
Seam

iii

1. Seam .. 1

1.1. Overview .. 1

I. Seam Configuration .. 3

2. Seam Config Introduction .. 5

2.1. Getting Started ... 5

2.2. The Princess Rescue Example .. 8

3. Seam Config XML provider ... 9

3.1. XML Namespaces .. 9

3.2. Adding, replacing and modifying beans .. 10

3.3. Applying annotations using XML .. 11

3.4. Configuring Fields ... 12

3.4.1. Initial Field Values .. 12

3.4.2. Inline Bean Declarations ... 14

3.5. Configuring methods ... 14

3.6. Configuring the bean constructor ... 17

3.7. Overriding the type of an injection point .. 17

3.8. Configuring Meta Annotations .. 18

3.9. Virtual Producer Fields .. 19

3.10. Notes on Configuring Interceptors .. 19

3.11. More Information ... 20

II. Seam Persistence ... 21

4. Seam Persistence Reference ... 23

4.1. Introduction ... 23

4.2. Getting Started ... 24

4.3. Transaction Management .. 25

4.3.1. Configuration .. 25

4.3.2. Declarative Transaction Management .. 27

4.4. Seam-managed persistence contexts ... 28

4.4.1. Using a Seam-managed persistence context with JPA 29

4.4.2. Seam-managed persistence contexts and atomic conversations 30

4.4.3. Using EL in EJB-QL/HQL ... 30

4.4.4. Setting up the EntityManager .. 31

III. Seam Servlet .. 33

Introduction ... xxxv

5. Installation ... 37

5.1. Maven dependency configuration ... 37

5.2. Pre-Servlet 3.0 configuration .. 38

6. Servlet event propagation .. 41

6.1. Servlet context lifecycle events .. 41

6.2. Application initialization .. 42

6.3. Servlet request lifecycle events .. 43

6.4. Servlet response lifecycle events ... 45

6.5. Servlet request context lifecycle events .. 46

6.6. Session lifecycle events .. 48

Seam

iv

6.7. Session activation events .. 48

7. Injectable Servlet objects and request state .. 51

7.1. @Inject @RequestParam .. 51

7.2. @Inject @HeaderParam .. 52

7.3. @Inject ServletContext .. 53

7.4. @Inject ServletRequest / HttpServletRequest ... 53

7.5. @Inject ServletResponse / HttpServletResponse .. 53

7.6. @Inject HttpSession .. 54

7.7. @Inject HttpSessionStatus .. 54

7.8. @Inject @ContextPath .. 55

7.9. @Inject List<Cookie> .. 55

7.10. @Inject @CookieParam .. 55

7.11. @Inject @ServerInfo ... 56

7.12. @Inject @Principal .. 56

8. Exception handling: Seam Catch integration ... 57

8.1. Background .. 57

8.2. Defining a exception handler for a web request ... 57

9. Retrieving the BeanManager from the servlet context 59

IV. Seam Security .. 61

10. Security - Introduction ... 63

10.1. Overview .. 63

10.1.1. Authentication .. 63

10.1.2. Identity Management .. 63

10.1.3. External Authentication ... 63

10.1.4. Authorization .. 63

10.2. Configuration .. 64

10.2.1. Maven Dependencies ... 64

10.2.2. Third Party Dependencies ... 65

11. Security - Authentication ... 67

11.1. Basic Concepts ... 67

11.2. Built-in Authenticators .. 68

11.3. Which Authenticator will Seam use? ... 68

11.4. Writing a custom Authenticator .. 69

12. Security - Identity Management ... 73

12.1. TO DO ... 73

13. Security - External Authentication ... 75

13.1. TO DO ... 75

14. Security - Authorization ... 77

14.1. TO DO ... 77

V. Seam Faces ... 79

Introduction ... lxxxi

15. Installation ... 83

15.1. Maven dependency configuration ... 83

15.2. Pre-Servlet 3.0 configuration .. 84

v

16. Faces Events Propagation ... 85

16.1. JSF Phase events ... 85

16.1.1. Seam Faces Phase events ... 85

16.1.2. Phase events listing ... 86

16.2. JSF system events .. 87

16.2.1. Seam Faces System events .. 87

16.2.2. System events listing .. 87

16.2.3. Component system events .. 88

17. Faces Scoping Support ... 89

17.1. @RenderScoped ... 89

17.2. @Inject javax.faces.contet.Flash flash .. 90

17.3. @ViewScoped .. 90

18. Messages API .. 93

18.1. Adding Messages .. 93

18.2. Displaying pending messages .. 94

19. Faces Artifact Injection .. 95

19.1. @*Scoped and @Inject in Validators and Converters 95

19.2. @Inject'able Faces Artifacts ... 97

20. Seam Faces Components .. 99

20.1. Introduction ... 99

20.2. <s:validateForm> ... 99

20.3. <s:viewAction> .. 102

20.3.1. Motivation .. 102

20.3.2. Usage .. 102

20.3.3. View actions vs the PreRenderViewEvent 105

20.4. UI Input Container ... 105

VI. Seam International ... 107

Introduction ... cix

21. Installation .. 111

22. Locales ... 113

22.1. Default Locale ... 113

22.2. User Locale .. 114

22.3. Available Locales .. 114

23. Timezones .. 117

23.1. Default TimeZone .. 117

23.2. User TimeZone ... 117

23.3. Available TimeZones ... 118

24. Messages ... 119

VII. Seam Catch .. 121

25. Seam Catch - Introduction ... 123

26. Seam Catch - Installation ... 125

26.1. Maven dependency configuration ... 125

27. Seam Catch - Usage .. 127

27.1. Exception handlers .. 127

Seam

vi

27.2. Exception handler annotations ... 127

27.2.1. @HandlesExceptions .. 127

27.2.2. @Handles .. 128

27.3. Exception stack trace processing ... 130

27.4. Exception handler ordering .. 130

27.4.1. Traversal of exception type hierarchy ... 131

27.4.2. Handler precendence .. 132

27.5. APIs for exception information and flow control 133

27.5.1. CaughtException .. 133

27.5.2. ExceptionStack ... 134

28. Seam Catch - Framework Integration ... 135

28.1. Creating and Firing an ExceptionToCatch event 135

28.2. Default Handlers and Qualifiers .. 135

28.2.1. Default Handlers ... 135

28.2.2. Qualifiers .. 135

28.3. Supporting ServiceHandlers ... 136

Seam Catch - Glossary .. 137

VIII. Seam Remoting .. 139

29. Seam Remoting - Basic Features ... 141

29.1. Configuration ... 141

29.1.1. Dynamic type loading ... 142

29.2. The "Seam" object .. 142

29.2.1. A Hello World example ... 142

29.2.2. Seam.createBean ... 144

29.3. The Context .. 145

29.3.1. Setting and reading the Conversation ID 145

29.3.2. Remote calls within the current conversation scope 145

29.4. Working with Data types .. 145

29.4.1. Primitives / Basic Types .. 145

29.4.2. JavaBeans ... 146

29.4.3. Dates and Times .. 146

29.4.4. Enums ... 146

29.4.5. Collections ... 146

29.5. Debugging .. 147

29.6. Handling Exceptions .. 147

29.7. The Loading Message ... 148

29.7.1. Changing the message ... 148

29.7.2. Hiding the loading message .. 148

29.7.3. A Custom Loading Indicator .. 148

29.8. Controlling what data is returned .. 149

29.8.1. Constraining normal fields ... 149

29.8.2. Constraining Maps and Collections .. 150

29.8.3. Constraining objects of a specific type ... 150

29.8.4. Combining Constraints .. 150

vii

30. Seam Remoting - Model API .. 153

30.1. Introduction ... 153

30.2. Model Operations .. 153

30.3. Fetching a model .. 157

30.3.1. Fetching a bean value .. 159

30.4. Modifying model values ... 159

30.5. Expanding a model ... 159

30.6. Applying Changes ... 161

31. Seam Remoting - Bean Validation ... 163

31.1. Validating a single object ... 163

31.2. Validating a single property .. 164

31.3. Validating multiple objects and/or properties .. 165

31.4. Validation groups .. 166

31.5. Handling validation failures .. 166

IX. Seam Rest ... 169

Introduction ... clxxi

32. Installation .. 173

32.1. Basics ... 173

32.2. Transitive dependencies .. 173

32.3. Registering JAX-RS components explicitly .. 173

33. Exception Handling .. 175

33.1. Seam Catch Integration ... 175

33.2. Declarative Exception Mapping .. 176

33.2.1. Annotation-based configuration .. 176

33.2.2. XML configuration ... 177

33.2.3. Declarative exception mapping processing 178

34. Bean Validation Integration .. 181

34.1. Validating HTTP requests .. 181

34.1.1. Validating entity body .. 181

34.1.2. Validating resource fields .. 182

34.1.3. Validating other method parameters ... 183

34.2. Validation configuration .. 184

34.3. Using validation groups ... 184

35. Templating support .. 187

35.1. Creating JAX-RS responses using templates .. 187

35.1.1. Accessing the model ... 188

35.2. Built-in support for templating engines .. 189

35.2.1. FreeMarker .. 189

35.2.2. Apache Velocity .. 190

35.2.3. Pluggable support for templating engines 190

35.2.4. Selecting prefered templating engine ... 190

36. RESTEasy Client Framework Integration ... 191

36.1. Using RESTEasy Client Framework with Seam REST 191

36.2. Manual ClientRequest API ... 192

Seam

viii

36.3. ClientExecutor Configuration .. 192

37. Seam REST Dependencies ... 195

37.1. Transitive Dependencies .. 195

37.2. Optional dependencies .. 195

37.2.1. Seam Catch ... 195

37.2.2. Seam Config .. 195

37.2.3. FreeMarker .. 196

37.2.4. Apache Velocity .. 196

37.2.5. RESTEasy ... 196

X. Seam Validation .. 199

38. Introduction .. 201

39. Installation .. 203

39.1. Prerequisites ... 203

39.2. Maven setup ... 203

39.3. Manual setup .. 205

40. Dependency Injection ... 207

40.1. Retrieving of validator factory and validators via dependency injection 207

40.2. Dependency injection for constraint validators ... 208

41. Method Validation .. 211

XI. Seam Wicket .. 213

Introduction ... ccxv

42. Installation .. 217

43. Seam for Apache Wicket Features ... 219

43.1. Injection .. 129

43.2. Conversation Control ... 219

43.3. Conversation Propagation .. 220

XII. Seam Solder ... 221

44. Getting Started ... 223

44.1. Maven dependency configuration ... 223

44.2. Transitive dependencies .. 224

44.3. Pre-Servlet 3.0 configuration .. 225

45. Enhancements to the CDI Programming Model ... 227

45.1. Preventing a class from being processed .. 227

45.1.1. @Veto ... 227

45.1.2. @Requires ... 228

45.2. @Exact ... 228

45.3. @Client .. 229

45.4. Named packages .. 229

45.5. @FullyQualified bean names ... 230

46. Annotation Literals ... 233

47. Evaluating Unified EL .. 235

48. Resource Loading .. 237

48.1. Extending the resource loader .. 238

49. Logging .. 239

ix

50. Annotation and AnnotatedType Utilities .. 243

50.1. Annotated Type Builder ... 243

50.2. Annotation Instance Provider ... 244

50.3. Annotation Inspector .. 245

50.4. Synthetic Qualifiers .. 245

50.5. Reflection Utilities .. 246

51. Obtaining a reference to the BeanManager .. 247

52. Bean Utilities .. 249

53. Properties ... 251

53.1. Working with properties ... 251

53.2. Querying for properties .. 252

53.3. Property Criteria .. 252

53.3.1. AnnotatedPropertyCriteria ... 252

53.3.2. NamedPropertyCriteria .. 253

53.3.3. TypedPropertyCriteria ... 253

53.3.4. Creating a custom property criteria .. 254

53.4. Fetching the results ... 254

54. Unwrapping Producer Methods .. 257

55. Default Beans ... 259

56. Generic Beans .. 261

56.1. Using generic beans .. 261

56.2. Defining Generic Beans ... 264

57. Service Handler .. 267

x

Chapter 1.

1

Seam

1.1. Overview

TODO

2

Part I. Seam Configuration

Chapter 2.

5

Seam Config Introduction
Seam provides a method for configuring JSR-299 beans using alternate metadata sources, such

as XML configuration. (Currently, the XML provider is the only alternative available, though others

are planned). Using a "type-safe" XML syntax, it's possible to add new beans, override existing

beans, and add extra configuration to existing beans.

2.1. Getting Started

No special configuration is required, all that is required is to include the JAR file and the Seam

Solder JAR in your project. For Maven projects, that means adding the following dependencies

to your pom.xml:

 <dependency>

 <groupId>org.jboss.seam.config</groupId>

 <artifactId>seam-config-xml</artifactId>

 <version>${seam.config.version}</version>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder</artifactId>

 <version>${weld.extensions.version}</version>

 </dependency>

To take advantage of Seam Config, the first thing we need is some metadata sources in the form

of XML files. By default these are discovered from the classpath in the following locations:

• /META-INF/beans.xml

• /META-INF/seam-beans.xml

The beans.xml file is the preferred way of configuring beans via XML, however it may be possible

that some JSR-299 implementations will not allow this, so seam-beans.xml is provided as an

alternative.

Let's start with a simple example. Say we have the following class that represents a report:

class Report {

 String filename;

Chapter 2. Seam Config Introd...

6

 @Inject

 Datasource datasource;

 //getters and setters

}

And the following support classes:

interface Datasource {

 public Data getData();

}

@SalesQualifier

class SalesDatasource implements Datasource {

 public Data getData()

 {

 //return sales data

 }

}

class BillingDatasource implements Datasource {

 public Data getData()

 {

 //return billing data

 }

}

Our Report bean is fairly simple. It has a filename that tells the report engine where to load the

report definition from, and a datasource that provides the data used to fill the report. We are going

to configure up multiple Report beans via xml.

Example 2.1.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:r="urn:java:org.example.reports">

 <r:Report>

Getting Started

7

 <s:modifies/>

 <r:filename>sales.jrxml<r:filename>

 <r:datasource>

 <r:SalesQualifier/>

 </r:datasource>

 </r:Report>

 <r:Report filename="billing.jrxml">

 <s:replaces/>

 <r:datasource>

 <s:Inject/>

 <s:Exact>org.example.reports.BillingDatasource</s:Exact>

 </r:datasource>

 </r:Report>

</beans>

The namespace urn:java:ee is Seam Config's root namespace. This is where the built-in

elements and CDI annotations live.

There are now multiple namespaces in the beans.xml file. These namespaces correspond

to java package names.

The namespace urn:java:org.example.reports corresponds to the package

org.example.reports, where our reporting classes live. Multiple java packages can be

aggregated into a single namespace declaration by seperating the package names with

colons, e.g. urn:java:org.example.reports:org.example.model. The namespaces are

searched in the order they are specified in the xml document, so if two packages in the

namespace have a class with the same name, the first one listed will be resolved. For more

information see Namespaces.

The <Report> declaration configures an instance of our Report class as a bean.

Beans installed using <s:modifies> read annotations from the existing class, and merge

them with the annotations defined via xml. In addition if a bean is installed with <s:modifies>

it prevents the original class being installed as a bean. It is also possible to add new beans and

replace beans altogether, for more information see Adding, modifying and replacing beans.

The <r:filename> element sets the initial value of the filename field. For more information

on how methods and fields are resolved see Configuring Methods, and Configuring Fields.

The <r:SalesQualifier> element applies the @SalesQualifier to the datasource

field. As the field already has an @Inject on the class definition this will cause the

SalesDatasource bean to be injected.

This is the shorthand syntax for setting a field value.

Chapter 2. Seam Config Introd...

8

Beans installed using <s:replaces> do not read annotations from the existing class. In

addition if a bean is installed with <s:replaces> it prevents the original class being installed

as a bean.

The <s:Inject> element is needed this bean was installed with <s:replaces>, so

annotations are not read from the class definition.

The <s:Exact> annotation restricts the type of bean that is availible for injection without using

qualifiers. In this case BillingDatasource will be injected. This is provided as part of weld-

extensions.

2.2. The Princess Rescue Example

The princess rescue example is a sample web app that uses Seam Config. You can run it with

the following command:

mvn jetty:run

And then navigate to http://localhost:9090/princess-rescue. The XML configuration for the

example is in src/main/resources/META-INF/seam-beans.xml.

Chapter 3.

9

Seam Config XML provider

3.1. XML Namespaces

The main namespace is urn:java:ee. This namespace contains built-in tags and types from core

packages. The built-in tags are:

• Beans

• modifies

• replaces

• parameters

• value

• key

• entry

• e (alias for entry)

• v (alias for value)

• k (alias for key)

• array

• int

• short

• long

• byte

• char

• double

• float

• boolean

as well as classes from the following packages:

• java.lang

• java.util

• javax.annotation

Chapter 3. Seam Config XML pr...

10

• javax.inject

• javax.enterprise.inject

• javax.enterprise.context

• javax.enterprise.event

• javax.decorator

• javax.interceptor

• org.jboss.weld.extensions.core

• org.jboss.weld.extensions.unwraps

• org.jboss.weld.extensions.resourceLoader

Other namespaces are specified using the following syntax:

 xmlns:my="urn:java:com.mydomain.package1:com.mydomain.package2"

This maps the namespace my to the packages com.mydomain.package1 and

com.mydomain.package2. These packages are searched in order to resolve elements in this

namespace.

For example, say you had a class com.mydomain.package2.Report. To configure a Report

bean you would use <my:Report>. Methods and fields on the bean are resolved from the same

namespace as the bean itself. It is possible to distinguish between overloaded methods by

specifying the parameter types, for more information see Configuring Methods.

3.2. Adding, replacing and modifying beans

By default configuring a bean via XML creates a new bean, however there may be cases where

you want to modify an existing bean rather than adding a new one. The <s:replaces> and

<s:modifies> tags allow you to do this.

The <s:replaces> tag prevents the existing bean from being installed, and registers a new one

with the given configuration. The <s:modifies> tag does the same, except that it merges the

annotations on the bean with the annotations defined in XML. Where the same annotation is

specified on both the class and in XML the annotation in XML takes precidence. This has almost

the same effect as modifiying an existing bean, except it is possible to install multiple beans that

modify the same class.

<my:Report>

 <s:modifies>

Applying annotations using XML

11

 <my:NewQualifier/>

</my:Report>

<my:ReportDatasource>

 <s:replaces>

 <my:NewQualifier/>

</my:ReportDatasource>

The first entry above adds a new bean with an extra qualifier, in addition to the qualifiers already

present, and prevents the existing Report bean from being installed.

The second prevents the existing bean from being installed, and registers a new bean with a

single qualifier.

3.3. Applying annotations using XML

Annotations are resolved in the same way as normal classes. Conceptually annotations are

applied to the object their parent element resolves to. It is possible to set the value of annotation

members using the xml attribute that corresponds to the member name. For example:

public @interface OtherQualifier {

 String value1();

 int value2();

 QualifierEnum value();

}

<test:QualifiedBean1>

 <test:OtherQualifier value1="AA" value2="1">A</my:OtherQualifier>

</my:QualifiedBean1>

<test:QualifiedBean2>

 <test:OtherQualifier value1="BB" value2="2" value="B" />

</my:QualifiedBean2>

The value member can be set using the inner text of the node, as seen in the first example. Type

conversion is performed automatically.

Note

It is currently not possible set array annotation members.

Chapter 3. Seam Config XML pr...

12

3.4. Configuring Fields

It is possible to both apply qualifiers to and set the initial value of a field. Fields reside in the same

namespace as the declaring bean, and the element name must exactly match the field name. For

example if we have the following class:

class RobotFactory {

 Robot robot;

}

The following xml will add the @Produces annotation to the robot field:

<my:RobotFactory>

 <my:robot>

 <s:Produces/>

 </my:robot>

</my:RobotFactory/>

3.4.1. Initial Field Values

Inital field values can be set three different ways as shown below:

<r:MyBean company="Red Hat Inc" />

<r:MyBean>

 <r:company>Red Hat Inc</r:company>

</r:MyBean>

<r:MyBean>

 <r:company>

 <s:value>Red Hat Inc<s:value>

 <r:SomeQualifier/>

 </r:company>

</r:MyBean>

The third form is the only one that also allows you to add annotations such as qualifiers to the field.

It is possible to set Map,Array and Collection field values. Some examples:

<my:ArrayFieldValue>

Initial Field Values

13

 <my:intArrayField>

 <s:value>1</s:value>

 <s:value>2</s:value>

 </my:intArrayField>

 <my:classArrayField>

 <s:value>java.lang.Integer</s:value>

 <s:value>java.lang.Long</s:value>

 </my:classArrayField>

 <my:stringArrayField>

 <s:value>hello</s:value>

 <s:value>world</s:value>

 </my:stringArrayField>

</my:ArrayFieldValue>

<my:MapFieldValue>

 <my:map1>

 <s:entry><s:key>1</s:key><s:value>hello</s:value></s:entry>

 <s:entry><s:key>2</s:key><s:value>world</s:value></s:entry>

 </my:map1>

 <my:map2>

 <s:e><s:k>1</s:k><s:v>java.lang.Integer</s:v></s:e>

 <s:e><s:k>2</s:k><s:v>java.lang.Long</s:v></s:e>

 </my:map2>

</my:MapFieldValue>

Type conversion is done automatically for all primitives and primitive wrappers, Date,

Calendar,Enum and Class fields.

The use of EL to set field values is also supported:

<m:Report>

 <m:name>#{reportName}</m:name>

 <m:parameters>

 <s:key>#{paramName}</s:key>

 <s:value>#{paramValue}</s:key>

 </m:parameters>

Chapter 3. Seam Config XML pr...

14

</m:Report>

Internally field values are set by wrapping the InjectionTarget for a bean. This means that the

expressions are evaluated once, at bean creation time.

3.4.2. Inline Bean Declarations

Inline beans allow you to set field values to another bean that is declared inline inside the

field declaration. This allows for the configuration of complex types with nestled classes. Inline

beans can be declared inside both <s:value> and <s:key> elements, and may be used in both

collections and simple field values. Inline beans must not have any qualifier annotations declared

on the bean, instead Seam Config assigns them an artificial qualifier. Inline beans may have any

scope, however the default Dependent scope is recommended.

<my:Knight>

 <my:sword>

 <value>

 <my:Sword type="sharp"/>

 </value>

 </my:sword>

 <my:horse>

 <value>

 <my:Horse>

 <my:name>

 <value>billy</value>

 </my:name>

 <my:shoe>

 <Inject/>

 </my:shoe>

 </my:Horse>

 </value>

 </my:horse>

</my:Knight>

3.5. Configuring methods

It is also possible to configure methods in a similar way to configuring fields:

class MethodBean {

 public int doStuff() {

 return 1;

Configuring methods

15

 }

 public int doStuff(MethodValueBean bean) {

 return bean.value + 1;

 }

 public void doStuff(MethodValueBean[][] beans) {

 /*do stuff */

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:my="urn:java:org.jboss.seam.config.xml.test.method">

 <my:MethodBean>

 <my:doStuff>

 <s:Produces/>

 </my:doStuff>

 <my:doStuff>

 <s:Produces/>

 <my:Qualifier1/>

 <s:parameters>

 <my:MethodValueBean>

 <my:Qualifier2/>

 </my:MethodValueBean>

 </s:parameters>

 </my:doStuff>

 <my:doStuff>

 <s:Produces/>

 <my:Qualifier1/>

 <s:parameters>

 <s:array dimensions="2">

 <my:Qualifier2/>

 <my:MethodValueBean/>

 </s:array>

 </s:parameters>

 </my:doStuff>

Chapter 3. Seam Config XML pr...

16

 </my:MethodBean>

</beans>

In this instance MethodBean has three methods, all of them rather imaginatively named doStuff.

The first <test:doStuff> entry in the XML file configures the method that takes no arguments.

The <s:Produces> element makes it into a producer method.

The next entry in the file configures the method that takes a MethodValueBean as a parameter

and the final entry configures a method that takes a two dimensional array ofMethodValueBean's

as a parameter. For both these methods a qualifier was added to the method parameter and they

were made into producer methods.

Method parameters are specified inside the <s:parameters> element. If these parameters have

annotation children they are taken to be annotations on the parameter.

The corresponding Java declaration for the XML above would be:

class MethodBean {

 @Produces

 public int doStuff() {/*method body */}

 @Produces

 @Qualifier1

 public int doStuff(@Qualifier2 MethodValueBean param) {/*method body */}

 @Produces

 @Qualifier1

 public int doStuff(@Qualifier2 MethodValueBean[][] param) {/*method body */}

}

Array parameters can be represented using the <s:array> element, with a child element to

represent the type of the array. E.g. int method(MethodValueBean[] param); could be

configured via xml using the following:

<my:method>

 <s:array>

 <my:MethodValueBean/>

 </s:array>

</my:method>

Configuring the bean constructor

17

Note

If a class has a field and a method of the same name then by default the field will

be resolved, unless the element has a child <parameters> element, in which case

it is resolved as a method.

3.6. Configuring the bean constructor

It is also possible to configure the bean constructor in a similar manner. This is done with a

<s:parameters> element directly on the bean element. The constructor is resolved in the same

way methods are resolved. This constructor will automatically have the @Inject annotation

applied to it. Annotations can be applied to the constructor parameters in the same manner as

method parameters.

<my:MyBean>

 <s:parameters>

 <s:Integer>

 <my:MyQualifier/>

 </s:Integer>

 </s:parameters>

</my:MyBean>

The example above is equivalent to the following java:

class MyBean {

 @Inject

 MyBean(@MyQualifier Integer count)

 {

 ...

 }

}

3.7. Overriding the type of an injection point

It is possible to limit which bean types are availible to inject into a given injection point:

class SomeBean

{

 public Object someField;

Chapter 3. Seam Config XML pr...

18

}

<my:SomeBean>

 <my:someField>

 <s:Inject/>

 <s:Exact>com.mydomain.InjectedBean</s:Exact>

 </my:someField>

</my:SomeBean>

In the example above only beans that are assignable to InjectedBean will be eligable for injection

into the field. This also works for parameter injection points. This functionallity is part of Seam

Solder, and the @Exact annotation can be used directly in java.

3.8. Configuring Meta Annotations

It is possible to make existing annotations into qualifiers, stereotypes or interceptor bindings.

This configures a stereotype annotation SomeStereotype that has a single interceptor binding

and is named:

<my:SomeStereotype>

 <s:Stereotype/>

 <my:InterceptorBinding/>

 <s:Named/>

</my:SomeStereotype>

This configures a qualifier annotation:

<my:SomeQualifier>

 <s:Qualifier/>

</my:SomeQualifier>

This configures an interceptor binding:

<my:SomeInterceptorBinding>

 <s:InterceptorBinding/>

</my:SomeInterceptorBinding>

Virtual Producer Fields

19

3.9. Virtual Producer Fields

Seam XML supports configuration of virtual producer fields. These allow for configuration of

resource producer fields, Weld Extensions generic bean and constant values directly via XML.

First an example:

<s:EntityManager>

 <s:Produces/>

 <sPersistenceContext unitName="customerPu" />

</s:EntityManager>

<s:String>

 <s:Produces/>

 <my:VersionQualifier />

 <value>Version 1.23</value>

</s:String>

The first example configures a resource producer field. The second configures a bean of type

String, with the qualifier @VersionQualifier and the value 'Version 1.23'. The corresponding

java for the above XML is:

class SomeClass

{

 @Produces

 @PersistenceContext(unitName="customerPu")

 EntityManager field1;

 @Produces

 @VersionQualifier

 String field2 = "Version 1.23";

}

Although these look superficially like normal bean declarations, the <Produces> declaration

means it is treated as a producer field instead of a normal bean.

3.10. Notes on Configuring Interceptors

Some versions of weld including 1.1.0.Final do not support adding the @AroundInvoke

annotation via the SPI, this will be fixed in future versions.

Chapter 3. Seam Config XML pr...

20

3.11. More Information

For further information look at the units tests in the Seam Config distribution, also the JSR-299

Public Review Draft section on XML Configuration was the base for this extension, so it may also

be worthwhile reading.

Part II. Seam Persistence

Chapter 4.

23

Seam Persistence Reference
Seam provides extensive support for the two most popular persistence architectures for Java:

Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique state-

management architecture allows the most sophisticated ORM integration of any web application

framework.

4.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of

the previous generation of Java application architectures. The state management architecture

of Seam was originally designed to solve problems relating to persistence — in particular

problems associated with optimistic transaction processing. Scalable online applications always

use optimistic transactions. An atomic (database/JTA) level transaction should not span a user

interaction unless the application is designed to support only a very small number of concurrent

clients. But almost all interesting work involves first displaying data to a user, and then, slightly

later, updating the same data. So Hibernate was designed to support the idea of a persistence

context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no

construct for representing an optimistic transaction. So, instead, these architectures provided

persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems

for users, and is the cause of the number one user complaint about Hibernate: the dreaded

LazyInitializationException. What we need is a construct for representing an optimistic

transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful

session bean) with an extended persistence context scoped to the lifetime of the component. This

is a partial solution to the problem (and is a useful construct in and of itself) however there are

two problems:

• The lifecycle of the stateful session bean must be managed manually via code in the web tier

(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

• Propagation of the persistence context between stateful components in the same optimistic

transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components

scoped to the conversation. (Most conversations actually represent optimistic transactions in the

data layer.) This is sufficient for many simple applications (such as the Seam booking demo)

where persistence context propagation is not needed. For more complex applications, with many

loosly-interacting components in each conversation, propagation of the persistence context across

components becomes an important issue. So Seam extends the persistence context management

model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

Chapter 4. Seam Persistence R...

24

4.2. Getting Started

To get started with Seam persistence you need to add the seam-persistence.jar and the seam-

solder.jar to you deployment. If you are in a java SE environment you will probably also require

seam-xml.jar as well for configuration purposes. The relevant maven configuration is as follows:

<dependency>

 <groupId>org.jboss.seam.persistence</groupId>

 <artifactId>seam-persistence-api</artifactId>

 <version>${seam.persistence.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.persistence</groupId>

 <artifactId>seam-persistence-impl</artifactId>

 <version>${seam.persistence.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder</artifactId>

 <version>${seam.solder.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.xml</groupId>

 <artifactId>seam-xml-config</artifactId>

 <version>${seam.xml.version}</version>

</dependency>

You will also need to have a JPA provider on the classpath. If you are using java EE this is taken

care of for you. If not, we recommend hibernate.

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-core</artifactId>

 <version>3.5.1-Final</version>

</dependency>

Transaction Management

25

4.3. Transaction Management

Unlike EJB session beans CDI beans are not transactional by default. Seam brings declarative

transaction management to CDI beans by enabling them to use @TransactionAttribute. Seam

also provides the @Transactional annotation, for environments where java EE APIs are not

present.

4.3.1. Configuration

In order to enable declarative transaction management for managed beans you need to list the

transaction interceptor in beans.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <interceptors>

 <class>org.jboss.seam.persistence.transaction.TransactionInterceptor</class>

 </interceptors>

</beans>

If you are in a Java EE 6 environment then you are good to go, no additional configuration is

required.

If you are not in an EE environment you may need to configure some things with seam-xml. You

may need the following entries in your beans.xml file:

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:t="urn:java:org.jboss.seam.persistence.transaction"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <t:SeSynchronizations>

 <s:modifies/>

 </t:SeSynchronizations>

 <t:EntityTransaction>

 <s:modifies />

Chapter 4. Seam Persistence R...

26

 </t:EntityTransaction>

</beans>

Let's look at these individually.

<t:SeSynchronizations>

 <s:modifies/>

</t:SeSynchronizations>

Seam will attempt to use JTA synchronizations if possible. If not then you need to

install the SeSynchronzations bean to allow seam to handle synchronizations manually.

Synchronizations allow seam to respond to transaction events such as beforeCompletion() and

afterCompletion(), and are needed for the proper operation of the Seam Managed Persistence

Context.

<t:EntityTransaction>

 <s:modifies />

</t:EntityTransaction>

By default seam will attempt to look up java:comp/UserTransaction from JNDI (or alternatively

retrieve it from the EJBContext if a container managed transaction is active). Installing

EntityTransaction tells seam to use the JPA EntityTransaction instead. To use this you must

have a Seam Managed Persistence Context installed with qualifier @Default.

If your entity manager is installed with a different qualifier, then you need to use the following

configuration (this assumes that my has been bound to the namespace that contains the

appropriate qualifier, see the Seam Config XML documentation for more details):

<t:EntityTransaction>

 <s:modifies />

 <t:entityManager>

 <my:SomeQualifier/>

 </tentityManager>

</t:EntityTransaction>

Declarative Transaction Management

27

Note

You should avoid EntityTransaction if you have more than one persistence unit

in your application. Seam does not support installing multiple EntityTransaction

beans, and the EntityTransaction interface does not support two phase commit,

so unless you are careful you may have data consistency issues. If you need

multiple persistence units in your application then we highly recommend using an

EE 6 compatible server, such as JBoss 6.

4.3.2. Declarative Transaction Management

Seam adds declarative transaction support to managed beans. Seam re-uses the

EJB @TransactionAttribute for this purpose, however it also provides an alternative

@Transactional annotation for environments where the EJB API's are not available. An

alternative to @ApplicationException, @SeamApplicationException is also provided. Unlike

EJBs, managed beans are not transactional by default, you can change this by adding the

@TransactionAttribute to the bean class.

Unlike in Seam 2, transactions will not roll back whenever a non-application exception propagates

out of a bean, unless the bean has the transaction intercepter enabled.

If you are using seam managed transactions as part of the seam-faces module you do not need

to worry about declarative transaction management. Seam will automatically start a transaction

for you at the start of the faces request, and commit it before the render response phase.

Warning

@SeamApplicationException will not control transaction rollback when using

EJB container managed transactions. If you are in an EE environment then

you should always use the EJB API's, namely @TransactionAttribute and

@ApplicationException.

Note

TransactionAttributeType.REQUIRES_NEW and

TransactionAttributeType.NOT_SUPPORTED are not yet supported on managed

beans. This will be added before seam-persistence goes final.

Lets have a look at some code. Annotations applied at a method level override annotations applied

at the class level.

@TransactionAttribute /*Defaults to TransactionAttributeType.REQUIRED */

Chapter 4. Seam Persistence R...

28

class TransactionaBean

{

 /* This is a transactional method, when this method is called a transaction

 * will be started if one does not already exist.

 * This behavior is inherited from the @TransactionAttribute annotation on

 * the class.

 */

 void doWork()

 {

 ...

 }

 /* A transaction will not be started for this method, however it */

 /* will not complain if there is an existing transaction active. */

 @TransactionAttributeType(TransactionAttributeType.SUPPORTED)

 void doMoreWork()

 {

 ...

 }

 /* This method will throw an exception if there is no transaction active when */

 /* it is invoked. */

 @TransactionAttributeType(TransactionAttributeType.MANDATORY)

 void doEvenMoreWork()

 {

 ...

 }

 /* This method will throw an exception if there is a transaction active when */

 /* it is invoked. */

 @TransactionAttributeType(TransactionAttributeType.NOT_SUPPORTED)

 void doOtherWork()

 {

 ...

 }

}

4.4. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to

manage the persistence context lifecycle for you. Even if you are in an EE environment, you might

Using a Seam-managed persistence context with JPA

29

have a complex application with many loosely coupled components that collaborate together in the

scope of a single conversation, and in this case you might find that propagation of the persistence

context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session

(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam

component that manages an instance of EntityManager or Session in the conversation (or any

other) context. You can inject it with @Inject.

4.4.1. Using a Seam-managed persistence context with JPA

@SeamManaged

@Produces

@PersistenceUnit

@ConversationScoped

EntityManagerFactory producerField;

This is just an ordinary resource producer field as defined by the CDI specification, however the

presence of the @SeamManaged annotation tells seam to create a seam managed persistence

context from this EntityManagerFactory. This managed persistence context can be injected

normally, and has the same scope and qualifiers that are specified on the resource producer field.

This will work even in a SE environment where @PersistenceUnit injection is not

normally supported. This is because the seam persistence extensions will bootstrap the

EntityManagerFactory for you.

Now we can have our EntityManager injected using:

@Inject EntityManager entityManager;

Note

The more eagle eyed among you may have noticed that the resource producer field

appears to be conversation scoped, which the CDI specification does not require

containers to support. This is actually not the case, as the @ConversationScoped

annotation is removed by the seam persistence portable extension. It only specifies

the scope of the created SMPC, not the EntityManagerFactory.

Chapter 4. Seam Persistence R...

30

Warning

If you are using EJB3 and mark your class or method

@TransactionAttribute(REQUIRES_NEW) then the transaction and persistence

context shouldn't be propagated to method calls on this object. However as the

Seam-managed persistence context is propagated to any component within the

conversation, it will be propagated to methods marked REQUIRES_NEW. Therefore,

if you mark a method REQUIRES_NEW then you should access the entity manager

using @PersistenceContext.

4.4.2. Seam-managed persistence contexts and atomic

conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions

that span multiple requests to the server without the need to use the merge() operation , without

the need to re-load data at the beginning of each request, and without the need to wrestle with

the LazyInitializationException or NonUniqueObjectException.

As with any optimistic transaction management, transaction isolation and consistency can be

achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.1 make it very easy

to use optimistic locking, by providing the @Version annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of

each transaction. This is sometimes the desired behavior. But very often, we would prefer that

all changes are held in memory and only written to the database when the conversation ends

successfully. This allows for truly atomic conversations. Unfortunately there is currently no simple,

usable and portable way to implement atomic conversations using EJB 3.1 persistence. However,

Hibernate provides this feature as a vendor extension to the FlushModeTypes defined by the

specification, and it is our expectation that other vendors will soon provide a similar extension.

4.4.3. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-managed

persistence context. This lets you use EL expressions in your query strings, safely and efficiently.

For example, this:

User user = em.createQuery("from User where username=#{user.username}")

 .getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")

Setting up the EntityManager

31

 .setParameter("username", user.getUsername())

 .getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!

 .getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

Warning

This only works with seam managed persistence contexts, not persistence

contexts that are injected with @PersistenceContext.

4.4.4. Setting up the EntityManager

Sometimes you may want to perform some additional setup on the EntityManager after it has

been created. For example, if you are using Hibernate you may want to set a filter. Seam

persistence fires a SeamManagedPersistenceContextCreated event when a Seam managed

persistence context is created. You can observe this event and perform any setup you require in

an observer method. For example:

public void setupEntityManager(@Observes SeamManagedPersistenceContextCreated event) {

 Session session = (Session)event.getEntityManager().getDelegate();

 session.enableFilter("myfilter");

}

32

Part III. Seam Servlet

xxxv

Introduction

The goal of the Seam Servlet module is to provide portable enhancements to the Servlet API.

Features include producers for implicit Servlet objects and HTTP request state, propagating

Servlet events to the CDI event bus, forwarding uncaught exceptions to the Seam Catch handler

chain and binding the BeanManager to a Servlet context attribute for convenient access.

xxxvi

Chapter 5.

37

Installation
To use the Seam Servlet module, you need to put the API and implementation JARs on the

classpath of your web application. Most of the features of Seam Servlet are enabled automatically

when it's added to the classpath. Some extra configuration, covered below, is required if you are

not using a Servlet 3-compliant container.

5.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam Servlet:

<dependency>

 <groupId>org.jboss.seam.servlet</groupId>

 <artifactId>seam-servlet</artifactId>

 <version>${seam.servlet.version}</version>

</dependency>

Tip

Substitute the expression ${seam.servlet.version} with the most recent or

appropriate version of Seam Servlet. Alternatively, you can create a Maven user-

defined property to satisfy this substitution so you can centrally manage the

version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.servlet</groupId>

 <artifactId>seam-servlet-api</artifactId>

 <version>${seam.servlet.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.seam.servlet</groupId>

 <artifactId>seam-servlet-impl</artifactId>

 <version>${seam.servlet.version}</version>

 <scope>runtime</scope>

http://maven.apache.org/
http://maven.apache.org/

Chapter 5. Installation

38

</dependency>

If you are deploying to a platform other than JBoss AS, you also need to add the JBoss Logging

implementation (a portable logging abstraction).

<dependency>

 <groupId>org.jboss.logging</groupId>

 <artifactId>jboss-logging</artifactId>

 <version>3.0.0.Beta4</version>

 <scope>compile</scope>

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

5.2. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

several Servlet components in your application's web.xml to activate the features provided by this

module:

<listener>

 <listener-class>org.jboss.seam.servlet.event.ServletEventBridgeListener</listener-class>

</listener>

<servlet>

 <servlet-name>Servlet Event Bridge Servlet</servlet-name>

 <servlet-class>org.jboss.seam.servlet.event.ServletEventBridgeServlet</servlet-class>

</servlet>

<filter>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.event.ServletEventBridgeFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter>

 <filter-name>Catch Exception Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.CatchExceptionFilter</filter-class>

Pre-Servlet 3.0 configuration

39

</filter>

<filter-mapping>

 <filter-name>Catch Exception Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

You're now ready to dive into the Servlet enhancements provided for you by the Seam Servlet

module!

40

Chapter 6.

41

Servlet event propagation
By including the Seam Servlet module in your web application (and performing the necessary

listener configuration for pre-Servlet 3.0 environments), the servlet lifecycle events will be

propagated to the CDI event bus so you can observe them using observer methods on CDI beans.

Seam Servlet also fires additional lifecycle events not offered by the Servlet API, such as when

the response is initialized and destroyed.

6.1. Servlet context lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletContextListener interface. The event propagated is a

javax.servlet.ServletContext (not a javax.servlet.ServletContextEvent, since the

ServletContext is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet context.

The servlet context lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletContextThe servlet context is initialized or destroyed

@Initialized javax.servlet.ServletContextThe servlet context is initialized

@Destroyed javax.servlet.ServletContextThe servlet context is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers on the observer method:

public void observeServletContext(@Observes ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized or destroyed");

}

If you are interested in only a particular lifecycle phase, use one of the provided qualifers:

public void observeServletContextInitialized(@Observes @Initialized ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized");

}

As with all CDI observers, the name of the method is insignificant.

These events are fired using a built-in servlet context listener. The CDI environment will be active

when these events are fired (including when Weld is used in a Servlet container). The listener is

Chapter 6. Servlet event prop...

42

configured to come before listeners in other extensions, so the initialized event is fired before other

servlet context listeners are notified and the destroyed event is fired after other servlet context

listeners are notified. However, this order cannot be not guaranteed if another extension library

is also configured to be ordered before others.

6.2. Application initialization

The servlet context initialized event described in the previous section provides an ideal opportunity

to perform startup logic as an alterative to using an EJB 3.1 startup singleton. Even better, you

can configure the bean to be destroyed immediately following the initialization routine by leaving

it as dependent scoped (dependent-scoped observers only live for the duration of the observe

method invocation).

Here's an example of entering seed data into the database in a development environment (as

indicated by a stereotype annotation named @Development).

@Stateless

@Development

public class SeedDataImporter {

 @PersistenceContext

 private EntityManager em;

 public void loadData(@Observes @Initialized ServletContext ctx) {

 em.persist(new Product(1, "Black Hole", 100.0));

 }

}

If you'd rather not tie yourself to the Servlet API, you can observe the

org.jboss.seam.servlet.WebApplication rather than the ServletContext. WebApplication

is a informational object provided by Seam Servlet that holds select information about the

ServletContext such as the application name, context path, server info and start time.

The web application lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) WebApplication The web application is initialized, started or

destroyed

@Initialized WebApplication The web application is initialized

@Started WebApplication The web application is started (ready)

@Destroyed WebApplication The web application is destroyed

Here's the equivalent of receiving the servlet context initialized event without coupling to the

Servlet API:

Servlet request lifecycle events

43

public void loadData(@Observes @Initialized WebApplication webapp) {

 System.out.println(webapp.getName() + " initialized at " + new Date(webapp.getStartTime()));

}

If you want to perform initialization as late as possible, after all other initialization of the application

is complete, you can observe the WebApplication event qualified with @Started.

public void onStartup(@Observes @Started WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " ready to handle requests");

}

The @Started event is fired in the init method of a built-in Servlet with a load-on-startup value

of 1000.

You can also use WebApplication with the @Destroyed qualifier to be notified when the web

application is stopped. This event is fired by the aforementioned built-in Servlet during it's destroy

method, so likely it should fire when the application is first released.

public void onShutdown(@Observes @Destroyed WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " no longer handling requests");

}

6.3. Servlet request lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletRequestListener interface. The event propagated is a

javax.servlet.ServletRequest (not a javax.servlet.ServletRequestEvent, since the

ServletRequest is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request and a secondary qualifier to filter events by servlet path (@Path).

The servlet request lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletRequestA servlet request is initialized or destroyed

@Initialized javax.servlet.ServletRequestA servlet request is initialized

@Destroyed javax.servlet.ServletRequestA servlet request is destroyed

Chapter 6. Servlet event prop...

44

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized

@Destroyed javax.servlet.http.HttpServletRequestAn HTTP servlet request is destroyed

@Path(PATH) javax.servlet.http.HttpServletRequestSelects HTTP request with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers on the observer:

public void observeRequest(@Observes ServletRequest request) {

 // Do something with the servlet "request" object

}

If you are interested in only a particular lifecycle phase, use a qualifer:

public void observeRequestInitialized(@Observes @Initialized ServletRequest request) {

 // Do something with the servlet "request" object upon initialization

}

You can also listen specifically for a javax.servlet.http.HttpServletRequest simply by

changing the expected event type.

public void observeRequestInitialized(@Observes @Initialized HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

}

You can associate an observer with a particular servlet request path (exact match, no leading

slash).

public void observeRequestInitialized(@Observes @Initialized @Path("offer") HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

 // only when servlet path /offer is requested

}

As with all CDI observers, the name of the method is insignificant.

Servlet response lifecycle events

45

These events are fired using a built-in servlet request listener. The listener is configured to

come before listeners in other extensions, so the initialized event is fired before other servlet

request listeners are notified and the destroyed event is fired after other servlet request listeners

are notified. However, this order cannot be not guaranteed if another extension library is also

configured to be ordered before others.

6.4. Servlet response lifecycle events

The Servlet API does not provide a listener for accessing the lifecycle of a response. Therefore,

Seam Servlet simulates a response lifecycle listener using CDI events. The event object fired is

a javax.servlet.ServletResponse.

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet response and a secondary qualifier to filter events by servlet path (@Path).

The servlet response lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletResponseA servlet response is initialized or destroyed

@Initialized javax.servlet.ServletResponseA servlet response is initialized

@Destroyed javax.servlet.ServletResponseA servlet response is destroyed

@Default (optional) javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized

@Destroyed javax.servlet.http.HttpServletResponseAn HTTP servlet response is destroyed

@Path(PATH) javax.servlet.http.HttpServletResponseSelects HTTP response with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeResponse(@Observes ServletResponse response) {

 // Do something with the servlet "response" object

}

If you are interested in only a particular one, use a qualifer

public void observeResponseInitialized(@Observes @Initialized ServletResponse response) {

 // Do something with the servlet "response" object upon initialization

}

Chapter 6. Servlet event prop...

46

You can also listen specifically for a javax.servlet.http.HttpServletResponse simply by

changing the expected event type.

public void observeResponseInitialized(@Observes @Initialized HttpServletResponse response) {

 // Do something with the HTTP servlet "response" object upon initialization

}

If you need access to the ServletRequest and/or the ServletContext objects at the same time,

you can simply add them as parameters to the observer methods. For instance, let's assume you

want to manually set the character encoding of the request and response.

public void setupEncoding(@Observes @Initialized ServletResponse res, ServletRequest req) throws Exception {

 if (this.override || req.getCharacterEncoding() == null) {

 req.setCharacterEncoding(encoding);

 if (override) {

 res.setCharacterEncoding(encoding);

 }

 }

}

As with all CDI observers, the name of the method is insignificant.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

6.5. Servlet request context lifecycle events

Rather than having to observe the request and response as separate events, or include the

request object as an parameter on a response observer, it would be convenient to be able to

observe them as a pair. That's why Seam Servlet fires an synthetic lifecycle event for the wrapper

type ServletRequestContext. The ServletRequestContext holds the ServletRequest and the

ServletResponse objects, and also provides access to the ServletContext.

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request context and a secondary qualifier to filter events by servlet path (@Path).

The servlet request context lifecycle events are documented in the table below.

Servlet request context lifecycle events

47

Qualifier Type Description

@Default (optional) ServletRequestContext A request is initialized or destroyed

@Initialized ServletRequestContext A request is initialized

@Destroyed ServletRequestContext A request is destroyed

@Default (optional) HttpServletRequestContextAn HTTP request is initialized or destroyed

@Initialized HttpServletRequestContextAn HTTP request is initialized

@Destroyed HttpServletRequestContextAn HTTP request is destroyed

@Path(PATH) HttpServletRequestContextSelects HTTP request with servlet path

matching PATH (drop leading slash)

Let's revisit the character encoding observer and examine how it can be simplified by this event:

public void setupEncoding(@Observes @Initialized ServletRequestContext ctx) throws Exception {

 if (this.override || ctx.getRequest().getCharacterEncoding() == null) {

 ctx.getRequest().setCharacterEncoding(encoding);

 if (override) {

 ctx.getResponse().setCharacterEncoding(encoding);

 }

 }

}

You can also observe the HttpServletRequestContext to be notified only on HTTP requests.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

Since observers that have access to the response can commit it, an

HttpServletRequestContext observer that receives the initialized event can effectively work as

a filter or even a Servlet. Let's consider a primitive welcome page filter that redirects visitors to

the start page:

public void redirectToStartPage(@Observes @Path("") @Initialized HttpServletRequestContext ctx)

 throws Exception {

 String startPage = ctx.getResponse().encodeRedirectURL(ctx.getContextPath() + "/start.jsf");

 ctx.getResponse().sendRedirect(startPage);

}

Chapter 6. Servlet event prop...

48

Now you never have to write a Servlet listener, Servlet or Filter again!

6.6. Session lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

session.

The session lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@Initialized javax.servlet.http.HttpSessionThe session is initialized

@Destroyed javax.servlet.http.HttpSessionThe session is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionInitialized(@Observes @Initialized HttpSession session) {

 // Do something with the "session" object upon being initialized

}

As with all CDI observers, the name of the method is insignificant.

6.7. Session activation events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionActivationListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

Session activation events

49

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@DidActivate and @WillPassivate) that can be used to observe a specific lifecycle phase of

the session.

The session activation events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@DidActivate javax.servlet.http.HttpSessionThe session is activated

@WillPassivate javax.servlet.http.HttpSessionThe session will passivate

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionCreated(@Observes @WillPassivate HttpSession session) {

 // Do something with the "session" object when it's being passivated

}

As with all CDI observers, the name of the method is insignificant.

50

Chapter 7.

51

Injectable Servlet objects and

request state
Seam Servlet provides producers that expose a wide-range of information available in a Servlet

environment (e.g., implicit objects such as ServletContext and HttpSession and state such as

HTTP request parameters) as beans. You access this information by injecting the beans produced.

This chapter documents the Servlet objects and request state that Seam Servlet exposes and

how to inject them.

7.1. @Inject @RequestParam

The @RequestParam qualifier allows you to inject an HTTP request parameter (i.e., URI query

string or URL form encoded parameter).

Assume a request URL of /book.jsp?id=1.

@Inject @RequestParam("id")

private String bookId;

The value of the specified request parameter is retrieved using the method

ServletRequest.getParameter(String). It is then produced as a dependent-scoped bean of

type String qualified @RequestParam.

The name of the request parameter to lookup is either the value of the @RequestParam annotation

or, if the annotation value is empty, the name of the injection point (e.g., the field name).

Here's the example from above modified so that the request parameter name is implied from the

field name:

@Inject @RequestParam

private String id;

If the request parameter is not present, and the injection point is annotated with @DefaultValue,

the value of the @DefaultValue annotation is returned instead.

Here's an example that provides a fall-back value:

@Inject @RequestParam @DefaultValue("25")

private String pageSize;

Chapter 7. Injectable Servlet...

52

If the request parameter is not present, and the @DefaultValue annotation is not present, a null

value is injected.

Warning

Since the bean produced is dependent-scoped, use of the @RequestParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @RequestParam("id")

private Instance<String> bookIdResolver;

...

String bookId = bookIdResolver.get();

7.2. @Inject @HeaderParam

Similar to the @RequestParam, you can use the @HeaderParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the user agent string of the client that issued

the request:

@Inject @HeaderParam("User-Agent")

private String userAgent;

The @HeaderParam also supports a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @HeaderParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @HeaderParam("User-Agent")

private Instance<String> userAgentResolver;

...

String userAgent = userAgentResolver.get();

@Inject ServletContext

53

7.3. @Inject ServletContext

The ServletContext is made available as an application-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject

private ServletContext context;

The producer obtains a reference to the ServletContext by observing the @Initialized

ServletContext event raised by this module's Servlet-to-CDI event bridge.

7.4. @Inject ServletRequest / HttpServletRequest

The ServletRequest is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletRequest. It can be injected safetly into any

CDI bean as follows:

@Inject

private ServletRequest request;

or, for HTTP requests

@Inject

private HttpServletRequest httpRequest;

The producer obtains a reference to the ServletRequest by observing the @Initialized

ServletRequest event raised by this module's Servlet-to-CDI event bridge.

7.5. @Inject ServletResponse / HttpServletResponse

The ServletResponse is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletResponse. It can be injected safetly into any

CDI bean as follows:

@Inject

private ServletResponse reponse;

or, for HTTP requests

Chapter 7. Injectable Servlet...

54

@Inject

private HttpServletResponse httpResponse;

The producer obtains a reference to the ServletResponse by observing the @Initialized

ServletResponse event raised by this module's Servlet-to-CDI event bridge.

7.6. @Inject HttpSession

The HttpSession is made available as a request-scoped bean. It can be injected safetly into any

CDI bean as follows:

@Inject

private HttpSession session;

Injecting the HttpSession will force the session to be created. The producer obtains a reference

to the HttpSession by calling the getSession() on the HttpServletRequest. The reference

to the HttpServletRequest is obtained by observing the @Initialized HttpServletRequest

event raised by this module's Servlet-to-CDI event bridge.

If you merely want to know whether the HttpSession exists, you can instead inject the

HttpSessionStatus bean that Seam Servlet provides.

7.7. @Inject HttpSessionStatus

The HttpSessionStatus is a request-scoped bean that provides access to the status of the

HttpSession. It can be injected safetly into any CDI bean as follows:

@Inject

private HttpSessionStatus sessionStatus;

You can invoke the isActive() method to check if the session has been created, and the

getSession() method to retrieve the HttpSession, which will be created if necessary.

if (!sessionStatus.isActive()) {

 System.out.println("Session does not exist. Creating it now.");

 HttpSession session = sessionStatus.get();

 assert session.isNew();

}

@Inject @ContextPath

55

7.8. @Inject @ContextPath

The context path is made available as a dependent-scoped bean. It can be injected safetly into

any request-scoped CDI bean as follows:

@Inject @ContextPath

private String contextPath;

You can safetly inject the context path into a bean with a wider scope using an instance provider:

@Inject @ContextPath

private Instance<String> contextPathProvider;

...

String contextPath = contextPathProvider.get();

The context path is retrieved from the HttpServletRequest.

7.9. @Inject List<Cookie>

The list of Cookie objects is made available as a request-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject

private List<Cookie> cookies;

The producer uses a reference to the request-scoped HttpServletRequest bean to retrieve the

Cookie intances by calling getCookie().

7.10. @Inject @CookieParam

Similar to the @RequestParam, you can use the @CookieParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the username of the last logged in user (assuming

you have previously stored it in a cookie):

@Inject @CookieParam

private String username;

If the type at the injection point is Cookie, the Cookie object will be injected instead of the value.

Chapter 7. Injectable Servlet...

56

@Inject @CookieParam

private Cookie username;

The @CookieParam also support a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @CookieParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @CookieParam("username")

private Instance<String> usernameResolver;

...

String username = usernameResolver.get();

7.11. @Inject @ServerInfo

The server info string is made available as a dependent-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject @ServerInfo

private String serverInfo;

The context path is retrieved from the ServletContext.

7.12. @Inject @Principal

The security Principal for the current user is made available by CDI as an injectable resource

(not provided by Seam Servlet). It can be injected safetly into any CDI bean as follows:

@Inject

private Principal principal;

Chapter 8.

57

Exception handling: Seam Catch

integration
Seam Catch provides a simple, yet robust foundation for modules and/or applications to establish

a customized exception handling process. Seam Servlet ties into the exception handling model by

forwarding all unhandled Servlet exceptions to Catch so that they can be handled in a centralized,

extensible and uniform manner.

8.1. Background

The Servlet API is extremely weak when it comes to handling exceptions. You are limited to

handling exceptions using the built-in, declarative controls provided in web.xml. Those controls

give you two options:

• send an HTTP status code

• forward to an error page (servlet path)

To make matters more painful, you are required to configure these exception mappings in web.xml.

It's really a dinosaur left over from the past. In general, the Servlet specification seems to be pretty

non-chalant about exceptions, telling you to "handle them appropriately." But how?

That's where the Catch integration in Seam Servlet comes in. The Catch integration traps all

unhandled exceptions (those that bubble outside of the Servlet and any filters) and forwards

them on to Catch. Exception handlers are free to handle the exception anyway they like, either

programmatically or via a declarative mechanism.

If a exception handler registered with Catch handles the exception, then the integration closes

the response without raising any additional exceptions. If the exception is still unhandled after

Catch finishes processing it, then the integration allows it to pass through to the normal Servlet

exception handler.

8.2. Defining a exception handler for a web request

You can define an exception handler for a web request using the normal syntax of a Catch

exception handler. Let's catch any exception that bubbles to the top and respond with a 500 error.

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Catch!");

 }

Chapter 8. Exception handling...

58

}

That's all there is to it! If you only want this handler to be used for exceptions raised by a web

request (excluding web service requests like JAX-RS), then you can add the @WebRequest qualifier

to the handler:

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles @WebRequest

 CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Catch!");

 }

}

Note

Currently, @WebRequest is required to catch exceptions initiated by the Servlet

integration because of a bug in Catch.

Let's consider another example. When the custom AccountNotFound exception is thrown, we'll

send a 404 response using this handler.

void handleAccountNotFound(@Handles @WebRequest

 CaughtException<AccountNotFound> caught, HttpServletResponse response) {

 response.sendError(404, "Account not found: " + caught.getException().getAccountId());

}

In a future release, Seam Servlet will include annotations that can be used to configure these

responses declaratively.

Chapter 9.

59

Retrieving the BeanManager from

the servlet context
Typically, the BeanManager is obtained using some form of injection. However, there are scenarios

where the code being executed is outside of a managed bean environment and you need a way

in. In these cases, it's necessary to lookup the BeanManager from a well-known location.

Warning

In general, you should isolate external BeanManager lookups to integration code.

The standard mechanism for locating the BeanManager from outside a managed bean

environment, as defined by the JSR-299 specification, is to look it up in JNDI. However, JNDI

isn't the most convenient technology to depend on when you consider all popular deployment

environments (think Tomcat and Jetty).

As a simpler alternative, Seam Servlet binds the BeanManager to the following servlet context

attribute (whose name is equivalent to the fully-qualified class name of the BeanManager interface:

javax.enterprise.inject.spi.BeanManager

Seam Servlet also includes a provider that retrieves the BeanManager from this location. Anytime

the Seam Servlet module needs a reference to the BeanManager, it uses this lookup mechanism to

ensure that the module works consistently across deployment environments, especially in Servlet

containers.

You can retrieve the BeanManager in the same way. If you want to hide the lookup, you

can extend the BeanManagerAware class and retrieve the BeanManager from the the method

getBeanManager(), as shown here:

public class NonManagedClass extends BeanManagerAware {

 public void fireEvent() {

 getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Alternatively, you can retrieve the BeanManager from the method getBeanManager() on the

BeanManagerLocator class, as shown here:

Chapter 9. Retrieving the Bea...

60

public class NonManagedClass {

 public void fireEvent() {

 new BeanManagerLocator().getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Tip

The best way to transfer execution of the current context to the managed bean

environment is to send an event to an observer bean, as this example above

suggests.

Under the covers, these classes look for the BeanManager in the servlet context attribute covered

in this section, amongst other available strategies. Refer to the BeanManager provider chapter of

the Seam Solder reference guide for information on how to leverage the servlet context attribute

provider to access the BeanManager from outside the CDI environment.

Part IV. Seam Security

Chapter 10.

63

Security - Introduction

10.1. Overview

The Seam Security module provides a number of useful features for securing your Java EE

application, which are briefly summarised in the following sections. The rest of the chapters

contained in this documentation each focus on one major aspect of each of the following features.

10.1.1. Authentication

Authentication is the act of establishing, or confirming, the identity of a user. In many applications

a user confirms their identity by providing a username and password (also known as their

credentials). Seam Security allows the developer to control how users are authenticated, by

providing a flexible Authentication API that can be easily configured to allow authentication against

any number of sources, including but not limited to databases, LDAP directory servers or some

other external authentication service.

If none of the built-in authentication providers are suitable for your application, then it is also

possible to write your own custom Authenticator implementation.

10.1.2. Identity Management

Identity Management is a set of useful APIs for managing the users, groups and roles within your

application. The identity management features in Seam are provided by PicketLink IDM, and allow

you to manage users stored in a variety of backend security stores, such as in a database or

LDAP directory.

10.1.3. External Authentication

Seam Security contains an external authentication sub-module that provides a number of features

for authenticating your application users against external authentication services, such as OpenID

and SAML.

10.1.4. Authorization

While authentication is used to confirm the identity of the user, authorization is used to control

which actions a user may perform within your application. Authorization can be roughly divided

into two categories; coarse-grained and fine-grained. An example of a coarse-grained restriction is

allowing only members of a certain group or role to perform a privileged operation. A fine-grained

restriction on the other hand may allow only a certain individual user to perform a specific action

on a specific object within your application.

There are also rule-based permissions, which bridge the gap between fine-grained and coarse-

grained restrictions. These permissions may be used to determine a user's privileges based on

any type of business logic.

Chapter 10. Security - Introd...

64

10.2. Configuration

10.2.1. Maven Dependencies

The Maven artifacts for all Seam modules are hosted within the JBoss Maven repository. Please

refer to the Maven Getting Started Guide [http://community.jboss.org/wiki/MavenGettingStarted-

Users] for information about configuring your Maven installation to use the JBoss repository.

To use Seam Security within your Maven-based project, it is advised that you import the Seam

BOM (Bill of Materials) which declares the versions for all Seam modules. First declare a property

value for ${seam.version} as follows:

<properties>

 <seam.version>3.0.0.Final</seam.version>

</properties>

You can check the JBoss Maven Repository [https://repository.jboss.org/nexus/content/groups/

public/org/jboss/seam/seam-bom/] directly to determine the latest version of the Seam BOM to

use.

Now add the following lines to the list of dependencies within the dependencyManagement section

of your project's pom.xml file:

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>seam-bom</artifactId>

 <version>${seam.version}</version>

 <type>pom</type>

 <scope>import</scope>

</dependency>

Once that is done, add the following dependency (no version is required as it comes from seam-

bom):

<dependency>

 <groupId>org.jboss.seam.security</groupId>

 <artifactId>seam-security</artifactId>

</dependency>

It is also possible to import the security module as separate API and implementation

modules, for situations where you may not want to use the default implementation (such as

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/

Third Party Dependencies

65

testing environments where you may wish to substitute mock objects instead of the actual

implementation). To do this, the following dependencies may be declared instead:

<dependency>

 <groupId>org.jboss.seam.security</groupId>

 <artifactId>seam-security-api</artifactId>

</dependency>

<dependency>

 <groupId>org.jboss.seam.security</groupId>

 <artifactId>seam-security-impl</artifactId>

</dependency>

If you wish to use the external authentication module in your application to allow authentication

using OpenID or SAML, then add the following dependency also:

<dependency>

 <groupId>org.jboss.seam.security</groupId>

 <artifactId>seam-security-external</artifactId>

</dependency>

10.2.2. Third Party Dependencies

66

Chapter 11.

67

Security - Authentication

11.1. Basic Concepts

The majority of the Security API is centered around the Identity bean. This bean represents

the identity of the current user, the default implementation of which is a session-scoped, named

bean. This means that once logged in, a user's identity is scoped to the lifecycle of their current

session. The two most important methods that you need to know about at this stage in regard to

authentication are login() and logout(), which as the names suggest are used to log the user

in and out, respectively.

As the default implementation of the Identity bean is named, it may be referenced via an EL

expression, or be used as the target of an EL action. Take the following JSF code snippet for

example:

 <h:commandButton action="#{identity.login}" value="Log in"/>

This JSF command button would typically be used in a login form (which would also contain inputs

for the user's username and password) that allows the user to log into the application.

Note

The bean type of the Identity bean is org.jboss.seam.security.Identity.

This interface is what you should inject if you need to access the

Identity bean from your own beans. The default implementation is

org.jboss.seam.security.IdentityImpl.

The other important bean to know about right now is the Credentials bean. Its' purpose is to

hold the user's credentials (such as their username and password) before the user logs in. The

default implementation of the Credentials bean is also a session-scoped, named bean (just like

the Identity bean).

The Credentials bean has two properties, username and credential that are used to hold the

current user's username and credential (e.g. a password) values. The default implementation of

the Credentials bean provides an additional convenience property called password, which may

be used in lieu of the credential property when a simple password is required.

Note

The bean type of the Credential bean is

org.jboss.seam.security.Credentials. The default implementation for this

Chapter 11. Security - Authen...

68

bean type is org.jboss.seam.security.CredentialsImpl. Also, as credentials

may come in many forms (such as passwords, biometric data such as that from a

fingerprint reader, etc) the credential property of the Credentials bean must be

able to support each variation, not just passwords. To allow for this, any credential

that implements the org.picketlink.idm.api.Credential interface is a valid

value for the credential property.

11.2. Built-in Authenticators

The Seam Security module provides the following built-in Authenticator implementations:

• org.jboss.seam.security.jaas.JaasAuthenticator - used to authenticate against a JAAS

configuration defined by the container.

• org.jboss.seam.security.management.IdmAuthenticator - used to authenticate against

an Identity Store using the Identity Management API. See the Identity Management chapter for

details on how to configure this authenticator.

• org.jboss.seam.security.external.openid.OpenIdAuthenticator (provided by the

external module) - used to authenticate against an external OpenID provider, such as Google,

Yahoo, etc. See the External Authentication chapter for details on how to configure this

authenticator.

11.3. Which Authenticator will Seam use?

The Identity bean has an authenticatorClass property, which if set will be used to determine

which Authenticator bean implementation to invoke during the authentication process. This

property may be set by configuring it with a predefined authenticator type, for example by using the

Seam Config module. The following XML configuration example shows how you would configure

the Identity bean to use the com.acme.MyCustomerAuthenticator bean for authentication:

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:security="urn:java:org.jboss.seam.security"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/

beans_1_0.xsd">

 <security:IdentityImpl>

 <s:modifies/>

 <security:authenticatorClass>com.acme.MyCustomAuthenticator</

security:authenticatorClass>

 </security:IdentityImpl>

Writing a custom Authenticator

69

</beans>

Alternatively, if you wish to be able to select the Authenticator to authenticate with by specifying

the name of the Authenticator implementation (i.e. for those annotated with the @Named

annotation), the authenticatorName property may be set instead. This might be useful if you

wish to offer your users the choice of how they would like to authenticate, whether it be through

a local user database, an external OpenID provider, or some other method.

The following example shows how you might configure the authenticatorName property with the

Seam Config module:

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:security="urn:java:org.jboss.seam.security"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/

beans_1_0.xsd">

 <security:IdentityImpl>

 <s:modifies/>

 <security:authenticatorName>openIdAuthenticator</security:authenticatorName>

 </security:IdentityImpl>

</beans>

If neither the authenticatorClass or authenticatorName properties are set, then the

authentication process with automatically use a custom Authenticator implementation, if the

developer has provided one (and only one) within their application.

If neither property is set, and the user has not provided a custom Authenticator, then the

authentication process will fall back to the Identity Management API to attempt to authenticate

the user.

11.4. Writing a custom Authenticator

All Authenticator implementations must implement the

org.jboss.seam.security.Authenticator interface. This interface defines the following

methods:

public interface Authenticator {

 void authenticate();

 void postAuthenticate();

 User getUser();

 AuthenticationStatus getStatus();

Chapter 11. Security - Authen...

70

}

The authenticate() method is invoked during the authentication process and is responsible for

performing the work necessary to validate whether the current user is who they claim to be.

The postAuthenticate() method is invoked after the authentication process has already

completed, and may be used to perform any post-authentication business logic, such as setting

session variables, logging, auditing, etc.

The getUser() method should return an instance of org.picketlink.idm.api.User, which is

generally determined during the authentication process.

The getStatus() method must return the current status of authentication, represented by

the AuthenticationStatus enum. Possible values are SUCCESS, FAILURE and DEFERRED. The

DEFERRED value should be used for special circumstances, such as asynchronous authentication

as a result of authenticating against a third party as is the case with OpenID, etc.

The easiest way to get started writing your own custom authenticator is to extend the

org.jboss.seam.security.BaseAuthenticator abstract class. This class implements the

getUser() and getStatus() methods for you, and provides setUser() and setStatus()

methods for setting both the user and status values.

To access the user's credentials from within the authenticate() method, you can inject the

Credentials bean like so:

@Inject Credentials credentials;

Once the credentials are injected, the authenticate() method is responsible for checking that

the provided credentials are valid. Here is a complete example:

public class SimpleAuthenticator extends BaseAuthenticator implements Authenticator {

 @Inject Credentials credentials;

 @Override

 public void authenticate() {

 if ("demo".equals(credentials.getUsername()) &&

 credentials.getCredential() instanceof PasswordCredential &&

 "demo".equals(((PasswordCredential) credentials.getCredential()).getValue())) {

 setStatus(AuthenticationStatus.SUCCESS);

 setUser(new SimpleUser("demo"));

 }

 }

}

Writing a custom Authenticator

71

Note

The above code was taken from the simple authentication example, included in

the Seam Security distribution.

In the above code, the authenticate() method checks that the user has provided a username of

demo and a password of demo. If so, the authentication is deemed as successful and the status is

set to AuthenticationStatus.SUCCESS, and a new SimpleUser instance is created to represent

the authenticated user.

Warning

The Authenticator implementation must return a non-null value when getUser()

is invoked if authentication is successful. Failure to return a non-null value will result

in an AuthenticationException being thrown.

72

Chapter 12.

73

Security - Identity Management

12.1. TO DO

This chapter coming soon.

74

Chapter 13.

75

Security - External Authentication

13.1. TO DO

This chapter coming soon.

76

Chapter 14.

77

Security - Authorization

14.1. TO DO

This chapter coming soon.

78

Part V. Seam Faces

lxxxi

Introduction

The goal of Seam Faces is to provide a fully integrated CDI programming model to the JavaServer

Faces (JSF) 2.0 web-framework. With features such as observing Events, providing injection

support for life-cycle artifacts (FacesContext, NavigationHandler,) and more.

lxxxii

Chapter 15.

83

Installation
To use the Seam Faces module, you need to put the API and implementation JARs on the

classpath of your web application. Most of the features of Seam Faces are enabled automatically

when it's added to the classpath. Some extra configuration, covered below, is required if you are

not using a Servlet 3-compliant container.

15.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam Faces:

<dependency>

 <groupId>org.jboss.seam.faces</groupId>

 <artifactId>seam-faces</artifactId>

 <version>${seam.faces.version}</version>

</dependency>

Tip

Substitute the expression ${seam.faces.version} with the most recent or

appropriate version of Seam Faces. Alternatively, you can create a Maven user-

defined property to satisfy this substitution so you can centrally manage the

version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.faces</groupId>

 <artifactId>seam-faces-api</artifactId>

 <version>${seam.faces.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.seam.faces</groupId>

 <artifactId>seam-faces-impl</artifactId>

 <version>${seam.faces.version}</version>

 <scope>runtime</scope>

http://maven.apache.org/
http://maven.apache.org/

Chapter 15. Installation

84

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

15.2. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

several Servlet components in your application's web.xml to activate the features provided by this

module:

<listener>

 <listener-class>org.jboss.seam.faces.beanManager.BeanManagerServletContextListener</

listener-class>

</listener>

You're now ready to dive into the JSF enhancements provided for you by the Seam Faces module!

Chapter 16.

85

Faces Events Propagation
When the seam-faces module is installed in a web application, JSF events will automatically be

propagated via the CDI event-bridge, enabling managed beans to easily observe all Faces events.

There are two categories of events: JSF phase events, and JSF system events. Phase events are

triggered as JSF processes each lifecycle phase, while system events are raised at more specific,

fine-grained events during request processing.

16.1. JSF Phase events

A JSF phase listener is a class that implements javax.faces.event.PhaseListener and is

registered in the web application's faces-config.xml file. By implementing the methods of the

interfaces, the user can observe events fired before or after any of the six lifecycle phases of a

JSF request: restore view, apply request values, process validations, update model

values, invoke application or render view.

16.1.1. Seam Faces Phase events

What Seam provides is propagation of these Phase events to the CDI event bus; therefore, you

can observe events using normal CDI @Observes methods. Bringing the events to CDI beans

removes the need to register phase listener classes via XML, and gives the added benefit of

injection, alternatives, interceptors and access to all other features of CDI.

Creating an observer method in CDI is simple; just provide a method in a managed bean that is

annotated with @Observes. Each observer method must accept at least one method parameter:

the event object; the type of this object determines the type of event being observed. Additional

parameters may also be specified, and their values will be automatically injected by the container

as per the CDI specification.

In this case, the event object passed along from the phase listener is a

javax.faces.event.PhaseEvent. The following example observes all Phase events.

public void observeAll(@Observes PhaseEvent e)

{

 // Do something with the event object

}

Events can be further filtered by adding Qualifiers. The name of the method itself is not significant.

(See the CDI Reference Guide for more information on events and observing.)

Since the example above simply processes all events, however, it might be appropriate to filter

out some events that we aren't interested in. As stated earlier, there are six phases in the JSF

Chapter 16. Faces Events Prop...

86

lifecycle, and an event is fired before and after each, for a total of 12 events. The @Before and

@After "temporal" qualifiers can be used to observe events occurring only before or only after a

Phase event. For example:

public void observeBefore(@Observes @Before PhaseEvent e)

{

 // Do something with the "before" event object

}

public void observeAfter(@Observes @After PhaseEvent e)

{

 // Do something with the "after" event object

}

If we are interested in both the "before" and "after" event of a particular phase, we can limit them

by adding a "lifecycle" qualifier that corresponds to the phase:

public void observeRenderResponse(@Observes @RenderResponse PhaseEvent e)

{

 // Do something with the "render response" event object

}

By combining a temporal and lifecycle qualifier, we can achieve the most specific qualification:

public void observeBeforeRenderResponse(@Observes @Before @RenderResponse PhaseEvent e)

{

 // Do something with the "before render response" event object

}

16.1.2. Phase events listing

This is the full list of temporal and lifecycle qualifiers

Qualifier Type Description

@Before temporal Qualifies events before lifecycle phases

@After temporal Qualifies events after lifecycle phases

@RestoreView lifecycle Qualifies events from the "restore view" phase

JSF system events

87

Qualifier Type Description

@ApplyRequestValueslifecycle Qualifies events from the "apply request values" phase

@ProcessValidationslifecycle Qualifies events from the "process validations" phase

@UpdateModelValueslifecycle Qualifies events from the "update model values" phase

@InvokeApplicationlifecycle Qualifies events from the "invoke application" phase

@RenderResponselifecycle Qualifies events from the "render response" phase

The event object is always a javax.faces.event.PhaseEvent and according to the general CDI

principle, filtering is tightened by adding qualifiers and loosened by omitting them.

16.2. JSF system events

Similar to JSF Phase Events, System Events take place when specific events occur within the

JSF life-cycle. Seam Faces provides a bridge for all JSF System Events, and propagates these

events to CDI.

16.2.1. Seam Faces System events

This is an example of observing a Faces system event:

public void observesThisEvent(@Observes ExceptionQueuedEvent e)

{

 // Do something with the event object

}

16.2.2. System events listing

Since all JSF system event objects are distinct, no qualifiers are needed to observe them. The

following events may be observed:

Event object Context Description

SystemEvent all All events

ComponentSystemEvent component All component events

PostAddToViewEvent component After a component was added to the view

PostConstructViewMapEvent component After a view map was created

PostRestoreStateEvent component After a component has its state restored

PostValidateEvent component After a component has been validated

PreDestroyViewMapEvent component Before a view map has been restored

Chapter 16. Faces Events Prop...

88

Event object Context Description

PreRemoveFromViewEvent component Before a component has been removed from

the view

PreRenderComponentEvent component After a component has been rendered

PreRenderViewEvent component Before a view has been rendered

PreValidateEvent component Before a component has been validated

ExceptionQueuedEvent system When an exception has been queued

PostConstructApplicationEvent system After the application has been constructed

PostConstructCustomScopeEvent system After a custom scope has been constructed

PreDestroyApplicationEvent system Before the application is destroyed

PreDestroyCustomScopeEvent system Before a custom scope is destroyed

16.2.3. Component system events

There is one qualifier, @Component that can be used with component events by

specifying the component ID. Note that view-centric component events PreRenderViewEvent,

PostConstructViewMapEvent and PreDestroyViewMapEvent do not fire with the @Component

qualifier.

public void observePrePasswordValidation(@Observes @Component("form:password") PreValidateEvent e)

{

// Do something with the "before password is validated" event object

}

Global system events are observer without the component qualifier

public void observeApplicationConstructed(@Observes PostConstructApplicationEvent e)

{

// Do something with the "after application is constructed" event object

}

The name of the observing method is not relevant; observers are defined solely via annotations.

Chapter 17.

89

Faces Scoping Support
JSF 2.0 introduced the concept of the Flash object and the @ViewScope; however, JSF 2.0 did not

provide annotations accessing the Flash, and CDI does not support the non-standard ViewScope

by default. The Seam Faces module does both, in addition to adding a new @RenderScoped

context. Beans stored in the Render Scope will survive until the next page is rendered. For the

most part, beans stored in the ViewScope will survive as long as a user remains on the same

page, and data in the JSF 2 Flash will survive as long as the flash survives).

17.1. @RenderScoped

Beans placed in the @RenderScoped context are effectively scoped to, and live through but not

after, "the next Render Response phase".

You should think about using the Render scope if you want to store information that will be relevant

to the user even after an action sends them to another view. For instance, when a user submits

a form, you may want to invoke JSF navigation and redirect the user to another page in the site;

if you needed to store a message to be displayed when the next page is rendered -but no longer-

you would store that message in the RenderContext. Fortunately, Seam provides RenderScoped

messages by default, via the Seam Messages API.

To place a bean in the Render scope, use the @javax.faces.bean.RenderScoped annotation.

This means that your bean will be stored in the org.jboss.seam.context.RenderContext object

until the next page is rendered, at which point the RenderScope will be cleared.

@RenderScoped

public class Bean {

 // ...

}

@RenderScoped beans are destroyed when the next JSF RENDER_RESPONSE phase ends,

however, if a user has multiple browser windows open for the same user-session, multiple

RenderContexts will be created, one for each incoming request. Seam Faces keeps track of which

RenderContext belongs to each request, and will restore/destroy them appropriately. If there is

more than one active RenderContext at the time when you issue a redirect, you will see a URL

parameter "?fid=..." appended to the end of the outbound URL, this is to ensure the correct context

is restored when the request is received by the server, and will not be present if only one context

is active.

Caution

If you want to use the Render Scope with custom navigation in your application, be

sure to call ExternalContext.encodeRedirectURL(String url, Map<String,

Chapter 17. Faces Scoping Support

90

List<String>> queryParams) on any URL before using it to issue a redirect.

This will ensure that the RenderContext ID is properly appended to the URL,

enabling the RenderContext to be restored on the subsequent request. This is

only necessary if issuing a Servlet Redirect; for the cases where Faces non-

redirecting navigation is used, no URL parameter is necessary, and the context

will be destroyed at the end of the current request.

17.2. @Inject javax.faces.contet.Flash flash

JSF 2 does not provide proper system events to create a functional @FlashScoped

context annotation integrated with CDI, so until a workaround can be found, or JSF 2 is

enhanced, you can access the Flash via the @Inject annotation. For more information on

the JSF Flash [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/

Flash.html], read this API doc [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/

javax/faces/context/Flash.html].

public class Bean {

 @Inject private Flash flash;

 // ...

}

17.3. @ViewScoped

To scope a bean to the View, use the @javax.faces.bean.ViewScoped annotation. This means

that your bean will be stored in the javax.faces.component.UIViewRoot object associated with

the view in which it was accessed. Each JSF view (faces-page) will store its own instance of the

bean, just like each HttpServletRequest has its own instance of a @RequestScoped bean.

@ViewScoped

public class Bean {

 // ...

}

Caution

@ViewScoped beans are destroyed when the JSF UIViewRoot object is destroyed.

This means that the life-span of @ViewScoped beans is dependent on the

javax.faces.STATE_SAVING_METHOD employed by the application itself, but in

https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html

@ViewScoped

91

general one can assume that the bean will live as long as the user remains on the

same page.

92

Chapter 18.

93

Messages API
While JSF already has the concept of adding FacesMessage objects to the FacesContext in order

for those messages to be displayed to the user when the view is rendered, Seam Faces takes

this concept one step farther with the Messages API provided by the Seam International module.

Messages are template-based, and can be added directly via the code, or templates can be loaded

from resource bundles using a BundleKey.

18.1. Adding Messages

Consistent with the CDI programming model, the Messages API is provided via

bean injection. To add a new message to be displayed to the user, inject

org.jboss.seam.international.status.Messages and call one of the Message factory

methods. As mentioned earlier, factory methods accept either a plain-text template, or a

BundleKey, specifying the name of the resource bundle to use, and the name of the key to use

as a message template.

@Named

public class Example

{

 @Inject

 Messages messages;

 public String action()

 {

 messages.info("This is an {0} message, and will be displayed to {1}.", "INFO", "the user");

 return null;

 }

}

Adds the message: "This is an INFO message, and will be displayed to the user."

Notice how {0}, {1} ... {N} are replaced with the given parameters, and may be used more than

once in a given template. In the case where a BundleKey is used to look up a message template,

default text may be provided in case the resource cannot be loaded; default text uses the same

parameters supplied for the bundle template. If no default text is supplied, a String representation

of the BundleKey and its parameters will be displayed instead.

public String action()

{

 messages.warn(new BundleKey("org.jboss.seam.faces.exampleBundle", "messageKey"), "unique");

 return null;

Chapter 18. Messages API

94

}

classpath:/org/jboss/seam/faces/exampleBundle.properties

messageKey=This {0} parameter is not so {0}, see?

Adds the message: "This unique parameter is not so unique, see?"

18.2. Displaying pending messages

It's great when messages are added to the internal buffer, but it doesn't do much good unless the

user actually sees them. In order to display messages, simply use the <h:messages /> tag from

JSF. Any pending messages will be displayed on the page just like normal FacesMessages.

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:s="http://jboss.org/seam/faces"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h1>Welcome to Seam Faces!</h1>

 <p>All Messages and FacesMessages will be displayed below:</p>

 <h:messages />

</html>

Messages added to the internal buffer via the Messages API are stored in a central location during

each request, and may be displayed by any view-technology that supports the Messages API.

Seam Faces provides an integration that makes all of this automatic for you as a developer, and in

addition, messages will automatically survive JSF navigation and redirects, as long as the redirect

URL was encoded using ExternalContext.encodeRedirectURL(...). If you are using JSF-

compliant navigation, all of this is handled for you.

Chapter 19.

95

Faces Artifact Injection
One of the goals of the Seam Faces Module is to make support for CDI a more ubiquitous

experience, by allowing injection of JSF Lifecycle Artifacts into managed beans, and also by

providing support for @Inject where it would not normally be available. This section describes the

additional CDI integration for faces artifact injection

19.1. @*Scoped and @Inject in Validators and

Converters

Frequently when performing complex validation, it is necessary to access data stored in a

database or in other contextual objects within the application itself. JSF does not, by default,

provide support for @Inject in Converters and Validators, but Seam Faces makes this available.

In addition to injection, it is sometimes convenient to be able to scope a validator just as we would

scope a managed bean; this feature is also added by Seam Faces.

Notice how the Validator below is actually @RequestScoped, in addition to using injection to obtain

an instance of the UserService with which to perform an email database lookup.

@RequestScoped

@FacesValidator("emailAvailabilityValidator")

public class EmailAvailabilityValidator implements Validator

{

 @Inject

 UserService us;

 @Override

 public void validate(final FacesContext context, final UIComponent component, final Object value)

 throws ValidatorException

 {

 String field = value.toString();

 try

 {

 us.getUserByEmail(field);

 FacesMessage msg = new FacesMessage("That email address is unavailable");

 throw new ValidatorException(msg);

 }

 catch (NoSuchObjectException e)

 {

 }

 }

}

Chapter 19. Faces Artifact In...

96

Warning

We recommend to always use @RequestScoped converters/validators unless a

longer scope is required, in which case you should use the appropriate scope

annotation, but it should not be omitted.

Because of the way JSF persists Validators between requests, particularly when

using @Inject inside a validator or converter, forgetting to use a @*Scoped

annotation could in fact cause @Inject'ed objects to become null.

An example Converter using @Inject

@SessionScoped

@FacesConverter("authorConverter")

public class UserConverter implements Converter

{

 @Inject

 private UserService service;

 @PostConstruct

 public void setup()

 {

 System.out.println("UserConverter started up");

 }

 @PreDestroy

 public void shutdown()

 {

 System.out.println("UserConverter shutting down");

 }

 @Override

 public Object getAsObject(final FacesContext arg0, final UIComponent arg1, final String userName)

 {

 // ...

 return service.getUserByName(userName);

 }

 @Override

 public String getAsString(final FacesContext context, final UIComponent comp, final Object user)

 {

 // ...

 return ((User)user).getUsername();

@Inject'able Faces Artifacts

97

 }

}

19.2. @Inject'able Faces Artifacts

This is the list of inject-able artifacts provided through Seam Faces. These objects would normally

require static method-calls in order to obtain handles, but Seam Faces attempts to break that

coupling by providing @Inject'able artifacts. This means it will be possible to more easily provide

mocked objects during unit and integration testing, and also simplify bean code in the application

itself.

Artifact Class Example

javax.faces.context.FacesContext
public class Bean {

 @Inject FacesContext context;

}

javax.faces.context.ExternalContext
public class Bean {

 @Inject ExternalContext context;

}

javax.faces.application.NavigationHandler
public class Bean {

 @Inject NavigationHandler handler;

}

javax.faces.context.Flash
public class Bean {

 @Inject Flash flash;

}

98

Chapter 20.

99

Seam Faces Components
While Seam Faces does not provide layout components or other UI-design related features, it

does provide functional components designed to make developing JSF applications easier, more

functional, more scalable, and more practical.

For layout and design components, take a look at RichFaces [http://jboss.org/richfaces], a UI

component library specifically tailored for easy, rich web-interfaces.

20.1. Introduction

In order to use the Seam Faces components, you must first add the namespace to your view file,

just like the standard JSF component libraries.

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:s="http://jboss.org/seam/faces"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h1>Welcome to Seam Faces!</h1>

 <p>

 This view imports the Seam Faces component library.

 Read on to discover what components it provides.

 </p>

</html>

Tip

All Seam Faces components use the following namespace: http://jboss.org/

seam/faces

20.2. <s:validateForm>

On many occasions you might find yourself needing to compare the values of multiple input fields

on a given page submit: confirming a password; re-enter password; address lookups; and so on.

Performing cross-field form validation is simple - just place the <s:validateForm> component in

the form you wish to validate, then attach your custom Validator.

<h:form id="locationForm">

http://jboss.org/richfaces
http://jboss.org/richfaces

Chapter 20. Seam Faces Components

100

 <h:inputText id="city" value="#{bean.city}" />

 <h:inputText id="state" value="#{bean.state}" />

 <h:inputText id="zip" value="#{bean.zip}" />

 <h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

 <s:validateForm validatorId="locationValidator" />

</h:form>

The corresponding Validator for the example above would look something like this:

@FacesValidator("locationValidator")

public class LocationValidator implements Validator

{

 @Inject

 Directory directory;

 @Inject

 @InputField

 private Object city;

 @Inject

 @InputField

 private Object state;

 @Inject

 @InputField

 private ZipCode zip;

 @Override

 public void validate(final FacesContext context, final UIComponent comp, final Object values)

 throws ValidatorException

 {

 if(!directory.exists(city, state, zip))

 {

 throw new ValidatorException(

 new FacesMessage("Sorry, that location is not in our database. Please try again."));

 }

 }

}

<s:validateForm>

101

Tip

You may inject the correct type directly.

@Inject

@InputField

private ZipCode zip;

Notice that the IDs of the inputText components match the IDs of your Validator @InputFields;

each @Inject @InputField member will be injected with the value of the form input field who's ID

matches the name of the variable.

In other words - the name of the @InputField annotated member variable will automatically be

matched to the ID of the input component, unless overridden by using a field ID alias (see below.)

<h:form id="locationForm">

 <h:inputText id="cityId" value="#{bean.city}" />

 <h:inputText id="stateId" value="#{bean.state}" />

 <h:inputText id="zip" value="#{bean.zip}" />

 <h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

 <s:validateForm fields="city=cityId state=stateId" validatorId="locationValidator" />

</h:form>

Notice that "zip" will still be referenced normally; you need only specify aliases for fields that differ

in name from the Validator @InputFields.

Tip

Using @InputField("customID") with an ID override can also be used to specify

a custom ID, instead of using the default: the name of the field. This gives you the

ability to change the name of the private field, without worrying about changing the

name of input fields in the View itself.

@Inject

@InputField("state")

private String sectorTwo;

Chapter 20. Seam Faces Components

102

20.3. <s:viewAction>

The view action component (UIViewAction) is an ActionSource2 UIComponent that specifies an

application-specific command (or action), using using an EL method expression, to be invoked

during one of the JSF lifecycle phases proceeding Render Response (i.e., view rendering).

View actions provide a lightweight front-controller for JSF, allowing the application to

accommodate scenarios such as registration confirmation links, security and sanity checking a

request (e.g., ensuring the resource can be loaded). They also allow JSF to work alongside action-

oriented frameworks, and existing applications that use them.

20.3.1. Motivation

JSF employs an event-oriented architecture. Listeners are invoked in response to user-interface

events, such as the user clicking on a button or changing the value of a form input. Unfortunately,

the most important event on the web, a URL request (initiated by the user clicking on a link,

entering a URL into the browser's location bar or selecting a bookmark), has long been overlooked

in JSF. Historically, listeners have exclusively been activated on postback, which has led to the

common complaint that in JSF, "everything is a POST."

We want to change that perception.

Processing a URL request event is commonly referred to as bookmarkable or GET support. Some

GET support was added to JSF 2.0 with the introduction of view parameters and the pre-render

view event. View parameters are used to bind query string parameters to model properties. The

pre-render view event gives the developer a window to invoke a listener immediately prior to the

view being rendered.

That's a start.

Seam brings the GET support full circle by introducing the view action component. A view action is

the compliment of a UICommand for an initial (non-faces) request. Like its cohort, it gets executed

by default during the Invoke Application phase (now used on both faces and non-faces requests).

A view action can optionally be invoked on postback as well.

View actions (UIViewAction) are closely tied to view parameters (UIViewParameter). Most of

the time, the view parameter is used to populate the model with data that is consumed by the

method being invoked by a UIViewAction component, much like form inputs populate the model

with data to support the method being invoked by a UICommand component.

20.3.2. Usage

Let's consider a typical scenario in web applications. You want to display the contents of a blog

entry that matches the identifier specified in the URL. We'll assume the URL is:

http://localhost:8080/blog/entry.jsf?id=10

Usage

103

We'll use a view parameter to capture the identifier of the entry from the query string and a view

action to fetch the entry from the database.

<f:metadata>

 <f:viewParam name="id" value="#{blogManager.entryId}"/>

 <s:viewAction action="#{blogManager.loadEntry}"/>

</f:metadata>

Tip

The view action component must be declared as a child of the view metadata facet

(i.e., <f:metadata>) so that it gets incorporated into the JSF lifecycle on both non-

faces (initial) requests and faces (postback) requests. If you put it anywhere else

in the page, the behavior is undefined.

Warning

In JSF 2.0, there must be at least one view parameter for the view metadata

facet to be processed. This requirement was introduced into the JSF specification

accidentally, but it's not so unfortunate since view parameters are typically needed

to capture input needed by the view action.

What do we do if the entry can't be found? View actions support declarative navigation just like

UICommand components. So you can write a navigation rule that will be consulted before the page

is rendered. If the rule matches, navigation occurs just as though this were a postback.

<navigation-rule>

 <from-view-id>/entry.xhtml</from-view-id>

 <navigation-case>

 <from-action>#{blogManager.loadEntry}</from-action>

 <if>#{empty entry}</if>

 <to-view-id>/home.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

 </navigation-rule>

After each view action is invoked, the navigation handler looks for a navigation case that matches

the action's EL method signature and outcome. If a navigation case is matched, or the response

Chapter 20. Seam Faces Components

104

is marked complete by the action, subsequent view actions are short-circuited. The lifecycle then

advances appropriately.

By default, a view action is not executed on postback, since the primary intention of a view action

is to support a non-faces request. If your application (or use case) is decidedly stateless, you

may need the view action to execute on any type of request. You can enable the view action on

postback using the onPostback attribute:

<s:viewAction action="#{blogManager.loadEntry}" onPostback="true"/>

You may only want the view action to be invoked under certain conditions. For instance, you may

only need it to be invoked if the conversation is transient. For that, you can use the if attribute,

which accepts an EL value expression:

<s:viewAction action="#{blogEditor.loadEntry}" if="#{conversation.transient}"/>

There are two ways to control the phase in which the view action is invoked. You can set the

immediate attribute to true, which moves the invocation to the Apply Request Values phase

instead of the default, the Invoke Application phase.

<s:viewAction action="#{sessionManager.validateSession}" immediate="true"/>

You can also just specify the phase directly, using the name of the phase constant in the PhaseId

class (the case does not matter).

<s:viewAction action="#{sessionManager.validateSession}" phase="APPLY_REQUEST_VALUES"/

>

Tip

The valid phases for a view action are:

• APPLY_REQUEST_VALUES (default if immediate="true")

• UPDATE_MODEL_VALUES

• PROCESS_VALIDATIONS

• INVOKE_APPLICATION (default)

View actions vs the PreRenderViewEvent

105

If the phase is set, it takes precedence over the immediate flag.

20.3.3. View actions vs the PreRenderViewEvent

The purpose of the view action is similar to use of the PreRenderViewEvent. In fact, the code to

load a blog entry before the page is rendered could be written as:

<f:metadata>

 <f:viewParam name="id" value="#{blogManager.entryId}"/>

 <f:event type="preRenderView" listener="#{blogManager.loadEntry}"/>

</f:metadata>

However, the view action has several important advantages:

• It's lightweight

• It's timing can be controlled

• It's contextual

• It can trigger navigation

View actions are lightweight because they get processed on a non-faces (initial) request before the

full component tree is built. When the view actions are invoked, the component tree only contains

view metadata.

As demonstrated above, you can specify a prerequisite condition for invoking the view action,

control whether it's invoked on postback, specify the phase in which it's invoked and tie the

invocation into the declarative navigation system. The PreRenderViewEvent is quite basic in

comparison.

20.4. UI Input Container

UIInputContainer is a supplemental component for a JSF 2.0 composite component encapsulating

one or more input components (EditableValueHolder), their corresponding message components

(UIMessage) and a label (HtmlOutputLabel).

This component takes care of wiring the label to the first input and the messages to each input

in sequence. It also assigns two implicit attribute values, "required" and "invalid" to indicate that

a required input field is present and whether there are any validation errors, respectively. To

determine if a input field is required, both the required attribute is consulted and whether the

property has Bean Validation constraints.

Finally, if the "label" attribute is not provided on the composite component, the label value will be

derived from the id of the composite component, for convenience.

Chapter 20. Seam Faces Components

106

Composite component definition example (minus layout):

<cc:interface componentType="org.jboss.seam.faces.InputContainer"/>

 <cc:implementation>

 <h:outputLabel id="label" value="#{cc.attrs.label}:" styleClass="#{cc.attrs.invalid ? 'invalid' :

 ''}">

 <h:outputText styleClass="required" rendered="#{cc.attrs.required}" value="*"/>

 </h:outputLabel>

 <cc:insertChildren/>

 <h:message id="message" errorClass="invalid message" rendered="#{cc.attrs.invalid}"/>

 </cc:implementation>

Composite component usage example:

<example:inputContainer id="name">

 <h:inputText id="input" value="#{person.name}"/>

 </example:inputContainer>

Tip

NOTE: Firefox does not properly associate a label with the target input if the

input id contains a colon (:), the default separator character in JSF. JSF 2

allows developers to set the value via an initialization parameter (context-param

in web.xml) keyed to javax.faces.SEPARATOR_CHAR. We recommend that you

override this setting to make the separator an underscore (_).

Part VI. Seam International

cix

Introduction

The goal of Seam International is to provide a unified approach to configuring locale, timezone and

language. With features such as Status messages propogation to UI, multiple property storage

implementations and more.

cx

Chapter 21.

111

Installation
Most features of Seam International are installed automatically by including seam-

international.jar in the web application library folder. If you are using Maven [http://

maven.apache.org/] as your build tool, you can add the following dependency to your pom.xml file:

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>seam-international</artifactId>

 <version>${seam-international-version}</version>

</dependency>

Tip

Replace ${seam-international-version} with the most recent or appropriate version

of Seam International.

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

112

Chapter 22.

113

Locales

22.1. Default Locale

In a similar fashion to TimeZones we have an application Locale retrieved by

@Inject

java.util.Locale lc;

accessible via EL with "defaultLocale".

By default the Locale will be set to the JVM default, unless you override the

DefaultLocaleProducer Bean via the Seam Config module. Here are a few examples of XML

that can be used to define the various types of Locales that are available.

This will set the default language to be French.

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:seam:core"

 xmlns:lc="urn:java:org.jboss.seam.international.locale"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <lc:DefaultLocaleProducer>

 <s:replaces/>

 <lc:defaultLocaleKey>fr</lc:defaultLocaleKey>

 </lc:DefaultLocaleProducer>

</beans>

This will set the default language to be English with the country of US.

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:seam:core"

 xmlns:lc="urn:java:org.jboss.seam.international.locale"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

Chapter 22. Locales

114

 <lc:DefaultLocaleProducer>

 <s:replaces/>

 <lc:defaultLocaleKey>en_US</lc:defaultLocaleKey>

 </lc:DefaultLocaleProducer>

</beans>

As you can see from the previous examples, you can define the Locale with

lang_country_variant. It's important to note that the first two parts of the locale definition are

not expected to be greater than 2 characters otherwise an error will be produced and it will default

to the JVM Locale.

22.2. User Locale

The Locale associated with the User Session can be retrieved by

@Inject

@UserLocale

java.util.Locale locale;

which is EL accessible via userLocale.

By default the Locale will be the same as that of the application when the User Session is initially

created. However, changing the User's Locale is a simple matter of firing an event to update it.

An example would be

@Inject

@Changed

Event<java.util.Locale> localeEvent;

public void setUserLocale()

{

 Locale canada = Locale.CANADA;

 localeEvent.fire(canada);

}

22.3. Available Locales

We've also provided a list of available Locales that can be accessed via

@Inject

Available Locales

115

List<java.util.Locale> locales;

The locales that will be returned with this can be defined with XML configuration of the

AvailableLocales Bean such as

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:lc="urn:java:org.jboss.seam.international.locale"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <lc:LocaleConfiguration>

 <lc:supportedLocaleKeys>

 <s:value>en</s:value>

 <s:value>fr</s:value>

 </lc:supportedLocaleKeys>

 </lc:LocaleConfiguration>

</beans>

116

Chapter 23.

117

Timezones
To support a more developer friendly way of handling TimeZones we have incorporated the use

of Joda-Time through their DateTimeZone class. Don't worry, it provides convenience methods to

convert to JDK TimeZone if required.

23.1. Default TimeZone

Starting at the application level the module provides a DateTimeZone that can be retrieved with

@Inject

DateTimeZone applicationTimeZone;

It can also be accessed through EL by the name "defaultTimeZone"!

By default the TimeZone will be set to the JVM default, unless you override the

DefaultTimeZoneProducer Bean using the Seam Config module. For instance, adding this XML

into seam-beans.xml or beans.xml will change the default TimeZone of the application to be

Tijuana!

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:seam:core"

 xmlns:tz="urn:java:org.jboss.seam.international.timezone"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <tz:DefaultTimeZoneProducer>

 <s:specializes/>

 <tz:defaultTimeZoneId>America/Tijuana</tz:defaultTimeZoneId>

 </tz:DefaultTimeZoneProducer>

</beans>

23.2. User TimeZone

We also have a DateTimeZone that is scoped to the User Session which can be retrieved with

@Inject

@UserTimeZone

Chapter 23. Timezones

118

DateTimeZone userTimeZone;

It can also be accessed through EL using "userTimeZone".

By default the TimeZone will be the same as the application when the User Session is initialised.

However, changing the User's TimeZone is a simple matter of firing an event to update it. An

example would be

@Inject

@Changed

Event<DateTimeZone> tzEvent;

public void setUserTimeZone()

{

 DateTimeZone tijuana = DateTimeZone.forID("America/Tijuana");

 tzEvent.fire(tijuana);

}

23.3. Available TimeZones

We've also provided a list of available TimeZones that can be accessed via

@Inject

List<DateTimeZone> timeZones;

Chapter 24.

119

Messages
There are currently two ways to create a message within the module.

The first would mostly be used when you don't want to add the generated message directly to the

UI, but want to log it out, or store it somewhere else

@Inject

MessageFactory factory;

public String getMessage()

{

 MessageBuilder builder = factory.info("There are {0} cars, and they are all {1}; {1} is the best

 color.", 5, "green");#

 return builder.build().getText();

}

The second is to add the message to a list that will be returned to the UI for display.

@Inject

Messages messages;

public void setMessage()

{

 messages.info("There are {0} cars, and they are all {1}; {1} is the best color.", 5, "green");

}

Either of these methods supports the four message levels which are info, warning, error and fatal.

Both the MessageFactory and Messages classes support four ways in which to create a Message:

• Directly adding the message

• Directly adding the message and replacing parameters

• Retrieving the message from a bundle

• Retrieving the message from a bundle and replacing parameters

Examples for each of these are:

•
messages.info("Simple Text");

Chapter 24. Messages

120

•
messages.info("Simple Text with {0} parameter", 1);

•
messages.info(new BundleKey("org.jboss.international.seam.test.TestBundle", "key1"));

•
messages.info(new BundleKey("org.jboss.international.seam.test.TestBundle", "key2"), 1);

The above examples assume that there is a properties file existing at

org.jboss.international.seam.test.TestBundle.properties with key1 being a simple text

string and key2 including a single parameter.

Part VII. Seam Catch

Chapter 25.

123

Seam Catch - Introduction
Exceptions are a fact of life. As developers, we need to be prepared to deal with them in the most

graceful manner possible. Seam Catch provides a simple, yet robust foundation for modules and/

or applications to establish a customized exception handling process. By employing a delegation

model, Catch allows exceptions to be addressed in a centralized, extensible and uniform manner.

Catch is first notified of an exception to be handled via a CDI event. This event is fired either

by the application or a Catch integration. Catch then hands the exception off to a chain of

registered handlers, which deal with the exception appropriately. The use of CDI events to connect

exceptions to handlers makes this strategy of exception handling non-invasive and minimally

coupled to Catch's infrastructure.

The exception handling process remains mostly transparent to the developer. In some cases,

you register an exception handler simply by annotating a handler method. Alternatively, you can

handle an exception programmatically, just as you would observe an event in CDI.

In this guide, we'll explore the various options you have for handling exceptions using Catch, as

well as how framework authors can offer Catch integration.

124

Chapter 26.

125

Seam Catch - Installation
To use the Seam Catch module, you need to add the Seam Catch API to your project as a compile-

time dependency. At runtime, you'll also need the Seam Catch implementation, which you either

specify explicitly or through a transitive dependency of another module that depends on it (as part

of exposing its own Catch integration).

First, check your application's library dependencies to see whether Seam Catch is already being

included by another module (such as Seam Servlet). If not, you'll need to setup the dependencies

as described below.

26.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam Catch:

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch</artifactId>

 <version>${seam.catch.version}</version>

</dependency>

Tip

Substitute the expression ${seam.catch.version} with the most recent or

appropriate version of Seam Catch. Alternatively, you can create a Maven user-

defined property to satisfy this substitution so you can centrally manage the

version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-api</artifactId>

 <version>${seam.catch.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

http://maven.apache.org/
http://maven.apache.org/

Chapter 26. Seam Catch - Inst...

126

 <artifactId>seam-catch-impl</artifactId>

 <version>${seam.catch.version}</version>

 <scope>runtime</scope>

</dependency>

Now you're ready to start catching exceptions!

Chapter 27.

127

Seam Catch - Usage

27.1. Exception handlers

As an application developer (i.e., an end user of Catch), you'll be focused on writing exception

handlers. An exception handler is a method on a CDI bean that is invoked to handle a specific type

of exception. Within that method, you can implement any logic necessary to handle or respond

to the exception.

Given that exception handler beans are CDI beans, they can make use of dependency injection,

be scoped, have interceptors or decorators and any other functionality available to CDI beans.

Exception handler methods are designed to follow the syntax and semantics of CDI observers,

with some special purpose exceptions explained in this guide. The advantage of this design is that

exception handlers will be immediately familiar to you if you are studying or well-versed in CDI.

In this chapter, you'll learn how to define an exception handler and explore how and when it gets

invoked. We'll begin by covering the two annotations that are used to declare an exception handler,

@HandlesExceptions and @Handles.

27.2. Exception handler annotations

Exception handlers are contained within exception handler beans, which are CDI beans annotated

with @HandlesExceptions. Exception handlers are methods which have a parameter which is an

instance of CaughtException<T extends Throwable> annotated with the @Handles annotation.

27.2.1. @HandlesExceptions

The @HandlesException annotation is simply a marker annotation that instructs the Seam Catch

CDI extension to scan the bean for handler methods.

Let's designate a CDI bean as an exception handler by annotating it with @HandlesException.

@HandlesExceptions

public class MyHandlers {}

That's all there is to it. Now we can begin defining exception handling methods on this bean.

Note
The @HandlesExceptions annotation may be deprecated in favor of annotation

indexing done by Seam Solder.

Chapter 27. Seam Catch - Usage

128

27.2.2. @Handles

@Handles is a method parameter annotation that designates a method as an exception handler.

Exception handler methods are registered on beans annotated with @HandlesExceptions. Catch

will discover all such methods at deployment time.

Let's look at an example. The following method is invoked for every exception that Catch

processes and prints the exception message to stout. (Throwable is the base exception type in

Java and thus represents all exceptions).

@HandlesExceptions

public class MyHandlers

{

 void printExceptions(@Handles CaughtException<Throwable> evt)

 {

 System.out.println("Something bad happened: " +

 evt.getException().getMessage());

 evt.markHandled();

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

The @Handles annotation on the first parameter designates this method as an exception

handler (though it is not required to be the first parameter). This parameter must be of type

CaughtException<T extends Throwable>, otherwise it's detected as a definition error.

The type parameter designates which exception the method should handle. This method is

notified of all exceptions (requested by the base exception type Throwable).

The CaughtException instance provides access to information about the exception and can

be used to control exception handling flow. In this case, it's used to read the current exception

being handled in the exception stack trace, as returned by getException().

This handler does not modify the invocation of subsequent handlers, as designated by

invoking markHandled() on CaughtException. As this is the default behavior, this line could

be omitted.

The @Handles annotation must be placed on a parameter of the method, which must be of type

CaughtException<T extends Throwable>. Handler methods are similar to CDI observers and,

as such, follow the same principles and guidelines as observers (such as invocation, injection of

parameters, qualifiers, etc) with the following exceptions:

• a parameter of a handler method must be a CaughtException

@Handles

129

• handlers are ordered before they are invoked (invocation order of observers is non-

deterministic)

• any handler can prevent subsequent handlers from being invoked

In addition to designating a method as exception handler, the @Handles annotation specifies two

pieces of information about when the method should be invoked relative to other handler methods:

• a precedence relative to other handlers for the same exception type. Handlers with higher

precendence are invoked before handlers with lower precendence that handle the same

exception type. The default precendence (if not specified) is 0.

• the type of the traversal mode (i.e., phase) during which the handler is invoked. The default

traversal mode (if not specified) is TraversalMode.DEPTH_FIRST.

Let's take a look at more sophisticated example that uses all the features of handlers to log all

exceptions.

@HandlesExceptions

public class MyHandlers

{

 void logExceptions(@Handles(during = TraversalMode.BREADTH_FIRST)

 @WebRequest CaughtException<Throwable> evt,

 Logger log)

 {

 log.warn("Something bad happened: " + evt.getException().getMessage());

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

This handler has a default precedence of 0 (the default value of the precedence attribute

on @Handles). It's invoked during the breadth first traversal mode. For more information on

traversal, see the section Section 27.4.1, “Traversal of exception type hierarchy”.

This handler is qualified with @WebRequest. When Catch calculates the handler chain, it filters

handlers based on the exception type and qualifiers. This handler will only be invoked for

exceptions passed to Catch that carry the @WebRequest qualifier. We'll assume this qualifier

distinguishes a web page request from a REST request.

Any additional parameters of a handler method are treated as injection points. These

parameters are injected into the handler when it is invoked by Catch. In this case, we are

injecting a Logger bean that must be defined within the application (or by an extension).

A handler is guaranteed to only be invoked once per exception (automatically muted), unless it

reenables itself by invoking the unmute() method on the CaughtException instance.

Chapter 27. Seam Catch - Usage

130

Handlers must not throw checked exceptions, and should avoid throwing unchecked exceptions.

Should a handler throw an unchecked exception it will propegate up the stack and all handling

done via Catch will cease. Any exception that was being handled will be lost.

27.3. Exception stack trace processing

When an exception is thrown, chances are it's nested (wrapped) inside other exceptions. (If you've

ever examined a server log, you'll appreciate this fact). The collection of exceptions in its entirety

is termed an exception stack trace.

The outermost exception of an exception stack trace (e.g., EJBException, ServletException, etc)

is probably of little use to exception handlers. That's why Catch doesn't simply pass the exception

stack trace directly to the exception handlers. Instead, it intelligently unwraps the stack trace and

treats the root exception cause as the primary exception.

The first exception handlers to be invoked by Catch are those that match the type of root

cause. Thus, instead of seeing a vague EJBException, your handlers will instead see an

meaningful exception such as ConstraintViolationException. This feature, alone, makes

Catch a worthwhile tool.

Catch continues to work through the exception stack trace, notifying handlers of each exception in

the stack, until a handler flags the exception as handled. Once an exception is marked as handled,

Catch stops processing the exception. If a handler instructed Catch to rethrow the exception

(by invoking CaughtException#rethrow(), Catch will rethrow the exception outside the Catch

infrastructure. Otherwise, it simply returns flow control to the caller.

Consider a stack trace containing the following nested causes (from outer cause to root cause):

• EJBException

• PersistenceException

• SQLGrammarException

Catch will unwrap this exception and notify handlers in the following order:

1. SQLGrammarException

2. PersistenceException

3. EJBException

If there's a handler for PersistenceException, it will likely prevent the handlers for EJBException

from being invoked, which is a good thing since what useful information can really be obtained

from EJBException?

27.4. Exception handler ordering

While processing one of the causes in the exception stack trace, Catch has a specific order it uses

to invoke the handlers, operating on two axes:

Traversal of exception type hierarchy

131

• traversal of exception type hierarchy

• relative handler precedence

We'll first address the traversal of the exception type hierarchy, then cover relative handler

precedence.

27.4.1. Traversal of exception type hierarchy

Catch doesn't simply invoke handlers that match the exact type of the exception. Instead, it walks

up and down the type hierarchy of the exception. It first notifies least specific handler in breadth

first traversal mode, then gradually works down the type hiearchy towards handlers for the actual

exception type, still in breadth first traversal. Once all breadth first traversal handlers have been

invoked, the process is reversed for depth first traversal, meaning the most specific handlers are

notified first and Catch continues walking up the hierarchy tree.

There are two modes of this traversal:

• BREADTH_FIRST

• DEPTH_FIRST

By default, handlers are registered into the DEPTH_FIRST traversal path. That means in most

cases, Catch starts with handlers of the actual exception type and works up towards the handler

for the least specific type.

However, when a handler is registered to be notified during the BREADTH_FIRST traversal, as

in the example above, Catch will notify that exception handler before the exception handler for

the actual type is notified.

Let's consider an example. Assume that Catch is handling the SocketException. It will notify

handlers in the following order:

1. Throwable (BREADTH_FIRST)

2. Exception (BREADTH_FIRST)

3. IOException (BREADTH_FIRST)

4. SocketException (BREADTH_FIRST)

5. SocketException (DEPTH_FIRST)

6. IOException (DEPTH_FIRST)

7. Exception (DEPTH_FIRST)

8. Throwable (DEPTH_FIRST)

The same type traversal occurs for each exception processed in the stack trace.

Chapter 27. Seam Catch - Usage

132

In order for a handler to be notified of the IOException before the SocketException, it would

have to specify the BREADTH_FIRST traversal path explicitly:

void handleIOException(@Handles(during = TraversalMode.BREADTH_FIRST)

 CaughtException<IOException> evt)

{

 System.out.println("An I/O exception occurred, but not sure what type yet");

}

BREADTH_FIRST handlers are typically used for logging exceptions because they are not likely

to be short-circuited (and thus always get invoked).

27.4.2. Handler precendence

When Catch finds more than one handler for the same exception type, it orders the handlers

by precendence. Handlers with higher precendence are executed before handlers with a lower

precedence. If Catch detects two handlers for the same type with the same precedence, it detects

it as an error and throws an exception at deployment time.

Let's define two handlers with different precendence:

void handleIOExceptionFirst(@Handles(precendence = 100) CaughtException<IOException> evt)

{

 System.out.println("Invoked first");

}

void handleIOExceptionSecond(@Handles CaughtException<IOException> evt)

{

 System.out.println("Invoked second");

}

The first method is invoked first since it has a higher precendence (100) than the second method,

which has the default precedence (0).

To make specifying precendence values more convenient, Catch provides several built-in

constants, available on the Precedence class:

• BUILT_IN = -100

APIs for exception information and flow control

133

• FRAMEWORK = -50

• DEFAULT = 0

• LOW = 50

• HIGH = 100

To summarize, here's how Catch determines the order of handlers to invoke (until a handler marks

exception as handled):

1. Unwrap exception stack

2. Begin processing root cause

3. Find handler for least specific handler marked for BREADTH_FIRST traversal

4. If multiple handlers for same type, invoke handlers with higher precendence first

5. Find handler for most specific handler marked for DEPTH_FIRST traversal

6. If multiple handlers for same type, invoke handlers with higher precendence first

7. Continue above steps for each exception in stack

27.5. APIs for exception information and flow control

There are two APIs provided by Catch that should be familiar to application developers:

• CaughtException

• ExceptionStack

27.5.1. CaughtException

In addition to providing information about the exception being handled, the CaughtException

object contains methods to control the exception handling process, such as rethrowing the

exception, aborting the handler chain or unmuting the current handler.

Five methods exist on the CaughtException object to give flow control to the handler

• abort() - terminate all handling immediately after this handler, does not mark the exception as

handled, does not re-throw the exception.

• rethrow() - continues through all handlers, but once all handlers have been called (assuming

another handler does not call abort() or handled()) the initial exception passed to Catch is

rethrown. Does not mark the exception as handled.

• handled() - marks the exception as handled and terminates further handling.

Chapter 27. Seam Catch - Usage

134

• proceed() - default. Marks the exception as handled and proceeds with the rest of the handlers.

• proceedToCause() - marks the exception as handled, but proceeds to the next cause in the

cause container, without calling other handlers for the current cause.

Once a handler is invoked it is muted, meaning it will not be run again for that exception stack

trace, unless it's explicitly marked as unmuted via the unmute() method on CaughtException.

27.5.2. ExceptionStack

ExceptionStack contains information about the exception causes relative to the current exception

cause. It is also the source of the exception types the invoked handlers are matched against. It

is accessed in handlers by calling the method getExceptionStack() on the CaughtException

object. Please see API docs for more information, all methods are fairly self-explanatory.

Tip

This object is mutable and can be modified before any handlers are invoked by

an observer:

public void modifyStack(@Observes ExceptionStack stack) {

 ...

}

Modifying the ExceptionStack may be useful to remove exception types that are

effectively meaningless sucsh as EJBException, changing the exception type

to something more meaningful such as cases like SQLException, or wrapping

exceptions as custom application exception types.

Chapter 28.

135

Seam Catch - Framework Integration
Integration of Seam Catch with other frameworks consists of one main step, and two other optional

(but highly encouraged) steps:

• creating and firing an ExceptionToCatch

• adding any default handlers and qualifiers with annotation literals (optional)

• supporting ServiceHandlers for creating exception handlers

28.1. Creating and Firing an ExceptionToCatch event

An ExceptionToCatch is constructed by passing a Throwable and optionally qualifiers for

handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting

a Event<ExceptionToCatch> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception

handling mechanism of the integrating framework, if any exist. By tying into the framework's

exception handling, any uncaught exceptions should be routed through the Seam Catch system

and allow handlers to be invoked. This is the typical way of using the Seam Catch framework. Of

course, it doesn't stop the application developer from firing their own ExceptionToCatch within

a catch block.

28.2. Default Handlers and Qualifiers

28.2.1. Default Handlers

An integration with Catch can define it's own handlers to always be used. It's recommended

that any built-in handler from an integration have a very low precedence, be a handler for as

generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for

PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the

integration. This helps limit any collisions with handlers the application developer may create.

Note
Hopefully at some point there will be a way to conditionally enable handlers so

the application developer will be able to selectively enable any default handlers.

Currently this does not exist, but is something that will be explored.

28.2.2. Qualifiers

Catch supports qualifiers for the CaughtException. To add qualifiers to be used when notifying

handlers, the qualifiers must be added to the ExceptionToCatch instance via the constructor

Chapter 28. Seam Catch - Fram...

136

(please see API docs for more info). Qualifiers for integrations should be used to avoid collisions

in the application error handling both when defining handlers and when firing events from the

integration.

28.3. Supporting ServiceHandlers

ServiceHandlers [http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/

#servicehandler] make for a very easy and concise way to define exception handlers. The following

example comes from the jaxrs example in the distribution:

@HandlesExceptions

@ExceptionResponseService

public interface DeclarativeRestExceptionHandlers

{

 @SendHttpResponse(status = 403, message = "Access to resource denied (Annotation-

configured response)")

 void onNoAccess(@Handles @RestRequest CaughtException<AccessControlException> e);

 @SendHttpResponse(status = 400, message = "Invalid identifier (Annotation-configured

 response)")

 void onInvalidIdentifier(@Handles @RestRequest CaughtException<IllegalArgumentException> e);

}

All the vital information that would normally be done in the handler method is actually contained

in the @SendHttpResponse annotation. The only thing left is some boiler plate code to setup the

Response. In a jax-rs application (or even in any web application) this approach helps developers

cut down on the amount of boiler plate code they have to write in their own handlers and should be

implemented in any Catch integration, however, there may be situtations where ServiceHandlers

simply do not make sense.

Note
If ServiceHandlers are implemented make sure to document if any of the methods

are called from CaughtException, specifically abort(), handled() or rethrow().

These methods affect invocation of other handlers (or rethrowing the exception in

the case of rethrow()).

http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler

137

Seam Catch - Glossary

E
Exception Stack An exception chain is made up of many different exceptions or

causes until the root exception is found at the bottom of the

chain. When all of the causes are removed or looked at this forms

the causing container. The container may be traversed either

ascending (root cause first) or descending (outer most first).

H
Handler Bean A CDI enabled Bean which contains handler methods. Annotated

with the @HandlesExceptions annotation.

See Also Handler Method.

Handler Method A method within a handler bean which is marked as a handler

using the @Handlers on an argument, which must be an instance

of CaughtException. Handler methods typically are public with a

void return. Other parameters of the method will be treated as

injection points and will be resolved via CDI and injected upon

invocation.

138

Part VIII. Seam Remoting

Chapter 29.

141

Seam Remoting - Basic Features
Seam provides a convenient method of remotely accessing CDI beans from a web page, using

AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with

almost no up-front development effort - your beans only require simple annotating to become

accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled web

page, then goes on to explain the features of the Seam Remoting framework in more detail.

29.1. Configuration

To use remoting, the Seam Remoting servlet must first be configured in your web.xml file:

<servlet>

 <servlet-name>Remoting Servlet</servlet-name>

 <servlet-class>org.jboss.seam.remoting.Remoting</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Remoting Servlet</servlet-name>

 <url-pattern>/seam/resource/remoting/*</url-pattern>

</servlet-mapping>

Note
If your application is running within a Servlet 3.0 (or greater) environment, then

the servlet configuration listed above is not necessary as the Seam Remoting

JAR library bundles a web-fragment.xml that configures the Remoting servlet

automatically.

The next step is to import the necessary Javascript into your web page. There are a minimum of

two scripts that must be imported. The first one contains all the client-side framework code that

enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

By default, the client-side JavaScript is served in compressed form, with white space compacted

and JavaScript comments removed. For a development environment, you may wish to use the

uncompressed version of remote.js for debugging and testing purposes. To do this, simply add

the compress=false parameter to the end of the url:

Chapter 29. Seam Remoting - B...

142

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js?

compress=false"></script>

The second script that you need contains the stubs and type definitions for the beans you wish

to call. It is generated dynamically based on the method signatures of your beans, and includes

type definitions for all of the classes that can be used to call its remotable methods. The name of

the script reflects the name of your bean. For example, if you have a named bean annotated with

@Named, then your script tag should look like this (for a bean class called CustomerAction):

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction"></script>

Otherwise, you can simply specify the fully qualified class name of the bean:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?com.acme.myapp.CustomerAction"></script>

If you wish to access more than one bean from the same page, then include them all as parameters

of your script tag:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

29.1.1. Dynamic type loading

If you forget to import a bean or other class that is required by your bean, don't worry. Seam

Remoting has a dynamic type loading feature that automatically loads any JavaScript stubs for

bean types that it doesn't recognize.

29.2. The "Seam" object

Client-side interaction with your beans is all performed via the Seam Javascript object. This object

is defined in remote.js, and you'll be using it to make asynchronous calls against your bean.

It contains methods for creating client-side bean objects and also methods for executing remote

requests. The easiest way to become familiar with this object is to start with a simple example.

29.2.1. A Hello World example

Let's step through a simple example to see how the Seam object works. First of all, let's create a

new bean called helloAction:

A Hello World example

143

@Named

public class HelloAction implements HelloLocal {

 @WebRemote public String sayHello(String name) {

 return "Hello, " + name;

 }

}

Take note of the @WebRemote annotation on the sayHello() method in the above listing. This

annotation makes the method accessible via the Remoting API. Besides this annotation, there's

nothing else required on your bean to enable it for remoting.

Note

If you are performing a persistence operation in the method marked @WebRemote

you will also need to add a @Transactional annotation to the method. Otherwise,

your method would execute outside of a transaction without this extra hint.That's

because unlike a JSF request, Seam does not wrap the remoting request in a

transaction automatically.

Now for our web page - create a new JSF page and import the helloAction bean:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?helloAction

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">

 //<![CDATA[

 function sayHello() {

 var name = prompt("What is your name?");

 Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

 }

 function sayHelloCallback(result) {

Chapter 29. Seam Remoting - B...

144

 alert(result);

 }

 //]]>

</script>

We're done! Deploy your application and open the page in a web browser. Click the button, and

enter a name when prompted. A message box will display the hello message confirming that the

call was successful. If you want to save some time, you'll find the full source code for this Hello

World example in the /examples/helloworld directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start

with, you can see from the Javascript code listing that we have implemented two methods - the first

method is responsible for prompting the user for their name and then making a remote request.

Take a look at the following line:

Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

The first section of this line, Seam.createBean("helloAction") returns a proxy, or "stub" for our

helloAction bean. We can invoke the methods of our bean against this stub, which is exactly

what happens with the remainder of the line: sayHello(name, sayHelloCallback);.

What this line of code in its completeness does, is invoke the sayHello method of our bean,

passing in name as a parameter. The second parameter, sayHelloCallback isn't a parameter of

our bean's sayHello method, instead it tells the Seam Remoting framework that once it receives

the response to our request, it should pass it to the sayHelloCallback Javascript method. This

callback parameter is entirely optional, so feel free to leave it out if you're calling a method with

a void return type or if you don't care about the result.

The sayHelloCallback method, once receiving the response to our remote request then pops

up an alert message displaying the result of our method call.

29.2.2. Seam.createBean

The Seam.createBean JavaScript method is used to create client-side instances of both action

and "state" beans. For action beans (which are those that contain one or more methods annotated

with @WebRemote), the stub object provides all of the remotable methods exposed by the bean.

For "state" beans (i.e. beans that simply carry state, for example Entity beans) the stub object

provides all the same accessible properties as its server-side equivalent. Each property also has

a corresponding getter/setter method so you can work with the object in JavaScript in much the

same way as you would in Java.

The Context

145

29.3. The Context

The Seam Remoting Context contains additional information which is sent and received as part

of a remoting request/response cycle. It currently contains the conversation ID and Call ID, and

may be expanded to include other properties in the future.

29.3.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to

read or set the conversation ID in the Seam Remoting Context. To read the conversation ID after

making a remote request call Seam.context.getConversationId(). To set the conversation ID

before making a request, call Seam.context.setConversationId().

If the conversation ID hasn't been explicitly set with Seam.context.setConversationId(), then

it will be automatically assigned the first valid conversation ID that is returned by any remoting call.

If you are working with multiple conversations within your page, then you may need to explicitly

set the conversation ID before each call. If you are working with just a single conversation, then

you don't need to do anything special.

29.3.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current

view's conversation. To do this, you must explicitly set the conversation ID to that of the view

before making the remote call. This small snippet of JavaScript will set the conversation ID that

is used for remoting calls to the current view's conversation ID:

Seam.context.setConversationId(#{conversation.id});

29.4. Working with Data types

29.4.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values as a rule

are compatible with either their primitive type or their corresponding wrapper class.

29.4.1.1. String

Simply use Javascript String objects when setting String parameter values.

29.4.1.2. Number

There is support for all number types supported by Java. On the client side, number values are

always serialized as their String representation and then on the server side they are converted

to the correct destination type. Conversion into either a primitive or wrapper type is supported for

Byte, Double, Float, Integer, Long and Short types.

Chapter 29. Seam Remoting - B...

146

29.4.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java

boolean.

29.4.2. JavaBeans

In general these will be either entity beans or JavaBean classes, or some other non-bean class.

Use Seam.createBean() to create a new instance of the object.

29.4.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the

client side, use a JavaScript Date object to work with date values. On the server side, use any

java.util.Date (or descendent, such as java.sql.Date or java.sql.Timestamp class.

29.4.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum

parameter, simply use the String representation of the enum. Take the following bean as an

example:

@Named

public class paintAction {

 public enum Color {red, green, blue, yellow, orange, purple};

 public void paint(Color color) {

 // code

 }

}

To call the paint() method with the color red, pass the parameter value as a String literal:

Seam.createBean("paintAction").paint("red");

The inverse is also true - that is, if a bean method returns an enum parameter (or contains an enum

field anywhere in the returned object graph) then on the client-side it will be converted to a String.

29.4.5. Collections

29.4.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see

the next section for those), and are implemented client-side as a JavaScript array. When calling

Debugging

147

a bean method that accepts one of these types as a parameter, your parameter should be a

JavaScript array. If a bean method returns one of these types, then the return value will also be a

JavaScript array. The remoting framework is clever enough on the server side to convert the bag

to an appropriate type (including sophisticated support for generics) for the bean method call.

29.4.5.2. Maps

As there is no native support for Maps within JavaScript, a simple Map implementation is provided

with the Seam Remoting framework. To create a Map which can be used as a parameter to a

remote call, create a new Seam.Map object:

var map = new Seam.Map();

This JavaScript implementation provides basic methods for working with Maps: size(),

isEmpty(), keySet(), values(), get(key), put(key, value), remove(key) and

contains(key). Each of these methods are equivalent to their Java counterpart. Where the

method returns a collection, such as keySet() and values(), a JavaScript Array object will be

returned that contains the key or value objects (respectively).

29.5. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents

of all the packets send back and forth between the client and server in a popup window. To enable

debug mode, set the Seam.debug property to true in Javascript:

Seam.debug = true;

If you want to write your own messages to the debug log, call Seam.log(message).

29.6. Handling Exceptions

When invoking a remote bean method, it is possible to specify an exception handler which will

process the response in the event of an exception during bean invocation. To specify an exception

handler function, include a reference to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.createBean("helloAction").sayHello(name, callback, exceptionHandler);

If you do not have a callback handler defined, you must specify null in its place:

Chapter 29. Seam Remoting - B...

148

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.createBean("helloAction").sayHello(name, null, exceptionHandler);

The exception object that is passed to the exception handler exposes one method, getMessage()

that returns the exception message which is produced by the exception thrown by the @WebRemote

method.

29.7. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,

its rendering customised or even turned off completely.

29.7.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of

Seam.loadingMessage:

Seam.loadingMessage = "Loading...";

29.7.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of

displayLoadingMessage() and hideLoadingMessage() with functions that instead do nothing:

// don't display the loading indicator

Seam.displayLoadingMessage = function() {};

Seam.hideLoadingMessage = function() {};

29.7.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else

that you want. To do this override the displayLoadingMessage() and hideLoadingMessage()

messages with your own implementation:

 Seam.displayLoadingMessage = function() {

 // Write code here to display the indicator

 };

 Seam.hideLoadingMessage = function() {

 // Write code here to hide the indicator

Controlling what data is returned

149

 };

29.8. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned

to the client. This response is then unmarshaled by the client into a JavaScript object. For

complex types (i.e. Javabeans) that include references to other objects, all of these referenced

objects are also serialized as part of the response. These objects may reference other objects,

which may reference other objects, and so forth. If left unchecked, this object "graph" could

potentially be enormous, depending on what relationships exist between your objects. And as

a side issue (besides the potential verbosity of the response), you might also wish to prevent

sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain" the object graph, by specifying the

exclude field of the remote method's @WebRemote annotation. This field accepts a String array

containing one or more paths specified using dot notation. When invoking a remote method, the

objects in the result's object graph that match these paths are excluded from the serialized result

packet.

For all our examples, we'll use the following Widget class:

public class Widget

{

 private String value;

 private String secret;

 private Widget child;

 private Map<String,Widget> widgetMap;

 private List<Widget> widgetList;

 // getters and setters for all fields

}

29.8.1. Constraining normal fields

If your remote method returns an instance of Widget, but you don't want to expose the secret

field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})

public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't

care about exposing this particular field to the client. Instead, notice that the Widget value that

Chapter 29. Seam Remoting - B...

150

is returned has a field child that is also a Widget. What if we want to hide the child's secret

value instead? We can do this by using dot notation to specify this field's path within the result's

object graph:

@WebRemote(exclude = {"child.secret"})

public Widget getWidget();

29.8.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of

collection (List, Set, Array, etc). Collections are easy, and are treated like any other field. For

example, if our Widget contained a list of other Widgets in its widgetList field, to constrain the

secret field of the Widgets in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})

public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's

field name will constrain the Map's key object values, while [value] will constrain the value object

values. The following example demonstrates how the values of the widgetMap field have their

secret field constrained:

@WebRemote(exclude = {"widgetMap[value].secret"})

public Widget getWidget();

29.8.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter

where in the result's object graph it appears. This notation uses either the name of the bean (if

the object is a named bean) or the fully qualified class name (only if the object is not a named

bean) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})

public Widget getWidget();

29.8.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

Combining Constraints

151

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})

public Widget getWidget();

152

Chapter 30.

153

Seam Remoting - Model API

30.1. Introduction

The Model API builds on top of Seam Remoting's object serialization features to provide a

component-based approach to working with a server-side object model, as opposed to the RPC-

based approach provided by the standard Remoting API. This allows a client-side representation

of a server-side object graph to be modified ad hoc by the client, after which the changes made to

the objects in the graph can be applied to the corresponding server-side objects. When applying

the changes the client determines exactly which objects have been modified by recursively walking

the client-side object tree and generating a delta by comparing the original property values of the

objects with their new property values.

This approach, when used in conjunction with the extended persistence context provided by

Seam elegantly solves a number of problems faced by AJAX developers when working remotely

with persistent objects. A persistent, managed object graph can be loaded at the start of a

new conversation, and then across multiple requests the client can fetch the objects, make

incremental changes to them and apply those changes to the same managed objects after which

the transaction can be committed, thereby persisting the changes made.

One other useful feature of the Model API is its ability to expand a model. For example, if you

are working with entities with lazy-loaded associations it is usually not a good idea to blindly fetch

the associated objects (which may in turn themselves contain associations to other entities, ad

nauseum), as you may inadvertently end up fetching the bulk of your database. Seam Remoting

already knows how to deal with lazy-loaded associations by automatically excluding them when

marshalling instances of entity beans, and assigning them a client-side value of undefined (which

is a special JavaScript value, distinct from null). The Model API goes one step further by giving

the client the option of manipulating the associated objects also. By providing an expand operation,

it allows for the initialization of a previously-uninitialized object property (such as a lazy-loaded

collection), by dynamically "grafting" the initialized value onto the object graph. By expanding the

model in this way, we have at our disposal a powerful tool for building dynamic client interfaces.

30.2. Model Operations

For the methods of the Model API that accept action parameters, an instance of Seam.Action

should be used. The constructor for Seam.Action takes no parameters:

 var action = new Seam.Action();

The following table lists the methods used to define the action. Each of the following methods

return a reference to the Seam.Action object, so methods can be chained.

Chapter 30. Seam Remoting - M...

154

Table 30.1. Seam.Action method reference

Method Description

setBeanType(beanType) Sets the class name of the bean to be invoked.

• beanType - the fully qualified class name of the bean

type to be invoked.

setQualifiers(qualifiers) Sets the qualifiers for the bean to be invoked.

• qualifiers - a comma-separated list of bean qualifier

names. The names may either be the simple or fully

qualified names of the qualifier classes.

setMethod(method) Sets the name of the bean method.

• method - the name of the bean method to invoke.

addParam(param) Adds a parameter value for the action method. This

method should be called once for each parameter value

to be added, in the correct parameter order.

• param - the parameter value to add.

The following table describes the methods provided by the Seam.Model object. To work with the

Model API in JavaScript you must first create a new Model object:

 var model = new Seam.Model();

Table 30.2. Seam.Model method reference

Method Description

addBean(alias, bean,

qualifiers)

Adds a bean value to the model. When the model is

fetched, the value of the specified bean will be read and

placed into the model, where it may be accessed by

using the getValue() method with the specified alias.

Can only be used before the model is fetched.

• alias - the local alias for the bean value.

• bean - the name of the bean, either specified by the

@Named annotation or the fully qualified class name.

• qualifiers (optional) - a list of bean qualifiers.

Model Operations

155

Method Description

addBeanProperty(alias, bean,

property, qualifiers)

Adds a bean property value to the model. When the

model is fetched, the value of the specified property on

the specified bean will be read and placed into the model,

where it may be accessed by using the getValue()

method with the specified alias.

Can only be used before the model is fetched.

Example:

 addBeanProperty("account", "AccountAction",

 "account", "@Qualifier1", "@Qualifier2");

• alias - the local alias for the bean value.

• bean - the name of the bean, either specified by the

@Named annotation or the fully qualified class name.

• property - the name of the bean property.

• qualifiers (optional) - a list of bean qualifiers. This

parameter (and any after it) are treated as bean

qualifiers.

fetch(action, callback) Fetches the model - this operation causes an

asynchronous request to be sent to the server. The

request contains a list of the beans and bean properties

(set by calling the addBean() and addBeanProperty()

methods) for which values will be returned. Once the

response is received, the callback method (if specified)

will be invoked, passing in a reference to the model as

a parameter.

A model should only be fetched once.

• action (optional) - a Seam.Action instance

representing the bean action to invoke before the

model values are read and stored in the model.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the model has been

fetched. A reference to the model instance is passed

to the callback method as a parameter.

Chapter 30. Seam Remoting - M...

156

Method Description

getValue(alias) This method returns the value of the object with the

specified alias.

• alias - the alias of the value to return.

expand(value, property,

callback)

Expands the model by initializing a property value that

was previously uninitialized. This operation causes an

asynchronous request to be sent to the server, where

the uninitialized property value (such as a lazy-loaded

collection within an entity bean association) is initialized

and the resulting value is returned to the client. Once the

response is received, the callback method (if specified)

will be invoked, passing in a reference to the model as

a parameter.

• value - a reference to the value containing the

uninitialized property to fetch. This can be any value

within the model, and does not need to be a "root"

value (i.e. it doesn't need to be a value specified

by addBean() or addBeanProperty(), it can exist

anywhere within the object graph.

• property - the name of the uninitialized property to be

initialized.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the model has

been expanded. A reference to the model instance is

passed to the callback method as a parameter.

applyUpdates(action, callback) Applies the changes made to the objects contained in the

model. This method causes an asynchronous request to

be sent to the server containing a delta consisting of a

list of the changes made to the client-side objects.

• action (optional) - a Seam.Action instance

representing a bean method to be invoked after the

client-side model changes have been applied to their

corresponding server-side objects.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the updates have

been applied. A reference to the model instance is

passed to the callback method as a parameter.

Fetching a model

157

30.3. Fetching a model

To fetch a model, one or more values must first be specified using addBean() or

addBeanProperty() before invoking the fetch() operation. Let's work through an example - here

we have an entity bean called Customer:

@Entity Customer implements Serializable {

 private Integer customerId;

 private String firstName;

 private String lastName;

 @Id @GeneratedValue public Integer getCustomerId() { return customerId; }

 public void setCustomerId(Integer customerId) { this.customerId = customerId; }

 public String getFirstName() { return firstName; }

 public void setFirstName(String firstName) { this.firstName = firstName; }

 public String getLastName() { return lastName; }

 public void setLastName(String lastName) { this.lastName = lastName; }

}

We also have a bean called CustomerAction, which is responsible for creating and editing

Customer instances. Since we're only interested in editing a customer right now, the following

code only shows the editCustomer() method:

@ConversationScoped @Named

public class CustomerAction {

 @Inject Conversation conversation;

 @PersistenceContext EntityManager entityManager;

 public Customer customer;

 public void editCustomer(Integer customerId) {

 conversation.begin();

 customer = entityManager.find(Customer.class, customerId);

 }

 public void saveCustomer() {

 entityManager.merge(customer);

 conversation.end();

 }

}

Chapter 30. Seam Remoting - M...

158

In the client section of this example, we wish to make changes to an existing Customer instance, so

we need to use the editCustomer() method of CustomerAction to first load the customer entity,

after which we can access it via the public customer field. Our model object must therefore be

configured to fetch the CustomerAction.customer property, and to invoke the editCustomer()

method when the model is fetched. We start by using the addBeanProperty() method to add a

bean property to the model:

 var model = new Seam.Model();

 model.addBeanProperty("customer", "CustomerAction", "customer");

The first parameter of addBeanProperty() is the alias (in this case customer), which is used to

access the value via the getValue() method. The addBeanProperty() and addBean() methods

can be called multiple times to bind multiple values to the model. An important thing to note is

that the values may come from multiple server-side beans, they aren't all required to come from

the same bean.

We also specify the action that we wish to invoke (i.e. the editCustomer() method). In this

example we know the value of the customerId that we wish to edit, so we can specify this value

as an action method parameter:

 var action = new Seam.Action()

 .setBeanType("CustomerAction")

 .setMethod("editCustomer")

 .addParam(123);

Once we've specified the bean properties we wish to fetch and the action to invoke, we can then

fetch the model. We pass in a reference to the action object as the first parameter of the fetch()

method. Also, since this is an asynchronous request we need to provide a callback method to deal

with the response. The callback method is passed a reference to the model object as a parameter.

 var callback = function(model) { alert("Fetched customer: "

 model.getValue("customer").firstName +

 " " + model.getValue("customer").lastName); };

 model.fetch(action, callback);

When the server receives a model fetch request, it first invokes the action (if one is specified)

before reading the requested property values and returning them to the client.

Fetching a bean value

159

30.3.1. Fetching a bean value

Alternatively, if you don't wish to fetch a bean property but rather a bean itself (such as a value

created by a producer method) then the addBean() method is used instead. Let's say we have a

producer method that returns a qualified UserSettings value:

 @Produces @ConversationScoped @Settings UserSettings getUserSettings() {

 /* snip code */

 }

We would add this value to our model with the following code:

 model.addBean("settings", "UserSettings", "@Settings");

The first parameter is the local alias for the value, the second parameter is the fully qualified class

of the bean, and the third (and subsequent) parameter/s are optional bean qualifiers.

30.4. Modifying model values

Once a model has been fetched its values may be read using the getValue() method. Continuing

on with the previous example, we would retrieve the Customer object via it's local alias (customer)

like this:

 var customer = model.getValue("customer");

We are then free to read or modify the properties of the value (or any of the other values within

its object graph).

 alert("Customer name is: " + customer.firstName + " " + customer.lastName);

 customer.setLastName("Jones"); // was Smith, but Peggy got married on the weekend

30.5. Expanding a model

We can use the Model API's ability to expand a model to load uninitialized branches of the objects

in the model's object graph. To understand how this works exactly, let's flesh out our example a

little more by adding an Address entity class, and creating a one-to-many relationship between

Customer and Address.

Chapter 30. Seam Remoting - M...

160

@Entity Address implements Serializable {

 private Integer addressId;

 private Customer customer;

 private String unitNumber;

 private String streetNumber;

 private String streetName;

 private String suburb;

 private String zip;

 private String state;

 private String country;

 @Id @GeneratedValue public Integer getAddressId() { return addressId; }

 public void setAddressId(Integer addressId) { this.addressId = addressId; }

 @ManyToOne public Customer getCustomer() { return customer; }

 public void setCustomer(Customer customer) { this.customer = customer; }

 /* Snipped other getter/setter methods */

}

Here's the new field and methods that we also need to add to the Customer class:

 private Collection<Address> addresses;

 @OneToMany(fetch = FetchType.LAZY, mappedBy = "customer", cascade = CascadeType.ALL)

 public Collection<Address> getAddresses() { return addresses; }

 public void setAddresses(Collection<Address> addresses) { this.addresses = addresses; }

As we can see, the @OneToMany annotation on the getAddresses() method specifies a fetch

attribute of LAZY, meaning that by default the customer's addresses won't be loaded automatically

when the customer is. When reading the uninitialized addresses property value from a newly-

fetched Customer object in JavaScript, a value of undefined will be returned.

 getValue("customer").addresses == undefined; // returns true

We can expand the model by making a special request to initialize this uninitialized property

value. The expand() operation takes three parameters - the value containing the property to

be initialized, the name of the property and an optional callback method. The following example

shows us how the customer's addresses property can be initialized:

Applying Changes

161

 model.expand(model.getValue("customer"), "addresses");

The expand() operation makes an asynchronous request to the server, where the property value

is initialized and the value returned to the client. When the client receives the response, it reads

the initialized value and appends it to the model.

 // The addresses property now contains an array of address objects

 alert(model.getValue("customer").addresses.length + " addresses loaded");

30.6. Applying Changes

Once you have finished making changes to the values in the model, you can apply them with the

applyUpdates() method. This method scans all of the objects in the model, compares them with

their original values and generates a delta which may contain one or more changesets to send to

the server. A changeset is simply a list of property value changes for a single object.

Like the fetch() command you can also specify an action to invoke when applying updates,

although the action is invoked after the model updates have been applied. In a typical situation the

invoked action would do things like commit a database transaction, end the current conversation,

etc.

Since the applyUpdates() method sends an asynchronous request like the fetch() and

expand() methods, we also need to specify a callback function if we wish to do something when

the operation completes.

 var action = new Seam.Action();

 .setBeanType("CustomerAction")

 .setMethod("saveCustomer");

 var callback = function() { alert("Customer saved."); };

 model.applyUpdates(action, callback);

The applyUpdates() method performs a refresh of the model, retrieving the latest state of the

objects contained in the model after all updates have been applied and the action method (if

specified) invoked.

162

Chapter 31.

163

Seam Remoting - Bean Validation
Seam Remoting provides integrated support for JSR-303 Bean Validation, which defines a

standard approach for validating Java Beans no matter where they are used; web tier or

persistence tier, server or client. Bean validation for remoting delivers JSR-303's vision by making

all of the validation constraints declared by the server-side beans available on the client side, and

allows developers to perform client-side bean validation in an easy to use, consistent fashion.

Client-side validation by its very nature is an asynchronous operation, as it is possible that

the client may encounter a custom validation constraint for which it has no knowledge of the

corresponding validation logic. Under these circumstances, the client will make a request to the

server for the validation to be performed server-side, after which it receives the result will forward it

to the client-side callback method. All built-in validation types defined by the JSR-303 specification

are executed client-side without requiring a round-trip to the server. It is also possible to provide

the client-side validation API with custom JavaScript to allow client-side execution of custom

validations.

31.1. Validating a single object

The Seam.validateBean() method may be used to validate a single object. It accepts the

following parameter values:

 Seam.validateBean(bean, callback, groups);

The bean parameter is the object to validate.

The callback parameter should contain a reference to the callback method to invoke once

validation is complete.

The groups parameter is optional, however may be specified if only certain validation groups

should be validated. The groups parameter may be a String or an array of String values for

when multiple groups are to be validated.

Here's an example showing how a bean called customer is validated:

 function test() {

 var customer = Seam.createBean("com.acme.model.Customer");

 customer.setFirstName("John");

 customer.setLastName("Smith");

 Seam.validateBean(customer, validationCallback);

 }

 function validationCallback(violations) {

Chapter 31. Seam Remoting - B...

164

 if (violations.length == 0) alert("All validations passed!");

 }

Tip

By default, when Seam Remoting performs validation for a single bean it will

traverse the entire object graph for that bean and validate each unique object that

it finds. If you don't wish to validate the entire object graph, then please refer to the

section on validating multiple objects later in this chapter for an alternative.

31.2. Validating a single property

Sometimes it might not be desirable to perform validation for all properties of a bean. For example,

you might have a dynamic form which displays validation errors as the user tabs between fields.

In this situation, you may use the Seam.validateProperty() method to validate a single bean

property.

Seam.validateProperty(bean, property, callback, groups)

The bean parameter is the object containing the property that is to be validated.

The property parameter is the name of the property to validate.

The callback parameter is a reference to the callback function to invoke once the property has

been validated.

The groups parameter is optional, however may be specified if validating the property against a

certain validation group. The groups parameter may be a String or an array of String values

for multiple groups.

Here's an example showing how to validate the firstName property of a bean called customer:

 function test() {

 var customer = Seam.createBean("com.acme.model.Customer");

 customer.setFirstName("John");

 Seam.validateProperty(customer, "firstName", validationCallback);

 }

 function validationCallback(violations) {

 if (violations.length == 0) alert("All validations passed!");

 }

Validating multiple objects and/or properties

165

31.3. Validating multiple objects and/or properties

It is also possible to perform multiple validations for beans and bean properties in one go. This

might be useful for example to perform validation of forms that present data from more than one

bean. The Seam.validate() method takes the following parameters:

 Seam.validate(validations, callback, groups);

The validations parameter should contain a list of the validations to perform. It may either be an

associative array (for a single validation), or an array of associative arrays (for multiple validations)

which define the validations that should be performed. We'll look at this parameter more closely

in just a moment.

The callback parameter should contain a reference to the callback function to invoke once

validation is complete. The optional groups parameter should contain the group name/s for which

to perform validation.

The groups parameter allows one or more validation groups (specified by providing a String or

array of String values) to be validated. The validation groups specified here will be applied to all

bean values contained in the validations parameter.

The simplest example, in which we wish to validate a single object would look like this:

 Seam.validate({bean:customer}, callback);

In the above example, validation will be performed for the customer object, after which the function

named validationCallback will be invoked.

Validate multiple beans is done by passing in an array of validations:

 Seam.validate([{bean:customer}, {bean:order}], callback);

Single properties can be validated by specifying a property name:

 Seam.validate({bean:customer, property: "firstName"}, callback);

To prevent the entire object graph from being validated, the traverse property may be set to

false:

Chapter 31. Seam Remoting - B...

166

 Seam.validate({bean:customer, traverse: false}, callback);

Validation groups may also be set for each individual validation, by setting the groups property

to a String or array of Strings value:

 Seam.validate({bean:customer, groups: "default"}, callback);

31.4. Validation groups

Validation group names should be the unqualified class name of the group class. For example,

for the class com.acme.InternalRegistration, the client-side group name should be specified

as InternalRegistration:

 Seam.validateBean(user, callback, "InternalRegistration"

It is also possible to set the default validation groups against which all validations will be performed,

by setting the Seam.ValidationGroups property:

 Seam.ValidationGroups = ["Default", "ExternalRegistration"];

If no explicit group is set for the default, and no group is specified when performing validation,

then the validation process will be executed against the 'Default' group.

31.5. Handling validation failures

If any validations fail during the validation process, then the callback method specified in the

validation function will be invoked with an array of constraint violations. If all validations pass, this

array will be empty. Each object in the array represents a single constraint violation, and contains

the following property values:

bean - the bean object for which the validation failed.

property - the name of the property that failed validation

value - the value of the property that failed validation

message - a message string describing the nature of the validation failure

The callback method should contain business logic that will process the constraint violations and

update the user interface accordingly to inform the user that validation has failed. The following

Handling validation failures

167

minimalistic example demonstrates how the validation errors can be displayed to the user as

popup alerts:

 function validationCallback(violations) {

 for (var i = 0; i < violations.length; i++) {

 alert(violations[i].property + "=" + violations[i].value + " [violation] -> " + violations[i].message);

168

Part IX. Seam Rest

clxxi

Introduction

Seam REST is a lightweight module that provides additional integration of technologies within the

Java EE platform as well as third party technologies.

Seam REST is independent from CDI and JAX-RS implementations and thus fully portable

between Java EE 6 environments.

clxxii

Chapter 32.

173

Installation
The Seam REST module runs only on Java EE 6 compliant servers such as JBoss Application

Server [http://www.jboss.org/jbossas] or GlassFish [https://glassfish.dev.java.net/].

32.1. Basics

To use the Seam REST module, add seam-rest and seam-rest-api jars into the web application.

If using Maven, add the following dependency into the web application's pom.xml configuration file.

Example 32.1. Dependency added to pom.xml

<dependency>

 <groupId>org.jboss.seam.rest</groupId>

 <artifactId>seam-rest-api</artifactId>

 <version>${seam.rest.version}</version>

 </dependency>

<dependency>

 <groupId>org.jboss.seam.rest</groupId>

 <artifactId>seam-rest-impl</artifactId>

 <version>${seam.rest.version}</version>

</dependency>

Tip

Substitute the expression ${seam.rest.version} with the most recent or

appropriate version of Seam Catch. Alternatively, you can create a Maven

user-defined property [http://www.sonatype.com/books/mvnref-book/reference/

resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to

satisfy this substitution so you can centrally manage the version.

32.2. Transitive dependencies

Besides, Seam REST has several transitive dependencies (which are added automatically when

using maven). Refer to Table 37.1, “Transitive dependencies” for more details.

32.3. Registering JAX-RS components explicitly

The Seam REST module registers SeamExceptionMapper to hook into the exception processing

mechanism of JAX-RS and TemplatingMessageBodyWriter to provide templating support.

http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 32. Installation

174

These components are registered by default if classpath scanning of JAX-RS resources and

providers is enabled (an empty javax.ws.rs.core.Application subclass is provided).

@ApplicationPath("/api/*")

public class MyApplication extends Application {}

Otherwise, if the Application's getClasses() method is overriden to select resources and

providers explicitlyy add SeamExceptionMapper and TemplatingMessageBodyWriter.

@ApplicationPath("/api/*")

public class MyApplication extends Application

{

 @Override

 public Set<Class<?>> getClasses()

 {

 Set<Class<?>> classes = new HashSet<Class<?>>();

 ...

 ...

 ...

 classes.add(SeamExceptionMapper.class);

 classes.add(TemplatingMessageBodyWriter.class);

 return classes;

 }

}

Chapter 33.

175

Exception Handling
The JAX-RS specification defines the mechanism for exception mapping providers as the standard

mechanism for Java exception handling. The Seam REST module comes with an alternative

approach, which is more consistent with the CDI programming model. It is also easier to use and

still remains portable.

The Seam REST module allows you to:

• integrate with Seam Catch and thus handle exceptions that occur in different parts of an

application uniformly;

• define exception handling rules declaratively with annotations or XML.

33.1. Seam Catch Integration

Seam Catch handles exceptions within the Seam REST module: as result, an exception that

occurs during an invocation of a JAX-RS service is routed through the Catch exception handling

mechanism similar to the CDI event bus. This allows you to implement the exception handling

logic in a loosely-coupled fashion.

The following code sample demonstrates a simple exception handler that converts the

NoResultException exception to a 404 HTTP response.

Example 33.1. Seam Catch Integration - NoResultException handler

@HandlesExceptions

public class ExceptionHandler

{

 @Inject @RestResource

 ResponseBuilder builder

 public void handleException(@Handles @RestRequest CaughtException<NoResultEx ception> event)

 {

 builder.status(404).entity("The requested resource does not exist.");

 }

}

The @HandlesExceptions annotation marks the ExceptionHandler bean as capable of

handling exceptions.

The ResponseBuilder for creating the HTTP response is injected.

Chapter 33. Exception Handling

176

A method for handling NoResultException instances. Note that the ExceptionHandler can

define multiple exception handling methods for various exception types.

Similarly to the CDI event bus, exceptions handled by a handler method can be filtered by

qualifiers. The example above treats only exceptions that occur in a JAX-RS service invocation

(as opposed to all exceptions of the given type that occur in the application, for example in the

view layer). Thus, the @RestRequest qualifier is used to enable the handler only for exceptions

that occur during JAX-RS service invocation.

Catch integration is optional and only enabled when Catch libraries are available on classpath.

For more information on Seam Catch, refer to Seam Catch reference documentation [http://

docs.jboss.org/seam/3/catch/latest/reference/en-US/html/] .

33.2. Declarative Exception Mapping

Exception-mapping rules are often fairly simple. Thus, instead of being implemented

programatically, they can be expressed declaratively through metadata such as Java annotations

or XML. The Seam REST module supports both ways of declarative configurations.

For each exception type, you can specify a status code and an error message of the HTTP

response.

33.2.1. Annotation-based configuration

You can configure Seam REST exception mapping directly in your Java code with Java

Annotations. An exception mapping rule is defined as a @ExceptionMapping annotation. Use an

@ExceptionMapping.List annotation to define multiple exception mappings.

Example 33.2. Annotation-based exception mapping configuration

@ExceptionMapping.List({

 @ExceptionMapping(exceptionType = NoResultException.class, status = 404, message = "Requested

 resource does not exist."),

 @ExceptionMapping(exceptionType = IllegalArgumentException.class, status = 400, message = "Illegal

 argument value.")

})

@ApplicationPath("/api")

public MyApplication extends Application {

The @ExceptionMapping annotation can be applied on any Java class in the deployment.

However, it is recommended to keep all exception mapping declarations in the same place, for

example, in the javax.ws.rs.core.Application subclass.

http://docs.jboss.org/seam/3/catch/latest/reference/en-US/html/
http://docs.jboss.org/seam/3/catch/latest/reference/en-US/html/
http://docs.jboss.org/seam/3/catch/latest/reference/en-US/html/

XML configuration

177

Table 33.1. @ExceptionMapping properties

Name Required Default value Description

exceptionType true - Fully-qualified class

name of the exception

class

status true - HTTP status code

message false - Error message sent

within the HTTP

response

useExceptionMessage false false Exception error

message

interpolateMessageBodyfalse true Enabling/disabling the

EL interpolation of the

error message

useJaxb false true Enabling/disabling

wrapping of the error

message within a

JAXB object. This

allows marshalling to

various media formats

such as application/

xml, application/json,

etc.

33.2.2. XML configuration

As an alternative to the annotation-based configuration, you can use the Seam Config module to

configure the SeamRestConfiguration class in XML.

First, add the Seam Config module to the application. If you are using maven, you can do this by

specifying the following dependency:

Example 33.3. Seam XML dependency added to the pom.xml file.

<dependency>

 <groupId>org.jboss.seam.config</groupId>

 <artifactId>seam-config-xml</artifactId>

 <version>${seam.config.version}</version>

</dependency>

Chapter 33. Exception Handling

178

For more information on the Seam Config module, refer to the Seam Config reference

documentation [http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/]. Once

you have added the Seam XML module, specify the configuration in the seam-beans.xml file,

located in the WEB-INF or META-INF folder of the web archive.

Example 33.4. Exception mapping configuration in seam-beans.xml

<rest:SeamRestConfiguration>

 <rest:mappings>

 <s:value>

 <rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">

 <rest:message>Requested resource does not exist.</rest:message>

 </rest:Mapping>

 </s:value>

 <s:value>

 <rest:Mapping exceptionType="java.lang.IllegalArgumentException" statusCode="400">

 <rest:message>Illegal value.</rest:message>

 </rest:Mapping>

 </s:value>

 </rest:mappings>

</rest:SeamRestConfiguration>

Furthermore, you can use EL expressions in message templates to provide dynamic and more

descriptive error messages.

Example 33.5. Exception mapping configuration in seam-beans.xml

<rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">

 <rest:message>Requested resource (#{uriInfo.path}) does not exist.</rest:message>

</rest:Mapping>

33.2.3. Declarative exception mapping processing

When an exception occurs at runtime, the SeamExceptionMapper first looks for a matching

exception mapping rule. If it finds one, it creates an HTTP response with the specified status code

and error message.

The error message is marshalled within a JAXB object and is thus available in multiple media

formats. The most commonly used formats are XML and JSON. Most JAX-RS implementations

provide media providers for both of these formats. In addition, the error message is also available

in plain text.

http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/
http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/
http://docs.jboss.org/seam/3/config/latest/reference/en-US/html_single/

Declarative exception mapping processing

179

Example 33.6. Sample HTTP response

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: 123

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<error>

 <message>Requested resource does not exist.</message>

</error>

180

Chapter 34.

181

Bean Validation Integration
Bean Validation (JSR-303) is a specification introduced as a part of Java EE 6. It aims to provide

a standardized way of validating the domain model across all application layers.

The Seam REST module follows the Bean Validation specification and the incomming HTTP

requests can be validated with this standardized mechanism.

34.1. Validating HTTP requests

Firstly, enable the ValidationInterceptor in the beans.xml configuration file.

<interceptors>

 <class>org.jboss.seam.rest.validation.ValidationInterceptor</class>

</interceptors>

Then, enable validation of a particular method by decorating it with the @ValidateRequest

annotation.

@PUT

@ValidateRequest

public void updateTask(Task incommingTask)

{

...

}

Now, the HTTP request's entity body (the incomingTask parameter) will be validated prior to

invoking the method.

34.1.1. Validating entity body

By default, the entity parameter (the parameter with no annotations that represent the body of the

HTTP request) is validated. If the object is valid, the web service method is executed. Otherwise,

a ValidationException exception is thrown.

The ValidationException exception is a simple carrier of constraint violations found by the

Bean Validation provider. The exception can be handled by an ExceptionMapper or Seam Catch

handler.

Seam REST comes with a built-in ValidationException handler, which is registered by default.

The exception handler converts the ValidationException to an HTTP response with the 400

(Bad request) status code. Furthermore, it sends messages relevant to the violated constraints

within the message body of the HTTP response.

Chapter 34. Bean Validation I...

182

Example 34.1. HTTP response

HTTP/1.1 400 Bad Request

Content-Type: application/xml

Content-Length: 129

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<error>

 <messages>

 <message>Name length must be between 1 and 100.</message>

 </messages>

</error>

34.1.2. Validating resource fields

Besides the message body, the JAX-RS specification allows various parts of the HTTP request

to be injected into the JAX-RS resource or passed as method parameters. These parameters are

usually HTTP form parameters, query parameters, path parameters, headers, etc.

Example 34.2. JAX-RS resource

public class PersonResource

{

 @QueryParam("search")

 @Size(min = 1, max = 30)

 private String query;

 @QueryParam("start")

 @DefaultValue("0")

 @Min(0)

 private int start;

 @QueryParam("limit")

 @DefaultValue("20")

 @Min(0) @Max(50)

 private int limit;

...

If a method of a resource is annotated with an @ValidateRequest annotation, the fields of a

resource are validated by default.

Validating other method parameters

183

Important

Since the JAX-RS injection occurs only at resource creation time, do not use the

JAX-RS field injection for other than @RequestScoped resources.

34.1.3. Validating other method parameters

The JAX-RS specification allows path parameters, query parameters, matrix parameters, cookie

parameters and headers to be passed as parameters of a resource method.

Example 34.3. JAX-RS method parameters

@GET

public List<Person>search(@QueryParam("search") String query,

 @QueryParam("start") @DefaultValue("0") int start,

 @QueryParam("limit") @DefaultValue("20") int limit)

Note

Currently, Seam REST validates only JavaBean parameters (as oposed to

primitive types, Strings and so on). Therefore, to validate these types of

parameters, either use resource field validation described in Section 34.1.2,

“Validating resource fields” or read further and use parameter objects.

In order to prevent an oversized method signature when the number of parameters is too

large, JAX-RS implementations provide implementations of the Parameter Object pattern

[http://sourcemaking.com/refactoring/introduce-parameter-object]. These objects aggregate

multiple parameters into a single object, for example RESTEasy Form Object [http://

docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html] or Apache CXF Parameter

Bean [http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans]. These parameters can

be validated by Seam REST. To trigger the validation, annotate the parameter with a

javax.validation.Valid annotation.

Example 34.4. RESTEasy parameter object

public class MyForm {

 @FormParam("stuff")

 @Size(min = 1, max = 30)

 private int stuff;

 @HeaderParam("myHeader")

http://sourcemaking.com/refactoring/introduce-parameter-object
http://sourcemaking.com/refactoring/introduce-parameter-object
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans

Chapter 34. Bean Validation I...

184

 private String header;

 @PathParam("foo")

 public void setFoo(String foo) {...}

}

@POST

@Path("/myservice")

@ValidateRequest

public void post(@Valid @Form MyForm form) {...}

34.2. Validation configuration

Table 34.1. @ValidateRequest annotation properties

@ValidateRequest attribute Description Default value

validateMessageBody Enabling/disabling validation

of message body parameters

true

validateResourceFields Enabling/disabling validation

of fields of a JAX-RS resource

true

groups Validation groups to be used

for validation

javax.validation.groups.Default

34.3. Using validation groups

In some cases, it is desired to have a specific group of constraints used for validation of web

service parameters. These constraints are usually weaker than the default constraints of a domain

model. Take partial updates as an example.

Consider the following example:

Example 34.5. Employee.java

public class Employee {

 @NotNull

 @Size(min = 2, max = 30)

 private String name;

 @NotNull

 @Email

 private String email;

 @NotNull

 private Department department;

Using validation groups

185

 // getters and setters

}

The Employee resource in the example above is not allowed to have the null value specified in any

of its fields. Thus, the entire representation of a resource (including the department and related

object graph) must be sent to update the resource.

When using partial updates, only values of modified fields are required to be sent within the update

request, while the non-null values of the received object are updated. Therefore, two groups

of constraints are needed: group for partial updates (including @Size and @Email, excluding

@NotNull) and the default group (@NotNull).

A validation group is a simple Java interface:

Example 34.6. PartialUpdateGroup.java

public interface PartialUpdateGroup {}

Example 34.7. Employee.java

@GroupSequence({ Default.class, PartialUpdateGroup.class })

public class Employee {

 @NotNull

 @Size(min = 2, max = 30, groups = PartialUpdateGroup.class)

 private String name;

 @NotNull

 @Email(groups = PartialUpdateGroup.class)

 private String email;

 @NotNull

 private Department department;

 // getters and setters

}

The @NotNull constraint belongs to the default validation group.

The @Size constraint belongs to the partial update validation group.

The @GroupsSequence annotation indicates that both validation groups are used by default

(for example, when persisting the entity).

Finally, the ValidationInterceptor is configured to validate the PartialUpdateGroup group

only.

Chapter 34. Bean Validation I...

186

Example 34.8. EmployeeResource.java

@Path("/{id}")

 @PUT

 @Consumes("application/xml")

 @ValidateRequest(groups = PartialUpdateGroup.class)

 public void updateEmployee(Employee e, @PathParam("id") long id)

 {

 Employee employee = em.find(Employee.class, id);

 if (e.getName() != null)

 {

 employee.setName(e.getName());

 }

 if (e.getEmail() != null)

 {

 employee.setEmail(e.getEmail());

 }

 }

The partial update validation group is used for web service parameter validation.

Partial update — only the not-null fields of the transferred representation are used for update.

The null fields are not updated.

Chapter 35.

187

Templating support
Seam REST allows to create HTTP responses based on the defined templates. Instead of being

bound to a particlar templating engine, Seam REST comes with a support for multiple templating

engines and support for others can be plugged in.

35.1. Creating JAX-RS responses using templates

REST-based web services are often expected to return multiple representations of a resource.

The templating support is useful for producing media formats such as XHTML and it can be also

used instead of JAXB to produce domain-specific XML representations of a resource. Besides,

almost any other representation of a resource can be described in a template.

To enable templating for a particular method, decorate the method with the @ResponseTemplate

annotation. Path to a template file to be used for rendering is required.

Example 35.1. @ResponseTemplate in action

@ResponseTemplate("/freemarker/task.ftl")

public Task getTask(@PathParam("taskId") long taskId) {

...

}

The @ResponseTemplate annotation offers several other options. For example, it is possible for

a method to offer multiple representations of a resource, each rendered with a different template.

In the example below, the produces member of the @ResponseTemplate annotation is used to

distinguish between produced media types.

Example 35.2. Multiple @ResponseTemplates

@GET

@Produces({ "application/json", "application/categories+xml", "application/categories-short

+xml" })

@ResponseTemplate.List({

 @ResponseTemplate(value = "/freemarker/categories.ftl", produces = "application/categories

+xml"),

 @ResponseTemplate(value = "/freemarker/categories-short.ftl", produces = "application/

categories-short+xml")

})

public List<Category> getCategories()

Chapter 35. Templating support

188

Table 35.1. @ResponseTemplate options

Name Required Default value Description

value true - Path to the template

(for example /

freemarker/

categories.ftl)

produces false */* Restriction of media

type produced by

the template (useful

in situations when

a method produces

multiple media types,

with different

templates)

responseName false response Name under which

the object returned

by the JAX-RS

method is available

in the template

(for example, Hello

${response.name})

35.1.1. Accessing the model

There are several ways of accessing the domain data within a template.

Firstly, the object returned by the JAX-RS method is available under the "response" name by

default. The object can be made available under a different name using the responseName

member of the @ResponseTemplate annotation.

Example 35.3. hello.ftl

Hello ${response.name}

Secondly, every bean reachable via an EL expression is available within a template.

Example 35.4. Using EL names in a template

#foreach(${student} in ${university.students})

 <student>${student.name}</student>

#end

Built-in support for templating engines

189

Note

Note that the syntax of the expression depends on the particular templating

engine and mostly differs from the syntax of EL expressions. For example,

${university.students} must be used instead of #{university.students} in

a FreeMarker template.

Last but not least, the model can be populated programatically. In order to do that, inject the

TemplatingModel bean and put the desired objects into the underlying data map. In the following

example, the list of professors is available under the "professors" name.

Example 35.5. Defining model programatically

@Inject

private TemplatingModel model;

@GET

@ResponseTemplate("/freemarker/university.ftl")

public University getUniversity()

{

 // load university and professors

 University university = ...

 List<Professor> professors = ...

 model.getData().put("professors", professors);

 return university;

}

35.2. Built-in support for templating engines

Seam REST currently comes with built-in templating providers for FreeMarker and Apache

Velocity.

35.2.1. FreeMarker

FreeMarker is one of the most popular templating engines. To enable Seam REST FreeMarker

support, bundle the FreeMarker jar with the web application.

For more information on writing FreeMarker templates, refer to the FreeMarker Manual [http://

freemarker.sourceforge.net/docs/index.html].

http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html

Chapter 35. Templating support

190

35.2.2. Apache Velocity

Apache Velocity is another popular Java-based templating engine. Similarly to FreeMarker

support, Velocity support is enabled automatically if Velocity libraries are detected on the

classpath.

For more information on writing Velocity templates, refer to the Apache Velocity User Guide [http://

velocity.apache.org/engine/releases/velocity-1.5/user-guide.html]

35.2.3. Pluggable support for templating engines

All that needs to be done to extend the set of supported templating engines is to implement

the TemplatingProvider interface. Refer to Javadoc [http://docs.jboss.org/seam/3/rest/latest/

api/org/jboss/seam/rest/templating/TemplatingProvider.html] for hints.

35.2.4. Selecting prefered templating engine

In certain deployment scenarios it is not possible to control the classpath completely and multiple

template engines may be available at the same time. If that happens, Seam REST fails to operate

with the following message:

Multiple TemplatingProviders found on classpath. Select the prefered one.

In such case, define the prefered templating engine in the XML configuration as demonstrated

below to resolve the TemplatingProvider ambiguity.

Example 35.6. Prefered provider

<beans xmlns:rest="urn:java:org.jboss.seam.rest:org.jboss.seam.rest.exceptions">

 <rest:SeamRestConfiguration preferedTemplatingProvider="org.jboss.seam.rest.templating.freemarker.FreeMarkerProvider">

</beans>

Table 35.2. Built-in templating providers

Name FQCN

FreeMarker org.jboss.seam.rest.templating.freemarker.FreeMarkerProvider

Apache Velocity org.jboss.seam.rest.templating.velocity.VelocityProvider

http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html

Chapter 36.

191

RESTEasy Client Framework

Integration
The RESTEasy Client Framework is a framework for writing clients for REST-based web

services. It reuses JAX-RS metadata for creating HTTP requests. For more information about

the framework, refer to the project documentation [http://docs.jboss.org/resteasy/docs/2.0.0.GA/

userguide/html/RESTEasy_Client_Framework.html].

Integration with the RESTEasy Client Framework is optional in Seam REST and only available

when RESTEasy is available on classpath.

36.1. Using RESTEasy Client Framework with Seam

REST

Let us assume as an example that a remote server exposes a web service for providing task

details to the client through the TaskService interface below.

Example 36.1. Sample JAX-RS annotated interface

@Path("/task")

@Produces("application/xml")

public interface TaskService

{

 @GET

 @Path("/{id}")

 Task getTask(@PathParam("id")long id);

}

To access the remote web service, Seam REST builds and injects a client object of the web

service.

Example 36.2. Injecting REST Client

@Inject @RestClient("http://example.com")

private TaskService taskService;

...

Task task = taskService.getTask(1);

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html

Chapter 36. RESTEasy Client F...

192

The Seam REST module injects a proxied TaskService interface and the RESTEasy Client

Framework converts every method invocation on the TaskService to an HTTP request and sends

it over the wire to http://example.com. The HTTP response is unmarshalled automatically and

the response object is returned by the method call.

URI definition supports EL expressions.

@Inject @RestClient("#{example.service.uri}")

36.2. Manual ClientRequest API

Besides proxying JAX-RS interfaces, the RESTEasy Client Framework provides the

ClientRequest API for manual building of HTTP requests. For more information on

the ClientRequest API, refer to the project documentation [http://docs.jboss.org/resteasy/

docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest].

Example 36.3. Injecting ClientRequest

@Inject @RestClient("http://localhost:8080/test/ping")

private ClientRequest request;

...

request.accept(MediaType.TEXT_PLAIN_TYPE);

ClientResponse<String> response = request.get(String.class);

36.3. ClientExecutor Configuration

If not specified otherwise, every request is executed by the default Apache HTTP Client 4

configuration. This can be altered by providing a ClientExecutor bean.

Example 36.4. Custom Apache HTTP Client 4 configuration

@Produces

public ClientExecutor createExecutor()

{

 HttpParams params = new BasicHttpParams();

 ConnManagerParams.setMaxTotalConnections(params, 3);

 ConnManagerParams.setTimeout(params, 1000);

 SchemeRegistry schemeRegistry = new SchemeRegistry();

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest

ClientExecutor Configuration

193

 schemeRegistry.register(new Scheme("http", PlainSocketFactory.getSocketFactory(), 80));

 ClientConnectionManager cm = new ThreadSafeClientConnManager(params, schemeRegistry);

 HttpClient httpClient = new DefaultHttpClient(cm, params);

 return new ApacheHttpClient4Executor(httpClient);

}

194

Chapter 37.

195

Seam REST Dependencies

37.1. Transitive Dependencies

The Seam REST module depends on the transitive dependencies at runtime listed in table

Table 37.1, “Transitive dependencies” .

Table 37.1. Transitive dependencies

Name Version

Seam Solder 3.0.0.Beta2

37.2. Optional dependencies

37.2.1. Seam Catch

Seam Catch can be used for handling Java exceptions. For more information on using Seam

Catch with Seam REST, refer to Section 33.1, “Seam Catch Integration”

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-api</artifactId>

 <version>${seam.catch.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-impl</artifactId>

 <version>${seam.catch.version}</version>

</dependency>

37.2.2. Seam Config

Seam Config can be used to configure Seam REST using XML. For more information on using

Seam Config with Seam REST, refer to Section 33.2.2, “XML configuration”

<dependency>

 <groupId>org.jboss.seam.config</groupId>

 <artifactId>seam-config-xml</artifactId>

 <version>${seam.config.version}</version>

</dependency>

Chapter 37. Seam REST Depende...

196

37.2.3. FreeMarker

FreeMarker can be used for rendering HTTP responses. For more information on using

FreeMarker with Seam REST, refer to Section 35.2.1, “FreeMarker”

<dependency>

 <groupId>org.freemarker</groupId>

 <artifactId>freemarker</artifactId>

 <version>${freemarker.version}</version>

</dependency>

37.2.4. Apache Velocity

Apache Velocity can be used for rendering HTTP responses. For more information on using

Velocity with Seam REST, refer to Section 35.2.2, “Apache Velocity”

<dependency>

 <groupId>org.apache.velocity</groupId>

 <artifactId>velocity</artifactId>

 <version>${velocity.version}</version>

</dependency>

<dependency>

 <groupId>org.apache.velocity</groupId>

 <artifactId>velocity-tools</artifactId>

 <version>${velocity.tools.version}</version>

</dependency>

37.2.5. RESTEasy

RESTEasy Client Framework can be used for building clients of RESTful web services. For

more information on using RESTEasy Client Framework, refer to Chapter 36, RESTEasy Client

Framework Integration

<dependency>

 <groupId>org.jboss.resteasy</groupId>

 <artifactId>resteasy-jaxrs</artifactId>

 <version>${resteasy.version}</version>

</dependency>

RESTEasy

197

Note

Note that RESTEasy is provided on JBoss Application Server 6 and thus you do

not need to bundle it with the web application.

198

Part X. Seam Validation

Chapter 38.

201

Introduction
The Seam Validation module provides CDI support for Hibernate Validator ...

202

Chapter 39.

203

Installation
This chapter describes the steps required to getting started with the Seam Validation Module.

39.1. Prerequisites

Not very much is needed in order to use the Seam Validation Module. Just be sure to run on

JDK 5 or later, as the Bean Validation API and therefore this Seam module are heavily based

on Java annotations.

39.2. Maven setup

The recommended way for setting up Seam Validation is using Apache Maven [http://

maven.apache.org/]. The Seam Validation Module artifacts are deployed to the JBoss Maven

repository. If not yet the case, therefore add this repository to your settings.xml file (typically in

~/.m2/settings.xml) in order to download the dependencies from there:

Example 39.1. Setting up the JBoss Maven repository in settings.xml

...

<profiles>

 <profile>

 <repositories>

 <repository>

 <id>jboss-public</id>

 <url>http://repository.jboss.org/nexus/content/groups/public-jboss/</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

</profiles>

<activeProfiles>

 <activeProfile>jboss-public</activeProfile>

</activeProfiles>

...

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Chapter 39. Installation

204

General information on the JBoss Maven repository is available in the JBoss community

wiki [http://community.jboss.org/wiki/MavenGettingStarted-Users], more information on Maven's

settings.xml file can be found in the settings reference [???].

Having set up the repository you can add the Seam Validation Module as dependency to the

pom.xml of your project. As most Seam modules the validation module is split into two parts,

API and implementation. Generally you should be using only the types from the API within your

application code. In order to avoid unintended imports from the implementation it is recommended

to add the API as compile-time dependency, while the implementation should be added as runtime

dependency only:

Example 39.2. Specifying the Seam Validation Module dependencies in

pom.xml

...

<properties>

 <seam.validation.version>x.y.z</weld.version>

</properties>

...

<dependencies>

 ...

 <dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>seam-validation-api</artifactId>

 <version>${seam.validation.version}</version>

 <scope>compile</scope>

 </dependency>

 <dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>seam-validation-impl</artifactId>

 <version>${seam.validation.version}</version>

 <scope>runtime</scope>

 </dependency>

 ...

</dependencies>

...

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
???
???

Manual setup

205

Note

Replace "x.y.z" in the properties block with the Seam Validation version you want

to use.

39.3. Manual setup

TODO GM: add correct links/file names

In case you are not working with Maven or a comparable build management tool you can also

add Seam Validation manually to you project. Download the distribution file from http://..., un-zip

it and add the JARs api and impl to the classpath of your project.

206

Chapter 40.

207

Dependency Injection
The Seam Validation module provides enhanced support for dependency injection services

related to bean validation. This support falls into two areas:

• Retrieval of javax.validation.ValidatorFactory and javax.validation.Validator via

dependency injection in non-Java EE environments

• Dependency injection for constraint validators

40.1. Retrieving of validator factory and validators via

dependency injection

As the Bean Validation API is part of Java EE 6 there is an out-of-the-box support for retrieving

validator factories and validators instances via dependency injection in any Java EE 6 container.

The Seam Validation module provides the same service for non-Java EE environements

such as for instance stand-alone web containers. Just annotate any field of type

javax.validation.ValidatorFactory with @Inject to have the default validator factory

injected:

Example 40.1. Injection of default validator factory

package com.mycompany;

import javax.inject.Inject;

import javax.validation.Validator;

import javax.validation.ValidatorFactory;

public class MyBean {

 @Inject

 private ValidatorFactory validatorFactory;

 public void doSomething() {

 Validator validator = validatorFactory.getValidator();

 //...

 }

}

Chapter 40. Dependency Injection

208

Note

The injected factory is the default validator factory returned by the Bean

Validation bootstrapping mechanism. This factory can customized with help of the

configuration file META-INF/validation.xml. The Hibernate Validator Reference

Guide describes in detail [http://docs.jboss.org/hibernate/stable/validator/

reference/en-US/html/validator-xmlconfiguration.html] the available configuration

options.

It is also possible to directly inject a validator created by the default validator factory:

Example 40.2. Injection of a validator from the default validator factory

package com.mycompany;

import java.util.Set;

import javax.inject.Inject;

import javax.validation.ConstraintViolation;

import javax.validation.Validator;

public class MyBean {

 @Inject

 private Validator validator;

 public void doSomething(Foo bar) {

 Set<ConstraintViolation<Foo>> constraintViolations = validator.validate(bar);

 //...

 }

}

40.2. Dependency injection for constraint validators

The Seam Validation module provides support for dependency injection within

javax.validation.ConstraintValidator implementations. This is very useful if you need to

access other CDI beans within you constraint validator such as business services etc.

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html

Dependency injection for constraint validators

209

Warning

Relying on dependency injection reduces portability of a validator implementation,

i.e. it won't function properly without the Seam Validation module or a similar

solution.

To make use of dependency injection in constraint validators you have to configure

org.jboss.seam.validation.InjectingConstraintValidatorFactory as the constraint

validator factory to be used by the bean validation provider. To do so create the file META-INF/

validation.xml with the following contents:

Example 40.3. Configuration of InjectingConstraintValidatorFactory in

META-INF/validation.xml

<?xml version="1.0" encoding="UTF-8"?>

<validation-config

 xmlns="http://jboss.org/xml/ns/javax/validation/configuration" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration validation-

configuration-1.0.xsd">

 <constraint-validator-factory>

 org.jboss.seam.validation.InjectingConstraintValidatorFactory

 </constraint-validator-factory>

</validation-config>

Having configured the constraint validator factory you can inject arbitrary CDI beans into you

validator implementions. Listing Example 40.4, “Dependency injection within ConstraintValidator

implementation” shows a ConstraintValidator implementation for the @Past constraint which

uses an injected time service instead of relying on the JVM's current time to determine whether

a given date is in the past or not.

Example 40.4. Dependency injection within ConstraintValidator

implementation

package com.mycompany;

import java.util.Date;

import javax.inject.Inject;

Chapter 40. Dependency Injection

210

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

import javax.validation.constraints.Past;

import com.mycompany.services.TimeService;

public class CustomPastValidator implements ConstraintValidator<Past, Date>

{

 @Inject

 private TimeService timeService;

 @Override

 public void initialize(Past constraintAnnotation)

 {

 }

 @Override

 public boolean isValid(Date value, ConstraintValidatorContext context)

 {

 if (value == null)

 {

 return true;

 }

 return value.before(timeService.getCurrentTime());

 }

}

Note

If you want to redefine the constraint validators for built-in constraints such

as @Past these validator implementations have to be registered with a custom

constraint mapping. More information can be found in the Hibernate Validator

Reference Guide [http://docs.jboss.org/hibernate/stable/validator/reference/en-

US/html/validator-xmlconfiguration.html#d0e2024].

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024

Chapter 41.

211

Method Validation
The Seam Validation module provides ...

212

Part XI. Seam Wicket

ccxv

Introduction

The goal of Seam for Apache Wicket is to provide a fully integrated CDI programming model

to the Apache Wicket web framework. Although Apache components (pages, panels, buttons,

etc.) are created by direct construction using "new", and therefore are not themselves CDI

contextual instances, with seam-wicket they can receive injections of scoped contextual instances

via @Inject. In addition, conversation propagation is supported to allow a conversation scope to

be tied to a wicket page and propagated across pages.

ccxvi

Chapter 42.

217

Installation
The seam-wicket.jar should be placed in the web application library folder. If you are using

Maven [http://maven.apache.org/] as your build tool, you can add the following dependency to

your pom.xml file:

<dependency>

 <groupId>org.jboss.seam.wicket</groupId>

 <artifactId>seam-wicket</artifactId>

 <version>${seam-wicket-version}</version>

</dependency>

Tip

Replace ${seam-wicket-version} with the most recent or appropriate version of

Seam for Apache Wicket.

As Wicket is normally used in a servlet (non-JavaEE) environment, you most likely will need to

bootstrap the CDI container yourself. This is most easily accomplished using the Weld Servlet

integration, described in the Weld Reference Guide [http://docs.jboss.org/weld/reference/latest/

en-US/html/environments.html].

You must extend org.jboss.seam.wicket.SeamApplication rather than

org.apache.wicket.protocol.http.WebApplication. In addition:

• if you override newRequestCycleProcessor() to return your own IRequestCycleProcessor

subclass, you must instead override getWebRequestCycleProcessorClass() and return the

class of your processor, and your processor must extend SeamWebRequestCycleProcessor.

• if you override newRequestCycle to return your own RequestCycle subclass, you must make

that subclass extend SeamRequestCycle.

If you can't extend SeamApplication, for example if you use an alternate Application

superclass for which you do not control the source, you can duplicate the

three steps SeamApplication takes, i.e. return a SeamWebRequestCycleProcessor

NonContextual instance in newRequestCycleProcessor(), return a SeamRequestCycle

instance in newRequestCycle(), and add a SeamComponentInstantiationListener with

addComponentInstantiationListener().

http://maven.apache.org/
http://maven.apache.org/
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html

218

Chapter 43.

219

Seam for Apache Wicket Features
Seam's integration with Wicket is focused on two tasks: conversation propagation through Wicket

page metadata and contextual injection of Wicket components.

43.1. Injection

Any object that extends org.apache.wicket.Component or one of its subclasses is eligible for

injection with CDI beans. This is accomplished by annotating fields of the component with the

@javax.inject.Inject annotation:

public class MyPage extends WebPage {

 @Inject SomeDependency dependency;

 public MyPage()

 {

 depedency.doSomeWork();

 }

Note that since Wicket components must be serializable, any non-transient field of a Wicket

component must be serializable. In the case of injected dependencies, the injected object itself

will be serializable if the scope of the dependency is not @Dependent, because the object injected

will be a serializable proxy, as required by the CDI specification. For injections of non-serializable

@Dependent objects, the field should be marked transient and the injection should be looked up

again in a component-specific attach() override, using the BeanManager API.

Upon startup, the CDI container will examine your component classes to ensure that the injections

you use are resolvable and unambiguous, as per the CDI specification. If any injections fail this

check, your application will fail to bootstrap.

The scopes available are similar to those in a JSF application, as descibed in the CDI reference.

The container, in an JavaEE environment, or the servlet listeners, in a servlet environment, will

set up the application, session, and request scopes. The conversation scope is set up by the

SeamWebRequestCycle as outlined in the next two sections.

43.2. Conversation Control

Application conversation control is accomplished as per the CDI specification. By default, like

JSF/CDI, each Wicket HTTP request (whether AJAX or not) has a transient conversation, which

is destroyed at the end of the request. A conversation is marked long-running by injecting the

javax.enterprise.context.Conversation bean and calling its begin() method.

public class MyPage extends WebPage {

Chapter 43. Seam for Apache W...

220

 @Inject Conversation conversation;

 public MyPage()

 {

 conversation.begin();

 //set up components here

 }

Similarly, a conversation is ended with the Conversation bean's end() method.

43.3. Conversation Propagation

A transient conversation is created when the first Wicket IRequestTarget is set during a request.

If the request target is an IPageRequestTarget for a page which has previously marked a

conversation as non-transient, or if the cid parameter is present in the request, the specified

conversation will be activated. If the conversation is missing (i.e. has timed out and been

destroyed), SeamRequestCycle.handleMissingConversation() will be invoked. By default this

does nothing, and your conversation will be new and transient. You can however override this, for

example to throw a PageExpiredException or something similar. Upon the end of a response,

SeamRequestCycleProcessor will store the cid of a long running conversation, if one exists, to the

current page's metadata map, if there is a current page. The key for the cid in the metadata map is

the singleton SeamMetaData.CID. Finally, upon detach(), the SeamRequestCycle will invalidate

and deactive the conversation context.

Note that the above process indicates that after a conversation is marked

long-running by a page, requests back to that page (whether ajax or

not) will activate that conversation. It also means that new Pages set as

RequestTargets, if created directly with setResponsePage(somePageInstance) or with

setResponsePage(SomePage.class,pageParameters), will have the conversation propagated

to them. This can be avoided by (a) ending the conversation before the call to setResponsePage,

(b) using a BookmarkablePageLink rather than directly instantiating the response page, or (c)

specifying an empty cid parameter in PageParameters when using setResponsePage(). (Note

that the final case also provides a mechanism for switching conversations: if a cid is specified in

PageParameters, it will be used by bookmarkable pages, rather than the current conversation.)

Part XII. Seam Solder

Chapter 44.

223

Getting Started
Getting started with Seam Solder is easy. All you need to do is put the API and implementation

JARs on the classpath of your CDI application. The features provided by Seam Solder will be

enabled automatically.

Some additional configuration, covered at the end of this chapter, is required if you are using a

pre-Servlet 3.0 environment.

44.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, first make sure you have

configured your build to use the JBoss Community repository [http://community.jboss.org/wiki/

MavenGettingStarted-Users], where you can find all the Seam artifacts. Then, add the following

single dependency to your pom.xml file to get started using Seam Solder:

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder</artifactId>

 <version>${seam.solder.version}</version>

</dependency>

This artifact includes the combined API and implementation.

Tip

Substitute the expression ${seam.solder.version} with the most recent or

appropriate version of Seam Solder. Alternatively, you can create a Maven user-

defined property to satisfy this substitution so you can centrally manage the

version.

To be more strict, you can use the API at compile time and only include the implementation at

runtime. This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder-api</artifactId>

 <version>${seam.solder.version}</version>

 <scope>compile</scope>

</dependency>

http://maven.apache.org/
http://maven.apache.org/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Chapter 44. Getting Started

224

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder-impl</artifactId>

 <version>${seam.solder.version}</version>

 <scope>runtime</scope>

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

44.2. Transitive dependencies

Most of Seam Solder has very few dependencies, only one of which is not provided by Java EE 6:

• javax.enterprise:cdi-api (provided by Java EE 6)

• javax.inject:javax:inject (provided by Java EE 6)

• javax.annotation:jsr250-api (provided by Java EE 6)

• javax.interceptor:interceptor-api (provided by Java EE 6)

• javax.el:el-api (provided by Java EE 6)

• org.jboss.logging:jboss-logging

Tip

The POM for Seam Solder specifies the versions required. If you are using Maven

3, you can easily import the dependencyManagement into your POM by declaring

the following in your depdendencyManagement section:

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder-parent</artifactId>

 <version>${seam.solder.version}</version>

 <type>pom</type>

 <scope>import</scope>

</dependency>

Some features of Seam Solder require additional dependencies (which are declared optional, so

will not be added as transitive dependencies):

org.javassist:javassist

Service Handlers, Unwrapping Producer Methods

Pre-Servlet 3.0 configuration

225

javax.servlet:servlet-api

Accessing resources from the Servlet Context

44.3. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

a Servlet component in your application's web.xml to access resources from the Servlet Context.

<listener>

 <listener-class>org.jboss.seam.solder.resourceLoader.servlet.ResourceListener</listener-

class>

</listener>

This registration happens automatically in a Servlet 3.0 environment through the use of a /META-

INF/web-fragment.xml included in the Solder implementation.

You're all setup. It's time to dive into all the useful stuff that Seam Solder provides!

226

Chapter 45.

227

Enhancements to the CDI

Programming Model
Seam Solder provides a number enhancements to the CDI programming model which are under

trial and may be included in later releases of Contexts and Dependency Injection.

45.1. Preventing a class from being processed

45.1.1. @Veto

Annotating a class @Veto will cause the type to be ignored, such that any definitions on the type

will not be processed, including:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

For example:

@Veto

class Utilities {

 ...

}

Besides, a package can be annotated with @Veto, causing all beans in the package to be

prevented from registration.

Example 45.1. package-info.java

@Veto

package com.example;

import org.jboss.seam.solder.core.Veto;

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed

types.

Chapter 45. Enhancements to t...

228

45.1.2. @Requires

Annotating a class with @Requires will cause the type to be ignored if the class dependencies

cannot be satisfied. Any definitions on the type will not be processed:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

Tip

Solder will use the Thread Context ClassLoader, as well as the classloader of the

type annotated @Requires to attempt to satisfy the class dependency.

For example:

@Requires(EntityManager.class)

class EntityManagerProducer {

 @Produces

 EntityManager getEntityManager() {

 ...

 }

}

Annotating a package with @Requires causes all beans in the package to be ignored if the class

dependencies cannot be satisfied. If both a class and it's package are annotated with @Requires,

both package-level and class-level dependencies have to be satisfied for the bean to be installed.

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed

types.

45.2. @Exact

Annotating an injection point with @Exact allows you to select an exact implementation of the

injection point type to inject. For example:

@Client

229

interface PaymentService {

 ...

}

class ChequePaymentService implements PaymentService {

 ...

}

class CardPaymentService implements PaymentService {

 ...

}

class PaymentProcessor {

 @Inject @Exact(CardPaymentService.class)

 PaymentService paymentService;

 ...

}

45.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want

to differentiate the default system locale from the current client's locale). Seam Solder provides

a built in qualifier, @Client for this purpose.

45.4. Named packages

Seam Solder allows you to annotate the package @Named, which causes every bean defined in

the package to be given its default name. Package annotations are defined in the file package-

info.java. For example, to cause any beans defined in com.acme to be given their default name:

@Named

package com.acme

Chapter 45. Enhancements to t...

230

45.5. @FullyQualified bean names

According to the CDI standard, the @Named annotation assigns a name to a bean equal to the

value specified in the @Named annotation or, if a value is not provided, the simple name of the bean

class. This behavior aligns is with the needs of most application developers. However, framework

writers should avoid trampling on the "root" bean namespace. Instead, frameworks should specify

qualified names for built-in components. The motivation is the same as qualifying Java types. The

@FullyQualified provides this facility without sacrificing type-safety.

Seam Solder allows you to customize the bean name using the complementary @FullyQualified

annotation. When the @FullyQualified annotation is added to a @Named bean type, producer

method or producer field, the standard bean name is prefixed with the name of the Java package

in which the bean resides, the segments separated by a period. The resulting fully-qualified bean

name (FQBN) replaces the standard bean name.

package com.acme;

@FullyQualified @Named

public class NamedBean {

 public String getAge()

 {

 return 5;

 }

}

The bean in the previous code listing is assigned the name com.acme.namedBean. The value of its

property age would be referenced in an EL expression (perhaps in a JSF view template) as follows:

#{com.acme.namedBean.age}

The @FullyQualified annotation is permitted on a bean type, producer method or producer field.

It can also be used on a Java package, in which case all @Named beans in that package get a

bean name which is fully-qualified.

@FullyQualified

package com.acme;

If you want to use a different Java package as the namespace of the bean, rather than the Java

package of the bean, you specify any class in that alternative package in the annotation value.

@FullyQualified bean names

231

package com.acme;

@FullyQualified(ClassInOtherPackage.class) @Named

public class CustomNamespacedNamedBean {

 ...

}

232

Chapter 46.

233

Annotation Literals
Seam Solder provides a complete set of AnnotationLiterals for every annotation type

defined by the CDI (JSR-299) and Injection (JSR-330) specification. These are located in

the org.jboss.seam.solder.literal package. Annotations without listitems provide a static

INSTANCE listitem that should be used rather than creating a new instance every time.

Literals are provided for the following annotations from Context and Dependency Injection:

• @Alternative

• @Any

• @ApplicationScoped

• @ConversationScoped

• @Decorator

• @Default

• @Delegate

• @Dependent

• @Disposes

• @Inject

• @Model

• @Named

• @New

• @Nonbinding

• @NormalScope

• @Observes

• @Produces

• @RequestScoped

• @SessionScoped

• @Specializes

• @Stereotype

Chapter 46. Annotation Literals

234

• @Typed

Literals are provided for the following annotations from Seam Solder:

• @Client

• @DefaultBean

• @Exact

• @Generic

• @GenericType

• @Mapper

• @MessageBundle

• @Requires

• @Resolver

• @Resource

• @Unwraps

• @Veto

Chapter 47.

235

Evaluating Unified EL
Seam Solder provides a method to evaluate EL that is not dependent on JSF or JSP, a facility

sadly missing in Java EE. To use it inject Expressions into your bean. You can evaluate value

expressions, or method expressions. The Seam Solder API provides type inference for you. For

example:

class FruitBowl {

 @Inject Expressions expressions;

 public void run() {

 String fruitName = expressions.evaluateValueExpression("#{fruitBowl.fruitName}");

 Apple fruit = expressions.evaluateMethodExpression("#{fruitBown.getFruit}");

 }

}

236

Chapter 48.

237

Resource Loading
Seam Solder provides an extensible, injectable resource loader. The resource loader can provide

URLs or managed input streams. By default the resource loader will look at the classpath, and

the servlet context if available.

If the resource name is known at development time, the resource can be injected, either as a URL

or an InputStream:

 @Inject

 @Resource("WEB-INF/beans.xml")

 URL beansXml;

 @Inject

 @Resource("WEB-INF/web.xml")

 InputStream webXml;

If the resource name is not known, the ResourceProvider can be injected, and the resource

looked up dynamically:

 @Inject

 void readXml(ResourceProvider provider, String fileName) {

 InputStream is = provider.loadResourceStream(fileName);

 }

If you need access to all resources under a given name known to the resource loader (as opposed

to first resource loaded), you can inject a collection of resources:

 @Inject

 @Resource("WEB-INF/beans.xml")

 Collection<URL> beansXmls;

 @Inject

 @Resource("WEB-INF/web.xml")

 Collection<InputStream> webXmls;

Chapter 48. Resource Loading

238

Tip

Any input stream injected, or created directly by the ResourceProvider is

managed, and will be automatically closed when the bean declaring the injection

point of the resource or provider is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Properties:

 @Inject

 @Resource("META-INF/aws.properties")

 Properties awsProperties;

48.1. Extending the resource loader

If you want to load resources from another location, you can provide an additional resource loader.

First, create the resource loader implementation:

class MyResourceLoader implements ResourceLoader {

 ...

}

And then register it as a service by placing the fully qualified class name of the implementation in a

file called META-INF/services/org.jboss.seam.solder.resourceLoader.ResourceLoader.

Chapter 49.

239

Logging
Seam Solder integrates JBoss Logging 3 as its logging framework of choice. JBoss Logging 3 is

a modern logging framework offering:

• Abstracts away from common logging backends and frameworks (such as JDK Logging, log4j

and slf4j)

• Provides a innovative, typed logger (see below for examples)

• Full support for internationalization and localization

• Developers can work with interfaces and annotations only

• Translators can work with message bundles in properties files

• Build time tooling to generate typed loggers for production, and runtime generation of typed

loggers for development

• Access to MDC and NDC (if underlying logger supports it)

• Loggers are serializable

Note

A number of the features of JBoss Logging 3 are still under development - at the

moment only runtime generation of typed is supported, and these loggers only

support the default message placed on the typed logger, and will not look up a

localized message.

To use a typed logger, first create the logger definition:

@MessageLogger

interface TrainSpotterLog {

 // Define log call with message, using printf-style interpolation of parameters

 @LogMessage @Message("Spotted %s diesel trains")

 void dieselTrainsSpotted(int number);

}

You can then inject the typed logger with no further configuration:

 // Use the train spotter log, with the log category "trains"

Chapter 49. Logging

240

 @Inject @Category("trains") TrainSpotterLog log;

and use it:

log.dieselTrainsSpotted(7);

JBoss Logging will use the default locale unless overridden:

 // Use the train spotter log, with the log category "trains", and select the UK locale

 @Inject @Category("trains") @Locale("en_GB") TrainSpotterLog log;

You can also log exceptions:

@MessageLogger

interface TrainSpotterLog {

 // Define log call with message, using printf-style interpolation of parameters

 // The exception parameter will be logged as an exception

 @LogMessage @Message("Failed to spot train %s")

 void missedTrain(String trainNumber,@Cause Exception exception);

}

You can then log a message with an exception:

log.missedTrain("RH1", cause);

You can also inject a "plain old" Logger:

 @Inject Logger log;

Log messages created from this Logger will have a category (logger name) equal to the fully-

qualified class name of the bean implementation class. You can specify a category explicitly using

an annotation.

 @Inject @Category("billing") Logger log;

241

You can also specify a category using a reference to a type:

 @Inject @TypedCategory(BillingService.class) Logger log;

Typed loggers also provide internationalization support, simply add the @MessageBundle

annotation to the logger interface (not currently supported).

Sometimes you need to access the message directly (for example to localize an exception

message). Seam Solder let's you inject a typed message bundle. First, declare the message

bundle:

@MessageBundle

interface TrainMessages {

 // Define a message using printf-style interpolation of parameters

 @Message("No trains spotted due to %s")

 String noTrainsSpotted(String cause);

}

Inject it:

@Inject @MessageBundle TrainMessages messages;

And use it:

 throw new BadDayException(messages.noTrainsSpotted("leaves on the line"));

242

Chapter 50.

243

Annotation and AnnotatedType

Utilities
Seam Solder provides a number of utilility classes to make working with Annotations and

AnnotatedTypes easier. This chapter will walk you each utility, and give you an idea of how to use

it. For more detail, take a look at the javaodoc on each class.

50.1. Annotated Type Builder

Seam Solder provides an AnnotatedType implementation that should be suitable for most

portable extensions needs. The AnnotatedType is created from AnnotatedTypeBuilder as

follows:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(baseType,true) /* readFromType can read from an AnnotatedType or a class */

 .addToClass(ModelLiteral.INSTANCE) /* add the @Model annotation */

 .create();

Here we create a new builder, and initialize it using an existing AnnotatedType. We can then add

or remove annotations from the class, and its members. When we have finished modifying the

type, we call create() to spit out a new, immutable, AnnotatedType.

AnnotatedTypeBuilder also allows you to specify a "redefinition" which can be applied to the

type, a type of member, or all members. The redefiner will receive a callback for any annotations

present which match the annotation type for which the redefinition is applied. For example, to

remove the qualifier @Unique from any class member and the type:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(baseType,true)

 .redefine(Unique.class, new AnnotationRedefiner<Unique>() {

 public void redefine(RedefinitionContext<A> ctx) {

 ctx.getAnnotationBuilder().remove(Unique.class);

 }

 }

 .create();

Chapter 50. Annotation and An...

244

50.2. Annotation Instance Provider

Sometimes you may need an annotation instance for an annotation whose type is not known at

development time. Seam Solder provides a AnnotationInstanceProvider class that can create

an AnnotationLiteral instance for any annotation at runtime. Annotation attributes are passed

in via a Map<String,Object>. For example given the follow annotation:

@Retention(RetentionPolicy.RUNTIME)

public @interface MultipleMembers {

 int intMember();

 long longMember();

 short shortMember();

 float floatMember();

 double doubleMember();

 byte byteMember();

 char charMember();

 boolean booleanMember();

 int[] intArrayMember();

}

We can create an annotation instance as follows:

/* Create a new provider */

 AnnotationInstanceProvider provider = new AnnotationInstanceProvider();

 /* Set the value for each of attributes */

 Map<String, Object> values = new HashMap<String, Object>();

 values.put("intMember", 1);

 values.put("longMember", 1);

 values.put("shortMember", 1);

 values.put("floatMember", 0);

 values.put("doubleMember", 0);

 values.put("byteMember", ((byte) 1));

 values.put("charMember", 'c');

Annotation Inspector

245

 values.put("booleanMember", true);

 values.put("intArrayMember", new int[] { 0, 1 });

 /* Generate the instance */

 MultipleMembers an = provider.get(MultipleMembers.class, values);

50.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated.

For example:

 /* Discover all annotations on type which are meta-annotated @Constraint */

 Set<Annotation> constraints = AnnotationInspector.getAnnotations(type, Constraint.class);

 /* Load the annotation instance for @FacesValidator the annotation may declared on the type, */

 /* or, if the type has any stereotypes, on the stereotypes */

 FacesValidator validator = AnnotationInspector.getAnnotation(

 type,

 FacesValidator.class,

 true,

 beanManager);

50.4. Synthetic Qualifiers

When developing an extension to CDI, it can be useful to detect certain injection points, or bean

definitions and based on annotations or other metadata, add qualifiers to further disambiguate

the injection point or bean definition for the CDI bean resolver. Solder's synthetic qualifers can be

used to easily generate and track such qualifers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The

provider will track the qualifier, and if a qualifier is requested again for the same original annotation,

the same instance will be returned.

 /* Create a provider, giving it a unique namespace */

 Synthetic.Provider provider = new Synthetic.Provider("com.acme");

 /* Get the a synthetic qualifier for the original annotation instance */

 Synthetic synthetic = provider.get(originalAnnotation);

 /* Later calls with the same original annotation instance will return the same instance */

 /* Alternatively, we can "get and forget" */

Chapter 50. Annotation and An...

246

 Synthetic synthetic2 = provider.get();

50.5. Reflection Utilities

Seam Solder comes with a number miscellaneous reflection utilities; these extend JDK reflection,

and some also work on CDI's Annotated metadata. See the javadoc on Reflections for more.

Solder also includes a simple utility, PrimitiveTypes for converting between primitive and their

respective wrapper types, which may be useful when performing data type conversion. Sadly, this

is functionality which is missing from the JDK.

InjectableMethod allows an AnnotatedMethod to be injected with parameter values obtained

by following the CDI type safe resolution rules, as well as allowing the default parameter values

to be overridden.

Chapter 51.

247

Obtaining a reference to the

BeanManager
When developing a framework that builds on CDI, you may need to obtain the BeanManager for the

application, can't simply inject it as you are not working in an object managed by the container. The

CDI specification allows lookup of java:comp/BeanManager in JNDI, however some environments

don't support binding to this location (e.g. servlet containers such as Tomcat and Jetty) and some

environments don't support JNDI (e.g. the Weld SE container). For this reason, most framework

developers will prefer to avoid a direct JNDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for

example via a context object. For example, you might be able to place the BeanManager in the

ServletContext, and retrieve it at a later date.

On some occasions however there is no suitable context to use, and in this case, you can

take advantage of the abstraction over BeanManager lookup provided by Seam Solder. To

lookup up a BeanManager, you can extend the abstract BeanManagerAware class, and call

getBeanManager():

public class WicketIntegration extends BeanManagerAware {

 public WicketManager getWicketManager() {

 Bean<?> bean = getBeanManager().getBean(Instance.class);

 ... // and so on to lookup the bean

 }

}

The benefit here is that BeanManagerAware class will first look to see if its BeanManager injection

point was satisified before consulting the providers. Thus, if injection becomes available to the

class in the future, it will automatically start the more efficient approach.

Occasionally you will be working in an existing class hierarchy, in which case you can use the

accessor on BeanManagerLocator. For example:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManager beanManager = new BeanManagerLocator().getBeanManager();

 ...

Chapter 51. Obtaining a refer...

248

 }

}

If this lookup fails to resolve a BeanManager, the BeanManagerUnavailableException, a runtime

exception, will be thrown. If you want to perform conditional logic based on whether the

BeanManager is available, you can use this check:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManagerLocator locator = new BeanManagerLocator();

 if (locator.isBeanManagerAvailable()) {

 BeanManager beanManager = locator.getBeanManager();

 ... // work with the BeanManager

 }

 else {

 ... // work without the BeanManager

 }

 }

}

However, keep in mind that you can inject into Servlets in Java EE 6!! So it's very likely the lookup

isn't necessary, and you can just do this:

public class ResourceServlet extends HttpServlet {

 @Inject

 private BeanManager beanManager;

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 ... // work with the BeanManager

 }

}

Chapter 52.

249

Bean Utilities
Seam Solder provides a number of base classes which can be extended to create custom beans.

Seam Solder also provides bean builders which can be used to dynamically create beans using

a fluent API.

AbstractImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute specification

defaults if null is passed for a particular attribute. Subclasses must implement the create()

and destroy() methods.

AbstractImmutableProducer

An immutable (and hence thread-safe) abstract class for creating producers. Subclasses must

implement produce() and dispose().

BeanBuilder

A builder for creating immutable beans which can read the type and annotations from an

AnnotatedType.

Beans

A set of utilities for working with beans.

ForwardingBean

A base class for implementing Bean which forwards all calls to delegate().

ForwardingInjectionTarget

A base class for implementing InjectionTarget which forwards all calls to delegate().

ForwardingObserverMethod

A base class for implementing ObserverMethod which forwards all calls to delegate().

ImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

ContextualLifecycle may be registered to receive lifecycle callbacks.

ImmutableInjectionPoint

An immutable (and hence thread-safe) injection point.

ImmutableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers).

ImmutablePassivationCapableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

Chapter 52. Bean Utilities

250

ContextualLifecycle may be registered to receive lifecycle callbacks. The bean implements

PassivationCapable, and an id must be provided.

ImmutablePassivationCapableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers). The bean implements PassivationCapable, and an id must be provided.

NarrowingBeanBuilder

A builder for creating immutable narrowing beans which can read the type and annotations

from an AnnotatedType.

The use of these classes is in general trivially understood with an understanding of basic

programming patterns and the CDI specification, so no in depth explanation is provided here. The

JavaDoc for each class and method provides more detail.

Chapter 53.

251

Properties
Properties are a convenient way of locating and working with JavaBean [http://en.wikipedia.org/

wiki/JavaBean] properties. They can be used with properties exposed via a getter/setter method,

or directly via the field of a bean, providing a uniform interface that allows you all properties in

the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

53.1. Working with properties

The Property<V> interface declares a number of methods for interacting with bean properties.

You can use these methods to read or set the property value, and read the property type

information. Properties may be readonly.

Table 53.1. Property methods

Method Description

String getName(); Returns the name of the

property.

Type getBaseType(); Returns the property type.

Class<V> getJavaClass(); Returns the property class.

AnnotatedElement

getAnnotatedElement();

Returns the annotated

element -either the Field or

Method that the property is

based on.

V getValue(); Returns the value of the

property.

void setValue(V value); Sets the value of the property.

Class<?>

getDeclaringClass();

Gets the class declaring the

property.

boolean isReadOnly(); Check if the property can be

written as well as read.

Given a class with two properties, personName and postcode:'

class Person {

 PersonName personName;

 Address address;

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 53. Properties

252

 void setPostcode(String postcode) {

 address.setPostcode(postcode);

 }

 String getPostcode() {

 return address.getPostcode();

 }

}

You can create two properties:

 Property<PersonName> personNameProperty = Properties.createProperty(Person.class.getField("personName");

 Property<String> postcodeProperty = Properties.createProperty(Person.class.getMethod("getPostcode"));

53.2. Querying for properties

To create a property query, use the PropertyQueries class to create a new PropertyQuery

instance:

 PropertyQuery<?> query = PropertyQueries.createQuery(Foo.class);

If you know the type of the property that you are querying for, you can specify it via a type

parameter:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityClass);

53.3. Property Criteria

Once you have created the PropertyQuery instance, you can add search criteria. Seam Solder

provides three built-in criteria types, and it is very easy to add your own. A criteria is added to a

query via the addCriteria() method. This method returns an instance of the PropertyQuery,

so multiple addCriteria() invocations can be stacked.

53.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type.

For example, take the following class:

NamedPropertyCriteria

253

 public class Foo {

 private String accountNumber;

 private @Scrambled String accountPassword;

 private String accountName;

 }

To query for properties of this bean annotated with @Scrambled, you can use an

AnnotatedPropertyCriteria, like so:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new AnnotatedPropertyCriteria(Scrambled.class));

This query matches the accountPassword property of the Foo bean.

53.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

public class Foo {

 public String getBar() {

 return "foobar";

 }

}

The following query will locate properties with a name of "bar":

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new NamedPropertyCriteria("bar"));

53.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {

 private Bar bar;

}

Chapter 53. Properties

254

The following query will locate properties with a type of Bar:

PropertyQuery<Bar> query = PropertyQueries.<Bar>createQuery(Foo.class)

 .addCriteria(new TypedPropertyCriteria(Bar.class));

53.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the

org.jboss.seam.solder.properties.query.PropertyCriteria interface, which declares the

two methods fieldMatches() and methodMatches. In the following example, our custom criteria

implementation can be used to locate whole number properties:

public class WholeNumberPropertyCriteria implements PropertyCriteria {

 public boolean fieldMatches(Field f) {

 return f.getType() == Integer.class || f.getType() == Integer.TYPE.class ||

 f.getType() == Long.class || f.getType() == Long.TYPE.class ||

 f.getType() == BigInteger.class;

 }

 boolean methodMatches(Method m) {

 return m.getReturnType() == Integer.class || m.getReturnType() == Integer.TYPE.class ||

 m.getReturnType() == Long.class || m.getReturnType() == Long.TYPE.class ||

 m.getReturnType() == BigInteger.class;

 }

}

53.4. Fetching the results

After creating the PropertyQuery and setting the criteria, the query can be executed by invoking

either the getResultList() or getFirstResult() methods. The getResultList() method

returns a List of Property objects, one for each matching property found that matches all the

specified criteria:

 List<Property<String>> results = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(TypedPropertyCriteria(String.class))

 .getResultList();

If no matching properties are found, getResultList() will return an empty List. If you know that

the query will return exactly one result, you can use the getFirstResult() method instead:

Fetching the results

255

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(NamedPropertyCriteria("bar"))

 .getFirstResult();

If no properties are found, then getFirstResult() will return null. Alternatively, if more than one

result is found, then getFirstResult() will return the first property found.

Alternatively, if you know that the query will return exactly one result, and you want to assert that

assumption is true, you can use the getSingleResult() method instead:

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(NamedPropertyCriteria("bar"))

 .getSingleResult();

If no properties are found, or more than one property is found, then getSingleResult() will throw

an exception. Otherwise, getSingleResult() will return the sole property found.

Sometimes you may not be interested in read only properties, so

getResultList(),getFirstResult() and getSingleResult() have corresponding

getWritableResultList(),getWritableFirstResult() and getWritableSingleResult()

methods, that will only return properties that are not read-only. This means that if there is a field and

a getter method that resolve to the same property, instead of getting a read-only MethodProperty

you will get a writable FieldProperty.

256

Chapter 54.

257

Unwrapping Producer Methods
Unwrapping producer methods allow you to create injectable objects that have "self-managed""

lifecycles, and are particularly useful if you have need a bean whose lifecycle does not exactly

match one of the lifecycle of one of the existing scopes. The lifecycle of the bean is are managed by

the bean that defines the producer method, and changes to the unwrapped object are immediately

visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it @Unwraps. The

return type of the managed producer must be proxyable (see Section 5.4.1 of the CDI specification,

"Unproxyable bean types"). Every time a method is called on unwrapped object the invocation is

forwarded to the result of calling the unwrapping producer method - the unwrapped object.

Important

Seam Solder implements this by injecting a proxy rather than the original object.

Every invocation on the injected proxy will cause the unwrapping producer method

to be invoked to obtain the instance on which to invoke the method called. Seam

Solder will then invoke the method on unwrapped instance.

Because of this, it is very important the producer method is lightweight.

For example consider a permission manager (that manages the current permission), and a

security manager (that checks the current permission level). Any changes to permission in the

permission manager are immediately visible to the security manager.

@SessionScoped

class PermissionManager {

 Permission permission;

 void setPermission(Permission permission) {

 this.permission=permission;

 }

 @Unwraps @Current

 Permission getPermission() {

 return this.permission;

 }

}

Chapter 54. Unwrapping Produc...

258

@SessionScoped

class SecurityManager {

 @Inject @Current

 Permission permission;

 boolean checkAdminPermission() {

 return permission.getName().equals("admin");

 }

}

When permission.getName() is called, the unwrapped Permission forwards the invocation of

getName() to the result of calling PermissionManager.getPermission().

For example you could raise the permission level before performing a sensitive operation, and

then lower it again afterwards:

public class SomeSensitiveOperation {

 @Inject

 PermissionManager permissionManager;

 public void perform() {

 try {

 permissionManager.setPermission(Permissions.ADMIN);

 // Do some sensitive operation

 } finally {

 permissionManager.setPermission(Permissions.USER);

 }

 }

}

Unwrapping producer methods can have parameters injected, including InjectionPoint (which

repreents) the calling method.

Chapter 55.

259

Default Beans
Suppose you have a situation where you want to provide a default implementation of a particular

service and allow the user to override it as needed. Although this may sound like a job for an

alternative, they have some restrictions that may make them undesirable in this situation. If you

were to use an alternative it would require an entry in every beans.xml file in an application.

Developers consuming the extension will have to open up the any jar file which references the

default bean, and edit the beans.xml file within, in order to override the service. This is where

default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no

other bean is installed that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that Seam

Solder provides!). If JSF is available we want to use the FunctionMapper provided by the JSF

implementation to resolve functions, otherwise we just want to use a a default FunctionMapper

implementation that does nothing. We can achieve this as follows:

@DefaultBean(type = FunctionMapper.class)

@Mapper

class FunctionMapperImpl extends FunctionMapper {

 @Override

 Method resolveFunction(String prefix, String localName) {

 return null;

 }

}

And in the JSF module:

class FunctionMapperProvider {

 @Produces

 @Mapper

 FunctionMapper produceFunctionMapper() {

 return FacesContext.getCurrentInstance().getELContext().getFunctionMapper();

 }

}

Chapter 55. Default Beans

260

If FunctionMapperProvider is present then it will be used by default, otherwise the default

FunctionMapperImpl is used.

A producer method or producer field may be defined to be a default producer by placing the

@DefaultBean annotation on the producer. For example:

class CacheManager {

 @DefaultBean(Cache.class)

 Cache getCache() {

 ...

 }

}

Any producer methods or producer fields declared on a default managed bean are

automatically registered as default producers, with Method.getGenericReturnType() or

Field.getGenericType() determining the type of the default producer. The default producer

type can be overridden by specifying @DefaultBean on the producer method or field.

Chapter 56.

261

Generic Beans
Many common services and API's require the use of more than just one class. When exposing

these services via CDI, it would be time consuming and error prone to force the end developer to

provide producers for all the different classes required. Generic beans provide a solution, allowing

a framework author to provide a set of related beans, one for each single configuration point

defined by the end developer. The configuration points specifies the qualifiers which are inherited

by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an

extension to integrate our custom messaging solution "ACME Messaging" with CDI. The ACME

Messaging API for sending messages consists of several interfaces:

MessageQueue

The message queue, onto which messages can be placed, and acted upon by ACME

Messaging

MessageDispatcher

The dispatcher, responsible for placing messages created by the user onto the queue

DispatcherPolicy

The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSystemConfiguration

The messaging system configuration

We want to be able to create as many MessageQueue configurations's as they need, however

we do not want to have to declare each producer and the associated plumbing for every queue.

Generic beans are an ideal solution to this problem.

56.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues

to interact with ACME Messaging, a default queue that is installed with qualifier @Default and a

durable queue that has qualifier @Durable:

class MyMessageQueues {

 @Produces

 @ACMEQueue("defaultQueue")

 MessageSystemConfiguration defaultQueue = new MessageSystemConfiguration();

 @Produces @Durable @ConversationScoped

Chapter 56. Generic Beans

262

 @ACMEQueue("durableQueue")

 MessageSystemConfiguration producerDefaultQueue() {

 MessageSystemConfiguration config = new MessageSystemConfiguration();

 config.setDurable(true);

 return config;

 }

}

Looking first at the default queue, in addition to the @Produces annotation, the generic

configuration annotation ACMEQueue, is used, which defines this to be a generic configuration point

for ACME messaging (and cause a whole set of beans to be created, exposing for example the

dispatcher). The generic configuration annotation specifies the queue name, and the value of the

producer field defines the messaging system's configuration (in this case we use all the defaults).

As no qualifier is placed on the definition, @Default qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of the

queue before having Seam Solder use it). Additionally, it specifies that the generic beans created

(that allow for their scope to be overridden) should be placed in the conversation scope. Finally,

it specifies that the generic beans created should inherit the qualifier @Durable.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration

point:

class MessageLogger {

 @Inject

 MessageDispatcher dispatcher;

 void logMessage(Payload payload) {

 /* Add metaddata to the message */

 Collection<Header> headers = new ArrayList<Header>();

 ...

 Message message = new Message(headers, payload);

 dispatcher.send(message);

 }

}

class DurableMessageLogger {

 @Inject @Durable

 MessageDispatcher dispatcher;

Using generic beans

263

 @Inject @Durable

 DispatcherPolicy policy;

 /* Tweak the dispatch policy to enable duplicate removal */

 @Inject

 void tweakPolicy(@Durable DispatcherPolicy policy) {

 policy.removeDuplicates();

 }

 void logMessage(Payload payload) {

 ...

 }

}

It is also possible to configure generic beans using beans by sub-classing the configuration type,

or installing another bean of the configuration type through the SPI (e.g. using Seam XML). For

example to configure a durable queue via sub-classing:

@Durable @ConversationScoped

@ACMEQueue("durableQueue")

class DurableQueueConfiguration extends MessageSystemConfiguration {

 public DurableQueueConfiguration()

 {

 this.durable = true;

 }

}

And the same thing via Seam XML:

<my:MessageSystemConfiguration>

 <my:Durable/>

 <s:ConversationScoped/>

 <my:ACMEQueue>durableQueue</my:ACMEQueue>

 <my:durable>true</my:durable>

</my:MessageSystemConfiguration>

Chapter 56. Generic Beans

264

56.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating

the generic configuration annotation:

@Retention(RUNTIME)

@GenericType(MessageSystemConfiguration.class)

@interface ACMEQueue {

 String name();

}

The generic configuration annotation a defines the generic configuration type (in this case

MessageSystemConfiguration); the type produced by the generic configuration point must be of

this type. Additionally it defines the member name, used to provide the queue name.

Next, we define the queue manager bean. The manager has one producer method, which creates

the queue from the configuration:

@GenericConfiguration(ACMEQueue.class) @ApplyScope

class QueueManager {

 @Inject @Generic

 MessageSystemConfiguration systemConfig;

 @Inject

 ACMEQueue config;

 MessageQueueFactory factory;

 @PostConstruct

 void init() {

 factory = systemConfig.createMessageQueueFactory();

 }

 @Produces @ApplyScope

 public MessageQueue messageQueueProducer() {

 return factory.createMessageQueue(config.name());

 }

}

Defining Generic Beans

265

The bean is declared to be a generic bean for the @ACMEQueue generic configuration type

annotation by placing the @GenericConfiguration annotation on the class. We can inject the

generic configuration type using the @Generic qualifier, as well the annotation used to define the

queue.

Placing the @ApplyScope annotation on the bean causes it to inherit the scope from the generic

configuration point. As creating the queue factory is a heavy operation we don't want to do it more

than necessary.

Having created the MessageQueueFactory, we can then expose the queue, obtaining its name

from the generic configuration annotation. Additionally, we define the scope of the producer

method to be inherited from the generic configuration point by placing the annotation @ApplyScope

on the producer method. The producer method automatically inherits the qualifiers specified by

the generic configuration point.

Finally we define the message manager, which exposes the message dispatcher, as well as

allowing the client to inject an object which exposes the policy the dispatcher will use when

enqueing messages. The client can then tweak the policy should they wish.

@Generic(ACMEQueue.class)

class MessageManager {

 @Inject @Generic

 MessageQueue queue;

 @Produces @ApplyScope

 MessageDispatcher messageDispatcherProducer() {

 return queue.createMessageDispatcher();

 }

 @Produces

 DispatcherPolicy getPolicy() {

 return queue.getDispatcherPolicy();

 }

}

266

Chapter 57.

267

Service Handler
The service handler facility allow you to declare interfaces and abstract classes as automatically

implemented beans. Any call to an abstract method on the interface or abstract class will be

forwarded to the invocation handler for processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers

may be useful for you, as they allow the end user to map a lookup to a method using domain

specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA

queries upon abstract method calls. First we define the annotation used to mark interfaces as

automatically implemented beans. We meta-annotate it, defining the invocation handler to use:

@ServiceHandlerType(QueryHandler.class)

@Retention(RUNTIME)

@Target({TYPE})

@interface QueryService {}

We now define an annotation which provides the query to execute:

@Retention(RUNTIME)

@Target({METHOD})

@interface Query {

 String value();

}

And finally, the invocation handler, which simply takes the query, and executes it using JPA,

returning the result:

class QueryHandler {

 @Inject EntityManager em;

 @AroundInvoke

 Object handle(InvocationContext ctx) {

 return em.createQuery(ctx.getMethod().getAnnotation(Query.class).value()).getResultList();

 }

Chapter 57. Service Handler

268

}

Note

• The invocation handler is similar to an intercepter. It must have

an @AroundInvoke method that returns and object and takes an

InvocationContext as an argument.

• Do not call InvocationContext.proceed() as there is no method to proceed to.

• Injection is available into the handler class, however the handler is not a bean

definition, so observer methods, producer fields and producer methods defined

on the handler will not be registered.

Finally, we can define (any number of) interfaces which define our queries:

@QueryService

interface UserQuery {

 @Query("select u from User u");

 public List<User> getAllUsers();

}

Finally, we can inject the query interface, and call methods, automatically executing the JPA query.

class UserListManager {

 @Inject

 UserQuery userQuery;

 List<User> users;

 @PostConstruct

 void create() {

 users=userQuery.getAllUsers();

 }

}

	Seam
	Table of Contents
	Chapter 1. Seam
	1.1. Overview

	Part I. Seam Configuration
	Chapter 2. Seam Config Introduction
	2.1. Getting Started
	2.2. The Princess Rescue Example

	Chapter 3. Seam Config XML provider
	3.1. XML Namespaces
	3.2. Adding, replacing and modifying beans
	3.3. Applying annotations using XML
	3.4. Configuring Fields
	3.4.1. Initial Field Values
	3.4.2. Inline Bean Declarations

	3.5. Configuring methods
	3.6. Configuring the bean constructor
	3.7. Overriding the type of an injection point
	3.8. Configuring Meta Annotations
	3.9. Virtual Producer Fields
	3.10. Notes on Configuring Interceptors
	3.11. More Information

	Part II. Seam Persistence
	Chapter 4. Seam Persistence Reference
	4.1. Introduction
	4.2. Getting Started
	4.3. Transaction Management
	4.3.1. Configuration
	4.3.2. Declarative Transaction Management

	4.4. Seam-managed persistence contexts
	4.4.1. Using a Seam-managed persistence context with JPA
	4.4.2. Seam-managed persistence contexts and atomic conversations
	4.4.3. Using EL in EJB-QL/HQL
	4.4.4. Setting up the EntityManager

	Part III. Seam Servlet
	Introduction
	Chapter 5. Installation
	5.1. Maven dependency configuration
	5.2. Pre-Servlet 3.0 configuration

	Chapter 6. Servlet event propagation
	6.1. Servlet context lifecycle events
	6.2. Application initialization
	6.3. Servlet request lifecycle events
	6.4. Servlet response lifecycle events
	6.5. Servlet request context lifecycle events
	6.6. Session lifecycle events
	6.7. Session activation events

	Chapter 7. Injectable Servlet objects and request state
	7.1. @Inject @RequestParam
	7.2. @Inject @HeaderParam
	7.3. @Inject ServletContext
	7.4. @Inject ServletRequest / HttpServletRequest
	7.5. @Inject ServletResponse / HttpServletResponse
	7.6. @Inject HttpSession
	7.7. @Inject HttpSessionStatus
	7.8. @Inject @ContextPath
	7.9. @Inject List<Cookie>
	7.10. @Inject @CookieParam
	7.11. @Inject @ServerInfo
	7.12. @Inject @Principal

	Chapter 8. Exception handling: Seam Catch integration
	8.1. Background
	8.2. Defining a exception handler for a web request

	Chapter 9. Retrieving the BeanManager from the servlet context

	Part IV. Seam Security
	Chapter 10. Security - Introduction
	10.1. Overview
	10.1.1. Authentication
	10.1.2. Identity Management
	10.1.3. External Authentication
	10.1.4. Authorization

	10.2. Configuration
	10.2.1. Maven Dependencies
	10.2.2. Third Party Dependencies

	Chapter 11. Security - Authentication
	11.1. Basic Concepts
	11.2. Built-in Authenticators
	11.3. Which Authenticator will Seam use?
	11.4. Writing a custom Authenticator

	Chapter 12. Security - Identity Management
	12.1. TO DO

	Chapter 13. Security - External Authentication
	13.1. TO DO

	Chapter 14. Security - Authorization
	14.1. TO DO

	Part V. Seam Faces
	Introduction
	Chapter 15. Installation
	15.1. Maven dependency configuration
	15.2. Pre-Servlet 3.0 configuration

	Chapter 16. Faces Events Propagation
	16.1. JSF Phase events
	16.1.1. Seam Faces Phase events
	16.1.2. Phase events listing

	16.2. JSF system events
	16.2.1. Seam Faces System events
	16.2.2. System events listing
	16.2.3. Component system events

	Chapter 17. Faces Scoping Support
	17.1. @RenderScoped
	17.2. @Inject javax.faces.contet.Flash flash
	17.3. @ViewScoped

	Chapter 18. Messages API
	18.1. Adding Messages
	18.2. Displaying pending messages

	Chapter 19. Faces Artifact Injection
	19.1. @*Scoped and @Inject in Validators and Converters
	19.2. @Inject'able Faces Artifacts

	Chapter 20. Seam Faces Components
	20.1. Introduction
	20.2. <s:validateForm>
	20.3. <s:viewAction>
	20.3.1. Motivation
	20.3.2. Usage
	20.3.3. View actions vs the PreRenderViewEvent

	20.4. UI Input Container

	Part VI. Seam International
	Introduction
	Chapter 21. Installation
	Chapter 22. Locales
	22.1. Default Locale
	22.2. User Locale
	22.3. Available Locales

	Chapter 23. Timezones
	23.1. Default TimeZone
	23.2. User TimeZone
	23.3. Available TimeZones

	Chapter 24. Messages

	Part VII. Seam Catch
	Chapter 25. Seam Catch - Introduction
	Chapter 26. Seam Catch - Installation
	26.1. Maven dependency configuration

	Chapter 27. Seam Catch - Usage
	27.1. Exception handlers
	27.2. Exception handler annotations
	27.2.1. @HandlesExceptions
	27.2.2. @Handles

	27.3. Exception stack trace processing
	27.4. Exception handler ordering
	27.4.1. Traversal of exception type hierarchy
	27.4.2. Handler precendence

	27.5. APIs for exception information and flow control
	27.5.1. CaughtException
	27.5.2. ExceptionStack

	Chapter 28. Seam Catch - Framework Integration
	28.1. Creating and Firing an ExceptionToCatch event
	28.2. Default Handlers and Qualifiers
	28.2.1. Default Handlers
	28.2.2. Qualifiers

	28.3. Supporting ServiceHandlers

	Seam Catch - Glossary

	Part VIII. Seam Remoting
	Chapter 29. Seam Remoting - Basic Features
	29.1. Configuration
	29.1.1. Dynamic type loading

	29.2. The "Seam" object
	29.2.1. A Hello World example
	29.2.2. Seam.createBean

	29.3. The Context
	29.3.1. Setting and reading the Conversation ID
	29.3.2. Remote calls within the current conversation scope

	29.4. Working with Data types
	29.4.1. Primitives / Basic Types
	29.4.1.1. String
	29.4.1.2. Number
	29.4.1.3. Boolean

	29.4.2. JavaBeans
	29.4.3. Dates and Times
	29.4.4. Enums
	29.4.5. Collections
	29.4.5.1. Bags
	29.4.5.2. Maps

	29.5. Debugging
	29.6. Handling Exceptions
	29.7. The Loading Message
	29.7.1. Changing the message
	29.7.2. Hiding the loading message
	29.7.3. A Custom Loading Indicator

	29.8. Controlling what data is returned
	29.8.1. Constraining normal fields
	29.8.2. Constraining Maps and Collections
	29.8.3. Constraining objects of a specific type
	29.8.4. Combining Constraints

	Chapter 30. Seam Remoting - Model API
	30.1. Introduction
	30.2. Model Operations
	30.3. Fetching a model
	30.3.1. Fetching a bean value

	30.4. Modifying model values
	30.5. Expanding a model
	30.6. Applying Changes

	Chapter 31. Seam Remoting - Bean Validation
	31.1. Validating a single object
	31.2. Validating a single property
	31.3. Validating multiple objects and/or properties
	31.4. Validation groups
	31.5. Handling validation failures

	Part IX. Seam Rest
	Introduction
	Chapter 32. Installation
	32.1. Basics
	32.2. Transitive dependencies
	32.3. Registering JAX-RS components explicitly

	Chapter 33. Exception Handling
	33.1. Seam Catch Integration
	33.2. Declarative Exception Mapping
	33.2.1. Annotation-based configuration
	33.2.2. XML configuration
	33.2.3. Declarative exception mapping processing

	Chapter 34. Bean Validation Integration
	34.1. Validating HTTP requests
	34.1.1. Validating entity body
	34.1.2. Validating resource fields
	34.1.3. Validating other method parameters

	34.2. Validation configuration
	34.3. Using validation groups

	Chapter 35. Templating support
	35.1. Creating JAX-RS responses using templates
	35.1.1. Accessing the model

	35.2. Built-in support for templating engines
	35.2.1. FreeMarker
	35.2.2. Apache Velocity
	35.2.3. Pluggable support for templating engines
	35.2.4. Selecting prefered templating engine

	Chapter 36. RESTEasy Client Framework Integration
	36.1. Using RESTEasy Client Framework with Seam REST
	36.2. Manual ClientRequest API
	36.3. ClientExecutor Configuration

	Chapter 37. Seam REST Dependencies
	37.1. Transitive Dependencies
	37.2. Optional dependencies
	37.2.1. Seam Catch
	37.2.2. Seam Config
	37.2.3. FreeMarker
	37.2.4. Apache Velocity
	37.2.5. RESTEasy

	Part X. Seam Validation
	Chapter 38. Introduction
	Chapter 39. Installation
	39.1. Prerequisites
	39.2. Maven setup
	39.3. Manual setup

	Chapter 40. Dependency Injection
	40.1. Retrieving of validator factory and validators via dependency injection
	40.2. Dependency injection for constraint validators

	Chapter 41. Method Validation

	Part XI. Seam Wicket
	Introduction
	Chapter 42. Installation
	Chapter 43. Seam for Apache Wicket Features
	43.1. Injection
	43.2. Conversation Control
	43.3. Conversation Propagation

	Part XII. Seam Solder
	Chapter 44. Getting Started
	44.1. Maven dependency configuration
	44.2. Transitive dependencies
	44.3. Pre-Servlet 3.0 configuration

	Chapter 45. Enhancements to the CDI Programming Model
	45.1. Preventing a class from being processed
	45.1.1. @Veto
	45.1.2. @Requires

	45.2. @Exact
	45.3. @Client
	45.4. Named packages
	45.5. @FullyQualified bean names

	Chapter 46. Annotation Literals
	Chapter 47. Evaluating Unified EL
	Chapter 48. Resource Loading
	48.1. Extending the resource loader

	Chapter 49. Logging
	Chapter 50. Annotation and AnnotatedType Utilities
	50.1. Annotated Type Builder
	50.2. Annotation Instance Provider
	50.3. Annotation Inspector
	50.4. Synthetic Qualifiers
	50.5. Reflection Utilities

	Chapter 51. Obtaining a reference to the BeanManager
	Chapter 52. Bean Utilities
	Chapter 53. Properties
	53.1. Working with properties
	53.2. Querying for properties
	53.3. Property Criteria
	53.3.1. AnnotatedPropertyCriteria
	53.3.2. NamedPropertyCriteria
	53.3.3. TypedPropertyCriteria
	53.3.4. Creating a custom property criteria

	53.4. Fetching the results

	Chapter 54. Unwrapping Producer Methods
	Chapter 55. Default Beans
	Chapter 56. Generic Beans
	56.1. Using generic beans
	56.2. Defining Generic Beans

	Chapter 57. Service Handler

