Seam

I Y= 1 PN 1
I. Seam CONfIQUIALIONiiiie i e e e et e e e e e e e e e e e e e e et a e e e e eannaees 3
2. Seam Config INtrOAUCTIONciiiiii e 5
2.1, GEttiNg SEArEAouiiii e 5

2.2. The Princess Rescue EXample ... 8

3. Seam Config XML PrOVIAEIcouniiii i e e e 9
3.1, XML NAMESPACES ...oeiietiieiieeii ettt e 9

3.2. Adding, replacing and modifying beanscccoooiiiiiiiiin 10

3.3. Applying annotations USiNg XMLiiiiiiiiiiii e 11

3.4, Configuring FIElASvuiiie i 12
3.4.1. Initial Field ValUEScoouniiiiei e 12

3.4.2. Inline Bean Declarationscoveiiiiiiieiiiiiiieeiie e 14

3.5. Configuring MEthOdsoouiiiiiiii e 14

3.6. Configuring the bean CONSLIUCIONccccviiiiiieiie e 17

3.7. Overriding the type of an injection POINtccooviiiiiiiiiiiii e 17

3.8. Configuring Meta ANNOLALIONSovviiiiiii e e 18

3.9. Virtual Producer Fields ... 19
3.10. Notes on Configuring INtErCEPLOrSccvuiiiiiiiii e e e e e 19
3.11. More INfOrmMAationooiiniii e 20

[I. SEAM PEISISIENCE . .oiitiiiiiii et e ettt e e et e e e et n e e e et e e e eeatnaeaeee 21
4. Seam Persistence ReferenCe ... 23
o [o1 e To [1 od 1T o I PSP 23

4.2, GettiNg SEAEAcovuniiiiii e 24

4.3. Transaction ManagemeNntccuuiiiiieiiieiiie e e e e e e e e e e e e 25
4.3.1. CONFIQUIALTION ..uiiiiiiiiee e 25

4.3.2. Declarative Transaction Managementcccevevviiveeiieeiiiieriineenneens 27

4.4, Seam-managed PersiStENCe CONIEXLScvivvuuiiiiiii e 28
4.4.1. Using a Seam-managed persistence context with JPA 29

4.4.2. Seam-managed persistence contexts and atomic conversations 30

4.4.3. Using EL in EIB-QL/HQLuuiiiiiiiiiiiii e 30

4.4.4. Setting up the EntityManagercoooeiiiiiiiiiii e 31

1T Y= Ty ST =T A = PPN 33
a1 0T [T o] o 1P XXXV
B INSTAIALION et e 37
5.1. Maven dependency configurationccooiieiiiiiniiiiii e 37

5.2. Pre-Servlet 3.0 configurationcccoioiiiiiiiiiiiii e 38

6. Serviet event ProPagation ... 41
6.1. Servlet context lifeCycCle VENLScociviiiiiiii e 41

6.2. Application iNitialiZation ..o 42

6.3. Servlet request lifeCyCle BVENLSocviiiiiii e 43

6.4. Servlet response lifeCyCle eVENTSoii i 45

6.5. Servlet request context lifecycle eventsccooevveiiiiiiii i 46

6.6. SesSion lifECYCle EVENLSccoviiiiiii e 48

Seam

6.7. SesSSIoN aCtiVatiON EVENEScciiuiiii i 48

7. Injectable Servlet objects and request Stateccoiiiiiiiiiiii i 51
7.1. @Inject @REQUESTIPAraMccvviiiiiieiie e 51

7.2. @Inject @HeaderParamcoooui i 52

7.3. @INJECt SErvIEtCONIEXE ...cvvuiii e e 53

7.4. @Inject ServletRequest / HttpServietRequestcovvvvviiiiiiiiieeiiieeeeen, 53

7.5. @Inject ServletResponse / HttpServIetRespoNnseccevvvveveviiieviiieeiineeen, 53

7.6. @INJECE HIPSESSION ...iiiiiiieiii e 54

7.7. @INject HPSESSIONSIALUScvvveiiiiciii e e e e e e 54

7.8. @Inject @CONEXIPALNcouiii e 55

7.9. @INJECt LIStKCOOKIESiiiiiiiii et e e e e e 55
7.10. @Inject @COOKIEPAramiiiiiiii e 55
7.11. @INJECt @SEIVEIINTO ...oeveiiii e 56
7.12. @Inject @PINCIPALuniiii e 56

8. Exception handling: Seam Catch integrationccooeeiiiiiiii i 57
8.1, BACKGIOUNGiiiiiii ettt e eeaas 57

8.2. Defining a exception handler for a web requestcccoooviiiiiiiiiiieceeen. 57

9. Retrieving the BeanManager from the servlet contextcccoooiiiiiiiiiiinns 59
V. SEAM SECUILY ovuiiiiieii e ee et e e e e e e e e e e e et e e et e e et e ettt e e et e eatn e e st eeaneees 61
10. Security - INTrOUCTION ...o.uuiiiii e 63
05 I @Y= V= PR 63
10.1.1. AULNENLICATION . .oeuniitieei e 63

10.1.2. Identity Managementccceuuieiiieii e e e e 63

10.1.3. External AuthentiCationccooouiiiiiiiiiiiee e 63

10.2.4. AULNOFIZALION .uiiiiiiii e 63

10.2. CONFIGUIALION ..oeviiiiiie et 64
10.2.1. Maven DEPENUENCIEScvvuuieiiiieeii e e e 64

10.2.2. Third Party DependencCiesccouuuiiiiiiiiiieiii e 65

11. Security - AUTheNntiCationcooiiiiii i 67
11.2. BASIC CONCEPLS .euueieitiieteeii ettt ettt ettt e et e e et e e eeaa s 67
11.2. BUilt-in AUtNENLICAIONS . .oovviiiiiii e e e 68
11.3. Which Authenticator will SEam USE?ccoviiiiiiiiiii e 68
11.4. Writing a custom AUthenticatorccooeviiiiii i, 69

12. Security - ldentity Managementcoouiiiiiiiii e 73
25 e 1 T B 1 LSRR 73

13. Security - External AUthenticationcooviiiiiiiiiii e 75
R 251 e 1 T B 1 TSP 75

14. Security - AUTNOTIZATIONiiiii e e 77
It e 1 T B 1 TSP 77

V. SBAIM FABCES ..o e 79
T oo 11Tl 1o o IR PR [Xxxi
ST [X531 | = U o PP 83
15.1. Maven dependency Configurationc.coeevuieiiiieeiiiieii e e e 83
15.2. Pre-Servlet 3.0 configurationc..ooieiiiiiieiiiie e 84

16. Faces Events Propagationcccciiiiiiiiiiiieii e e e 85

16.1. JSF PRas@ GVENLSiiiiiiiiii e 85
16.1.1. Seam Faces Phase @VENLSovvviiiiiiiiiiiiiieeiiie e 85

16.1.2. Phase events liStiNGovevieiiiiiii e 86

16.2. JSF SYSIEM BVENTS ..o 87
16.2.1. Seam Faces SYStem EVENEScceeuiiiiriieiiiieiiieeei e 87

16.2.2. System events lStNGcoouiiiiiiii e 87

16.2.3. COmMpPOoNeNt SYSEM EVENLSuviiviiiiiiieiieeeii e 88

17. FACeS SCOPING SUPPOIT couuiiiiieii et e e e e e e et e e e e e eens 89
17.1. @RENAEISCOPEU ...uiei et e e et e e e e e ean s 89
17.2. @Inject javax.faces.contet.Flash flashcccooiiiii i, 90
17.3. @VIEWSCOPEA ...ttt aa s 90

18, MBS SAGES AP i 93
18.1. AAAING MESSATES .. .ceevtieiiiiiii ettt ettt e e e 93
18.2. Displaying pending MESSAQEScvvvuieiriieiiiieeiiee e e e e e e e eaaas 94

19. Faces Artifact INJECTIONcoouuiiiiii e 95
19.1. @*Scoped and @Inject in Validators and Converterscccoeeevevevvnnennnnn. 95
19.2. @Inject'able Faces ArtifactScooouuiiiiiiiiiiie e 97

20. Seam Faces COMPONENTS Lot ans 99
b2 5 I [01 o o [¥ o i o) [PPSR 99
20.2. <S:VAlIdAtEFOIM> ...t 99
20.3. <SIVIBWACTION S L.t 102
20.3.1. MOLVALION vttt e e et e e et e e e eae e eees 102

20.3.2. USAQE ...oiiiiiieiie ettt 102

20.3.3. View actions vs the PreRenderViewEventcccoeeevvviieeeennnnnn. 105

20.4. Ul INPUL CONLAINET ...ttt 105

VI, Seam INEINALIONEALoouuiiiiiii et e e r et e e e e e e enees 107
[(oo [8 Tox 1[0 o PP Cix
21, INSTAIALION . 111
22, LOCAIES ot 113
22.1. Default LOCAIEuuiiiiiiii e 113
22.2. USEI LOCAIE ..o 114
22.3. Available LOCAIEScoveeiieiiiii e 114

DA T I 110 1=V.40] 11T TP 117
23.1. Default TIMEZONE ...cooviiii e 117
23.2. USEI TIMEBZONE ...t e e 117
23.3. Available TIMEZONESoiiiiiiiiieee e e e 118

24, MEBSSAGES oruuiietnieit ettt ettt et e r e 119
VI SEAM CaAlCR ..o e e e 121
25. Seam Catch - INtrodUCTION ..ooouniiii e 123
26. Seam Catch - INStallationiiiiiiii e 125
26.1. Maven dependency configurationocceeuiiiiiiinieiiii e 125

27. Seam CatCh - USAQJEiiiiiiiiiiei e e 127
27.1. Exception handIers ... 127

Seam

27.2. Exception handler annotationscc.eveviiieiiiieiiiie e 127
27.2.1. @HaNAIESEXCEPLIONScvueeiii e 127
27.2.2. @HANAIES ..o 128

27.3. Exception Stack trace ProCeSSINGuuieieruuieiiriieeeiiiie e et e et e e 130

27.4. Exception handler orderingcocouiiiiiiiiiiiieiie e 130
27.4.1. Traversal of exception type hierarchycccocoeviiiiiiiiiiiinienennnn, 131
27.4.2. Handler preCendencCecoevvuieiiiieiii i 132

27.5. APIs for exception information and flow controlcccccooeviiiiieiinnnnnn. 133
27.5.1. CaUGhIEXCEPLON ...ccvviiiiiici e e e 133
27.5.2. EXCEPLONSIACKceeeveiiiiiiiiee et 134

28. Seam Catch - Framework Integrationcccooeviiiiiiiiiie e 135

28.1. Creating and Firing an ExceptionToCatch eventcccooeveiiviiiineennnn. 135

28.2. Default Handlers and Qualifierscccooeviiiiiiiiii e 135
28.2.1. Default HandIersooeeuiiiiie e 135
28.2.2. QUANMIBIS ..eeeeiii e 135

28.3. Supporting ServiceHandIersoooeiiiiiiiiiiii e 136

Seam CatCh - GIOSSAIYcccviiiiii e 137
VI S€AM REMOTING .. iiiitiieiiii et ettt ettt e et e e e s 139
29. Seam Remoting - BaSiC FEAtUIEScccuiiiiiiiiiiiieii e a e 141

29.1. CONFIQUIALION ..uuiiiit ettt 141
29.1.1. Dynamic type 10adingc.cooveiuiiiiiiieie e 142

29.2. The "Seam™ ODJECTuiiiiii e 142
29.2.1. A Hello World exampleccooouiiiiiiiiiec e 142
29.2.2. SEam.CreateBeaNcoiui i 144

PZAS G T I 0T T O] 1 1= SR 145
29.3.1. Setting and reading the Conversation IDoceeviiiiiiiiinneennnn, 145
29.3.2. Remote calls within the current conversation SCOpec.ccuuueens 145

29.4. Working With Data tYPeScccuuuiiiiiiiieiiiii e 145
29.4.1. Primitives / BaSIC TYPES ...cvvuiiiiieiiieeiii e ee e e e e e e e e 145
29.4.2. JaVABEANS ... 146
29.4.3. Dates and TiMESiiiiiiiieieiie ettt 146
29. 4.4, BNUIMS ..ot 146
29.4.5. COllECHIONS . .eevtiieeeii e e e 146

29.5. DEDUGUING - .eeeiiieiiii ettt 147

29.6. Handling EXCEPLIONSccvuiiiiiiiii e e 147

29.7. The Loading MESSAQE .. ccouuuiiiiiii ettt 148
29.7.1. Changing the MEeSSagecccocviiiiiiiiiiii e 148
29.7.2. Hiding the loading MESSAJgeveiiiiiniiiiiiii e 148
29.7.3. A Custom Loading INdiCatorccooevviieiiiieiiiiiee e, 148

29.8. Controlling what data is returnedc.ocoeeiiiiiiiiiiii e 149
29.8.1. Constraining normal fieldscocooiiiiiiiii 149
29.8.2. Constraining Maps and Collectionsccccoevveiiiiniiiiiineccii, 150
29.8.3. Constraining objects of a specific typecccoveviiiiviiiiiiiiiceieeenn, 150
29.8.4. Combining CONSIIAINTSccuuuiiiiiiieeiii e 150

vi

30. Seam Remoting - Model APl ... 153

110 100 I [11 o o (1] 1T I PP 153
30.2. MOdEel OPEFALIONS ...cvuieiiiieiii e e e e e e e e e e e e e aa s 153
30.3. Fetching @ MOdeliiii e 157
30.3.1. Fetching a bean valueccocoviiiiiiie e, 159

30.4. Modifying mModel VAlUESooiiiiiiiiiiiii e 159
30.5. EXpanding @ MOAElcccuuiiiiiiiiii e 159
30.6. APPIYING ChANGESoiiiiieiiii e e 161

31. Seam Remoting - Bean Validationccoooiiiiiiiiiiciiin e, 163
31.1. Validating a single ODJECtoviiiii 163
31.2. Validating a Single ProPertycooveuieiiiieiie e e 164
31.3. Validating multiple objects and/or propertiesccoooveiieeiiiiiineiiineeennn. 165
31.4. Validation grOUPSccevueiiiieiii e e e e e e e e e e e e e et e e e ean e 166
31.5. Handling validation failuresccoiviiiiiiiiiii e 166

DX, SBAM RS .t e 169
10T [T o] o IR clxxi
32, INSTAIALION .. 173
0 I = - T T 173
32.2. Transitive dependenCIEScccuiiiiiiiiii e 173
32.3. Registering JAX-RS components expliCitlyccooveeeiiiiiiiiiniiiiiineeene, 173

33. EXception HandliNg ... 175
33.1. Seam Catch INEGrationcouuuiiiiiiiieiiii e 175
33.2. Declarative EXception Mappingccceeueeiiiiiiiiieiiieeeiie e e e e e eaen 176
33.2.1. Annotation-based configurationccccoooiiiiiiiiiiin 176

33.2.2. XML configurationcccoeeiiiiiiiiicii e 177

33.2.3. Declarative exception mapping ProCesSiNgccecveevenrererrenrerennnn 178

34. Bean Validation INtegrationccccuiiiiiiiiiiii e 181
34.1. Validating HTTP reQUESESiiiiiiiieiiiii et 181
34.1.1. Validating entity bodyccccouiiiiiiiii 181

34.1.2. Validating resource fieldsoooieiiiiiiiiiiii e 182

34.1.3. Validating other method parametersccoceeveviiieiiiieiiieeceee, 183

34.2. Validation configurationcoveiiiiiiiiiiiie e 184
34.3. Using validation groUPSccuuieiiiioiii e e e e e e e e e e aaaaes 184

35. TeMPIating SUPPOTT ..ot 187
35.1. Creating JAX-RS responses using templatesc.cccoevevviveiiiieiiineeeneennn, 187
35.1.1. Accessing the model ..o 188

35.2. Built-in support for templating enginescccccceveiiiiiiiiiiii e 189
35.2.1. FreeMAarkKeruiieiiii e 189

35.2.2. Apache VEIOCItYcoeuiiiiiiiii e 190

35.2.3. Pluggable support for templating enginesccooveeiiiiiiieinnes 190

35.2.4. Selecting prefered templating engineccocoevviiiiiiiiiineeis 190

36. RESTEasy Client Framework Integration ..o 191
36.1. Using RESTEasy Client Framework with Seam RESTcccoeevvvnn. 191
36.2. Manual ClientRequESE AP ... 192

Vii

Seam

36.3. ClientExecutor Configurationc.ccoeeiiiiieiiiieee e e 192

37. Seam REST DePeNnUENCIES ...ccouuuiiiiiiiiee it 195
37.1. Transitive DEPeNdENCIESccivuiiiiiiieii e e e 195
37.2. Optional dependencCiesi i 195
37.2.1. Seam CatChuuiiiiii i 195

37.2.2. S€aAM CONTIG oiiitiiiiiiii et 195

37.2.3. FIEEMAIKET ...t e 196

37.2.4. APAche VElOCItYocceeiiiiiiiiii e 196

37.2.5. RESTEASY .iiiitiiiiiiiiie ettt 196

DO T=T= 1o T 4= 11 T =1 o o 199
TS T a4 oo LU Yo 110 Y o PP 201
39, INSTAIALION .ot e e e 203
39.1. PrerEqUISITES ...vuiiiiiieii et e e e e e e a e 203
39.2. MAVEN SEUUP .ovtiiiiiieei ettt et 203
1S IR T V.- Vg TN F= LY = 0] o PPN 205

40. Dependency INJECTIONiiiiiii e 207
40.1. Retrieving of validator factory and validators via dependency injection 207
40.2. Dependency injection for constraint validatorscccooveiiiiiiieineennn. 208

41, Method Validationcooouiiiiiiii e et eeera e e 211
DTS 1= = 1o BT 2= P 213
T oo 11 Td 1 o] o IR PR cexv
A 1 1 = 11 =4 T Y o 217
43. Seam for Apache Wicket FEAtUresccooviiiiiiiiiiii e 219
A3.1. INJECHION eeieieei et 129
43.2. Conversation CONLIOlcoovvuiiiiiiii e 219
43.3. Conversation Propagationcceeuuioieeiiereiieeeei e eeeii e eeenens 220

D LIRS 1T 1o IS Y] o =T PP 221
A4, Getting STAMTEAuuiiiiii e 223
44.1. Maven dependency configurationccocouiveriiieiiiiieii e e e 223
44.2. Transitive dependenCieSscceiuuuieiiiiiiee et 224
44.3. Pre-Servilet 3.0 configurationccoveviiieiiiiiiii e 225

45. Enhancements to the CDI Programming Modelccccooiviiiiiiiiiiiiiinneennnn, 227
45.1. Preventing a class from being processedcccooevviiiiiieiiiieiii e, 227

A5. 1.1, @VELO coitiiiiii et 227

45.1.2. @REQUITES ...uiiiiieiiii et 228

S (2] e To: 228
e B (21 1 1= o | SRR 229
45.4. Named PACKAGES ... ccoiitiieiiiiie et 229
45.5. @FullyQualified bean namescccoieiiiiiiiiii 230

46. ANNOLALION LItEIalS ...uuiiie i e 233
47. Evaluating Unified ELoooiiiiiii i 235
48. RESOUICE LOAAING ..ueiiiiiieiiiiii ettt ettt e e et e e et eeeeb e eeees 237
48.1. Extending the resource loadercocouiiiiiiiiiii i, 238

9. LOGUING ettt ettt 239

viii

50.

51.
52.
53.

54.
55.
56.

57.

Annotation and AnnotatedType ULIlItiesccooeviiiiiiiiiii e, 243

50.1. Annotated Type BUIldEro.uiiiiiiiiii e 243
50.2. Annotation INStance ProVidercoiioiiiiiiiiiiiiieeces e 244
50.3. ANNOLAtIoN INSPECTOLciiiiiiiiiii e 245
50.4. Synthetic QUANIfIEISc.uiiii i 245
50.5. Reflection ULIITIESccuniiiiiie e 246
Obtaining a reference to the BeanManagerccoovvvuiieiiiieiiii e 247
Bean ULIITIES .. 249
0T o T=T o 1= P 251
53.1. Working With Properties ..o 251
53.2. QuErying for PrOPEIIEScvivnieiii e 252
53.3. Property CrILEIIA ...ccuuueieiii et 252
53.3.1. AnnotatedPropertyCriteriaccuieviiiiiiii e 252
53.3.2. NamedPropertyCriteriaoueuuuieieiiiie e 253
53.3.3. TYPedPropertyCriteriaocvuueeiiieeiii i et e e e e 253
53.3.4. Creating a custom property Crteriacccuvuieeeeruireeeiiiieeeiiineeens 254

53.4. Fetching the reSUILSoiiiiiii e 254
Unwrapping Producer Methodscoooiiiiiiiiiiii e 257
D12 = TU] L = Y= Y- g L PO 259
GENEIIC BRANS ..t 261
56.1. USIiNg gENENC DEANSceviiiiiiii e 261
56.2. Defining GENENC BEANSccouuuiiiiiiiiieieii et 264
SErVIiCe HaNAIBr ..o 267

Chapter 1.

Seam

1.1. Overview

TODO

Part |. Seam Configuration

Chapter 2.

Seam Config Introduction

Seam provides a method for configuring JSR-299 beans using alternate metadata sources, such
as XML configuration. (Currently, the XML provider is the only alternative available, though others
are planned). Using a "type-safe" XML syntax, it's possible to add new beans, override existing
beans, and add extra configuration to existing beans.

2.1. Getting Started

No special configuration is required, all that is required is to include the JAR file and the Seam
Solder JAR in your project. For Maven projects, that means adding the following dependencies
to your pom.xmil:

<dependency>
<groupld>org.jboss.seam.config</groupld>
<artifactld>seam-config-xml</artifactld>
<version>${seam.config.version}</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.solder</groupld>
<artifactld>seam-solder</artifactld>
<version>${weld.extensions.version}</version>
</dependency>

To take advantage of Seam Config, the first thing we need is some metadata sources in the form
of XML files. By default these are discovered from the classpath in the following locations:

e [META- | NF/ beans. xm
e [META- | NF/ seam beans. xm

The beans. xn file is the preferred way of configuring beans via XML, however it may be possible
that some JSR-299 implementations will not allow this, so seam beans. xnl is provided as an
alternative.

Let's start with a simple example. Say we have the following class that represents a report:

class Report {
String filename;

Chapter 2. Seam Config Introd...

@Inject
Datasource datasource;

/lgetters and setters

And the following support classes:

interface Datasource {
public Data getData();

@SalesQualifier
class SalesDatasource implements Datasource {
public Data getData()

{

/Ireturn sales data

}
}

class BillingDatasource implements Datasource {
public Data getData()

{

[Ireturn billing data

}
}

Our Report bean is fairly simple. It has a filename that tells the report engine where to load the
report definition from, and a datasource that provides the data used to fill the report. We are going
to configure up multiple Report beans via xml.

Example 2.1.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlins;s="urn:java:ee" :

xmlns:r="urn:java:org.example.reports"> 2

<r:Report> 3

Getting Started

<s:modifies/> 4

<r:filename>sales.jrxml<r:filename> 5
<r.datasource>

<r:SalesQualifier/> 6
</r.datasource>
</r:Report>

<r:Report filename="billing.jrxml"> 7

<s:replaces/> 8
<r.datasource>
<s:Inject/> g
<s:Exact>org.example.reports.BillingDatasource</s:Exact> 10
</r.datasource>
</r:Report>

</beans>

11 The namespace ur n: j ava: ee is Seam Config's root namespace. This is where the built-in
elements and CDI annotations live.

2. There are now multiple namespaces in the beans. xm file. These namespaces correspond
to java package names.

The namespace urn:java:org.exanple.reports corresponds to the package
org. exanpl e. reports, where our reporting classes live. Multiple java packages can be
aggregated into a single namespace declaration by seperating the package names with
colons, e.g. urn: j ava: or g. exanpl e. reports: or g. exanpl e. nodel . The namespaces are
searched in the order they are specified in the xml document, so if two packages in the
namespace have a class with the same name, the first one listed will be resolved. For more
information see Namespaces.
3 The <Report > declaration configures an instance of our Report class as a bean.

4 Beans installed using <s: nodi f i es> read annotations from the existing class, and merge
them with the annotations defined via xml. In addition if a bean is installed with <s: nodi f i es>
it prevents the original class being installed as a bean. Itis also possible to add new beans and
replace beans altogether, for more information see Adding, modifying and replacing beans.

5 The <r:fil ename> element sets the initial value of the filename field. For more information
on how methods and fields are resolved see Configuring Methods, and Configuring Fields.

6 The <r:SalesQualifier> element applies the @al esQualifier to the datasource
field. As the field already has an @nject on the class definition this will cause the
Sal esDat asour ce bean to be injected.

7. This is the shorthand syntax for setting a field value.

Chapter 2. Seam Config Introd...

8 Beans installed using <s: repl aces> do not read annotations from the existing class. In
addition if a bean is installed with <s: r epl aces> it prevents the original class being installed
as a bean.

g The <s:Inject> element is needed this bean was installed with <s:repl aces>, so
annotations are not read from the class definition.

i The <s: Exact > annotation restricts the type of bean that is availible for injection without using
qualifiers. In this case Bi | | i ngDat asour ce will be injected. This is provided as part of weld-
extensions.

2.2. The Princess Rescue Example

The princess rescue example is a sample web app that uses Seam Config. You can run it with
the following command:

mvn jetty:run

And then navigateto htt p: / /| ocal host : 9090/ pri ncess-r escue. The XML configuration for the
example is in src/ mai n/ r esour ces/ META- | NF/ seam beans. xni .

Chapter 3.

Seam Config XML provider

3.1. XML Namespaces

The main namespace is ur n: j ava: ee. This namespace contains built-in tags and types from core
packages. The built-in tags are:

* Beans

* nodifies

* repl aces

e paraneters

* val ue

* key

e entry

* e (alias for entry)
* v (alias for value)
* k (alias for key)
e array

* int

* short

* long

* byte

e char

e doubl e

e float

* bool ean

as well as classes from the following packages:

* java.l ang
* java.util

* javax. annotation

Chapter 3. Seam Config XML pr...

* javax.inject

* javax.enterprise.inject

* javax. enterprise.context

* javax.enterprise. event

* javax. decorat or

* javax.interceptor

* org.jboss. wel d. ext ensi ons. core

* org.jboss. wel d. ext ensi ons. unw aps

* org.jboss. wel d. extensi ons. resour ceLoader

Other namespaces are specified using the following syntax:

xmlns:my="urn:java:com.mydomain.packagel:com.mydomain.package2"

This maps the namespace ny to the packages com nydonain.packagel and
com nydomai n. package2. These packages are searched in order to resolve elements in this
namespace.

For example, say you had a class com nydonai n. package2. Report. To configure a Report
bean you would use <ny: Repor t >. Methods and fields on the bean are resolved from the same
namespace as the bean itself. It is possible to distinguish between overloaded methods by
specifying the parameter types, for more information see Configuring Methods.

3.2. Adding, replacing and modifying beans

By default configuring a bean via XML creates a new bean, however there may be cases where
you want to modify an existing bean rather than adding a new one. The <s: repl aces> and
<s: nodi f i es> tags allow you to do this.

The <s: repl aces> tag prevents the existing bean from being installed, and registers a new one
with the given configuration. The <s: nodi fi es> tag does the same, except that it merges the
annotations on the bean with the annotations defined in XML. Where the same annotation is
specified on both the class and in XML the annotation in XML takes precidence. This has almost
the same effect as modifiying an existing bean, except it is possible to install multiple beans that
modify the same class.

<my:Report>
<s:modifies>

10

Applying annotations using XML

<my:NewQualifier/>
</my:Report>

<my:ReportDatasource>
<s:replaces>
<my:NewQualifier/>

</my:ReportDatasource>

The first entry above adds a new bean with an extra qualifier, in addition to the qualifiers already
present, and prevents the existing Repor t bean from being installed.

The second prevents the existing bean from being installed, and registers a new bean with a
single qualifier.

3.3. Applying annotations using XML

Annotations are resolved in the same way as normal classes. Conceptually annotations are
applied to the object their parent element resolves to. It is possible to set the value of annotation
members using the xml attribute that corresponds to the member name. For example:

public @interface OtherQualifier {
String valuel();
int value2();
QualifierEnum value();

}

<test:QualifiedBeanl1>
<test:OtherQualifier valuel="AA" value2="1">A</my:OtherQualifier>
</my:QualifiedBean1>

<test:QualifiedBean2>

<test:OtherQualifier valuel="BB" value2="2" value="B" />
</my:QualifiedBean2>

The val ue member can be set using the inner text of the node, as seen in the first example. Type
conversion is performed automatically.

° Note

It is currently not possible set array annotation members.

11

Chapter 3. Seam Config XML pr...

3.4. Configuring Fields

It is possible to both apply qualifiers to and set the initial value of a field. Fields reside in the same
namespace as the declaring bean, and the element name must exactly match the field name. For
example if we have the following class:

class RobotFactory {
Robot robot;

}

The following xml will add the @r oduces annotation to the r obot field:

<my:RobotFactory>
<my:robot>
<s:Produces/>
</my:robot>
</my:RobotFactory/>

3.4.1. Initial Field Values

Inital field values can be set three different ways as shown below:

<r:MyBean company="Red Hat Inc" />

<r:MyBean>
<r:company>Red Hat Inc</r.company>
</r:MyBean>

<r:MyBean>
<r:company>
<s:value>Red Hat Inc<s:value>
<r:SomeQuialifier/>
</r:company>
</r:MyBean>

The third form is the only one that also allows you to add annotations such as qualifiers to the field.

It is possible to set Map,Array and Col | ecti on field values. Some examples:

<my:ArrayFieldValue>

12

Initial Field Values

<my:intArrayField>
<s:.value>1</s:value>
<s:value>2</s:value>

</my:intArrayField>

<my:classArrayField>
<s:value>java.lang.Integer</s:value>
<s:value>java.lang.Long</s:value>

</my:classArrayField>

<my:stringArrayField>
<s:value>hello</s:value>
<s:value>world</s:value>

</my:stringArrayField>

</my:ArrayFieldValue>

<my:MapFieldValue>

<my:mapl>
<s:entry><s:key>1</s:key><s:value>hello</s:value></s:entry>
<s:entry><s:key>2</s:key><s:value>world</s:value></s:entry>
</my:mapl>

<my:map2>
<s:e><s:k>1</s:k><s:v>java.lang.Integer</s:v></s:e>
<s:e><s:k>2</s:k><s:v>java.lang.Long</s:v></s:e>
</my:map2>

</my:MapFieldValue>

Type conversion is done automatically for all primitives and primitive wrappers, Date,

Cal endar ,Enumand C ass fields.

The use of EL to set field values is also supported:

<m:Report>
<m:name>#{reportName}</m:name>
<m:parameters>
<s:key>#{paramName}</s:key>
<s:value>#{paramValue}</s:key>
</m:parameters>

13

Chapter 3. Seam Config XML pr...

</m:Report>

Internally field values are set by wrapping the I nj ecti onTar get for a bean. This means that the
expressions are evaluated once, at bean creation time.

3.4.2. Inline Bean Declarations

Inline beans allow you to set field values to another bean that is declared inline inside the
field declaration. This allows for the configuration of complex types with nestled classes. Inline
beans can be declared inside both <s: val ue> and <s: key> elements, and may be used in both
collections and simple field values. Inline beans must not have any qualifier annotations declared
on the bean, instead Seam Config assigns them an artificial qualifier. Inline beans may have any
scope, however the default Dependent scope is recommended.

<my:Knight>
<my:sword>
<value>
<my:Sword type="sharp"/>
</value>
</my:sword>
<my:horse>
<value>
<my:Horse>
<my:name>
<value>billy</value>
</my:name>
<my:shoe>
<Inject/>
</my:shoe>
</my:Horse>
</value>
</my:horse>
</my:Knight>

3.5. Configuring methods

It is also possible to configure methods in a similar way to configuring fields:

class MethodBean {

public int doStuff() {
return 1;

14

Configuring methods

public int doStuff(MethodValueBean bean) {
return bean.value + 1;

public void doStuff(MethodValueBean[][] beans) {
/*do stuff */

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlIns="http://java.sun.com/xml/ns/javaee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"”
xmlns:my="urn:java:org.jposs.seam.config.xml.test. method">
<my:MethodBean>

<my:doStuff>
<s:Produces/>
</my:doStuff>

<my:doStuff>
<s:Produces/>
<my:Qualifierl/>
<s:parameters>
<my:MethodValueBean>
<my:Qualifier2/>
</my:MethodValueBean>
</s:parameters>
</my:doStuff>

<my:doStuff>
<s:Produces/>
<my:Qualifierl/>
<s:parameters>
<s:array dimensions="2">
<my:Qualifier2/>
<my:MethodValueBean/>
</s:array>
</s:parameters>
</my:doStuff>

15

Chapter 3. Seam Config XML pr...

</my:MethodBean>
</beans>

In this instance Met hodBean has three methods, all of them rather imaginatively named doSt uf f .

The first <t est : doSt uf f > entry in the XML file configures the method that takes no arguments.
The <s: Pr oduces> element makes it into a producer method.

The next entry in the file configures the method that takes a Met hodVal ueBean as a parameter
and the final entry configures a method that takes a two dimensional array ofMet hodVval ueBean's
as a parameter. For both these methods a qualifier was added to the method parameter and they
were made into producer methods.

Method parameters are specified inside the <s: par anet er s> element. If these parameters have
annotation children they are taken to be annotations on the parameter.

The corresponding Java declaration for the XML above would be:

class MethodBean {

@Produces
public int doStuff() {/*method body */}

@Produces
@Qualifierl
public int doStuff(@Qualifier2 MethodValueBean param) {/*method body */}

@Produces
@Qualifierl
public int doStuff(@Qualifier2 MethodValueBean([][] param) {/*method body */}

Array parameters can be represented using the <s: array> element, with a child element to
represent the type of the array. E.g. i nt net hod(Met hodVal ueBean[] paranm); could be
configured via xml using the following:

<my:method>
<s:array>
<my:MethodValueBean/>
</s:array>
</my:method>

16

Configuring the bean constructor

3.6. Configuring the bean constructor

It is also possible to configure the bean constructor in a similar manner. This is done with a
<s: par anet er s> element directly on the bean element. The constructor is resolved in the same
way methods are resolved. This constructor will automatically have the @ nj ect annotation
applied to it. Annotations can be applied to the constructor parameters in the same manner as
method parameters.

<my:MyBean>
<s:parameters>
<s:Integer>
<my:MyQualifier/>
</s:Integer>
</s:parameters>
</my:MyBean>

The example above is equivalent to the following java:

class MyBean {
@Inject
MyBean(@MyQualifier Integer count)
{

3.7. Overriding the type of an injection point

It is possible to limit which bean types are availible to inject into a given injection point:

class SomeBean

{
public Object someField;

17

Chapter 3. Seam Config XML pr...

<my:SomeBean>
<my:someField>
<s:Inject/>
<s:Exact>com.mydomain.InjectedBean</s:Exact>
</my:someField>
</my:SomeBean>

In the example above only beans that are assignable to InjectedBean will be eligable for injection
into the field. This also works for parameter injection points. This functionallity is part of Seam
Solder, and the @xact annotation can be used directly in java.

3.8. Configuring Meta Annotations

It is possible to make existing annotations into qualifiers, stereotypes or interceptor bindings.

This configures a stereotype annotation SoneSt er eot ype that has a single interceptor binding
and is named:

<my:SomeStereotype>
<s:Stereotype/>
<my:InterceptorBinding/>
<s:Named/>

</my:SomeStereotype>

This configures a qualifier annotation:

<my:SomeQualifier>
<s:Qualifier/>
</my:SomeQualifier>

This configures an interceptor binding:

<my:SomelnterceptorBinding>
<s:InterceptorBinding/>
</my:SomelnterceptorBinding>

18

Virtual Producer Fields

3.9. Virtual Producer Fields

Seam XML supports configuration of virtual producer fields. These allow for configuration of
resource producer fields, Weld Extensions generic bean and constant values directly via XML.
First an example:

<s:EntityManager>

<s:Produces/>

<sPersistenceContext unitName="customerPu" />
</s:EntityManager>

<s:String>
<s:Produces/>
<my:VersionQualifier />
<value>Version 1.23</value>
</s:String>

The first example configures a resource producer field. The second configures a bean of type
String, with the qualifier @/er si onQual i fi er and the value ' Versi on 1.23'. The corresponding
java for the above XML is:

class SomeClass

{

@Produces
@PersistenceContext(unitName="customerPu")
EntityManager fieldl;

@Produces

@VersionQualifier
String field2 = "Version 1.23";

Although these look superficially like normal bean declarations, the <Produces> declaration
means it is treated as a producer field instead of a normal bean.

3.10. Notes on Configuring Interceptors

Some versions of weld including 1.1.0. Final do not support adding the @A oundl nvoke
annotation via the SPI, this will be fixed in future versions.

19

Chapter 3. Seam Config XML pr...

3.11. More Information

For further information look at the units tests in the Seam Config distribution, also the JSR-299
Public Review Draft section on XML Configuration was the base for this extension, so it may also
be worthwhile reading.

20

Part Il. Seam Persistence

Chapter 4.

Seam Persistence Reference

Seam provides extensive support for the two most popular persistence architectures for Java:
Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique state-
management architecture allows the most sophisticated ORM integration of any web application
framework.

4.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of
the previous generation of Java application architectures. The state management architecture
of Seam was originally designed to solve problems relating to persistence — in particular
problems associated with optimistic transaction processing. Scalable online applications always
use optimistic transactions. An atomic (database/JTA) level transaction should not span a user
interaction unless the application is designed to support only a very small number of concurrent
clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence
context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no
construct for representing an optimistic transaction. So, instead, these architectures provided
persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems
for users, and is the cause of the number one user complaint about Hibernate: the dreaded
Lazyl nitializationException. What we need is a construct for representing an optimistic
transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful
session bean) with an extended persistence context scoped to the lifetime of the component. This
is a partial solution to the problem (and is a useful construct in and of itself) however there are
two problems:

» The lifecycle of the stateful session bean must be managed manually via code in the web tier
(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

» Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components
scoped to the conversation. (Most conversations actually represent optimistic transactions in the
data layer.) This is sufficient for many simple applications (such as the Seam booking demo)
where persistence context propagation is not needed. For more complex applications, with many
loosly-interacting components in each conversation, propagation of the persistence context across
components becomes an important issue. So Seam extends the persistence context management
model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

23

Chapter 4. Seam Persistence R...

4.2. Getting Started

To get started with Seam persistence you need to add the seam per si st ence. j ar and the seam
sol der . j ar to you deployment. If you are in a java SE environment you will probably also require
seam xni . j ar as well for configuration purposes. The relevant maven configuration is as follows:

<dependency>
<groupld>org.jboss.seam.persistence</groupld>
<artifactld>seam-persistence-api</artifactld>
<version>${seam.persistence.version}</version>
</dependency>

<dependency>
<groupld>org.jboss.seam.persistence</groupld>
<artifactld>seam-persistence-impl</artifactld>
<version>${seam.persistence.version}</version>
</dependency>

<dependency>
<groupld>org.jboss.seam.solder</groupld>
<artifactld>seam-solder</artifactld>
<version>${seam.solder.version}</version>
</dependency>

<dependency>
<groupld>org.jboss.seam.xml</groupld>
<artifactld>seam-xml-config</artifactld>
<version>${seam.xml.version}</version>
</dependency>

You will also need to have a JPA provider on the classpath. If you are using java EE this is taken
care of for you. If not, we recommend hibernate.

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-core</artifactld>
<version>3.5.1-Final</version>
</dependency>

24

Transaction Management

4.3. Transaction Management

Unlike EJB session beans CDI beans are not transactional by default. Seam brings declarative
transaction management to CDI beans by enabling them to use @r ansacti onAttri but e. Seam
also provides the @r ansacti onal annotation, for environments where java EE APIs are not
present.

4.3.1. Configuration

In order to enable declarative transaction management for managed beans you need to list the
transaction interceptor in beans.xmil:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1 0.xsd">
<interceptors>
<class>org.jboss.seam.persistence.transaction.Transactioninterceptor</class>
</interceptors>
</beans>

If you are in a Java EE 6 environment then you are good to go, no additional configuration is
required.

If you are not in an EE environment you may need to configure some things with seam-xml. You
may need the following entries in your beans.xml file:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:t="urn:java:org.jboss.seam.persistence.transaction
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd">

<t:SeSynchronizations>
<s:modifies/>
</t:SeSynchronizations>

<t:EntityTransaction>
<s:modifies />

25

Chapter 4. Seam Persistence R...

</t:EntityTransaction>

</beans>

Let's look at these individually.

<t:SeSynchronizations>
<s:modifies/>
</t:SeSynchronizations>

Seam will attempt to use JTA synchronizations if possible. If not then you need to
install the SeSynchronzations bean to allow seam to handle synchronizations manually.
Synchronizations allow seam to respond to transaction events such as bef or eConpl et i on() and
af t er Conpl eti on(), and are needed for the proper operation of the Seam Managed Persistence
Context.

<t:EntityTransaction>
<s:modifies />
</t:EntityTransaction>

By default seam will attempt to look up j ava: conp/ User Tr ansact i on from JNDI (or alternatively
retrieve it from the EJBContext if a container managed transaction is active). Installing
EntityTransacti on tells seamto use the JPAEntit yTransacti on instead. To use this you must
have a Seam Managed Persistence Context installed with qualifier @ef aul t .

If your entity manager is installed with a different qualifier, then you need to use the following
configuration (this assumes that ny has been bound to the namespace that contains the
appropriate qualifier, see the Seam Config XML documentation for more details):

<t:EntityTransaction>
<s:modifies />
<t:entityManager>
<my:SomeQualifier/>
</tentityManager>
</t:EntityTransaction>

26

Declarative Transaction Management

° Note

You should avoid Ent i t yTr ansact i on if you have more than one persistence unit
in your application. Seam does not support installing multiple Enti t yTr ansact i on
beans, and the Ent i t yTr ansact i on interface does not support two phase commit,
so unless you are careful you may have data consistency issues. If you need
multiple persistence units in your application then we highly recommend using an
EE 6 compatible server, such as JBoss 6.

4.3.2. Declarative Transaction Management

Seam adds declarative transaction support to managed beans. Seam re-uses the
EJB @ransactionAttribute for this purpose, however it also provides an alternative
@r ansacti onal annotation for environments where the EJB APIl's are not available. An
alternative to @\ppl i cati onExcepti on, @eamAppl i cati onExcepti on is also provided. Unlike
EJBs, managed beans are not transactional by default, you can change this by adding the
@Tr ansacti onAttri but e to the bean class.

Unlike in Seam 2, transactions will not roll back whenever a non-application exception propagates
out of a bean, unless the bean has the transaction intercepter enabled.

If you are using seam managed transactions as part of the seam-faces module you do not need
to worry about declarative transaction management. Seam will automatically start a transaction
for you at the start of the faces request, and commit it before the render response phase.

Warning

@seamPppl i cati onExcepti on will not control transaction rollback when using
EJB container managed transactions. If you are in an EE environment then
you should always use the EJB API's, namely @ransactionAttribute and
@\ppl i cati onExcepti on.

Note

=de

Transacti onAttri but eType. REQUI RES_NEW and
Transact i onAttri but eType. NOT_SUPPORTED are not yet supported on managed
beans. This will be added before seam-persistence goes final.

Lets have a look at some code. Annotations applied at a method level override annotations applied
at the class level.

@TransactionAttribute /*Defaults to TransactionAttributeType.REQUIRED */

27

Chapter 4. Seam Persistence R...

class TransactionaBean

{

/* This is a transactional method, when this method is called a transaction
* will be started if one does not already exist.

* This behavior is inherited from the @TransactionAttribute annotation on
* the class.

*/

void doWork()

{

[* A transaction will not be started for this method, however it */

/* will not complain if there is an existing transaction active. */
@TransactionAttribute Type(TransactionAttribute Type.SUPPORTED)
void doMoreWork()

{

/* This method will throw an exception if there is no transaction active when */
/* itis invoked. */

@TransactionAttribute Type(TransactionAttribute Type.MANDATORY)
void doEvenMoreWork()

{

/* This method will throw an exception if there is a transaction active when */
[* it is invoked. */
@TransactionAttribute Type(TransactionAttribute Type.NOT_SUPPORTED)
void doOtherWork()

{

4.4. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to
manage the persistence context lifecycle for you. Even if you are in an EE environment, you might

28

Using a Seam-managed persistence context with JPA

have a complex application with many loosely coupled components that collaborate together in the
scope of a single conversation, and in this case you might find that propagation of the persistence
context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session
(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam
component that manages an instance of Ent i t yManager or Sessi on in the conversation (or any
other) context. You can inject it with @ nj ect .

4.4.1. Using a Seam-managed persistence context with JPA

@SeamManaged

@Produces

@PersistenceUnit
@ConversationScoped
EntityManagerFactory producerField;

This is just an ordinary resource producer field as defined by the CDI specification, however the
presence of the @eanvanaged annotation tells seam to create a seam managed persistence
context from this Ent it yManager Fact ory. This managed persistence context can be injected
normally, and has the same scope and qualifiers that are specified on the resource producer field.

This will work even in a SE environment where @PersistenceUnit injection is not
normally supported. This is because the seam persistence extensions will bootstrap the
Enti t yManager Fact ory for you.

Now we can have our Enti t yManager injected using:

@Inject EntityManager entityManager;

Note

e

The more eagle eyed among you may have noticed that the resource producer field
appears to be conversation scoped, which the CDI specification does not require
containers to support. This is actually not the case, as the @ConversationScoped
annotation is removed by the seam persistence portable extension. It only specifies
the scope of the created SMPC, not the EntityManagerFactory.

29

Chapter 4. Seam Persistence R...

Warning

If are wusing EJB3 and mark your class or method
@r ansact i onAttri but e(REQUI RES NEW then the transaction and persistence
context shouldn't be propagated to method calls on this object. However as the
Seam-managed persistence context is propagated to any component within the
conversation, it will be propagated to methods marked REQUI RES_NEW Therefore,
if you mark a method REQUI RES_NEWthen you should access the entity manager
using @PersistenceContext.

4.4.2. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions
that span multiple requests to the server without the need to use the mer ge() operation , without
the need to re-load data at the beginning of each request, and without the need to wrestle with
the Lazyl niti al i zati onExcepti on or NonUni queQbj ect Excepti on.

As with any optimistic transaction management, transaction isolation and consistency can be
achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.1 make it very easy
to use optimistic locking, by providing the @/er si on annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of
each transaction. This is sometimes the desired behavior. But very often, we would prefer that
all changes are held in memory and only written to the database when the conversation ends
successfully. This allows for truly atomic conversations. Unfortunately there is currently no simple,
usable and portable way to implement atomic conversations using EJB 3.1 persistence. However,
Hibernate provides this feature as a vendor extension to the Fl ushModeTypes defined by the
specification, and it is our expectation that other vendors will soon provide a similar extension.

4.4.3. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-managed
persistence context. This lets you use EL expressions in your query strings, safely and efficiently.
For example, this:

User user = em.createQuery("from User where username=#{user.username}")
.getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")

30

Setting up the EntityManager

.setParameter("username", user.getUsername())
.getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!
.getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

E Warning

This only works with seam managed persistence contexts, not persistence
contexts that are injected with @Per si st enceCont ext .

4.4.4. Setting up the EntityManager

Sometimes you may want to perform some additional setup on the Entit yManager after it has
been created. For example, if you are using Hibernate you may want to set a filter. Seam
persistence fires a SeanManagedPer si st enceCont ext Cr eat ed event when a Seam managed
persistence context is created. You can observe this event and perform any setup you require in
an observer method. For example:

public void setupEntityManager(@Observes SeamManagedPersistenceContextCreated event) {
Session session = (Session)event.getEntityManager().getDelegate();
session.enableFilter("myfilter");

}

31

32

Part Ill. Seam Servlet

Introduction

The goal of the Seam Servlet module is to provide portable enhancements to the Servlet API.
Features include producers for implicit Servlet objects and HTTP request state, propagating
Servlet events to the CDI event bus, forwarding uncaught exceptions to the Seam Catch handler
chain and binding the BeanManager to a Servlet context attribute for convenient access.

XXXV

XXXVi

Chapter 5.

Installation

To use the Seam Servlet module, you need to put the API and implementation JARs on the
classpath of your web application. Most of the features of Seam Servlet are enabled automatically
when it's added to the classpath. Some extra configuration, covered below, is required if you are
not using a Servlet 3-compliant container.

5.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following
single dependency to your pom.xml file to include Seam Servlet:

<dependency>
<groupld>org.jboss.seam.servlet</groupld>
<artifactld>seam-servlet</artifactld>
<version>${seam.servlet.version}</version>
</dependency>

Tip

Substitute the expression ${seam.servlet.version} with the most recent or
appropriate version of Seam Servlet. Alternatively, you can create a Maven user-
defined property to satisfy this substitution so you can centrally manage the
version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.
This protects you from inadvertantly depending on an implementation class.

<dependency>
<groupld>org.jboss.seam.servlet</groupld>
<artifactld>seam-servlet-api</artifactld>
<version>${seam.servlet.version}</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.servlet</groupld>
<artifactld>seam-servlet-impl</artifactld>
<version>${seam.servlet.version}</version>
<scope>runtime</scope>

37

http://maven.apache.org/
http://maven.apache.org/

Chapter 5. Installation

</dependency>

If you are deploying to a platform other than JBoss AS, you also need to add the JBoss Logging
implementation (a portable logging abstraction).

<dependency>
<groupld>org.jboss.logging</groupld>
<artifactld>jboss-logging</artifactld>
<version>3.0.0.Beta4</version>
<scope>compile</scope>
</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

5.2. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register
several Servlet components in your application's web.xml to activate the features provided by this
module:

<listener>
<listener-class>org.jboss.seam.servlet.event.ServletEventBridgeListener</listener-class>
</listener>

<servlet>
<servlet-name>Servlet Event Bridge Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet.event.ServletEventBridgeServlet</servlet-class>
</servlet>

<filter>
<filter-name>Servlet Event Bridge Filter</filter-name>
<filter-class>org.jboss.seam.servlet.event.ServletEventBridgeFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Servlet Event Bridge Filter</filter-name>
<url-pattern>/*</url-pattern>

<[filter-mapping>

<filter>
<filter-name>Catch Exception Filter</filter-name>
<filter-class>org.jboss.seam.servlet.CatchExceptionFilter</filter-class>

38

Pre-Servlet 3.0 configuration

</filter>

<filter-mapping>
<filter-name>Catch Exception Filter</filter-name>
<url-pattern>/*</url-pattern>

<[filter-mapping>

You're now ready to dive into the Servlet enhancements provided for you by the Seam Servlet
module!

39

40

Chapter 6.

Servlet event propagation

By including the Seam Servlet module in your web application (and performing the necessary
listener configuration for pre-Servlet 3.0 environments), the servlet lifecycle events will be
propagated to the CDI event bus so you can observe them using observer methods on CDI beans.
Seam Servlet also fires additional lifecycle events not offered by the Servlet API, such as when
the response is initialized and destroyed.

6.1. Servlet context lifecycle events

This category of events corresponds to the event receivers on the
javax. servl et. Servl et Cont ext Li stener interface. The event propagated is a
javax. servl et. Servl et Context (not a javax.servlet. Servl et Cont ext Event, since the
Ser vl et Cont ext is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam servlet.event package
(@nitialized and @est royed) that can be used to observe a specific lifecycle phase of the
servlet context.

The servlet context lifecycle events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.ServletConidnd servlet context is initialized or destroyed
@Initialized javax.servlet.ServletConidnd serviet context is initialized

@Destroyed javax.servlet.ServletContdwd servlet context is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers on the observer method:

public void observeServletContext(@Observes ServletContext ctx) {
System.out.printin(ctx.getServletContextName() + " initialized or destroyed");

}

If you are interested in only a particular lifecycle phase, use one of the provided qualifers:

public void observeServiletContextlnitialized(@Observes @Initialized ServletContext ctx) {
System.out.printin(ctx.getServletContextName() + " initialized");

}

As with all CDI observers, the name of the method is insignificant.

These events are fired using a built-in servlet context listener. The CDI environment will be active
when these events are fired (including when Weld is used in a Servlet container). The listener is

41

Chapter 6. Servlet event prop...

configured to come before listeners in other extensions, so the initialized event is fired before other
servlet context listeners are notified and the destroyed event is fired after other servlet context
listeners are notified. However, this order cannot be not guaranteed if another extension library
is also configured to be ordered before others.

6.2. Application initialization

The servlet context initialized event described in the previous section provides an ideal opportunity
to perform startup logic as an alterative to using an EJB 3.1 startup singleton. Even better, you
can configure the bean to be destroyed immediately following the initialization routine by leaving
it as dependent scoped (dependent-scoped observers only live for the duration of the observe
method invocation).

Here's an example of entering seed data into the database in a development environment (as
indicated by a stereotype annotation named @evel opnent).

@Stateless

@Development

public class SeedDatalmporter {
@PersistenceContext
private EntityManager em;

public void loadData(@Observes @Initialized ServletContext ctx) {
em.persist(new Product(1, "Black Hole", 100.0));
}
}

If you'd rather not tie vyourself to the Servlet API, you can observe the
org. j boss. seam servl et . WebAppl i cat i on rather than the Ser vl et Cont ext . WebAppl i cati on
is a informational object provided by Seam Servlet that holds select information about the
Ser vl et Cont ext such as the application name, context path, server info and start time.

The web application lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) WebApplication The web application is initialized, started or
destroyed

@]nitialized WebApplication The web application is initialized

@Started WebApplication The web application is started (ready)

@Destroyed WebApplication The web application is destroyed

Here's the equivalent of receiving the servlet context initialized event without coupling to the
Servlet API:

42

Servlet request lifecycle events

public void loadData(@Observes @Initialized WebApplication webapp) {
System.out.printin(webapp.getName() + " initialized at " + new Date(webapp.getStartTime()));

}

If you want to perform initialization as late as possible, after all other initialization of the application
is complete, you can observe the WebAppl i cat i on event qualified with @t art ed.

public void onStartup(@Observes @ Started WebApplication webapp) {
System.out.printin("Application at " + webapp.getContextPath() + " ready to handle requests");

}

The @t art ed event is fired in the init method of a built-in Servlet with a load-on-startup value
of 1000.

You can also use WebAppl i cati on with the @estroyed qualifier to be notified when the web
application is stopped. This event is fired by the aforementioned built-in Servlet during it's destroy
method, so likely it should fire when the application is first released.

public void onShutdown(@Observes @Destroyed WebApplication webapp) {
System.out.printin("Application at " + webapp.getContextPath() + " no longer handling requests");

}

6.3. Servlet request lifecycle events

This category of events corresponds to the event receivers on the
javax. servl et. Servl et Request Li stener interface. The event propagated is a
javax. servl et. Servl et Request (not a javax.servlet. Servl et Request Event, since the
Ser vl et Request is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam servlet.event package
(@nitialized and @estroyed) that can be used to observe a specific lifecycle phase of the
servlet request and a secondary qualifier to filter events by servlet path (@at h).

The servlet request lifecycle events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.ServletRegesstrviet request is initialized or destroyed
@Initialized javax.servlet.ServletReglesgrviet request is initialized

@Destroyed javax.servlet.ServletRegMestrviet request is destroyed

43

Chapter 6. Servlet event prop...

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSetvietREGResterviet request is initialized or
destroyed

@Initialized javax.servlet.http.HttpSedvidiR@Guestviet request is initialized

@Destroyed javax.servlet.http.HttpSetvidiR@fusstvlet request is destroyed

@Path(PATH) javax.servlet.http.HttpSepditfequeSTP request with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers on the observer:

public void observeRequest(@Observes ServletRequest request) {
/I Do something with the servlet "request” object

}

If you are interested in only a particular lifecycle phase, use a qualifer:

public void observeRequestinitialized(@Observes @Initialized ServletRequest request) {
/I Do something with the servlet "request” object upon initialization

}

You can also listen specifically for a j avax. servlet. http. Htt pSer vl et Request simply by
changing the expected event type.

public void observeRequestlnitialized(@Observes @Initialized HttpServletRequest request) {
/I Do something with the HTTP servlet "request" object upon initialization

}

You can associate an observer with a particular servlet request path (exact match, no leading
slash).

public void observeRequestinitialized(@Observes @Initialized @Path("offer") HttpServletRequest request) {
/I Do something with the HTTP servlet "request” object upon initialization
/I only when servlet path /offer is requested

}

As with all CDI observers, the name of the method is insignificant.

44

Servlet response lifecycle events

These events are fired using a built-in servlet request listener. The listener is configured to
come before listeners in other extensions, so the initialized event is fired before other serviet
request listeners are notified and the destroyed event is fired after other servlet request listeners
are notified. However, this order cannot be not guaranteed if another extension library is also
configured to be ordered before others.

6.4. Servilet response lifecycle events

The Servlet API does not provide a listener for accessing the lifecycle of a response. Therefore,
Seam Servlet simulates a response lifecycle listener using CDI events. The event object fired is
aj avax. servl et. Servl et Response.

There are two qualifiers provided in the org.jboss.seamservlet.event package
(@nitialized and @est royed) that can be used to observe a specific lifecycle phase of the
servlet response and a secondary qualifier to filter events by servlet path (@rat h).

The servlet response lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletResp@eselet response is initialized or destroyed
@Initialized javax.servlet.ServletResp@wselet response is initialized
@Destroyed javax.servlet.ServletRespmeselet response is destroyed

@Default (optional) javax.servlet.http.HttpSetvietiREEPosevlet response is initialized or

destroyed
@]nitialized javax.servlet.http.HttpSehvidiR@spsarsdet response is initialized
@Destroyed javax.servlet.http.HttpSedvidiR@spsersdet response is destroyed
@Path(PATH) javax.servlet.http.HttpSepditflespONEER response with serviet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeResponse(@Observes ServletResponse response) {
/I Do something with the servlet "response™ object

}

If you are interested in only a particular one, use a qualifer

public void observeResponselnitialized(@Observes @Initialized ServlietResponse response) {
/I Do something with the servlet "response” object upon initialization

}

45

Chapter 6. Servlet event prop...

You can also listen specifically for a j avax. servlet. http. Ht pServl et Response simply by
changing the expected event type.

public void observeResponselnitialized(@Observes @Initialized HttpServletResponse response) {
/I Do something with the HTTP servlet "response" object upon initialization

}

If you need access to the Ser vl et Request and/or the Ser vl et Cont ext objects at the same time,
you can simply add them as parameters to the observer methods. For instance, let's assume you
want to manually set the character encoding of the request and response.

public void setupEncoding(@Observes @Initialized ServletResponse res, ServletRequest req) throws Exception {
if (this.override || req.getCharacterEncoding() == null) {
req.setCharacterEncoding(encoding);
if (override) {
res.setCharacterEncoding(encoding);
}
}
}

As with all CDI observers, the name of the method is insignificant.

Tip

If the response is committed by one of the observers, the request will not be sent
to the target Servlet and the filter chain is skipped.

6.5. Servlet request context lifecycle events

Rather than having to observe the request and response as separate events, or include the
request object as an parameter on a response observer, it would be convenient to be able to
observe them as a pair. That's why Seam Servlet fires an synthetic lifecycle event for the wrapper
type Ser vl et Request Cont ext . The Ser vl et Request Cont ext holds the Ser vl et Request and the
Ser vl et Response objects, and also provides access to the Ser vl et Cont ext .

There are two qualifiers provided in the org.jboss.seam servlet.event package
(@nitialized and @est royed) that can be used to observe a specific lifecycle phase of the
servlet request context and a secondary qualifier to filter events by servlet path (@rat h).

The servlet request context lifecycle events are documented in the table below.

46

Servlet request context lifecycle events

Qualifier Type Description

@Default (optional) ServletRequestContext A request is initialized or destroyed
@Initialized ServletRequestContext A request is initialized

@Destroyed ServletRequestContext A request is destroyed

@Default (optional) HttpServletRequestContgwrtHT TP request is initialized or destroyed

@Initialized HttpServietRequestCont&rtHTTP request is initialized
@Destroyed HttpServietRequestCont&rtHTTP request is destroyed
@Path(PATH) HttpServietRequestContggtects HTTP request with servlet path

matching PATH (drop leading slash)

Let's revisit the character encoding observer and examine how it can be simplified by this event:

public void setupEncoding(@Observes @Initialized ServletRequestContext ctx) throws Exception {
if (this.override || ctx.getRequest().getCharacterEncoding() == null) {
ctx.getRequest().setCharacterEncoding(encoding);
if (override) {
ctx.getResponse().setCharacterEncoding(encoding);
}
}
}

You can also observe the Ht t pSer vl et Request Cont ext to be notified only on HTTP requests.

-
= If the response is committed by one of the observers, the request will not be sent
to the target Servlet and the filter chain is skipped.

Since observers that have access to the response can commit it, an
Ht t pSer vl et Request Cont ext observer that receives the initialized event can effectively work as
a filter or even a Servlet. Let's consider a primitive welcome page filter that redirects visitors to
the start page:

public void redirectToStartPage(@Observes @Path("™) @Initialized HttpServletRequestContext ctx)
throws Exception {
String startPage = ctx.getResponse().encodeRedirectURL(ctx.getContextPath() + "/start.jsf");
ctx.getResponse().sendRedirect(startPage);

}

47

Chapter 6. Servlet event prop...

Now you never have to write a Servlet listener, Servlet or Filter again!

6.6. Session lifecycle events

This category of events corresponds to the event receivers on the
javax. servlet. http. HtpSessionLi stener interface. The event propagated is a
javax.servlet.http. HtpSession(notajavax. servl et. http. Ht t pSessi onEvent, since the
Ht t pSessi on is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam servlet.event package
(@nitialized and @estroyed) that can be used to observe a specific lifecycle phase of the
session.

The session lifecycle events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.http.HttpSeBs®ression is initialized or destroyed
@Initialized javax.servlet.http.HttpSeBls®ression is initialized

@Destroyed javax.servlet.http.HttpSeBs@aession is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers
will observe all events with a Ht t pSessi on as event object.

public void observeSession(@Observes HttpSession session) {
/I Do something with the "session™ object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionlinitialized(@Observes @Initialized HttpSession session) {
/I Do something with the "session" object upon being initialized

}

As with all CDI observers, the name of the method is insignificant.

6.7. Session activation events

This category of events corresponds to the event receivers on the
javax. servlet. http. H t pSessi onActi vati onLi st ener interface. The event propagated is a
javax.servlet.http. HtpSession(notajavax. servl et. http. Ht t pSessi onEvent, since the
Ht t pSessi on is the only relevant information this event provides).

48

Session activation events

There are two qualifiers provided in the org.jboss.seamservlet.event package
(@i dActi vate and @V | | Passi vat e) that can be used to observe a specific lifecycle phase of
the session.

The session activation events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.http.HttpSeBs®ression is initialized or destroyed
@DidActivate javax.servlet.http.HttpSeBs@ression is activated

@WillPassivate javax.servlet.http.HttpSeB@maession will passivate
If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a H t pSessi on as event object.

public void observeSession(@Observes HttpSession session) {
/I Do something with the "session" object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionCreated(@Observes @WillPassivate HttpSession session) {
/I Do something with the "session" object when it's being passivated

}

As with all CDI observers, the name of the method is insignificant.

49

50

Chapter 7.

Injectable Servlet objects and
request state

Seam Servlet provides producers that expose a wide-range of information available in a Servlet
environment (e.g., implicit objects such as ServletContext and HttpSession and state such as
HTTP request parameters) as beans. You access this information by injecting the beans produced.
This chapter documents the Servlet objects and request state that Seam Servlet exposes and
how to inject them.

7.1. @Inject @RequestParam

The @Request Par am qualifier allows you to inject an HTTP request parameter (i.e., URI query
string or URL form encoded parameter).

Assume a request URL of /book.jsp?id=1.

@Inject @RequestParam("id")
private String bookid;

The value of the specified request parameter is retrieved using the method
Ser vl et Request . get Par amet er (Stri ng) . It is then produced as a dependent-scoped bean of
type String qualified @Request Par am

The name of the request parameter to lookup is either the value of the @Request Par amannotation
or, if the annotation value is empty, the name of the injection point (e.g., the field name).

Here's the example from above modified so that the request parameter name is implied from the
field name:

@Inject @RequestParam
private String id;

If the request parameter is not present, and the injection point is annotated with @ef aul t Val ue,
the value of the @ef aul t Val ue annotation is returned instead.

Here's an example that provides a fall-back value:

@Inject @RequestParam @DefaultValue("25")
private String pageSize;

51

Chapter 7. Injectable Servlet...

If the request parameter is not present, and the @ef aul t Val ue annotation is not present, a null
value is injected.

Warning

Since the bean produced is dependent-scoped, use of the @Request Param
annotation on class fields and bean properties is only safe for request-scoped
beans. Beans with wider scopes should wrap this bean in an I nst ance bean and
retrieve the value within context of the thread in which it's needed.

@Inject @RequestParam("id")
private Instance<String> bookldResolver;

String bookld = bookldResolver.get();

7.2. @Inject @HeaderParam

Similar to the @Request Par am you can use the @eader Par amqualifier to inject an HTTP header
parameter. Here's an example of how you inject the user agent string of the client that issued
the request:

@Inject @HeaderParam("User-Agent")
private String userAgent;

The @eader Par amalso supports a default value using the @ef aul t Val ue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @eader Param
annotation on class fields and bean properties is only safe for request-scoped
beans. Beans with wider scopes should wrap this bean in an | nst ance bean and
retrieve the value within context of the thread in which it's needed.

@Inject @HeaderParam("User-Agent")
private Instance<String> userAgentResolver;

String userAgent = userAgentResolver.get();

52

@Inject ServletContext

7.3. @Inject ServletContext

The Ser vl et Cont ext is made available as an application-scoped bean. It can be injected safetly
into any CDI bean as follows:

@Inject
private ServletContext context;

The producer obtains a reference to the Servl et Cont ext by observing the @nitialized
Ser vl et Cont ext event raised by this module's Servlet-to-CDI event bridge.

7.4. @Inject ServietRequest / HttpServletRequest
The Servl et Request is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an Ht t pSer vl et Request . It can be injected safetly into any
CDI bean as follows:

@Inject
private ServletRequest request;

or, for HTTP requests

@Inject
private HttpServletRequest httpRequest;

The producer obtains a reference to the Servl et Request by observing the @nitialized
Ser vl et Request event raised by this module's Servlet-to-CDI event bridge.

7.5. @Inject ServletResponse / HttpServietResponse

The Ser vl et Response is made available as a request-scoped bean. If the current request is an
HTTP request, the produced bean is an H t pSer vl et Response. It can be injected safetly into any
CDI bean as follows:

@Inject
private ServletResponse reponse;

or, for HTTP requests

53

Chapter 7. Injectable Servlet...

@Inject
private HttpServletResponse httpResponse;

The producer obtains a reference to the Servl et Response by observing the @nitialized
Ser vl et Response event raised by this module's Servlet-to-CDI event bridge.

7.6. @Inject HttpSession

The Ht t pSessi on is made available as a request-scoped bean. It can be injected safetly into any
CDI bean as follows:

@Inject
private HttpSession session;

Injecting the Ht t pSessi on will force the session to be created. The producer obtains a reference
to the Htt pSessi on by calling the get Sessi on() on the Htt pSer vl et Request . The reference
to the Ht t pSer vl et Request is obtained by observing the @niti al i zed HttpServl et Request
event raised by this module's Servlet-to-CDI event bridge.

If you merely want to know whether the HttpSession exists, you can instead inject the
Ht t pSessi onSt at us bean that Seam Servlet provides.

7.7. @Inject HttpSessionStatus

The Htt pSessi onSt at us is a request-scoped bean that provides access to the status of the
Ht t pSessi on. It can be injected safetly into any CDI bean as follows:

@Inject
private HttpSessionStatus sessionStatus;

You can invoke the i sActive() method to check if the session has been created, and the
get Sessi on() method to retrieve the Ht t pSessi on, which will be created if necessary.

if (IsessionStatus.isActive()) {
System.out.printin("Session does not exist. Creating it now.");
HttpSession session = sessionStatus.get();
assert session.isNew();

}

54

@Inject @ContextPath

7.8. @Inject @ContextPath

The context path is made available as a dependent-scoped bean. It can be injected safetly into
any request-scoped CDI bean as follows:

@Inject @ContextPath
private String contextPath;

You can safetly inject the context path into a bean with a wider scope using an instance provider:

@Inject @ContextPath
private Instance<String> contextPathProvider;

String contextPath = contextPathProvider.get();

The context path is retrieved from the Ht t pSer vl et Request .

7.9. @Inject List<Cookie>

The list of Cooki e objects is made available as a request-scoped bean. It can be injected safetly
into any CDI bean as follows:

@Inject
private List<Cookie> cookies;

The producer uses a reference to the request-scoped Ht t pSer vl et Request bean to retrieve the
Cooki e intances by calling get Cooki e().

7.10. @Inject @CookieParam

Similar to the @Request Par am you can use the @ooki ePar amqualifier to inject an HTTP header
parameter. Here's an example of how you inject the username of the last logged in user (assuming
you have previously stored it in a cookie):

@Inject @CookieParam
private String username;

If the type at the injection point is Cooki e, the Cooki e object will be injected instead of the value.

55

Chapter 7. Injectable Servlet...

@Inject @CookieParam
private Cookie username;

The @ooki ePar amalso support a default value using the @ef aul t Val ue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @Cooki eParam
annotation on class fields and bean properties is only safe for request-scoped
beans. Beans with wider scopes should wrap this bean in an | nst ance bean and
retrieve the value within context of the thread in which it's needed.

@Inject @CookieParam("username")
private Instance<String> usernameResolver;

String username = usernameResolver.get();

7.11. @Inject @Serverinfo

The server info string is made available as a dependent-scoped bean. It can be injected safetly
into any CDI bean as follows:

@Inject @Serverinfo
private String serverinfo;

The context path is retrieved from the Ser vl et Cont ext .

7.12. @Inject @Principal

The security Pri nci pal for the current user is made available by CDI as an injectable resource
(not provided by Seam Servlet). It can be injected safetly into any CDI bean as follows:

@Inject
private Principal principal;

56

Chapter 8.

Exception handling: Seam Catch
Integration

Seam Catch provides a simple, yet robust foundation for modules and/or applications to establish
a customized exception handling process. Seam Servlet ties into the exception handling model by
forwarding all unhandled Servlet exceptions to Catch so that they can be handled in a centralized,
extensible and uniform manner.

8.1. Background

The Servlet API is extremely weak when it comes to handling exceptions. You are limited to
handling exceptions using the built-in, declarative controls provided in web.xml. Those controls
give you two options:

« send an HTTP status code
 forward to an error page (servlet path)

To make matters more painful, you are required to configure these exception mappings in web.xml.
It's really a dinosaur left over from the past. In general, the Servlet specification seems to be pretty
non-chalant about exceptions, telling you to "handle them appropriately." But how?

That's where the Catch integration in Seam Servlet comes in. The Catch integration traps all
unhandled exceptions (those that bubble outside of the Servlet and any filters) and forwards
them on to Catch. Exception handlers are free to handle the exception anyway they like, either
programmatically or via a declarative mechanism.

If a exception handler registered with Catch handles the exception, then the integration closes
the response without raising any additional exceptions. If the exception is still unhandled after
Catch finishes processing it, then the integration allows it to pass through to the normal Servlet
exception handler.

8.2. Defining a exception handler for a web request

You can define an exception handler for a web request using the normal syntax of a Catch
exception handler. Let's catch any exception that bubbles to the top and respond with a 500 error.

@HandlesExceptions
public class ExceptionHandlers {
void handleAll(@Handles CaughtException<Throwable> caught, HttpServietResponse response) {
response.sendError(500, "You've been caught by Catch!");

}

57

Chapter 8. Exception handling...

That's all there is to it! If you only want this handler to be used for exceptions raised by a web
request (excluding web service requests like JAX-RS), then you can add the @¢ébRequest qualifier
to the handler:

@HandlesExceptions
public class ExceptionHandlers {
void handleAll(@Handles @WebRequest
CaughtException<Throwable> caught, HttpServietResponse response) {
response.sendError(500, "You've been caught by Catch!");

° Note

Currently, @¢bRequest is required to catch exceptions initiated by the Servlet
integration because of a bug in Catch.

Let's consider another example. When the custom Account Not Found exception is thrown, we'll
send a 404 response using this handler.

void handleAccountNotFound(@Handles @WebRequest
CaughtException<AccountNotFound> caught, HttpServietResponse response) {
response.sendError(404, "Account not found: " + caught.getException().getAccountld());

}

In a future release, Seam Servlet will include annotations that can be used to configure these
responses declaratively.

58

Chapter 9.

Retrieving the BeanManager from
the servlet context

Typically, the BeanManager is obtained using some form of injection. However, there are scenarios
where the code being executed is outside of a managed bean environment and you need a way
in. In these cases, it's necessary to lookup the BeanManager from a well-known location.

Warning

In general, you should isolate external BeanManager lookups to integration code.

The standard mechanism for locating the BeanManager from outside a managed bean
environment, as defined by the JSR-299 specification, is to look it up in JNDI. However, JNDI
isn't the most convenient technology to depend on when you consider all popular deployment
environments (think Tomcat and Jetty).

As a simpler alternative, Seam Servlet binds the BeanManager to the following servlet context
attribute (whose name is equivalent to the fully-qualified class name of the BeanManager interface:

javax.enterprise.inject.spi.BeanManager

Seam Servlet also includes a provider that retrieves the BeanManager from this location. Anytime
the Seam Servlet module needs a reference to the BeanManager , it uses this lookup mechanism to
ensure that the module works consistently across deployment environments, especially in Servlet
containers.

You can retrieve the BeanManager in the same way. If you want to hide the lookup, you
can extend the BeanManager Awar e class and retrieve the BeanManager from the the method
get BeanManager (), as shown here:

public class NonManagedClass extends BeanManagerAware {
public void fireEvent() {
getBeanManager().fireEvent("Send me to a managed bean");
}
}

Alternatively, you can retrieve the BeanManager from the method get BeanManager () on the
BeanManager Locat or class, as shown here:

59

Chapter 9. Retrieving the Bea...

public class NonManagedClass {
public void fireEvent() {
new BeanManagerLocator().getBeanManager().fireEvent("Send me to a managed bean");
}
}

Tip

The best way to transfer execution of the current context to the managed bean
environment is to send an event to an observer bean, as this example above
suggests.

Under the covers, these classes look for the BeanManager in the servlet context attribute covered
in this section, amongst other available strategies. Refer to the BeanManager provider chapter of
the Seam Solder reference guide for information on how to leverage the servlet context attribute
provider to access the BeanManager from outside the CDI environment.

60

Part IV. Seam Security

Chapter 10.

Security - Introduction

10.1. Overview

The Seam Security module provides a number of useful features for securing your Java EE
application, which are briefly summarised in the following sections. The rest of the chapters
contained in this documentation each focus on one major aspect of each of the following features.

10.1.1. Authentication

Authentication is the act of establishing, or confirming, the identity of a user. In many applications
a user confirms their identity by providing a username and password (also known as their
credentials). Seam Security allows the developer to control how users are authenticated, by
providing a flexible Authentication API that can be easily configured to allow authentication against
any number of sources, including but not limited to databases, LDAP directory servers or some
other external authentication service.

If none of the built-in authentication providers are suitable for your application, then it is also
possible to write your own custom Authenticator implementation.

10.1.2. Identity Management

Identity Management is a set of useful APIs for managing the users, groups and roles within your
application. The identity management features in Seam are provided by PicketLink IDM, and allow
you to manage users stored in a variety of backend security stores, such as in a database or
LDAP directory.

10.1.3. External Authentication

Seam Security contains an external authentication sub-module that provides a number of features
for authenticating your application users against external authentication services, such as OpenID
and SAML.

10.1.4. Authorization

While authentication is used to confirm the identity of the user, authorization is used to control
which actions a user may perform within your application. Authorization can be roughly divided
into two categories; coarse-grained and fine-grained. An example of a coarse-grained restriction is
allowing only members of a certain group or role to perform a privileged operation. A fine-grained
restriction on the other hand may allow only a certain individual user to perform a specific action
on a specific object within your application.

There are also rule-based permissions, which bridge the gap between fine-grained and coarse-
grained restrictions. These permissions may be used to determine a user's privileges based on
any type of business logic.

63

Chapter 10. Security - Introd...

10.2. Configuration

10.2.1. Maven Dependencies

The Maven artifacts for all Seam modules are hosted within the JBoss Maven repository. Please
refer to the Maven Getting Started Guide [http://community.jboss.org/wiki/MavenGettingStarted-
Users] for information about configuring your Maven installation to use the JBoss repository.

To use Seam Security within your Maven-based project, it is advised that you import the Seam
BOM (Bill of Materials) which declares the versions for all Seam modules. First declare a property
value for ${ seam ver si on} as follows:

<properties>
<seam.version>3.0.0.Final</seam.version>
</properties>

You can check the JBoss Maven Repository [https://repository.jboss.org/nexus/content/groups/
public/org/jboss/seam/seam-bom/] directly to determine the latest version of the Seam BOM to
use.

Now add the following lines to the list of dependencies within the dependencyManagenent section
of your project's pom xn file:

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>seam-bom</artifactid>
<version>${seam.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>

Once that is done, add the following dependency (no version is required as it comes from seam

bom):

<dependency>
<groupld>org.jboss.seam.security</groupld>
<artifactld>seam-security</artifactld>
</dependency>

It is also possible to import the security module as separate APl and implementation
modules, for situations where you may not want to use the default implementation (such as

64

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/

Third Party Dependencies

testing environments where you may wish to substitute mock objects instead of the actual
implementation). To do this, the following dependencies may be declared instead:

<dependency>
<groupld>org.jboss.seam.security</groupld>
<artifactld>seam-security-api</artifactld>
</dependency>

<dependency>
<groupld>org.jboss.seam.security</groupld>
<artifactld>seam-security-impl</artifactld>
</dependency>

If you wish to use the external authentication module in your application to allow authentication
using OpenID or SAML, then add the following dependency also:

<dependency>
<groupld>org.jboss.seam.security</groupld>
<artifactld>seam-security-external</artifactld>
</dependency>

10.2.2. Third Party Dependencies

65

66

Chapter 11.

Security - Authentication

11.1. Basic Concepts

The majority of the Security API is centered around the I dentity bean. This bean represents
the identity of the current user, the default implementation of which is a session-scoped, named
bean. This means that once logged in, a user's identity is scoped to the lifecycle of their current
session. The two most important methods that you need to know about at this stage in regard to
authentication are | ogi n() and | ogout (), which as the names suggest are used to log the user
in and out, respectively.

As the default implementation of the | dentity bean is named, it may be referenced via an EL
expression, or be used as the target of an EL action. Take the following JSF code snippet for
example:

<h:commandButton action="#{identity.login}" value="Log in"/>

This JSF command button would typically be used in a login form (which would also contain inputs
for the user's username and password) that allows the user to log into the application.

The other important bean to know about right now is the Credenti al s bean. Its' purpose is to
hold the user's credentials (such as their username and password) before the user logs in. The
default implementation of the Cr edent i al s bean is also a session-scoped, named bean (just like
the I denti ty bean).

The Credenti al s bean has two properties, user nane and cr edenti al that are used to hold the
current user's username and credential (e.g. a password) values. The default implementation of
the Credent i al s bean provides an additional convenience property called passwor d, which may
be used in lieu of the credenti al property when a simple password is required.

67

Chapter 11. Security - Authen...

bean type is or g. j boss. seam security. Credenti al sl npl . Also, as credentials
may come in many forms (such as passwords, biometric data such as that from a
fingerprint reader, etc) the cr edent i al property of the Cr edent i al s bean must be
able to support each variation, not just passwords. To allow for this, any credential
that implements the or g. pi cketlink.idm api . Credenti al interface is a valid
value for the credent i al property.

11.2. Built-in Authenticators

The Seam Security module provides the following built-in Aut hent i cat or implementations:

e org.jboss.seam security.jaas.JaasAut henti cat or - used to authenticate against a JAAS
configuration defined by the container.

e org.jboss.seam security. managenent. | dmAut henti cat or - used to authenticate against
an Identity Store using the Identity Management API. See the Identity Management chapter for
details on how to configure this authenticator.

e org.jboss.seam security. external.openid. Qpenl dAut henticator (provided by the
external module) - used to authenticate against an external OpenlID provider, such as Google,
Yahoo, etc. See the External Authentication chapter for details on how to configure this
authenticator.

11.3. Which Authenticator will Seam use?

The I denti ty bean has an aut hent i cat or G ass property, which if set will be used to determine
which Aut henti cat or bean implementation to invoke during the authentication process. This
property may be set by configuring it with a predefined authenticator type, for example by using the
Seam Config module. The following XML configuration example shows how you would configure
the I denti ty bean to use the com acne. MyCust onmer Aut hent i cat or bean for authentication:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:security="urn:java:org.jposs.seam.security"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://jpboss.org/schema/cdi/
beans 1 0.xsd">

<security:ldentitylmpl>
<s:modifies/>
<security:authenticatorClass>com.acme.MyCustomAuthenticator</
security:authenticatorClass>
</security:ldentitylmpl>

68

Writing a custom Authenticator

</beans>

Alternatively, if you wish to be able to select the Aut hent i cat or to authenticate with by specifying
the name of the Aut henticator implementation (i.e. for those annotated with the @amed
annotation), the aut hent i cat or Name property may be set instead. This might be useful if you
wish to offer your users the choice of how they would like to authenticate, whether it be through
a local user database, an external OpenlID provider, or some other method.

The following example shows how you might configure the aut hent i cat or Nane property with the
Seam Config module:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:s="urn:java:ee"
xmlns:security="urn:java:org.jposs.seam.security"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/
beans 1 0.xsd">
<security:ldentitylmpl>
<s:modifies/>
<security:authenticatorName>openldAuthenticator</security:authenticatorName>
</security:ldentitylmpl>
</beans>

If neither the authenticatorC ass or authenticatorNanme properties are set, then the
authentication process with automatically use a custom Aut henti cat or implementation, if the
developer has provided one (and only one) within their application.

If neither property is set, and the user has not provided a custom Aut henti cat or, then the
authentication process will fall back to the Identity Management API to attempt to authenticate
the user.

11.4. Writing a custom Authenticator

All Aut hent i cat or implementations must implement the
org.j boss. seam security. Aut henti cator interface. This interface defines the following
methods:

public interface Authenticator {
void authenticate();
void postAuthenticate();
User getUser();
AuthenticationStatus getStatus();

69

Chapter 11. Security - Authen...

The aut hent i cat e() method is invoked during the authentication process and is responsible for
performing the work necessary to validate whether the current user is who they claim to be.

The post Aut henti cate() method is invoked after the authentication process has already
completed, and may be used to perform any post-authentication business logic, such as setting
session variables, logging, auditing, etc.

The get User () method should return an instance of or g. pi cket |l i nk. i dm api . User, which is
generally determined during the authentication process.

The get Status() method must return the current status of authentication, represented by
the Aut henti cati onSt at us enum. Possible values are SUCCESS, FAI LURE and DEFERRED. The
DEFERRED value should be used for special circumstances, such as asynchronous authentication
as a result of authenticating against a third party as is the case with OpenliD, etc.

The easiest way to get started writing your own custom authenticator is to extend the
org.j boss. seam security. BaseAut henti cat or abstract class. This class implements the
get User () and get Status() methods for you, and provides set User () and set Stat us()
methods for setting both the user and status values.

To access the user's credentials from within the aut henti cat e() method, you can inject the
Credenti al s bean like so:

@Inject Credentials credentials;

Once the credentials are injected, the aut hent i cat e() method is responsible for checking that
the provided credentials are valid. Here is a complete example:

public class SimpleAuthenticator extends BaseAuthenticator implements Authenticator {
@Inject Credentials credentials;

@Override
public void authenticate() {
if ("demo".equals(credentials.getUsername()) &&
credentials.getCredential() instanceof PasswordCredential &&
"demo".equals(((PasswordCredential) credentials.getCredential()).getValue())) {
setStatus(AuthenticationStatus.SUCCESS);
setUser(new SimpleUser("demao"));
}
}
}

70

Writing a custom Authenticator

° Note

The above code was taken from the simple authentication example, included in
the Seam Security distribution.

In the above code, the aut hent i cat e() method checks that the user has provided a username of
demo and a password of demo. If so, the authentication is deemed as successful and the status is
set to Aut hent i cati onSt at us. SUCCESS, and a new Si npl eUser instance is created to represent
the authenticated user.

Warning

The Aut hent i cat or implementation must return a non-null value when get User ()
is invoked if authentication is successful. Failure to return a non-null value will result
in an Aut hent i cat i onExcept i on being thrown.

71

72

Chapter 12.

Security - Identity Management

12.1. TO DO

This chapter coming soon.

73

74

Chapter 13.

Security - External Authentication

13.1. TO DO

This chapter coming soon.

75

76

Chapter 14.

Security - Authorization

14.1. TO DO

This chapter coming soon.

77

78

Part V. Seam Faces

Introduction

The goal of Seam Faces is to provide a fully integrated CDI programming model to the JavaServer
Faces (JSF) 2.0 web-framework. With features such as observing Events, providing injection
support for life-cycle artifacts (FacesContext, NavigationHandler,) and more.

IXXxi

Ixxxii

Chapter 15.

Installation

To use the Seam Faces module, you need to put the API and implementation JARs on the
classpath of your web application. Most of the features of Seam Faces are enabled automatically
when it's added to the classpath. Some extra configuration, covered below, is required if you are
not using a Servlet 3-compliant container.

15.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following
single dependency to your pom.xml file to include Seam Faces:

<dependency>
<groupld>org.jboss.seam.faces</groupld>
<artifactld>seam-faces</artifactld>
<version>${seam.faces.version}</version>
</dependency>

Tip

Substitute the expression ${seam.faces.version} with the most recent or
appropriate version of Seam Faces. Alternatively, you can create a Maven user-
defined property to satisfy this substitution so you can centrally manage the
version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.
This protects you from inadvertantly depending on an implementation class.

<dependency>
<groupld>org.jboss.seam.faces</groupld>
<artifactld>seam-faces-api</artifactld>
<version>${seam.faces.version}</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.faces</groupld>
<artifactld>seam-faces-impl</artifactld>
<version>${seam.faces.version}</version>
<scope>runtime</scope>

83

http://maven.apache.org/
http://maven.apache.org/

Chapter 15. Installation

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

15.2. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register
several Servlet components in your application's web.xml to activate the features provided by this
module:

<listener>
<listener-class>org.jboss.seam.faces.beanManager.BeanManagerServletContextListener</

listener-class>

</listener>

You're now ready to dive into the JSF enhancements provided for you by the Seam Faces module!

84

Chapter 16.

Faces Events Propagation

When the seam-faces module is installed in a web application, JSF events will automatically be
propagated via the CDI event-bridge, enabling managed beans to easily observe all Faces events.

There are two categories of events: JSF phase events, and JSF system events. Phase events are
triggered as JSF processes each lifecycle phase, while system events are raised at more specific,
fine-grained events during request processing.

16.1. JSF Phase events

A JSF phase listener is a class that implements j avax. f aces. event . Phaseli st ener and is
registered in the web application's f aces- confi g. xnl file. By implementing the methods of the
interfaces, the user can observe events fired before or after any of the six lifecycle phases of a
JSF request: restore view, apply request val ues, process validations, update nodel
val ues, i nvoke application orrender view.

16.1.1. Seam Faces Phase events

What Seam provides is propagation of these Phase events to the CDI event bus; therefore, you
can observe events using normal CDI @bser ves methods. Bringing the events to CDI beans
removes the need to register phase listener classes via XML, and gives the added benefit of
injection, alternatives, interceptors and access to all other features of CDI.

Creating an observer method in CDI is simple; just provide a method in a managed bean that is
annotated with @bser ves. Each observer method must accept at least one method parameter:
the event object; the type of this object determines the type of event being observed. Additional
parameters may also be specified, and their values will be automatically injected by the container
as per the CDI specification.

In this case, the event object passed along from the phase listener is a
j avax. f aces. event . PhaseEvent . The following example observes all Phase events.

public void observeAll(@Observes PhaseEvent e)

{

/I Do something with the event object

Events can be further filtered by adding Qualifiers. The name of the method itself is not significant.
(See the CDI Reference Guide for more information on events and observing.)

Since the example above simply processes all events, however, it might be appropriate to filter
out some events that we aren't interested in. As stated earlier, there are six phases in the JSF

85

Chapter 16. Faces Events Prop...

lifecycle, and an event is fired before and after each, for a total of 12 events. The @ef or e and
@f ter "temporal" qualifiers can be used to observe events occurring only before or only after a
Phase event. For example:

public void observeBefore(@Observes @Before PhaseEvent e)

{

/I Do something with the "before" event object

public void observeAfter(@Observes @After PhaseEvent e)
{

/I Do something with the "after" event object

If we are interested in both the "before" and "after" event of a particular phase, we can limit them
by adding a "lifecycle" qualifier that corresponds to the phase:

public void observeRenderResponse(@Observes @RenderResponse PhaseEvent e)

{

/I Do something with the "render response” event object

By combining a temporal and lifecycle qualifier, we can achieve the most specific qualification:

public void observeBeforeRenderResponse(@Observes @Before @RenderResponse PhaseEvent e)

{

/I Do something with the "before render response" event object

16.1.2. Phase events listing

This is the full list of temporal and lifecycle qualifiers

Qualifier Type Description

@Before temporal Qualifies events before lifecycle phases
@After temporal Qualifies events after lifecycle phases
@RestoreView lifecycle Qualifies events from the "restore view" phase

86

JSF system events

Qualifier Type Description

@ApplyRequestValifesycle Qualifies events from the "apply request values" phase
@ProcessValidatiotiecycle Qualifies events from the "process validations" phase
@UpdateModelValligscycle Qualifies events from the "update model values" phase
@InvokeApplicatiotifecycle Qualifies events from the "invoke application" phase
@RenderResponsdifecycle Qualifies events from the "render response" phase

The event object is always a j avax. f aces. event . PhaseEvent and according to the general CDI
principle, filtering is tightened by adding qualifiers and loosened by omitting them.

16.2. JSF system events

Similar to JSF Phase Events, System Events take place when specific events occur within the
JSF life-cycle. Seam Faces provides a bridge for all JSF System Events, and propagates these
events to CDI.

16.2.1. Seam Faces System events

This is an example of observing a Faces system event:

public void observesThisEvent(@Observes ExceptionQueuedEvent e)

{

/I Do something with the event object

16.2.2. System events listing

Since all JSF system event objects are distinct, no qualifiers are needed to observe them. The
following events may be observed:

Event object Context Description

SystemEvent all All events

ComponentSystemEvent component All component events
PostAddToViewEvent component After a component was added to the view
PostConstructViewMapEvent component After a view map was created
PostRestoreStateEvent component After a component has its state restored
PostValidateEvent component After a component has been validated
PreDestroyViewMapEvent component Before a view map has been restored

87

Chapter 16. Faces Events Prop...

Event object Context Description

PreRemoveFromViewEvent component Before a component has been removed from
the view

PreRenderComponentEvent component After a component has been rendered

PreRenderViewEvent component Before a view has been rendered

PreValidateEvent component Before a component has been validated

ExceptionQueuedEvent system When an exception has been queued

PostConstructApplicationEvent system After the application has been constructed
PostConstructCustomScopeEvent system After a custom scope has been constructed
PreDestroyApplicationEvent system Before the application is destroyed

PreDestroyCustomScopeEvent system Before a custom scope is destroyed

16.2.3. Component system events

There is one qualifier, @onponent that can be used with component events by
specifying the component ID. Note that view-centric component events PreRender Vi ewEvent ,
Post Const r uct Vi ewapEvent and PreDest r oyVi ewMapEvent do not fire with the @onponent
qualifier.

public void observePrePasswordValidation(@Observes @Component(“form:password") PreValidateEvent e)

{

/I Do something with the "before password is validated" event object

}

Global system events are observer without the component qualifier

public void observeApplicationConstructed(@Observes PostConstructApplicationEvent e)

{

/I Do something with the "after application is constructed" event object

}

The name of the observing method is not relevant; observers are defined solely via annotations.

88

Chapter 17.

Faces Scoping Support

JSF 2.0 introduced the concept of the Flash object and the @ViewScope; however, JSF 2.0 did not
provide annotations accessing the Flash, and CDI does not support the non-standard ViewScope
by default. The Seam Faces module does both, in addition to adding a new @RenderScoped
context. Beans stored in the Render Scope will survive until the next page is rendered. For the
most part, beans stored in the ViewScope will survive as long as a user remains on the same
page, and data in the JSF 2 Flash will survive as long as the flash survives).

17.1. @RenderScoped

Beans placed in the @RenderScoped context are effectively scoped to, and live through but not
after, "the next Render Response phase”.

You should think about using the Render scope if you want to store information that will be relevant
to the user even after an action sends them to another view. For instance, when a user submits
a form, you may want to invoke JSF navigation and redirect the user to another page in the site;
if you needed to store a message to be displayed when the next page is rendered -but no longer-
you would store that message in the RenderContext. Fortunately, Seam provides RenderScoped
messages by default, via the Seam Messages API.

To place a bean in the Render scope, use the @ avax. f aces. bean. Render Scoped annotation.
This means that your bean will be stored in the or g. j boss. seam cont ext . Render Cont ext object
until the next page is rendered, at which point the RenderScope will be cleared.

@RenderScoped
public class Bean {
...

@RenderScoped beans are destroyed when the next JSF RENDER_RESPONSE phase ends,
however, if a user has multiple browser windows open for the same user-session, multiple
RenderContexts will be created, one for each incoming request. Seam Faces keeps track of which
RenderContext belongs to each request, and will restore/destroy them appropriately. If there is
more than one active RenderContext at the time when you issue a redirect, you will see a URL
parameter "?fid=..." appended to the end of the outbound URL, this is to ensure the correct context
is restored when the request is received by the server, and will not be present if only one context
is active.

Caution

¥

If you want to use the Render Scope with custom navigation in your application, be
sure to call Ext er nal Cont ext . encodeRedi rect URL(String url, Map<String,

89

Chapter 17. Faces Scoping Support

17.2. @Inject javax.faces.contet.Flash flash

JSF 2 does not provide proper system events to create a functional @l ashScoped
context annotation integrated with CDI, so until a workaround can be found, or JSF 2 is
enhanced, you can access the Flash via the @Inject annotation. For more information on
the JSF Flash [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/
Flash.html], read this API doc [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/
javax/faces/context/Flash.html].

public class Bean {
@Inject private Flash flash;
...

}

17.3. @ViewScoped

To scope a bean to the View, use the @ avax. f aces. bean. Vi ewScoped annotation. This means
that your bean will be stored in the j avax. f aces. conponent . Ul Vi ewRoot object associated with
the view in which it was accessed. Each JSF view (faces-page) will store its own instance of the
bean, just like each HttpServletRequest has its own instance of a @RequestScoped bean.

@ViewScoped
public class Bean {
...

}

https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html

@ViewScoped

91

92

Chapter 18.

Messages API

While JSF already has the concept of adding FacesMessage objects to the FacesContext in order
for those messages to be displayed to the user when the view is rendered, Seam Faces takes
this concept one step farther with the Messages API provided by the Seam International module.
Messages are template-based, and can be added directly via the code, or templates can be loaded
from resource bundles using a Bundl eKey.

18.1. Adding Messages

Consistent with the CDI programming model, the Messages API is provided via
bean injection. To add a new message to be displayed to the user, inject
org.j boss.seaminternational.status. Messages and call one of the Message factory
methods. As mentioned earlier, factory methods accept either a plain-text template, or a
Bundl eKey, specifying the name of the resource bundle to use, and the name of the key to use
as a message template.

@Named
public class Example
{

@Inject

Messages messages;

public String action()

{
messages.info("This is an {0} message, and will be displayed to {1}.", "INFO", "the user");
return null;

Adds the message: "This is an INFO message, and will be displayed to the user."

Notice how {0}, {1} ... {N} are replaced with the given parameters, and may be used more than
once in a given template. In the case where a Bundl eKey is used to look up a message template,
default text may be provided in case the resource cannot be loaded; default text uses the same
parameters supplied for the bundle template. If no default text is supplied, a String representation
of the Bundl eKey and its parameters will be displayed instead.

public String action()
{

messages.warn(new BundleKey("org.jboss.seam.faces.exampleBundle", "messageKey"), "unique");
return null;

93

Chapter 18. Messages API

cl asspat h: / org/j boss/ sean f aces/ exanpl eBundl e. properties
messageKey=This {0} parameter is not so {0}, see?

Adds the message: "This unique parameter is not so unique, see?"
18.2. Displaying pending messages

It's great when messages are added to the internal buffer, but it doesn't do much good unless the
user actually sees them. In order to display messages, simply use the <h: nessages /> tag from
JSF. Any pending messages will be displayed on the page just like normal FacesMessages.

<html xmlIns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html|"
xmlns:s="http://jboss.org/seam/faces"
xmlns:ui="http://java.sun.com/jsf/facelets">

<h1>Welcome to Seam Faces!</h1>
<p>All Messages and FacesMessages will be displayed below:</p>

<h:messages />

</html>

Messages added to the internal buffer via the Messages API are stored in a central location during
each request, and may be displayed by any view-technology that supports the Messages API.
Seam Faces provides an integration that makes all of this automatic for you as a developer, and in
addition, messages will automatically survive JSF navigation and redirects, as long as the redirect
URL was encoded using Ext er nal Cont ext . encodeRedi rect URL(...). If you are using JSF-
compliant navigation, all of this is handled for you.

94

Chapter 19.

Faces Artifact Injection

One of the goals of the Seam Faces Module is to make support for CDI a more ubiquitous
experience, by allowing injection of JSF Lifecycle Artifacts into managed beans, and also by
providing support for @Inject where it would not normally be available. This section describes the
additional CDI integration for faces artifact injection

19.1. @*Scoped and @Inject in Validators and
Converters

Frequently when performing complex validation, it is necessary to access data stored in a
database or in other contextual objects within the application itself. JSF does not, by default,
provide support for @ nj ect in Converters and Validators, but Seam Faces makes this available.
In addition to injection, it is sometimes convenient to be able to scope a validator just as we would
scope a managed bean; this feature is also added by Seam Faces.

Notice how the Validator below is actually @Request Scoped, in addition to using injection to obtain
an instance of the User Ser vi ce with which to perform an email database lookup.

@RequestScoped
@FacesValidator("emailAvailabilityValidator")
public class EmailAvailabilityValidator implements Validator
{

@Inject

UserService us;

@Override

public void validate(final FacesContext context, final UIComponent component, final Object value)

throws ValidatorException
{
String field = value.toString();
try
{
us.getUserByEmail(field);
FacesMessage msg = new FacesMessage("That email address is unavailable");
throw new ValidatorException(msg);
}
catch (NoSuchObjectException e)
{
}
}
}

95

Chapter 19. Faces Artifact In...

Warning

We recommend to always use @Request Scoped converters/validators unless a
longer scope is required, in which case you should use the appropriate scope
annotation, but it should not be omitted.

Because of the way JSF persists Validators between requests, particularly when
using @nj ect inside a validator or converter, forgetting to use a @ Scoped
annotation could in fact cause @ nj ect 'ed objects to become null.

An example Converter using @Inject

@SessionScoped
@FacesConverter("authorConverter")
public class UserConverter implements Converter

{
@Inject
private UserService service;

@PostConstruct
public void setup()

{

System.out.printin("UserConverter started up");

}

@PreDestroy
public void shutdown()

{

System.out.printin("UserConverter shutting down");

}

@Override
public Object getAsObiject(final FacesContext arg0, final UIComponent argl, final String userName)
{

...

return service.getUserByName(userName);

}

@Override
public String getAsString(final FacesContext context, final UIComponent comp, final Object user)

{
...

return ((User)user).getUsername();

96

@Inject'able Faces Artifacts

19.2. @Inject'able Faces Artifacts

This is the list of inject-able artifacts provided through Seam Faces. These objects would normally
require static method-calls in order to obtain handles, but Seam Faces attempts to break that
coupling by providing @Inject'able artifacts. This means it will be possible to more easily provide
mocked objects during unit and integration testing, and also simplify bean code in the application

itself.

Artifact Class

javax.faces.context.FacesContext

javax.faces.context.ExternalContexi

javax.faces.application.NavigationH

javax.faces.context.Flash

Example

public class Bean {
@Inject FacesContext context;

}

public class Bean {
@Inject ExternalContext context;

}

public class Bean {
@Inject NavigationHandler handler;

}

public class Bean {
@Inject Flash flash;

}

97

98

Chapter 20.

Seam Faces Components

While Seam Faces does not provide layout components or other Ul-design related features, it
does provide functional components designed to make developing JSF applications easier, more
functional, more scalable, and more practical.

For layout and design components, take a look at RichFaces [http://jboss.org/richfaces], a Ul
component library specifically tailored for easy, rich web-interfaces.

20.1. Introduction

In order to use the Seam Faces components, you must first add the namespace to your view file,
just like the standard JSF component libraries.

<html xmIns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:s="http://jboss.org/seam/faces"
xmlns:ui="http://java.sun.com/jsf/facelets">

<h1>Welcome to Seam Faces!</h1>
<p>
This view imports the Seam Faces component library.
Read on to discover what components it provides.
</p>

</html>

Tip

All Seam Faces components use the following namespace: http://j boss. org/
seam f aces

20.2. <s:validateForm>

On many occasions you might find yourself needing to compare the values of multiple input fields
on a given page submit: confirming a password; re-enter password; address lookups; and so on.
Performing cross-field form validation is simple - just place the <s:validateForm> component in
the form you wish to validate, then attach your custom Validator.

<h:form id="locationForm">

99

http://jboss.org/richfaces
http://jboss.org/richfaces

Chapter 20. Seam Faces Components

<h:inputText id="city" value="#{bean.city}" />

<h:inputText id="state" value="#{bean.state}" />

<h:inputText id="zip" value="#{bean.zip}" />

<h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

<s:validateForm validatorld="locationValidator" />
</h:form>

The corresponding Validator for the example above would look something like this:

@FacesValidator("locationValidator")
public class LocationValidator implements Validator
{

@Inject

Directory directory;

@Inject
@InputField
private Object city;

@Inject
@InputField
private Object state;

@Inject
@InputField
private ZipCode zip;

@Override
public void validate(final FacesContext context, final UIComponent comp, final Object values)
throws ValidatorException

if('directory.exists(city, state, zip))
{
throw new ValidatorException(
new FacesMessage("Sorry, that location is not in our database. Please try again."));

100

<s:validateForm>

Tip

You may inject the correct type directly.

Notice that the IDs of the inputText components match the IDs of your Validator @InputFields;
each @Inject @InputField member will be injected with the value of the form input field who's ID
matches the name of the variable.

In other words - the name of the @InputField annotated member variable will automatically be
matched to the ID of the input component, unless overridden by using a field ID alias (see below.)

<h:form id="locationForm">
<h:inputText id="cityld" value="#{bean.city}" />
<h:inputText id="stateld" value="#{bean.state}" />
<h:inputText id="zip" value="#{bean.zip}" />
<h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

<s:validateForm fields="city=cityld state=stateld" validatorld="locationValidator" />
</h:form>

Notice that "zip" will still be referenced normally; you need only specify aliases for fields that differ
in name from the Validator @InputFields.

Tip

Usi ng @ nput Fi el d("cust om D') with an ID override can also be used to specify
a custom ID, instead of using the default: the name of the field. This gives you the
ability to change the name of the private field, without worrying about changing the
name of input fields in the View itself.

101

Chapter 20. Seam Faces Components

20.3. <s:viewAction>

The view action component (Ul Vi ewAct i on) is an Act i onSour ce2 Ul Conponent that specifies an
application-specific command (or action), using using an EL method expression, to be invoked
during one of the JSF lifecycle phases proceeding Render Response (i.e., view rendering).

View actions provide a lightweight front-controller for JSF, allowing the application to
accommodate scenarios such as registration confirmation links, security and sanity checking a
request (e.g., ensuring the resource can be loaded). They also allow JSF to work alongside action-
oriented frameworks, and existing applications that use them.

20.3.1. Motivation

JSF employs an event-oriented architecture. Listeners are invoked in response to user-interface
events, such as the user clicking on a button or changing the value of a form input. Unfortunately,
the most important event on the web, a URL request (initiated by the user clicking on a link,
entering a URL into the browser's location bar or selecting a bookmark), has long been overlooked
in JSF. Historically, listeners have exclusively been activated on postback, which has led to the
common complaint that in JSF, "everything is a POST."

We want to change that perception.

Processing a URL request event is commonly referred to as bookmarkable or GET support. Some
GET support was added to JSF 2.0 with the introduction of view parameters and the pre-render
view event. View parameters are used to bind query string parameters to model properties. The
pre-render view event gives the developer a window to invoke a listener immediately prior to the
view being rendered.

That's a start.

Seam brings the GET support full circle by introducing the view action component. A view action is
the compliment of a Ul Conmmand for an initial (non-faces) request. Like its cohort, it gets executed
by default during the Invoke Application phase (now used on both faces and non-faces requests).
A view action can optionally be invoked on postback as well.

View actions (Ul Vi ewAct i on) are closely tied to view parameters (Ul Vi ewPar anet er). Most of
the time, the view parameter is used to populate the model with data that is consumed by the
method being invoked by a Ul Vi ewAct i on component, much like form inputs populate the model
with data to support the method being invoked by a Ul Conmmand component.

20.3.2. Usage

Let's consider a typical scenario in web applications. You want to display the contents of a blog
entry that matches the identifier specified in the URL. We'll assume the URL is:

http://localhost:8080/blog/entry.jsf?id=10

102

Usage

We'll use a view parameter to capture the identifier of the entry from the query string and a view
action to fetch the entry from the database.

<f:metadata>
<fiviewParam name="id" value="#{blogManager.entryld}"/>
<s:viewAction action="#{blogManager.loadEntry}"/>
</f:metadata>

Tip

The view action component must be declared as a child of the view metadata facet
(i.e., <f : met adat a>) so that it gets incorporated into the JSF lifecycle on both non-
faces (initial) requests and faces (postback) requests. If you put it anywhere else
in the page, the behavior is undefined.

Warning

In JSF 2.0, there must be at least one view parameter for the view metadata
facet to be processed. This requirement was introduced into the JSF specification
accidentally, but it's not so unfortunate since view parameters are typically needed
to capture input needed by the view action.

What do we do if the entry can't be found? View actions support declarative navigation just like
Ul Conmand components. So you can write a havigation rule that will be consulted before the page
is rendered. If the rule matches, navigation occurs just as though this were a postback.

<navigation-rule>

<from-view-id>/entry.xhtml</from-view-id>

<navigation-case>
<from-action>#{blogManager.loadEntry}</from-action>
<if>#{empty entry}</if>
<to-view-id>/home.xhtml</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

After each view action is invoked, the navigation handler looks for a havigation case that matches
the action's EL method signature and outcome. If a navigation case is matched, or the response

103

Chapter 20. Seam Faces Components

is marked complete by the action, subsequent view actions are short-circuited. The lifecycle then
advances appropriately.

By default, a view action is not executed on postback, since the primary intention of a view action
is to support a non-faces request. If your application (or use case) is decidedly stateless, you
may need the view action to execute on any type of request. You can enable the view action on
postback using the onPost back attribute:

<s:viewAction action="#{blogManager.loadEntry}" onPostback="true"/>

You may only want the view action to be invoked under certain conditions. For instance, you may
only need it to be invoked if the conversation is transient. For that, you can use the i f attribute,
which accepts an EL value expression:

<s:viewAction action="#{blogEditor.loadEntry}" if="#{conversation.transient}"/>

There are two ways to control the phase in which the view action is invoked. You can set the
i nmedi at e attribute to true, which moves the invocation to the Apply Request Values phase
instead of the default, the Invoke Application phase.

<s:viewAction action="#{sessionManager.validateSession}" immediate="true"/>

You can also just specify the phase directly, using the name of the phase constant in the Phasel d
class (the case does not matter).

<s:viewActioaction="#{sessionManager.validateSessionphase="APPLY_REQUEST_ VALUES"/
>

Tip

The valid phases for a view action are:

APPLY_REQUEST VALUES (default if i nmedi at e="tr ue")
UPDATE_MODEL_ VAL UES
PROCESS_VALI DATI ONS

| NVOKE_APPLI CATI ON (default)

104

View actions vs the PreRenderViewEvent

If the phase is set, it takes precedence over the immediate flag.

20.3.3. View actions vs the PreRenderViewEvent

The purpose of the view action is similar to use of the PreRenderViewEvent. In fact, the code to
load a blog entry before the page is rendered could be written as:

<f:metadata>

<f.viewParam name="id" value="#{blogManager.entryld}"'/>

<f:event type="preRenderView" listener="#{blogManager.loadEntry}"/>
</f:metadata>

However, the view action has several important advantages:

It's lightweight

It's timing can be controlled

It's contextual
« It can trigger navigation

View actions are lightweight because they get processed on a non-faces (initial) request before the
full component tree is built. When the view actions are invoked, the component tree only contains
view metadata.

As demonstrated above, you can specify a prerequisite condition for invoking the view action,
control whether it's invoked on postback, specify the phase in which it's invoked and tie the
invocation into the declarative navigation system. The PreRenderViewEvent is quite basic in
comparison.

20.4. Ul Input Container

UllnputContainer is a supplemental component for a JSF 2.0 composite component encapsulating
one or more input components (EditableValueHolder), their corresponding message components
(UIMessage) and a label (HtmIOutputLabel).

This component takes care of wiring the label to the first input and the messages to each input
in sequence. It also assigns two implicit attribute values, "required” and "invalid" to indicate that
a required input field is present and whether there are any validation errors, respectively. To
determine if a input field is required, both the required attribute is consulted and whether the
property has Bean Validation constraints.

Finally, if the "label" attribute is not provided on the composite component, the label value will be
derived from the id of the composite component, for convenience.

105

Chapter 20. Seam Faces Components

Composite component definition example (minus layout):

<cc:interface componentType="org.jboss.seam.faces.InputContainer"/>
<cc:implementation>

<h:outputLabel id="label" value="#{cc.attrs.label}." styleClass="#{cc.attrs.invalid ? 'invalid' :
">

<h:outputText styleClass="required" rendered="#{cc.attrs.required}" value="*"/>

</h:outputLabel>

<cc:insertChildren/>

<h:message id="message" errorClass="invalid message" rendered="#{cc.attrs.invalid}"/>
</cc:implementation>

Composite component usage example:

<example:inputContainer id="name">
<h:inputText id="input" value="#{person.name}"/>
</example:inputContainer>

Tip

NOTE: Firefox does not properly associate a label with the target input if the
input id contains a colon (), the default separator character in JSF. JSF 2
allows developers to set the value via an initialization parameter (context-param
in web.xml) keyed to j avax. f aces. SEPARATOR CHAR. We recommend that you
override this setting to make the separator an underscore ().

106

Part VI. Seam International

Introduction

The goal of Seam International is to provide a unified approach to configuring locale, timezone and
language. With features such as Status messages propogation to Ul, multiple property storage
implementations and more.

Cix

CX

Chapter 21.

Installation

Most features of Seam International are installed automatically by including seam
international.jar in the web application library folder. If you are using Maven [http://
maven.apache.org/] as your build tool, you can add the following dependency to your pom xni file:

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>seam-international</artifactld>
<version>${seam-international-version}</version>
</dependency>

-
> Replace ${seam-international-version} with the most recent or appropriate version
of Seam International.

111

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

112

Chapter 22.

Locales

22.1. Default Locale

In a similar fashion to TimeZones we have an application Local e retrieved by

@Inject
java.util.Locale Ic;

accessible via EL with "defaultLocale".

By default the Locale will be set to the JVM default, unless you override the
Def aul t Local eProducer Bean via the Seam Config module. Here are a few examples of XML
that can be used to define the various types of Local es that are available.

This will set the default language to be French.

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:seam:core"
xmlns:lc="urn:java:org.jpboss.seam.international.locale"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd">

<Ic:DefaultLocaleProducer>
<s:replaces/>
<Ic:defaultLocaleKey>fr</Ic.defaultLocaleKey>
</Ic:DefaultLocaleProducer>
</beans>

This will set the default language to be English with the country of US.

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:seam:core"
xmlns:lc="urn:java:org.jpboss.seam.international.locale"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd">

113

Chapter 22. Locales

<Ic:DefaultLocaleProducer>
<s:replaces/>
<|c:defaultLocaleKey>en_US</Ic:defaultLocaleKey>
</Ic:DefaultLocaleProducer>
</beans>

As you can see from the previous examples, you can define the Locale with
I ang_country_vari ant . It's important to note that the first two parts of the locale definition are
not expected to be greater than 2 characters otherwise an error will be produced and it will default
to the JVM Local e.

22.2. User Locale

The Locale associated with the User Session can be retrieved by

@Inject
@UserLocale
java.util.Locale locale;

which is EL accessible via user Local e.

By default the Local e will be the same as that of the application when the User Session is initially
created. However, changing the User's Local e is a simple matter of firing an event to update it.
An example would be

@Inject
@Changed
Event<java.util.Locale> localeEvent;

public void setUserLocale()

{
Locale canada = Locale.CANADA;

localeEvent.fire(canada);

22.3. Available Locales

We've also provided a list of available Locales that can be accessed via

@Inject

114

Available Locales

List<java.util.Locale> locales;

The locales that will be returned with this can be defined with XML configuration of the
Avai | abl eLocal es Bean such as

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmins:lc="urn:java:org.jboss.seam.international.locale"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1 0.xsd">

<Ic:LocaleConfiguration>
<lc:supportedLocaleKeys>
<s:value>en</s:value>
<s:value>fr</s:value>
</Ic:supportedLocaleKeys>
</Ic:LocaleConfiguration>
</beans>

115

116

Chapter 23.

Timezones

To support a more developer friendly way of handling TimeZones we have incorporated the use
of Joda-Time through their Dat eTi neZone class. Don't worry, it provides convenience methods to
convert to JDK Ti meZone if required.

23.1. Default TimeZone

Starting at the application level the module provides a Dat eTi neZone that can be retrieved with

@Inject
DateTimeZone applicationTimeZone;

It can also be accessed through EL by the name "defaultTimeZone"!

By default the Tinezone will be set to the JVM default, unless you override the
Def aul t Ti meZonePr oducer Bean using the Seam Config module. For instance, adding this XML
into seam beans. xn or beans. xnm will change the default Ti neZzone of the application to be
Tijuana!

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:seam:core"
xmlns:tz="urn:java:org.jboss.seam.international.timezone"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1 0.xsd">

<tz:DefaultTimeZoneProducer>
<s:specializes/>
<tz:defaultTimeZoneld>America/Tijuana</tz:defaultTimeZoneld>
</tz:DefaultTimeZoneProducer>
</beans>

23.2. User TimeZone

We also have a Dat eTi neZone that is scoped to the User Session which can be retrieved with

@Inject
@UserTimeZone

117

Chapter 23. Timezones

DateTimeZone userTimeZone;

It can also be accessed through EL using "userTimeZone".

By default the Ti nreZone will be the same as the application when the User Session is initialised.
However, changing the User's Ti meZone is a simple matter of firing an event to update it. An
example would be

@Inject
@Changed
Event<DateTimeZone> tzEvent;

public void setUserTimeZone()

{

DateTimeZone tijuana = DateTimeZone.forID("America/Tijuana");
tzEvent.fire(tijuana);

23.3. Available TimeZones

We've also provided a list of available TimeZones that can be accessed via

@Inject
List<DateTimeZone> timeZones;

118

Chapter 24.

Messages

There are currently two ways to create a message within the module.

The first would mostly be used when you don't want to add the generated message directly to the
Ul, but want to log it out, or store it somewhere else

@Inject
MessageFactory factory;

public String getMessage()
{

MessageBuilder builder = factory.info("There are {0} cars, and they are all {1}; {1} is the best
color.", 5, "green");#
return builder.build().getText();

The second is to add the message to a list that will be returned to the Ul for display.

@Inject
Messages messages;

public void setMessage()

{

messages.info("There are {0} cars, and they are all {1}; {1} is the best color.", 5, "green");

Either of these methods supports the four message levels which are info, warning, error and fatal.

Both the MessageFactory and Messages classes support four ways in which to create a Message:

Directly adding the message

Directly adding the message and replacing parameters

* Retrieving the message from a bundle

Retrieving the message from a bundle and replacing parameters

Examples for each of these are:

messages.info("Simple Text");

119

Chapter 24. Messages

messages.info("Simple Text with {0} parameter", 1);

messages.info(new BundleKey("org.jboss.international.seam.test. TestBundle", "key1™));

messages.info(new BundleKey("org.jboss.international.seam.test. TestBundle", "key2"), 1);

The above examples assume that there is a properties file existing at
org.j boss.international.seamtest. Test Bundl e. properti es with key1 being a simple text
string and key?2 including a single parameter.

120

Part VII. Seam Catch

Chapter 25.

Seam Catch - Introduction

Exceptions are a fact of life. As developers, we need to be prepared to deal with them in the most
graceful manner possible. Seam Catch provides a simple, yet robust foundation for modules and/
or applications to establish a customized exception handling process. By employing a delegation
model, Catch allows exceptions to be addressed in a centralized, extensible and uniform manner.

Catch is first notified of an exception to be handled via a CDI event. This event is fired either
by the application or a Catch integration. Catch then hands the exception off to a chain of
registered handlers, which deal with the exception appropriately. The use of CDI events to connect
exceptions to handlers makes this strategy of exception handling non-invasive and minimally
coupled to Catch's infrastructure.

The exception handling process remains mostly transparent to the developer. In some cases,
you register an exception handler simply by annotating a handler method. Alternatively, you can
handle an exception programmatically, just as you would observe an event in CDI.

In this guide, we'll explore the various options you have for handling exceptions using Catch, as
well as how framework authors can offer Catch integration.

123

124

Chapter 26.

Seam Catch - Installation

To use the Seam Catch module, you need to add the Seam Catch API to your project as a compile-
time dependency. At runtime, you'll also need the Seam Catch implementation, which you either
specify explicitly or through a transitive dependency of another module that depends on it (as part
of exposing its own Catch integration).

First, check your application's library dependencies to see whether Seam Catch is already being
included by another module (such as Seam Servlet). If not, you'll need to setup the dependencies
as described below.

26.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following
single dependency to your pom.xml file to include Seam Catch:

<dependency>
<groupld>org.jboss.seam.catch</groupld>
<artifactld>seam-catch</artifactld>
<version>${seam.catch.version}</version>
</dependency>

Tip

Substitute the expression ${seam.catch.version} with the most recent or
appropriate version of Seam Catch. Alternatively, you can create a Maven user-
defined property to satisfy this substitution so you can centrally manage the
version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.
This protects you from inadvertantly depending on an implementation class.

<dependency>
<groupld>org.jboss.seam.catch</groupld>
<artifactld>seam-catch-api</artifactld>
<version>${seam.catch.version}</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.catch</groupld>

125

http://maven.apache.org/
http://maven.apache.org/

Chapter 26. Seam Catch - Inst...

<artifactld>seam-catch-impl</artifactld>
<version>${seam.catch.version}</version>
<scope>runtime</scope>

</dependency>

Now you're ready to start catching exceptions!

126

Chapter 27.

Seam Catch - Usage

27.1. Exception handlers

As an application developer (i.e., an end user of Catch), you'll be focused on writing exception
handlers. An exception handler is a method on a CDI bean that is invoked to handle a specific type
of exception. Within that method, you can implement any logic necessary to handle or respond
to the exception.

Given that exception handler beans are CDI beans, they can make use of dependency injection,
be scoped, have interceptors or decorators and any other functionality available to CDI beans.

Exception handler methods are designed to follow the syntax and semantics of CDI observers,
with some special purpose exceptions explained in this guide. The advantage of this design is that
exception handlers will be immediately familiar to you if you are studying or well-versed in CDI.

In this chapter, you'll learn how to define an exception handler and explore how and when it gets
invoked. We'll begin by covering the two annotations that are used to declare an exception handler,
@and| esExcept i ons and @andl es.

27.2. Exception handler annotations

Exception handlers are contained within exception handler beans, which are CDI beans annotated
with @andl esExcept i ons. Exception handlers are methods which have a parameter which is an
instance of Caught Except i on<T ext ends Thr owabl e> annotated with the @andl es annotation.

27.2.1. @HandlesExceptions

The @andl esExcept i on annotation is simply a marker annotation that instructs the Seam Catch
CDI extension to scan the bean for handler methods.

Let's designate a CDI bean as an exception handler by annotating it with @4andl esExcept i on.

@HandlesExceptions
public class MyHandlers {}

That's all there is to it. Now we can begin defining exception handling methods on this bean.

° Note

The @andl esExcept i ons annotation may be deprecated in favor of annotation
indexing done by

127

Chapter 27. Seam Catch - Usage

27.2.2. @Handles

@andl es is a method parameter annotation that designates a method as an exception handler.
Exception handler methods are registered on beans annotated with @Handl esExcept i ons. Catch
will discover all such methods at deployment time.

Let's look at an example. The following method is invoked for every exception that Catch
processes and prints the exception message to stout. (Thr owabl e is the base exception type in
Java and thus represents all exceptions).

@HandlesExceptions 1
public class MyHandlers

{
void printExceptions(@Handles CaughtException<Throwable> evt) 2
{
System.out.printin("Something bad happened: " +
evt.getException().getMessage()); 3
evt.markHandled(); 2
}
}

11 The @dandl esExcepti ons annotation signals that this bean contains exception handler
methods.

2 The @andl es annotation on the first parameter designates this method as an exception
handler (though it is not required to be the first parameter). This parameter must be of type
Caught Excepti on<T extends Throwabl e>, otherwise it's detected as a definition error.
The type parameter designates which exception the method should handle. This method is
notified of all exceptions (requested by the base exception type Thr owabl e).

3 The Caught Except i on instance provides access to information about the exception and can
be used to control exception handling flow. In this case, it's used to read the current exception
being handled in the exception stack trace, as returned by get Excepti on() .

4 This handler does not modify the invocation of subsequent handlers, as designated by
invoking mar kHandl ed() on Caught Except i on. As this is the default behavior, this line could
be omitted.

The @iandl es annotation must be placed on a parameter of the method, which must be of type
Caught Excepti on<T ext ends Thr owabl e>. Handler methods are similar to CDI observers and,
as such, follow the same principles and guidelines as observers (such as invocation, injection of
parameters, qualifiers, etc) with the following exceptions:

« a parameter of a handler method must be a Caught Excepti on

128

@Handles

e handlers are ordered before they are invoked (invocation order of observers is non-
deterministic)

< any handler can prevent subsequent handlers from being invoked

In addition to designating a method as exception handler, the @andl es annotation specifies two
pieces of information about when the method should be invoked relative to other handler methods:

« a precedence relative to other handlers for the same exception type. Handlers with higher
precendence are invoked before handlers with lower precendence that handle the same
exception type. The default precendence (if not specified) is 0.

« the type of the traversal mode (i.e., phase) during which the handler is invoked. The default
traversal mode (if not specified) is Tr aver sal Mode. DEPTH_FI RST.

Let's take a look at more sophisticated example that uses all the features of handlers to log all
exceptions.

@HandlesExceptions 1
public class MyHandlers
{
void logExceptions(@Handles(during = TraversalMode.BREADTH_FIRST) 2

@WebRequest CaughtException<Throwable> evt, 3

Logger log) 4

{
log.warn("Something bad happened: " + evt.getException().getMessage());

11 The @Handl esExcepti ons annotation signals that this bean contains exception handler
methods.

2 This handler has a default precedence of 0 (the default value of the precedence attribute
on @1andl es). It's invoked during the breadth first traversal mode. For more information on
traversal, see the section Section 27.4.1, “Traversal of exception type hierarchy”.

g This handler is qualified with @¢ébRequest . When Catch calculates the handler chain, it filters
handlers based on the exception type and qualifiers. This handler will only be invoked for
exceptions passed to Catch that carry the @\ebRequest qualifier. We'll assume this qualifier
distinguishes a web page request from a REST request.

4 Any additional parameters of a handler method are treated as injection points. These
parameters are injected into the handler when it is invoked by Catch. In this case, we are
injecting a Logger bean that must be defined within the application (or by an extension).

A handler is guaranteed to only be invoked once per exception (automatically muted), unless it
reenables itself by invoking the unmut e() method on the Caught Except i on instance.

129

Chapter 27. Seam Catch - Usage

Handlers must not throw checked exceptions, and should avoid throwing unchecked exceptions.
Should a handler throw an unchecked exception it will propegate up the stack and all handling
done via Catch will cease. Any exception that was being handled will be lost.

27.3. Exception stack trace processing

When an exception is thrown, chances are it's nested (wrapped) inside other exceptions. (If you've
ever examined a server log, you'll appreciate this fact). The collection of exceptions in its entirety
is termed an exception stack trace.

The outermost exception of an exception stack trace (e.g., EJBException, ServletException, etc)
is probably of little use to exception handlers. That's why Catch doesn't simply pass the exception
stack trace directly to the exception handlers. Instead, it intelligently unwraps the stack trace and
treats the root exception cause as the primary exception.

The first exception handlers to be invoked by Catch are those that match the type of root
cause. Thus, instead of seeing a vague EJBException, your handlers will instead see an
meaningful exception such as Constrai nt Vi ol ati onExcepti on. This feature, alone, makes
Catch a worthwhile tool.

Catch continues to work through the exception stack trace, notifying handlers of each exception in
the stack, until a handler flags the exception as handled. Once an exception is marked as handled,
Catch stops processing the exception. If a handler instructed Catch to rethrow the exception
(by invoking Caught Except i on#r et hr ow(), Catch will rethrow the exception outside the Catch
infrastructure. Otherwise, it simply returns flow control to the caller.

Consider a stack trace containing the following nested causes (from outer cause to root cause):

« EJBException
» PersistenceException
e SQLGrammarException

Catch will unwrap this exception and notify handlers in the following order:

1. SQLGrammarException
2. PersistenceException
3. EJBException

If there's a handler for Per si st enceExcept i on, it will likely prevent the handlers for EJBExcept i on
from being invoked, which is a good thing since what useful information can really be obtained
from EJBExcepti on?

27.4. Exception handler ordering

While processing one of the causes in the exception stack trace, Catch has a specific order it uses
to invoke the handlers, operating on two axes:

130

Traversal of exception type hierarchy

« traversal of exception type hierarchy
- relative handler precedence

We'll first address the traversal of the exception type hierarchy, then cover relative handler
precedence.

27.4.1. Traversal of exception type hierarchy

Catch doesn't simply invoke handlers that match the exact type of the exception. Instead, it walks
up and down the type hierarchy of the exception. It first notifies least specific handler in breadth
first traversal mode, then gradually works down the type hiearchy towards handlers for the actual
exception type, still in breadth first traversal. Once all breadth first traversal handlers have been
invoked, the process is reversed for depth first traversal, meaning the most specific handlers are
notified first and Catch continues walking up the hierarchy tree.

There are two modes of this traversal:

« BREADTH_FIRST
* DEPTH_FIRST

By default, handlers are registered into the DEPTH_FIRST traversal path. That means in most
cases, Catch starts with handlers of the actual exception type and works up towards the handler
for the least specific type.

However, when a handler is registered to be notified during the BREADTH_FIRST traversal, as
in the example above, Catch will notify that exception handler before the exception handler for
the actual type is notified.

Let's consider an example. Assume that Catch is handling the Socket Excepti on. It will notify
handlers in the following order:

1. Thr onabl e (BREADTH_FIRST)

2. Excepti on (BREADTH_FIRST)

3. 1 OExcept i on (BREADTH_FIRST)

4. Socket Except i on (BREADTH_FIRST)
5. Socket Excepti on (DEPTH_FIRST)

6. | OExcepti on (DEPTH_FIRST)

7. Exception (DEPTH_FIRST)

8. Thr owabl e (DEPTH_FIRST)

The same type traversal occurs for each exception processed in the stack trace.

131

Chapter 27. Seam Catch - Usage

In order for a handler to be notified of the | CExcept i on before the Socket Except i on, it would
have to specify the BREADTH_FIRST traversal path explicitly:

void handlelOException(@Handles(during = TraversalMode.BREADTH_FIRST)
CaughtException<IOException> evt)

{

System.out.printin("An 1/0 exception occurred, but not sure what type yet");

}

BREADTH_FIRST handlers are typically used for logging exceptions because they are not likely
to be short-circuited (and thus always get invoked).

27.4.2. Handler precendence

When Catch finds more than one handler for the same exception type, it orders the handlers
by precendence. Handlers with higher precendence are executed before handlers with a lower
precedence. If Catch detects two handlers for the same type with the same precedence, it detects
it as an error and throws an exception at deployment time.

Let's define two handlers with different precendence:

void handlelOExceptionFirst(@Handles(precendence = 100) CaughtException<IOException> evt)
{

System.out.printin("Invoked first");

}

void handlelOExceptionSecond(@Handles CaughtException<IOException> evt)
{

System.out.printin("Invoked second");

}

The first method is invoked first since it has a higher precendence (100) than the second method,
which has the default precedence (0).

To make specifying precendence values more convenient, Catch provides several built-in
constants, available on the Precedence class:

e BUILT_IN =-100

132

APIs for exception information and flow control

FRAMEWORK = -50

DEFAULT =0

LOW =50

HIGH =100

To summarize, here's how Catch determines the order of handlers to invoke (until a handler marks
exception as handled):

1. Unwrap exception stack

2. Begin processing root cause

3. Find handler for least specific handler marked for BREADTH_FIRST traversal

4. If multiple handlers for same type, invoke handlers with higher precendence first

5. Find handler for most specific handler marked for DEPTH_FIRST traversal

6. If multiple handlers for same type, invoke handlers with higher precendence first

7. Continue above steps for each exception in stack

27.5. APIs for exception information and flow control

There are two APIs provided by Catch that should be familiar to application developers:

* Caught Exception

* ExceptionSt ack

27.5.1. CaughtException

In addition to providing information about the exception being handled, the Caught Excepti on
object contains methods to control the exception handling process, such as rethrowing the
exception, aborting the handler chain or unmuting the current handler.

Five methods exist on the Caught Except i on object to give flow control to the handler
e abort () -terminate all handling immediately after this handler, does not mark the exception as
handled, does not re-throw the exception.

e rethrow() - continues through all handlers, but once all handlers have been called (assuming
another handler does not call abort() or handled()) the initial exception passed to Catch is
rethrown. Does not mark the exception as handled.

« handl ed() - marks the exception as handled and terminates further handling.

133

Chapter 27. Seam Catch - Usage

» proceed() -default. Marks the exception as handled and proceeds with the rest of the handlers.

e proceedToCause() - marks the exception as handled, but proceeds to the next cause in the
cause container, without calling other handlers for the current cause.

Once a handler is invoked it is muted, meaning it will not be run again for that exception stack
trace, unless it's explicitly marked as unmuted via the unnut e() method on Caught Except i on.

27.5.2. ExceptionStack

Except i onSt ack contains information about the exception causes relative to the current exception
cause. It is also the source of the exception types the invoked handlers are matched against. It
is accessed in handlers by calling the method get Excepti onSt ack() on the Caught Excepti on
object. Please see APl docs for more information, all methods are fairly self-explanatory.

Tip

This object is mutable and can be modified before any handlers are invoked by
an observer:

public void modifyStack(@Observes ExceptionStack stack) {

Modifying the ExceptionStack may be useful to remove exception types that are
effectively meaningless sucsh as EJBExcepti on, changing the exception type
to something more meaningful such as cases like SQ.Excepti on, or wrapping
exceptions as custom application exception types.

134

Chapter 28.

Seam Catch - Framework Integration

Integration of Seam Catch with other frameworks consists of one main step, and two other optional
(but highly encouraged) steps:

 creating and firing an Except i onToCat ch
» adding any default handlers and qualifiers with annotation literals (optional)

» supporting ServiceHandlers for creating exception handlers

28.1. Creating and Firing an ExceptionToCatch event

An ExceptionToCat ch is constructed by passing a Throwabl e and optionally qualifiers for
handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting
a Event <Except i onToCat ch> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception
handling mechanism of the integrating framework, if any exist. By tying into the framework's
exception handling, any uncaught exceptions should be routed through the Seam Catch system
and allow handlers to be invoked. This is the typical way of using the Seam Catch framework. Of
course, it doesn't stop the application developer from firing their own Except i onToCat ch within
a catch block.

28.2. Default Handlers and Qualifiers

28.2.1. Default Handlers

An integration with Catch can define it's own handlers to always be used. It's recommended
that any built-in handler from an integration have a very low precedence, be a handler for as
generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for
PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the
integration. This helps limit any collisions with handlers the application developer may create.

Note

Hopefully at some point there will be a way to conditionally enable handlers so
the application developer will be able to selectively enable any default handlers.
Currently this does not exist, but is something that will be explored.

j=do

28.2.2. Qualifiers

Catch supports qualifiers for the Caught Except i on. To add qualifiers to be used when notifying
handlers, the qualifiers must be added to the Excepti onToCat ch instance via the constructor

135

Chapter 28. Seam Catch - Fram...

(please see API docs for more info). Qualifiers for integrations should be used to avoid collisions
in the application error handling both when defining handlers and when firing events from the
integration.

28.3. Supporting ServiceHandlers

ServiceHandlers [http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/
#servicehandler] make for a very easy and concise way to define exception handlers. The following
example comes from the jaxrs example in the distribution:

@HandlesExceptions
@ExceptionResponseService
public interface DeclarativeRestExceptionHandlers

{

@SendHttpResponse(status = 403, message = "Access to resource denied (Annotation-
configured response)")
void onNoAccess(@Handles @RestRequest CaughtException<AccessControlException> e);

@SendHttpResponse(status = 400, message = "Invalid identifier (Annotation-configured
response)")
void oninvalidldentifier(@Handles @RestRequest CaughtException<IllegalArgumentException> €);

}

All the vital information that would normally be done in the handler method is actually contained
in the @endHt t pResponse annotation. The only thing left is some boiler plate code to setup the
Response. In a jax-rs application (or even in any web application) this approach helps developers
cut down on the amount of boiler plate code they have to write in their own handlers and should be
implemented in any Catch integration, however, there may be situtations where ServiceHandlers
simply do not make sense.

Note

If ServiceHandlers are implemented make sure to document if any of the methods
are called from Caught Except i on, specifically abor t (), handl ed() orret hrow() .
These methods affect invocation of other handlers (or rethrowing the exception in
the case of ret hrow()).

)

136

http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler

Seam Catch - Glossary

E

Exception Stack

H

Handler Bean

Handler Method

An exception chain is made up of many different exceptions or
causes until the root exception is found at the bottom of the
chain. When all of the causes are removed or looked at this forms
the causing container. The container may be traversed either
ascending (root cause first) or descending (outer most first).

A CDI enabled Bean which contains handler methods. Annotated
with the @4andl esExcept i ons annotation.
See Also Handler Method.

A method within a handler bean which is marked as a handler
using the @Handlers on an argument, which must be an instance
of CaughtException. Handler methods typically are public with a
void return. Other parameters of the method will be treated as
injection points and will be resolved via CDI and injected upon
invocation.

137

138

Part VIlIl. Seam Remoting

Chapter 29.

Seam Remoting - Basic Features

Seam provides a convenient method of remotely accessing CDI beans from a web page, using
AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with
almost no up-front development effort - your beans only require simple annotating to become
accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled web
page, then goes on to explain the features of the Seam Remoting framework in more detail.

29.1. Configuration

To use remoting, the Seam Remoting servlet must first be configured in your web. xn file:

<servlet>
<servlet-name>Remoting Servlet</servlet-name>
<servlet-class>org.jboss.seam.remoting.Remoting</servlet-class>
<load-on-startup>1</load-on-startup>

</serviet>

<servlet-mapping>
<servlet-name>Remoting Servlet</servlet-name>
<url-pattern>/seam/resource/remoting/*</url-pattern>
</servlet-mapping>

Note

If your application is running within a Servlet 3.0 (or greater) environment, then
the servlet configuration listed above is not necessary as the Seam Remoting
JAR library bundles a web- fragnent . xm that configures the Remoting servlet
automatically.

j=deo

The next step is to import the necessary Javascript into your web page. There are a minimum of
two scripts that must be imported. The first one contains all the client-side framework code that
enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

By default, the client-side JavaScript is served in compressed form, with white space compacted
and JavaScript comments removed. For a development environment, you may wish to use the
uncompressed version of r enot e. j s for debugging and testing purposes. To do this, simply add
the conpr ess=f al se parameter to the end of the url:

141

Chapter 29. Seam Remoting - B...

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js?
compress=false"></script>

The second script that you need contains the stubs and type definitions for the beans you wish
to call. It is generated dynamically based on the method signatures of your beans, and includes
type definitions for all of the classes that can be used to call its remotable methods. The name of
the script reflects the name of your bean. For example, if you have a named bean annotated with
@laned, then your script tag should look like this (for a bean class called Cust oner Act i on):

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction"></script>

Otherwise, you can simply specify the fully qualified class name of the bean:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?com.acme.myapp.CustomerAction"></script>

If you wish to access more than one bean from the same page, then include them all as parameters
of your script tag:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

29.1.1. Dynamic type loading

If you forget to import a bean or other class that is required by your bean, don't worry. Seam
Remoting has a dynamic type loading feature that automatically loads any JavaScript stubs for
bean types that it doesn't recognize.

29.2. The "Seam" object

Client-side interaction with your beans is all performed via the SeamJavascript object. This object
is defined in renot e. j s, and you'll be using it to make asynchronous calls against your bean.
It contains methods for creating client-side bean objects and also methods for executing remote
requests. The easiest way to become familiar with this object is to start with a simple example.

29.2.1. A Hello World example

Let's step through a simple example to see how the Seamobject works. First of all, let's create a
new bean called hel | oActi on:

142

A Hello World example

@Named
public class HelloAction implements HelloLocal {
@WebRemote public String sayHello(String name) {
return "Hello, " + name;

Take note of the @ebRenot e annotation on the sayHel | o() method in the above listing. This
annotation makes the method accessible via the Remoting API. Besides this annotation, there's
nothing else required on your bean to enable it for remoting.

Now for our web page - create a new JSF page and import the hel | oActi on bean:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?helloAction

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something whenit's clicked:

<script type="text/javascript">
/I<|[CDATA[

function sayHello() {
var name = prompt("What is your name?");
Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

}

function sayHelloCallback(result) {

143

Chapter 29. Seam Remoting - B...

alert(result);

}

11>
</script>

We're done! Deploy your application and open the page in a web browser. Click the button, and
enter a name when prompted. A message box will display the hello message confirming that the
call was successful. If you want to save some time, you'll find the full source code for this Hello
World example in the / exanpl es/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start
with, you can see from the Javascript code listing that we have implemented two methods - the first
method is responsible for prompting the user for their name and then making a remote request.
Take a look at the following line:

Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

The first section of this line, Seam cr eat eBean(" hel | oActi on") returns a proxy, or "stub" for our
hel | oActi on bean. We can invoke the methods of our bean against this stub, which is exactly
what happens with the remainder of the line: sayHel | o(name, sayHel | oCal | back); .

What this line of code in its completeness does, is invoke the sayHel | o method of our bean,
passing in nane as a parameter. The second parameter, sayHel | oCal | back isn't a parameter of
our bean's sayHel | o method, instead it tells the Seam Remoting framework that once it receives
the response to our request, it should pass it to the sayHel | oCal | back Javascript method. This
callback parameter is entirely optional, so feel free to leave it out if you're calling a method with
a voi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops
up an alert message displaying the result of our method call.

29.2.2. Seam.createBean

The Seam cr eat eBean JavaScript method is used to create client-side instances of both action
and "state" beans. For action beans (which are those that contain one or more methods annotated
with @ebRenot e), the stub object provides all of the remotable methods exposed by the bean.
For "state" beans (i.e. beans that simply carry state, for example Entity beans) the stub object
provides all the same accessible properties as its server-side equivalent. Each property also has
a corresponding getter/setter method so you can work with the object in JavaScript in much the
same way as you would in Java.

144

The Context

29.3. The Context

The Seam Remoting Context contains additional information which is sent and received as part
of a remoting request/response cycle. It currently contains the conversation ID and Call ID, and
may be expanded to include other properties in the future.

29.3.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to
read or set the conversation ID in the Seam Remoting Context. To read the conversation ID after
making a remote request call Seam cont ext . get Conver sati onl d() . To set the conversation ID
before making a request, call Seam cont ext . set Conversati onl d().

If the conversation ID hasn't been explicitly set with Seam cont ext . set Conver sati onl d(), then
it will be automatically assigned the first valid conversation ID that is returned by any remoting call.
If you are working with multiple conversations within your page, then you may need to explicitly
set the conversation ID before each call. If you are working with just a single conversation, then
you don't need to do anything special.

29.3.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current
view's conversation. To do this, you must explicitly set the conversation ID to that of the view
before making the remote call. This small snippet of JavaScript will set the conversation ID that
is used for remoting calls to the current view's conversation ID:

Seam.context.setConversationld(#{conversation.id});

29.4. Working with Data types

29.4.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values as a rule
are compatible with either their primitive type or their corresponding wrapper class.

29.4.1.1. String

Simply use Javascript String objects when setting String parameter values.
29.4.1.2. Number

There is support for all number types supported by Java. On the client side, number values are
always serialized as their String representation and then on the server side they are converted
to the correct destination type. Conversion into either a primitive or wrapper type is supported for
Byt e, Doubl e, Fl oat, I nt eger, Long and Short types.

145

Chapter 29. Seam Remoting - B...

29.4.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java
boolean.

29.4.2. JavaBeans

In general these will be either entity beans or JavaBean classes, or some other non-bean class.
Use Seam cr eat eBean() to create a new instance of the object.

29.4.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the
client side, use a JavaScript Dat e object to work with date values. On the server side, use any
java.util . Date (or descendent, such as j ava. sql . Dat e or j ava. sql . Ti nest anp class.

29.4.4. Enums

On the client side, enums are treated the same as St ri ngs. When setting the value for an enum
parameter, simply use the Stri ng representation of the enum. Take the following bean as an
example:

@Named
public class paintAction {
public enum Color {red, green, blue, yellow, orange, purple};

public void paint(Color color) {
/I code

}
}

To call the pai nt () method with the color r ed, pass the parameter value as a St ri ng literal:

Seam.createBean("paintAction”).paint("red");

The inverse is also true - that is, if a bean method returns an enum parameter (or contains an enum
field anywhere in the returned object graph) then on the client-side it will be convertedtoa St ri ng.

29.4.5. Collections

29.4.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see
the next section for those), and are implemented client-side as a JavaScript array. When calling

146

Debugging

a bean method that accepts one of these types as a parameter, your parameter should be a
JavaScript array. If a bean method returns one of these types, then the return value will also be a
JavaScript array. The remoting framework is clever enough on the server side to convert the bag
to an appropriate type (including sophisticated support for generics) for the bean method call.

29.4.5.2. Maps

As there is no native support for Maps within JavaScript, a simple Map implementation is provided
with the Seam Remoting framework. To create a Map which can be used as a parameter to a
remote call, create a new Seam Map object:

var map = new Seam.Map();

This JavaScript implementation provides basic methods for working with Maps: size(),
i sEmpty(), keySet(), values(), get(key), put(key, val ue), renove(key) and
cont ai ns(key) . Each of these methods are equivalent to their Java counterpart. Where the
method returns a collection, such as keySet () and val ues(), a JavaScript Array object will be
returned that contains the key or value objects (respectively).

29.5. Debugging
To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents

of all the packets send back and forth between the client and server in a popup window. To enable
debug mode, set the Seam debug property to t r ue in Javascript:

Seam.debug = true;

If you want to write your own messages to the debug log, call Seam | og(message) .

29.6. Handling Exceptions

When invoking a remote bean method, it is possible to specify an exception handler which will
process the response in the event of an exception during bean invocation. To specify an exception
handler function, include a reference to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };
var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };
Seam.createBean("helloAction").sayHello(name, callback, exceptionHandler);

If you do not have a callback handler defined, you must specify nul | in its place:

147

Chapter 29. Seam Remoting - B...

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };
Seam.createBean("helloAction").sayHello(name, null, exceptionHandler);

The exception object that is passed to the exception handler exposes one method, get Message()
that returns the exception message which is produced by the exception thrown by the @ébRenot e
method.

29.7. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,
its rendering customised or even turned off completely.

29.7.1. Changing the message
To change the message from the default "Please Wait..." to something different, set the value of

Seam | oadi ngMessage:

Seam.loadingMessage = "Loading...";

29.7.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of
di spl ayLoadi ngMessage() and hi deLoadi ngMessage() with functions that instead do nothing:

// don't display the loading indicator
Seam.displayLoadingMessage = function() {};
Seam.hideLoadingMessage = function() {};

29.7.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else
that you want. To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage()
messages with your own implementation:

Seam.displayLoadingMessage = function() {
/I ' Write code here to display the indicator

3

Seam.hideLoadingMessage = function() {
/I Write code here to hide the indicator

148

Controlling what data is returned

29.8. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned
to the client. This response is then unmarshaled by the client into a JavaScript object. For
complex types (i.e. Javabeans) that include references to other objects, all of these referenced
objects are also serialized as part of the response. These objects may reference other objects,
which may reference other objects, and so forth. If left unchecked, this object "graph” could
potentially be enormous, depending on what relationships exist between your objects. And as
a side issue (besides the potential verbosity of the response), you might also wish to prevent
sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain” the object graph, by specifying the
excl ude field of the remote method's @ebRenot e annotation. This field accepts a String array
containing one or more paths specified using dot notation. When invoking a remote method, the
objects in the result's object graph that match these paths are excluded from the serialized result
packet.

For all our examples, we'll use the following W dget class:

public class Widget
{
private String value;
private String secret;
private Widget child;
private Map<String,Widget> widgetMap;
private List<Widget> widgetList;

/I getters and setters for all fields

29.8.1. Constraining normal fields
If your remote method returns an instance of W dget , but you don't want to expose the secr et

field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})
public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't
care about exposing this particular field to the client. Instead, notice that the W dget value that

149

Chapter 29. Seam Remoting - B...

is returned has a field chi | d that is also a W dget . What if we want to hide the chi | d's secret
value instead? We can do this by using dot notation to specify this field's path within the result's
object graph:

@WebRemote(exclude = {"child.secret"})
public Widget getWidget();

29.8.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of
collection (Li st, Set, Array, etc). Collections are easy, and are treated like any other field. For
example, if our W dget contained a list of other W dget s in its wi dget Li st field, to constrain the
secr et field of the W dget s in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})
public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's
field name will constrain the Map's key object values, while [val ue] will constrain the value object
values. The following example demonstrates how the values of the wi dget Map field have their
secr et field constrained:

@WebRemote(exclude = {"widgetMap|value].secret"})

public Widget getWidget();

29.8.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter
where in the result's object graph it appears. This notation uses either the name of the bean (if

the object is a named bean) or the fully qualified class name (only if the object is not a named
bean) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})
public Widget getWidget();

29.8.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

150

Combining Constraints

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})
public Widget getWidget();

151

152

Chapter 30.

Seam Remoting - Model API

30.1. Introduction

The Model API builds on top of Seam Remoting's object serialization features to provide a
component-based approach to working with a server-side object model, as opposed to the RPC-
based approach provided by the standard Remoting API. This allows a client-side representation
of a server-side object graph to be modified ad hoc by the client, after which the changes made to
the objects in the graph can be applied to the corresponding server-side objects. When applying
the changes the client determines exactly which objects have been modified by recursively walking
the client-side object tree and generating a delta by comparing the original property values of the
objects with their new property values.

This approach, when used in conjunction with the extended persistence context provided by
Seam elegantly solves a number of problems faced by AJAX developers when working remotely
with persistent objects. A persistent, managed object graph can be loaded at the start of a
new conversation, and then across multiple requests the client can fetch the objects, make
incremental changes to them and apply those changes to the same managed objects after which
the transaction can be committed, thereby persisting the changes made.

One other useful feature of the Model API is its ability to expand a model. For example, if you
are working with entities with lazy-loaded associations it is usually not a good idea to blindly fetch
the associated objects (which may in turn themselves contain associations to other entities, ad
nauseum), as you may inadvertently end up fetching the bulk of your database. Seam Remoting
already knows how to deal with lazy-loaded associations by automatically excluding them when
marshalling instances of entity beans, and assigning them a client-side value of undef i ned (which
is a special JavaScript value, distinct from nul |). The Model API goes one step further by giving
the client the option of manipulating the associated objects also. By providing an expand operation,
it allows for the initialization of a previously-uninitialized object property (such as a lazy-loaded
collection), by dynamically "grafting" the initialized value onto the object graph. By expanding the
model in this way, we have at our disposal a powerful tool for building dynamic client interfaces.

30.2. Model Operations

For the methods of the Model API that accept action parameters, an instance of Seam Acti on
should be used. The constructor for Seam Act i on takes no parameters:

var action = new Seam.Action();

The following table lists the methods used to define the action. Each of the following methods
return a reference to the Seam Act i on object, so methods can be chained.

153

Chapter 30. Seam Remoting - M...

Table 30.1. Seam.Action method reference

Method

set BeanType(beanType)

setQualifiers(qualifiers)

set Met hod(met hod)

addPar am(par am

Description

Sets the class name of the bean to be invoked.

* beanType - the fully qualified class name of the bean
type to be invoked.

Sets the qualifiers for the bean to be invoked.

e qualifiers-acomma-separated list of bean qualifier
names. The names may either be the simple or fully
qualified names of the qualifier classes.

Sets the name of the bean method.

* et hod - the name of the bean method to invoke.

Adds a parameter value for the action method. This
method should be called once for each parameter value
to be added, in the correct parameter order.

e par am- the parameter value to add.

The following table describes the methods provided by the Seam Model object. To work with the
Model API in JavaScript you must first create a new Model object:

var model = new Seam.Model();

Table 30.2. Seam.Model method reference

Method

addBean(al i as,
qualifiers)

bean,

Description

Adds a bean value to the model. When the model is
fetched, the value of the specified bean will be read and
placed into the model, where it may be accessed by
using the get Val ue() method with the specified alias.

Can only be used before the model is fetched.

* alias - the local alias for the bean value.

* bean - the name of the bean, either specified by the
@laned annotation or the fully qualified class name.

» qualifiers (optional) - a list of bean qualifiers.

154

Model Operations

Method

addBeanProperty(ali as,

property, qualifiers)

fetch(action,

cal | back)

bean,

Description

Adds a bean property value to the model. When the
model is fetched, the value of the specified property on
the specified bean will be read and placed into the model,
where it may be accessed by using the get Val ue()
method with the specified alias.

Can only be used before the model is fetched.

Example:

addBeanProperty("account”, "AccountAction",
"account", "@Qualifierl", "@Qualifier2");

* ali as - the local alias for the bean value.

* bean - the name of the bean, either specified by the
@laned annotation or the fully qualified class name.

» property - the name of the bean property.

e qualifiers (optional) - a list of bean qualifiers. This
parameter (and any after it) are treated as bean
qualifiers.

Fetches the model - this operation causes an
asynchronous request to be sent to the server. The
request contains a list of the beans and bean properties
(set by calling the addBean() and addBeanPr operty()
methods) for which values will be returned. Once the
response is received, the callback method (if specified)
will be invoked, passing in a reference to the model as
a parameter.

A model should only be fetched once.

* action (optional) - a Seam Action instance
representing the bean action to invoke before the
model values are read and stored in the model.

e cal I back (optional) - a reference to a JavaScript
function that will be invoked after the model has been
fetched. A reference to the model instance is passed
to the callback method as a parameter.

155

Chapter 30. Seam Remoting - M...

Method

get Val ue(al i as)

expand(val ue,
cal | back)

appl yUpdat es(acti on,

property,

cal | back)

Description

This method returns the value of the object with the
specified alias.

* ali as - the alias of the value to return.

Expands the model by initializing a property value that
was previously uninitialized. This operation causes an
asynchronous request to be sent to the server, where
the uninitialized property value (such as a lazy-loaded
collection within an entity bean association) is initialized
and the resulting value is returned to the client. Once the
response is received, the callback method (if specified)
will be invoked, passing in a reference to the model as
a parameter.

» value - a reference to the value containing the
uninitialized property to fetch. This can be any value
within the model, and does not need to be a "root"
value (i.e. it doesn't need to be a value specified
by addBean() or addBeanProperty(), it can exist
anywhere within the object graph.

» property -the name of the uninitialized property to be
initialized.

» cal I back (optional) - a reference to a JavaScript
function that will be invoked after the model has
been expanded. A reference to the model instance is
passed to the callback method as a parameter.

Applies the changes made to the objects contained in the
model. This method causes an asynchronous request to
be sent to the server containing a delta consisting of a
list of the changes made to the client-side objects.

e action (optional) - a Seam Action instance
representing a bean method to be invoked after the
client-side model changes have been applied to their
corresponding server-side objects.

» cal I back (optional) - a reference to a JavaScript
function that will be invoked after the updates have
been applied. A reference to the model instance is
passed to the callback method as a parameter.

156

Fetching a model

30.3. Fetching a model

To fetch a model, one or more values must first be specified using addBean() or
addBeanPr opert y() before invoking the f et ch() operation. Let's work through an example - here
we have an entity bean called Cust omer :

@Entity Customer implements Serializable {
private Integer customerld;
private String firstName;
private String lastName;

@Ild @GeneratedValue public Integer getCustomerld() { return customerld; }
public void setCustomerld(Integer customerld) { this.customerld = customerld; }

public String getFirstName() { return firstName; }
public void setFirstName(String firstName) { this.firstName = firstName; }

public String getLastName() { return lastName; }
public void setLastName(String lastName) { this.lastName = lastName; }

}

We also have a bean called Cust oner Acti on, which is responsible for creating and editing
Cust omer instances. Since we're only interested in editing a customer right now, the following
code only shows the edi t Cust oner () method:

@ConversationScoped @Named

public class CustomerAction {
@Inject Conversation conversation;
@PersistenceContext EntityManager entityManager;
public Customer customer;

public void editCustomer(Integer customerld) {
conversation.begin();
customer = entityManager.find(Customer.class, customerld);

}

public void saveCustomer() {
entityManager.merge(customer);
conversation.end();
}
}

157

Chapter 30. Seam Remoting - M...

In the client section of this example, we wish to make changes to an existing Cust onmer instance, so
we need to use the edi t Cust oner () method of Cust orrer Act i on to first load the customer entity,
after which we can access it via the public cust omer field. Our model object must therefore be
configured to fetch the Cust omer Act i on. cust oner property, and to invoke the edi t Cust omer ()
method when the model is fetched. We start by using the addBeanPr operty() method to add a
bean property to the model:

var model = new Seam.Model();
model.addBeanProperty(“customer”, "CustomerAction”, "customer");

The first parameter of addBeanPr operty() is the alias (in this case cust oner), which is used to
access the value via the get Val ue() method. The addBeanPr operty() and addBean() methods
can be called multiple times to bind multiple values to the model. An important thing to note is
that the values may come from multiple server-side beans, they aren't all required to come from
the same bean.

We also specify the action that we wish to invoke (i.e. the edi t Cust omer () method). In this
example we know the value of the cust oner | d that we wish to edit, so we can specify this value
as an action method parameter:

var action = new Seam.Action()
.setBeanType("CustomerAction")
.setMethod("editCustomer™)
.addParam(123);

Once we've specified the bean properties we wish to fetch and the action to invoke, we can then
fetch the model. We pass in a reference to the action object as the first parameter of the f et ch()
method. Also, since this is an asynchronous request we need to provide a callback method to deal
with the response. The callback method is passed a reference to the model object as a parameter.

var callback = function(model) { alert("Fetched customer:
model.getValue("customer").firstName +
" " + model.getValue("customer").lastName); };
model.fetch(action, callback);

When the server receives a model fetch request, it first invokes the action (if one is specified)
before reading the requested property values and returning them to the client.

158

Fetching a bean value

30.3.1. Fetching a bean value

Alternatively, if you don't wish to fetch a bean property but rather a bean itself (such as a value
created by a producer method) then the addBean() method is used instead. Let's say we have a
producer method that returns a qualified User Set t i ngs value:

@Produces @ConversationScoped @Settings UserSettings getUserSettings() {
[* snip code */

}

We would add this value to our model with the following code:
model.addBean("settings", "UserSettings", "@Settings");

The first parameter is the local alias for the value, the second parameter is the fully qualified class
of the bean, and the third (and subsequent) parameter/s are optional bean qualifiers.

30.4. Modifying model values

Once a model has been fetched its values may be read using the get Val ue() method. Continuing
on with the previous example, we would retrieve the Cust oner object via it's local alias (cust omer)
like this:

var customer = model.getValue("customer");

We are then free to read or modify the properties of the value (or any of the other values within
its object graph).

alert("Customer name is: " + customer.firstName + " " + customer.lastName);
customer.setLastName("Jones"); // was Smith, but Peggy got married on the weekend

30.5. Expanding a model

We can use the Model API's ability to expand a model to load uninitialized branches of the objects
in the model's object graph. To understand how this works exactly, let's flesh out our example a
little more by adding an Addr ess entity class, and creating a one-to-many relationship between
Cust omer and Addr ess.

159

Chapter 30. Seam Remoting - M...

@Entity Address implements Serializable {
private Integer addressld;
private Customer customer;
private String unitNumber;
private String streetNumber;
private String streetName;
private String suburb;
private String zip;
private String state;
private String country;

@Ild @GeneratedValue public Integer getAddressld() { return addressld; }
public void setAddressld(Integer addressld) { this.addressld = addresslId; }

@ManyToOne public Customer getCustomer() { return customer; }
public void setCustomer(Customer customer) { this.customer = customer; }

[* Snipped other getter/setter methods */

Here's the new field and methods that we also need to add to the Cust onmer class:

private Collection<Address> addresses;

@OneToMany(fetch = FetchType.LAZY, mappedBy = "customer", cascade = CascadeType.ALL)
public Collection<Address> getAddresses() { return addresses; }
public void setAddresses(Collection<Address> addresses) { this.addresses = addresses; }

As we can see, the @neToMany annotation on the get Addr esses() method specifies a f et ch
attribute of LAZY, meaning that by default the customer's addresses won't be loaded automatically
when the customer is. When reading the uninitialized addr esses property value from a newly-
fetched Cust omer object in JavaScript, a value of undef i ned will be returned.

getValue("customer").addresses == undefined; // returns true

We can expand the model by making a special request to initialize this uninitialized property
value. The expand() operation takes three parameters - the value containing the property to
be initialized, the name of the property and an optional callback method. The following example
shows us how the customer's addr esses property can be initialized:

160

Applying Changes

model.expand(model.getValue("customer"), "addresses");

The expand() operation makes an asynchronous request to the server, where the property value
is initialized and the value returned to the client. When the client receives the response, it reads
the initialized value and appends it to the model.

/I The addresses property how contains an array of address objects
alert(model.getValue("customer”).addresses.length + " addresses loaded");

30.6. Applying Changes

Once you have finished making changes to the values in the model, you can apply them with the
app! yUpdat es() method. This method scans all of the objects in the model, compares them with
their original values and generates a delta which may contain one or more changesets to send to
the server. A changeset is simply a list of property value changes for a single object.

Like the fet ch() command you can also specify an action to invoke when applying updates,
although the action is invoked after the model updates have been applied. In a typical situation the
invoked action would do things like commit a database transaction, end the current conversation,
etc.

Since the appl yUpdat es() method sends an asynchronous request like the fetch() and
expand() methods, we also need to specify a callback function if we wish to do something when
the operation completes.

var action = new Seam.Action();
.setBeanType("CustomerAction")
.setMethod("saveCustomer");

var callback = function() { alert("Customer saved."); };

model.applyUpdates(action, callback);

The appl yUpdat es() method performs a refresh of the model, retrieving the latest state of the
objects contained in the model after all updates have been applied and the action method (if
specified) invoked.

161

162

Chapter 31.

Seam Remoting - Bean Validation

Seam Remoting provides integrated support for JSR-303 Bean Validation, which defines a
standard approach for validating Java Beans no matter where they are used; web tier or
persistence tier, server or client. Bean validation for remoting delivers JSR-303's vision by making
all of the validation constraints declared by the server-side beans available on the client side, and
allows developers to perform client-side bean validation in an easy to use, consistent fashion.

Client-side validation by its very nature is an asynchronous operation, as it is possible that
the client may encounter a custom validation constraint for which it has no knowledge of the
corresponding validation logic. Under these circumstances, the client will make a request to the
server for the validation to be performed server-side, after which it receives the result will forward it
to the client-side callback method. All built-in validation types defined by the JSR-303 specification
are executed client-side without requiring a round-trip to the server. It is also possible to provide
the client-side validation APl with custom JavaScript to allow client-side execution of custom
validations.

31.1. Validating a single object

The Seam val i dat eBean() method may be used to validate a single object. It accepts the
following parameter values:

Seam.validateBean(bean, callback, groups);

The bean parameter is the object to validate.

The cal | back parameter should contain a reference to the callback method to invoke once
validation is complete.

The gr oups parameter is optional, however may be specified if only certain validation groups
should be validated. The gr oups parameter may be a String or an array of Stri ng values for
when multiple groups are to be validated.

Here's an example showing how a bean called cust oner is validated:

function test() {
var customer = Seam.createBean("com.acme.model.Customer");
customer.setFirstName("John");
customer.setLastName("Smith");
Seam.validateBean(customer, validationCallback);

function validationCallback(violations) {

163

Chapter 31. Seam Remoting - B...

if (violations.length == 0) alert("All validations passed!");

}

Tip

By default, when Seam Remoting performs validation for a single bean it will
traverse the entire object graph for that bean and validate each unique object that
it finds. If you don't wish to validate the entire object graph, then please refer to the
section on validating multiple objects later in this chapter for an alternative.

31.2. Validating a single property

Sometimes it might not be desirable to perform validation for all properties of a bean. For example,
you might have a dynamic form which displays validation errors as the user tabs between fields.
In this situation, you may use the Seam val i dat eProperty() method to validate a single bean

property.
Seam.validateProperty(bean, property, callback, groups)

The bean parameter is the object containing the property that is to be validated.
The property parameter is the name of the property to validate.

The cal | back parameter is a reference to the callback function to invoke once the property has
been validated.

The gr oups parameter is optional, however may be specified if validating the property against a
certain validation group. The gr oups parameter may be a Stri ng or an array of Stri ng values
for multiple groups.

Here's an example showing how to validate the fi r st Name property of a bean called cust oner :

function test() {
var customer = Seam.createBean("com.acme.model.Customer");
customer.setFirstName("John");
Seam.validateProperty(customer, "firstName", validationCallback);

}

function validationCallback(violations) {
if (violations.length == 0) alert("All validations passed!");

}

164

Validating multiple objects and/or properties

31.3. Validating multiple objects and/or properties

It is also possible to perform multiple validations for beans and bean properties in one go. This
might be useful for example to perform validation of forms that present data from more than one
bean. The Seam val i dat e() method takes the following parameters:

Seam.validate(validations, callback, groups);

The val i dat i ons parameter should contain a list of the validations to perform. It may either be an
associative array (for a single validation), or an array of associative arrays (for multiple validations)
which define the validations that should be performed. We'll look at this parameter more closely
in just a moment.

The cal | back parameter should contain a reference to the callback function to invoke once
validation is complete. The optional gr oups parameter should contain the group name/s for which
to perform validation.

The gr oups parameter allows one or more validation groups (specified by providing a St ri ng or
array of St ri ng values) to be validated. The validation groups specified here will be applied to all
bean values contained in the val i dati ons parameter.

The simplest example, in which we wish to validate a single object would look like this:
Seam.validate({bean:customer}, callback);

In the above example, validation will be performed for the cust oner object, after which the function
named val i dati onCal | back will be invoked.

Validate multiple beans is done by passing in an array of validations:
Seam.validate([{bean:customer}, {bean:order}], callback);

Single properties can be validated by specifying a pr operty name:
Seam.validate({bean:customer, property: “firstName"}, callback);

To prevent the entire object graph from being validated, the t r aver se property may be set to
fal se:

165

Chapter 31. Seam Remoting - B...

Seam.validate({bean:customer, traverse: false}, callback);

Validation groups may also be set for each individual validation, by setting the gr oups property
toa String orarray of Stri ngs value:

Seam.validate({bean:customer, groups: "default"}, callback);

31.4. Validation groups

Validation group names should be the unqualified class name of the group class. For example,
for the class com acne. | nt er nal Regi strati on, the client-side group name should be specified

as I nternal Regi stration:
Seam.validateBean(user, callback, "InternalRegistration”

Itis also possible to set the default validation groups against which all validations will be performed,
by setting the Seam Val i dati onG oups property:

Seam.ValidationGroups = ["'Default", "ExternalRegistration"];

If no explicit group is set for the default, and no group is specified when performing validation,
then the validation process will be executed against the 'Default’ group.

31.5. Handling validation failures

If any validations fail during the validation process, then the callback method specified in the
validation function will be invoked with an array of constraint violations. If all validations pass, this
array will be empty. Each object in the array represents a single constraint violation, and contains
the following property values:

bean - the bean object for which the validation failed.

proper ty - the name of the property that failed validation

val ue - the value of the property that failed validation

message - a message string describing the nature of the validation failure

The callback method should contain business logic that will process the constraint violations and
update the user interface accordingly to inform the user that validation has failed. The following

166

Handling validation failures

minimalistic example demonstrates how the validation errors can be displayed to the user as
popup alerts:

function validationCallback(violations) {
for (var i = 0; i < violations.length; i++) {
alert(violations][i].property + "=" + violations][i].value + " [violation] -> " + violations[i]. message);

167

168

Part IX. Seam Rest

Introduction

Seam REST is a lightweight module that provides additional integration of technologies within the
Java EE platform as well as third party technologies.

Seam REST is independent from CDI and JAX-RS implementations and thus fully portable
between Java EE 6 environments.

clxxi

clxxii

Chapter 32.

Installation

The Seam REST module runs only on Java EE 6 compliant servers such as JBoss Application
Server [http://www.jboss.org/jbossas] or GlassFish [https://glassfish.dev.java.net/].

32.1. Basics

To use the Seam REST module, add seam r est and seam r est - api jars into the web application.
If using Maven, add the following dependency into the web application's pom xm configuration file.

Example 32.1. Dependency added to pom.xml

<dependency>
<groupld>org.jboss.seam.rest</groupld>
<artifactld>seam-rest-api</artifactld>
<version>${seam.rest.version}</version>
</dependency>

<dependency>
<groupld>org.jboss.seam.rest</groupld>
<artifactld>seam-rest-impl</artifactld>
<version>${seam.rest.version}</version>
</dependency>

Tip

Substitute the expression ${seam.rest.version} with the most recent or
appropriate version of Seam Catch. Alternatively, you can create a Maven
user-defined property [http://www.sonatype.com/books/mvnref-book/reference/
resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to
satisfy this substitution so you can centrally manage the version.

32.2. Transitive dependencies

Besides, Seam REST has several transitive dependencies (which are added automatically when
using maven). Refer to Table 37.1, “Transitive dependencies” for more details.

32.3. Registering JAX-RS components explicitly

The Seam REST module registers SeanExcept i onMapper to hook into the exception processing
mechanism of JAX-RS and Tenpl ati ngMessageBodyW i t er to provide templating support.

173

http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 32. Installation

These components are registered by default if classpath scanning of JAX-RS resources and
providers is enabled (an empty j avax. ws. rs. core. Appl i cati on subclass is provided).

@ApplicationPath("/api/*")
public class MyApplication extends Application {}

Otherwise, if the Application's get asses() method is overriden to select resources and
providers explicitlyy add SeanExcept i onMapper and Tenpl at i ngMessageBodyW i ter.

@ApplicationPath("/api/*")
public class MyApplication extends Application
{

@Override

public Set<Class<?>> getClasses()

{

Set<Class<?>> classes = new HashSet<Class<?>>();

classes.add(SeamExceptionMapper.class);
classes.add(TemplatingMessageBodyWriter.class);
return classes;

174

Chapter 33.

Exception Handling

The JAX-RS specification defines the mechanism for exception mapping providers as the standard
mechanism for Java exception handling. The Seam REST module comes with an alternative
approach, which is more consistent with the CDI programming model. It is also easier to use and
still remains portable.

The Seam REST module allows you to:

« integrate with Seam Catch and thus handle exceptions that occur in different parts of an
application uniformly;

- define exception handling rules declaratively with annotations or XML.

33.1. Seam Catch Integration

Seam Catch handles exceptions within the Seam REST module: as result, an exception that
occurs during an invocation of a JAX-RS service is routed through the Catch exception handling
mechanism similar to the CDI event bus. This allows you to implement the exception handling
logic in a loosely-coupled fashion.

The following code sample demonstrates a simple exception handler that converts the
NoResul t Except i on exception to a 404 HTTP response.

Example 33.1. Seam Catch Integration - NoResultException handler

@HandlesExceptions !
public class ExceptionHandler

{

@Inject @RestResource

ResponseBuilder builder 2

public void handleException(@Handles @RestRequest CaughtException<NoResultEx 2 ception> event)
{
builder.status(404).entity("The requested resource does not exist.");
}
}

11 The @dandl esExcepti ons annotation marks the Excepti onHandl er bean as capable of
handling exceptions.
2 The ResponseBui | der for creating the HTTP response is injected.

175

Chapter 33. Exception Handling

2 A method for handling NoResul t Except i on instances. Note that the Except i onHandl er can
define multiple exception handling methods for various exception types.

Similarly to the CDI event bus, exceptions handled by a handler method can be filtered by
qualifiers. The example above treats only exceptions that occur in a JAX-RS service invocation
(as opposed to all exceptions of the given type that occur in the application, for example in the
view layer). Thus, the @Rest Request qualifier is used to enable the handler only for exceptions
that occur during JAX-RS service invocation.

Catch integration is optional and only enabled when Catch libraries are available on classpath.
For more information on Seam Catch, refer to Seam Catch reference documentation [http://
docs.jboss.org/seam/3/catch/latest/reference/en-US/html/] .

33.2. Declarative Exception Mapping

Exception-mapping rules are often fairly simple. Thus, instead of being implemented
programatically, they can be expressed declaratively through metadata such as Java annotations
or XML. The Seam REST module supports both ways of declarative configurations.

For each exception type, you can specify a status code and an error message of the HTTP
response.

33.2.1. Annotation-based configuration

You can configure Seam REST exception mapping directly in your Java code with Java
Annotations. An exception mapping rule is defined as a @xcept i onMappi ng annotation. Use an
@xcept i onMappi ng. Li st annotation to define multiple exception mappings.

Example 33.2. Annotation-based exception mapping configuration

@ExceptionMapping.List({

@ExceptionMapping(exceptionType=NoResultException.class status=404, message="Requested
resource does not exist."),

@ExceptionMapping(exceptionType=lllegalArgumentException.class status=400message="lllegal
argument value.")

)

@ApplicationPath("/api")

public MyApplication extends Application {

The @xcepti onMappi ng annotation can be applied on any Java class in the deployment.
However, it is recommended to keep all exception mapping declarations in the same place, for
example, inthe j avax. ws. rs. core. Appl i cati on subclass.

176

http://docs.jboss.org/seam/3/catch/latest/reference/en-US/html/
http://docs.jboss.org/seam/3/catch/latest/reference/en-US/html/
http://docs.jboss.org/seam/3/catch/latest/reference/en-US/html/

XML configuration

Table 33.1. @ExceptionMapping properties

Name Required
exceptionType true
status true
message false

useExceptionMessage false

interpolateMessageBodyalse

useJaxb false

33.2.2. XML configuration

Default value

false

true

true

Description

Fully-qualified class
name of the exception
class

HTTP status code

Error message sent
within ~ the HTTP
response

Exception error
message

Enabling/disabling the
EL interpolation of the
error message

Enabling/disabling
wrapping of the error
message within a
JAXB object. This
allows marshalling to
various media formats
such as application/
xml, application/json,
etc.

As an alternative to the annotation-based configuration, you can use the Seam Config module to
configure the SeanRest Conf i gur ati on class in XML.

First, add the Seam Config module to the application. If you are using maven, you can do this by

specifying the following dependency:

Example 33.3. Seam XML dependency added to the pom.xml file.

<dependency>
<groupld>org.jboss.seam.config</groupld>
<artifactld>seam-config-xml</artifactld>
<version>${seam.config.version}</version>
</dependency>

177

Chapter 33. Exception Handling

For more information on the Seam Config module, refer to the Seam Config reference
documentation [http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/]. Once
you have added the Seam XML module, specify the configuration in the seam beans. xni file,
located in the VEB- | NF or META- | NF folder of the web archive.

Example 33.4. Exception mapping configuration in seam-beans.xml

<rest:SeamRestConfiguration>
<rest:mappings>
<s:value>

<rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">
<rest:message>Requested resource does not exist.</rest:message>
</rest:Mapping>
</s:value>
<s:value>
<rest:Mapping exceptionType="java.lang.lllegalArgumentException" statusCode="400">
<rest:message>lllegal value.</rest:message>
</rest:Mapping>
</s:value>
</rest:mappings>
</rest:SeamRestConfiguration>

Furthermore, you can use EL expressions in message templates to provide dynamic and more
descriptive error messages.

Example 33.5. Exception mapping configuration in seam-beans.xml

<rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">
<rest:message>Requested resource (#{urilnfo.path}) does not exist.</rest:message>
</rest:Mapping>

33.2.3. Declarative exception mapping processing

When an exception occurs at runtime, the SeanExcepti onMapper first looks for a matching
exception mapping rule. If it finds one, it creates an HTTP response with the specified status code
and error message.

The error message is marshalled within a JAXB object and is thus available in multiple media
formats. The most commonly used formats are XML and JSON. Most JAX-RS implementations
provide media providers for both of these formats. In addition, the error message is also available
in plain text.

178

http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/
http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/
http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/

Declarative exception mapping processing

Example 33.6. Sample HTTP response

HTTP/1.1 404 Not Found
Content-Type: application/xml
Content-Length: 123

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<error>

<message>Requested resource does not exist.</message>
</error>

179

180

Chapter 34.

Bean Validation Integration

Bean Validation (JSR-303) is a specification introduced as a part of Java EE 6. It aims to provide
a standardized way of validating the domain model across all application layers.

The Seam REST module follows the Bean Validation specification and the incomming HTTP
requests can be validated with this standardized mechanism.

34.1. Validating HTTP requests

Firstly, enable the val i dat i onl nt er cept or in the beans. xnl configuration file.

<interceptors>
<class>org.jboss.seam.rest.validation.ValidationInterceptor</class>
</interceptors>

Then, enable validation of a particular method by decorating it with the @val i dat eRequest
annotation.

@PUT
@ValidateRequest
public void updateTask(Task incommingTask)

{

Now, the HTTP request's entity body (the incomingTask parameter) will be validated prior to
invoking the method.

34.1.1. Validating entity body

By default, the entity parameter (the parameter with no annotations that represent the body of the
HTTP request) is validated. If the object is valid, the web service method is executed. Otherwise,
a Val i dati onExcepti on exception is thrown.

The Val i dati onExcepti on exception is a simple carrier of constraint violations found by the
Bean Validation provider. The exception can be handled by an Except i onMapper or Seam Catch
handler.

Seam REST comes with a built-in Val i dat i onExcept i on handler, which is registered by default.
The exception handler converts the Val i dati onExcepti on to an HTTP response with the 400
(Bad request) status code. Furthermore, it sends messages relevant to the violated constraints
within the message body of the HTTP response.

181

Chapter 34. Bean Validation I...

Example 34.1. HTTP response

HTTP/1.1 400 Bad Request
Content-Type: application/xml
Content-Length: 129

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<error>
<messages>
<message>Name length must be between 1 and 100.</message>
</messages>
</error>

34.1.2. Validating resource fields

Besides the message body, the JAX-RS specification allows various parts of the HTTP request
to be injected into the JAX-RS resource or passed as method parameters. These parameters are
usually HTTP form parameters, query parameters, path parameters, headers, etc.

Example 34.2. JAX-RS resource

public class PersonResource

{
@QueryParam("search")
@Size(min = 1, max = 30)
private String query;
@QueryParam("start")
@DefaultvValue("0")
@Min(0)
private int start;
@QueryParam("limit")
@DefaultValue("20")
@Min(0) @Max(50)
private int limit;

If a method of a resource is annotated with an @al i dat eRequest annotation, the fields of a
resource are validated by default.

182

Validating other method parameters

Important
Since the JAX-RS injection occurs only at resource creation time, do not use the

JAX-RS field injection for other than @Request Scoped resources.

34.1.3. Validating other method parameters

The JAX-RS specification allows path parameters, query parameters, matrix parameters, cookie
parameters and headers to be passed as parameters of a resource method.

Example 34.3. JAX-RS method parameters

@GET

public List<Person>search(@QueryParam("search") String query,
@QueryParam("start") @DefaultValue("0") int start,
@QueryParam("limit") @DefaultValue("20") int limit)

Note

j=do

Currently, Seam REST validates only JavaBean parameters (as oposed to
primitive types, Strings and so on). Therefore, to validate these types of
parameters, either use resource field validation described in

or read further and use parameter objects.

In order to prevent an oversized method signature when the number of parameters is too
large, JAX-RS implementations provide implementations of the Parameter Object pattern
[http://sourcemaking.com/refactoring/introduce-parameter-object]. These objects aggregate
multiple parameters into a single object, for example RESTEasy Form Object [http://
docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html] or Apache CXF Parameter
Bean [http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans]. These parameters can
be validated by Seam REST. To trigger the validation, annotate the parameter with a
j avax. val i dati on. Val i d annotation.

Example 34.4. RESTEasy parameter object

public class MyForm {
@FormParam("stuff")
@Size(min = 1, max = 30)
private int stuff;

@HeaderParam("myHeader")

183

http://sourcemaking.com/refactoring/introduce-parameter-object
http://sourcemaking.com/refactoring/introduce-parameter-object
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans

Chapter 34. Bean Validation I...

private String header;

@PathParam("foo")
public void setFoo(String foo) {...}

}

@POST

@Path("/myservice")

@ValidateRequest

public void post(@Valid @Form MyForm form) {...}

34.2. Validation configuration

Table 34.1. @ValidateRequest annotation properties

@ValidateRequest attribute Description Default value

validateMessageBody Enabling/disabling validation true
of message body parameters

validateResourceFields Enabling/disabling validation true
of fields of a JAX-RS resource

groups Validation groups to be used javax.validation.groups.Default
for validation

34.3. Using validation groups

In some cases, it is desired to have a specific group of constraints used for validation of web
service parameters. These constraints are usually weaker than the default constraints of a domain
model. Take partial updates as an example.

Consider the following example:

Example 34.5. Employee.java

public class Employee {
@NotNull
@Size(min = 2, max = 30)
private String name;
@NotNull
@Email
private String email;
@NotNull
private Department department;

184

Using validation groups

/I getters and setters

The Employee resource in the example above is not allowed to have the null value specified in any
of its fields. Thus, the entire representation of a resource (including the department and related
object graph) must be sent to update the resource.

When using partial updates, only values of modified fields are required to be sent within the update
request, while the non-null values of the received object are updated. Therefore, two groups
of constraints are needed: group for partial updates (including @Size and @Email, excluding
@NotNull) and the default group (@NotNull).

A validation group is a simple Java interface:

Example 34.6. PartialUpdateGroup.java

public interface PartialUpdateGroup {}

Example 34.7. Employee.java

@GroupSequence({ Default.class, PartialUpdateGroup.class }) 3
public class Employee {

@NotNull 1

@Size(min = 2, max = 30, groups = PartialUpdateGroup.class) 2

private String name;

@NotNull

@Email(groups = PartialUpdateGroup.class)

private String email;

@NotNull

private Department department;

/I getters and setters

11 The @lot Nul | constraint belongs to the default validation group.
2 The @i ze constraint belongs to the partial update validation group.

a2 The @ oupsSequence annotation indicates that both validation groups are used by default
(for example, when persisting the entity).

Finally, the Val i dati onl nt er cept or is configured to validate the Parti al Updat eG oup group
only.

185

Chapter 34. Bean Validation I...

Example 34.8. EmployeeResource.java

@Path("/{id}")
@PUT
@Consumes("application/xml")
@ValidateRequest(groups = PartialUpdateGroup.class) 1
public void updateEmployee(Employee e, @PathParam("id") long id)
{
Employee employee = em.find(Employee.class, id);
if (e.getName() != null) 2

{

employee.setName(e.getName());

}
if (e.getEmail() != null)

{

employee.setEmail(e.getEmail());

11 The partial update validation group is used for web service parameter validation.

2 Partial update — only the not-null fields of the transferred representation are used for update.
The null fields are not updated.

186

Chapter 35.

Templating support

Seam REST allows to create HTTP responses based on the defined templates. Instead of being
bound to a particlar templating engine, Seam REST comes with a support for multiple templating
engines and support for others can be plugged in.

35.1. Creating JAX-RS responses using templates

REST-based web services are often expected to return multiple representations of a resource.
The templating support is useful for producing media formats such as XHTML and it can be also
used instead of JAXB to produce domain-specific XML representations of a resource. Besides,
almost any other representation of a resource can be described in a template.

To enable templating for a particular method, decorate the method with the @responseTenpl at e
annotation. Path to a template file to be used for rendering is required.

Example 35.1. @ResponseTemplate in action

@ResponseTemplate("/freemarker/task.ftl")
public Task getTask(@PathParam("taskld") long taskld) {

The @ResponseTenpl at e annotation offers several other options. For example, it is possible for
a method to offer multiple representations of a resource, each rendered with a different template.
In the example below, the produces member of the @ResponseTenpl at e annotation is used to
distinguish between produced media types.

Example 35.2. Multiple @ResponseTemplates

@GET
@Produces({ "application/json", "application/categories+xml", "application/categories-short
+xml* })
@ResponseTemplate.List({

@ResponseTemplate(value = "/freemarker/categories.ftl", produces = "application/categories
+xml"),

@ResponseTemplate(value = "/freemarker/categories-short.ftl*, produces = "application/

categories-short+xml")

D
public List<Category> getCategories()

187

Chapter 35. Templating support

Table 35.1. @ResponseTemplate options

Name Required Default value Description

value true - Path to the template
(for example /
freemarker/

categories.ftl)

produces false *[* Restriction of media
type produced by
the template (useful
in situations when
a method produces
multiple media types,

with different
templates)
responseName false response Name under which

the object returned
by the JAX-RS
method is available
in the template
(for example, Hello
${response.name})

35.1.1. Accessing the model

There are several ways of accessing the domain data within a template.

Firstly, the object returned by the JAX-RS method is available under the "response” name by
default. The object can be made available under a different name using the r esponseNane
member of the @rResponseTenpl at e annotation.

Example 35.3. hello.ftl

Hello ${response.name}

Secondly, every bean reachable via an EL expression is available within a template.
Example 35.4. Using EL names in a template
#foreach(${student} in ${university.students})

<student>${student.name}</student>
#end

188

Built-in support for templating engines

Last but not least, the model can be populated programatically. In order to do that, inject the
Tenpl ati nghvbdel bean and put the desired objects into the underlying dat a map. In the following
example, the list of professors is available under the "professors" name.

Example 35.5. Defining model programatically

@Inject
private TemplatingModel model;

@GET
@ResponseTemplate("/freemarker/university.ftl")
public University getUniversity()
{

/l'load university and professors

University university = ...

List<Professor> professors = ...

model.getData().put("professors”, professors);
return university;

}

35.2. Built-in support for templating engines

Seam REST currently comes with built-in templating providers for FreeMarker and Apache
Velocity.

35.2.1. FreeMarker

FreeMarker is one of the most popular templating engines. To enable Seam REST FreeMarker
support, bundle the FreeMarker jar with the web application.

For more information on writing FreeMarker templates, refer to the FreeMarker Manual [http://
freemarker.sourceforge.net/docs/index.html].

189

http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html

Chapter 35. Templating support

35.2.2. Apache Velocity

Apache Velocity is another popular Java-based templating engine. Similarly to FreeMarker
support, Velocity support is enabled automatically if Velocity libraries are detected on the
classpath.

For more information on writing Velocity templates, refer to the Apache Velocity User Guide [http://
velocity.apache.org/engine/releases/velocity-1.5/user-guide.html]

35.2.3. Pluggable support for templating engines

All that needs to be done to extend the set of supported templating engines is to implement
the Tenpl ati ngProvi der interface. Refer to Javadoc [http://docs.jboss.org/seam/3/rest/latest/
api/org/jboss/seam/rest/templating/TemplatingProvider.html] for hints.

35.2.4. Selecting prefered templating engine

In certain deployment scenarios it is not possible to control the classpath completely and multiple
template engines may be available at the same time. If that happens, Seam REST fails to operate
with the following message:

Multiple TemplatingProviders found on classpath. Select the prefered one.

In such case, define the prefered templating engine in the XML configuration as demonstrated
below to resolve the TemplatingProvider ambiguity.

Example 35.6. Prefered provider

<beans xmlns:rest="urn:java:org.jboss.seam.rest:org.jboss.seam.rest.exceptions">

<rest:SeamRestConfiguration preferedTemplatingProvider="org.jboss.seam.rest.templating.freemarker.FreeMar
</beans>

Table 35.2. Built-in templating providers

Name FQCN
FreeMarker org.jboss.seam.rest.templating.freemarker.FreeMarkerProvider
Apache Velocity org.jboss.seam.rest.templating.velocity.VelocityProvider

190

http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html

Chapter 36.

RESTEasy Client Framework
Integration

The RESTEasy Client Framework is a framework for writing clients for REST-based web
services. It reuses JAX-RS metadata for creating HTTP requests. For more information about
the framework, refer to the project documentation [http://docs.jboss.org/resteasy/docs/2.0.0.GA/
userguide/html//RESTEasy_Client_Framework.html].

Integration with the RESTEasy Client Framework is optional in Seam REST and only available
when RESTEasy is available on classpath.

36.1. Using RESTEasy Client Framework with Seam
REST

Let us assume as an example that a remote server exposes a web service for providing task
details to the client through the TaskSer vi ce interface below.

Example 36.1. Sample JAX-RS annotated interface

@Path("/task")
@Produces("application/xml")
public interface TaskService
{
@GET
@Path("/{id}")
Task getTask(@PathParam("id")long id);

To access the remote web service, Seam REST builds and injects a client object of the web
service.

Example 36.2. Injecting REST Client

@Inject @RestClient("http://example.com™)
private TaskService taskService;

Task task = taskService.getTask(1);

191

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html

Chapter 36. RESTEasy Client F...

The Seam REST module injects a proxied TaskSer vi ce interface and the RESTEasy Client
Framework converts every method invocation on the TaskSer vi ce to an HTTP request and sends
it over the wire to ht t p: / / exanpl e. com The HTTP response is unmarshalled automatically and
the response object is returned by the method call.

URI definition supports EL expressions.

@Inject @RestClient("#{example.service.uri}")

36.2. Manual ClientRequest API

Besides proxying JAX-RS interfaces, the RESTEasy Client Framework provides the
ClientRequest APl for manual building of HTTP requests. For more information on
the ClientRequest API, refer to the project documentation [http://docs.jboss.org/resteasy/
docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest].

Example 36.3. Injecting ClientRequest

@Inject @RestClient("http://localhost:8080/test/ping™)
private ClientRequest request;

request.accept(MediaType. TEXT_PLAIN_TYPE);
ClientResponse<String> response = request.get(String.class);

36.3. ClientExecutor Configuration

If not specified otherwise, every request is executed by the default Apache HTTP Client 4
configuration. This can be altered by providing a ClientExecutor bean.

Example 36.4. Custom Apache HTTP Client 4 configuration

@Produces
public ClientExecutor createExecutor()

{

HttpParams params = new BasicHttpParams();
ConnManagerParams.setMaxTotalConnections(params, 3);
ConnManagerParams.setTimeout(params, 1000);

SchemeRegistry schemeRegistry = new SchemeRegistry();

192

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest

ClientExecutor Configuration

schemeRegistry.register(new Scheme("http", PlainSocketFactory.getSocketFactory(), 80));

ClientConnectionManager cm = new ThreadSafeClientConnManager(params, schemeRegistry);
HttpClient httpClient = new DefaultHttpClient(cm, params);

return new ApacheHttpClient4Executor(httpClient);

193

194

Chapter 37.

Seam REST Dependencies

37.1. Transitive Dependencies

The Seam REST module depends on the transitive dependencies at runtime listed in table

Table 37.1, “Transitive dependencies” .

Table 37.1. Transitive dependencies

Name

Seam Solder

37.2. Optional dependencies

37.2.1. Seam Catch

3.0.0.Beta2

Seam Catch can be used for handling Java exceptions. For more information on using Seam

Catch with Seam REST, refer to Section 33.1, “Seam Caitch Integration”

<dependency>
<groupld>org.jboss.seam.catch</groupld>
<artifactld>seam-catch-api</artifactld>
<version>${seam.catch.version}</version>

</dependency>

<dependency>
<groupld>org.jboss.seam.catch</groupld>
<artifactld>seam-catch-impl</artifactld>
<version>${seam.catch.version}</version>

</dependency>

37.2.2. Seam Config

Seam Config can be used to configure Seam REST using XML. For more information on using

Seam Config with Seam REST, refer to Section 33.2.2, “XML configuration”

<dependency>
<groupld>org.jboss.seam.config</groupld>
<artifactld>seam-config-xml</artifactld>
<version>${seam.config.version}</version>
</dependency>

195

Chapter 37. Seam REST Depende...

37.2.3. FreeMarker

FreeMarker can be used for rendering HTTP responses. For more information on using
FreeMarker with Seam REST, refer to Section 35.2.1, “FreeMarker”

<dependency>
<groupld>org.freemarker</groupld>
<artifactld>freemarker</artifactld>
<version>${freemarker.version}</version>
</dependency>

37.2.4. Apache Velocity

Apache Velocity can be used for rendering HTTP responses. For more information on using
Velocity with Seam REST, refer to Section 35.2.2, “Apache Velocity”

<dependency>
<groupld>org.apache.velocity</groupld>
<artifactld>velocity</artifactld>
<version>${velocity.version}</version>

</dependency>

<dependency>
<groupld>org.apache.velocity</groupld>
<artifactld>velocity-tools</artifactld>
<version>${velocity.tools.version}</version>

</dependency>

37.2.5. RESTEasy

RESTEasy Client Framework can be used for building clients of RESTful web services. For
more information on using RESTEasy Client Framework, refer to Chapter 36, RESTEasy Client
Framework Integration

<dependency>
<groupld>org.jboss.resteasy</groupld>
<artifactld>resteasy-jaxrs</artifactld>
<version>${resteasy.version}</version>
</dependency>

196

RESTEasy

197

198

Part X. Seam Validation

Chapter 38.

Introduction

The Seam Validation module provides CDI support for Hibernate Validator ...

201

202

Chapter 39.

Installation

This chapter describes the steps required to getting started with the Seam Validation Module.

39.1. Prerequisites

Not very much is needed in order to use the Seam Validation Module. Just be sure to run on
JDK 5 or later, as the Bean Validation APl and therefore this Seam module are heavily based
on Java annotations.

39.2. Maven setup

The recommended way for setting up Seam Validation is using Apache Maven [http://
maven.apache.org/]. The Seam Validation Module artifacts are deployed to the JBoss Maven
repository. If not yet the case, therefore add this repository to your set ti ngs. xn file (typically in
~/ . n2/ settings. xnl) in order to download the dependencies from there:

Example 39.1. Setting up the JBoss Maven repository in settings.xml

<profiles>
<profile>
<repositories>
<repository>
<id>jboss-public</id>
<url>http://repository.jboss.org/nexus/content/groups/public-jboss/</url>
<releases>
<enabled>true</enabled>
</releases>
<shapshots>
<enabled>false</enabled>
</shapshots>
</repository>
</repositories>
</profile>
</profiles>

<activeProfiles>
<activeProfile>jboss-public</activeProfile>
</activeProfiles>

203

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Chapter 39. Installation

General information on the JBoss Maven repository is available in the JBoss community
wiki [http://community.jboss.org/wiki/MavenGettingStarted-Users], more information on Maven's
settings. xn file can be found in the settings reference [??7?].

Having set up the repository you can add the Seam Validation Module as dependency to the
pom xm of your project. As most Seam modules the validation module is split into two parts,
API and implementation. Generally you should be using only the types from the API within your
application code. In order to avoid unintended imports from the implementation it is recommended
to add the API as compile-time dependency, while the implementation should be added as runtime
dependency only:

Example 39.2. Specifying the Seam Validation Module dependencies in
pom.xml

<properties>
<seam.validation.version>x.y.z</weld.version>
</properties>

<dependencies>

<dependency>
<groupld>${project.groupld}</groupld>
<artifactld>seam-validation-api</artifactld>
<version>${seam.validation.version}</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>${project.groupld}</groupld>
<artifactld>seam-validation-impl</artifactld>
<version>${seam.validation.version}</version>
<scope>runtime</scope>

</dependency>

</dependencies>

204

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
???
???

Manual setup

39.3. Manual setup

TODO GM: add correct links/file names

In case you are not working with Maven or a comparable build management tool you can also
add Seam Validation manually to you project. Download the distribution file from http://..., un-zip
it and add the JARs api and impl to the classpath of your project.

205

206

Chapter 40.

Dependency Injection

The Seam Validation module provides enhanced support for dependency injection services
related to bean validation. This support falls into two areas:

» Retrieval of j avax. val i dati on. Val i dat or Fact ory and j avax. val i dati on. Val i dat or via
dependency injection in non-Java EE environments

« Dependency injection for constraint validators
40.1. Retrieving of validator factory and validators via
dependency injection

As the Bean Validation API is part of Java EE 6 there is an out-of-the-box support for retrieving
validator factories and validators instances via dependency injection in any Java EE 6 container.

The Seam Validation module provides the same service for non-Java EE environements
such as for instance stand-alone web containers. Just annotate any field of type
javax. validation. Val i dator Factory with @nject to have the default validator factory
injected:

Example 40.1. Injection of default validator factory

package com.mycompany;

import javax.inject.Inject;

import javax.validation.Validator;

import javax.validation.ValidatorFactory;

public class MyBean {

@Inject
private ValidatorFactory validatorFactory;

public void doSomething() {

Validator validator = validatorFactory.getValidator();
/...

207

Chapter 40. Dependency Injection

describes in detalil

It is also possible to directly inject a validator created by the default validator factory:

Example 40.2. Injection of a validator from the default validator factory

package com.mycompany;

import java.util.Set;

import javax.inject.Inject;

import javax.validation.ConstraintViolation;
import javax.validation.Validator;

public class MyBean {

@Inject
private Validator validator;

public void doSomething(Foo bar) {

Set<ConstraintViolation<Foo>> constraintViolations = validator.validate(bar);
/...

40.2. Dependency injection for constraint validators

The Seam Validation module provides support for dependency injection within
j avax. val i dati on. Const rai nt Val i dat or implementations. This is very useful if you need to
access other CDI beans within you constraint validator such as business services etc.

208

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html

Dependency injection for constraint validators

Warning

Relying on dependency injection reduces portability of a validator implementation,
i.e. it won't function properly without the Seam Validation module or a similar
solution.

To make use of dependency injection in constraint validators you have to configure
org.j boss. seam val i dati on. | njecti ngConstraintValidatorFactory as the constraint
validator factory to be used by the bean validation provider. To do so create the file META- | NF/
val i dati on. xm with the following contents:

Example 40.3. Configuration of InjectingConstraintValidatorFactory in
META-INF/validation.xml

<?xml version="1.0" encoding="UTF-8"?>
<validation-config
xmlns="http://jpboss.org/xml/ns/javax/validation/configuration" xmins:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.org/xml/ns/javax/validation/configuration validation-
configuration-1.0.xsd">

<constraint-validator-factory>
org.jboss.seam.validation.InjectingConstraintValidatorFactory

</constraint-validator-factory>

</validation-config>

Having configured the constraint validator factory you can inject arbitrary CDI beans into you
validator implementions. Listing Example 40.4, “Dependency injection within ConstraintValidator
implementation” shows a Const r ai nt Val i dat or implementation for the @ast constraint which
uses an injected time service instead of relying on the JVM's current time to determine whether
a given date is in the past or not.

Example 40.4. Dependency injection within ConstraintValidator
iImplementation

package com.mycompany;
import java.util.Date;

import javax.inject.Inject;

209

Chapter 40. Dependency Injection

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
import javax.validation.constraints.Past;

import com.mycompany.services.TimeService;

public class CustomPastValidator implements ConstraintValidator<Past, Date>

{

@Inject
private TimeService timeService;

@Override
public void initialize(Past constraintAnnotation)
{
}
@0Override
public boolean isValid(Date value, ConstraintValidatorContext context)
{

if (value == null)

{

return true;

}

return value.before(timeService.getCurrentTime());
}

}

Hibernate Validator

Reference Guide

210

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024

Chapter 41.

Method Validation

The Seam Validation module provides ...

211

212

Part XI. Seam Wicket

Introduction

The goal of Seam for Apache Wicket is to provide a fully integrated CDI programming model
to the Apache Wicket web framework. Although Apache components (pages, panels, buttons,
etc.) are created by direct construction using "new", and therefore are not themselves CDI
contextual instances, with seam-wicket they can receive injections of scoped contextual instances
via @ nj ect . In addition, conversation propagation is supported to allow a conversation scope to
be tied to a wicket page and propagated across pages.

CCXV

CCXVi

Chapter 42.

Installation

The seam wi cket . j ar should be placed in the web application library folder. If you are using
Maven [http://maven.apache.org/] as your build tool, you can add the following dependency to
your pom xmi file:

<dependency>
<groupld>org.jboss.seam.wicket</groupld>
<artifactld>seam-wicket</artifactld>
<version>${seam-wicket-version}</version>
</dependency>

Tip

Replace ${ seam wi cket - ver si on} with the most recent or appropriate version of
Seam for Apache Wicket.

As Wicket is normally used in a servlet (non-JavaEE) environment, you most likely will need to
bootstrap the CDI container yourself. This is most easily accomplished using the Weld Servlet
integration, described in the Weld Reference Guide [http://docs.jboss.org/weld/reference/latest/
en-US/html/environments.html].

You must extend org.j boss. seam w cket . SeamAppl i cati on rather than
or g. apache. wi cket . prot ocol . htt p. WebAppl i cati on. In addition:

« if you override newRequest Cycl eProcessor () to return your own | Request Cycl ePr ocessor
subclass, you must instead override get WebRequest Cycl eProcessor O ass() and return the
class of your processor, and your processor must extend SeamiAbRequest Cycl eProcessor .

« if you override newRequest Cycl e to return your own Request Cycl e subclass, you must make
that subclass extend SeanRequest Cycl e.

If you can't extend SeamApplication, for example if you use an alternate Application
superclass for which you do not control the source, you can duplicate the
three steps SeamPpplication takes, i.e. return a Seam/MbRequest Cycl eProcessor
NonContextual instance in newRequest Cycl eProcessor (), return a SeanmRequestCycle
instance in newRequest Cycle(), and add a SeanConponent|nstanti ationLi stener with
addConponent I nstanti ati onLi stener ().

217

http://maven.apache.org/
http://maven.apache.org/
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html

218

Chapter 43.

Seam for Apache Wicket Features

Seam's integration with Wicket is focused on two tasks: conversation propagation through Wicket
page metadata and contextual injection of Wicket components.

43.1. Injection

Any object that extends or g. apache. wi cket . Conponent or one of its subclasses is eligible for
injection with CDI beans. This is accomplished by annotating fields of the component with the
@ avax. i nj ect. | nj ect annotation:

public class MyPage extends WebPage {
@Inject SomeDependency dependency;

public MyPage()
{
depedency.doSomeWork();

}

Note that since Wicket components must be serializable, any non-transient field of a Wicket
component must be serializable. In the case of injected dependencies, the injected object itself
will be serializable if the scope of the dependency is not @ependent , because the object injected
will be a serializable proxy, as required by the CDI specification. For injections of non-serializable
@ependent objects, the field should be marked transient and the injection should be looked up
again in a component-specific attach() override, using the BeanManager API.

Upon startup, the CDI container will examine your component classes to ensure that the injections
you use are resolvable and unambiguous, as per the CDI specification. If any injections fail this
check, your application will fail to bootstrap.

The scopes available are similar to those in a JSF application, as descibed in the CDI reference.
The container, in an JavaEE environment, or the servlet listeners, in a servlet environment, will
set up the application, session, and request scopes. The conversation scope is set up by the
SeamMebRequest Cycl e as outlined in the next two sections.

43.2. Conversation Control

Application conversation control is accomplished as per the CDI specification. By default, like
JSF/CDI, each Wicket HTTP request (whether AJAX or not) has a transient conversation, which
is destroyed at the end of the request. A conversation is marked long-running by injecting the
j avax. ent erpri se. cont ext . Conver sat i on bean and calling its begi n() method.

public class MyPage extends WebPage {

219

Chapter 43. Seam for Apache W...

@Inject Conversation conversation;

public MyPage()

{
conversation.begin();
/[set up components here

}

Similarly, a conversation is ended with the Conver sati on bean's end() method.

43.3. Conversation Propagation

A transient conversation is created when the first Wicket | Request Tar get is set during a request.
If the request target is an | PageRequest Target for a page which has previously marked a
conversation as non-transient, or if the cid parameter is present in the request, the specified
conversation will be activated. If the conversation is missing (i.e. has timed out and been
destroyed), SeanRequest Cycl e. handl eM ssi ngConver sati on() will be invoked. By default this
does nothing, and your conversation will be new and transient. You can however override this, for
example to throw a PageExpi r edExcept i on or something similar. Upon the end of a response,
SeanRequest Cycl ePr ocessor will store the cid of a long running conversation, if one exists, to the
current page's metadata map, if there is a current page. The key for the cid in the metadata map is
the singleton Seamet aDat a. Cl D. Finally, upon det ach() , the SeanRequest Cycl e will invalidate
and deactive the conversation context.

Note that the above process indicates that after a conversation is marked
long-running by a page, requests back to that page (whether ajax or
not) will activate that conversation. It also means that new Pages set as
Request Target s, if created directly with set ResponsePage(sonePagel nstance) or with
set ResponsePage(SomePage. cl ass, pagePar anet er s), will have the conversation propagated
to them. This can be avoided by (a) ending the conversation before the call to setResponsePage,
(b) using a BookmarkablePageLink rather than directly instantiating the response page, or (c)
specifying an empty cid parameter in PagePar anet er s when using set ResponsePage() . (Note
that the final case also provides a mechanism for switching conversations: if a cid is specified in
PagePar aret er s, it will be used by bookmarkable pages, rather than the current conversation.)

220

Part Xll. Seam Solder

Chapter 44.

Getting Started

Getting started with Seam Solder is easy. All you need to do is put the APl and implementation
JARs on the classpath of your CDI application. The features provided by Seam Solder will be
enabled automatically.

Some additional configuration, covered at the end of this chapter, is required if you are using a
pre-Servlet 3.0 environment.

44.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, first make sure you have
configured your build to use the JBoss Community repository [http://community.jboss.org/wiki/
MavenGettingStarted-Users], where you can find all the Seam artifacts. Then, add the following
single dependency to your pom.xml file to get started using Seam Solder:

<dependency>
<groupld>org.jboss.seam.solder</groupld>
<artifactld>seam-solder</artifactld>
<version>${seam.solder.version}</version>
</dependency>

This artifact includes the combined API and implementation.

Tip

Substitute the expression ${seam.solder.version} with the most recent or
appropriate version of Seam Solder. Alternatively, you can create a Maven user-
defined property to satisfy this substitution so you can centrally manage the
version.

To be more strict, you can use the API at compile time and only include the implementation at
runtime. This protects you from inadvertantly depending on an implementation class.

<dependency>
<groupld>org.jboss.seam.solder</groupld>
<artifactld>seam-solder-api</artifactld>
<version>${seam.solder.version}</version>
<scope>compile</scope>

</dependency>

223

http://maven.apache.org/
http://maven.apache.org/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Chapter 44. Getting Started

<dependency>
<groupld>org.jboss.seam.solder</groupld>
<artifactld>seam-solder-impl</artifactld>
<version>${seam.solder.version}</version>
<scope>runtime</scope>

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

44.2. Transitive dependencies

Most of Seam Solder has very few dependencies, only one of which is not provided by Java EE 6:

e javax.enterprise: cdi-api (provided by Java EE 6)

e javax.inject:javax:inject (provided by Java EE 6)

e javax. annotation:j sr250-api (provided by Java EE 6)

e javax.interceptor:interceptor-api (provided by Java EE 6)
e javax.el:el-api (provided by Java EE 6)

* org.jboss. | ogging:jboss-1ogging

Tip

The POM for Seam Solder specifies the versions required. If you are using Maven
3, you can easily import the dependencyManagenent into your POM by declaring
the following in your depdendencyManagenent section:

<dependency>
<groupld>org.jboss.seam.solder</groupld>
<artifactld>seam-solder-parent</artifactld>
<version>${seam.solder.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

Some features of Seam Solder require additional dependencies (which are declared optional, so
will not be added as transitive dependencies):

org.javassi st:javassi st
Service Handlers, Unwrapping Producer Methods

224

Pre-Servlet 3.0 configuration

javax. servl et:servl et-api
Accessing resources from the Servlet Context

44.3. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register
a Servlet component in your application's web.xml to access resources from the Servlet Context.

<listener>
<listener-class>org.jboss.seam.solder.resourceLoader.servlet.ResourceListener</listener-

class>

</listener>

This registration happens automatically in a Servlet 3.0 environment through the use of a /META-
INF/web-fragment.xml included in the Solder implementation.

You're all setup. It's time to dive into all the useful stuff that Seam Solder provides!

225

226

Chapter 45.

Enhancements to the CDI
Programming Model

Seam Solder provides a number enhancements to the CDI programming model which are under
trial and may be included in later releases of Contexts and Dependency Injection.

45.1. Preventing a class from being processed

45.1.1. @Veto

Annotating a class @/et o will cause the type to be ignored, such that any definitions on the type
will not be processed, including:

 the managed bean, decorator, interceptor or session bean defined by the type
« any producer methods or producer fields defined on the type
 any observer methods defined on the type

For example:

@Veto
class Utilities {

Besides, a package can be annotated with @set o, causing all beans in the package to be
prevented from registration.

Example 45.1. package-info.java

@Veto
package com.example;

import org.jboss.seam.solder.core.Veto;

227

Chapter 45. Enhancements to t...

45.1.2. @Requires

Annotating a class with @Requi r es will cause the type to be ignored if the class dependencies
cannot be satisfied. Any definitions on the type will not be processed:

» the managed bean, decorator, interceptor or session bean defined by the type
« any producer methods or producer fields defined on the type

« any observer methods defined on the type

Tip

Solder will use the Thread Context ClassLoader, as well as the classloader of the
type annotated @Requi r es to attempt to satisfy the class dependency.

For example:

@Requires(EntityManager.class)
class EntityManagerProducer {

@Produces
EntityManager getEntityManager() {

Annotating a package with @Requi r es causes all beans in the package to be ignored if the class
dependencies cannot be satisfied. If both a class and it's package are annotated with @requi r es,
both package-level and class-level dependencies have to be satisfied for the bean to be installed.

45.2. @Exact

Annotating an injection point with @xact allows you to select an exact implementation of the
injection point type to inject. For example:

228

@Client

interface PaymentService {

class ChequePaymentService implements PaymentService {

class CardPaymentService implements PaymentService {

class PaymentProcessor {

@Inject @Exact(CardPaymentService.class)
PaymentService paymentService;

45.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want
to differentiate the default system locale from the current client's locale). Seam Solder provides

a built in qualifier, @ i ent for this purpose.

45.4. Named packages

Seam Solder allows you to annotate the package @aned, which causes every bean defined in
the package to be given its default name. Package annotations are defined in the file package-
i nf 0. j ava. For example, to cause any beans defined in com acne to be given their default name:

@Named
package com.acme

229

Chapter 45. Enhancements to t...

45.5. @FullyQualified bean names

According to the CDI standard, the @amed annotation assigns a name to a bean equal to the
value specified in the @amed annotation or, if a value is not provided, the simple name of the bean
class. This behavior aligns is with the needs of most application developers. However, framework
writers should avoid trampling on the "root" bean namespace. Instead, frameworks should specify
qualified names for built-in components. The motivation is the same as qualifying Java types. The
@ul I yQual i fi ed provides this facility without sacrificing type-safety.

Seam Solder allows you to customize the bean name using the complementary @ul | yQual i fi ed
annotation. When the @ul | yQual i fi ed annotation is added to a @anmed bean type, producer
method or producer field, the standard bean name is prefixed with the name of the Java package
in which the bean resides, the segments separated by a period. The resulting fully-qualified bean
name (FQBN) replaces the standard bean name.

package com.acme;

@FullyQualified @Named
public class NamedBean {
public String getAge()

{

return 5;

The bean in the previous code listing is assigned the name com acne. nanedBean. The value of its
property age would be referenced in an EL expression (perhaps in a JSF view template) as follows:

#{com.acme.namedBean.age}

The @ul | yQual i fi ed annotation is permitted on a bean type, producer method or producer field.
It can also be used on a Java package, in which case all @armed beans in that package get a
bean name which is fully-qualified.

@FullyQualified
package com.acme;

If you want to use a different Java package as the namespace of the bean, rather than the Java
package of the bean, you specify any class in that alternative package in the annotation value.

230

@FullyQualified bean names

package com.acme;

@FullyQualified(ClassinOtherPackage.class) @Named
public class CustomNamespacedNamedBean {

231

232

Chapter 46.

Annotation Literals

Seam Solder provides a complete set of AnnotationLiteral s for every annotation type
defined by the CDI (JSR-299) and Injection (JSR-330) specification. These are located in
the org.j boss. seam sol der. literal package. Annotations without listitems provide a static
I NSTANCE listitem that should be used rather than creating a new instance every time.

Literals are provided for the following annotations from Context and Dependency Injection:

e QAN ternative

* @ny

* @\pplicationScoped
* @ConversationScoped
e @pecorator

o @efault

* @el egate

* @ependent

* @i sposes

* @nject

e @bdel

e @\aned

o @ew

e @\onbi ndi ng

e (@Nor mal Scope

e @serves

* @roduces

* @Request Scoped

e @essi onScoped

e @ppeci alizes

* @t ereotype

233

Chapter 46. Annotation Literals

* @vyped

Literals are provided for the following annotations from Seam Solder:

e @ient

e @ef aul t Bean
e @xact

e @eneric

e @zenericType
* @mpper

* @fkssageBundl e
e @Requires

e @Resol ver

e @Resource

e @Jnwraps

e @eto

234

Chapter 47.

Evaluating Unified EL

Seam Solder provides a method to evaluate EL that is not dependent on JSF or JSP, a facility
sadly missing in Java EE. To use it inject Expr essi ons into your bean. You can evaluate value
expressions, or method expressions. The Seam Solder API provides type inference for you. For
example:

class FruitBowl {
@Inject Expressions expressions;

public void run() {
String fruitName = expressions.evaluateValueExpression("#{fruitBowl.fruitName}");
Apple fruit = expressions.evaluateMethodExpression("#{fruitBown.getFruit}");
}
}

235

236

Chapter 48.

Resource Loading

Seam Solder provides an extensible, injectable resource loader. The resource loader can provide
URLs or managed input streams. By default the resource loader will look at the classpath, and
the servlet context if available.

If the resource name is known at development time, the resource can be injected, either as a URL
or an InputStream:

@Inject
@Resource("WEB-INF/beans.xml")
URL beansXml;

@Inject
@Resource("WEB-INF/web.xml")
InputStream webXml;

If the resource name is not known, the Resour ceProvi der can be injected, and the resource
looked up dynamically:

@Inject
void readXml(ResourceProvider provider, String fileName) {
InputStream is = provider.loadResourceStream(fileName);

If you need access to all resources under a given name known to the resource loader (as opposed
to first resource loaded), you can inject a collection of resources:

@Inject
@Resource("WEB-INF/beans.xml")
Collection<URL> beansXmls;

@Inject
@Resource("WEB-INF/web.xml")
Collection<InputStream> webXmls;

237

Chapter 48. Resource Loading

Tip

Any input stream injected, or created directly by the ResourceProvider is
managed, and will be automatically closed when the bean declaring the injection
point of the resource or provider is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Properti es:

@Inject
@Resource("META-INF/aws.properties")
Properties awsProperties;

48.1. Extending the resource loader

If you want to load resources from another location, you can provide an additional resource loader.
First, create the resource loader implementation:

class MyResourceLoader implements ResourcelLoader {

And then register it as a service by placing the fully qualified class name of the implementation in a
file called META- | NF/ servi ces/ org. j boss. seam sol der. r esour ceLoader . Resour ceLoader .

238

Chapter 49.

Logging

Seam Solder integrates JBoss Logging 3 as its logging framework of choice. JBoss Logging 3 is
a modern logging framework offering:

« Abstracts away from common logging backends and frameworks (such as JDK Logging, log4j
and slf4j)

» Provides a innovative, typed logger (see below for examples)
 Full support for internationalization and localization

» Developers can work with interfaces and annotations only

¢ Translators can work with message bundles in properties files

 Build time tooling to generate typed loggers for production, and runtime generation of typed
loggers for development

« Access to MDC and NDC (if underlying logger supports it)

» Loggers are serializable

To use a typed logger, first create the logger definition:

@Messagelogger
interface TrainSpotterLog {

/I Define log call with message, using printf-style interpolation of parameters
@LogMessage @Message("Spotted %s diesel trains")
void dieselTrainsSpotted(int number);

You can then inject the typed logger with no further configuration:

/I Use the train spotter log, with the log category "trains"

239

Chapter 49. Logging

@Inject @Category(“trains") TrainSpotterLog log;

and use it:

log.dieselTrainsSpotted(7);

JBoss Logging will use the default locale unless overridden:

/I Use the train spotter log, with the log category "trains"”, and select the UK locale
@Inject @Category("trains") @Locale("en_GB") TrainSpotterLog log;

You can also log exceptions:

@MessagelLogger
interface TrainSpotterLog {

/I Define log call with message, using printf-style interpolation of parameters
/I The exception parameter will be logged as an exception

@LogMessage @Message("Failed to spot train %s")

void missedTrain(String trainNumber,@Cause Exception exception);

You can then log a message with an exception:

log.missedTrain("RHL1", cause);

You can also inject a "plain old" Logger:

@Inject Logger log;

Log messages created from this Logger will have a category (logger name) equal to the fully-
qualified class name of the bean implementation class. You can specify a category explicitly using
an annotation.

@Inject @Category("billing") Logger log;

240

You can also specify a category using a reference to a type:

@Inject @TypedCategory(BillingService.class) Logger log;

Typed loggers also provide internationalization support, simply add the @MessageBundle
annotation to the logger interface (not currently supported).

Sometimes you need to access the message directly (for example to localize an exception
message). Seam Solder let's you inject a typed message bundle. First, declare the message
bundle:

@MessageBundle
interface TrainMessages {

/I Define a message using printf-style interpolation of parameters
@Message("No trains spotted due to %s")
String noTrainsSpotted(String cause);

Inject it:

@Inject @MessageBundle TrainMessages messages;

And use it:

throw new BadDayException(messages.noTrainsSpotted("leaves on the line"));

241

242

Chapter 50.

Annotation and AnnotatedType
Utilities

Seam Solder provides a number of utilility classes to make working with Annotations and
AnnotatedTypes easier. This chapter will walk you each utility, and give you an idea of how to use
it. For more detail, take a look at the javaodoc on each class.

50.1. Annotated Type Builder

Seam Solder provides an Annot at edType implementation that should be suitable for most
portable extensions needs. The Annot at edType is created from Annot at edTypeBui | der as
follows:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()
.readFromType(baseType,true) /* readFromType can read from an AnnotatedType or a class */
.addToClass(ModelLiteral.INSTANCE) /* add the @Model annotation */
.create();

Here we create a new builder, and initialize it using an existing Annot at edType. We can then add
or remove annotations from the class, and its members. When we have finished modifying the
type, we call cr eat e() to spit out a new, immutable, Annot at edType.

Annot at edTypeBui | der also allows you to specify a "redefinition" which can be applied to the
type, a type of member, or all members. The redefiner will receive a callback for any annotations
present which match the annotation type for which the redefinition is applied. For example, to
remove the qualifier @ni que from any class member and the type:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()
readFromType(baseType,true)
.redefine(Unique.class, new AnnotationRedefiner<Unique>() {

public void redefine(RedefinitionContext<A> ctx) {
ctx.getAnnotationBuilder().remove(Unique.class);

}

}

.create();

243

Chapter 50. Annotation and An...

50.2. Annotation Instance Provider

Sometimes you may need an annotation instance for an annotation whose type is not known at
development time. Seam Solder provides a Annot at i onl nst ancePr ovi der class that can create
an Annot at i onLi t er al instance for any annotation at runtime. Annotation attributes are passed
in via a Map<St ri ng, Ooj ect >. For example given the follow annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface MultipleMembers {
int intMember();

long longMember();

short shortMember();

float floatMember();

double doubleMember();
byte byteMember();

char charMember();
boolean booleanMember();

int[] intArrayMember();
}

We can create an annotation instance as follows:

[* Create a new provider */
AnnotationinstanceProvider provider = new AnnotationinstanceProvider();

[* Set the value for each of attributes */

Map<String, Object> values = new HashMap<String, Object>();
values.put(“intMember", 1);

values.put("longMember", 1);

values.put("shortMember", 1);

values.put(‘floatMember", 0);

values.put("doubleMember", 0);

values.put("byteMember", ((byte) 1));
values.put("charMember", 'c");

244

Annotation Inspector

values.put("booleanMember", true);
values.put('intArrayMember"”, new int[] { 0, 1 });

[* Generate the instance */
MultipleMembers an = provider.get(MultipleMembers.class, values);

50.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated.
For example:

/* Discover all annotations on type which are meta-annotated @Constraint */
Set<Annotation> constraints = Annotationinspector.getAnnotations(type, Constraint.class);

/* Load the annotation instance for @FacesValidator the annotation may declared on the type, */
/* or, if the type has any stereotypes, on the stereotypes */
FacesValidator validator = Annotationlnspector.getAnnotation(

type,

FacesValidator.class,

true,

beanManager);

50.4. Synthetic Qualifiers

When developing an extension to CDI, it can be useful to detect certain injection points, or bean
definitions and based on annotations or other metadata, add qualifiers to further disambiguate
the injection point or bean definition for the CDI bean resolver. Solder's synthetic qualifers can be
used to easily generate and track such qualifers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The
provider will track the qualifier, and if a qualifier is requested again for the same original annotation,
the same instance will be returned.

/* Create a provider, giving it a unique hamespace */
Synthetic.Provider provider = new Synthetic.Provider("com.acme");

/* Get the a synthetic qualifier for the original annotation instance */
Synthetic synthetic = provider.get(originalAnnotation);

[* Later calls with the same original annotation instance will return the same instance */
[* Alternatively, we can "get and forget" */

245

Chapter 50. Annotation and An...

Synthetic synthetic2 = provider.get();

50.5. Reflection Utilities

Seam Solder comes with a number miscellaneous reflection utilities; these extend JDK reflection,
and some also work on CDI's Annotated metadata. See the javadoc on Ref | ect i ons for more.

Solder also includes a simple utility, Pri mi ti veTypes for converting between primitive and their
respective wrapper types, which may be useful when performing data type conversion. Sadly, this
is functionality which is missing from the JDK.

I nj ect abl eMet hod allows an Annot at edMet hod to be injected with parameter values obtained
by following the CDI type safe resolution rules, as well as allowing the default parameter values
to be overridden.

246

Chapter 51.

Obtaining a reference to the
BeanManager

When developing a framework that builds on CDI, you may need to obtain the BeanManager for the
application, can't simply inject it as you are not working in an object managed by the container. The
CDl specification allows lookup of j ava: conp/ BeanManager in JNDI, however some environments
don't support binding to this location (e.g. servlet containers such as Tomcat and Jetty) and some
environments don't support JNDI (e.g. the Weld SE container). For this reason, most framework
developers will prefer to avoid a direct INDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for
example via a context object. For example, you might be able to place the BeanManager in the
Ser vl et Cont ext , and retrieve it at a later date.

On some occasions however there is no suitable context to use, and in this case, you can
take advantage of the abstraction over BeanManager lookup provided by Seam Solder. To
lookup up a BeanManager, you can extend the abstract BeanManager Awar e class, and call
get BeanManager () :

public class Wicketintegration extends BeanManagerAware {

public WicketManager getWicketManager() {
Bean<?> bean = getBeanManager().getBean(Instance.class);
... I and so on to lookup the bean

The benefit here is that BeanManager Awar e class will first look to see if its BeanManager injection
point was satisified before consulting the providers. Thus, if injection becomes available to the
class in the future, it will automatically start the more efficient approach.

Occasionally you will be working in an existing class hierarchy, in which case you can use the

accessor on BeanManager Locat or . For example:

public class ResourceServlet extends HttpServlet {

protected void doGet(HttpServletRequest req, HttpServietResponse resp)
throws ServletException, IOException {
BeanManager beanManager = new BeanManagerLocator().getBeanManager();

247

Chapter 51. Obtaining a refer...

If this lookup fails to resolve a BeanManager , the BeanManager Unavai | abl eExcept i on, a runtime
exception, will be thrown. If you want to perform conditional logic based on whether the
BeanManager is available, you can use this check:

public class ResourceServlet extends HttpServlet {

protected void doGet(HttpServletRequest req, HttpServietResponse resp)
throws ServletException, IOException {
BeanManagerLocator locator = new BeanManagerLocator();
if (locator.isBeanManagerAvailable()) {
BeanManager beanManager = locator.getBeanManager();
... Il work with the BeanManager

}
else{
... Il work without the BeanManager
}
}

However, keep in mind that you can inject into Servlets in Java EE 6!! So it's very likely the lookup
isn't necessary, and you can just do this:

public class ResourceServlet extends HttpServlet {

@Inject
private BeanManager beanManager;

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
... Il work with the BeanManager

248

Chapter 52.

Bean Utilities

Seam Solder provides a number of base classes which can be extended to create custom beans.
Seam Solder also provides bean builders which can be used to dynamically create beans using
a fluent API.

Abstract | rmut abl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute specification
defaults if nul | is passed for a particular attribute. Subclasses must implement the creat e()
and dest roy() methods.

Abst ract | mut abl eProducer
Animmutable (and hence thread-safe) abstract class for creating producers. Subclasses must
implement pr oduce() and di spose() .

BeanBui | der
A builder for creating immutable beans which can read the type and annotations from an
Annot at edType.

Beans
A set of utilities for working with beans.

For war di ngBean
A base class for implementing Bean which forwards all calls to del egat e() .

For war di ngl nj ecti onTar get
A base class for implementing | nj ect i onTar get which forwards all calls to del egat e() .

For war di ngCbser ver Met hod
A base class for implementing Cbser ver Met hod which forwards all calls to del egat e() .

| mut abl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute
specification defaults if nul | is passed for a particular attribute. An implementation of
Cont ext ual Li f ecycl e may be registered to receive lifecycle callbacks.

| mrut abl el nj ecti onPoi nt
An immutable (and hence thread-safe) injection point.

| nmrut abl eNar r owi ngBean
An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build
a general purpose bean (likely a producer method), and register it for a narrowed type (or
qualifiers).

| mut abl ePassi vat i onCapabl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute
specification defaults if nul | is passed for a particular attribute. An implementation of

249

Chapter 52. Bean Utilities

Cont ext ual Li f ecycl e may be registered to receive lifecycle callbacks. The bean implements
Passi vat i onCapabl e, and an id must be provided.

| nrut abl ePassi vat i onCapabl eNar r owi ngBean
An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build
a general purpose bean (likely a producer method), and register it for a narrowed type (or
qualifiers). The bean implements Passi vat i onCapabl e, and an id must be provided.

Nar r owi ngBeanBui | der
A builder for creating immutable narrowing beans which can read the type and annotations
from an Annot at edType.

The use of these classes is in general trivially understood with an understanding of basic
programming patterns and the CDI specification, so no in depth explanation is provided here. The
JavaDoc for each class and method provides more detail.

250

Chapter 53.

Properties

Properties are a convenient way of locating and working with JavaBean [http://en.wikipedia.org/
wiki/JavaBean] properties. They can be used with properties exposed via a getter/setter method,
or directly via the field of a bean, providing a uniform interface that allows you all properties in

the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

53.1. Working with properties

The Propert y<V> interface declares a number of methods for interacting with bean properties.
You can use these methods to read or set the property value, and read the property type
information. Properties may be readonly.

Table 53.1. Property methods

Method

String getNane();

Type get BaseType();
G ass<V> get Javad ass();

Annot at edEl enent
get Annot at edEl enment () ;

V get Val ue();

voi d set Val ue(V val ue);

d ass<?>

get Decl ari ngd ass();

bool ean i sReadOnl y():

Description
Returns the name of the
property.

Returns the property type.
Returns the property class.

Returns the annotated
element -either the Fiel d or
Met hod that the property is
based on.

Returns the value of the
property.

Sets the value of the property.
Gets the class declaring the
property.

Check if the property can be
written as well as read.

Given a class with two properties, per sonNane and post code:'

class Person {

PersonName personName;

Address address;

251

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 53. Properties

void setPostcode(String postcode) {
address.setPostcode(postcode);

}

String getPostcode() {
return address.getPostcode();

}

You can create two properties:

Property<PersonName> personNameProperty = Properties.createProperty(Person.class.getField("personName"’
Property<String> postcodeProperty = Properties.createProperty(Person.class.getMethod("getPostcode"));
53.2. Querying for properties

To create a property query, use the PropertyQueri es class to create a new PropertyQuery
instance:

PropertyQuery<?> query = PropertyQueries.createQuery(Foo.class);

If you know the type of the property that you are querying for, you can specify it via a type
parameter:

PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityClass);

53.3. Property Criteria

Once you have created the Propert yQuery instance, you can add search criteria. Seam Solder
provides three built-in criteria types, and it is very easy to add your own. A criteria is added to a
query via the addCri teri a() method. This method returns an instance of the PropertyQuery,
so multiple addCri teri a() invocations can be stacked.

53.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type.
For example, take the following class:

252

NamedPropertyCriteria

public class Foo {
private String accountNumber;
private @Scrambled String accountPassword;
private String accountName;

}

To query for properties of this bean annotated with @cranbl ed, you can use an
Annot at edPropertyCriteri a, like so:

PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(new AnnotatedPropertyCriteria(Scrambled.class));

This query matches the account Passwor d property of the Foo bean.

53.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

public class Foo {
public String getBar() {
return "foobar";

The following query will locate properties with a name of " bar " :

PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(new NamedPropertyCriteria("bar"));

53.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {
private Bar bar;

}

253

Chapter 53. Properties

The following query will locate properties with a type of Bar :

PropertyQuery<Bar> query = PropertyQueries.<Bar>createQuery(Foo.class)
.addCriteria(new TypedPropertyCriteria(Bar.class));

53.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the
org.j boss. seam sol der. properties. query. PropertyCriteri ainterface, which declares the
two methods f i el dvat ches() and net hodMat ches. In the following example, our custom criteria
implementation can be used to locate whole number properties:

public class WholeNumberPropertyCriteria implements PropertyCriteria {
public boolean fieldMatches(Field f) {
return f.getType() == Integer.class || f.getType() == Integer. TYPE.class ||
f.getType() == Long.class || f.getType() == Long.TYPE.class ||
f.getType() == Biginteger.class;

boolean methodMatches(Method m) {
return m.getReturnType() == Integer.class || m.getReturnType() == Integer.TYPE.class ||
m.getReturnType() == Long.class || m.getReturnType() == Long.TYPE.class ||
m.getReturnType() == Biglnteger.class;

53.4. Fetching the results

After creating the Pr opert yQuery and setting the criteria, the query can be executed by invoking
either the get Resul t Li st () or get FirstResult() methods. The get Resul tLi st () method
returns a Li st of Property objects, one for each matching property found that matches all the
specified criteria:

List<Property<String>> results = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(TypedPropertyCriteria(String.class))
.getResultList();

If no matching properties are found, get Resul t Li st () will return an empty Li st . If you know that
the query will return exactly one result, you can use the get Fi r st Resul t () method instead:

254

Fetching the results

Property<String> result = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(NamedPropertyCriteria("bar"))
.getFirstResult();

If no properties are found, then get Fi r st Resul t () will return null. Alternatively, if more than one
result is found, then get Fi r st Resul t () will return the first property found.

Alternatively, if you know that the query will return exactly one result, and you want to assert that
assumption is true, you can use the get Si ngl eResul t () method instead:

Property<String> result = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(NamedPropertyCriteria("bar"))
.getSingleResult();

If no properties are found, or more than one property is found, then get Si ngl eResul t () will throw
an exception. Otherwise, get Si ngl eResul t () will return the sole property found.

Sometimes you may not be interested in read only properties, so
getResultList(),getFirstResult() and getSingleResult() have corresponding
get Witabl eResultList(),getWitableFirstResult() and getWitableSingl eResult()
methods, that will only return properties that are not read-only. This means that if there is a field and
a getter method that resolve to the same property, instead of getting a read-only Met hodPr operty
you will get a writable Fi el dProperty.

255

256

Chapter 54.

Unwrapping Producer Methods

Unwrapping producer methods allow you to create injectable objects that have "self-managed
lifecycles, and are particularly useful if you have need a bean whose lifecycle does not exactly
match one of the lifecycle of one of the existing scopes. The lifecycle of the bean is are managed by
the bean that defines the producer method, and changes to the unwrapped object are immediately
visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it @inwr aps. The
return type of the managed producer must be proxyable (see Section 5.4.1 of the CDI specification,
"Unproxyable bean types"). Every time a method is called on unwrapped object the invocation is
forwarded to the result of calling the unwrapping producer method - the unwrapped object.

Important

Seam Solder implements this by injecting a proxy rather than the original object.
Every invocation on the injected proxy will cause the unwrapping producer method
to be invoked to obtain the instance on which to invoke the method called. Seam
Solder will then invoke the method on unwrapped instance.

Because of this, it is very important the producer method is lightweight.

For example consider a permission manager (that manages the current permission), and a
security manager (that checks the current permission level). Any changes to permission in the
permission manager are immediately visible to the security manager.

@SessionScoped
class PermissionManager {

Permission permission;

void setPermission(Permission permission) {
this.permission=permission;

}

@Unwraps @Current
Permission getPermission() {
return this.permission;
}
}

257

Chapter 54. Unwrapping Produc...

@SessionScoped
class SecurityManager {

@Inject @Current
Permission permission;

boolean checkAdminPermission() {
return permission.getName().equals("admin®);

When per mi ssi on. get Nane() is called, the unwrapped Permission forwards the invocation of
get Name() to the result of calling Per ni ssi onManager . get Per i ssi on().

For example you could raise the permission level before performing a sensitive operation, and
then lower it again afterwards:

public class SomeSensitiveOperation {

@Inject
PermissionManager permissionManager;

public void perform() {
try {
permissionManager.setPermission(Permissions.ADMIN);
/I Do some sensitive operation
} finally {
permissionManager.setPermission(Permissions.USER);
}
}

Unwrapping producer methods can have parameters injected, including I nj ect i onPoi nt (which
repreents) the calling method.

258

Chapter 55.

Default Beans

Suppose you have a situation where you want to provide a default implementation of a particular
service and allow the user to override it as needed. Although this may sound like a job for an
alternative, they have some restrictions that may make them undesirable in this situation. If you
were to use an alternative it would require an entry in every beans. xr file in an application.

Developers consuming the extension will have to open up the any jar file which references the
default bean, and edit the beans. xn file within, in order to override the service. This is where
default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no
other bean is installed that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that Seam
Solder provides!). If JSF is available we want to use the Functi onMapper provided by the JSF
implementation to resolve functions, otherwise we just want to use a a default Funct i onMapper
implementation that does nothing. We can achieve this as follows:

@DefaultBean(type = FunctionMapper.class)

@Mapper
class FunctionMapperimpl extends FunctionMapper {

@Override
Method resolveFunction(String prefix, String localName) {
return null;

And in the JSF module:

class FunctionMapperProvider {

@Produces
@Mapper
FunctionMapper produceFunctionMapper() {
return FacesContext.getCurrentinstance().getELContext().getFunctionMapper();
}
}

259

Chapter 55. Default Beans

If Functi onMapper Provi der is present then it will be used by default, otherwise the default
Funct i onMapper | npl is used.

A producer method or producer field may be defined to be a default producer by placing the
@ef aul t Bean annotation on the producer. For example:

class CacheManager {

@DefaultBean(Cache.class)
Cache getCache() {

Any producer methods or producer fields declared on a default managed bean are
automatically registered as default producers, with Met hod. get Generi cRet urnType() or
Fi el d. get Generi cType() determining the type of the default producer. The default producer
type can be overridden by specifying @ef aul t Bean on the producer method or field.

260

Chapter 56.

Generic Beans

Many common services and API's require the use of more than just one class. When exposing
these services via CDI, it would be time consuming and error prone to force the end developer to
provide producers for all the different classes required. Generic beans provide a solution, allowing
a framework author to provide a set of related beans, one for each single configuration point
defined by the end developer. The configuration points specifies the qualifiers which are inherited
by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an
extension to integrate our custom messaging solution "ACME Messaging" with CDI. The ACME
Messaging API for sending messages consists of several interfaces:

MessageQueue
The message queue, onto which messages can be placed, and acted upon by ACME
Messaging

MessageDi spat cher
The dispatcher, responsible for placing messages created by the user onto the queue

Di spat cher Pol i cy
The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSyst emConfi gurati on
The messaging system configuration

We want to be able to create as many MessageQueue configurations's as they need, however
we do not want to have to declare each producer and the associated plumbing for every queue.
Generic beans are an ideal solution to this problem.

56.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues
to interact with ACME Messaging, a default queue that is installed with qualifier @ef aul t and a
durable queue that has qualifier @ur abl e:

class MyMessageQueues {
@Produces
@ACMEQueue("defaultQueue™)

MessageSystemConfiguration defaultQueue = new MessageSystemConfiguration();

@Produces @Durable @ConversationScoped

261

Chapter 56. Generic Beans

@ACMEQueue("durableQueue")

MessageSystemConfiguration producerDefaultQueue() {
MessageSystemConfiguration config = new MessageSystemConfiguration();
config.setDurable(true);
return config;

}

}

Looking first at the default queue, in addition to the @Produces annotation, the generic
configuration annotation ACMEQueue, is used, which defines this to be a generic configuration point
for ACME messaging (and cause a whole set of beans to be created, exposing for example the
dispatcher). The generic configuration annotation specifies the queue name, and the value of the
producer field defines the messaging system's configuration (in this case we use all the defaults).
As no qualifier is placed on the definition, @ef aul t qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of the
gueue before having Seam Solder use it). Additionally, it specifies that the generic beans created
(that allow for their scope to be overridden) should be placed in the conversation scope. Finally,
it specifies that the generic beans created should inherit the qualifier @ur abl e.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration

point:

class MessagelLogger {

@Inject
MessageDispatcher dispatcher;

void logMessage(Payload payload) {
/* Add metaddata to the message */
Collection<Header> headers = new ArrayList<Header>();

Message message = new Message(headers, payload);
dispatcher.send(message);

}

class DurableMessageLogger {

@Inject @Durable
MessageDispatcher dispatcher;

262

Using generic beans

@Inject @Durable
DispatcherPolicy policy;

/* Tweak the dispatch policy to enable duplicate removal */

@Inject

void tweakPolicy(@Durable DispatcherPolicy policy) {
policy.removeDuplicates();

}

void logMessage(Payload payload) {

It is also possible to configure generic beans using beans by sub-classing the configuration type,
or installing another bean of the configuration type through the SPI (e.g. using Seam XML). For
example to configure a durable queue via sub-classing:

@Durable @ConversationScoped
@ACMEQueue("durableQueue")
class DurableQueueConfiguration extends MessageSystemConfiguration {

public DurableQueueConfiguration()

{
this.durable = true;
}
}

And the same thing via Seam XML:

<my:MessageSystemConfiguration>
<my:Durable/>
<s:ConversationScoped/>
<my:ACMEQueue>durableQueue</my:ACMEQueue>
<my:durable>true</my:durable>
</my:MessageSystemConfiguration>

263

Chapter 56. Generic Beans

56.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating
the generic configuration annotation:

@Retention(RUNTIME)
@GenericType(MessageSystemConfiguration.class)
@interface ACMEQueue {

String name();

The generic configuration annotation a defines the generic configuration type (in this case
MessageSyst enConf i gur at i on); the type produced by the generic configuration point must be of
this type. Additionally it defines the member nane, used to provide the queue name.

Next, we define the queue manager bean. The manager has one producer method, which creates
the queue from the configuration:

@GenericConfiguration(ACMEQueue.class) @ApplyScope
class QueueManager {

@Inject @Generic
MessageSystemConfiguration systemConfig;

@Inject
ACMEQueue config;

MessageQueueFactory factory;

@PostConstruct
void init() {
factory = systemConfig.createMessageQueueFactory();

}

@Produces @ApplyScope
public MessageQueue messageQueueProducer() {
return factory.createMessageQueue(config.name());

}
}

264

Defining Generic Beans

The bean is declared to be a generic bean for the @GA\CMEQueue generic configuration type
annotation by placing the @zeneri cConfi gur ati on annotation on the class. We can inject the
generic configuration type using the @ener i c qualifier, as well the annotation used to define the
queue.

Placing the @ppl yScope annotation on the bean causes it to inherit the scope from the generic
configuration point. As creating the queue factory is a heavy operation we don't want to do it more
than necessary.

Having created the MessageQueueFact ory, we can then expose the queue, obtaining its name
from the generic configuration annotation. Additionally, we define the scope of the producer
method to be inherited from the generic configuration point by placing the annotation @\pp! yScope
on the producer method. The producer method automatically inherits the qualifiers specified by
the generic configuration point.

Finally we define the message manager, which exposes the message dispatcher, as well as
allowing the client to inject an object which exposes the policy the dispatcher will use when
engueing messages. The client can then tweak the policy should they wish.

@Generic(ACMEQueue.class)
class MessageManager {

@Inject @Generic
MessageQueue queue;

@Produces @ApplyScope
MessageDispatcher messageDispatcherProducer() {
return queue.createMessageDispatcher();

@Produces
DispatcherPolicy getPolicy() {
return queue.getDispatcherPolicy();

}

265

266

Chapter 57.

Service Handler

The service handler facility allow you to declare interfaces and abstract classes as automatically
implemented beans. Any call to an abstract method on the interface or abstract class will be
forwarded to the invocation handler for processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers
may be useful for you, as they allow the end user to map a lookup to a method using domain
specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA
queries upon abstract method calls. First we define the annotation used to mark interfaces as
automatically implemented beans. We meta-annotate it, defining the invocation handler to use:

@ServiceHandlerType(QueryHandler.class)
@Retention(RUNTIME)

@Target({TYPE})

@interface QueryService {}

We now define an annotation which provides the query to execute:

@Retention(RUNTIME)
@Target({METHODY})
@interface Query {

String value();

And finally, the invocation handler, which simply takes the query, and executes it using JPA,
returning the result:

class QueryHandler {
@Inject EntityManager em;

@Aroundlnvoke
Object handle(InvocationContext ctx) {
return em.createQuery(ctx.getMethod().getAnnotation(Query.class).value()).getResultList();

}

267

Chapter 57. Service Handler

Finally, we can define (any number of) interfaces which define our queries:

@QueryService
interface UserQuery {

@Query("select u from User u");
public List<User> getAllUsers();

}

Finally, we caninject the query interface, and call methods, automatically executing the JPA query.

class UserListManager {
@Inject
UserQuery userQuery;

List<User> users;

@PostConstruct
void create() {
users=userQuery.getAllUsers();

}

268

	Seam
	Table of Contents
	Chapter 1. Seam
	1.1. Overview

	Part I. Seam Configuration
	Chapter 2. Seam Config Introduction
	2.1. Getting Started
	2.2. The Princess Rescue Example

	Chapter 3. Seam Config XML provider
	3.1. XML Namespaces
	3.2. Adding, replacing and modifying beans
	3.3. Applying annotations using XML
	3.4. Configuring Fields
	3.4.1. Initial Field Values
	3.4.2. Inline Bean Declarations

	3.5. Configuring methods
	3.6. Configuring the bean constructor
	3.7. Overriding the type of an injection point
	3.8. Configuring Meta Annotations
	3.9. Virtual Producer Fields
	3.10. Notes on Configuring Interceptors
	3.11. More Information

	Part II. Seam Persistence
	Chapter 4. Seam Persistence Reference
	4.1. Introduction
	4.2. Getting Started
	4.3. Transaction Management
	4.3.1. Configuration
	4.3.2. Declarative Transaction Management

	4.4. Seam-managed persistence contexts
	4.4.1. Using a Seam-managed persistence context with JPA
	4.4.2. Seam-managed persistence contexts and atomic conversations
	4.4.3. Using EL in EJB-QL/HQL
	4.4.4. Setting up the EntityManager

	Part III. Seam Servlet
	Introduction
	Chapter 5. Installation
	5.1. Maven dependency configuration
	5.2. Pre-Servlet 3.0 configuration

	Chapter 6. Servlet event propagation
	6.1. Servlet context lifecycle events
	6.2. Application initialization
	6.3. Servlet request lifecycle events
	6.4. Servlet response lifecycle events
	6.5. Servlet request context lifecycle events
	6.6. Session lifecycle events
	6.7. Session activation events

	Chapter 7. Injectable Servlet objects and request state
	7.1. @Inject @RequestParam
	7.2. @Inject @HeaderParam
	7.3. @Inject ServletContext
	7.4. @Inject ServletRequest / HttpServletRequest
	7.5. @Inject ServletResponse / HttpServletResponse
	7.6. @Inject HttpSession
	7.7. @Inject HttpSessionStatus
	7.8. @Inject @ContextPath
	7.9. @Inject List<Cookie>
	7.10. @Inject @CookieParam
	7.11. @Inject @ServerInfo
	7.12. @Inject @Principal

	Chapter 8. Exception handling: Seam Catch integration
	8.1. Background
	8.2. Defining a exception handler for a web request

	Chapter 9. Retrieving the BeanManager from the servlet context

	Part IV. Seam Security
	Chapter 10. Security - Introduction
	10.1. Overview
	10.1.1. Authentication
	10.1.2. Identity Management
	10.1.3. External Authentication
	10.1.4. Authorization

	10.2. Configuration
	10.2.1. Maven Dependencies
	10.2.2. Third Party Dependencies

	Chapter 11. Security - Authentication
	11.1. Basic Concepts
	11.2. Built-in Authenticators
	11.3. Which Authenticator will Seam use?
	11.4. Writing a custom Authenticator

	Chapter 12. Security - Identity Management
	12.1. TO DO

	Chapter 13. Security - External Authentication
	13.1. TO DO

	Chapter 14. Security - Authorization
	14.1. TO DO

	Part V. Seam Faces
	Introduction
	Chapter 15. Installation
	15.1. Maven dependency configuration
	15.2. Pre-Servlet 3.0 configuration

	Chapter 16. Faces Events Propagation
	16.1. JSF Phase events
	16.1.1. Seam Faces Phase events
	16.1.2. Phase events listing

	16.2. JSF system events
	16.2.1. Seam Faces System events
	16.2.2. System events listing
	16.2.3. Component system events

	Chapter 17. Faces Scoping Support
	17.1. @RenderScoped
	17.2. @Inject javax.faces.contet.Flash flash
	17.3. @ViewScoped

	Chapter 18. Messages API
	18.1. Adding Messages
	18.2. Displaying pending messages

	Chapter 19. Faces Artifact Injection
	19.1. @*Scoped and @Inject in Validators and Converters
	19.2. @Inject'able Faces Artifacts

	Chapter 20. Seam Faces Components
	20.1. Introduction
	20.2. <s:validateForm>
	20.3. <s:viewAction>
	20.3.1. Motivation
	20.3.2. Usage
	20.3.3. View actions vs the PreRenderViewEvent

	20.4. UI Input Container

	Part VI. Seam International
	Introduction
	Chapter 21. Installation
	Chapter 22. Locales
	22.1. Default Locale
	22.2. User Locale
	22.3. Available Locales

	Chapter 23. Timezones
	23.1. Default TimeZone
	23.2. User TimeZone
	23.3. Available TimeZones

	Chapter 24. Messages

	Part VII. Seam Catch
	Chapter 25. Seam Catch - Introduction
	Chapter 26. Seam Catch - Installation
	26.1. Maven dependency configuration

	Chapter 27. Seam Catch - Usage
	27.1. Exception handlers
	27.2. Exception handler annotations
	27.2.1. @HandlesExceptions
	27.2.2. @Handles

	27.3. Exception stack trace processing
	27.4. Exception handler ordering
	27.4.1. Traversal of exception type hierarchy
	27.4.2. Handler precendence

	27.5. APIs for exception information and flow control
	27.5.1. CaughtException
	27.5.2. ExceptionStack

	Chapter 28. Seam Catch - Framework Integration
	28.1. Creating and Firing an ExceptionToCatch event
	28.2. Default Handlers and Qualifiers
	28.2.1. Default Handlers
	28.2.2. Qualifiers

	28.3. Supporting ServiceHandlers

	Seam Catch - Glossary

	Part VIII. Seam Remoting
	Chapter 29. Seam Remoting - Basic Features
	29.1. Configuration
	29.1.1. Dynamic type loading

	29.2. The "Seam" object
	29.2.1. A Hello World example
	29.2.2. Seam.createBean

	29.3. The Context
	29.3.1. Setting and reading the Conversation ID
	29.3.2. Remote calls within the current conversation scope

	29.4. Working with Data types
	29.4.1. Primitives / Basic Types
	29.4.1.1. String
	29.4.1.2. Number
	29.4.1.3. Boolean

	29.4.2. JavaBeans
	29.4.3. Dates and Times
	29.4.4. Enums
	29.4.5. Collections
	29.4.5.1. Bags
	29.4.5.2. Maps

	29.5. Debugging
	29.6. Handling Exceptions
	29.7. The Loading Message
	29.7.1. Changing the message
	29.7.2. Hiding the loading message
	29.7.3. A Custom Loading Indicator

	29.8. Controlling what data is returned
	29.8.1. Constraining normal fields
	29.8.2. Constraining Maps and Collections
	29.8.3. Constraining objects of a specific type
	29.8.4. Combining Constraints

	Chapter 30. Seam Remoting - Model API
	30.1. Introduction
	30.2. Model Operations
	30.3. Fetching a model
	30.3.1. Fetching a bean value

	30.4. Modifying model values
	30.5. Expanding a model
	30.6. Applying Changes

	Chapter 31. Seam Remoting - Bean Validation
	31.1. Validating a single object
	31.2. Validating a single property
	31.3. Validating multiple objects and/or properties
	31.4. Validation groups
	31.5. Handling validation failures

	Part IX. Seam Rest
	Introduction
	Chapter 32. Installation
	32.1. Basics
	32.2. Transitive dependencies
	32.3. Registering JAX-RS components explicitly

	Chapter 33. Exception Handling
	33.1. Seam Catch Integration
	33.2. Declarative Exception Mapping
	33.2.1. Annotation-based configuration
	33.2.2. XML configuration
	33.2.3. Declarative exception mapping processing

	Chapter 34. Bean Validation Integration
	34.1. Validating HTTP requests
	34.1.1. Validating entity body
	34.1.2. Validating resource fields
	34.1.3. Validating other method parameters

	34.2. Validation configuration
	34.3. Using validation groups

	Chapter 35. Templating support
	35.1. Creating JAX-RS responses using templates
	35.1.1. Accessing the model

	35.2. Built-in support for templating engines
	35.2.1. FreeMarker
	35.2.2. Apache Velocity
	35.2.3. Pluggable support for templating engines
	35.2.4. Selecting prefered templating engine

	Chapter 36. RESTEasy Client Framework Integration
	36.1. Using RESTEasy Client Framework with Seam REST
	36.2. Manual ClientRequest API
	36.3. ClientExecutor Configuration

	Chapter 37. Seam REST Dependencies
	37.1. Transitive Dependencies
	37.2. Optional dependencies
	37.2.1. Seam Catch
	37.2.2. Seam Config
	37.2.3. FreeMarker
	37.2.4. Apache Velocity
	37.2.5. RESTEasy

	Part X. Seam Validation
	Chapter 38. Introduction
	Chapter 39. Installation
	39.1. Prerequisites
	39.2. Maven setup
	39.3. Manual setup

	Chapter 40. Dependency Injection
	40.1. Retrieving of validator factory and validators via dependency injection
	40.2. Dependency injection for constraint validators

	Chapter 41. Method Validation

	Part XI. Seam Wicket
	Introduction
	Chapter 42. Installation
	Chapter 43. Seam for Apache Wicket Features
	43.1. Injection
	43.2. Conversation Control
	43.3. Conversation Propagation

	Part XII. Seam Solder
	Chapter 44. Getting Started
	44.1. Maven dependency configuration
	44.2. Transitive dependencies
	44.3. Pre-Servlet 3.0 configuration

	Chapter 45. Enhancements to the CDI Programming Model
	45.1. Preventing a class from being processed
	45.1.1. @Veto
	45.1.2. @Requires

	45.2. @Exact
	45.3. @Client
	45.4. Named packages
	45.5. @FullyQualified bean names

	Chapter 46. Annotation Literals
	Chapter 47. Evaluating Unified EL
	Chapter 48. Resource Loading
	48.1. Extending the resource loader

	Chapter 49. Logging
	Chapter 50. Annotation and AnnotatedType Utilities
	50.1. Annotated Type Builder
	50.2. Annotation Instance Provider
	50.3. Annotation Inspector
	50.4. Synthetic Qualifiers
	50.5. Reflection Utilities

	Chapter 51. Obtaining a reference to the BeanManager
	Chapter 52. Bean Utilities
	Chapter 53. Properties
	53.1. Working with properties
	53.2. Querying for properties
	53.3. Property Criteria
	53.3.1. AnnotatedPropertyCriteria
	53.3.2. NamedPropertyCriteria
	53.3.3. TypedPropertyCriteria
	53.3.4. Creating a custom property criteria

	53.4. Fetching the results

	Chapter 54. Unwrapping Producer Methods
	Chapter 55. Default Beans
	Chapter 56. Generic Beans
	56.1. Using generic beans
	56.2. Defining Generic Beans

	Chapter 57. Service Handler

