoyment of Seam, we recommend that the JBossCache jars and configuration
go directly into the EAR. Make sure you place both j boss- cache. j ar and j groups. j ar in your
EAR's lib folder.

Now you can inject the cache into any Seam component:

@Name("chatroom"”)
public class Chatroom {
@In PojoCache pojoCache;

public void join(String username) {
try
{
Set<String> userList = (Set<String>) pojoCache.get("chatroom", "userList");
if (userList==null)
{

userList = new HashSet<String>();

pojoCache.put("chatroom", "userList", userList);

}

userList.put(username);

}

catch (CacheException ce)

306

Page fragment caching

{
throw new RuntimeException(ce);
}
}

If you want to have multiple JBossCache configurations in your application, use conponent s. xm :

<core:pojo-cache name="myCache" cfg-resource-name="myown/cache.xml"/>

20.2. Page fragment caching

The most interesting user of JBossCache is the <s: cache> tag, Seam's solution to the problem
of page fragment caching in JSF. <s: cache> uses poj oCache internally, so you need to follow
the steps listed above before you can use it. (Put the jars in the EAR, wade through the scary
configuration options, etc.)

<s: cache> is used for caching some rendered content which changes rarely. For example, the
welcome page of our blog displays the recent blog entries:

<s:cache key="recentEntries-#{blog.id}" region="welcomePageFragments">
<h:dataTable value="#{blog.recentEntries}" var="blogEntry">
<h:column>
<h3>#{blogEntry.title}</h3>
<div>
<s:formattedText value="#{blogEntry.body}"/>
</div>
</h:column>
</h:dataTable>
</s:cache>

The key let's you have multiple cached versions of each page fragment. In this case, there is one
cached version per blog. The r egi on determines the JBossCache node that all version will be
stored in. Different nodes may have different expiry policies. (That's the stuff you set up using the
aforementioned scary configuration options.)

Of course, the big problem with <s: cache> is that it is too stupid to know when the underlying
data changes (for example, when the blogger posts a new entry). So you need to evict the cached
fragment manually:

public void post() {

307

Chapter 20. Caching

entityManager.persist(blogEntry);
pojoCache.remove("welcomePageFragments"”, "recentEntries-" + blog.getld());

Alternatively, if it is not critical that changes are immediately visible to the user, you could set a
short expiry time on the JbossCache node.

308

Chapter 21.

Web Services

Seam integrates with JBossWS to allow standard JEE web services to take full advantage of
Seam's contextual framework, including support for conversational web services. This chapter
walks through the steps required to allow web services to run within a Seam environment.

21.1. Configuration and Packaging

To allow Seam to intercept web service requests so that the necessary Seam
contexts can be created for the request, a special SOAP handler must be configured;
org. j boss. seam webser vi ce. SOAPRequest Handl er is a SOAPHandl er implementation that
does the work of managing Seam's lifecycle during the scope of a web service request.

A special configuration file, st andar d- j axws- endpoi nt - confi g. xm should be placed into the
META- | NF directory of the j ar file that contains the web service classes. This file contains the
following SOAP handler configuration:

<jaxws-config xmlIns="urn:jboss:jaxws-config:2.0"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:javaee="http://java.sun.com/xml/ns/javaee"
xsi:schemalocation="urn:jboss:jaxws-config:2.0 jaxws-config_2 0.xsd">
<endpoint-config>
<config-name>Seam WebService Endpoint</config-name>
<pre-handler-chains>
<javaee:handler-chain>
<javaee:protocol-bindings>##SOAP11_HTTP</javaee:protocol-bindings>
<javaee:handler>
<javaee:handler-name>SOAP Request Handler</javaee:handler-name>
<javaee:handler-class>org.jboss.seam.webservice. SOAPRequestHandler</
javaee:handler-class>
</javaee:handler>
</javaee:handler-chain>
</pre-handler-chains>
</endpoint-config>
</jaxws-config>

21.2. Conversational Web Services

So how are conversations propagated between web service requests? Seam uses a SOAP header
element present in both the SOAP request and response messages to carry the conversation 1D
from the consumer to the service, and back again. Here's an example of a web service request
that contains a conversation ID:

309

Chapter 21. Web Services

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:seam="http://seambay.example.seam.jboss.org/">
<soapenv:Header>
<seam:conversationld xmlns:seam="http://www.jboss.org/seam/webservice'>2</
seam:conversationld>
</soapenv:Header>
<soapenv:Body>
<seam:confirmAuction/>
</soapenv:Body>
</soapenv:Envelope>

As you can see in the above SOAP message, there is a conversati onl d element within the
SOAP header that contains the conversation ID for the request, in this case 2. Unfortunately,
because web services may be consumed by a variety of web service clients written in a variety of
languages, it is up to the developer to implement conversation ID propagation between individual
web services that are intended to be used within the scope of a single conversation.

An important thing to note is that the conver sati onl d header element must be qualified with a
namespace of htt p: // ww. j boss. or g/ seani webser vi ce, otherwise Seam will not be able to
read the conversation ID from the request. Here's an example of a response to the above request
message:

<env:Envelope xmlIns:env="http://schemas.xmlsoap.org/soap/envelope/>

<env:Header>

<seam:conversationld xmlIns:seam="http://www.jboss.org/seam/webservice'>2</

seam:conversationld>

</env:Header>

<env:Body>

<confirmAuctionResponse xmlIns="http://seambay.example.seam.jboss.org/"/>

</env:Body>

</env:Envelope>

As you can see, the response message contains the same conversati onl d element as the
request.

21.2.1. A Recommended Strategy

As web services must be implemented as either a stateless session bean or POJO, it is
recommended that for conversational web services, the web service acts as a facade to a
conversational Seam component.

310

An example web service

Stateless/POJO Conversational
CONSUMER % \web Service _—— Seam
Component
@WWebService @ Scope|CONVERSATION)
mStateless @Mame(foo”)
public class MySenvice { public class Foo |
}-.. }-..

If the web service is written as a stateless session bean, then it is also possible to make it a Seam
component by giving it a @lane. Doing this allows Seam's bijection (and other) features to be used
in the web service class itself.

21.3. An example web service

Let's walk through an example web service. The code in this section all comes from the seamBay
example application in Seam's / exanpl es directory, and follows the recommended strategy as
described in the previous section. Let's first take a look at the web service class and one of its
web service methods:

@Stateless
@WebService(name = "AuctionService", serviceName = "AuctionService")
public class AuctionService implements AuctionServiceRemote
{
@WebMethod
public boolean login(String username, String password)
{
Identity.instance().setUsername(username);
Identity.instance().setPassword(password);
Identity.instance().login();
return Identity.instance().isLoggedin();

}

/' snip
}

311

Chapter 21. Web Services

As you can see, our web service is a stateless session bean, and is annotated using the JWS
annotations from the j avax. j ws package, as defined by JSR-181. The @\ébSer vi ce annotation
tells the container that this class implements a web service, and the @\ebMet hod annotation on
the I ogi n() method identifies the method as a web service method. The name and ser vi ceNane
attributes in the @\ebSer vi ce annotation are optional.

As is required by the specification, each method that is to be exposed as a web service method
must also be declared in the remote interface of the web service class (when the web service
is a stateless session bean). In the above example, the Auct i onSer vi ceRenot e interface must
declare the | ogi n() method as it is annotated as a @¢bMet hod.

As you can see in the above code, the web service implements a | ogi n() method that delegates
to Seam's built-in I dentity component. In keeping with our recommended strategy, the web
service is written as a simple facade, passing off the real work to a Seam component. This allows
for the greatest reuse of business logic between web services and other clients.

Let's look at another example. This web service method begins a new conversation by delegating
to the Aucti onActi on. creat eAuct i on() method:

@WebMethod

public void createAuction(String title, String description, int categoryld)

{
AuctionAction action = (AuctionAction) Component.getinstance(AuctionAction.class, true);
action.createAuction();
action.setDetails(title, description, categoryld);

}

And here's the code from Auct i onActi on:

@Begin

public void createAuction()

{
auction = new Auction();
auction.setAccount(authenticatedAccount);
auction.setStatus(Auction.STATUS_UNLISTED);
durationDays = DEFAULT_AUCTION_DURATION;

}

From this we can see how web services can patrticipate in long running conversations, by acting
as a facade and delegating the real work to a conversational Seam component.

312

Chapter 22.

Remoting

Seam provides a convenient method of remotely accessing components from a web page, using
AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with
almost no up-front development effort - your components only require simple annotating to
become accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled
web page, then goes on to explain the features of the Seam Remoting framework in more detail.

22.1. Configuration

To use remoting, the Seam Resource servlet must first be configured in your web. xnm file:

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet. SeamResourceServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

The next step is to import the necessary Javascript into your web page. There are a minimum of
two scripts that must be imported. The first one contains all the client-side framework code that
enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call.
It is generated dynamically based on the local interface of your components, and includes type
definitions for all of the classes that can be used to call the remotable methods of the interface.
The name of the script reflects the name of your component. For example, if you have a stateless
session bean annotated with @anme(" cust omer Acti on"), then your script tag should look like
this:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction"></script>

If you wish to access more than one component from the same page, then include them all as
parameters of your script tag:

313

Chapter 22. Remoting

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

Alternatively, you may use the s: renot e tag to import the required Javascript. Separate each
component or class name you wish to import with a comma:

<s:remote include="customerAction,accountAction"/>

22.2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object.
This object is defined in renot e. j s, and you'll be using it to make asynchronous calls against
your component. It is split into two areas of functionality; Seam Conponent contains methods for
working with components and Seam Renot i ng contains methods for executing remote requests.
The easiest way to become familiar with this object is to start with a simple example.

22.2.1. A Hello World example

Let's step through a simple example to see how the Seamobject works. First of all, let's create a
new Seam component called hel | oActi on.

@Stateless
@Name("helloAction™)
public class HelloAction implements HelloLocal {
public String sayHello(String name) {
return "Hello, " + name;

You also need to create a local interface for our new component - take special note of the
@\bRenot e annotation, as it's required to make our method accessible via remoting:

@Local

public interface HelloLocal {
@WebRemote
public String sayHello(String name);

}

314

A Hello World example

That's all the server-side code we need to write. Now for our web page - create a new page and
import the hel | oActi on component:

<s:remote include="helloAction"/>

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something wheniit's clicked:

<script type="text/javascript">
lI<I[CDATA][

function sayHello() {
var name = prompt("What is your name?");
Seam.Component.getinstance("helloAction").sayHello(hame, sayHelloCallback);

}

function sayHelloCallback(result) {
alert(result);

}

11>
</script>

We're done! Deploy your application and browse to your page. Click the button, and enter a
name when prompted. A message box will display the hello message confirming that the call was
successful. If you want to save some time, you'll find the full source code for this Hello World
example in Seam's / exanpl es/ r enot i ng/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start
with, you can see from the Javascript code listing that we have implemented two methods - the first
method is responsible for prompting the user for their name and then making a remote request.
Take a look at the following line:

Seam.Component.getinstance("helloAction").sayHello(name, sayHelloCallback);

The first section of this line, Seam Conponent . get | nst ance(" hel | oActi on") returns a proxy,
or "stub" for our hel | oActi on component. We can invoke the methods of our component

315

Chapter 22. Remoting

against this stub, which is exactly what happens with the remainder of the line: sayHel | o(nane,
sayHel | oCal | back) ; .

What this line of code in its completeness does, is invoke the sayHel | o method of our component,
passing in nane as a parameter. The second parameter, sayHel | oCal | back isn't a parameter
of our component's sayHel | o method, instead it tells the Seam Remoting framework that once
it receives the response to our request, it should pass it to the sayHel | oCal | back Javascript
method. This callback parameter is entirely optional, so feel free to leave it out if you're calling a
method with a voi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops
up an alert message displaying the result of our method call.

22.2.2. Seam.Component

The Seam Conponent Javascript object provides a number of client-side methods for working
with your Seam components. The two main methods, new nst ance() and get I nst ance() are
documented in the following sections however their main difference is that newl nst ance() will
always create a new instance of a component type, and get | nst ance() will return a singleton
instance.

22.2.2.1. Seam.Component.newlinstance()

Use this method to create a new instance of an entity or Javabean component. The object
returned by this method will have the same getter/setter methods as its server-side counterpart,
or alternatively if you wish you can access its fields directly. Take the following Seam entity
component for example:

@Name("customer")
@Entity
public class Customer implements Serializable

{

private Integer customerld;
private String firstName;
private String lastName;

@Column public Integer getCustomerld() {
return customerld,;

}

public void setCustomerld(Integer customerld} {
this.customerld = customerld;

}

@Column public String getFirstName() {

316

Seam.Component

return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

@Column public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}
}

To create a client-side Customer you would write the following code:

var customer = Seam.Component.newlnstance("customer");

Then from here you can set the fields of the customer object:

customer.setFirstName("John");
// Or you can set the fields directly
customer.lastName = "Smith";

22.2.2.2. Seam.Component.getinstance()

The get I nst ance() method is used to get a reference to a Seam session bean component stub,
which can then be used to remotely execute methods against your component. This method
returns a singleton for the specified component, so calling it twice in a row with the same
component name will return the same instance of the component.

To continue our example from before, if we have created a new cust omer and we now wish to
save it, we would pass it to the saveCust onmer () method of our cust oner Act i on component;

Seam.Component.getinstance("customerAction").saveCustomer(customer);

317

Chapter 22. Remoting

22.2.2.3. Seam.Component.getComponentName()

Passing an object into this method will return its component name if it is a component, or nul |
if it is not.

if (Seam.Component.getComponentName(instance) == "customer")
alert("Customer");

else if (Seam.Component.getComponentName(instance) == "staff")
alert("Staff member");

22.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam Renot i ng
object. While you shouldn't need to directly call most of its methods, there are a couple of important
ones worth mentioning.

22.2.3.1. Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may
need to create these types on the client side to pass as parameters into your component method.
Use the creat eType() method to create an instance of your type. Pass in the fully qualified Java
class name as a parameter:

var widget = Seam.Remoting.createType("com.acme.widgets.MyWidget");

22.2.3.2. Seam.Remoting.getTypeName()

This method is the equivalent of Seam Conponent . get Conponent Name() but for non-component
types. It will return the name of the type for an object instance, or nul | if the type is not known.
The name is the fully qualified name of the type's Java class.

22.3. Evaluating EL Expressions

Seam Remoting also supports the evaluation of EL expressions, which provides another
convenient method for retrieving data from the server. Using the Seam Renot i ng. eval () function,
an EL expression can be remotely evaluated on the server and the resulting value returned
to a client-side callback method. This function accepts two parameters, the first being the EL
expression to evaluate, and the second being the callback method to invoke with the value of the
expression. Here's an example:

function customersCallback(customers) {
for (var i = 0; i < customers.length; i++) {

318

Client Interfaces

alert("Got customer: " + customers[i].getName());

}
}

Seam.Remoting.eval("#{customers}", customersCallback);

In this example, the expression #{custoners} is evaluated by Seam, and the value of the
expression (in this case a list of Customer objects) is returned to the cust oner sCal | back()
method. It is important to remember that the objects returned this way must have their types
imported (via s: renote) to be able to work with them in Javascript. So to work with a list of
cust omer objects, it is required to import the cust onmer type:

<s:remote include="customer"/>

22.4. Client Interfaces

In the configuration section above, the interface, or "stub" for our component is imported into our
page either via seanf resour ce/ renmoti ng/interface.js: orusing the s: r enot e tag:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction"></script>

<s:remote include="customerAction"/>

By including this script in our page, the interface definitions for our component, plus any other
components or types that are required to execute the methods of our component are generated
and made available for the remoting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs.
Executable stubs are behavioural, and are used to execute methods against your session bean
components, while type stubs contain state and represent the types that can be passed in as
parameters or returned as a result.

The type of client stub that is generated depends on the type of your Seam component. If the
component is a session bean, then an executable stub will be generated, otherwise if it's an
entity or JavaBean, then a type stub will be generated. There is one exception to this rule; if your
component is a JavaBean (ie it is not a session bean nor an entity bean) and any of its methods
are annotated with @WebRemote, then an executable stub will be generated for it instead of a

319

Chapter 22. Remoting

type stub. This allows you to use remoting to call methods of your JavaBean components in a
non-EJB environment where you don't have access to session beans.

22.5. The Context

The Seam Remoting Context contains additional information which is sent and received as part
of a remoting request/response cycle. At this stage it only contains the conversation ID but may
be expanded in the future.

22.5.1. Setting and reading the Conversation ID

If you intend on wusing remote calls within the scope of a conversation then
you need to be able to read or set the conversation ID in the Seam
Remoting Context. To read the conversation ID after making a remote request call
Seam Renot i ng. get Cont ext (). get Conversationld(). To set the conversation ID before
making a request, call Seam Renot i ng. get Cont ext (). set Conversationld().

If the conversation ID hasn't been explicitly set with
Seam Renot i ng. get Cont ext (). set Conversationl d(), then it will be automatically assigned
the first valid conversation ID that is returned by any remoting call. If you are working with multiple
conversations within your page, then you may need to explicitly set the conversation ID before
each call. If you are working with just a single conversation, then you don't need to do anything
special.

22.5.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current
view's conversation. To do this, you must explicitly set the conversation ID to that of the view
before making the remote call. This small snippet of JavaScript will set the conversation ID that
is used for remoting calls to the current view's conversation ID:

Seam.Remoting.getContext().setConversationld(#{conversation.id});

22.6. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is
recommended that this feature is used wherever it is appropriate to reduce network traffic.

The method Seam Renoting. startBatch() will start a new batch, and any component calls
executed after starting a batch are queued, rather than being sent immediately. When all the
desired component calls have been added to the batch, the Seam Renot i ng. execut eBat ch()
method will send a single request containing all of the queued calls to the server, where they will
be executed in order. After the calls have been executed, a single response containining all return
values will be returned to the client and the callback functions (if provided) triggered in the same
order as execution.

320

Working with Data types

If you start a new batch via the st art Bat ch() method but then decide you don't want to send
it, the Seam Renot i ng. cancel Bat ch() method will discard any calls that were queued and exit
the batch mode.

To see an example of a batch being used, take a look at / exanpl es/ r enot i ng/ chat r oom
22.7. Working with Data types

22.7.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are
generally compatible with either their primitive type or their corresponding wrapper class.

22.7.1.1. String

Simply use Javascript String objects when setting String parameter values.

22.7.1.2. Number

There is support for all number types supported by Java. On the client side, number values are
always serialized as their String representation and then on the server side they are converted
to the correct destination type. Conversion into either a primitive or wrapper type is supported for
Byt e, Doubl e, Fl oat, I nt eger, Long and Short types.

22.7.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java
boolean.

22.7.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other non-
component class. Use the appropriate method (either Seam Conponent . newl nst ance() for Seam
components or Seam Renot i ng. cr eat eType() for everything else) to create a new instance of
the object.

It is important to note that only objects that are created by either of these two methods should
be used as parameter values, where the parameter is not one of the other valid types mentioned
anywhere else in this section. In some situations you may have a component method where the
exact parameter type cannot be determined, such as:

@Name("'myAction")
public class MyAction implements MyActionLocal {
public void doSomethingWithObject(Object obj) {
/I code

}

321

Chapter 22. Remoting

In this case you might want to pass in an instance of your nyW dget component, however the
interface for myAct i on won'tinclude myW dget as itis not directly referenced by any of its methods.
To get around this, MyW dget needs to be explicitly imported:

<s:remote include="myAction,myWidget"/>

This will then allow a nyW dget object to be created with
Seam Conponent . newl nst ance("nyWdget"), which can then be passed to
nmyAct i on. doSonet hi ngW t hCbj ect () .

22.7.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the
client side, use a Javascript Date object to work with date values. On the server side, use any
java. util . Date (or descendent, such asj ava. sql . Dat e orj ava. sql . Ti mest anp class.

22.7.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum
parameter, simply use the String representation of the enum. Take the following component as
an example:

@Name("paintAction™)
public class paintAction implements paintLocal {
public enum Color {red, green, blue, yellow, orange, purple};

public void paint(Color color) {
/I code

}
}

To call the pai nt () method with the color r ed, pass the parameter value as a String literal:

Seam.Component.getinstance("paintAction").paint("red");

The inverse is also true - that is, if a component method returns an enum parameter (or contains
an enum field anywhere in the returned object graph) then on the client-side it will be represented
as a String.

322

Collections

22.7.5. Collections

22.7.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see
the next section for those), and are implemented client-side as a Javascript array. When calling a
component method that accepts one of these types as a parameter, your parameter should be a
Javascript array. If a component method returns one of these types, then the return value will also
be a Javascript array. The remoting framework is clever enough on the server side to convert the
bag to an appropriate type for the component method call.

22.7.5.2. Maps
As there is no native support for Maps within Javascript, a simple Map implementation is provided

with the Seam Remoting framework. To create a Map which can be used as a parameter to a
remote call, create a new Seam Renot i ng. Map object:

var map = new Seam.Remoting.Map();

This Javascript implementation provides basic methods for working with Maps: size(),
i sEnpty(), keySet(), values(), get(key), put(key, val ue), renove(key) and
cont ai ns(key) . Each of these methods are equivalent to their Java counterpart. Where the
method returns a collection, such as keySet () and val ues(), a Javascript Array object will be
returned that contains the key or value objects (respectively).

22.8. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents
of all the packets send back and forth between the client and server in a popup window. To enable
debug mode, either execute the set Debug() method in Javascript:

Seam.Remoting.setDebug(true);
Or configure it via components.xml:
<remoting:remoting debug="true"/>

To turn off debugging, call set Debug(fal se). If you want to write your own messages to the
debug log, call Seam Renot i ng. | og(message) .

323

Chapter 22. Remoting

22.9. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,
its rendering customised or even turned off completely.

22.9.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of
Seam Renot i ng. | oadi ngMessage:

Seam.Remoting.loadingMessage = "Loading...";

22.9.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of
di spl ayLoadi ngMessage() and hi deLoadi ngMessage() with functions that instead do nothing:

/I don't display the loading indicator
Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

22.9.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else
that you want. To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage()
messages with your own implementation:

Seam.Remoting.displayLoadingMessage = function() {
/I ' Write code here to display the indicator

3

Seam.Remoting.hideLoadingMessage = function() {
/I Write code here to hide the indicator

3

22.10. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned
to the client. This response is then unmarshaled by the client into a Javascript object. For
complex types (i.e. Javabeans) that include references to other objects, all of these referenced
objects are also serialized as part of the response. These objects may reference other objects,

324

Constraining normal fields

which may reference other objects, and so forth. If left unchecked, this object "graph” could
potentially be enormous, depending on what relationships exist between your objects. And as
a side issue (besides the potential verbosity of the response), you might also wish to prevent
sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain” the object graph, by specifying the
excl ude field of the remote method's @ébRenot e annotation. This field accepts a String array
containing one or more paths specified using dot notation. When invoking a remote method, the
objects in the result's object graph that match these paths are excluded from the serialized result
packet.

For all our examples, we'll use the following W dget class:

@Name("widget")
public class Widget
{
private String value;
private String secret;
private Widget child;
private Map<String,Widget> widgetMap;
private List<Widget> widgetList;

I getters and setters for all fields

22.10.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secr et
field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})
public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't
care about exposing this particular field to the client. Instead, notice that the W dget value that
is returned has a field chi | d that is also a W dget . What if we want to hide the chi | d's secret
value instead? We can do this by using dot notation to specify this field's path within the result's
object graph:

@WebRemote(exclude = {"child.secret"})
public Widget getWidget();

325

Chapter 22. Remoting

22.10.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of
collection (Li st, Set, Array, etc). Collections are easy, and are treated like any other field. For
example, if our W dget contained a list of other W dget s in its wi dget Li st field, to constrain the
secr et field of the W dget s in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})
public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's
field name will constrain the Map's key object values, while [val ue] will constrain the value object
values. The following example demonstrates how the values of the wi dget Map field have their
secr et field constrained:

@WebRemote(exclude = {"widgetMap|value].secret"})

public Widget getWidget();

22.10.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter
where in the result's object graph it appears. This notation uses either the name of the component

(if the object is a Seam component) or the fully qualified class name (only if the object is not a
Seam component) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})
public Widget getWidget();

22.10.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret”, "widgetMap[value].secret"})
public Widget getWidget();

326

JMS Messaging

22.11. JIMS Messaging

Seam Remoting provides experimental support for IMS Messaging. This section describes the
JMS support that is currently implemented, but please note that this may change in the future. It
is currently not recommended that this feature is used within a production environment.

22.11.1. Configuration

Before you can subscribe to a JMS topic, you must first configure a list
of the topics that can be subscribed to by Seam Remoting. List the topics
under org.jboss. seam renoting. messagi ng. subscri pti onRegi stry. al | onedTopi cs in
seam properties,web. xm or conponents. xn .

<remoting:remoting poll-timeout="5" poll-interval="1"/>

22.11.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribe to a JMS Topic:

function subscriptionCallback(message)
{
if (message instanceof Seam.Remoting.TextMessage)
alert("Received message: " + message.getText());

Seam.Remoting.subscribe("topicName", subscriptionCallback);

The Seam Renoti ng. subscri be() method accepts two parameters, the first being the name of
the JMS Topic to subscribe to, the second being the callback function to invoke when a message
is received.

There are two types of messages supported, Text messages and Object messages. If you
need to test for the type of message that is passed to your callback function you can use
the i nst anceof operator to test whether the message is a Seam Renoti ng. Text Message or
Seam Renoti ng. Obj ect Message. A Text Message contains the text value in its text field (or
alternatively call get Text () on it), while an Obj ect Message contains its object value in its val ue
field (or call its get Val ue() method).

22.11.3. Unsubscribing from a Topic

To unsubscribe from a topic, call Seam Renot i ng. unsubscri be() and pass in the topic name:

327

Chapter 22. Remoting

Seam.Remoting.unsubscribe("topicName");

22.11.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam Renoti ng. pol | I nt erval , which controls how long to wait between subsequent polls for
new messages. This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam Renot i ng. pol | Ti meout, and is also expressed as seconds. It
controls how long a request to the server should wait for a new message before timing out and
sending an empty response. Its default is 0 seconds, which means that when the server is polled,
if there are no messages ready for delivery then an empty response will be immediately returned.

Caution should be used when setting a high pol | Ti neout value; each request that has to wait for
a message means that a server thread is tied up until a message is received, or until the request
times out. If many such requests are being served simultaneously, it could mean a large number
of threads become tied up because of this reason.

Itis recommended that you set these options via components.xml, however they can be overridden
via Javascript if desired. The following example demonstrates how to configure the polling to occur
much more aggressively. You should set these parameters to suitable values for your application:

Via components.xml:

<remoting:remoting poll-timeout="5" poll-interval="1"/>

Via JavaScript:

/I Only wait 1 second between receiving a poll response and sending the next poll request.
Seam.Remoting.pollinterval = 1;

/' Wait up to 5 seconds on the server for new messages
Seam.Remoting.pollTimeout = 5;

328

Chapter 23.

Seam and the Google Web Toolkit

For those that prefer to use the Google Web Toolkit (GWT) to develop dynamic AJAX applications,
Seam provides an integration layer that allows GWT widgets to interact directly with Seam
components.

To use GWT, we assume that you are already familiar with the GWT tools - more information
can be found at http://code.google.com/webtoolkit/. This chapter does not attempt to explain how
GWT works or how to use it.

23.1. Configuration

There is no special configuration required to use GWT in a Seam application, however the Seam
resource servlet must be installed. See Chapter 26, Configuring Seam and packaging Seam
applications for details.

23.2. Preparing your component

The first step in preparing a Seam component to be called via GWT, is to create both synchronous
and asynchronous service interfaces for the methods you wish to call. Both of these interfaces
should extend the GWT interface com googl e. gwt . user. cli ent.rpc. Renot eSer vi ce:

public interface MyService extends RemoteService {
public String asklt(String question);

}

The asynchronous interface should be identical, except that it also contains an additional
AsyncCal | back parameter for each of the methods it declares:

public interface MyServiceAsync extends RemoteService {
public void asklt(String question, AsyncCallback callback);

}

The asynchronous interface, in this example MySer vi ceAsync, will be implemented by GWT and
should never be implemented directly.

The next step, is to create a Seam component that implements the synchronous interface:

@Name("org.jboss.seam.example.remoting.gwt.client.MyService")
public class Servicelmpl implements MyService {

@WebRemote

329

http://code.google.com/webtoolkit/

Chapter 23. Seam and the Goog...

public String asklt(String question) {

if ('validate(question)) {
throw new lllegalStateException("Hey, this shouldn't happen, | checked on the client, " +
"but its always good to double check.");

}

return "42. Its the real question that you seek now.";

}

public boolean validate(String q) {
ValidationUtility util = new ValidationUtility();
return util.isvValid(q);
}
}

The methods that should be made accessible via GWT need to be annotated with the @¢bRenot e
annotation, which is required for all web-remoteable methods.

23.3. Hooking up a GWT widget to the Seam component

The next step, is to write a method that returns the asynchronous interface to the component.
This method can be located inside the widget class, and will be used by the widget to obtain a
reference to the asynchronous client stub:

private MyServiceAsync getService() {
String endpointURL = GWT.getModuleBaseURL() + "seam/resource/gwt";

MyServiceAsync svc = (MyServiceAsync) GWT.create(MyService.class);
((ServiceDefTarget) svc).setServiceEntryPoint(endpointURL);
return svc;

The final step is to write the widget code that invokes the method on the client stub. The following
example creates a simple user interface with a label, text input and a button:

public class AskQuestionWidget extends Composite {
private AbsolutePanel panel = new AbsolutePanel();

public AskQuestionWidget() {
Label Ibl = new Label("OK, what do you want to know?");
panel.add(lbl);

330

Hooking up a GWT widget to the Seam

component
final TextBox box = new TextBox();

box.setText("What is the meaning of life?");
panel.add(box);
Button ok = new Button("Ask");
ok.addClickListener(new ClickListener() {
public void onClick(Widget w) {
ValidationUltility valid = new ValidationUtility();
if ('valid.isValid(box.getText())) {
Window.alert("A question has to end with a '?");
}else{
askServer(box.getText());
}
}
b
panel.add(ok);

initWidget(panel);
}

private void askServer(String text) {
getService().asklt(text, new AsyncCallback() {
public void onFailure(Throwable t) {
Window.alert(t.getMessage());
}

public void onSuccess(Object data) {
Window.alert((String) data);
}
)
}

When clicked, the button invokes the askServer () method passing the contents of the input
text (in this example, validation is also performed to ensure that the input is a valid question).
The askServer () method acquires a reference to the asynchronous client stub (returned by the
get Servi ce() method) and invokes the askl t () method. The result (or error message if the call
fails) is shown in an alert window.

331

Chapter 23. Seam and the Goog...

HelloWorld

This is an example of a host page for the HelloWorld application. You can attach a VWeb Toolkit module to any HTML page you like,
making it easy to add bits of AJAX functionality to existing pages without starting from scratch.

Qb wihat do you want to know?
What is the meaning of i

The complete code for this example can be found in the Seam distribution in the exanpl es/
renoti ng/ gwt directory.

23.4. GWT Ant Targets

For deployment of GWT apps, there is a compile-to-Javascript step (which compacts and
obfuscates the code). There is an ant utility which can be used instead of the command line or GUI
utility that GWT provides. To use this, you will need to have the ant task jar in your ant classpath,
as well as GWT downloaded (which you will need for hosted mode anyway).

Then, in your ant file, place (near the top of your ant file):

<taskdef uri="antlib:de.samaflost.gwttasks"
resource="de/samaflost/gwttasks/antlib.xml"
classpath="./lib/gwttasks.jar"/>

<property file="build.properties"/>
Create a bui | d. properti es file, which has the contents:
gwt.home=/gwt_home_dir
This of course should point to the directory where GWT is installed. Then to use it, create a target:

<!-- the following are are handy utilities for doing GWT development.
To use GWT, you will of course need to download GWT seperately -->
<target name="gwt-compile">
<!-- in this case, we are "re homing" the gwt generated stuff, so in this case
we can only have one GWT module - we are doing this deliberately to keep the URL short -->
<delete>
<fileset dir="view"/>
</delete>
<gwt:compile outDir="build/gwt"
gwtHome="${gwt.home}"

332

GWT Ant Targets

classBase="${gwt.module.name}"
sourceclasspath="src"/>
<copy todir="view">
<fileset dir="build/gwt/${gwt.module.name}"/>
</copy>
</target>

This target when called will compile the GWT application, and copy it to the specified directory
(which would be in the webapp part of your war - remember GWT generates HTML and Javascript
artifacts). You never edit the resulting code that gwt - conpi | e generates - you always edit in the
GWT source directory.

Remember that GWT comes with a hosted mode browser - you should be using that if you are
developing with GWT. If you aren't using that, and are just compiling it each time, you aren't getting
the most out of the toolkit (in fact, if you can't or won't use the hosted mode browser, | would go
far as to say you should NOT be using GWT at all - it's that valuable!).

333

334

Chapter 24.

Spring Framework integration

The Spring integration module allows easy migration of Spring-based projects to Seam and allows
Spring applications to take advantage of key Seam features like conversations and Seam's more
sophisticated persistence context management.

Note! The Spring integration code is included in the jboss-seam-ioc library. This dependency is
required for all seam-spring integration techniques covered in this chapter.

Seam's support for Spring provides the ability to:

* inject Seam component instances into Spring beans

* inject Spring beans into Seam components

* turn Spring beans into Seam components

« allow Spring beans to live in any Seam context

« start a spring WebApplicationContext with a Seam component
» Support for Spring PlatformTransactionManagement

« provides a Seam managed replacement for Spring's OpenEnt i t yManager I nVi ewFi | t er and
OpenSessi onl nVi ewFi | ter

» Support for Spring TaskExecut or s to back @synchr onous calls

24.1. Injecting Seam components into Spring beans

Injecting Seam component instances into Spring beans is accomplished using the
<seam i nst ance/ > hamespace handler. To enable the Seam namespace handler, the Seam
namespace must be added to the Spring beans definition file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:seam="http://jboss.com/products/seam/spring-seam"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://jboss.com/products/seam/spring-seam
http://jboss.com/products/seam/spring-seam-2.1.xsd">

Now any Seam component may be injected into any Spring bean:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">

335

Chapter 24. Spring Framework ...

<property name="someProperty">
<seam:instance name="someComponent"/>
</property>
</bean>

An EL expression may be used instead of a component name:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<property name="someProperty">
<seam:instance name="#{someExpression}"/>
</property>
</bean>

Seam component instances may even be made available for injection into Spring beans by a
Spring bean id.

<seam:instance hame="someComponent" id="someSeamComponentinstance"/>

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<property name="someProperty" ref="someSeamComponentinstance">
</bean>

Now for the caveat!

Seam was designed from the ground up to support a stateful component model with multiple
contexts. Spring was not. Unlike Seam bijection, Spring injection does not occur at method
invocation time. Instead, injection happens only when the Spring bean is instantiated. So the
instance available when the bean is instantiated will be the same instance that the bean uses for
the entire life of the bean. For example, if a Seam CONVERSATI ON-scoped component instance
is directly injected into a singleton Spring bean, that singleton will hold a reference to the same
instance long after the conversation is over! We call this problem scope impedance. Seam bijection
ensures that scope impedance is maintained naturally as an invocation flows through the system.
In Spring, we need to inject a proxy of the Seam component, and resolve the reference when
the proxy is invoked.

The <seam i nst ance/ > tag lets us automatically proxy the Seam component.

<seam:instance id="seamManagedEM" name="someManagedEMComponent" proxy="true"/>

<bean id="someSpringBean" class="SomeSpringBeanClass">
<property name="entityManager" ref="seamManagedEM">

336

Injecting Spring beans into Seam components

</bean>

This example shows one way to use a Seam-managed persistence context from a Spring bean.
(For a more robust way to use Seam-managed persistence contexts as a replacement for the
Spring OpenEnt i t yManager | nVi ew filter see section on Using a Seam Managed Persistence
Context in Spring)

24.2. Injecting Spring beans into Seam components

It is even easier to inject Spring beans into Seam component instances. Actually, there are two
possible approaches:

* inject a Spring bean using an EL expression
« make the Spring bean a Seam component

We'll discuss the second option in the next section. The easiest approach is to access the Spring
beans via EL.

The Spring Del egat i ngVar i abl eResol ver is an integration point Spring provides for integrating
Spring with JSF. This Vari abl eResol ver makes all Spring beans available in EL by their bean
id. You'll need to add the Del egati ngVari abl eResol ver to f aces-config. xnl :

<application>
<variable-resolver>
org.springframework.web.jsf.DelegatingVariableResolver
</variable-resolver>
</application>

Then you can inject Spring beans using @ n:

@In("#{bookingService}")
private BookingService bookingService;

The use of Spring beans in EL is not limited to injection. Spring beans may be used anywhere that
EL expressions are used in Seam: process and pageflow definitions, working memory assertions,
etc...

24.3. Making a Spring bean into a Seam component

The <seam conponent/ > namespace handler can be used to make any Spring bean a Seam
component. Just place the <seam conponent / > tag within the declaration of the bean that you
wish to be a Seam component:

337

Chapter 24. Spring Framework ...

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<seam:component/>
</bean>

By default, <seam conponent / > will create a STATELESS Seam component with class and name
provided in the bean definition. Occasionally, such as when a Fact or yBean is used, the class of
the Spring bean may not be the class appearing in the bean definition. In such cases the cl ass
should be explicitly specified. A Seam component name may be explicitly specified in cases where
there is potential for a naming conflict.

The scope attribute of <seam conponent/> may be used if you wish the Spring bean to be
managed in a particular Seam scope. The Spring bean must be scoped to prot ot ype if the
Seam scope specified is anything other than STATELESS. Pre-existing Spring beans usually have
a fundamentally stateless character, so this attribute is not usually needed.

24.4. Seam-scoped Spring beans

The Seam integration package also lets you use Seam's contexts as Spring 2.0 style custom
scopes. This lets you declare any Spring bean in any of Seam's contexts. However, note once
again that Spring's component model was never architected to support statefulness, so please
use this feature with great care. In particular, clustering of session or conversation scoped Spring
beans is deeply problematic, and care must be taken when injecting a bean or component from
a wider scope into a bean of a narrower scope.

By specifying <seam confi gur e- scopes/ > once in a Spring bean factory configuration, all of the
Seam scopes will be available to Spring beans as custom scopes. To associate a Spring bean
with a particular Seam scope, specify the Seam scope in the scope attribute of the bean definition.

<!-- Only needs to be specified once per bean factory-->
<seam:configure-scopes/>

<bean id="someSpringBean" class="SomeSpringBeanClass"
scope="seam.CONVERSATION"/>

The prefix of the scope name may be changed by specifying the prefix attribute in the
conf i gur e- scopes definition. (The default prefix is seam)

By default an instance of a Spring Component registered in this way is not automatically
created when referenced using @ n. To have an instance auto-created you must either specify
@n(create=true) atthe injection point to identify a specific bean to be auto created or you can

338

Using Spring PlatformTransactionManagement

use the def aul t - aut o- cr eat e attribute of conf i gur e- scopes to make all spring beans who use
a seam scope auto created.

Seam-scoped Spring beans defined this way can be injected into other Spring beans without
the use of <seam i nst ance/ >. However, care must be taken to ensure scope impedance is
maintained. The normal approach used in Spring is to specify <aop: scoped- pr oxy/ > in the bean
definition. However, Seam-scoped Spring beans are not compatible with <aop: scoped- proxy/ >.
So if you need to inject a Seam-scoped Spring bean into a singleton, <seam i nst ance/ > must
be used:

<bean id="someSpringBean" class="SomeSpringBeanClass"
scope="seam.CONVERSATION"/>

<bean id="someSingleton">
<property name="someSeamScopedSpringBean">
<seam:instance name="someSpringBean" proxy="true"/>
</property>
</bean>

24.5. Using Spring PlatformTransactionManagement

Spring provides an extensible transaction management abstraction with support for many
transaction APIs (JPA, Hibernate, JDO, and JTA) Spring also provides tight integrations
with many application server TransactionManagers such as Websphere and Weblogic. Spring
transaction management exposes support for many advanced features such as nested
transactions and supports full Java EE transaction propagation rules like REQUIRES NEW
and NOT_SUPPORTED. For more information see the spring documentation here [http:/
static.springframework.org/spring/docs/2.0.x/reference/transaction.html].

To configure Seam to use Spring transactions enable the SpringTransaction component like so:
<spring:spring-transaction platform-transaction-manager="#{transactionManager}"/>

The spring: spring-transacti on component will utilize Springs transaction synchronization
capabilities for synchronization callbacks.

339

http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.0.x/reference/transaction.html

Chapter 24. Spring Framework ...

24.6. Using a Seam Managed Persistence Context in
Spring

One of the most powerful features of Seam is its conversation scope and the ability
to have an EntityManager open for the life of a conversation. This eliminates many of
the problems associated with the detachment and re-attachment of entities as well as
mitigates occurrences of the dreaded Lazyl ni ti al i zat i onExcepti on. Spring does not provide
a way to manage an persistence context beyond the scope of a single web request
(OpenEnt i t yManager | nVi ewFi | t er). So, it would be nice if Spring developers could have access
to a Seam managed persistence context using all of the same tools Spring provides for integration
with JPA(e.g. Per si st enceAnnot at i onBeanPost Processor, JpaTenpl at e, etc.)

Seam provides a way for Spring to access a Seam managed persistence context with Spring's
provided JPA tools bringing conversation scoped persistence context capabilities to Spring
applications.

This integration work provides the following functionality:

 transparent access to a Seam managed persistence context using Spring provided tools

e access to Seam conversation scoped persistence contexts in a non web request (e.g.
asynchronous quartz job)

« allows for using Seam managed persistence contexts with Spring managed transactions (will
need to flush the persistence context manually)

Spring's persistence context propagation model allows only one open EntityManager per
EntityManagerFactory so the Seam integration works by wrapping an EntityManagerFactory
around a Seam managed persistence context.

<bean id="seamEntityManagerFactory"
class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">

<property name="persistenceContextName" value="entityManager"/>
</bean>

Where 'persistenceContextName' is the name of the Seam managed persistence context
component. By default this EntityManagerFactory has a unitName equal to the Seam component
name or in this case 'entityManager'. If you wish to provide a different unitName you can do so
by providing a persistenceUnitName like so:

<bean id="seamEntityManagerFactory"
class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">
<property name="persistenceContextName" value="entityManager"/>

340

Using a Seam Managed Persistence Context in
Spring
<property name="persistenceUnitName" value="bookingDatabase:extended"/>
</bean>

This EntityManagerFactory can then be used in any Spring provided tools. For example, using
Spring's Per si st enceAnnot at i onBeanPost Pr ocessor is the exact same as before.

<bean
class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/>

If you define your real EntityManagerFactory in Spring but wish to use a Seam managed
persistence context you can tell the PersistenceAnnotati onBeanPost Processor which
persistenctUnitName you wish to use by default by specifying the def aul t Per si st enceUni t Name

property.

The appl i cati onCont ext. xm might look like:

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
<property name="persistenceUnitName" value="bookingDatabase"/>
</bean>
<bean id="seamEntityManagerFactory"
class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">
<property name="persistenceContextName" value="entityManager"/>
<property name="persistenceUnitName" value="bookingDatabase:extended"/>
</bean>
<bean
class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor">
<property name="defaultPersistenceUnitName" value="bookingDatabase:extended"/>
</bean>

The conponent . xm might look like:

<persistence:managed-persistence-context name="entityManager"
auto-create="true" entity-manager-factory="#{entityManagerFactory}"/>

JpaTenpl at e and JpaDaoSupport are configured the same way for a Seam managed persistence
context as they would be fore a Seam managed persistence context.

<bean id="bookingService" class="org.jboss.seam.example.spring.BookingService">
<property name="entityManagerFactory" ref="seamEntityManagerFactory"/>

341

Chapter 24. Spring Framework ...

</bean>

24.7. Using a Seam Managed Hibernate Session in
Spring

The Seam Spring integration also provides support for complete access to a Seam managed
Hibernate session using spring's tools. This integration is very similar to the JPA integration.

Like Spring's JPA integration spring's propagation model allows only one open EntityManager per
EntityManagerFactory per transaction??? to be available to spring tools. So, the Seam Session
integration works by wrapping a proxy SessionFactory around a Seam managed Hibernate
session context.

<bean id="seamSessionFactory"
class="org.jboss.seam.ioc.spring.SeamManagedSessionFactoryBean">

<property name="sessionName" value="hibernateSession"/>
</bean>

Where 'sessionName' is the name of the persistence: managed- hi ber nat e- sessi on
component. This SessionFactory can then be used in any Spring provided tools. The integration
also provides support for calls to Sessi onFact ory. get Current | nstance() as long as you call
getCurrentinstance() on the SeanvanagedSessi onFact ory.

24.8. Spring Application Context as a Seam Component

Althoughitis possible to use the Spring Cont ext Loader Li st ener to start your application's Spring
ApplicationContext there are a couple of limitations.

* the Spring ApplicationContext must be started after the SeantLi st ener
« it can be tricky starting a Spring ApplicationContext for use in Seam unit and integration tests

To overcome these two limitations the Spring integration includes a Seam component that will
start a Spring ApplicationContext. To use this Seam component place the <spri ng: cont ext -
| oader /> definition in the conponents. xm . Specify your Spring context file location in the
confi g-1 ocati ons attribute. If more than one config file is needed you can place them in the
nested <spri ng: confi g-1 ocati ons/ > element following standard conponent s. xm multi value
practices.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:spring="http://jboss.com/products/seam/spring"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

342

Using a Spring TaskExecutor for
@Asynchronous
xsi:schemalLocation="http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-2.1.xsd
http://jboss.com/products/seam/spring
http://jboss.com/products/seam/spring-2.1.xsd">

<spring:context-loader config-locations="/WEB-INF/applicationContext.xml"/>

</components>

24.9. Using a Spring TaskExecutor for @Asynchronous

Spring provides an abstraction for executing code asynchronously called a TaskExecut or.
The Spring Seam integration allows for the use of a Spring TaskExecutor for
executing immediate @synchronous method calls. To enable this functionality install the
Spri ngTaskExecut or Di spat chor and provide a spring bean defined taskExecutor like so:

<spring:task-executor-dispatcher task-executor="#{springThreadPoolTaskExecutor}"/>

Because a Spring TaskExecut or does not support scheduling of an asynchronous event a fallback
Seam Di spat cher can be provided to handle scheduled asynchronous event like so:

<!l-- Install a ThreadPoolDispatcher to handle scheduled asynchronous event -->
<core:thread-pool-dispatcher name="threadPoolDispatcher"/>

<!-- Install the SpringDispatcher as default -->
<spring:task-executor-dispatcher task-executor="#{springThreadPoolTaskExecutor}"
schedule-dispatcher="#{threadPoolDispatcher}"/>

343

344

Chapter 25.

Hibernate Search

25.1. Introduction

Full text search engines like Apache Lucene™ are a very powerful technology that bring full text
and efficient queries to applications. Hibernate Search, which uses Apache Lucene under the
covers, indexes your domain model with the addition of a few annotations, takes care of the
database / index synchronization and returns regular managed objects that are matched by full
text queries. Keep in mind, thought, that there are mismatches that arise when dealing with an
object domain model over a text index (keeping the index up to date, mismatch between the index
structure and the domain model, and querying mismatch). But the benefits of speed and efficiency
far outweigh these limitations.

Hibernate Search has been designed to integrates nicely and as naturally as possible with JPA
and Hibernate. As a natural extension, JBoss Seam provides an Hibernate Search integration.

Please refer to the Hibernate Search documentation [http://www.hibernate.org/hib_docs/search/
reference/en/html_single/] for information specific to the Hibernate Search project.

25.2. Configuration

Hibernate Search is configured either in the META- | NF/ per si st ence. xm or hi ber nat e. cf g. xm
file.

Hibernate Search configuration has sensible defaults for most configuration parameters. Here is
a minimal persistence unit configuration to get started.

<persistence-unit name="sample">
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>
[.-]
<!l-- use a file system based index -->
<property name="hibernate.search.default.directory_provider"
value="org.hibernate.search.store.FSDirectoryProvider"/>
<!-- directory where the indexes will be stored -->
<property name="hibernate.search.default.indexBase"
value="/Users/prod/apps/dvdstore/dvdindexes"/>
</properties>
</persistence-unit>

If you plan to target Hibernate Annotations or EntityManager 3.2.x (embedded into JBoss AS
4.2.GA), you also need to configure the appropriate event listeners.

345

http://www.hibernate.org/hib_docs/search/reference/en/html_single/
http://www.hibernate.org/hib_docs/search/reference/en/html_single/
http://www.hibernate.org/hib_docs/search/reference/en/html_single/

Chapter 25. Hibernate Search

<persistence-unit name="sample">
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>
[.]
<!l-- use a file system based index -->
<property name="hibernate.search.default.directory_provider"
value="org.hibernate.search.store.FSDirectoryProvider"/>
<l-- directory where the indexes will be stored -->
<property name="hibernate.search.default.indexBase"
value="/Users/prod/apps/dvdstore/dvdindexes"/>

<property name="hibernate.ejb.event.post-insert"
value="org.hibernate.search.event.FullTextindexEventListener"/>

<property name="hibernate.ejb.event.post-update"
value="org.hibernate.search.event.FullTextindexEventListener"/>

<property name="hibernate.ejb.event.post-delete"
value="org.hibernate.search.event.FullTextindexEventListener"/>

</properties>
</persistence-unit>

In addition to the configuration file, the following jars have to be deployed:

* hibernate-search.jar
* hibernate-commons-annotations.jar

* lucene-core.jar

Usage

25.3. Usage

Hibernate Search uses annotations to map entities to a Lucene index, check the reference
documentation [http://www.hibernate.org/hib_docs/search/reference/en/html_single/] for more
informations.

Hibernate Search is fully integrated with the APl and semantic of JPA / Hibernate. Switching from
a HQL or Criteria based query requires just a few lines of code. The main API the application
interacts with is the Ful | Text Sessi on API (subclass of Hibernate's Sessi on).

When Hibernate Search is present, JBoss Seam injects a Ful | Text Sessi on.

@ Stateful
@Name("'search")
public class FullTextSearchAction implements FullTextSearch, Serializable {

@In FullTextSession session;

public void search(String searchString) {
org.apache.lucene.query.Query luceneQuery = getLuceneQuery();
org.hibernate.Query query session.createFullTextQuery(luceneQuery, Product.class);
searchResults = query
.setMaxResults(pageSize + 1)
.setFirstResult(pageSize * currentPage)
dist();

° Note

Ful | Text Sessi on extends or g. hi ber nat e. Sessi on so that it can be used as a
regular Hibernate Session

If the Java Persistence API is used, a smoother integration is proposed.

@ Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable {

@In FullTextEntityManager em;

347

http://www.hibernate.org/hib_docs/search/reference/en/html_single/
http://www.hibernate.org/hib_docs/search/reference/en/html_single/
http://www.hibernate.org/hib_docs/search/reference/en/html_single/

Chapter 25. Hibernate Search

public void search(String searchString) {
org.apache.lucene.query.Query luceneQuery = getLuceneQuery();
javax.persistence.Query query = em.createFullTextQuery(luceneQuery, Product.class);
searchResults = query
.setMaxResults(pageSize + 1)
.setFirstResult(pageSize * currentPage)
.getResultList();

When Hibernate Search is present, a FulltextEntityManager is injected.
Ful | Text Entit yManager extends EntityManager with search specific methods, the same way
Ful | Text Sessi on extends Sessi on.

When an EJB 3.0 Session or Message Driven Bean injection is used (i.e. via the
@PersistenceContext annotation), it is not possible to replace the Enti t yManager interface by
the Ful | Text Enti t yManager interface in the declaration statement. However, the implementation
injected will be a Ful | Text Enti t yManager implementation: downcasting is then possible.

@Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable {

@PersistenceContext EntityManager em;

public void search(String searchString) {
org.apache.lucene.query.Query luceneQuery = getLuceneQuery();
FullTextEntityManager ftEm = (FullTextEntityManager) em;
javax.persistence.Query query = ftEm.createFullTextQuery(luceneQuery, Product.class);
searchResults = query
.setMaxResults(pageSize + 1)
.setFirstResult(pageSize * currentPage)
.getResultList();

348

Usage

Check the DVDStore or the blog examples of the JBoss Seam distribution for a concrete use of
Hibernate Search.

349

350

Chapter 26.

Configuring Seam and packaging
Seam applications

Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several
lines of XML are required to integrate Seam into your JSF implementation and servlet container.
There's no need to be too put off by the following sections; you'll never need to type any of this
stuff yourself, since you can just copy and paste from the example applications!

26.1. Basic Seam configuration

First, let's look at the basic configuration that is needed whenever we use Seam with JSF.

26.1.1. Integrating Seam with JSF and your servlet container

Of course, you need a faces servlet!

<servlet>
<servlet-name>Faces Servlet</servilet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</serviet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>

(You can adjust the URL pattern to suit your taste.)

In addition, Seam requires the following entry in your web. xni file:

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application
contexts.

Some JSF implementations have a broken implementation of server-side state saving that
interferes with Seam's conversation propagation. If you have problems with conversation

351

Chapter 26. Configuring Seam ...

propagation during form submissions, try switching to client-side state saving. You'll need this in
web. xm :

<context-param>
<param-name=>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

26.1.2. Using facelets

If you want follow our advice and use facelets instead of JSP, add the following lines to f aces-
config.xm:

<application>
<view-handler>com.sun.facelets.FaceletViewHandler</view-handler>
</application>

And the following lines to web. xni :

<context-param>
<param-name>javax.faces.DEFAULT SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

26.1.3. Seam Resource Servlet

The Seam Resource Servlet provides resources used by Seam Remoting, captchas (see the
security chapter) and some JSF Ul controls. Configuring the Seam Resource Servlet requires the
following entry in web. xn :

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet.SeamResourceServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

352

Seam servlet filters

26.1.4. Seam servlet filters

Seam doesn't need any servlet filters for basic operation. However, there are several features
which depend upon the use of filters. To make things easier, Seam lets you add and configure
servlet filters just like you would configure other built-in Seam components. To take advantage of
this feature, we must first install a master filter in web. xni :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet. SeamFilter</filter-class>
<ffilter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

The Seam master filter must be the first filter specified in web. xm . This ensures it is run first.

The Seam filters share a number of common attributes, you can set these in conponent s. xni in
addition to any parameters discussed below:

e url-pattern — Used to specify which requests are filtered, the default is all requests. url -
patt ern is a Tomcat style pattern which allows a wildcard suffix.

e regex-url - pattern— Used to specify which requests are filtered, the default is all requests.
regex-url - patternisatrue regular expression match for request path. It's worth noting when
composing the regular expression that the request path does not contain the server or request
context path.

* di sabl ed — Used to disable a built in filter.

Adding the master filter enables the following built-in filters.

26.1.4.1. Exception handling

This filter provides the exception mapping functionality in pages. xnl (almost all applications will
need this). It also takes care of rolling back uncommitted transactions when uncaught exceptions
occur. (According to the Java EE specification, the web container should do this automatically, but
we've found that this behavior cannot be relied upon in all application servers. And it is certainly
not required of plain servlet engines like Tomcat.)

By default, the exception handling filter will process all requests, however this behavior may
be adjusted by adding a <web: excepti on-filter> entry to conponent s. xnl , as shown in this
example:

353

Chapter 26. Configuring Seam ...

<components xmlns="http://jboss.com/products/seam/components"
xmins:web="http://jboss.com/products/seam/web">

<web:exception-filter url-pattern="*.seam"/>

</components>

26.1.4.2. Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It
intercepts any browser redirects and adds a request parameter that specifies the Seam
conversation identifier.

The redirect filter will process all requests by default, but this behavior can also be adjusted in
conponents. xm :

<web:redirect-filter url-pattern="*.seam"/>

26.1.4.3. Multipart form submissions

This feature is necessary when using the Seam file upload JSF control. It detects multipart form
requests and processes them according to the multipart/form-data specification (RFC-2388). To
override the default settings, add the following entry to conponent s. xni :

<web:multipart-filter create-temp-files="true"
max-request-size="1000000"
url-pattern="*.seam"/>

e create-tenmp-files — If settotrue, uploaded files are written to a temporary file (instead of
held in memory). This may be an important consideration if large file uploads are expected. The
default setting is f al se.

e max-request - si ze — If the size of a file upload request (determined by reading the Cont ent -
Lengt h header in the request) exceeds this value, the request will be aborted. The default
setting is 0 (no size limit).

26.1.4.4. Character encoding

Sets the character encoding of submitted form data.

This filter is not installed by default and requires an entry in conponent s. xn to enable it:

354

Seam servlet filters

<web:character-encoding-filter encoding="UTF-16"
override-client="true"
url-pattern="*.seam"/>

* encodi ng — The encoding to use.

e override-client — If this is set to true, the request encoding will be set to whatever is
specified by encodi ng no matter whether the request already specifies an encoding or not. If
set to f al se, the request encoding will only be set if the request doesn't already specify an
encoding. The default setting is f al se.

26.1.4.5. RichFaces

If RichFaces is used in your project, Seam will install the RichFaces Ajax filter for you, making
sure to install it before all other built-in filters. You don't need to install the RichFaces Ajax filter
in web. xm yourself.

The RichFaces Ajax filter is only installed if the RichFaces jars are present in your project.

To override the default settings, add the following entry to conponent s. xn . The options are the
same as those specified in the RichFaces Developer Guide:

<web:ajax4jsf-filter force-parser="true"
enable-cache="true"
log4j-init-file="custom-log4j.xml"
url-pattern="*.seam"/>

» force-parser — forces all JSF pages to be validated by Richfaces's XML syntax checker. If
f al se, only AJAX responses are validated and converted to well-formed XML. Setting f or ce-
par ser to f al se improves performance, but can provide visual artifacts on AJAX updates.

« enabl e-cache — enables caching of framework-generated resources (e.g. javascript, CSS,
images, etc). When developing custom javascript or CSS, setting to true prevents the browser
from caching the resource.

e log4j-init-file—isused to setup per-application logging. A path, relative to web application
context, to the log4j.xml configuration file should be provided.

26.1.4.6. Identity Logging

This filter adds the authenticated user name to the log4j mapped diagnostic context so that it can
be included in formatted log output if desired, by adding %X{username} to the pattern.

355

Chapter 26. Configuring Seam ...

By default, the logging filter will process all requests, however this behavior may be adjusted by
adding a <web: | oggi ng-fil t er> entry to conponent s. xnl , as shown in this example:

<components xmlns="http://jboss.com/products/seam/components"
xmins:web="http://jboss.com/products/seam/web">
<web:logging-filter url-pattern="*.seam"/>
</components>

26.1.4.7. Context management for custom servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the
JSF lifecycle, so Seam provides a servlet filter that can be applied to any other servlet that needs
access to Seam components.

This filter allows custom servlets to interact with the Seam contexts. It sets up the Seam contexts
at the beginning of each request, and tears them down at the end of the request. You should make
sure that this filter is never applied to the JSF FacesSer vl et . Seam uses the phase listener for
context management in a JSF request.

This filter is not installed by default and requires an entry in conponent s. xn to enable it:

<web:context-filter url-pattern="/media/*"/>

The context filter expects to find the conversation id of any conversation context in a request
parameter named conversationl d. You are responsible for ensuring that it gets sent in the
request.

You are also responsible for ensuring propagation of any new conversation id back to the client.
Seam exposes the conversation id as a property of the built in component conver sati on.

26.1.4.8. Adding custom filters

Seam can install your filters for you, allowing you to specify where in the chain your filter is
placed (the servlet specification doesn't provide a well defined order if you specify your filters in
a web. xn). Just add the @i | t er annotation to your Seam component (which must implement
javax.servlet.Filter):

@Startup

@Scope(APPLICATION)
@Name("org.jboss.seam.web.multipartFilter")
@Bypassinterceptors
@Filter(within="org.jboss.seam.web.ajax4jsfFilter")

356

Integrating Seam with your EJB container

public class MultipartFilter extends AbstractFilter {

Adding the @t art up annotation means thar the component is available during Seam startup;
bijection isn't available here (@ypassl nt er cept or s); and the filter should be further down the
chain than the RichFaces filter (@i | t er (Wi t hi n="org. j boss. seam web. aj ax4j sfFilter")).

26.1.5. Integrating Seam with your EJB container

We need to apply the Seam nt er cept or to our Seam components. The simplest way to do this
across an entire application is to add the following interceptor configuration in ej b-j ar. xm :

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>
</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

Seam needs to know where to go to find session beans in JNDI. One way to do this is specify
the @ndi Name annotation on every session bean Seam component. However, this is quite
tedious. A better approach is to specify a pattern that Seam can use to calculate the JNDI
name from the EJB name. Unfortunately, there is no standard mapping to global JNDI defined
in the EJB3 specification, so this mapping is vendor-specific. We usually specify this option in
conponents. xm .

For JBoss AS, the following pattern is correct:

<core:init jndi-name="myEarName/#{ejbName}/local" />

Where nyEar Nane is the name of the EAR in which the bean is deployed.

Outside the context of an EAR (when using the JBoss Embeddable EJB3 container), the following

pattern is the one to use:

<core:init jndi-name="#{ejpbName}/local" />

357

Chapter 26. Configuring Seam ...

You'll have to experiment to find the right setting for other application servers. Note that some
servers (such as GlassFish) require you to specify JNDI names for all EJB components explicitly
(and tediously). In this case, you can pick your own pattern ;-)

In an EJB3 environment, we recommend the use of a special built-in component for transaction
management, that is fully aware of container transactions, and can correctly process transaction
success events registered with the Events component. If you don't add this line to your
conponent s. xni file, Seam won't know when container-managed transactions end:

<transaction:ejb-transaction/>

26.1.6. Don't forget!

There is one final item you need to know about. You must place a seam properties, META-
I NF/ seam properties or META- 1 NF/ conponents. xmi file in any archive in which your Seam
components are deployed (even an empty properties file will do). At startup, Seam will scan any
archives with seam properti es files for seam components.

In a web archive (WAR) file, you must place a seam properti es file in the WEB- | NF/ cl asses
directory if you have any Seam components included here.

That's why all the Seam examples have an empty seam properti es file. You can't just delete
this file and expect everything to still work!

You might think this is silly and what kind of idiot framework designers would make an empty file
affect the behavior of their software?? Well, this is a workaround for a limitation of the JVM—if
we didn't use this mechanism, our next best option would be to force you to list every component
explicitly in conponent s. xni , just like some other competing frameworks do! | think you'll like our
way better.

26.2. Using Alternate JPA Providers

Seam comes packaged and configured with Hibernate as the default JPA provider. If you require
using a different JPA provider you must tell seamabout it.

This is a workaround

=de

Configuration of the JPA provider will be easier in the future and will not require
configuration changes, unless you are adding a custom persistence provider
implementation.

Telling seam about a different JPA provider can be be done in one of two ways:

Update your application's conmponent s. xnl so that the generic Per si st enceProvi der takes
precedence over the hibernate version. Simply add the following to the file:

358

Configuring Seam in Java EE 5

<component name="org.jboss.seam.persistence.persistenceProvider"
class="org.jboss.seam.persistence.PersistenceProvider"
scope="stateless">

</component>

If you want to take advantage of your JPA provider's non-standard features you will need to write
you own implementation of the Per si st enceProvi der. Use Hi ber nat ePer si st encePr ovi der
as a starting point (don't forget to give back to the community :). Then you will need to tell seam
to use it as before.

<component name="org.jboss.seam.persistence.persistenceProvider"
class="org.your.package.YourPersistenceProvider">
</component>

All that is left is updating the persi stence. xm file with the correct provider class, and what
ever properties your provider needs. Don't forget to package your new provider's jar files in the
application if they are needed.

26.3. Configuring Seam in Java EE 5

JSP [Facelets

JSF

Seam

EJB3

Java EE 5

If you're running in a Java EE 5 environment, this is all the configuration required to start using
Seam!

26.3.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look something
like this:

359

Chapter 26. Configuring Seam ...

my-application.ear/
jboss-seam.jar
lib/
jboss-el.jar
META-INF/
MANIFEST.MF
application.xml
my-application.war/
META-INF/
MANIFEST.MF
WEB-INF/
web.xml
components.xml
faces-config.xml
lib/
jsf-facelets.jar
jboss-seam-ui.jar
login.jsp
register.jsp

my-application.jar/
META-INF/
MANIFEST.MF
persistence.xml
seam.properties
org/
jboss/
myapplication/
User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class

You should declare j boss- seam j ar as an ejb module in META- | NF/ appl i cati on. xnl ; j boss-
el . j ar should be placed in the EAR's lib directory (putting it in the EAR classpath.

If you want to use jBPM or Drools, you must include the needed jars in the EAR's lib directory.

If you want to use facelets (our recommendation), you must include j sf-facel ets. jar in the
VEB- | NF/ | i b directory of the WAR.

360

Configuring Seam in J2EE

If you want to use the Seam tag library (most Seam applications do), you must include j boss-
seam ui . j ar in the WEB- | NF/ | i b directory of the WAR. If you want to use the PDF or email tag
libraries, you need to put j boss- seam pdf . j ar orj boss-seam mail.jar in WEB- I NF/ | i b.

If you want to use the Seam debug page (only works for applications using facelets), you must
include j boss- seam debug. j ar in the VEB- | NF/ | i b directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that
supports EJB 3.0.

| really wish that was all there was to say on the topic of configuration but unfortunately we're only
about a third of the way there. If you're too overwhelmed by all this tedious configuration stuff, feel
free to skip over the rest of this section and come back to it later.

26.4. Configuring Seam in J2EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you would
use Hibernate3 or JPA instead of EJB 3.0 persistence, and plain JavaBeans instead of session
beans. You'll miss out on some of the nice features of session beans but it will be very easy to
migrate to EJB 3.0 when you're ready and, in the meantime, you'll be able to take advantage of
Seam's unique declarative state management architecture.

JSP / Facelets

JSF

Seam

Hibernate

Java EE 5/ J2EE

Seam JavaBean components do not provide declarative transaction demarcation like session
beans do. You could manage your transactions manually using the JTA User Transacti on or
declaratively using Seam's @r ansact i onal annotation. But most applications will just use Seam
managed transactions when using Hibernate with JavaBeans.

The Seam distribution includes a version of the booking example application that uses Hibernate3
and JavaBeans instead of EJB3, and another version that uses JPA and JavaBeans. These
example applications are ready to deploy into any J2EE application server.

361

Chapter 26. Configuring Seam ...

26.4.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate Sessi onFact ory from your hi ber nat e. cf g. xmi file if you install
a built-in component:

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

You will also need to configure a managed session if you want a Seam managed Hibernate
Sessi on to be available via injection.

<persistence:managed-hibernate-session name="hibernateSession"
session-factory="#{hibernateSessionFactory}"/>

26.4.2. Boostrapping JPA in Seam

Seam will bootstrap a JPA Ent i t yManager Fact ory from your per si st ence. xm file if you install
this built-in component:

<persistence:entity-manager-factory name="entityManagerFactory"/>

You will also need to configure a managed persistence context if you want a Seam managed JPA
Enti t yManager to be available via injection.

<persistence:managed-persistence-context name="entityManager"
entity-manager-factory="#{entityManagerFactory}"/>

26.4.3. Packaging

We can package our application as a WAR, in the following structure:

my-application.war/
META-INF/
MANIFEST.MF
WEB-INF/
web.xml
components.xml
faces-config.xml
lib/
jboss-seam.jar

362

Configuring Seam in Java SE, without JBoss
Embedded
jboss-seam-uli.jar
jboss-el.jar
jsf-facelets.jar
hibernate3.jar
hibernate-annotations.jar
hibernate-validator.jar

my-application.jar/
META-INF/
MANIFEST.MF
seam.properties
hibernate.cfg.xml
org/
jboss/
myapplication/
User.class
Login.class
Register.class

login.jsp
register.jsp

If we want to deploy Hibernate in a non-EE environment like Tomcat or TestNG, we need to do
a little bit more work.

26.5. Configuring Seam in Java SE, without JBoss
Embedded

It is possible to use Seam completely outside of an EE environment. In this case, you need to tell
Seam how to manage transactions, since there will be no JTA available. If you're using JPA, you
can tell Seam to use JPA resource-local transactions, ie. Enti t yTr ansacti on, like so:

<transaction:entity-transaction entity-manager="#{entityManager}'/>
If you're using Hibernate, you can tell Seam to use the Hibernate transaction API like this:
<transaction:hibernate-transaction session="#{session}"/>

Of course, you'll also need to define a datasource.

363

Chapter 26. Configuring Seam ...

A better alternative is to use JBoss Embedded to get access to the EE APls.

26.6. Configuring Seam in Java SE, with JBoss
Embedded

JBoss Embedded lets you run EJB3 components outside the context of the Java EE 5 application
server. This is especially, but not only, useful for testing.

The Seam booking example application includes a TestNG integration test suite that runs on
JBoss Embedded via SeanTest .

Seam

JBoss Embedded

TestNG

The booking example application may even be deployed to Tomcat.

JSP / Facelets

JSF

Seam

JBoss Embedded

Tomcat

26.6.1. Installing Embedded JBoss

Embedded JBoss must by installed into Tomcat for Seam applications to run correctly on it.
Embedded JBoss only runs on JDK 1.5 (not JDK 1.6). Embedded JBoss can be downloaded
here [http://sourceforge.net/project/showfiles.php?group_id=22866&package id=228977]. The
process for installing Embedded JBoss into Tomcat 6 is quite simple. First, you should copy the
Embedded JBoss JARs and configuration files into Tomcat.

» Copy allfiles and directories under the Embedded JBoss boot st rap and | i b directories, except
for the j ndi . properti es file, into the Tomcat | i b directory.

364

http://sourceforge.net/project/showfiles.php?group_id=22866&package_id=228977
http://sourceforge.net/project/showfiles.php?group_id=22866&package_id=228977

Packaging

* Remove the annot ati ons- api . j ar file from the Tomcat | i b directory.

Next, two configuration files need to be updated to add Embedded JBoss-specific functionality.

» Add the Embedded JBoss listener to conf / ser ver . xni . It should appear after all other listeners
in the file.

<Listener className="org.jboss.embedded.tomcat.EmbeddedJBossBootstrapListener"/>

« WAR file scanning should be enabled by adding a listener to conf / cont ext . xni .

<Listener className="org.jboss.embedded.tomcat.WebinfScanner"/>

For more configuration options, please see the Embedded JBoss Tomcat integration wiki entry
[http://wiki.jboss.org/wiki/Wiki.jsp?page=EmbeddedAndTomcat].

26.6.2. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look
something like this:

my-application.war/
META-INF/
MANIFEST.MF
WEB-INF/
web.xml
components.xml
faces-config.xml
lib/
jboss-seam.jar
jboss-seam-ui.jar
jboss-el.jar
jsf-facelets.jar
jsf-api.jar
jsf-impl.jar

my-application.jar/
META-INF/
MANIFEST.MF
persistence.xml
seam.properties
org/

365

http://wiki.jboss.org/wiki/Wiki.jsp?page=EmbeddedAndTomcat
http://wiki.jboss.org/wiki/Wiki.jsp?page=EmbeddedAndTomcat

Chapter 26. Configuring Seam ...

jboss/
myapplication/
User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class

login.jsp
register.jsp

Most of the Seam example applications may be deployed to Tomcat by running ant
depl oy. t ontat .

26.7. Configuring jBPM in Seam

Seam's jBPM integration is not installed by default, so you'll need to enable jBPM by installing
a built-in component. You'll also need to explicitly list your process and pageflow definitions. In
conponents. xm :

<bpm:jbpm>
<bpm:pageflow-definitions>
<value>createDocument.jpdl.xml</value>
<value>editDocument.jpdl.xml</value>
<value>approveDocument.jpdl.xml</value>
</bpm:pageflow-definitions>
<bpm:process-definitions>
<value>documentLifecycle.jpdl.xml</value>
</bpm:process-definitions>
</bpm:jbpm>

No further special configuration is needed if you only have pageflows. If you do have business
process definitions, you need to provide a jBPM configuration, and a Hibernate configuration for
jBPM. The Seam DVD Store demo includes example j bpm cf g. xm and hi ber nat e. cf g. xm
files that will work with Seam:

<jbpm-configuration>

<jbpm-context>
<service name="persistence">
<factory>

366

Packaging

<bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
<field name="isTransactionEnabled"><false/></field>
</bean>
</factory>
</service>
<service name="tx" factory="org.jopm.tx.TxServiceFactory" />
<service name="message" factory="org.jopm.msg.db.DbMessageServiceFactory" />
<service name="scheduler" factory="org.jopm.scheduler.db.DbSchedulerServiceFactory" />
<service name="logging" factory="org.jopm.logging.db.DbLoggingServiceFactory" />
<service name="authentication"
factory="org.jbpm.security.authentication.DefaultAuthenticationServiceFactory" />
</jbpm-context>

</jbpm-configuration>

The mostimportant thing to notice here is that JBPM transaction control is disabled. Seam or EJB3
should control the JTA transactions.

26.7.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow
definition files. In the Seam examples we've decided to simply package all these files into the root
of the EAR. In future, we will probably design some other standard packaging format. So the EAR
looks something like this:

my-application.ear/
jboss-seam.jar
lib/
jboss-el.jar
jbpm-3.1.jar
META-INF/
MANIFEST.MF
application.xml
my-application.war/
META-INF/
MANIFEST.MF
WEB-INF/
web.xml
components.xml
faces-config.xml
lib/
jsf-facelets.jar
jboss-seam-ui.jar
login.jsp

367

Chapter 26. Configuring Seam ...

register.jsp

my-application.jar/
META-INF/
MANIFEST.MF
persistence.xml
seam.properties
org/
jboss/
myapplication/
User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class

jbpm.cfg.xml
hibernate.cfg.xml
createDocument.jpdl.xml
editDocument.jpdl.xml
approveDocument.jpdl.xml
documentLifecycle.jpdl.xml

26.8. Configuring SFSB and Session Timeouts in JBoss
AS

It is very important that the timeout for Stateful Session Beans is set higher than the timeout
for HTTP Sessions, otherwise SFSB's may time out before the user's HTTP session has ended.
JBoss Application Server has a default session bean timeout of 30 minutes, which is configured
in server/ def aul t/ conf/ st andar dj boss. xn (replace default with your own configuration).

The default SFSB timeout can be adjusted by modifying the value of max-bean-1ife in the
LRUSt at ef ul Cont ext CachePol i cy cache configuration:

<container-cache-conf>
<cache-policy>org.jboss.ejb.plugins.LRUStatefulContextCachePolicy</cache-policy>
<cache-policy-conf>
<min-capacity>50</min-capacity>
<max-capacity>1000000</max-capacity>
<remover-period>1800</remover-period>

<l-- SFSB timeout in seconds; 1800 seconds == 30 minutes -->
<max-bean-life>1800</max-bean-life>

368

Running Seam in a Portlet

<overager-period>300</overager-period>
<max-bean-age>600</max-bean-age>
<resizer-period>400</resizer-period>
<max-cache-miss-period>60</max-cache-miss-period>
<min-cache-miss-period>1</min-cache-miss-period>
<cache-load-factor>0.75</cache-load-factor>
</cache-policy-conf>
</container-cache-conf>

The default HTTP session timeout can be modified in server/def aul t/ depl oy/j bossweb-
toncat 55. sar/ conf/web. xm for JBoss 4.0.x, or in server/default/deploy/jboss-
web. depl oyer/ conf/web. xm for JBoss 4.2.x. The following entry in this file controls the default
session timeout for all web applications:

<session-config>
<I-- HTTP Session timeout, in minutes -->
<session-timeout>30</session-timeout>
</session-config>

To override this value for your own application, simply include this entry in your application's own
web. xm .

26.9. Running Seam in a Portlet

If you want to run your Seam application in a portlet, take a look at the JBoss Portlet Bridge,
an implementation of JSR-301 that supports JSF within a portlet, with extensions for Seam and
RichFaces. See http://labs.jboss.com/portletbridge for more.

369

http://labs.jboss.com/portletbridge

370

Chapter 27.

Seam annotations

When you write a Seam application, you'll use a lot of annotations. Seam lets you use annotations
to achieve a declarative style of programming. Most of the annotations you'll use are defined by the
EJB 3.0 specification. The annotations for data validation are defined by the Hibernate Validator
package. Finally, Seam defines its own set of annotations, which we'll describe in this chapter.

All of these annotations are defined in the package or g. j boss. seam annot at i ons.

27.1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on
the component class.

@\ane
@Name("componentName")

Defines the Seam component name for a class. This annotation is required for all Seam
components.

@cope
@Scope(ScopeType.CONVERSATION)

Defines the default context of the component. The possible values are defined by the
ScopeType enumeration: EVENT, PAGE, CONVERSATI ON, SESSI ON, BUSI NESS PROCESS,
APPL| CATI ON, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For
stateless session beans, the default is STATELESS. For entity beans and stateful session
beans, the default is CONVERSATI ON. For JavaBeans, the default is EVENT.

@®ol e
@Role(name="roleName", scope=ScopeType.SESSION)
Allows a Seam component to be bound to multiple contexts variables. The @ame/@cope

annotations define a "default role". Each @ol e annotation defines an additional role.

* nane — the context variable name.

371

Chapter 27. Seam annotations

* scope — the context variable scope. When no scope is explicitly specified, the default
depends upon the component type, as above.

@Rol es

@Roles({
@Role(name="user", scope=ScopeType.CONVERSATION),

@Role(name="currentUser", scope=ScopeType.SESSION)
)

Allows specification of multiple additional roles.

@ypassl nterceptors
@Bypassinterceptors

Disables Seam all interceptors on a particular component or method of a component.

@ndi Name
@JndiName("my/jndi/name")

Specifies the JNDI name that Seam will use to look up the EJB component. If
no JNDI name is explicitly specified, Seam will use the JNDI pattern specified by

org.jboss.seamcore.init.jndi Pattern.

@Conver sati onal
@Conversational

Specifies that a conversation scope component is conversational, meaning that no method of
the component may be called unless a long-running conversation is active.

@er Nest edConver sati on
@PerNestedConversation

Limits the scope of a CONVERSATION-scoped component to just the parent conversation
in which it was instantiated. The component instance will not be visible to nested child
conversations, which will get their own instance.

372

Annotations for component definition

Warning: this is ill-defined, since it implies that a component will be visible for some part of a
request cycle, and invisible after that. It is not recommended that applications use this feature!

@t artup

@Scope(APPLICATION) @Startup(depends="org.jboss.seam.bpm.jbpm")

Specifies that an application scope component is started immediately at initialization time.
This is mainly used for certain built-in components that bootstrap critical infrastructure such
as JNDI, datasources, etc.

@Scope(SESSION) @Startup

Specifies that a session scope component is started immediately at session creation time.
» depends — specifies that the named components must be started first, if they are installed.

@nstal |

@Install(false)

Specifies whether or not a component should be installed by default. The lack of an @ nst al |
annotation indicates a component should be installed.

@Install(dependencies="org.jboss.seam.bpm.jbpm")

Specifies that a component should only be stalled if the components listed as dependencies
are also installed.

@Install(genericDependencies=ManagedQueueSender.class)

Specifies that a component should only be installed if a component that is implemented by a
certain class is installed. This is useful when the dependency doesn't have a single well-known
name.

@Install(classDependencies="org.hibernate.Session")

Specifies that a component should only be installed if the named class is in the classpath.

373

Chapter 27. Seam annotations

@Install(precedence=BUILT_IN)

Specifies the precedence of the component. If multiple components with the same nhame exist,
the one with the higher precedence will be installed. The defined precendence values are (in
ascending order):

BUI LT_I N— Precedence of all built-in Seam components
FRAMEWORK — Precedence to use for components of frameworks which extend Seam
APPLI CATI ON— Predence of application components (the default precedence)

DEPLOYMENT — Precedence to use for components which override application components
in a particular deployment

MOCK — Precedence for mock objects used in testing

@ynchroni zed

@Synchronized(timeout=1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam should
serialize requests. If a request is not able to obtain its lock on the component in the given
timeout period, an exception will be raised.

@ReadOnl y

@ReadOnly

Specifies that a JavaBean component or component method does not require state replication
at the end of the invocation.

@\ut oCreate

@AutoCreate

Specifies that a component will be automatically created, even if the client does not specify

create=true.

27.2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance
variables or property accessor methods.

374

Annotations for bijection

@In

Specifies that a component attribute is to be injected from a context variable at the beginning
of each component invocation. If the context variable is null, an exception will be thrown.

@In(required=false)

Specifies that a component attribute is to be injected from a context variable at the beginning
of each component invocation. The context variable may be null.

@In(create=true)

Specifies that a component attribute is to be injected from a context variable at the beginning
of each component invocation. If the context variable is null, an instance of the component
is instantiated by Seam.

@In(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance
variable name.

@In(value="#{customer.addresses['shipping'T}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at

the beginning of each component invocation.

 val ue — specifies the name of the context variable. Default to the name of the component
attribute. Alternatively, specifies a JSF EL expression, surrounded by #{. . .}.

» creat e — specifies that Seam should instantiate the component with the same name as
the context variable if the context variable is undefined (null) in all contexts. Default to false.

 required — specifies Seam should throw an exception if the context variable is undefined
in all contexts.

375

Chapter 27. Seam annotations

@out

@Out

Specifies that a component attribute that is a Seam component is to be outjected to its context
variable at the end of the invocation. If the attribute is null, an exception is thrown.

@Out(required=false)

Specifies that a component attribute that is a Seam component is to be outjected to its context
variable at the end of the invocation. The attribute may be null.

@Out(scope=ScopeType.SESSION)

Specifies that a component attribute that is not a Seam component type is to be outjected to
a specific scope at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @ut
attribute is used (or the EVENT scope if the component is stateless).
@Out(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance

variable name.

» val ue — specifies the name of the context variable. Default to the name of the component
attribute.

* required — specifies Seam should throw an exception if the component attribute is null
during outjection.

Note that it is quite common for these annotations to occur together, for example:

@In(create=true) @Out private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that
manages the lifecycle of an instance of some other class that is to be injected. It appears on a
component getter method.

376

Annotations for bijection

@Jnwr ap

@Unwrap

Specifies that the object returned by the annotated getter method is the thing that is injected
instead of the component instance itself.

The next annotation supports the factory component pattern, where a Seam component is
responsible for initializing the value of a context variable. This is especially useful for initializing
any state needed for rendering the response to a non-faces request. It appears on a component
method.

@actory

@Factory("processinstance™) public void createProcessinstance() { ... }

Specifies that the method of the component is used to initialize the value of the named context
variable, when the context variable has no value. This style is used with methods that return
voi d.

@Factory("processinstance”, scope=CONVERSATION) public Processlinstance
createProcessinstance() { ... }

Specifies that the method returns a value that Seam should use to initialize the value of
the named context variable, when the context variable has no value. This style is used with
methods that return a value. If no scope is explicitly specified, the scope of the component with
the @act ory method is used (unless the component is stateless, in which case the EVENT
context is used).

* val ue — specifies the name of the context variable. If the method is a getter method, default
to the JavaBeans property name.

* scope — specifies the scope that Seam should bind the returned value to. Only meaningful
for factory methods which return a value.

* aut oCr eat e — specifies that this factory method should be automatically called whenever
the variable is asked for, even if @ n does not specify cr eat e=t r ue.

This annotation lets you inject a Log:

377

Chapter 27. Seam annotations

@ogger
@Logger("categoryName")

Specifies that a component field is to be injected with an instance of
org. j boss. seam | og. Log. For entity beans, the field must be declared as static.

» val ue — specifies the name of the log category. Default to the name of the component
class.

The last annotation lets you inject a request parameter value:

@Request Par anet er
@RequestParameter("parameterName")

Specifies that a component attribute is to be injected with the value of a request parameter.
Basic type conversions are performed automatically.

» val ue — specifies the name of the request parameter. Default to the name of the
component attribute.

27.3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on methods
of the component. There may be only one of each per component class.

@Creat e
@Create

Specifies that the method should be called when an instance of the component is instantiated
by Seam. Note that create methods are only supported for JavaBeans and stateful session
beans.

@est r oy

@Destroy

378

Annotations for context demarcation

Specifies that the method should be called when the context ends and its context variables are
destroyed. Note that destroy methods are only supported for JavaBeans and stateful session
beans.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any
exception that propagates out of a destroy method.

@bserver

@Observer("somethingChanged")

Specifies that the method should be called when a component-driven event of the specified
type occurs.

@Observer(value="somethingChanged",create=false)

Specifies that the method should be called when an event of the specified type occurs but
that an instance should not be created if one doesn't exist. If an instance does not exist and
create is false, the event will not be observed. The default value for create is true.

27.4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of
Seam components, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations
end at the end of the request. If you want a conversation that span multiple requests, you must
"promote" the current conversation to a long-running conversation by calling a method marked
with @egi n.

@egi n

@Begin

Specifies that a long-running conversation begins when this method returns a non-null
outcome without exception.

@Begin(join=true)

Specifies that if a long-running conversation is already in progress, the conversation context
is simply propagated.

379

Chapter 27. Seam annotations

@Begin(nested=true)

Specifies that if a long-running conversation is already in progress, a new nested conversation
context begins. The nested conversation will end when the next @nd is encountered, and the
outer conversation will resume. It is perfectly legal for multiple nested conversations to exist
concurrently in the same outer conversation.

@Begin(pageflow="process definition name")

Specifies a jJBPM process definition name that defines the pageflow for this conversation.

@Begin(flushMode=FlushModeType.MANUAL)

Specify the flush mode of any Seam-managed persistence contexts.
f1 ushMbde=Fl ushModeType. MANUAL supports the use of atomic conversations where all write
operations are queued in the conversation context until an explicit call to fI ush() (which
usually occurs at the end of the conversation).

« j oi n — determines the behavior when a long-running conversation is already in progress.
If t rue, the context is propagated. If f al se, an exception is thrown. Default to f al se. This
setting is ignored when nest ed=t r ue is specified.

* nested — specifies that a nested conversation should be started if a long-running
conversation is already in progress.

e flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

e pagefl ow — a process definition name of a jBPM process definition deployed via
org.j boss. seam bpm j bpm pagef | owDef i ni ti ons.

@:nd

@End

Specifies that a long-running conversation ends when this method returns a non-null outcome
without exception.

* bef oreRedi rect — by default, the conversation will not actually be destroyed until after
any redirect has occurred. Setting bef or eRedi r ect =t r ue specifies that the conversation
should be destroyed at the end of the current request, and that the redirect will be processed
in a new temporary conversation context.

380

Annotations for context demarcation

@t art Task

@StartTask

"Starts” a jBPM task. Specifies that a long-running conversation begins when this method
returns a non-null outcome without exception. This conversation is associated with the jBPM
task specified in the named request parameter. Within the context of this conversation, a
business process context is also defined, for the business process instance of the task
instance.

The jBPM Taskl nstance will be available in a request context variable named
t askl nst ance. The jPBM Pr ocessl nst ance will be available in a request context variable
named pr ocessl nst ance. (Of course, these objects are available for injection via @n.)

* taskl dPar anet er —the name of a request parameter which holds the id of the task. Default
to "t askl d", which is also the default used by the Seam t askLi st JSF component.

flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@egi nTask

@BeginTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation
begins when this method returns a non-null outcome without exception. This conversation is
associated with the jBPM task specified in the named request parameter. Within the context
of this conversation, a business process context is also defined, for the business process
instance of the task instance.

e The jBPM org.j bpm t askngnt . exe. Taskl nst ance will be available in a request context
variable namedt askl nst ance. The jJPBMor g. j bpm gr aph. exe. Processl nst ance will be
available in a request context variable named pr ocessl nst ance.

 taskl dPar anet er —the name of a request parameter which holds the id of the task. Default
to "t askl d", which is also the default used by the Seam t askLi st JSF component.

e flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@ndTask

@EndTask

381

Chapter 27. Seam annotations

"Ends" a jBPM task. Specifies that a long-running conversation ends when this method
returns a non-null outcome, and that the current task is complete. Triggers a jBPM transition.
The actual transition triggered will be the default transition unless the application has called
Transi ti on. set Nane() on the built-in component named t r ansi ti on.

@EndTask(transition="transitionName")

Triggers the given jBPM transition.

e transition — the name of the jBPM transition to be triggered when ending the task.
Defaults to the default transition.

» bef oreRedi rect — by default, the conversation will not actually be destroyed until after
any redirect has occurred. Setting bef or eRedi r ect =t r ue specifies that the conversation
should be destroyed at the end of the current request, and that the redirect will be processed
in a new temporary conversation context.

@cr eat eProcess

@CreateProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without
exception. The Processlnstance object will be available in a context variable named

processl nst ance.

e definition — the name of the jBPM process definition deployed via
org.j boss. seam bpm j bpm processDefi ni tions.

@ResunePr ocess

@ResumeProcess(processldParameter="processld")

Re-enters the scope of an existing jBPM process instance when the method returns a non-
null outcome without exception. The Processl nst ance object will be available in a context
variable named pr ocessl nst ance.

» processl dPar anet er — the name a request parameter holding the process id. Default to
"processld".

@ransition

@Transition("cancel")

382

Annotations for use with Seam JavaBean

components in a J2EE environment
Marks a method as signalling a transition in the current jJBPM process instance whenever the

method returns a non-null result.

27.5. Annotations for use with Seam JavaBean
components in a J2EE environment

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain action
listener outcomes.

@r ansact i onal
@Transactional

Specifies that a JavaBean component should have a similar transactional behavior to the
default behavior of a session bean component. ie. method invocations should take place in
a transaction, and if no transaction exists when the method is called, a transaction will be
started just for that method. This annotation may be applied at either class or method level.

Do not use this annotation on EJB 3.0 components, use @t ansacti onAttri bute!

@\ppl i cati onException
@ApplicationException

Synonym for javax.ejb.ApplicationException, for use in a pre Java EE 5 environment. Applied
to an exception to denote that it is an application exception and should be reported to the
client directly(i.e., unwrapped).

Do not use this annotation on EJB 3.0 components, use
@ avax. ej b. Appl i cati onExcepti on instead.

* rol | back — by default f al se, if t r ue this exception should set the transaction to rollback
only

* end — by default fal se, if true this exception should end the current long-running
conversation

@nterceptors

@Interceptors({DVDlInterceptor, CDInterceptor})

383

Chapter 27. Seam annotations

Synonym for javax.interceptors.Interceptors, for use in a pre Java EE 5 environment. Note
that this may only be used as a meta-annotation. Declares an ordered list of interceptors for
a class or method.

Do not use this annotations on EJB 3.0 components, use
@ avax. i nterceptor.|nterceptors instead.

These annotations are mostly useful for JavaBean Seam components. If you use EJB 3.0
components, you should use the standard Java EE5 annotation.

27.6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of
a Seam component.

@Redi r ect

@Redirect(viewld="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.
« vi ewl d — specifies the JSF view id to redirect to. You can use EL here.
« message — a message to be displayed, default to the exception message.

« end — specifies that the long-running conversation should end, default to f al se.

@+t t pError

@HTttpError(errorCode=404)

Specifies that the annotated exception causes a HTTP error to be sent.
* error Code — the HTTP error code, default to 500.
* message — a message to be sent with the HTTP error, default to the exception message.

« end — specifies that the long-running conversation should end, default to f al se.

27.7. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the following
annotation:

384

Annotations for Seam interceptors

@\¢bRenot e
@WebRemote(exclude="path.to.exclude")

Indicates that the annotated method may be called from client-side JavaScript. The excl ude
property is optional and allows objects to be excluded from the result's object graph (see the
Remoting chapter for more details).

27.8. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the
annotations required for EJB interceptor definition.

@ nt er cept or
@Interceptor(stateless=true)
Specifies that this interceptor is stateless and Seam may optimize replication.
@Interceptor(type=CLIENT)

Specifies that this interceptor is a "client-side" interceptor that is called before the EJB
container.

@Interceptor(around={Somelnterceptor.class, OtherInterceptor.class})
Specifies that this interceptor is positioned higher in the stack than the given interceptors.
@Interceptor(within={Somelnterceptor.class, Otherlnterceptor.class})

Specifies that this interceptor is positioned deeper in the stack than the given interceptors.

27.9. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

385

Chapter 27. Seam annotations

@Asynchronous public void scheduleAlert(Alert alert, @Expiration Date date) { ... }

@Asynchronous public Timer scheduleAlerts(Alert alert,
@Expiration Date date,
@IntervalDuration long interval) { ... }

@\synchr onous

@Asynchronous

Specifies that the method call is processed asynchronously.

@ur ati on

@Duration

Specifies that a parameter of the asynchronous call is the duration before the call is processed
(or first processed for recurring calls).

@xpiration

@Expiration

Specifies that a parameter of the asynchronous call is the datetime at which the call is
processed (or first processed for recurring calls).

@nterval Durati on

@IntervalDuration

Specifies that an asynchronous method call recurs, and that the annotationed parameter is
duration between recurrences.

27.10. Annotations for use with JSF

The following annotations make working with JSF easier.

386

Annotations for use with dat aTabl e

@onverter
Allows a Seam component to act as a JSF converter. The annotated class must be a Seam
component, and must implement j avax. f aces. convert. Converter.

e i d —the JSF converter id. Defaults to the component name.
« ford ass — if specified, register this component as the default converter for a type.

@/al i dat or
Allows a Seam component to act as a JSF validator. The annotated class must be a Seam
component, and must implement j avax. f aces. val i dat or. Val i dat or.

e i d — the JSF validator id. Defaults to the component name.

27.10.1. Annotations for use with dat atabl e

The following annotations make it easy to implement clickable lists backed by a stateful session
bean. They appear on attributes.

@at aMbdel

@DataModel("variableName")

Outjects a property of type Li st, Map, Set or Obj ect[] as a JSF Dat aMbdel into the scope
of the owning component (or the EVENT scope if the owning component is STATELESS). In the
case of Map, each row of the Dat aMbdel is a Map. Entry.

* val ue — name of the conversation context variable. Default to the attribute name.

» scope — if scope=ScopeType. PAGE is explicitly specified, the Dat aModel will be kept in the
PAGE context.

@pat aMbdel Sel ecti on

@DataModelSelection

Injects the selected value from the JSF Dat aMbdel (this is the element of the underlying
collection, or the map value). If only one @at aMbdel attribute is defined for a component, the
selected value from that Dat aModel will be injected. Otherwise, the component name of each
@at aMbdel must be specified in the value attribute for each @at aMbdel Sel ecti on.

If PAGE scope is specified on the associated @at aMbdel , then, in addition to the DataModel
Selection being injected, the associated DataModel will also be injected. In this case, if the
property annotated with @at aMbdel is a getter method, then a setter method for the property
must also be part of the Business API of the containing Seam Component.

387

Chapter 27. Seam annotations

e val ue — name of the conversation context variable. Not needed if there is exactly one
@at aMbdel in the component.

@at aMbdel Sel ecti onl ndex
@DataModelSelectionindex

Exposes the selection index of the JSF Dat aMbdel as an attribute of the component (this is the
row number of the underlying collection, or the map key). If only one @at aMbdel attribute is
defined for a component, the selected value from that Dat aMbdel will be injected. Otherwise,
the component name of each @at aMbdel must be specified in the value attribute for each
@at aMbdel Sel ecti onl ndex.

« val ue — name of the conversation context variable. Not needed if there is exactly one
@at aMbdel in the component.

27.11. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @at aMbdel and
@at aMbdel Sel ect i on for other datastructures apart from lists.

@at aBi nder d ass
@DataBinderClass(DataModelBinder.class)

Specifies that an annotation is a databinding annotation.

@at aSel ect or Cl ass
@DataSelectorClass(DataModelSelector.class)

Specifies that an annotation is a dataselection annotation.

27.12. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that
are packaged together. It can be applied to any Java package.

@\anespace

@Namespace(value="http://jposs.com/products/seam/example/seampay")

388

Annotations for integrating with the servlet

container

Specifies that components in the current package are associated with the given namespace.

The declared namespace can be used as an XML namespace in a conponent s. xn file to
simplify application configuration.

@Namespace(value="http://jposs.com/products/seam/core", prefix="org.jboss.seam.core")

Specifies a namespace to associate with a given package. Additionally, it specifies a
component name prefix to be applied to component names specified in the XML file. For
example, an XML element named i ni t that is associated with this namespace would be
understood to actually refer to a component named or g. j boss. seam core.init.

27.13. Annotations for integrating with the servlet
container

These annotations allow you to integrate your Seam components with the servlet container.

@ilter
Use the Seam component (which implements javax. servlet. Filter) annotated with

@il ter as a servlet filter. It will be executed by Seam's master filter.

@Filter(around={"seamComponent", "otherSeamComponent"})

Specifies that this filter is positioned higher in the stack than the given filters.

@Filter(within={"seamComponent", "otherSeamComponent"})

Specifies that this filter is positioned deeper in the stack than the given filters.

389

390

Chapter 28.

Built-in Seam components

This chapter describes Seam's built-in components, and their configuration properties. The built-
in components will be created even if they are not listed in your conmponent s. xnl file, but if
you need to override default properties or specify more than one component of a certain type,
conponent s. xm is used.

Note that you can replace any of the built in components with your own implementations simply
by specifying the name of one of the built in components on your own class using @\ane.

Note also that even though all the built in components use a qualified name, most of them are
aliased to unqualified names by default. These aliases specify aut o- creat e="true", so you do
not need to use cr eat e=t r ue when injecting built-in components by their unqualified name.

28.1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects.
For example, the following component instance variable would have the Seam session context
object injected:

@In private Context sessionContext;

org.j boss. seam core. contexts
Component that provides access to Seam Context objects, for example
org.j boss. seam core. cont exts. sessionContext['user'].

org.j boss. seam f aces. f acesCont ext
Manager component for the FacesCont ext context object (not a true Seam context)

All of these components are always installed.

28.2. Utility components

These components are merely useful.
org.j boss. seam f aces. facesMessages
Allows faces success messages to propagate across a browser redirect.

* add(FacesMessage facesMessage) — add a faces message, which will be displayed
during the next render response phase that occurs in the current conversation.

e add(String nessageTenpl ate) — add a faces message, rendered from the given
message template which may contain EL expressions.

391

Chapter 28. Built-in Seam com...

org

org

org

org.

e add(Severity severity, String nessageTenpl at e) — add a faces message, rendered
from the given message template which may contain EL expressions.

* addFronResour ceBundl e(String key) — add a faces message, rendered from a
message template defined in the Seam resource bundle which may contain EL expressions.

* addFronResour ceBundl e(Severity severity, String key) — add a faces message,
rendered from a message template defined in the Seam resource bundle which may contain
EL expressions.

e clear() — clear all messages.

.j boss. seam f aces. redirect

A convenient API for performing redirects with parameters (this is especially useful for
bookmarkable search results screens).

e redirect.vi e d — the JSF view id to redirect to.

» redirect.conversationPropagati onEnabl ed — determines whether the conversation
will propagate across the redirect.

e redirect. paranmet ers — a map of request parameter name to value, to be passed in the
redirect request.

* execut e() — perform the redirect immediately.

e captureCurrent Request () — stores the view id and request parameters of the current
GET request (in the conversation context), for later use by calling execut e() .

.j boss. seam faces. htt pError

A convenient API for sending HTTP errors.

. j boss. seam core. events

An API for raising events that can be observed via @bser ver methods, or method bindings
in conponents. xni .

e raiseEvent (String type) — raise an event of a particular type and distribute to all
observers.

* raiseAsynchronousEvent (String type) — raise an event to be processed
asynchronously by the EJB3 timer service.

e raiseTinmedEvent(String type,) — schedule an event to be processed
asynchronously by the EJB3 timer service.

e addLi stener(String type, String methodBi ndi ng) — add an observer for a particular
event type.

j boss. seam core. i nterpol at or
An API for interpolating the values of JSF EL expressions in Strings.

392

Components for internationalization and themes

e interpolate(String tenpl ate) — scan the template for JSF EL expressions of the form
#{ ...} and replace them with their evaluated values.

org.j boss. seam cor e. expressi ons
An API for creating value and method bindings.

e createVal ueBi ndi ng(String expressi on) — create a value binding object.
* creat eMet hodBi ndi ng(String expression) — create a method binding object.

org.j boss. seam cor e. poj oCache
Manager component for a JBoss Cache Poj oCache instance.

* poj oCache. cf gResourceNane — the name of the configuration file. Default to
treecache. xnl .

All of these components are always installed.

28.3. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using Seam.
org.j boss.seam core.local e
The Seam locale.

org.jboss.seaminternational.tinezone
The Seam timezone. The timezone is session scoped.

org.j boss. seam core. resour ceBundl e
The Seam resource bundle. The resource bundle is stateless. The Seam resource bundle
performs a depth-first search for keys in a list of Java resource bundles.

org.j boss. seam core. resour ceLoader
The resource loader provides access to application resources and resource bundles.

* resour ceLoader. bundl eNanmes — the names of the Java resource bundles to search when
the Seam resource bundle is used. Default to nessages.

org.jboss.seaminternational .l ocal eSel ector
Supports selection of the locale either at configuration time, or by the user at runtime.

« sel ect () — select the specified locale.

* local eSel ector. | ocal e —the actual j ava. util . Local e.

* local eSel ector. | ocal eSt ri ng — the stringified representation of the locale.
* |l ocal eSel ect or. | anguage — the language for the specified locale.

* | ocal eSel ector. count ry — the country for the specified locale.

393

Chapter 28. Built-in Seam com...

e |l ocal eSel ect or. vari ant — the variant for the specified locale.

* |l ocal eSel ect or. support edLocal es — a list of Sel ect | t ens representing the supported
locales listed in j sf-config. xm .

* |l ocal eSel ect or. cooki eEnabl ed — specifies that the locale selection should be persisted
via a cookie.

org.j boss.seaminternational.tinmezoneSel ector
Supports selection of the timezone either at configuration time, or by the user at runtime.

« sel ect () — select the specified locale.
* timezoneSel ector.timezone — the actual j ava. util. Ti meZone.
e tinezoneSel ector.timeZonel d — the stringified representation of the timezone.

e tinmezoneSel ect or. cooki eEnabl ed — specifies that the timezone selection should be
persisted via a cookie.

org.j boss.seam i nternational . messages
A map containing internationalized messages rendered from message templates defined in
the Seam resource bundle.

org. j boss. seam t hene. t hemeSel ect or
Supports selection of the theme either at configuration time, or by the user at runtime.

e sel ect () — select the specified theme.

e thene. avai | abl eThenmes — the list of defined themes.

* t hemeSel ect or. t heme — the selected theme.

* theneSel ector.t hemes — a list of Sel ect | t ens representing the defined themes.

* theneSel ect or. cooki eEnabl ed — specifies that the theme selection should be persisted
via a cookie.

org.j boss. seam t hene. t hene
A map containing theme entries.

All of these components are always installed.

28.4. Components for controlling conversations

The next group of components allow control of conversations by the application or user interface.

org.j boss. seam core. conversation
API for application control of attributes of the current Seam conversation.

» getld() — returns the current conversation id

394

jBPM-related components

« i sNested() — is the current conversation a nested conversation?

i sLongRunni ng() — is the current conversation a long-running conversation?
e getld() — returns the current conversation id

* get Parent | d() — returns the conversation id of the parent conversation

e get Root 1 d() — returns the conversation id of the root conversation

» set Ti meout (i nt timeout) — sets the timeout for the current conversation

e setView d(String outcone) — sets the view id to be used when switching back to the
current conversation from the conversation switcher, conversation list, or breadcrumbs.

e setDescription(String description) — sets the description of the current
conversation to be displayed in the conversation switcher, conversation list, or
breadcrumbs.

* redirect () — redirect to the last well-defined view id for this conversation (useful after
login challenges).

» | eave() — exit the scope of this conversation, without actually ending the conversation.
* begi n() — begin a long-running conversation (equivalent to @egi n).

* begi nPagefl ow(String pagefl owNane) — begin a long-running conversation with a
pageflow (equivalent to @egi n(pagef | ow="...")).

* end() — end a long-running conversation (equivalent to @nd).
* pop() — pop the conversation stack, returning to the parent conversation.
e root () — return to the root conversation of the conversation stack.

e changeFl ushMode(Fl ushModeType flushMode) — change the flush mode of the
conversation.

org. j boss. seam core. conversati onLi st
Manager component for the conversation list.

org.j boss. seam core. conver sati onSt ack
Manager component for the conversation stack (breadcrumbs).

org.j boss. seam faces. swi t cher
The conversation switcher.

All of these components are always installed.

28.5. |BPM-related components

These components are for use with jBPM.

395

Chapter 28. Built-in Seam com...

org

org

org

org

.] boss. seam pagef | ow. pagef | ow

API control of Seam pageflows.
e islnProcess() — returnstrue if there is currently a pageflow in process
* get Processl nstance() — returns jBPM Pr ocessl nst ance for the current pageflow

* begin(String pageflowNane) — begin a pageflow in the context of the current
conversation

e reposition(String nodeName) — reposition the current pageflow to a particular node

. j boss. seam bpm act or

API for application control of attributes of the jBPM actor associated with the current session.
e setld(String actorld) — sets the jBPM actor id of the current user.

e get G oupActor | ds() — returns a Set to which jBPM actor ids for the current users groups
may be added.

.j boss.seam bpm transition

API for application control of the jBPM transition for the current task.

e setName(String transitionNanme) — sets the jBPM transition name to be used when the
current task is ended via @ndTask.

. j boss. seam bpm busi nessProcess

API for programmatic control of the association between the conversation and business
process.

* busi nessProcess. t askl d — the id of the task associated with the current conversation.

e busi nessProcess. processld — the id of the process associated with the current
conversation.

* busi nessProcess. hasCurrent Task() — is a task instance associated with the current
conversation?

* busi nessProcess. hasCurrent Process() — iS a process instance associated with the
current conversation.

e createProcess(String name) — create an instance of the named process definition and
associate it with the current conversation.

» startTask() — start the task associated with the current conversation.

e endTask(String transitionName) — end the task associated with the current
conversation.

e resumeTask(Long i d) — associate the task with the given id with the current conversation.

396

Security-related components

e resumeProcess(Long id) — associate the process with the given id with the current
conversation.

e transition(String transitionNane) — trigger the transition.

org. j boss. seam bpm t askl nst ance
Manager component for the jBPM TasklI nst ance.

org.j boss. seam bpm processl nst ance
Manager component for the jBPM Pr ocessl nst ance.

org.j boss. seam bpm j bpmCont ext
Manager component for an event-scoped JbpnCont ext .

org.j boss. seam bpm t askl nst ancelLi st
Manager component for the jBPM task list.

org.j boss. seam bpm pool edTaskl nst ancelLi st
Manager component for the jBPM pooled task list.

org.j boss. seam bpm t askl nst anceli st For Type
Manager component for the jBPM task lists.

org.j boss. seam bpm pool edTask
Action handler for pooled task assignment.

org.j boss. seam bpm processl nst anceFi nder
Manager for the process instance task list.

org.j boss. seam bpm processl nst anceLi st
The process instance task list.

All of these components are installed whenever the component or g. j boss. seam bpm j bpmis
installed.

28.6. Security-related components

These components relate to web-tier security.

org.j boss. seam web. user Pri nci pal
Manager component for the current user Pri nci pal .

org.j boss. seam web. i sUser | nRol e
Allows JSF pages to choose to render a control, depending upon the
roles available to the current principal. <h:commandButton val ue="edit"

rendered="#{i sUserlnRol e["adm n']}"/>.

28.7. JIMS-related components

These components are for use with managed Topi cPubl i sher s and QueueSender s (see below).

397

Chapter 28. Built-in Seam com...

org. j boss. seam j nms. queueSessi on

Manager component for a JMS QueueSessi on .

org.j boss. seam j ns. t opi cSessi on

Manager component for a JMS Topi cSessi on .

28.8. Mail-related compon

ents

These components are for use with Seam's Email support

org.j boss. seam mai | . mai | Sessi on

Manager component for a JavaMail Sessi on. The session can be either looked up in the JNDI
context (by setting the sessi ondndi Name property) or it can created from the configuration
options in which case the host is mandatory.

* org.jboss.seam mail . mail Sessi on

* org.jboss.seam mail . mai | Sessi on.

* org.jboss.seam mail . mai | Sessi on.

SMTP server.

* org.jboss.seam mail . mai | Sessi on.

SMTP server

* org.jboss.seam mail . mai | Sessi on.

verbose)

* org.jboss.seam mail . mai | Sessi on.

to port 465)

org.j boss. seam mai | . mai | Sessi on
mail session

* org.jboss.seam mail . mai | Sessi on

. host — the hostname of the SMTP server to use
port — the port of the SMTP server to use

user name — the username to use to connect to the

passwor d — the password to use to connect to the

debug — enable JavaMail debugging (very

ss| — enable SSL connection to SMTP (will default

.t1's — by default true, enable TLS support in the

.sessionJndi Name — name under which a

javax.mail.Session is bound to JNDI. If supplied, all other properties will be ignored.

28.9. Infrastructural comp

onents

These components provide critical platform infrastructure. You can install a component which isn't
installed by default by setting i nstal | ="true" on the component in conponent s. xni .

org.jboss.seamcore.init

Initialization settings for Seam. Always installed.

e org.jboss.seamcore.init.jndi Pattern — the JNDI pattern used for looking up

session beans

398

Infrastructural components

e org.jboss.seamcore.init.debug — enable Seam debug mode. This should be set to
false when in production. You may see errors if the system is placed under any load and
debug is enabled.

e org.jboss.seamcore.init.clientSideConversations —ifsettotrue, Seam will save
conversation context variables in the client instead of in the Ht t pSessi on.

e org.jboss.seamcore.init.userTransacti onName — the JNDI name to use when
looking up the JTA User Tr ansact i on object.

org.j boss. seam cor e. nanager
Internal component for Seam page and conversation context management. Always installed.

e org.jboss.seam core. manager. conversationTi meout — the conversation context
timeout in milliseconds.

e org.jboss. seam core. manager. concurrent Request Ti meout — maximum wait time for
a thread attempting to gain a lock on the long-running conversation context.

e org.jboss. seam core. manager . conver sat i onl dPar anet er — the request parameter
used to propagate the conversation id, default to conver sati onl d.

* org.jboss. seam core. manager. conver sati onl sLongRunni ngPar anet er — the
request parameter used to propagate information about whether the conversation is long-
running, default to conver sat i onl sLongRunni ng.

org.j boss. seam navi gati on. pages
Internal component for Seam workspace management. Always installed.

e org.jboss.seam navi gati on. pages. noConver sati onVi e d — global setting for the
view id to redirect to when a conversation entry is not found on the server side.

e org.jboss. seam navi gati on. pages. | ogi nView d — global setting for the view id to
redirect to when an unauthenticated user tries to access a protected view.

e org.jboss.seam navi gati on. pages. htt pPort — global setting for the port to use when
the http scheme is requested.

e org.jboss. seam navi gati on. pages. htt psPort — global setting for the port to use when
the https scheme is requested.

e org.jboss.seam navi gati on. pages. resources — a list of resources to search for
pages. xnl style resources. Defaults to WEB- | NF/ pages. xni .

org.j boss. seam bpm j bpm
Bootstraps a JbpnConfi gur at i on. Install as class or g. j boss. seam bpm Jbpm

e org.jboss.seam bpm j bpm processDef i ni ti ons —alist of resource names of jPDL files
to be used for orchestration of business processes.

399

Chapter 28. Built-in Seam com...

e org.jboss.seam bpm j bpm pagef | owDefi ni ti ons — a list of resource names of jPDL
files to be used for orchestration of conversation page flows.

org. j boss. seam core. conversati onEntries
Internal session-scoped component recording the active long-running conversations between
requests.

org.j boss. seam f aces. f acesPage
Internal page-scoped component recording the conversation context associated with a page.

org. j boss. seam persi st ence. persi st enceCont ext s
Internal component recording the persistence contexts which were used in the current
conversation.

org.j boss. seam j ns. queueConnecti on
Manages a JMS QueueConnect i on. Installed whenever managed managed QueueSender is
installed.

* org.jboss.seam jms. queueConnecti on. queueConnect i onFact oryJndi Name — the
JNDI name of a IMS QueueConnect i onFact ory. Default to U L2Connect i onFact ory

org. j boss. seam j ms. t opi cConnecti on
Manages a JMS Topi cConnect i on. Installed whenever managed managed Topi cPubl i sher
is installed.

* org.jboss.seam jnms.topi cConnection.topi cConnectionFactoryJndi Name — the
JNDI name of a JMS Topi cConnect i onFact ory. Default to U L2Connect i onFact ory

org.j boss. seam per si st ence. persi st enceProvi der
Abstraction layer for non-standardized features of JPA provider.

org.j boss. seam core. val i dators
Caches instances of Hibernate Validator Cl assVal i dat or.

org.j boss. seam faces. val i dation
Allows the application to determine whether validation failed or was successful.

org. j boss. seam debug. i ntrospect or
Support for the Seam Debug Page.

org.j boss. seam debug. cont ext s
Support for the Seam Debug Page.

org. j boss. seam excepti on. excepti ons
Internal component for exception handling.

org.j boss.seamtransaction.transaction
API for controlling transactions and abstracting the underlying transaction management
implementation behind a JTA-compatible interface.

400

Miscellaneous components

org. j boss. seam f aces. saf eActi ons
Decides if an action expression in an incoming URL is safe. This is done by checking that the
action expression exists in the view.

28.10. Miscellaneous components

These components don't fit into

org.j boss. seam async. di spat cher
Dispatcher stateless session bean for asynchronous methods.

org.j boss. seam core. i mage
Image manipulation and interrogation.

org.j boss. seam cor e. poj oCache
Manager component for a PojoCache instance.

org.j boss. seam cor e. ui Conponent
Manages a map of UIComponents keyed by component id.

28.11. Special components

Certain special Seam component classes are installable multiple times under names specified in
the Seam configuration. For example, the following lines in conponent s. xm install and configure
two Seam components:

<component name="bookingDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/comp/emf/bookingPersistence</property>
</component>

<component name="userDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/comp/emf/userPersistence</property>
</component>

The Seam component names are booki ngDat abase and user Dat abase.

<entityManager>, or g. j boss. seam per si st ence. ManagedPer si st enceCont ext
Manager component for a conversation scoped managed Ent i t yManager with an extended
persistence context.

401

Chapter 28. Built-in Seam com...

« <entityManager>.entityManagerFactory — a value binding expression that evaluates to an
instance of Enti t yManager Factory.

<entityManager>.persistenceUnitindiName — the JNDI name of the entity manager
factory, default to java:/<managedPersistenceContext>.

<entityManagerFactory>, or g. j boss. seam per si st ence. Enti t yManager Factory
Manages a JPA Ent i t yManager Fact ory. This is most useful when using JPA outside of an
EJB 3.0 supporting environment.

e entityManager Fact ory. per si st enceUni t Name — the name of the persistence unit.
See the API JavaDoc for further configuration properties.

<session>, or g. j boss. seam per si st ence. ManagedSessi on
Manager component for a conversation scoped managed Hibernate Sessi on.

» <session>.sessionFactory — a value binding expression that evaluates to an instance of

Sessi onFactory.

<session>.sessionFactoryJndiName — the JNDI name of the session factory, default to
java:/<managedSession>.

<sessionFactory>, or g. j boss. seam per si st ence. Hi ber nat eSessi onFact ory
Manages a Hibernate Sessi onFact ory.

e <sessi onFact ory>. cf gResour ceNane — the path to the configuration file. Default to
hi bernate. cfg. xn .

See the API JavaDoc for further configuration properties.

<managedQueueSender>, or g. j boss. seam j ns. ManagedQueueSender
Manager component for an event scoped managed JMS QueueSender .

* <managedQueueSender>.queueJndiName — the JNDI name of the JMS queue.

<managedTopicPublisher>, or g. j boss. seam j ns. ManagedTopi cPubl i sher
Manager component for an event scoped managed JMS Topi cPubl i sher.

* <managedTopicPublisher>.topicJndiName — the JNDI name of the JMS topic.

<managedWorkingMemory>, or g. j boss. seam dr ool s. ManagedWor ki ngMenory
Manager component for a conversation scoped managed Drools Wr ki ngMenory.

« <managedWorkingMemory>.ruleBase — a value expression that evaluates to an instance
of Rul eBase.

<ruleBase>, org. j boss. seam dr ool s. Rul eBase
Manager component for an application scoped Drools Rul eBase. Note that this is not really
intended for production usage, since it does not support dynamic installation of new rules.

402

Special components

» <ruleBase>.ruleFiles — a list of files containing Drools rules.
<ruleBase>.dslFile — a Drools DSL definition.
<entityHome>, or g. j boss. seam f r amewor k. Ent i t yHone
<hibernateEntityHome>, or g. j boss. seam f r anewor k. Hi ber nat eEnti t yHone
<entityQuery>, or g. j boss. seam f ranewor k. Enti t yQuery

<hibernateEntityQuery>, or g. j boss. seam f r amewor k. Hi ber nat eEnti t yQuery

403

404

Chapter 29.

Seam JSF controls

Seam includes a number of JSF controls that are useful for working with Seam. These are
intended to complement the built-in JSF controls, and controls from other third-party libraries. We
recommend JBoss RichFaces, and Apache MyFaces Trinidad tag libraries for use with Seam. We
do not recommend the use of the Tomahawk tag library.

29.1. Tags

To use these tags, define the "s" hamespace in your page as follows (facelets only):

<html xmiIns="http://www.w3.0rg/1999/xhtml"
xmins:s="http://jboss.com/products/seam/taglib">

The ui example demonstrates the use of a number of these tags.
29.1.1. Navigation Controls

29.1.1.1. <s: button>

Description

A button that supports invocation of an action with control over conversation propagation. Does
not submit the form.

Attributes

* val ue — the label.

e acti on — a method binding that specified the action listener.
* vi ew— the JSF view id to link to.

» fragment — the fragment identifier to link to.

* di sabl ed — is the link disabled?

e propagati on — determines the conversation propagation style: begi n, j oi n, nest, none or
end.

» pagef | ow— a pageflow definition to begin. (This is only useful when pr opagat i on="begi n"
or propagat i on="j oi n" is used).

Usage

<s:button id="cancel"

405

Chapter 29. Seam JSF controls

value="Cancel"
action="#{hotelBooking.cancel}"/>

You can specify both vi ewand acti on on <s: i nk />. In this case, the action wil be called once
the redirect to the specified view has occured.

29.1.1.2. <s: conversati onl d>

Description

Add the conversation id to JSF link or button (e.g. <h: commandLi nk />, <s: button />).
Attributes

None

29.1.1.3. <s: taskl d>

Description
Add the task id to an output link (or similar JSF control), when the task is available via #{t ask} .
Attributes

None.

29.1.1.4. <s:1ink>

Description

A link that supports invocation of an action with control over conversation propagation. Does not
submit the form.

Attributes

e val ue — the label.

* acti on — a method binding that specified the action listener.
* vi ew— the JSF view id to link to.

» fragnment — the fragment identifier to link to.

* di sabl ed — is the link disabled?

e propagati on — determines the conversation propagation style: begi n, j oi n, nest, none or
end.

e pageflow — a pageflow definition to begin. (This is only useful when using
propagati on="begi n" or propagati on="j oi n".)

406

Navigation Controls

Usage

<s:link id="register" view="/register.xhtml"
value="Register New User"/>

You can specify both vi ewand acti on on <s: i nk />. In this case, the action will be called once
the redirect to the specified view has occured.

29.1.1.5. <s: conversat i onPr opagat i on>

Description

Customize the conversation propagation for a command link or button (or similar JSF control).
Facelets only.

Attributes

* type — determines the conversation propagation style: begi n, j oi n, nest, none or end.

e pageflow — a pageflow definition to begin. (This is only useful when using
pr opagat i on="begi n" or propagati on="j oi n".)

Usage

<h:commandButton value="Apply" action="#{personHome.update}">
<s:conversationPropagation type="join" />
</h:commandButton>

29.1.1.6. <s:defaul t Action>
Description
Specify the default action to run when the form is submitted using the enter key.

Currently you can only nest it inside buttons (e.g. <h: conmandBut t on />, <a: conmandButton />
or <tr:conmandButton />).

You must specify an id on the action source. You can only have one default action per form.
Attributes
None.

Usage

<h:commandButton id="foo" value="Fo0" action="#{manager.foo}"'>

407

Chapter 29. Seam JSF controls

<s:defaultAction />
</h:commandButton>

29.1.2. Converters and Validators

29.1.2.1. <s: convert Dat eTi ne>

Description

Perform date or time conversions in the Seam timezone.
Attributes

None.

Usage

<h:outputText value="#{item.orderDate}">
<s:convertDateTime type="both" dateStyle="full"/>
</h:outputText>

29.1.2.2. <s: convertEnt i ty>

Description

Assigns an entity converter to the current component. This is primarily useful for radio button and
dropdown controls.

The converter works with any managed entity which has an @ d annotation - either simple or
composite.

Attributes
None.
Configuration

You must use Seam managed transactions (see Section 9.2, “Seam managed transactions”) with
<s:convertEntity />.

If your Managed Persistence Context isn't called entit yManager, then you need to set it in
components.xml:

<component name="org.jboss.seam.ui.EntityConverter">
<property name="entityManager">#{em}</property>

408

Converters and Validators

</component>

If you are using a Managed Hibernate Session then you need to set it in components.xml:

<component name="org.jboss.seam.ui.EntityConverter">
<property name="session">#{hibernateSession}</property>
</component>

If you want to use more than one entity manager with the entity converter, you can create a copy
of the entity converter for each entity manager in components.xml:

<component name="myEntityConverter" class="org.jboss.seam.ui.converter.EntityConverter">
<property name="entityManager">#{em}</property>
</component>

<h:selectOneMenu value="#{person.continent}">
<s:selectltems value="#{continents.resultList}" var="continent"
label="#{continent.name}" />
<f.converter converterld="myEntityConverter" />
</h:selectOneMenu>

Usage

<h:selectOneMenu value="#{person.continent}" required="true">
<s:selectltems value="#{continents.resultList}" var="continent"
label="#{continent.name}"
noSelectionLabel="Please Select..."/>
<s:convertEntity />
</h:selectOneMenu>

29.1.2.3. <s: convert Enune

Description

Assigns an enum converter to the current component. This is primarily useful for radio button and
dropdown controls.

Attributes

None.

409

Chapter 29. Seam JSF controls

Usage

<h:selectOneMenu value="#{person.honorific}">
<s:selectltems value="#{honorifics}" var="honorific"
label="#{honorific.label}"
noSelectionLabel="Please select" />
<s:.convertEnum />
</h:selectOneMenu>

29.1.2.4. <s:val i date>

Description

A non-visual control, validates a JSF input field against the bound property using Hibernate
Validator.

Attributes
None.

Usage

<h:inputText id="userName" required="true"
value="#{customer.userName}">
<s:validate />
</h:inputText>
<h:message for="userName" styleClass="error" />

29.1.2.5. <s:validateA | >

Description

A non-visual control, validates all child JSF input fields against their bound properties using
Hibernate Validator.

Attributes
None.

Usage

<s:validateAll>
<div class="entry">
<h:outputLabel for="username">Username:</h:outputLabel>

410

Formatting

<h:inputText id="username" value="#{user.username}"
required="true"/>
<h:message for="username" styleClass="error" />
</div>
<div class="entry">
<h:outputLabel for="password">Password:</h:outputLabel>
<h:inputSecret id="password" value="#{user.password}"
required="true"/>
<h:message for="password" styleClass="error" />
</div>
<div class="entry">
<h:outputLabel for="verify">Verify Password:</h:outputLabel>
<h:inputSecret id="verify" value="#{register.verify}"
required="true"/>
<h:message for="verify" styleClass="error" />
</div>
</s:validateAll>

29.1.3. Formatting

29.1.3.1. <s: decorat e>

Description
"Decorate" a JSF input field when validation fails or when r equi red="t rue" is set.

Attributes

» tenpl at e — the facelets template to use to decorate the component

#{inval i d} and #{requi red} are available inside s: decor at e; #{r equi r ed} evaluatestotrue
if you have set the input component being decorated as required, and #{i nval i d} evaluates to
t r ue if a validation error occurs.

Usage

<s:decorate template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true"/>
</s:decorate>

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"

411

Chapter 29. Seam JSF controls

xmins:h="http://java.sun.com/jsf/html|"
xmlins:f="http://java.sun.com/jsf/core"
xmins:s="http://jboss.com/products/seam/taglib">

<div>

<s:label styleClass="#{invalid?'error"."}">

<uicinsert name="label"/>

<s:span styleClass="required" rendered="#{required}">*</s:span>
</s:label>

<s:validateAll>
<uiiinsert/>
</s:validateAll>

<s:message styleClass="error"/>
</div>

</ui:composition>

29.1.3.2. <s: div>

Description

Render a HTML <di v>.

Attributes

None.

Usage

<s:div rendered="#{selectedMember == null}">

Sorry, but this member does not exist.
</s:div>

29.1.3.3. <s: span>

Description

Render a HTML .

412

Formatting

Attributes
None.

Usage

<s:span styleClass="required" rendered="#{required}">*</s:span>

29.1.3.4. <s:fr agnent >

Description

A non-rendering component useful for enabling/disabling rendering of it's children.
Attributes

None.

Usage

<s:fragment rendered="#{auction.highBidder ne null}">
Current bid:
</s:fragment>

29.1.3.5. <s: 1 abel >

Description

"Decorate" a JSF input field with the label. The label is placed inside the HTML <I abel > tag, and
is associated with the nearest JSF input component. It is often used with <s: decor at e>.

Attributes

» styl e — The control's style
» styl ed ass — The control's style class

Usage

<s:label styleClass="label">
Country:
</s:label>
<h:inputText value="#{location.country}" required="true"/>

413

Chapter 29. Seam JSF controls

29.1.3.6. <s: nessage>

Description

"Decorate" a JSF input field with the validation error message.
Attributes

None.

Usage

<f.facet name="afterlnvalidField">
<s:span>
 Error:
<s:message/>
</s:span>
</f:facet>

29.1.4. Seam Text

29.1.4.1. <s: val i dat eFor mat t edText >
Description

Checks that the submitted value is valid Seam Text
Attributes

None.

29.1.4.2. <s: format t edText >

Description

Outputs Seam Text, a rich text markup useful for blogs, wikis and other applications that might
use rich text. See the Seam Text chapter for full usage.

Attributes

« val ue — an EL expression specifying the rich text markup to render.

Usage

<s:formattedText value="#{blog.text}"/>

414

Dropdowns

Example

Please type your comment

larem pharetra viverra™. Fusce in ipsum. Mam et turpis id arcu lobortis dapibus .

#venenatis mattis,
#Mulla hendrerit orci ut massa.

Lorem ipsum

Lorem ipsum dofor 5 amet, consectetuer adipiscing elit,

-suspendisse a risus- VIS lorem pharetra viverra £y oce in ipsurn, Nam et
turpis id arcu lobortis dapibus.

Curabitur et sem vel quam

1. venenatis maths,
Z. Mulla hendrerit orci ut massa.
3. Donec condimentum,

+ libero in iaculis hendrerit,
+ risus dolor congue nulla,
+ non accumsan ante risus et ipsun.

“Suspendisse dui, Maecenas lorem. Maecenas sit amet purus nec metus
sodales sagittis, Phasellus varius lacus nec velit, *

29.1.5. Dropdowns

29.1.5.1. <s:enun ten»

Description
Creates a Sel ect | t emfrom an enum value.

Attributes

» enunVal ue — the string representation of the enum value.
* | abel — the label to be used when rendering the Sel ect | t em

Usage

<h:selectOneRadio id="radioList"
layout="lineDirection"
value="#{newPayment.paymentFrequency}">
<s:convertEnum />

415

Chapter 29. Seam JSF controls

<s:enumltem enumValue="ONCE" label="Only Once" />
<s:enumltem enumValue="EVERY_MINUTE" label="Every Minute" />
<s:enumltem enumValue="HOURLY" label="Every Hour" />
<s:enumltem enumValue="DAILY" label="Every Day" />
<s:enumltem enumValue="WEEKLY" label="Every Week" />

</h:selectOneRadio>

29.1.5.2. <s: sel ectItens>

Description
Creates a Li st <Sel ect | t en» from a List, Set, DataModel or Array.

Attributes

« val ue — an EL expression specifying the data that backs the Li st <Sel ect It enp
« var — defines the name of the local variable that holds the current object during iteration
e | abel — the label to be used when rendering the Sel ect I t em Can reference the var variable.

i tenval ue — Value to return to the server if this option is selected. Optional, by default the var
object is used. Can reference the var variable.

* di sabl ed — if true the Sel ect | t emwill be rendered disabled. Can reference the var variable.

e noSel ecti onLabel — specifies the (optional) label to place at the top of list (if
requi red="true" is also specified then selecting this value will cause a validation error).

* hi deNoSel ecti onLabel — if true, the noSel ecti onLabel will be hidden when a value is
selected

Usage

<h:selectOneMenu value="#{person.age}"
converter="ageConverter">
<s:selectltems value="#{ages}" var="age" label="#{age}" />
</h:selectOneMenu>

29.1.6. Other

29.1.6.1. <s: cache>

Description

Cache the rendered page fragment using JBoss Cache. Note that <s: cache> actually uses the
instance of JBoss Cache managed by the built-in poj oCache component.

416

Other

Attributes

» key — the key to cache rendered content, often a value expression. For example, if we
were caching a page fragment that displays a document, we might use key="Docunent -
#{document . i d}".

* enabl ed — a value expression that determines if the cache should be used.
* regi on — a JBoss Cache node to use (different nodes can have different expiry policies).

Usage

<s:cache key="entry-#{blogEntry.id}" region="pageFragments">
<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>
<s:formattedText value="#{blogEntry.body}"/>
</div>
<p>
[Posted on
<h:outputText value="#{blogEntry.date}">
<f.convertDateTime timezone="#{blog.timeZone}" locale="#{blog.locale}"
type="both"/>
</h:outputText>]
</p>
</div>
</s:cache>

29.1.6.2. <s:fil eUpl oad>

Description

Renders a file upload control. This control must be used within a form with an encoding type of

nmul ti part/formdata, i.e:

<h:form enctype="multipart/form-data">

For multipart requests, the Seam Multipart servlet filter must also be configured in web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet. SeamFilter</filter-class>
<[filter>

417

Chapter 29. Seam JSF controls

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

Configuration

The following configuration options for multipart requests may be configured in components.xmil:

» createTenpFil es — if this option is set to true, uploaded files are streamed to a temporary
file instead of in memory.

« maxRequest Si ze — the maximum size of a file upload request, in bytes.

Here's an example:

<component class="org.jboss.seam.web.MultipartFilter">
<property name="createTempFiles">true</property>
<property name="maxRequestSize">1000000</property>
</component>

Attributes

« dat a — this value binding receives the binary file data. The receiving field should be declared
as a byt e[] or | nput St ream(required).

* cont ent Type — this value binding receives the file's content type (optional).
« fil eNane — this value binding receives the filename (optional).
» fil eSi ze — this value binding receives the file size (optional).

e accept — a comma-separated list of content types to accept, may not be supported by the
browser. E.g. "i mages/ png, i nages/ j pg", "i mages/ *".

» styl e — The control's style
» styl eC ass — The control's style class

Usage

<s:fileUpload id="picture" data="#{register.picture}"
accept="image/png"

418

Other

contentType="#{register.pictureContentType}" />

29.1.6.3. <s: gr aphi cl mage>

Description

An extended <h: gr aphi cl mage> that allows the image to be created in a Seam Component;
further transforms can be applied to the image.

All attributes for <h: gr aphi cl mage> are supported, as well as:
Attributes
* val ue — image to display. Can be a path String (loaded from the classpath), a byte[],

ajava.io.File, ajava.io.lnputStreamor a java. net. URL. Currently supported image
formats are i nage/ png, i mage/ j peg and i mage/ gi f .

« fil eNane — if not specified the served image will have a generated file name. If you want to
name your file, you should specify it here. This name should be unique

Transformations

To apply a transform to the image, you would nest a tag specifying the transform to apply. Seam
currently supports these transforms:

<s:transform nmageSi ze>
e w dt h — new width of the image
* hei ght — new height of the image

e mai ntai nRati o —ift rue, and one of wi dt h/hei ght are specified, the image will be resized
with the dimension not specified being calculated to maintain the aspect ratio.

» fact or — scale the image by the given factor
<s:transform nageBl ur >
* radi us — perform a convolution blur with the given radius
<s:transform nageType>
e cont ent Type — alter the type of the image to either i mage/ j peg or i mage/ png

Its easy to create your own transform - create a Ul Conponent which implements
org. j boss. seam ui . graphi cl mage. | mageTransform Inside the appl yTransf or n() method
use i mage. get Buf f er edl mage() to get the original image and i mage. set Buf f er edl mage() to
set your transformed image. Transforms are applied in the order specified in the view.

419

Chapter 29. Seam JSF controls

Usage

<s:graphiclmage rendered="#{auction.image ne null}"
value="#{auction.image.data}">
<s:transformimageSize width="200" maintainRatio="true"/>
</s:graphiclmage>

29164 <s:renot e>

Description
Generates the Javascript stubs required to use Seam Remoting.

Attributes

* incl ude — a comma-separated list of the component names (or fully qualified class hames)for
which to generate Seam Remoting Javascript stubs. See Chapter 22, Remoting for more details.

Usage

<s:remote include="customerAction,accountAction,com.acme.MyBean"/>

29.2. Annotations

Seam also provides annotations to allow you to use Seam components as JSF converters and
validators:

@onverter

@Name("itemConverter")
@Bypassinterceptors
@Converter
public class ItemConverter implements Converter {

@Transactional
public Object getAsObject(FacesContext context, UIComponent cmp, String value) {
EntityManager entityManager = (EntityManager)
Component.getinstance("entityManager");
entityManager.joinTransaction();
/I Do the conversion

}

420

Annotations

public String getAsString(FacesContext context, UIComponent cmp, Object value) {
/I Do the conversion

}

<h:inputText value="#{shop.item}" converter="itemConverter" />

Registers the Seam component as a JSF converter. Shown here is a converter which is able
to access the JPA EntityManager inside a JTA transaction, when converting the value back
to it's object representation.

@/al i dat or

@Name("itemValidator")
@Bypassinterceptors
@Validator
public class ItemValidator implements Validator {

public void validate(FacesContext context, UIComponent cmp, Object value)
throws ValidatorException {

ItemController temController = (ItemController) Component.getinstance("itemController");
return itemController.validate(value);

}

<h:inputText value="#{shop.item}" validator="itemValidator" />

Registers the Seam component as a JSF validator. Shown here is a validator which injects
another Seam component; the injected component is used to validate the value.

421

422

Chapter 30.

JBoss EL

Seam uses JBoss EL which provides an extension to the standard Unified Expression Language
(EL). JBoss EL provides a number of enhancements that increase the expressiveness and power
of EL expressions.

30.1. Parameterized Expressions

Standard EL does not allow you to use a method with user defined parameters — of course, JSF
listener methods (e.g. a val ueChangelLi st ener) take parameters provided by JSF.

JBoss EL removes this restriction. For example:

<h:commandButton action="#{hotelBooking.bookHotel(hotel)}" value="Book Hotel"/>

@Name("hotelBooking")
public class HotelBooking {

public String bookHotel(Hotel hotel) {
/I Book the hotel

30.1.1. Usage

Just as in calls to method from Java, parameters are surrounded by parentheses, and separated
by commas:

<h:commandButton action="#{hotelBooking.bookHotel(hotel, user)}" value="Book Hotel"/>

The parameters hotel and user will be evaluated as value expressions and passed to the
bookHot el () method of the component.

Any value expression may be used as a parameter:
<h:commandButton

action="#{hotelBooking.bookHotel(hotel.id, user.username)}"
value="Book Hotel"/>

423

Chapter 30. JBoss EL

It's important to fully understand how this extension to EL works. When the page is rendered, the
parameter names are stored (for example, hotel . i d and user. user nane), and evaluated (as
value expressions) when the page is submitted. You can't pass objects as parameters!

You must ensure that the parameters are available not only when the page is rendered, but also
when it is submittedIf the arguments can not be resolved when the page is submitted the action
method will be called with nul | arguments!

You can also pass literal strings using single quotes:

<h:commandLink action="#{printer.printin("Hello world!")}" value="Hello"/>

Unified EL also supports value expressions, used to bind a field to a backing bean. Value
expressions use JavaBean naming conventions and expect a getter/setter pair. Often JSF expects
avalue expression where only retrieval (get) is needed (e.g. the r ender ed attribute). Many objects,
however, don't have appropriately named property accessors or require parameters.

JBoss EL removes this restriction by allowing values to be retrieved using the method syntax.
For example:

<h:outputText value="#{person.name}" rendered="#{person.name.length() > 5}" />

You can access the size of a collection in a similar manner:

#{searchResults.size()}

In general any expression of the form #{obj.property} would be identical to the expression
#{obj.getProperty()}.

Parameters are also allowed. The following example calls the pr oduct sByCol or Met hod with a
literal string argument:

#{controller.productsByColor('blue")}

30.1.2. Limitations and Hints

When using JBoss EL you should keep the following points in mind:

* Incompatibility with JSP 2.1 — JBoss EL can't currently be used with JSP 2.1 as the compiler
rejects expressions with parameters in. So, if you want to use this extension with JSF 1.2, you
will need to use Facelets. The extension works correctly with JSP 2.0.

424

Projection

« Use inside iterative components — Components like <c: f or Each / >and <ui : r epeat / >iterate
over a List or array, exposing each item in the list to nested components. This works great if
you are selecting a row using a <h: commandBut t on /> or <h: conmandLi nk / >:

@Factory("items")
public List<ltem> getltems() {
return entityManager.createQuery("select ...").getResultList();

<h:dataTable value="#{items}" var="item">
<h:column>
<h:commandLink value="Select #{item.name}" action="#{itemSelector.select(item})" />
</h:column>
</h:dataTable>

However if you want to use <s:link /> or <s:button /> you must expose the items
as a DataMbdel, and use a <dataTable /> (or equivalent from a component set like
<rich: dataTabl e />). Neither <s:1ink /> or<s:button /> submitthe form (and therefore
produce a bookmarkable link) so a "magic" parameter is needed to recreate the item when the
action method is called. This magic parameter can only be added when a data table backed
by a Dat aMbdel is used.

e Calling a Met hodExpr essi on from Java code — Normally, when a Met hodExpr essi on is
created, the parameter types are passed in by JSF. In the case of a method binding, JSF
assumes that there are no parameters to pass. With this extension, we can't know the parameter
types until after the expression has been evaluated. This has two minor consequences:

* When you invoke a Met hodExpr essi on in Java code, parameters you pass may be ignored.
Parameters defined in the expression will take precedence.

» Ordinarily, it is safe to call met hodExpr essi on. get Met hodl nf o() . get Par aniTypes() at any
time. For an expression with parameters, you must first invoke the Met hodExpr essi on before
calling get Par aniTypes() .

Both of these cases are exceedingly rare and only apply when you want to invoke the
Met hodExpr essi on by hand in Java code.

30.2. Projection

JBoss EL supports a limited projection syntax. A projection expression maps a sub-expression
across a multi-valued (list, set, etc...) expression. For instance, the expression:

425

Chapter 30. JBoss EL

#{company.departments}

might return a list of departments. If you only need a list of department names, your only option is
to iterate over the list to retrieve the values. JBoss EL allows this with a projection expression:

#{company.departments.{d|d.name}}

The subexpression is enclosed in braces. In this example, the expression d. name is evaluated
for each department, using d as an alias to the department object. The result of this expression
will be a list of String values.

Any valid expression can be used in an expression, so it would be perfectly valid to write the
following, assuming you had a use for the lengths of all the department names in a company:

#{company.departments.{d|d.size()}}

Projections can be nested. The following expression returns the last names of every employee
in every department:

#{company.departments.{d|d.employees.{emp|emp.lastName}}}

Nested projections can be slightly tricky, however. The following expression looks like it returns
a list of all the employees in all the departments:

#{company.departments.{d|d.employees}}

However, it actually returns a list containing a list of the employees for each individual department.
To combine the values, it is necessary to use a slightly longer expression:

#{company.departments.{d|d.employees.{e|e}}}

It is important to note that this syntax cannot be parsed by Facelets or JSP and thus cannot be
used in xhtml or JSP files. We anticipate that the projection syntax will change in future versions
of JBoss EL.

426

Chapter 31.

Testing Seam applications

Most Seam applications will need at least two kinds of automated tests: unit tests, which test
a particular Seam component in isolation, and scripted integration tests which exercise all Java
layers of the application (that is, everything except the view pages).

Both kinds of tests are very easy to write.

31.1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing.
And since Seam emphasises the use of bijection for inter-component interactions and access
to contextual objects, it's very easy to test a Seam component outside of its normal runtime
environment.

Consider the following Seam Component which creates a statement of account for a customer:

@Stateless

@Scope(EVENT)
@Name("statementOfAccount™)
public class StatementOfAccount {

@In(create=true) EntityManager entityManager
private double statementTotal,

@In

private Customer customer;

@Create
public void create() {
List<Invoice> invoices = entityManager
.createQuery("select invoice from Invoice invoice where invoice.customer = :customer")
.setParameter("customer"”, customer)
.getResultList();
statementTotal = calculateTotal(invoices);

}

public double calculateTotal(List<Invoice> invoices) {
double total = 0.0;
for (Invoice invoice: invoices)

{

double += invoice.getTotal();

}

427

Chapter 31. Testing Seam appl...

return total;

/I getter and setter for statementTotal

We could write a unit test for the calculateTotal method (which tests the business logic of the
component) as follows:

public class StatementOfAccountTest {

@Test

public testCalculateTotal {
List<Invoice> invoices = generateTestInvoices(); // A test data generator
double statementTotal = new StatementOfAccount().calculateTotal(invoices);
assert statementTotal = 123.45;

You'll notice we aren't testing retrieving data from or persisting data to the database; nor are we
testing any functionality provided by Seam. We are just testing the logic of our POJOs. Seam
components don't usually depend directly upon container infrastructure, so most unit testing as
as easy as that!

However, if you want to test the entire application, read on.

31.2. Integration testing Seam components

Integration testing is slightly more difficult. In this case, we can't eliminate the container
infrastructure; indeed, that is part of what is being tested! At the same time, we don't want to be
forced to deploy our application to an application server to run the automated tests. We need to
be able to reproduce just enough of the container infrastructure inside our testing environment to
be able to exercise the whole application, without hurting performance too much.

The approach taken by Seam is to let you write tests that exercise your components while
running inside a pruned down container environment (Seam, together with the JBoss Embedded
container; n.b. JBoss Embedded requires JDK 1.5 and does not work with JDK 1.6).

public class RegisterTest extends SeamTest

{

@Test

428

Using mocks in integration tests

public void testRegisterComponent() throws Exception

{

new ComponentTest() {

protected void testComponents() throws Exception

{
setValue("#{user.username}", "1lovthafew");
setValue("#{user.name}", "Gavin King");
setValue("#{user.password}", "secret");
assert invokeMethod("#{register.register}").equals("success");
assert getValue("#{user.username}").equals('lovthafew");
assert getValue("#{user.name}").equals("Gavin King");

assert getValue("#{user.password}").equals("secret");

}run();

31.2.1. Using mocks in integration tests

Occasionally, we need to be able to replace the implementation of some Seam component that
depends upon resources which are not available in the integration test environment. For example,
suppose we have some Seam component which is a facade to some payment processing system:

@Name("paymentProcessor")
public class PaymentProcessor {
public boolean processPayment(Payment payment) { }

For integration tests, we can mock out this component as follows:

@Name("paymentProcessor")
@Install(precedence=MOCK)
public class MockPaymentProcessor extends PaymentProcessor {
public boolean processPayment(Payment payment) {
return true;

429

Chapter 31. Testing Seam appl...

Since the MOCK precedence is higher than the default precedence of application components,
Seam will install the mock implementation whenever it is in the classpath. When deployed into
production, the mock implementation is absent, so the real component will be installed.

31.3. Integration testing Seam application user

interactions

An even harder problem is emulating user interactions. A third problem is where to put
our assertions. Some test frameworks let us test the whole application by reproducing user
interactions with the web browser. These frameworks have their place, but they are not appropriate

for use at development time.

SeanTest lets you write scripted tests, in a simulated JSF environment. The role of a scripted test
is to reproduce the interaction between the view and the Seam components. In other words, you

get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSP view for the component we unit tested above:

<html>
<head>
<title>Register New User</title>
</head>
<body>
<f:view>
<h:form>
<table border="0">
<tr>
<td>Username</td>
<td><h:inputText value="#{user.username}"/></td>
</tr>
<tr>
<td>Real Name</td>
<td><h:inputText value="#{user.name}"/></td>
</tr>
<tr>
<td>Password</td>
<td><h:inputSecret value="#{user.password}"/></td>
</tr>
</table>

430

Integration testing Seam application user
interactions
<h:messages/>
<h:commandButton type="submit" value="Register" action="#{register.register}"/>
</h:form>
</f:view>
</body>
</html>

We want to test the registration functionality of our application (the stuff that happens when the
user clicks the Register button). We'll reproduce the JSF request lifecycle in an automated TestNG
test:

public class RegisterTest extends SeamTest

{

@Test
public void testRegister() throws Exception

{

new FacesRequest() {

@Override
protected void processValidations() throws Exception
{
validateValue("#{user.username}", "lovthafew");
validateValue("#{user.name}", "Gavin King");

validateValue("#{user.password}", "secret");
assert lisValidationFailure();

}

@Override
protected void updateModelValues() throws Exception

{
setValue("#{user.username}", "lovthafew");

setValue("#{user.name}", "Gavin King");

setValue("#{user.password}", "secret");

}

@Override
protected void invokeApplication()

{

assert invokeMethod("#{register.register}").equals("success");

}

431

Chapter 31. Testing Seam appl...

@Override

protected void renderResponse()

{
assert getValue("#{user.username}").equals('lovthafew");
assert getValue("#{user.name}").equals("Gavin King");
assert getValue("#{user.password}").equals("secret");

}

}run();

Notice that we've extended Seanilrest , which provides a Seam environment for our components,
and written our test script as an anonymous class that extends Seanirest . FacesRequest , which
provides an emulated JSF request lifecycle. (There is also a Seanirest . NonFacesRequest for
testing GET requests.) We've written our code in methods which are named for the various JSF
phases, to emulate the calls that JSF would make to our components. Then we've thrown in
various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate more
complex cases. There are instructions for running these tests using Ant, or using the TestNG
plugin for eclipse:

432

=

Integration testing Seam application user
interactions

Outline JUnitm L@ =8

\Results of running suite

Suites: 1/1 Tests: 1/1 Methods: 2/2

Passed: 2 B Failed: 0 B Skipped: 0
]

&' All Tests| o Failed Tests|
= He Registration (2/0/0/0)
=gl Register (2/0/0/0)
----- eel org.jboss.seam.example.numberguess.test. NumberGues
] org.jboss.seam.example.numberguess.test. NumberGues

£ | (111 > |

= Failure Exception

Chapter 31. Testing Seam appl...

31.3.1. Configuration

If you used seam-gen to create your project you are ready to start writing tests. Otherwise you'll
need to setup the testing environment in your favorite build tool (e.g. ant, maven, eclipse).

First, lets look at the dependencies you need at a minimum:

Table 31.1.

Group Id Artifact Id Location in Seam

org. j boss. seam enbedded hi ber nat e- al | I'i b/ test/hibernate-
all.jar

org.j boss. seam enbedded j boss- enbedded- al | lib/test/]jboss-enbedded-
all.jar

org. j boss. seam enbedded thirdparty-all lib/test/thirdparty-
all.jar

org.j boss. seam enbedded j boss- enbedded- api I'ib/jboss-enbedded-
api .jar

org.j boss. seam j boss- seam lib/jboss-seamj ar

org.j boss. el j boss- el l'ib/jboss-el.jar

javax. faces j sf-api libljsf-api.jar

j avax. activation javax. activation lib/lactivation.jar

It's very important you don't put the compile time JBoss AS dependencies from | i b/ (e.g.j boss-
system j ar) on the classpath, these will cause Embedded JBoss to not boot. So, just add the
dependencies (e.g. Drools, jBPM)you need as you go.

You also need to include the boot st rap/ directory on the classpath; boot strap/ contains the
configuration for Embedded JBoss.

And, of course you need to put your built project and tests onto the classpath. Don't forget to put all
the correct configuration files for JPA and Seam onto the classpath as well. Seam asks Embedded
JBoss to deploy any resource (jar or directory) which has seam properti es init's root. Therefore,
if you don't assemble a directory structure that resembles a deployable archive containing your
built project, you must put a seam properti es in each resource.

By default, a generated project will use the j ava: / Def aul t DS (a built in HSQL datasource in
Embedded JBoss) for testing. If you want to use another datasource place the f oo-ds. xnl into
boot st r ap/ depl oy directory

31.3.2. Using SeamTest with another test framework

Seam provides TestNG support out of the box, but you can also use another test framework, such
as JUnit, if you want.

434

Integration Testing with Mock Data

You'll need to provide an implementation of Abst r act SeanTest which does the following:

» Calls super . begi n() before every test method.
e Calls super. end() after every test method.

« Calls super. set upC ass() to setup integration test environment. This should be called before
any test methods are called.

» Calls super. cl eanupd ass() to clean up the integration test environment.
e Calls super. start Sean() to start Seam at the start of integration testing.

 Calls super. st opSean{() to cleanly shut down Seam at the end of integration testing.

31.3.3. Integration Testing with Mock Data

If you need to insert or clean data in your database before each test you can use Seam's integration
with DBUnit. To do this, extend DBUnitSeamTest rather than SeamTest.

You need to provide a dataset for DBUnit. IMPORTANT NOTE: DBUnit supports two formats for
dataset files, flat and XML. Seam's DBUnitSeamTest assumes the flat format is used, so please
ensure that your dataset is in this format also.

<dataset>

<ARTIST
id="1"
dtype="Band"
name="Pink Floyd" />

<DISC
id="1"
name="Dark Side of the Moon"
artist_id="1"/>

</dataset>

and tell Seam about it by overriding pr epar eDBUni t Oper at i ons():

protected void prepareDBUnitOperations() {
beforeTestOperations.add(
new DataSetOperation("my/datasets/BaseData.xml")
)i
}

435

Chapter 31. Testing Seam appl...

Dat aSet Oper ati on defaults to Dat abaseQper ati on. CLEAN | NSERT if no other operation is
specified as a constructor argument. The above example cleans all tables defined BaseDat a. xni ,
then inserts all rows declared in BaseDat a. xni before each @est method is invoked.

If you require extra cleanup after a test method executes, add operations to
af t er Test Qper at i ons list.

You need to tell DBUnit about the datasource you are using by setting a TestNG test parameter
named dat asour ceJndi Nane:

<parameter name="datasourceJndiName" value="java:/seamdiscsDatasource"/>

DBUnitSeamTest only works out of the box with HSQL as a datasource. If you want to use
another database, then you'll need to implement some extra methods. Read the javadoc on
DBUni t Seanirest for more.

31.3.4. Integration Testing Seam Mail

Warning! This feature is still under development.

It's very easy to integration test your Seam Mail:

public class MailTest extends SeamTest {

@Test
public void testSimpleMessage() throws Exception {

new FacesRequest() {

@Override

protected void updateModelValues() throws Exception {
setValue("#{person.firsthame}", "Pete");
setValue("#{person.lastname}", "Muir");

setValue("#{person.address}", "test@example.com");

}

@Override

protected void invokeApplication() throws Exception {
MimeMessage renderedMessage = getRenderedMailMessage("/simple.xhtml");
assert renderedMessage.getAllRecipients().length == 1;
InternetAddress to = (InternetAddress) renderedMessage.getAllRecipients()[0];
assert to.getAddress().equals("test@example.com");

436

Integration Testing Seam Malil

}run();
}
}

We create a new FacesRequest as normal. Inside the invokeApplication hook we render the
message using get Render edMai | Message(vi ewl d) ; , passing the viewld of the message to
render. The method returns the rendered message on which you can do your tests. You can of
course also use any of the standard JSF lifecycle methods.

There is no support for rendering standard JSF components so you can't test the content body
of the mail message easily.

437

438

Chapter 32.

Seam tools

32.1. JBPM designer and viewer

The jBPM designer and viewer will let you design and view in a nice way your business processes
and your pageflows. This convenient tool is part of JBoss Eclipse IDE and more details can be
found in the jBPM's documentation (http://docs.jboss.com/jbpm/v3/gpd/)

32.1.1. Business process designer

This tool lets you design your own business process in a graphical way.

[:E Select

|:|+ Marques G ==S5tart State>>

) start

o State
End

ofjs Fark

:|-¢ Jain

C?J Decision

-I:\C% MNeode W <<Task Node==
| Task Mode = approval

o Process State

3% Super State
approve
—4 Transition

w5 <=Task Node==

process reject

shipped

==End State==
complete

Diagram | Swimlanes | Design | Source

32.1.2. Pageflow viewer

This tool let you design to some extend your pageflows and let you build graphical views of them
S0 you can easily share and compare ideas on how it should be designed.

439

Chapter 32. Seam tools

% Select

Marguee ﬁ ==5tart State==
start
) start
“?| Decision

TE FPage
— Transition

==fage=x=>
El

displayGuess
guess false
C?J c=Decision== false C?j {{Dec.:'s..fo.n}}
evaluateGuess evaluateRemainingGues
true true
Tzl ¢<.P:gi',|::a-:a- L=-E| {{.:’:iz}}

Diagrarm | Design | Source

440

Chapter 33.

Seam on OC4J

OC4J (Oracle Containers for Java) 11g (currently a "Technology Preview" release) is Oracle's
JEES application server. Seam application can be deployed to OC4J, but require some additional
configuration changes, and dependencies. This chapter will show you exactly what must be done.
We will start by looking at the building and deploying the JEES5 Hotel Booking example application
which comes with Seam. Then we will deploy a project generated by seam gen . First a basic seam
gen application with RichFaces ajax components, and facelets. Then expand that application to
include Seam security with Drools, JPA provided with hibernate, and automatic CRUD reverse
engineering of a MySQL database.

33.1. Installation and operation of OC4J

First we need to install the target container - OC4j. This chapter requires you to use OC4J 11g
Technology Preview (not OC4J 10g). You can download OC4J 11g from http://www.oracle.com/
technology/tech/java/oc4j/11/ [http://www.oracle.com/technology/tech/java/oc4j/11/] Below are
instructions to install. launch, access, and shutdown the 11g release. For further information on
installing OC4J, consult the r eadmne. t xt distributed with OC4J, or the OC4J installation guide and
release notes.

1. Download and unzip OC4J

2. Make sure you have $JAVA HOMVE and $ORACLE_HOME set as environment variables (
$ORACLE_HOME is the directory to which you unzip OC4J). For further information on installing
OC4J, consult the r eadme. t xt distributed with OC4J

3. Applications (ear/war) are deployed to the $ORACLE_HOVE/ j 2ee/ home/ appli cations
directory.

Note that OC4J does not support hot deployment by default. This means every time you deploy
the application you must restart the server.

4. Start OC4J: $ORACLE_HOME/ j 2ee/ hone/ j ava -jar - XX MaxPernSi ze=256M oc4j . j ar

You must override the default PermGen memory settings using above command. See
OC4J release notes [http://www.oracle.com/technology/tech/java/oc4j/11/oc4j-relnotes.html]
for details.

You will be asked to set the admin password if this is the first time you have started OC4J

5. Once deployed you can check out your applications at ht t p: / /| ocal host : 8888/ <your - app-
pat h>

6. You can stop the server by pressing CTRL- Cin the console on which the server is running.

441

http://www.oracle.com/technology/tech/java/oc4j/11/
http://www.oracle.com/technology/tech/java/oc4j/11/
http://www.oracle.com/technology/tech/java/oc4j/11/
http://www.oracle.com/technology/tech/java/oc4j/11/oc4j-relnotes.html
http://www.oracle.com/technology/tech/java/oc4j/11/oc4j-relnotes.html

Chapter 33. Seam on OC4J

33.2. The j ee5/ booki ng example

The j ee5/ booki ng example is based on the Hotel Booking example (which runs on JBoss AS).
Out of the box it is designed to run on Glassfish, but it's easy to build it for OC4J. It is located in
the $SEAM DI ST/ exanpl es/ j ee5/ booki ng directory.

33.2.1. Booking Example Dependencies

First, lets look at the basic dependencies of the booking example. Armed with this knowledge we
can look at the extra dependencies requirements that OC4J adds.

We will show you how to get these dependencies into the application in Section 33.2.3, “ Building
the j ee5/ booki ng example " below.

33.2.1.1. Core Seam dependencies

e jboss-seam jar — We declare this as an EJB3 module (why? well Seam needs to be able to
interact with container managed transactions; this is implemented as an EJB3 Stateful Session
Bean)

* jboss-el.jar

* jboss-seam ui.jar — Seam's JSF controls depend on Apache's commons-beanutils
* jboss-seam debug. j ar

e jsf-facelets.jar

e richfaces-api.jar , richfaces-inpl.jar and richfaces-ui.jar — which requires
Apache commons-digester and commons-beanutils

33.2.1.2. Extra dependencies
« Hibernate — of course, we decided to use Hibernate as the JPA provider (rather than TopLink
Essentials which ships with OC4J).
To use Hibernate as your JPA provider you need the following jars:
* hibernate.jar
* hi bernate-annotations.jar
* hi bernate-entitynmanager.jar
* hibernate-validator.jar
* jboss-comon-core.jar

e commons- | oggi ng. j ar

442

Booking Example Dependencies

e commons-col | ections.jar
» Third party jars — various jars needed for seam and this example to run.
* javaasist.jar
e domdj.jar
e cglib.jar
e asmjar
e comons-beanutils.jar
e commons-di gester.jar

* | og4j . jar — This can be left out if you are not going to configure log4j. If it is packaged but
not configured logging will be hidden in oc4;.

» Extra OC4J jars — Running Seam on most application servers (such as JBoss AS or Glassfish)
you only need to include the dependencies for those bits of Seam you actually use (e.g. if you
use Seam Text you need to include ANTLR); but, on OC4J, due to its "interesting” classloading
you must always include them:

* hi bernate-search.jar

* hi ber nat e- cormon- annot at i ons. j ar — needed for hibernate search
* | ucene-core.jar — needed for hibernate search

e antlr.jar — needed for Seam Text

e jbpmjpdl.jar — needed for Seam's JBPM

e quartz.jar

» dbunit.jar — needed for some testing classes

e j boss-enbedded- api . j ar — needed for some testing classes

» Drools — needed for Seam Security. We aren't using Seam security with Drools, but have
to include it. Drools consists of 6 jars:

e drool s-core.jar

e drool s-conpiler.jar
e janino.jar

e nvel 141.j ar

e core.jar

443

Chapter 33. Seam on OC4J

e antlr-runtine.jar
Drools integration is not used in the example.

33.2.2. Configuration file changes

There are just a few changes to be made:

web. xm
You need to declare all your ejb's in the web. xm . This is a silly requirement of a number of
JEES application servers - for example OC4J and Glassfish.

This is already done in the example's web.xml file, below is an example.

<ejb-local-ref>
<ejb-ref-name>
jboss-seam-jee5/AuthenticatorAction/local
</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>
org.jboss.seam.example.booking.Authenticator
</local>
<ejb-link>AuthenticatorAction</ejb-link>
</ejb-local-ref>

persi stence. xm
You need to provide the correct configuration for your JPA implementation. We are using
Hibernate and due to OC4J bundling an old ANTLR, we need to use an alternative query
factory, we also want to use the OC4J transaction manager:

For our example modify the r esour ces/ META- | NF/ per si st ence. xm file. Comment out the
Glassfish properties and un-comment the OC4J properties.

<property name="hibernate.dialect"
value="org.hibernate.dialect. HSQLDialect"/>

<property name="hibernate.query.factory_class"
value="org.hibernate.hgl.classic.ClassicQueryTranslatorFactory"/>

<property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.OrionTransactionManagerLookup"/>

33.2.3. Building the jees/booking example

1. Modify the bui | d. xm file in the example:

444

Deploying the Seam application to OC4J

e Un-comment the labeled OC4J-related library properties. This will include all the extra
dependencies discussed above.

It should look like the following:

<!-- add libs for oc4j (eager classloading) -->

<property name="jbpm.lib" value="true"/>

<property name="drools.lib" value="true"/>

<property name="quartz.lib" value="true" />

<property name="search.lib" value="true" />

<property name="dbunit.lib" value="true" />

<property name="jboss-embedded-api.lib" value="true" />

2. Build the demo app by running ant in the exanpl es/ j ee5/ booki ng directory. The build target

is di st/j boss-seam j ee5. ear

3. Copy di st/ j boss-seam j eeb. ear following the instructions below.

33.3. Deploying the Seam application to OC4J

This mini-tutorial describes the (fairly tedious) steps required to deploy a JEE 5 application to
OC4J. It assumes you have already downloaded and installed it following the instructions in
Section 33.1, “Installation and operation of OC4J". It also assumes you are deploying the j ee5/
booki ng example, using the embedded hsqgldb database. To deploy another application you would
need to alter the datasource and application name.

1. Copy hsql db. j ar to OC4J shared library directory: cp ../../seamgen/lib/hsql db.jar
$ORACLE_HOME/ j 2ee/ hone/ appl i b/ (OC4J doesn't come with an embedded database so we
decided to use HSQLDB)

2. Edit the OC4J datasource file $ORACLE_HOVE/ j 2ee/ home/ conf i g/ dat a- sour ces. xm and,
inside <dat a- sour ces> , add

<managed-data-source
connection-pool-name="jee5-connection-pool"
jndi-name="jdbc/__ default"
name="jee5-managed-data-source" />
<connection-pool name="jee5-connection-pool">
<connection-factory
factory-class="org.hsqldb.jdbcDriver"
user="sa"
password=
url="jdbc:hsqldb:." />

445

Chapter 33. Seam on OC4J

</connection-pool>

The j ndi - nanme is used as the j t a- dat a- sour ce in per si st ence. xni .

3. Edit $ORACLE_HOME/ j 2ee/ home/ confi g/ server.xm and, inside <applicati on-server> ,
add

<application name="jboss-seam-jee5"
path="../../nome/applications/jposs-seam-jee5.ear"
parent="default"
start="true" />

To keep things simple use the same names as you used for project.

4. Edit $ORACLE_HOVE/ j 2ee/ horre/ confi g/ def aul t -web-site. xm , and, inside <web- si t e>
, add

<web-app application="jboss-seam-jee5"
name="jboss-seam-jee5"
load-on-startup="true"
root="/seam-jee5" />

The r oot is the context path you will put into your web browser to access the application.

5. Copy the application to OC4J: cp di st/ boss-seamjee5. ear $ORACLE_HOME/ j 2ee/ hone/

appl i cations/

6. Start/stop OC4J following instructions in Section 33.1, “Installation and operation of OC4J"
above.

7. Checkout the app at: htt p: / /1 ocal host : 8888/ seam j ee5

33.4. Deploying an application created using seamgen tO
0C4J

seam gen is a great tool for developers that can quickly get you up and running with a full Seam
application. However the project that it created is configured to run on JBoss AS. This means there
are some extra steps needed to have it execute on OC4j. The following explanation assumes you
are using the command line and a simple text editor, but of course you can use your favorite IDE.
seam gen projects come with support for Eclipse and Netbeans.

We will start by creating and deploying a pretty simple application using seam gen . Then
we'll show you how easy it is to use seam gen and Hibernate Tools to reverse engineer a
database schema into a functional CRUD application. seam gen will create JPA entity beans,

446

Generating a basic seam gen application

Seam Application Framework components and JSF views for you. We will also add Seam security
using Drools.

This tutorial uses MySQL (but of course you could use any database, altering the SQL and
datasources as appropriate); install, configure and run MySQL, then create a database with some
sample data. Don't forget to also download the nysql - connect or - j ava- X. j ar for jdbc support.
When setting up Seam security this tutorial will assume there is a table named User with columns
user nane and passwor d with at least one entry. Beyond that you can set up any type of sample
data and tables you would like.

33.4.1. Generating a basic seam gen application

First we need to tell the seam gen what we want, run ./ seam set up in the seam distribution
directory. Follow the settings example below based on your system and setup (ex. use your
database name instead of oc4j exanpl e).

> /seam setup
Buildfile: build.xml

init:

setup:

[echo] Welcome to seam-gen :-)

[input] Enter your Java project workspace (the directory that contains your
Seam projects) [C:/Projects] [C:/Projects]
/home/jbalunas/workspace

[input] Enter your JBoss home directory [C:/Program Files/jboss-4.2.2.GA]
[C:/Program Files/jboss-4.2.2.GA]
/home/jbalunas/jboss/jboss-4.2.2.GA

[input] Enter the project name [myproject] [myproject]
oc4j_example

[echo] Accepted project name as: oc4j_example

[input] Select a RichFaces skin (not applicable if using ICEFaces) [blueSky]
([blueSky], classic, ruby, wine, deepMarine, emeraldTown, sakura, DEFAULT)

[input] Is this project deployed as an EAR (with EJB components) or a WAR
(with no EJB support) [ear] ([ear], war,)

[input] Enter the Java package name for your session beans [com.mydomain.
oc4j_example] [com.mydomain.oc4j_example]
org.jboss.seam.tutorial.oc4j.action

[input] Enter the Java package name for your entity beans [org.jboss.seam.
tutorial.oc4j.action] [org.jboss.seam.tutorial.oc4j.action]
org.jboss.seam.tutorial.oc4j.model

[input] Enter the Java package name for your test cases [org.jboss.seam.

447

Chapter 33. Seam on OC4J

tutorial.oc4j.action.test] [org.jboss.seam.tutorial.oc4j.action.test]
org.jboss.seam.tutorial.oc4j.test

[input] What kind of database are you using? [hsql] ([hsql], mysql, oracle,
postgres, mssql, db2, sybase, enterprisedb, h2)
mysq|

[input] Enter the Hibernate dialect for your database [org.hibernate.
dialect. MySQLDialect] [org.hibernate.dialect. MySQLDialect]

[input] Enter the filesystem path to the JDBC driver jar [lib/hsgldb.jar]
[lib/hsgldb.jar]
lib/mysgl-connector.jar

[input] Enter JIDBC driver class for your database [com.mysql.jdbc.Driver]
[com.mysql.jdbc.Driver]

[input] Enter the JDBC URL for your database [jdbc:mysql:///test]
[[dbc:mysql://itest]
jdbc:mysql:///locdjexample

[input] Enter database username [sa] [sa]
username

[input] Enter database password [] []
password

[input] skipping input as property hibernate.default_schema.new has already
been set.

[input] Enter the database catalog name (it is OK to leave this blank) [] []

[input] Are you working with tables that already exist in the database? [n]
(v, [nl,)
y
[input] Do you want to drop and recreate the database tables and data in
import.sqgl each time you deploy? [n] (y, [n],)
n
[input] Enter your ICEfaces home directory (leave blank to omit ICEfaces) [] []

[propertyfile] Creating new property file:
/home/jbalunas/workspace/jboss-seam/seam-gen/build.properties
[echo] Installing JDBC driver jar to JBoss server
[copy] Copying 1 file to /home/jbalunas/jboss/jboss-4.2.2.GA/server/default/lib
[echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

Type ./seam new project to create your project and cd /hone/jbal unas/wor kspace/
oc4j _exanpl e to the newly created project.

448

Changes needed for deployment to OC4J

33.4.2. Changes needed for deployment to OC4J

We now need to make some changes to the generated project.
33.4.2.1. Configuration file changes

Let's start with the configuration files:

bui l d. xm

» Change the default target to archive (we aren't going to cover automatic deployment to
0C4J).

<project name="oc4j_example" default="archive" basedir=".">

* OC4Jlooks for the drools file / securi ty. drl file inthe root of the war file instead of the root
of the ear file so we need to have the bui | d. xml move it to the correct location at build time.
The following must be added at the top of the <target nane="war" depends="conpile"
description="Build the distribution .war file"> target.

<copy todir="${war.dir}">

<fileset dir="${basedir}/resources" >
<include name="*.drl" />

<[fileset>

</copy>

resour ces/ META- | NF/ per si st ence- dev. xm

« Alter the j t a- dat a- source to be j dbc/ __oc4j exanpl e (and use this as the j ndi - name
when creating the data source in dat a- sour ces. xm later during deployment).

» Add the properties (described in j ee5/ booki ng example):

<property name="hibernate.query.factory_class"
value="org.hibernate.hql.classic.ClassicQueryTranslatorFactory" />

<property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.OrionTransactionManagerLookup" />

<property name="hibernate.transaction.flush_before completion"
value="true"/>

<property name="hibernate.cache.provider_class"
value="org.hibernate.cache.HashtableCacheProvider"/>

449

Chapter 33. Seam on OC4J

« Remove the JBoss AS specific method of exposing the EntityManagerFactory:

<property
name="jboss.entity.manager.factory.jndi.name"
value="java:/oc4j_exampleEntityManagerFactory">

* You'll need to alter persi stence-prod. xm as well if you want to deploy to OC4J using
the prod profile.

resour ces/ META- | NF/ j boss- app. xm
You can delete this file as we aren't deploying to JBoss AS (j boss- app. xni is used to enable
classloading isolation in JBoss AS)

resources/*-ds. xm
You can delete these file as we aren't deploying to JBoss AS (these files define datasources
in JBoss AS, in OC4J you have to edit the master dat a- sour ces. xni file)

resour ces/ VEEB- | NF/ conponent s. xmi

- Enable container managed transaction integration - add the <transacti on: ej b-
transaction /> component, and it's namespace declaration
xm ns:transaction="http://jboss. conl products/seanitransaction"”

» Alterthejndi -patternto java:conp/env/oc4j exanpl e/ #{ej bNanme}/| ocal

« We want to use a Seam Managed Persistence Context in our application. Unfortunately
0OC4J doesn't expose the EntityManagerFactory in JNDI, but Seam provides a built-in
manager component. To activate add the following entry:

<persistence:entity-manager-factory
auto-create="true"
name="oc4jEntityManagerFactory"
persistence-unit-name="oc4j_example" />

We then need to tell Seam to use it, so we alter the managed- per si st ence- cont ext
injecting the Entity Manager Factory into the existing element:

<persistence:managed-persistence-context
name="entityManager"

auto-create="true"
entity-manager-factory="#{oc4jEntityManagerFactory}" />

450

Changes needed for deployment to OC4J

resour ces/ VEB- | NF/ web. xmni
You must add the Seam container managed transaction integration EJB entry below.
Remember for OC4j you need to declare all your EJBs here if you modify the application
further.

<ejb-local-ref>
<ejb-ref-name>
oc4j_example/EjbSynchronizations/local
</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>
org.jboss.seam.transaction.LocalEjbSynchronizations
</local>
<ejb-link>EjbSynchronizations</ejb-link>
</ejb-local-ref>

resour ces/ META-1 NF/ ori on-appl i cati on. xm

» Thisis afile that you must create so that RichFaces and Ajax4Jsf stylesheets will work with
OC4J. This file basically tells OC4J not force its own inherited URL settings.

<?xml version ='1.0' encoding = 'utf-8'?>

<orion-application
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://xmiIns.oracle.com/oracleas/schema/

orion-application-10_0.xsd"

schema-major-version="10"
schema-minor-version="0"
component-classification="internal">

<imported-shared-libraries>
<remove-inherited name="oracle.xml"/>
</imported-shared-libraries>
</orion-application>

* Now you need to tell the bui | d. xm file that it needs to copy this file to the ear archive.
Find the <target nanme="ear" description="Build the EAR'> target and modify the
<copy todir="${ear.dir}/META-I NF"> section to look like the following:

<copy todir="${ear.dir}/ META-INF">
<fileset dir="${basedir}/resources/META-INF">
<include name="application.xml" />

451

Chapter 33. Seam on OC4J

<include name="orion-application.xml"/>
<include name="jboss-app.xml" />
<[fileset>
</copy>

33.4.2.2. Extra jar dependencies

This application has similar requirements as the j ee5/ booki ng example above.

The bui | d. xm must be modified to add the jars listed below to the generated archive files. Look
for the <fil eset dir="${basedir}"> section below and add the imports underneath the other
libraries being imported.

<target name="ear" description="Build the EAR">
<copy todir="${ear.dir}">
<fileset dir="${basedir}/resources">
<include name="*jpdl.xml" />
<include name="*hibernate.cfg.xml" />
<include name="jbpm.cfg.xml" />
<include name="*drl" />
<ffileset>
<fileset dir="${lib.dir}">
<include name="jboss-seam.jar" />
<[fileset>
<fileset dir="${basedir}">
<include name="lib/jbpm*.jar" />
<include name="lib/jboss-el.jar" />
<include name="lib/drools-*.jar"/>
<include name="lib/janino*.jar"/>
<include name="lib/antlr-*.jar"/>
<include name="lib/mvel*.jar"/>
<include name="lib/richfaces-api*.jar" />
<ffileset>
</copy>
<copy todir="${ear.dir}/ META-INF">
<fileset dir="${basedir}/resources/META-INF">
<include name="application.xml" />
<include name="jboss-app.xml" />
<ffileset>
</copy>
</target>

* Hibernate:

452

Changes needed for deployment to OC4J

<include name="lib/hibernate.jar"/>

<include name="lib/hibernate-annotations.jar"/>

<include name="lib/hibernate-commons-annotations.jar"/>
<include name="lib/hibernate-entitymanager.jar"/>
<include name="lib/hibernate-search.jar"/>

<include name="lib/hibernate-validator.jar"/>

<include name="lib/commons-logging.jar"/>

<include name="lib/commons-collections.jar"/>

<include name="lib/jboss-common-core.jar"/>

» Drools — because we are using Drools to provide Seam Security rules, we need to add
in Eclipse JDT compiler (you don't need this on JBoss AS; again this is due to OC4J's
classloading):

<include name="lib/core.jar"/>

 Third party jars — most of these are only needed because of OC4J's classloading:

<include name="lib/javassist.jar"/>

<include name="lib/quartz.jar"/>

<include name="lib/dbunit.jar"/>

<include name="lib/jboss-embedded-api.jar"/>
<include name="lib/dom4j.jar"/>

<include name="lib/lucene-core.jar"/>
<include name="lib/cglib.jar"/>

<include name="lib/asm.jar"/>

<include name="lib/commons-beanutils.jar"/>
<include name="lib/commons-digester.jar"/>
<include name="lib/antlr.jar"/>

You should end up with something like:

<fileset dir="${basedir}">
<include name="lib/jbpm*.jar" />
<include name="lib/jboss-el.jar" />
<include name="lib/drools-*.jar"/>
<include name="lib/janino*.jar"/>
<include name="lib/antlr-*.jar"/>
<include name="lib/mvel*.jar"/>

453

Chapter 33. Seam on OC4J

<include name="lib/richfaces-api*.jar" />
<include name="lib/hibernate.jar"/>
<include name="lib/hibernate-annotations.jar"/>
<include name="lib/hibernate-commons-annotations.jar"/>
<include name="lib/hibernate-entitymanager.jar"/>
<include name="lib/hibernate-search.jar"/>
<include name="lib/hibernate-validator.jar"/>
<include name="lib/commons-logging.jar"/>
<include name="lib/commons-collections.jar"/>
<include name="lib/jboss-common-core.jar"/>
<include name="lib/core.jar"/>
<include name="lib/javassist.jar"/>
<include name="lib/quartz.jar"/>
<include name="lib/dbunit.jar"/>
<include name="lib/jboss-embedded-api.jar"/>
<include name="lib/dom4j.jar"/>
<include name="lib/lucene-core.jar"/>
<include name="lib/cglib.jar"/>
<include name="lib/asm.jar"/>
<include name="lib/commons-beanutils.jar"/>
<include name="lib/commons-digester.jar"/>
<include name="lib/antlr.jar"/>

<[fileset>

33.4.3. Building and deploying the seam-gen'd application to
0C4J

These instructions are very similar to the ones in Section 33.3, “Deploying the Seam application
to OC4J” but with the correct references for the oc4j _exanpl e application.

« Build your application by calling ant in the base directory of your project (ex. / home/ j bal unas/
wor kspace/ oc4j _exanpl e). The target of the build will be di st/ oc4j _exanpl e. ear .

* Copythenysgl - connect or . j ar file to the $ORACLE_HOME/ j 2ee/ hone/ appl i b directory so that
jdbc drivers are available.

* $ORACLE_HOWE/ j 2ee/ horre/ confi g/ dat a- sour ces. xni

<managed-data-source
connection-pool-name="oc4j-example-connection-pool"
jndi-name="jdbc/__oc4jexample"
name="oc4j-example-managed-data-source" />
<connection-pool

454

Extending example with reverse engineered
CRUD and Drools
name="oc4j-example-connection-pool">

<connection-factory
factory-class="com.mysql.jdbc.Driver"
user="username"
password="password"
url="jdbc:mysql:///oc4j" I>
</connection-pool>

* $ORACLE_HOWE/ j 2ee/ hone/ confi g/ server. xml

<application name="oc4j_example"
path="../../nome/applications/oc4j_example.ear"
parent="default"

start="true" />

e $ORACLE_HQOVE/ j 2ee/ hone/ confi g/ def aul t - web-si te. xm

<web-app application="oc4j_example"
name="oc4j_example"
load-on-startup="true"
root="/oc4j_example" />

 Start/stop OC4J following instructions in the I nstal | ati on and operation of OC4J section
above.

* Checkout the app at: htt p: // 1 ocal host : 8888/ oc4j _exanpl e

33.4.4. Extending example with reverse engineered CRUD and
Drools

In this section we extend the basic seam gen application into a full blown CRUD application based
on an existing database. Plus we will add Dr ool s based security as well.

33.4.4.1. Have seam gen generate your CRUD applications

Type ./ seam generat e-enti ti es in the base directory of your seam distribution. This will create
the entities, the Seam Application Framework classes and the relevant views for the CRUD
application.

That's it...no really...that's it. Build and deploy as before and see for yourself.

455

Chapter 33. Seam on OC4J

33.4.4.2. Hook up drools authentication using your new CRUD
application

As stated above this section assumes your database had a User table with usernane and
passwor d columns with at least one entry. If you don't have this you may need to modify the
aut hent i cat e method below.

Lets link our User entity into Seam Security by making our authenticator class a Stateless Session
Bean (OC4J is a EJB3 container after all!):

1. « Add the @t at el ess annotation to the Aut henti cat or class.
+ Rename the class to Aut hent i cat or Acti on

» Create an interface called Aut hent i cat or which Aut henti cat or Act i on implements (EJB3
requires session beans to have a local interface). Annotate the interface with @ocal , and
add a single method with same signature as the aut henti cat e in Aut henti cat or Action .

@Name("authenticator") @Stateless public class
AuthenticatorAction implements Authenticator {

@Local public interface Authenticator {
public boolean authenticate();

}

2. Use @persistenceContext to inject an EntityManager by adding this line the
Aut hent i cat or Act i on class:

@PersistenceContext private EntityManager entityManager;

3. Implement authenticate:

public boolean authenticate() {
List <User> users = entityManager .createQuery("select u from User u where
u.username = #{identity.username} and
u.password = #{identity.password}") .getResultList();
if (users.size() ==1){
identity.addRole("admin");
return true;
}else{
return false;

456

Finishing up

4. And then add the EJB3 reference to web. xni :

<ejb-local-ref>
<ejb-ref-name>
oc4j_example/AuthenticatorAction/local
</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>
org.jboss.seam.tutorial.oc4j.action.Authenticator
</local>
<ejb-link>AuthenticatorAction</ejb-link>
</ejb-local-ref>

Build and deploy as before and notice that now only actual username and passwords are
accepted.

33.5. Finishing up

That's it, we're through. You now have a great starting point for any Seam based application
deployed to OC4J.

457

458

Chapter 34.

Seam on BEA's Weblogic

Weblogic 10.X is BEA's JEES server offering, currently 10.0.MP1 is their stable release, and
10.3.TP is their latest tech preview release. Seam applications can be deployed and developed
on Weblogic servers, and this chapter will show you how. There are some known issues with the
Weblogic servers that will need to be worked around, and configuration changes that are needed.

First step is to get Weblogic downloaded, installed and running (no small feat). Then we'll talk
about Seam's JEE5 example and the hurdles to getting it running, and what blockers exist. After
that the JPA example will be modified and deployed to the server. Then finally we will create
seam gen application and get it up and running to provide a jump start to your application.

34.1. Installation and operation of Weblogic

First things first we need to get the server installed - and there is a choice to be made. Weblogic
10.0.MP1 is the most recent stable release, while 10.3.TP is a technical preview version that fixes
some things and breaks others.

e bl ogic 10.0.MP1 — Download page [http://commerce.bea.com/
showproduct.jsp?family=WLS&major=10&minor=1]

10.0.MP1 has a known issue with EJBs that use var ar gs in their methods (it confuses them as
transi ent). This causes exceptions when Weblogic attempts to compile the Seam EJBs as
var ar gs are used. There seems to be no work around to this issue in 10.0.MP1. Because of this
only the j pa and WAR based seam gen examples work with this version. See the j ee5/ booki ng
example for more details.

e Wbl ogi ¢ 10.3. TP — Download page [http://commerce.bea.com/
showproduct.jsp?family=WLS&major=10.3Tech&minor=-1&DL=www_WLS_10-
3TechPreview_icon&WT.ac=DL_www_WLS_10.3_TechPreviewicon]

This version still has not fixed the var ar gs bug, and there is a new issue with EJBs that do
not use kodo (BEA's implementation of JPA). See the j ee5/ booki ng example for more details.
However if the var ar gs issue is going to get fixed it will most likely be an update to this version.

For the reasons listed above, and the fact that 10.3.TP gets us closer to the goal of Seam EJB3
support on Weblogic, 10.3.TP will be used for the examples below.

34.1.1. Installing 10.3.TP

Here are the quick steps to installing Weblogic 10.3.TP. For more details or if you are having any
issues please check with the BEA docs at the Tech Preview Doc Center [http://edocs.bea.com/
wis/essex/TechPreview/] . Here we install the RHEL 5 version using the graphical installer:

1. Follow the link given above for 10.3.TP and download the correct version for your environment.
You will need to sign up for an account with BEA in order to do this.

459

http://commerce.bea.com/showproduct.jsp?family=WLS&major=10&minor=1
http://commerce.bea.com/showproduct.jsp?family=WLS&major=10&minor=1
http://commerce.bea.com/showproduct.jsp?family=WLS&major=10&minor=1
http://commerce.bea.com/showproduct.jsp?family=WLS&major=10.3Tech&minor=-1&DL=www_WLS_10-3TechPreview_icon&WT.ac=DL_www_WLS_10.3_TechPreviewicon
http://commerce.bea.com/showproduct.jsp?family=WLS&major=10.3Tech&minor=-1&DL=www_WLS_10-3TechPreview_icon&WT.ac=DL_www_WLS_10.3_TechPreviewicon
http://commerce.bea.com/showproduct.jsp?family=WLS&major=10.3Tech&minor=-1&DL=www_WLS_10-3TechPreview_icon&WT.ac=DL_www_WLS_10.3_TechPreviewicon
http://commerce.bea.com/showproduct.jsp?family=WLS&major=10.3Tech&minor=-1&DL=www_WLS_10-3TechPreview_icon&WT.ac=DL_www_WLS_10.3_TechPreviewicon
http://edocs.bea.com/wls/essex/TechPreview/
http://edocs.bea.com/wls/essex/TechPreview/
http://edocs.bea.com/wls/essex/TechPreview/

Chapter 34. Seam on BEA's Web...

2. You may need to change the the server 103t p_XX. bi n file to be executable:

chmod a+x server103tp_XX.bin

3. Execute the install:

Jserver103tp_XX.bin

4. When the graphical install loads, you need to set the BEA home location. This is where all BEA
applications are installed. This location will be known as $BEA HOME in this document e.qg.:

/home/jbalunas/bea
5. Select Conpl et e as the installation type. You do not need all the extras of the complete install
(such as struts and beehive libraries), but it will not hurt.

6. Then you need to tell it where to install the server components:

$BEA_HOME/wliserver_10.3tp

34.1.2. Creating your Weblogic domain

A Weblogic domain is similar to a JBoss server configuration - it is a self contained server instance.
The Weblogic server you just installed has some example domains, but we are going to create one
just for the seam examples. You can use the existing domains if you wish (modify the instructions
as needed).

1. Start up the Weblogic configuration wizard:

$BEA_HOME/wlserver_10.3tp/common/bin/config.sh

2. Choose to create a new domain, configured to support Wbl ogi ¢ Server TP. Note that this
is the default domain option.

3. Set a username and password for this domain.
4. Next choose Devel opnent Mde and the default JDK when given the option.

5. The next screen asks if you want to customize any setting. Select No.

460

How to Start/Stop/Access your domain

6. Finally set the name of the domain to seam exanpl es and leave the default domain location.

34.1.3. How to Start/Stop/Access your domain

Now that the server is installed and the domain is created you need to know how to start and stop
it, plus how to access its configuration console.

 Starting the domain:

This is the easy part - go to the $BEA HOVE/ user _pr oj ect s/ domai ns/ seam exanpl es/ bi n
directory and run the . / st art Wbl ogi c. sh script.

» Accessing the configuration console:

Launch http://127.0.0. 1: 7001/ consol e in your web browser. It will ask for your username
and password that you entered before. We won't get into this much now, but this is the starting
point for a lot of the various configurations that are needed later.

» Stopping the domain:
There are a couple of options here:
» The recommended way is through the configuration console:
1. Select seam exanpl es on the left hand side of the console.
2. Choose the Cont rol tab in the middle of the page.
3. Select the check box Adni nSer ver in the table.

4. Choose shut down just above the table, and select either Waien wor k conpl et es or For ce
shut down now as appropriate.

5. Then finally confirm that you want to shut this server down.
» Hitting Ct r I - Cin the terminal where you started the domain.

No negative effects have been seen, but we would not recommend doing this while in the
middle of configuration changes in the console.

A note on Weblogic classloading

)

When using the @XQVAI N aut odepl oy directory as described in this chapter you
may see NoCl assDef Found exceptions. If you see this try restarting the Weblogic
server. If you still see it remove the auto-deployed EAR/WAR files, restart the
server, and redeploy. We could not find a specific reason for this, but others
seem to be having this issue as well.

461

Chapter 34. Seam on BEA's Web...

34.2. The j ee5/ booki ng example

Do you want to run Seam using EJB's on Weblogic? If so there are some blockers that keep it
from working. This section describes what changes are needed to the j ee5/ booki ng example to
get it as close to deploying as possible. First we'll talk about the blockers and what they effect.

34.2.1. EJB Blockers with Weblogic

For several releases of Weblogic there has been an issue with compiling EJB's that use variable
arguments in their methods. This is confirmed in the Weblogic 9.X and 10.X versions. We had
hoped that the issue would be resolved in the tech preview release, but it is not. Seam uses
variable arguments in its internal EJB's and so until this is fixed Seam with EJB's will not work.

The gist of the issue is that the Weblogic EJB compiler believes that methods that use var ar gs
are transi ent and the deployment will fail with exceptions like below:

java.io.lOException: Compiler failed executable.exec:
/home/jbalunas/bea/wliserver_10.3tp/user_projects/domains/seam_examples/servers/
AdminServer
/cache/EJBCompilerCache/5yo5dk9ti3yo/org/jboss/seam/async/
TimerServiceDispatcher_gzt5w2_LocalTimerServiceDispatcherlmpl.java:194: modifier transient
not allowed here
public transient javax.ejb.Timer scheduleAsynchronousEvent(java.lang.String argO,
java.lang.Object[] argl)

N
/home/jbalunas/bea/wliserver_10.3tp/user_projects/domains/seam_examples/servers/
AdminServer
/cache/EJBCompilerCache/5yo5dk9ti3yo/org/jboss/seam/async/
TimerServiceDispatcher_gzt5w2_LocalTimerServiceDispatcherlmpl.java:275: modifier transient
not allowed here

public transient javax.ejb.Timer scheduleTimedEvent(java.lang.String arg0,
org.jboss.seam.async.TimerSchedule argl, java.lang.Object[] arg2)

BEA says that this is a bug with Java specification. Sun admits the issue, and provides a work
around, and will not fix the core issue.

* BEA forum [http://forums.bea.com/thread.jspa?threadlD=300002074] — Discusses the issue
and suggests waiting for a new release of 10.X

« BEA forum [http://forums.bea.com/thread.jspa?messagelD=300006290] — Discusses
response from BEA support and that BEA is saying it is an issue with the spec with links to
the bug.

e Sun bug report [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6516895] —
Describes details of the issue, but says that it will not be fixed.

462

http://forums.bea.com/thread.jspa?threadID=300002074
http://forums.bea.com/thread.jspa?threadID=300002074
http://forums.bea.com/thread.jspa?messageID=300006290
http://forums.bea.com/thread.jspa?messageID=300006290
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6516895
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6516895

The j ee5/ booki ng example

So what does that mean to us? At least for now EJB's with variable arguments will not run on
Weblogic.

34.2.1.1. Secondary issue with the Tech Preview

A less severe issue is also present in the tech preview version of Weblogic. You can not use any
JPA provider with EJB's except for the default kodo or openJPA implementation. As you set up
this example you will run into this issue before the var ar gs problem. Unfortunately using kodo or
openJPA does not help with the blocker described above but is important to know.

Other users have seen this issue with the tech preview and | would hope/expect that it will be fixed
in future releases (BEA Forum [http://forums.bea.com/thread.jspa?threadlD=300004403]). The
forum entry has the exact stack trace, and the response from BEA.

34.2.2. The jees/ booki ng €Xample

In this section will will quickly go over the steps needed to get the j ee5/ booki ng example to the
point that blocker shows itself.

34.2.2.1. Setting up the hsql datasource

This example uses the in memory hypersonic database, and the correct data source needs to be
set up. The admin console uses a wizard like set of pages to configure it.

1. Copy hsql db. j ar to weblogic domain's shared library directory: cp ../../seamgen/lib/
hsql db. jar /hone/j bal unas/ bea/ user _proj ect s/ donmai ns/ seam exanpl es/lib

2. Start up the server and navigate to the administration console following Section 34.1.3, “How
to Start/Stop/Access your domain”

3. On the left side tree navigate seam exanpl es - Services- JDBC - Data Sources.
4. You must lock the domain configuration using the button in the upper left box.
5. Then select button New button at the top of the data source table
6. Fill in the following:
a. Name: seam j ee5- ds
b. JNDI Name: seam j ee5- ds
c. Database Type and Driver: ot her
d. Select Next button
7. Select Next button on the Transacti on Opti ons page

8. Fill in the following on the Connecti on Properti es page:

463

http://forums.bea.com/thread.jspa?threadID=300004403
http://forums.bea.com/thread.jspa?threadID=300004403

Chapter 34. Seam on BEA's Web...

a. Database Name: hsql db
b. Host Name: 127.0.0. 1
c. Port: 9001
d. Username: sa will empty password fields.
e. Select Next button
9. Fill in the following on the Connecti on Properti es page:
a. Driver Class Name: or g. hsql db. j dbcDri ver
b. URL:j dbc: hsqgl db: .
¢. Username: sa will empty password fields.
d. Leave the rest of the fields empty.
e. Select Next button
10Choose the target domain for the data source in our case the only one Adni nSer ver . Click Next .

11Finally - apply the changes by selecting the Appl y Changes button in the upper left corner.

34.2.2.2. Configuration and Build changes

resour ces/ META- | NF/ per si st ence. xni

» Because the tech preview version will only work with kodo or openJPA as the JPA provider
you must change the provider to :

<provider>org.apache.openjpa.persistence.PersistenceProviderImpl</provider>

* Next you need to change the j t a- dat a- sour ce to what you entered above :

<jta-data-source>seam-jee5-ds</jta-data-source>

» The other properties in the file are hibernate specific and are not used by openJPA but can
be left in.

34.2.2.3. Deploying the Application

There are some changes needed to the build script and then we can attempt to deploy the app.

464

The j ee5/ booki ng example

bui | d. xm
Weblogic does not ship with a default JSF implementation so we need to add the JSF libraries
to the WAR. Add the following to the bui | d. xnl and this will add the needed jars. Note that
ri chf aces-api.jar is only needed if using the admin console to deploy. For some reason
Weblogic needs it in the WAR when it scans the application.

<fileset id="war.lib.extras" dir="${seam.dir}">
<include name="lib/jsf-api.jar" />
<include name="lib/jsf-impl.jar" />
<include name="lib/richfaces-api.jar" />
<[fileset>

Now we can build the application by running ant ar chi ve at the base of the example directory.

Because we chose to create our Weblogic domain in development mode we can deploy the
application by putting the EAR file in the domains autodeploy directory.

cp ./dist/jpboss-seam-jee5.ear
/home/jbalunas/beal/user_projects/domains/seam_examples/autodeploy

Here is where we see the var ar gs issue. In the console output you will some Kodo warnings,
then exceptions and compile errors like the one below.

<Error> <EJB> <BEA-012036> <Compiling generated EJB classes produced
the following Java compiler error message:

/home/jbalunas/bea/user_projects/domains/seam_examples/servers/AdminServer/cache/
EJBCompilerCache/5yo5dkoti3yo/org/jboss/seam/async/
TimerServiceDispatcher_qzt5w2_LocalTimerServiceDispatcherimpl.java:32:
modifier transient not allowed here
public transient void scheduleTransactionSuccessEvent(java.lang.String arg0,
java.lang.Object[] argl)

N
/home/jbalunas/beal/user_projects/domains/seam_examples/servers/AdminServer/cache/
EJBCompilerCache/5yo5dkoti3yo/org/jboss/seam/async/
TimerServiceDispatcher_gzt5w2_LocalTimerServiceDispatcherlmpl.java:113:

modifier transient not allowed here
public transient javax.ejb.Timer scheduleAsynchronousEvent(java.lang.String argO,
java.lang.Object[] argl)

465

Chapter 34. Seam on BEA's Web...

This is as far as we can go with Weblogic using EJB's with seam until the var ar gs issue is
resolved.

34.3. The jpa booking example

This is the Hotel Booking example implemented in Seam POJO and Hibernate JPA and does
not require EJB3 support to run. The example already has a breakout of configurations and build
scripts for many of the common containers including Weblogic 10.X

First we'll build the example for Weblogic 10.x and do the needed steps to deploy. Then we'll talk
about what is different between the Weblogic versions, and with the JBoss AS version.

34.3.1. Building and deploying jpa booking example
Step one setup the datasource, step two build the app, step three deploy.

34.3.1.1. Setting up the datasource

The Weblogic 10.X version of the example uses the in memory hsgl database instead of the built
in PointBase database. If you wish to use the PointBase database you must setup a PointBase
datasource, and adjust the hibernate setting in persi st ence. xnl to use the PointBase dialect.
For reference the j pa/ webl ogi c92 example uses PointBase.

Configuring the datasource is very similar to the jee5 Section 34.2.2.1, “Setting up the hsql
datasource”. Follow the steps in that section, but use the following entries where needed.

« DataSource Name: seam j pa- ds

¢ JNDI Name: seam j pa-ds

34.3.1.2. Building the example

Building it only requires running the correct ant command:
ant -f build-weblogic10.xml

This will create container specific distribution and exploded archive directories.
34.3.1.3. Deploying the example

When we installed Weblogic following Section 34.1.2, “Creating your Weblogic domain” we chose
to have the domain in development mode. This means to deploy the application all we need to
do is copy it into the autodeploy directory.

466

What's different with Weblogic 10.x

cp ./dist-weblogic10/jboss-seam-jpa.war
/home/jbalunas/beal/user_projects/domains/seam_examples/autodeploy

Check out the application at the following htt p: / /| ocal host : 7001/ j boss- seam j pa/ .

34.3.2. What's different with Weblogic 10.x

» Between the the Weblogic 10.x and 9.2 examples there are several differences:

* META-| NF/ persi stence.xml — The 9.2 version is configured to use the Poi nt Base
database and a pre-installed datasource. The 10.x version uses the hsgl database and a
custom datasource.

* WEB- | NF/ webl ogi ¢. xmi — This file and its contents solve an issue with an older version of
the ANTLR libraries that Weblogic 10.x uses internally. OC4J have the same issue as well.

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-web-app

xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd">

<container-descriptor>
<prefer-web-inf-classes>true</prefer-web-inf-classes>
</container-descriptor>
</weblogic-web-app>

This file make Weblogic use classes and libraries in the web application before other libraries
in the classpath. Without this change hibernate is required to use a older, slower query factory
by setting the following property in the META- | NF/ per si st ence. xni file.

<property name="hibernate.query.factory_class"
value="org.hibernate.hql.classic.ClassicQueryTranslatorFactory"/>

* EB- | NF/ conponent s. xm — In the Weblogic 10.x version JPA entity transactions is enabled
by adding:

<transaction:entity-transaction entity-manager="#{em}"/>

467

Chapter 34. Seam on BEA's Web...

« Between the Weblogic 10.x version and the JBoss version there are more changes. Here is
the rundown:

e META- | NF/ per si st ence. xml — Except for datasource name the WebLogic version sets:
<property
name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.WeblogicTransactionManagerLookup"/>
e WEB- | NF/ j boss-web. xm — The JBoss version uses this instead of webl ogi c. xm

* WEB-INF/|i b — The Weblogic version requires several library packages because they are
not included as they are with JBoss AS. These are primarily for hibernate, JSF-RI support
and their dependencies.

¢ To use Hibernate as your JPA provider you need the following jars:
* hibernate.jar
* hi bernate-annotations.jar
* hi bernate-entitymanager.jar
* hi bernate-validator.jar
* jboss-common-core.jar
e comons-1| oggi ng. j ar
e comons-col | ections.jar
* jboss-archive-browsing.jar

« Seam requires JSF 1.2 and these are jars needed for that. Weblogic 10.3.TP does not ship
JSF libraries installed by default.

e jsf-api.jar
e jsf-inpl.jar
< Various third party jars that Weblogic needs:
e antlr.jar
e cglib.jar
e asmjar

e domdj.jar

468

Deploying an application created using seam
gen on Weblogic 10.x

e el-ri.jar

* javassist.jar

34.4. Deploying an application created using seamgen ON
Weblogic 10.x

seam gen is a very useful tool for developers to quickly get an application up and running, and
provides a foundation to add your own functionality. Out of box seam gen will produce applications
configured to run on JBoss AS. These instructions will show the steps needed to get it to run on
Weblogic.

seam gen was build for simplicity so, as you can imagine, deploying an application generated by
seam gen to Weblogic 10.x is not too hard. Basically it consists of updating or removing some
configuration files, and adding dependent jars that Weblogic 10.x does not ship with.

We still need to live within the constraints imposed to us by Weblogic, and because of that
this example will generate a WAR based application instead of an EAR. See Section 34.2.1, “EJB
Blockers with Weblogic” for details.

This example will cover the basic seam gen WAR deployment. This will demonstrate Seam
POJO components, Hibernate JPA, Facelets, Drools security, RichFaces, and a configurable
DataSource.

34.4.1. Running seam gen SEtup

The first thing we need to do it tell seam gen about the project we want to make. This is done by
running . / seam set up in the base directory of the Seam distribution. Note the paths here are my
own, feel free to change for you environment.

.Jseam setup
Buildfile: build.xml

init:

setup:

[echo] Welcome to seam-gen :-)

[input] Enter your Java project workspace (the directory that contains your
Seam projects) [C:/Projects] [C:/Projects]
/home/jbalunas/workspace

[input] Enter your JBoss home directory [C:/Program Files/jboss-4.2.2.GA]
[C:/Program Files/jboss-4.2.2.GA]
/home/jbalunas/jboss/jboss-4.2.2.GA

[input] Enter the project name [myproject] [myproject]
weblogic-example

469

Chapter 34. Seam on BEA's Web...

[echo] Accepted project name as: weblogic_example
[input] Select a RichFaces skin (not applicable if using ICEFaces) [blueSky]
([blueSky], classic, ruby, wine, deepMarine, emeraldTown, sakura, DEFAULT)

[input] Is this project deployed as an EAR (with EJB components) or a WAR
(with no EJB support) [ear] ([ear], war,)
war

[input] Enter the Java package name for your session beans [org.jboss.seam.
tutorial.weblogic.action] [org.jboss.seam.tutorial.weblogic.action]
org.jboss.seam.tutorial.weblogic.action

[input] Enter the Java package name for your entity beans [org.jboss.seam.
tutorial.weblogic.model] [org.jboss.seam.tutorial.weblogic.model]
org.jboss.seam.tutorial.weblogic.model

[input] Enter the Java package name for your test cases [org.jboss.seam.
tutorial.weblogic.action.test] [org.jboss.seam.tutorial.weblogic.action.test]
org.jboss.seam.tutorial.weblogic.test

[input] What kind of database are you using? [hsql] ([hsql], mysql, oracle,
postgres, mssql, db2, sybase, enterprisedb, h2)

[input] Enter the Hibernate dialect for your database [org.hibernate.
dialect. HSQLDialect] [org.hibernate.dialect. HSQLDialect]

[input] Enter the filesystem path to the JDBC driver jar [lib/hsgldb.jar]
[lib/hsgldb.jar]

[input] Enter JIDBC driver class for your database [org.hsqldb.jdbcDriver]
[org.hsqldb.jdbcDriver]

[input] Enter the JDBC URL for your database [jdbc:hsgldb:.] [jdbc:hsqgldb:.]

[input] Enter database username [sa] [sa]

[input] Enter database password [] []

[input] Enter the database schema name (it is OK to leave this blank) [] []

[input] Enter the database catalog name (it is OK to leave this blank) [] []

[input] Are you working with tables that already exist in the database? [n]

(v, [nl.)

[input] Do you want to drop and recreate the database tables and data in
import.sql each time you deploy? [n] (y, [n],)

470

What to change for Weblogic 10.X

[input] Enter your ICEfaces home directory (leave blank to omit ICEfaces) [] []

[propertyfile] Creating new property file:
/rhdev/projects/jboss-seam/cvs-head/jboss-seam/seam-gen/build.properties
[echo] Installing JDBC driver jar to JBoss server
[copy] Copying 1 file to /home/jbalunas/jboss/jboss-4.2.2.GA/server/default/lib
[echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

Type ./seam new project to create your project and cd /hone/j bal unas/wor kspace/
webl ogi c_exanpl e to see the newly created project.

34.4.2. What to change for Weblogic 10.X

First we change and delete some configuration files, then we update the libraries that are deployed
with the application.

34.4.2.1. Configuration file changes

bui I d. xm

» Change the default target to ar chi ve.

<project name="weblogic_example" default="archive" basedir=".">

resour ces/ META- | NF/ per si st ence-dev. xni

» Alter the jta-data-source to be seam gen-ds (and use this as the j ndi - name when
creating the data source in Weblogic's admin console)

» Change the transaction type to RESOURCE_LOCAL so that we can use JPA transactions.

<persistence-unit name="weblogic_example" transaction-type="RESOURCE_LOCAL">

« Add/modify the properties below for Weblogic support:

<property name="hibernate.cache.provider_class"
value="org.hibernate.cache.HashtableCacheProvider"/>

<property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.WeblogicTransactionManagerLookup"/>

* Remove the JBoss AS specific method of exposing the EntityManagerFactory:

471

Chapter 34. Seam on BEA's Web...

<property
name="jboss.entity.manager.factory.jndi.name"
value="java:/weblogic_exampleEntityManagerFactory">

* You'll need to alter per si st ence- prod. xnl as well if you want to deploy to Weblogic using
the prod profile.

resour ce/ VEB- | NF/ webl ogi c. xm
You will need to create this file and populate it following description of WEB-INF/weblogic.xml
[467].

resour ce/ EEB- | NF/ conmponent s. xm
We want to use JPA transactions so we need to add the following to let Seam know.

<transaction:entity-transaction entity-manager="#{entityManager}"/>

You will also need to add the transaction namespace and schema location to the top of the
document.

xmins:transaction="http://jboss.com/products/seam/transaction”

http://jboss.com/products/seam/transaction http://jboss.com/products/seam/transaction-
2.1.xsd

resour ces/ V\EEB- | NF/ j boss- app. xni
You can delete this file as we aren't deploying to JBoss AS (j boss- app. xni is used to enable
classloading isolation in JBoss AS)

resour ces/ *-ds. xm
You can delete these files as we aren't deploying to JBoss AS. These files define datasources
in JBoss AS, in Weblogic we will use the administration console.

34.4.2.2. Library changes

The seam gen application has very similar library dependencies as the j pa example above. See
Section 34.3.2, “What's different with Weblogic 10.x". Below is the changes that are needed to
get them in this application.

» Missing jars — There are two libraries that seam gen does not provide by default. These need
to be copied into your projects | i b directory manually.

472

What to change for Weblogic 10.X

* jboss-archive-browsing.jar — can be found in the @EAM DI ST/ exanpl es/ j pa/ | i b directory.
* el-ri.jar — is also found in the @EAM DI ST/ exanpl es/j pa/ | i b directory.

* build.xml — Now we need to adjust the bui | d. xm . Find the target war and add the following
to the end of the target.

<copy todir="${war.dir/ WEB-INF/lib">
<fileset dir="${lib.dir}">
<!--JSF implementation -->
<include name="jsf-api.jar" />
<include name="jsf-impl.jar" />

<!-- Misc 3rd party -->

<include name="commons-logging.jar" />
<include name="dom4j.jar" />

<include name="javassist.jar" />

<include name="cglib.jar" />

<include name="antlr.jar" />

<!-- Hibernate -->

<include name="hibernate.jar" />

<include name="hibernate-commons-annotations.jar" />
<include name="hibernate-annotations.jar" />

<include name="hibernate-entitymanager.jar" />
<include name="hibernate-validator.jar" />

<include name="jboss-archive-browsing.jar" />

<I-- Needed for Drools -->
<include name="core.jar"/>
<[fileset>
</copy>

34.4.2.3. seam gen development profile issue

There is currently an issue with the behavior of the seam gen WAR application when built using the
development profile (the default) and deployed to Weblogic. The symptom is that the login page
of the application will always show a | ogi n fai | ed message.

When the application is built using the development profile the act i on class files are placed in the
VEB- | NF/ dev directory. Normally these class files are hot deployable and managed by Seam. This
does not happen on Weblogic (see jira JBSEAM-2455 [http://jira.jboss.com/jira/browse/IJBSEAM-
2455] for details and status).

473

http://jira.jboss.com/jira/browse/JBSEAM-2455
http://jira.jboss.com/jira/browse/JBSEAM-2455
http://jira.jboss.com/jira/browse/JBSEAM-2455

Chapter 34. Seam on BEA's Web...

To workaround this you need to modify the bui | d-dev. properties file. Simply remove the
property acti on. di r =VEEB- | NF/ dev.

34.4.3. Building and Deploying your application

Finally all that's left is deploying the application. This involves setting up a data source, building
the app, and deploying it.

34.4.3.1. Setting up the data source

Configuring the datasource is very similar to the jee5 Section 34.2.2.1, “Setting up the hsql
datasource”. Except for what is listed here follow that instruction from the link.

« DataSource Name: seam gen- ds

¢ JNDI Name: seam gen-ds

34.4.3.2. Building the application

This is as easy as typing ant in the projects base directory.
34.4.3.3. Deploying the example

When we installed Weblogic following Section 34.1.2, “Creating your Weblogic domain” we chose
to have the domain in development mode. This means to deploy the application all we need to
do is copy it into the autodeploy directory.

cp ./dist/weblogic_example.war /home/jbalunas/bea/user_projects/domains/seam_examples/
autodeploy

Check out the application at the following htt p: / /| ocal host : 7001/ webl ogi c_exanpl e/ .

474

Chapter 35.

Seam on IBM's Websphere

Websphere 6.1.x is IBM's application server offering. The latest release is 6.1.0.13 which does
not have EJB3 or JEE5 support. There is a recently released (Nov 07) EJB3 feature pack which
provides some support for EIB3 and JPA. Currently there is no true JEE5 offering from IBM. This
causes some issues with Seam integration with applications that use EJB3.

First we will go over some basic information about the Websphere environment that we used for
these examples. After a good deal of research and work we were able to get EJB3 applications to
function correctly. We will go over the details of those steps with the jee5 example. We will also
deploy the the JPA example application.

35.1. Websphere environment and deployment
information

Websphere is a commercial product and so we will not discuss the details of its installation other
than to say follow the directions provided by your particular installation type and license. This
section will detail the exact server versions used, installation tips, and some custom properties
that are needed for all of the examples.

35.1.1. Installation versions and tips

All of the examples and information in this chapter are based on the the latest version of
Websphere at the time of this writing.

* Websphere Application Server 6.1.0.13 [http://www.ibm.com/developerworks/websphere/
zones/was/]

» Feature Pack for EJB 3.0 for Websphere Application Server V6.1 (3.0.6.1.0.13) [http://www-
1.ibm.com/support/docview.wss?rs=180&uid=swg21287579]

The EJB3 feature pack that we installed came with the 6.1.0.13 patch version of Websphere.
Installing the feature pack does not ensure that your server will have the proper environment
for EJB3 applications. Be sure that as part of the installation of the feature pack you follow the
instructions to create a new server profile with the EJB3 feature pack enabled, or augment one of
your existing ones. This can also be done after the installation by running the profile managment
tool.

A note about restarting the server

=de

There are times that restarting the server will be required after deploying or
changes the examples in this chapter. Its does not seem like every change requires
a restart. If you get errors or exceptions after modifing a property or deploying an
application try to restart the server.

475

http://www.ibm.com/developerworks/websphere/zones/was/
http://www.ibm.com/developerworks/websphere/zones/was/
http://www.ibm.com/developerworks/websphere/zones/was/
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21287579
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21287579
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21287579

Chapter 35. Seam on IBM's Web...

35.1.2. Required custom properties

There are a couple of Websphere custom properties that are required for Seam integration. These
properties are not needed specifically for Seam, but work around some issues with Websphere.
These are set following the instructions here : Setting web container custom properties [http://
www-1.ibm.com/support/docview.wss?rss=180&uid=swg21284395]

e prependSl ashToResource = "true" — This solves a fairly common issue with Websphere
where applications are not using a leading "/" when attempting to access resources. If this is
not set then a j ava. net . Mal f or mredURLExcept i on will be thrown. With this property set you
will still see warnings, but the resources will be retrieved as expected.

° Detailed can be found at:

[http://Iwww-1.ibm.com/
support/docview.wss?uid=swg21190234]

e comibm ws. webcont ai ner.invokefiltersconpatibility = "true" — This solves an
issue with Websphere where it throws a Fi | eNot FoundExcepti on when a web application
attempts to access a file resource that does not actually exist on disk. This is a common practice
in modern web applications where filters or servlets are used to process resource requests like
these. This issue manifests itself as failures to retrieve JavaScript, CSS, images, etc... when
requesting a web page.

° Detailed can be found at:
[http:/

/www-1.ibm.com/support/docview.wss?uid=swg24014758]

35.2. The j ee5/ booki ng example

The j ee5/ booki ng example is based on the Hotel Booking example (which runs on JBoss AS).
Out of the box it is designed to run on Glassfish, but with the steps below it can be deployed to
Websphere. It is located in the $SEAM DI ST/ exanpl es/ j ee5/ booki ng directory.

As stated before the EJB3 feature pack does not provide a full j ee5 implementation. This means
that there are some tricks to getting an application deployed and functioning.

35.2.1. Configuration file changes

Below are the configuration file changes that are need to the base example.

476

http://www-1.ibm.com/support/docview.wss?rss=180&uid=swg21284395
http://www-1.ibm.com/support/docview.wss?rss=180&uid=swg21284395
http://www-1.ibm.com/support/docview.wss?rss=180&uid=swg21284395
http://www-1.ibm.com/support/docview.wss?uid=swg21190234
http://www-1.ibm.com/support/docview.wss?uid=swg21190234
http://www-1.ibm.com/support/docview.wss?uid=swg21190234
http://www-1.ibm.com/support/docview.wss?uid=swg24014758
http://www-1.ibm.com/support/docview.wss?uid=swg24014758
http://www-1.ibm.com/support/docview.wss?uid=swg24014758

Configuration file changes

resour ces/ EEB- | NF/ conponent s. xmi
We need to change the way that we look up EJBs for Websphere. We need to remove the
/1 ocal from the end of the j ndi - pat t er n attribute. It should look like this:

<core:init jndi-pattern="java:comp/env/jboss-seam-jee5/#{ejpName}" debug="true"/>

resour ces/ VIEB- | NF/ web. xmi
This is the first place that we notice an unexpected change because this is not full j ee5
implementation.

Websphere does not support Servl et 2.5, itrequires Servl et 2. 4. For this change we need
to adjust the top of the web. xnm file to look like the following:

<xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_ 4.xsd">

Next, we have to make some changes to the EJB references in the web. xnl . These changes
are what will allow Websphere to bind the EJB2 references in the web module to the the actual
EJB3 beans in the EAR module. Replace all of the ej b- | ocal - r ef s when the values below.

<!-- JEE5 EJB3 names -->

<ejb-local-ref>
<ejb-ref-name>jboss-seam-jee5/AuthenticatorAction</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.example.booking.Authenticator</local>

</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>jboss-seam-jee5/BookingListAction</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.example.booking.BookingList</local>

477

Chapter 35. Seam on IBM's Web...

</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>jboss-seam-jee5/RegisterAction</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.example.booking.Register</local>
</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>jboss-seam-jee5/ChangePasswordAction</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.example.booking.ChangePassword</local>
</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>jboss-seam-jee5/HotelBookingAction</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.example.booking.HotelBooking</local>
</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>jboss-seam-jee5/HotelSearchingAction</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.example.booking.HotelSAll of the examples and informaearching</
local>
</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>jboss-seam-jee5/EjbSynchronizations</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.transaction.LocalEjbSynchronizations</local>
</ejb-local-ref>

The important change is that there is an empty | ocal - hone element for each EJB. This tells
Websphere to make the correct bindings between the web module and the EJB3 beans. The
ej b-1i nk element is simply not used.

478

Configuration file changes

Note also that Ej bSynchr oni zat i ons is a built-in Seam EJB and not part of the Hotel Booking
example. This means that if your application's conponent s. xm specifies t r ansact i on: ej b-
transaction, then you must include:

<ejb-local-ref>
<ejb-ref-name>myapp/EjbSynchronizations</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.transaction.LocalEjbSynchronizations</local>
</ejb-local-ref>

in your web.xml. If you don't include it, you'll get the following error:

Name comp/env/myapp/EjbSynchronizations not found in context java:

resour ces/ META- | NF/ per si st ence. xm
For this example we will be using the default datasource that comes with Websphere. To do
this change the j t a- dat a- sour ce element:

<jta-data-source>DefaultDatasource</jta-data-source>

Then we need to adjust some of the hibernate properties. First comment out the Glassfish
properties. Next you need to add/change the properties:

<!--<property name="hibernate.transaction.flush_before _completion" value="true"/>-->
<property name="hibernate.cache.provider_class"
value="org.hibernate.cache.HashtableCacheProvider"/>
<property name="hibernate.dialect" value="GlassfishDerbyDialect"/>
<property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.WebSphereExtendedJTATransactionLookup"/>

* hi bernate.transaction. nanager | ookup_cl ass — Standard Hibernate transaction
manager property for Websphere 6.X

479

Chapter 35. Seam on IBM's Web...

e hibernate.transaction.flush_before_conpl eti on — This is commented out because
we want the container to manage the transactions. Also if this is set to t r ue an exception
will be thrown by Websphere when the EJBContext is looked up.

com.ibm.wsspi.injectionengine.InjectionException:
EJBContext may only be looked up by or injected into an EJB

* hi bernate. di al ect —From WAS 6.1.0.9 on the embedded DB was switched to the same
Derby DB in Glassfish.

resour ces/ d assfi shDerbyDi al ect. cl ass
You will need to get the @ assfi shDerbyDi al ect. cl ass and copy it into the / resour ces
directory. The class exists in the JPA example and can be copied using the command below
assuming you are in j ee5/ booki ng directory:

cp ..I../[jpalresources-websphere61/WEB-INF/classes/GlassfishDerbyDialect.class
Jresources

This class will be put into the j boss-seamjee5. jar file using changes to the build.xml
discussed later.

resources/import. sql
This file must also be copied from the JPA example because either the Derby DB or the dialect
does not support changes to the | D column. The files are identical except for the column
difference. Use the following command to make the copy

cp ../../[jpalresources-websphere6l/import.sql ./resources

35.2.2. Building the j ees/ booki ng example
In order to get the changes we have made into our application we need to make some changes to

the bui | d. xm . There are also some additional jars that are required by our application in order
to work with Websphere. This section will cover what changes are needed to the bui | d. xm .

35.2.2.1. New libraries dependencies

» JSF libraries — Websphere 6.1 comes with its own version of JSF 1.1 (Seam requires JSF 1.2).
So we must add these jars to our application:

480

Building the j ee5/ booki ng example

e jsf-api.jar
e jsf-inpl.jar
« Since Websphere is not a fully compliant JEE5 implementation we need to add these EL libraries:
e el-api.jar
e el-ri.jar

* jboss-seam jar — for some reason when deploying the application through the Websphere
administration console it can not find the j boss- seam j ar at the base of the EAR archive. This
means that we need to add it to the / 1 i b of the EAR.

« Finally we remove the | og4j . j ar so that all of the log output from our application will be added
to the Websphere log. Additional steps are required to fully configure log4j and those are outside
of the scope of this document.

35.2.2.2. Updating the buiid.xm file

Add the following entry to the bottom of the buil d. xm file. This overrides the default fileset
that is used to populate the j boss-seam j ee5. j ar. The primary change is the addition of the
G assfishDerbyDi al ect. cl ass:

<fileset id="jar.resources" dir="${resources.dir}">
<include name="import.sql" />
<include name="seam.properties" />
<include name="GlassfishDerbyDialect.class" />
<include name="META-INF/persistence.xml" />
<include name="META-INF/ejb-jar.xml" />
<[fileset>

Next we need to add the library dependencies discussed above. For this add the following to
bottom of the ear . | i b. ext r as fileset entry:

<l--<include name="lib/log4j.jar" />-->

<include name="lib/el-api.jar" />

<include name="examples/jpa/lib/el-ri.jar" />

<include name="lib/jsf-api.jar" />

<include name="lib/jsf-impl.jar" />

<include name="lib/jboss-seam.jar" />
<[fileset>

481

Chapter 35. Seam on IBM's Web...

Now all that is left is to execute the ant archi ve task and the built application will be in the
j ee5/ booki ng/ di st directory.

35.2.3. Deploying the application to Websphere

So now we have everything we need in place. All that is left is to deploy it - just a few steps more.

For this we will use Websphere's administration console. As before there are some tricks and tips
that must be followed.

The steps below are for the Websphere version stated above, yours may be slightly different.

1. Log in to the administration console

https://localhost:9043/ibm/console

2. Access the Enterpri se Application menu option under the Appl i cati ons top menu.

3. Atthe top of the Ent er pri se Appli cati on table select | nst al | . Below are installation wizard
pages and what needs to done on each:

* Preparing for the application installation

» Browse to the exanpl es/j ee5/ booki ng/ di st/ boss- seam j ee5. ear file using the file
upload widget.

» Select the Next button.
* Select installation options

» Select the Depl oy enterprise beans check box. This is needed unless you used a
Websphere tool to package the application.

» Select the Next button.
e Map nodul es to servers
» No changes needed here as we only have one server. Select the Next button.

« Map EJB references to beans This page will list all of the beans that we entered in the
web.xml.

» Make sure that Al l ow EJB reference targets to resolve autonmatically check
box is selected. This will tell Websphere to bind our EJB3 beans to the EJB references
in the web module.

* Select the Next button.

e Map virtual hosts for Wb nodul es

482

Deploying the application to Websphere

* No changes needed here. Select the Next button.
e Sunmmary
* No changes needed here. Select the Fi ni sh button.
* Installation
* Now you will see it installing and deploying your application.

* When if finishes select the Save link and you will be returned to the Enterprise
Appl i cati ons table.

. Now that we have our application installed we need to make some adjustments to it before
we can start it:

 Starting from the Ent er pri se Appl i cati ons table select the Seam Booki ng link.
e Select the Manage Modul es link.
e Select the j boss- seam j ee5. war link.

e Change the O ass |oader order combo box to Cl asses |oaded with application
class | oader first.

» Select Appl y and then Save options.

* Return the Seam Booki ng page.

« On this page select the O ass | oadi ng and update detection link.

» Select the radio button for Cl asses | oaded with application class | oader first.

« Even though we are not enabling class reload you must also enter a valid number in the
Polling interval for updated fil es textarea (zero works fine).

» Select Appl y and then Save options.

* You should verify that the change you just made has been remembered. We have had
problems with the last class loader change not taking effect - even after a restart. If the
change did not take you will need to do it manually, following these directions:

» Open the following file in a text editor of your choice:

$WebSpherelnstall/$yourServerName/profiles/$yourProfileName/config/cells/
$yourCellName/applications/Seam Booking.ear/deployments/
Seam Booking/deployment.xml

483

Chapter 35. Seam on IBM's Web...

» Modify the following line so that PARENT FI RST is now PARENT LAST:

<classloader xmi:id="Classloader_#######" mode="PARENT_FIRST"/>
» Save the file and now when go to the O ass | oadi ng and update detection page you
should see Cl asses | oaded with application class |oader first selected.

5. To start the application returnto the Ent er pri se Appl i cat i ons table and select our application
in the list. Then choose the St art button at the top of the table.

6. You can now access the application at ht t p: / /| ocal host : 9080/ seam j ee5/ .

A note about Websphere Stateful bean timeouts

j=deo

The default timeout period for a Websphere 6.1 Stateful EJB is 10 minutes. This
means that you may see some EJB timeout exceptions after some idle time. It is
possible to adjust the timeout of the Stateful EJBs on an individual basis, but that is
beyond the scope of this document. See the Websphere documentation for details.

35.3. Thejpa booking example

Thankfully getting the j pa example to work is much easier than the j ee5 example. This is the Hotel
Booking example implemented in Seam POJOs and using Hibernate JPA with JPA transactions.
It does not require EJB3 support to run.

The example already has a breakout of configurations and build scripts for many of the common
containers including Websphere.

First thing we are going to do is build and deploy that example. Then we'll go over some key
changes that we needed.

35.3.1. Building the jpa example

Building it only requires running the correct ant command:
ant websphere61

This will create container specific distribution and exploded archive directories with the
webspher e61 label.

484

Deploying the j pa example

35.3.2. Deploying the jpa example

This is similar to the j ee5 example at Section 35.2.3, “Deploying the application to Websphere”,
but without so many steps.

 Fromthe Enterprise Applications table select the I nstal | button.
* Preparing for the application installation

* Browse to the exanpl es/j pa/ di st - webspher e61/j boss-seam j pa. war file using the file
upload widget.

* Inthe Cont ext root text box enterj boss-seamj pa.

* Select the Next button.
» Select the Next button for the next three pages, no changes are needed.
* Summary page

* Review the settings if you wish and select the Fi ni sh button to install the application.
When installation finished select the Save link and you will be returned to the Ent er pri se
Appl i cati ons table.

« As with the j ee5 example there are some class loader changes needed before we start the
application. Follow the instructions at installation adjustments for jee5 example but exchange
j boss- seam j pa for Seam Booki ng.

 Finally start the application by selecting it in the Ent er pri se Appl i cati ons table and clicking
the St art button.

 You can now access the application at the http://1ocal host: 9080/ j boss-seam j pa/
index. htm .

35.3.3. Whats different for Websphere 6.1

The differences between the JPA examples that deploys to JBoss 4.2 and Websphere 6.1 are
mostly expected; library and configuration file changes.

 Configuration file changes

* WEB- I NF/ web. xm — the only significant change is that Websphere 6.1 only support Ser vl et
2. 4 so the top of this file was changed.

* META- | NF/ per si st ence. xnl — the main changes here are for the datasource JNDI path,
switching to the Websphere 6.1 transaction manager look up class, and changing the
hibernate dialect to be d assfi shDer byDi al ect .

485

Chapter 35. Seam on IBM's Web...

e WEB-I NF/ cl asses/ @ assfi shDerbyDi al ect. cl ass — this class is needed for the
hibernate dialect change to G assfi shDer byDi al ect

e import.sqgl — either for the dialect or Derby DB the | D column can not be populated by this
file and was removed.

« Changes for dependent libraries

VEB- | NF/ | i b — The Websphere version requires several library packages because they are
not included as they are with JBoss AS. These are primarily for hibernate, JSF-RI support and
their dependencies. Below are listed only the additional jars needed above and beyond the
JBoss JPA example.

» To use Hibernate as your JPA provider you need the following jars:
* hibernate.jar
* hi bernate-annotations.jar
* hi ber nat e- conmons- annot ati ons. j ar
* hibernate-entitymanager.jar
* hi bernate-validator.jar
e conmons-col | ections.jar
* j boss-archive-browsing.jar

» Seam requires JSF 1.2 and these are the jars needed for that. Websphere 6.1 ships with its
own implementation of JSF 1.1.

e jsf-api.jar
e jsf-inpl.jar
e el-ri.jar
e el-api.jar
» Various third party jars that Websphere needs:
e antlr.jar
e cglib.jar
e asmjar
e domdj . jar

* javassist.jar
486

Deploying an application created using seam
gen on Websphere 6.1.0.13

35.4. Deploying an application created using seamgen ON
Websphere 6.1.0.13

seam gen is a very useful tool for developers to quickly get an application up and running, and
provides a foundation to add your own functionality. Out of box seam gen will produce applications
configured to run on JBoss AS. These instructions will show the steps needed to get it to run
on Websphere. As stated above in Section 35.2, “ The j ee5/ booki ng example ” there are some
tricky changes needed to get an EJB3 application running. This section will take you through the
exact steps.

35.4.1. Running seam gen Setup

The first step is setting up seam gen to construct the base project. There are several choices
made below, specifically the datasource and hibernate values that we will adjust once the project
is created.

.Jseam setup
Buildfile: build.xml

init:

setup:

[echo] Welcome to seam-gen :-)

[input] Enter your Java project workspace (the directory that contains your
Seam projects) [C:/Projects] [C:/Projects]
/home/jbalunas/workspace

[input] Enter your JBoss home directory [C:/Program Files/jboss-4.2.2.GA]
[C:/Program Files/jboss-4.2.2.GA]
/home/jbalunas/jboss/jboss-4.2.2.GA

[input] Enter the project name [myproject] [myproject]
websphere_example

[echo] Accepted project name as: websphere_example

[input] Do you want to use ICEFaces instead of RichFaces [n] (y, [n],)

[input] skipping input as property icefaces.home.new has already been set.
[input] Select a RichFaces skin [blueSky] ([blueSky], classic, ruby, wine,
deepMarine, emeraldTown, sakura, DEFAULT)

[input] Is this project deployed as an EAR (with EJB components) or a WAR
(with no EJB support) [ear] ([ear], war,)

[input] Enter the Java package name for your session beans [org.jboss.seam.

487

Chapter 35. Seam on IBM's Web...

tutorial.websphere.action] [org.jboss.seam.tutorial.websphere.action]
org.jboss.seam.tutorial.websphere.action

[input] Enter the Java package name for your entity beans [org.jboss.seam.
tutorial.websphere.model] [org.jboss.seam.tutorial. websphere.model]
org.jboss.seam.tutorial.websphere.model

[input] Enter the Java package name for your test cases [org.jboss.seam.
tutorial.websphere.action.test] [org.jboss.seam.tutorial.websphere.action.test]
org.jboss.seam.tutorial.websphere.test

[input] What kind of database are you using? [hsql] ([hsql], mysql, oracle,
postgres, mssql, db2, sybase, enterprisedb, h2)

[input] Enter the Hibernate dialect for your database [org.hibernate.
dialect. HSQLDialect] [org.hibernate.dialect. HSQLDialect]

[input] Enter the filesystem path to the JDBC driver jar [lib/hsgldb.jar]
[lib/hsgldb.jar]

[input] Enter JIDBC driver class for your database [org.hsqldb.jdbcDriver]
[org.hsqldb.jdbcDriver]

[input] Enter the JDBC URL for your database [jdbc:hsqldb:.]
[i[dbc:hsqgldb:.]

[input] Enter database username [sa] [sa]

[input] Enter database password [] []

[input] Enter the database schema name (it is OK to leave this blank) [] []
[input] Enter the database catalog hame (it is OK to leave this blank) [] []

[input] Are you working with tables that already exist in the database? [n]

(v, [n],)

[input] Do you want to drop and recreate the database tables and data in
import.sqgl each time you deploy? [n] (y, [n],)

[propertyfile] Creating new property file:

Irhdev/projects/jboss-seam/svn-seam_2_ 0/jboss-seam-2_0/seam-gen/build.properties
[echo] Installing JDBC driver jar to JBoss server
[copy] Copying 1 file to /home/jbalunas/jboss/jboss-4.2.2.GA/server/default/lib
[echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

488

Changes needed for deployment to Websphere

Total time: 3 minutes 5 seconds

Type ./seam new project to create your project and cd /hone/j bal unas/wor kspace/
webspher e_exanpl e to the newly created structure.

35.4.2. Changes needed for deployment to Websphere
We now need to make some changes to the generated project.

35.4.2.1. Configuration file changes

resour ces/ META- | NF/ per si st ence- dev. xm

« Alter the jta-data-source to be Defaul t Dat asour ce. We are going to be using the
integrated Websphere DB.

« Add or change the properties below. These are described in detail at Section 35.2, “ The
j ee5/ booki ng example "

<property name="hibernate.dialect" value="GlassfishDerbyDialect"/>

<property name="hibernate.hbm2ddl.auto" value="update"/>

<property name="hibernate.show_sql" value="true"/>

<property name="hibernate.format_sql" value="true"/>

<property name="hibernate.cache.provider_class"
value="org.hibernate.cache.HashtableCacheProvider"/>

<property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.WebSphereExtendedJTATransactionLookup"/>

* Remove the JBoss AS specific method of exposing the EntityManagerFactory:

<property
name="jboss.entity.manager.factory.jndi.name"
value="java:/websphere_exampleEntityManagerFactory">

* You'll need to alter persi st ence-prod. xm as well if you want to deploy to Websphere
using the prod profile.

resour ces/ d assfi shDerbyDi al ect. cl ass
As with other examples we need to include this class for DB support. It can be copied from
the j pa example into the webspher e_exanpl e/ r esour ces directory.

489

Chapter 35. Seam on IBM's Web...

cp $SEAM/examples/jpa/resources-websphere61/WEB-INF/classes/
GlassfishDerbyDialect.class
Jresources

resour ces/ META- | NF/ j boss- app. xm
You can delete this file as we aren't deploying to JBoss AS (j boss- app. xni is used to enable
classloading isolation in JBoss AS)

resources/*-ds. xm
You can delete these file as we aren't deploying to JBoss AS (these files define datasources

in JBoss AS, we are using Websphere's default datasource)
r esour ces/ VEEB- | NF/ conponent s. xmi

- Enable container managed transaction integration - add the <transacti on: ej b-
transaction /> component, and it's namespace declaration
xm ns:transaction="http://jboss. conl products/seanitransaction"”

e Alterthejndi -patternto java:conp/env/websphere_exanpl e/ #{ ej bNane}

« We do not need managed- per si st ence- cont ext for this example and so can delete its
entry.

<persistence:managed-persistence-context name="entityManager"
auto-create="true"
persistence-unit-jndi-name="java:/websphere_exampleEntityManagerFactory"/>

resour ces/ VIEB- | NF/ web. xm
Websphere does not support Servl et 2.5, it required Servl et 2. 4. For this change we
need to adjust the top of the web. xn file to look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2 4.xsd">

As with the j ee5/ booki ng example we need to add EJB references to the web.xml. These
references require the empty | ocal - horre to flag them for Websphere to perform the proper
binding.

490

Changes needed for deployment to Websphere

<ejb-local-ref>
<ejb-ref-name>websphere_example/AuthenticatorAction</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.tutorial.websphere.action.Authenticator</local>
</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>websphere_example/EjbSynchronizations</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local>org.jboss.seam.transaction.LocalEjbSynchronizations</local>
</ejb-local-ref>

35.4.2.2. Creating the Aut henti cat or Acti on EJB

We want to take the existing Aut hent i cat or Seam POJO component and create an EJB3 out of it.

Rename the class to Aut hent i cat or Acti on
Add the @t at el ess annotation to the new Aut hent i cat or Acti on class.

Create an interface called Aut hent i cat or which Aut henti cat or Act i on implements (EJB3
requires session beans to have a local interface). Annotate the interface with @ocal , and
add a single method with same signature as the aut henti cat e in Aut henti cat or Acti on .

@Name("authenticator") @Stateless public class
AuthenticatorAction implements Authenticator {

@Local public interface Authenticator {
public boolean authenticate();

2. We've already added its reference to the web. xni file so are good to go.

35.4.2.3. Extra jar dependencies and other changes to the build. xn

This application has similar requirements as the j ee5/ booki ng example.

491

Chapter 35. Seam on IBM's Web...

e Change the default target to archi ve (we aren't going to cover automatic deployment to
Websphere).

<project name="websphere_example" default="archive" basedir=".">

* Websphere looks for the drools / security. drl file in the root of the war file instead of the
root of the webspher e_exanpl e. j ar so we need to have the bui | d. xmi move it to the correct
location at build time. The following must be added at the top of the <target nane="war"
depends="conpi | e" description="Build the distribution .war file"> target.

<copy todir="${war.dir}">
<fileset dir="${basedir}/resources" >
<include name="*drl" />
<[fileset>
</copy>

* We need to ge the d assfi shDer byDi al ect . cl ass into our application jar. To do that find the
j ar task and modify the top of it so that it looks like this:

<target name="jar" depends="compile,copyclasses"
description="Build the distribution .jar file">
<copy todir="${jar.dir}">
<fileset dir="${basedir}/resources">
<include name="seam.properties" />
<include name="*drl" />
<include name="GlassfishDerbyDialect.class" />
<[fileset>
</copy>

* Next we need to get the j boss-seamjar into the base of the EAR file. For deployment
Websphere requires this jar to be in both the /1i b directory and at the base of the EAR. You
must add the following to the ar chi ve task:

<fileset dir="${lib.dir}">
<include name="jboss-seam.jar" />

492

Changes needed for deployment to Websphere

<[fileset>

So that the whole ar chi ve task looks like:

<target name="archive" depends="jar,war,ear"
description="Package the archives">
<jar jarfile="${dist.dir}/${project.name}.jar" basedir="${jar.dir}"/>
<jar jarfile="${dist.dir}/${project.name}.war" basedir="${war.dir}"/>
<jar jarfile="${dist.dir}/${project.name}.ear">
<fileset dir="%{ear.dir}"/>
<fileset dir="${dist.dir}">
<include name="${project.name}.jar"/>
<include name="${project.name}.war"/>
<[fileset>
<fileset dir="${lib.dir}">
<include name="jboss-seam.jar" />
<[fileset>
<[jar>
</target>

« Now we need to get extra jars into the bui | d. xml . Look for the <fi |l eset dir="${basedir}">
section of the task below. Add the new includes at the bottom of the fileset.

<target name="ear" description="Build the EAR">
<copy todir="${ear.dir}">
<fileset dir="${basedir}/resources">
<include name="*jpdl.xml" />
<include name="*hibernate.cfg.xml" />
<include name="jbpm.cfg.xml" />
<ffileset>
<fileset dir="${lib.dir}">
<include name="jboss-seam.jar" />
<[fileset>
<fileset dir="${basedir}">
<include name="lib/jbpm*.jar" />
<include name="lib/jboss-el.jar" />
<include name="lib/drools-*.jar"/>
<include name="lib/core.jar"/>
<include name="lib/janino*.jar"/>
<include name="lib/antlr-*.jar"/>

493

Chapter 35. Seam on IBM's Web...

<include name="lib/mvel*.jar"/>
<include name="lib/richfaces-api*.jar" />
<[fileset>
</copy>
<copy todir="${ear.dir}/ META-INF">
<fileset dir="${basedir}/resources/META-INF">
<include name="application.xml" />
<include name="jboss-app.xml" />
<[fileset>
</copy>
</target>

» Hibernate dependencies

<l-- Hibernate and deps -->

<include name="lib/hibernate.jar"/>

<include name="lib/hibernate-commons-annotations.jar"/>
<include name="lib/hibernate-annotations.jar"/>

<include name="lib/hibernate-entitymanager.jar"/>
<include name="lib/hibernate-validator.jar"/>

<include name="lib/jboss-common-core.jar" />

» JSF dependencies. You will need to copy the el -ri . j ar fromthe $SEAM exanpl es/jpal/lib
directory.

<l-- jsf libs -->

<include name="lib/jsf-api.jar" />
<include name="lib/jsf-impl.jar" />
<include name="lib/el-api.jar" />
<include name="lib/el-ri.jar"/>

 Third party dependencies. You will need to copy the j boss- ar chi ve- br owsi ng. j ar from the
$SEAM exanpl es/ j pa/ | i b directory into the the projects /| i b directory. You will also need
to acquire the concurrent. j ar and place it in the same directory. You can get this from any
jboss distribution or just search for it.

<l-- 3rd party and supporting jars -->
<!--<include name="lib/log4j.jar" />-->

494

Changes needed for deployment to Websphere

<include name="lib/javassist.jar"/>

<include name="lib/dom4j.jar" />

<include name="lib/jboss-archive-browsing.jar" />
<include name="lib/concurrent.jar" />

<include name="lib/cglib.jar"/>

<include name="lib/asm.jar"/>

<include name="lib/antlr.jar" />

<include name="lib/commons-logging.jar" />
<include name="lib/commons-collections.jar" />

* jboss-seamjar - thisis needed in both the ear base and /1 i b directory.

<l-- seam jar -->
<include name="lib/jboss-seam.jar" />

You should end up with something like:

<fileset dir="${basedir}">
<include name="lib/jbpm*.jar" />
<include name="lib/jboss-el.jar" />
<include name="lib/drools-*.jar"/>
<include name="lib/core.jar"/>
<include name="lib/janino*.jar"/>
<include name="lib/antlr-*.jar"/>
<include name="lib/mvel*.jar"/>
<include name="lib/richfaces-api*.jar" />

<!l-- Hibernate and deps -->

<include name="lib/hibernate.jar"/>

<include name="lib/hibernate-commons-annotations.jar"/>
<include name="lib/hibernate-annotations.jar"/>

<include name="lib/hibernate-entitymanager.jar"/>
<include name="lib/hibernate-validator.jar"/>

<include name="lib/jboss-common-core.jar" />

<l-- jsf libs -->

<include name="lib/jsf-api.jar" />
<include name="lib/jsf-impl.jar" />
<include name="lib/el-api.jar" />
<include name="lib/el-ri.jar"/>

495

Chapter 35. Seam on IBM's Web...

<l-- 3rd party and supporting jars -->
<!--<include name="lib/log4j.jar" />-->

<include name="lib/javassist.jar"/>

<include name="lib/dom4j.jar" />

<include name="lib/jboss-archive-browsing.jar" />
<include name="lib/concurrent.jar" />

<include name="lib/cglib.jar"/>

<include name="lib/asm.jar"/>

<include name="lib/antlr.jar" />

<include name="lib/commons-logging.jar" />
<include name="lib/commons-collections.jar" />

<l-- seam jar -->
<include name="lib/jboss-seam.jar" />

<[fileset>

35.

4.2.4. Building and deploying the seam-gen'd application to

Websphere

e Build your application by calling ant

webspher e_exanpl e. ear .

» Todeploy the application follow the instructions here : Section 35.2.3, “Deploying the application
to Websphere” but use references to this project webspher e_exanpl e instead of j boss- seam

j eeb.

« C

heckout the app at: ht t p: / /| ocal host : 9080/ webspher e_exanpl e/ i ndex. ht ni

496

in the base directory of your project (ex. /
home/ j bal unas/ wor kspace/ webspher e_exanpl e). The target of the build will be dist/

Chapter 36.

Dependencies

36.1. Project Dependencies

This section both lists the compile-time and runtime dependencies for Seam. Where the type
is listed as ear, the library should be included in the /lib directory of your application's ear file.
Where the type is listed as war , the library should be placed in the / WEB- | NF/ | i b directory of your
application's war file. The scope of the dependency is either all, runtime or provided (by JBoss

AS 4.2).

Up to date version information and complete dependency information is not included in the docs,
but is provided in the / dependency-r eport . t xt which is generated from the Maven POMs stored
in/ bui | d. You can generate this file by running ant dependencyReport .

36.1.1. Core

Table 36.1.

Name

j boss-seamj ar

j boss- seam debug. j ar

j boss-seamioc.jar

j boss-seam pdf . j ar

j boss-seam
renoting.jar

j boss-seamui . j ar

jsf-api.jar
jsf-inmpl.jar
jsf-facelets.jar
urlrewite.jar

quartz.jar

Scope

all

runtime

runtime

runtime

runtime

runtime

provided
provided
runtime
runtime

runtime

Type

ear

war

war

war

war

war

war
war

ear

Notes

The core Seam library, always
required.

Include during development
when enabling Seam's debug
feature

Required when using Seam with
Spring

Required when using Seam's
PDF features

Required when using Seam
Remoting

Required to use the Seam JSF
controls

JSF API

JSF Reference Implementation
Facelets

URL Rewrite library

Required when you wish
to use Quartz with Seam's
asynchronous features

497

Chapter 36. Dependencies

36.1.2. RichFaces

Table 36.2. RichFaces dependencies

Name Scope
richfaces-api.jar all
ri chfaces-inpl.jar runtime
richfaces-ui.jar runtime

36.1.3. Seam Mail

Table 36.3. Seam Mail Dependencies

Name Scope
activation.jar runtime
nail.jar runtime
mail-ra.jar compile

only
j boss-seam mail . j ar runtime

36.1.4. Seam PDF

Table 36.4. Seam PDF Dependencies

Name Type
itext.jar runtime
jfreechart.jar runtime
j comon. j ar runtime
j boss-seam pdf. | ar runtime

36.1.5. JBoss Rules

Type

ear

war

war

Type
ear

ear

war

Scope

war

war

war

war

Notes

Required to use RichFaces.
Provides API classes that you
may wish to use from your
application e.g. to create a tree

Required to use RichFaces.

Required to use RichFaces.
Provides all the Ul components.

Notes
Required for attachment support

Required for outgoing mail
support

Required for incoming malil
support

mail-ra.rar should be deployed to
the application server at runtime

Seam Mail

Notes
PDF Library
Charting library
Required by JFreeChart

Seam PDF core library

The JBoss Rules libraries can be found in the dr ool s/ i b directory in Seam.

498

JBPM

Table 36.5. JBoss Rules Dependencies

Name Scope Type Notes
antlr-runtine.jar runtime ear ANTLR Runtime Library
core.jar runtime ear Eclipse JDT
dr ool s-conpi l er.jar runtime ear
drool s-core.jar runtime ear
j ani no. j ar runtime ear
nvel . j ar runtime ear

36.1.6. JBPM

Table 36.6. JBPM dependencies

Name Scope Type Notes
jbpmjpdl.jar runtime ear
36.1.7. GWT

These libraries are required if you with to use the Google Web Toolkit (GWT) with your Seam
application.

Table 36.7. GWT dependencies

Name Scope Type Notes
gwt -servlet.jar runtime war The GWT Servlet libs
36.1.8. Spring

These libraries are required if you with to use the Spring Framework with your Seam application.

Table 36.8. Spring Framework dependencies

Name Scope Type Notes

spring.jar runtime ear The Spring Framework library

36.1.9. Groovy

These libraries are required if you with to use Groovy with your Seam application.

Table 36.9. Groovy dependencies

Name Scope Type Notes

groovy-all.jar runtime ear The Groovy libs

499

Chapter 36. Dependencies

36.2. Dependency Management using Maven

Maven offers support for transitive dependency management and can be used to manage the
dependencies of your Seam project. You can use Maven Ant Tasks to integrate Maven into your
Ant build, or can use Maven to build and deploy your project.

We aren't actually going to discuss how to use Maven here, but just run over some basic POMs
you could use.

Released versions of Seam are available in http://repository.jposs.org/maven2 and nightly
snapshots are available in http://snapshots.jboss.org/maven2.

All the Seam artifacts are available in Maven:

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-ui</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-pdf</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-remoting</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-ioc</artifactld>
</dependency>

500

Dependency Management using Maven

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam-ioc</artifactld>
</dependency>

This sample POM will give you Seam, JPA (provided by Hibernate) and Hibernate Validator:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4 0 _0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>org.jboss.seam.example/groupld>
<artifactld>my-project</artifactld>
<version>1.0</version>
<name>My Seam Project</name>
<packaging>jar</packaging>
<repositories>
<repository>
<id>repository.jboss.org</id>
<name>JBoss Repository</name>
<url>http://repository.jboss.org/maven2</url>
</repository>
</repositories>

<dependencies>

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-validator</artifactld>
<version>3.0.0.GA</version>
</dependency>

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-annotations</artifactld>
<version>3.3.0.ga</version>

</dependency>

<dependency>
<groupld>org.hibernate</groupld>

501

Chapter 36. Dependencies

<artifactld>hibernate-entitymanager</artifactld>
<version>3.3.1.ga</version>
</dependency>

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>jboss-seam</artifactld>
<version>2.0.0.GA</version>
</dependency>

</dependencies>

</project>

502

	Seam - Contextual Components
	Table of Contents
	Introduction to JBoss Seam
	1. Contribute to Seam

	Chapter 1. Seam Tutorial
	1.1. Try the examples
	1.1.1. Running the examples on JBoss AS
	1.1.2. Running the examples on Tomcat
	1.1.3. Running the example tests

	1.2. Your first Seam application: the registration example
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The Seam component deployment descriptor: components.xml
	1.2.1.5. The web deployment description: web.xml
	1.2.1.6. The JSF configration: faces-config.xml
	1.2.1.7. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.8. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.9. The view: register.xhtml and registered.xhtml
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. Clickable lists in Seam: the messages example
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.jsp

	1.3.2. How it works

	1.4. Seam and jBPM: the todo list example
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. Seam pageflow: the numberguess example
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A complete Seam application: the Hotel Booking example
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam UI control library
	1.6.5. The Seam Debug Page

	1.7. A complete application featuring Seam and jBPM: the DVD Store example
	1.8. An example of Seam with Hibernate: the Hibernate Booking example
	1.9. A RESTful Seam application: the Blog example
	1.9.1. Using "pull"-style MVC
	1.9.2. Bookmarkable search results page
	1.9.3. Using "push"-style MVC in a RESTful application

	Chapter 2. Getting started with Seam, using seam-gen
	2.1. Before you start
	2.2. Setting up a new Eclipse project
	2.3. Creating a new action
	2.4. Creating a form with an action
	2.5. Generating an application from an existing database
	2.6. Generating an application from existing JPA/EJB3 entities
	2.7. Deploying the application as an EAR
	2.8. Seam and incremental hot deployment
	2.9. Using Seam with JBoss 4.0
	2.9.1. Install JBoss 4.0
	2.9.2. Install the JSF 1.2 RI

	Chapter 3. Getting started with Seam, using JBoss Tools
	3.1. Before you start
	3.2. Setting up a new Seam project
	3.3. Creating a new action
	3.4. Creating a form with an action
	3.5. Generating an application from an existing database
	3.6. Seam and incremental hot deployment with JBoss Tools

	Chapter 4. The contextual component model
	4.1. Seam contexts
	4.1.1. Stateless context
	4.1.2. Event context
	4.1.3. Page context
	4.1.4. Conversation context
	4.1.5. Session context
	4.1.6. Business process context
	4.1.7. Application context
	4.1.8. Context variables
	4.1.9. Context search priority
	4.1.10. Concurrency model

	4.2. Seam components
	4.2.1. Stateless session beans
	4.2.2. Stateful session beans
	4.2.3. Entity beans
	4.2.4. JavaBeans
	4.2.5. Message-driven beans
	4.2.6. Interception
	4.2.7. Component names
	4.2.8. Defining the component scope
	4.2.9. Components with multiple roles
	4.2.10. Built-in components

	4.3. Bijection
	4.4. Lifecycle methods
	4.5. Conditional installation
	4.6. Logging
	4.7. The Mutable interface and @ReadOnly
	4.8. Factory and manager components

	Chapter 5. Configuring Seam components
	5.1. Configuring components via property settings
	5.2. Configuring components via components.xml
	5.3. Fine-grained configuration files
	5.4. Configurable property types
	5.5. Using XML Namespaces

	Chapter 6. Events, interceptors and exception handling
	6.1. Seam events
	6.2. Page actions
	6.3. Page parameters
	6.3.1. Mapping request parameters to the model

	6.4. Propagating request parameters
	6.5. Conversion and Validation
	6.6. Navigation
	6.7. Fine-grained files for definition of navigation, page actions and parameters
	6.8. Component-driven events
	6.9. Contextual events
	6.10. Seam interceptors
	6.11. Managing exceptions
	6.11.1. Exceptions and transactions
	6.11.2. Enabling Seam exception handling
	6.11.3. Using annotations for exception handling
	6.11.4. Using XML for exception handling
	6.11.4.1. Suppressing exception logging

	6.11.5. Some common exceptions

	Chapter 7. Conversations and workspace management
	7.1. Seam's conversation model
	7.2. Nested conversations
	7.3. Starting conversations with GET requests
	7.4. Using <s:link> and <s:button>
	7.5. Success messages
	7.6. Natural conversation ids
	7.7. Creating a natural conversation
	7.8. Redirecting to a natural conversation
	7.9. Workspace management
	7.9.1. Workspace management and JSF navigation
	7.9.2. Workspace management and jPDL pageflow
	7.9.3. The conversation switcher
	7.9.4. The conversation list
	7.9.5. Breadcrumbs

	7.10. Conversational components and JSF component bindings
	7.11. Concurrent calls to conversational components
	7.11.1. RichFaces Ajax

	Chapter 8. Pageflows and business processes
	8.1. Pageflow in Seam
	8.1.1. The two navigation models
	8.1.2. Seam and the back button

	8.2. Using jPDL pageflows
	8.2.1. Installing pageflows
	8.2.2. Starting pageflows
	8.2.3. Page nodes and transitions
	8.2.4. Controlling the flow
	8.2.5. Ending the flow
	8.2.6. Pageflow composition

	8.3. Business process management in Seam
	8.4. Using jPDL business process definitions
	8.4.1. Installing process definitions
	8.4.2. Initializing actor ids
	8.4.3. Initiating a business process
	8.4.4. Task assignment
	8.4.5. Task lists
	8.4.6. Performing a task

	Chapter 9. Seam and Object/Relational Mapping
	9.1. Introduction
	9.2. Seam managed transactions
	9.2.1. Disabling Seam-managed transactions
	9.2.2. Configuring a Seam transaction manager
	9.2.3. Transaction synchronization

	9.3. Seam-managed persistence contexts
	9.3.1. Using a Seam-managed persistence context with JPA
	9.3.2. Using a Seam-managed Hibernate session
	9.3.3. Seam-managed persistence contexts and atomic conversations

	9.4. Using the JPA "delegate"
	9.5. Using EL in EJB-QL/HQL
	9.6. Using Hibernate filters

	Chapter 10. JSF form validation in Seam
	Chapter 11. Groovy integration
	11.1. Groovy introduction
	11.2. Writing Seam applications in Groovy
	11.2.1. Writing Groovy components
	11.2.1.1. Entity
	11.2.1.2. Seam component

	11.2.2. seam-gen

	11.3. Deployment
	11.3.1. Deploying Groovy code
	11.3.2. Native .groovy file deployment at development time
	11.3.3. seam-gen

	Chapter 12. The Seam Application Framework
	12.1. Introduction
	12.2. Home objects
	12.3. Query objects
	12.4. Controller objects

	Chapter 13. Seam and JBoss Rules
	13.1. Installing rules
	13.2. Using rules from a Seam component
	13.3. Using rules from a jBPM process definition

	Chapter 14. Security
	14.1. Overview
	14.1.1. Which mode is right for my application?

	14.2. Requirements
	14.3. Disabling Security
	14.4. Authentication
	14.4.1. Configuration
	14.4.2. Writing an authentication method
	14.4.2.1. Identity.addRole()
	14.4.2.2. Special Considerations

	14.4.3. Writing a login form
	14.4.4. Simplified Configuration - Summary
	14.4.5. Handling Security Exceptions
	14.4.6. Login Redirection
	14.4.7. HTTP Authentication
	14.4.7.1. Writing a Digest Authenticator

	14.4.8. Advanced Authentication Features
	14.4.8.1. Using your container's JAAS configuration

	14.5. Error Messages
	14.6. Authorization
	14.6.1. Core concepts
	14.6.2. Securing components
	14.6.2.1. The @Restrict annotation
	14.6.2.2. Inline restrictions

	14.6.3. Security in the user interface
	14.6.4. Securing pages
	14.6.5. Securing Entities
	14.6.5.1. Entity security with JPA
	14.6.5.2. Entity security with a Managed Hibernate Session

	14.7. Writing Security Rules
	14.7.1. Permissions Overview
	14.7.2. Configuring a rules file
	14.7.3. Creating a security rules file
	14.7.3.1. Wildcard permission checks

	14.8. SSL Security
	14.9. CAPTCHA
	14.9.1. Configuring the CAPTCHA Servlet
	14.9.2. Adding a CAPTCHA to a form
	14.9.3. Customising the CAPTCHA algorithm

	14.10. Security Events
	14.11. Run As
	14.12. Extending the Identity component

	Chapter 15. Internationalization and themes
	15.1. Locales
	15.2. Labels
	15.2.1. Defining labels
	15.2.2. Displaying labels
	15.2.3. Faces messages

	15.3. Timezones
	15.4. Themes
	15.5. Persisting locale and theme preferences via cookies

	Chapter 16. Seam Text
	16.1. Basic fomatting
	16.2. Entering code and text with special characters
	16.3. Links
	16.4. Entering HTML

	Chapter 17. iText PDF generation
	17.1. Using PDF Support
	17.1.1. Creating a document
	17.1.2. Basic Text Elements
	17.1.3. Headers and Footers
	17.1.4. Chapters and Sections
	17.1.5. Lists
	17.1.6. Tables
	17.1.7. Document Constants
	17.1.7.1. Color Values
	17.1.7.2. Alignment Values

	17.1.8. Configuring iText

	17.2. Charting
	17.3. Bar codes
	17.4. Rendering Swing/AWT components
	17.5. Further documentation

	Chapter 18. Email
	18.1. Creating a message
	18.1.1. Attachments
	18.1.2. HTML/Text alternative part
	18.1.3. Multiple recipients
	18.1.4. Multiple messages
	18.1.5. Templating
	18.1.6. Internationalisation
	18.1.7. Other Headers

	18.2. Receiving emails
	18.3. Configuration
	18.3.1. mailSession
	18.3.1.1. JNDI lookup in JBoss AS
	18.3.1.2. Seam configured Session

	18.4. Meldware
	18.5. Tags

	Chapter 19. Asynchronicity and messaging
	19.1. Asynchronicity
	19.1.1. Asynchronous methods
	19.1.2. Asynchronous methods with the Quartz Dispatcher
	19.1.3. Asynchronous events

	19.2. Messaging in Seam
	19.2.1. Configuration
	19.2.2. Sending messages
	19.2.3. Receiving messages using a message-driven bean
	19.2.4. Receiving messages in the client

	Chapter 20. Caching
	20.1. Using JBossCache in Seam
	20.2. Page fragment caching

	Chapter 21. Web Services
	21.1. Configuration and Packaging
	21.2. Conversational Web Services
	21.2.1. A Recommended Strategy

	21.3. An example web service

	Chapter 22. Remoting
	22.1. Configuration
	22.2. The "Seam" object
	22.2.1. A Hello World example
	22.2.2. Seam.Component
	22.2.2.1. Seam.Component.newInstance()
	22.2.2.2. Seam.Component.getInstance()
	22.2.2.3. Seam.Component.getComponentName()

	22.2.3. Seam.Remoting
	22.2.3.1. Seam.Remoting.createType()
	22.2.3.2. Seam.Remoting.getTypeName()

	22.3. Evaluating EL Expressions
	22.4. Client Interfaces
	22.5. The Context
	22.5.1. Setting and reading the Conversation ID
	22.5.2. Remote calls within the current conversation scope

	22.6. Batch Requests
	22.7. Working with Data types
	22.7.1. Primitives / Basic Types
	22.7.1.1. String
	22.7.1.2. Number
	22.7.1.3. Boolean

	22.7.2. JavaBeans
	22.7.3. Dates and Times
	22.7.4. Enums
	22.7.5. Collections
	22.7.5.1. Bags
	22.7.5.2. Maps

	22.8. Debugging
	22.9. The Loading Message
	22.9.1. Changing the message
	22.9.2. Hiding the loading message
	22.9.3. A Custom Loading Indicator

	22.10. Controlling what data is returned
	22.10.1. Constraining normal fields
	22.10.2. Constraining Maps and Collections
	22.10.3. Constraining objects of a specific type
	22.10.4. Combining Constraints

	22.11. JMS Messaging
	22.11.1. Configuration
	22.11.2. Subscribing to a JMS Topic
	22.11.3. Unsubscribing from a Topic
	22.11.4. Tuning the Polling Process

	Chapter 23. Seam and the Google Web Toolkit
	23.1. Configuration
	23.2. Preparing your component
	23.3. Hooking up a GWT widget to the Seam component
	23.4. GWT Ant Targets

	Chapter 24. Spring Framework integration
	24.1. Injecting Seam components into Spring beans
	24.2. Injecting Spring beans into Seam components
	24.3. Making a Spring bean into a Seam component
	24.4. Seam-scoped Spring beans
	24.5. Using Spring PlatformTransactionManagement
	24.6. Using a Seam Managed Persistence Context in Spring
	24.7. Using a Seam Managed Hibernate Session in Spring
	24.8. Spring Application Context as a Seam Component
	24.9. Using a Spring TaskExecutor for @Asynchronous

	Chapter 25. Hibernate Search
	25.1. Introduction
	25.2. Configuration
	25.3. Usage

	Chapter 26. Configuring Seam and packaging Seam applications
	26.1. Basic Seam configuration
	26.1.1. Integrating Seam with JSF and your servlet container
	26.1.2. Using facelets
	26.1.3. Seam Resource Servlet
	26.1.4. Seam servlet filters
	26.1.4.1. Exception handling
	26.1.4.2. Conversation propagation with redirects
	26.1.4.3. Multipart form submissions
	26.1.4.4. Character encoding
	26.1.4.5. RichFaces
	26.1.4.6. Identity Logging
	26.1.4.7. Context management for custom servlets
	26.1.4.8. Adding custom filters

	26.1.5. Integrating Seam with your EJB container
	26.1.6. Don't forget!

	26.2. Using Alternate JPA Providers
	26.3. Configuring Seam in Java EE 5
	26.3.1. Packaging

	26.4. Configuring Seam in J2EE
	26.4.1. Boostrapping Hibernate in Seam
	26.4.2. Boostrapping JPA in Seam
	26.4.3. Packaging

	26.5. Configuring Seam in Java SE, without JBoss Embedded
	26.6. Configuring Seam in Java SE, with JBoss Embedded
	26.6.1. Installing Embedded JBoss
	26.6.2. Packaging

	26.7. Configuring jBPM in Seam
	26.7.1. Packaging

	26.8. Configuring SFSB and Session Timeouts in JBoss AS
	26.9. Running Seam in a Portlet

	Chapter 27. Seam annotations
	27.1. Annotations for component definition
	27.2. Annotations for bijection
	27.3. Annotations for component lifecycle methods
	27.4. Annotations for context demarcation
	27.5. Annotations for use with Seam JavaBean components in a J2EE environment
	27.6. Annotations for exceptions
	27.7. Annotations for Seam Remoting
	27.8. Annotations for Seam interceptors
	27.9. Annotations for asynchronicity
	27.10. Annotations for use with JSF
	27.10.1. Annotations for use with dataTable

	27.11. Meta-annotations for databinding
	27.12. Annotations for packaging
	27.13. Annotations for integrating with the servlet container

	Chapter 28. Built-in Seam components
	28.1. Context injection components
	28.2. Utility components
	28.3. Components for internationalization and themes
	28.4. Components for controlling conversations
	28.5. jBPM-related components
	28.6. Security-related components
	28.7. JMS-related components
	28.8. Mail-related components
	28.9. Infrastructural components
	28.10. Miscellaneous components
	28.11. Special components

	Chapter 29. Seam JSF controls
	29.1. Tags
	29.1.1. Navigation Controls
	29.1.1.1. <s:button>
	29.1.1.2. <s:conversationId>
	29.1.1.3. <s:taskId>
	29.1.1.4. <s:link>
	29.1.1.5. <s:conversationPropagation>
	29.1.1.6. <s:defaultAction>

	29.1.2. Converters and Validators
	29.1.2.1. <s:convertDateTime>
	29.1.2.2. <s:convertEntity>
	29.1.2.3. <s:convertEnum>
	29.1.2.4. <s:validate>
	29.1.2.5. <s:validateAll>

	29.1.3. Formatting
	29.1.3.1. <s:decorate>
	29.1.3.2. <s:div>
	29.1.3.3. <s:span>
	29.1.3.4. <s:fragment>
	29.1.3.5. <s:label>
	29.1.3.6. <s:message>

	29.1.4. Seam Text
	29.1.4.1. <s:validateFormattedText>
	29.1.4.2. <s:formattedText>

	29.1.5. Dropdowns
	29.1.5.1. <s:enumItem>
	29.1.5.2. <s:selectItems>

	29.1.6. Other
	29.1.6.1. <s:cache>
	29.1.6.2. <s:fileUpload>
	29.1.6.3. <s:graphicImage>
	29.1.6.4. <s:remote>

	29.2. Annotations

	Chapter 30. JBoss EL
	30.1. Parameterized Expressions
	30.1.1. Usage
	30.1.2. Limitations and Hints

	30.2. Projection

	Chapter 31. Testing Seam applications
	31.1. Unit testing Seam components
	31.2. Integration testing Seam components
	31.2.1. Using mocks in integration tests

	31.3. Integration testing Seam application user interactions
	31.3.1. Configuration
	31.3.2. Using SeamTest with another test framework
	31.3.3. Integration Testing with Mock Data
	31.3.4. Integration Testing Seam Mail

	Chapter 32. Seam tools
	32.1. jBPM designer and viewer
	32.1.1. Business process designer
	32.1.2. Pageflow viewer

	Chapter 33. Seam on OC4J
	33.1. Installation and operation of OC4J
	33.2. The jee5/booking example
	33.2.1. Booking Example Dependencies
	33.2.1.1. Core Seam dependencies
	33.2.1.2. Extra dependencies

	33.2.2. Configuration file changes
	33.2.3. Building the jee5/booking example

	33.3. Deploying the Seam application to OC4J
	33.4. Deploying an application created using seam-gen to OC4J
	33.4.1. Generating a basic seam-gen application
	33.4.2. Changes needed for deployment to OC4J
	33.4.2.1. Configuration file changes
	33.4.2.2. Extra jar dependencies

	33.4.3. Building and deploying the seam-gen'd application to OC4J
	33.4.4. Extending example with reverse engineered CRUD and Drools
	33.4.4.1. Have seam-gen generate your CRUD applications
	33.4.4.2. Hook up drools authentication using your new CRUD application

	33.5. Finishing up

	Chapter 34. Seam on BEA's Weblogic
	34.1. Installation and operation of Weblogic
	34.1.1. Installing 10.3.TP
	34.1.2. Creating your Weblogic domain
	34.1.3. How to Start/Stop/Access your domain

	34.2. The jee5/booking example
	34.2.1. EJB Blockers with Weblogic
	34.2.1.1. Secondary issue with the Tech Preview

	34.2.2. The jee5/booking example
	34.2.2.1. Setting up the hsql datasource
	34.2.2.2. Configuration and Build changes
	34.2.2.3. Deploying the Application

	34.3. The jpa booking example
	34.3.1. Building and deploying jpa booking example
	34.3.1.1. Setting up the datasource
	34.3.1.2. Building the example
	34.3.1.3. Deploying the example

	34.3.2. What's different with Weblogic 10.x

	34.4. Deploying an application created using seam-gen on Weblogic 10.x
	34.4.1. Running seam-gen setup
	34.4.2. What to change for Weblogic 10.X
	34.4.2.1. Configuration file changes
	34.4.2.2. Library changes
	34.4.2.3. seam-gen development profile issue

	34.4.3. Building and Deploying your application
	34.4.3.1. Setting up the data source
	34.4.3.2. Building the application
	34.4.3.3. Deploying the example

	Chapter 35. Seam on IBM's Websphere
	35.1. Websphere environment and deployment information
	35.1.1. Installation versions and tips
	35.1.2. Required custom properties

	35.2. The jee5/booking example
	35.2.1. Configuration file changes
	35.2.2. Building the jee5/booking example
	35.2.2.1. New libraries dependencies
	35.2.2.2. Updating the build.xml file

	35.2.3. Deploying the application to Websphere

	35.3. The jpa booking example
	35.3.1. Building the jpa example
	35.3.2. Deploying the jpa example
	35.3.3. Whats different for Websphere 6.1

	35.4. Deploying an application created using seam-gen on Websphere 6.1.0.13
	35.4.1. Running seam-gen Setup
	35.4.2. Changes needed for deployment to Websphere
	35.4.2.1. Configuration file changes
	35.4.2.2. Creating the AuthenticatorAction EJB
	35.4.2.3. Extra jar dependencies and other changes to the build.xml
	35.4.2.4. Building and deploying the seam-gen'd application to Websphere

	Chapter 36. Dependencies
	36.1. Project Dependencies
	36.1.1. Core
	36.1.2. RichFaces
	36.1.3. Seam Mail
	36.1.4. Seam PDF
	36.1.5. JBoss Rules
	36.1.6. JBPM
	36.1.7. GWT
	36.1.8. Spring
	36.1.9. Groovy

	36.2. Dependency Management using Maven

