
Seam 3

Bundled Reference Guide

iii

1. Credits ... 1

1.1. List of contributors .. 1

1.2. Would you like to contribute? .. 2

2. Seam .. 5

2.1. Overview .. 5

2.2. Seam Bill of Materials ... 5

I. Solder .. 9

Introduction ... xi

3. Getting Started .. 13

3.1. Maven dependency configuration ... 13

3.2. Transitive dependencies .. 14

3.3. Pre-Servlet 3.0 configuration .. 14

4. Enhancements to the CDI Programming Model ... 17

4.1. Preventing a class from being processed ... 17

4.1.1. @Veto ... 17

4.1.2. @Requires ... 18

4.2. @Exact .. 18

4.3. @Client .. 19

4.4. Named packages .. 19

4.5. @FullyQualified bean names ... 20

5. Annotation Literals .. 23

6. Evaluating Unified EL .. 25

6.1. @Resolver .. 25

7. Resource Loading .. 27

7.1. Extending the Resource Loader ... 28

8. Logging, redesigned .. 29

8.1. JBoss Logging: The foundation .. 29

8.2. Solder Logging: Feature set .. 31

8.3. Typed loggers ... 31

8.4. Native logger API .. 33

8.5. Typed message bundles ... 34

8.6. Implementation classes ... 35

8.6.1. Generating the implementation classes .. 35

8.6.2. Including the implementation classes in Arquillian tests 37

9. Annotation and AnnotatedType Utilities .. 39

9.1. Annotated Type Builder ... 39

9.2. Annotation Instance Provider ... 40

9.3. Annotation Inspector ... 41

9.4. Synthetic Qualifiers ... 42

9.5. Reflection Utilities ... 43

10. Obtaining a reference to the BeanManager .. 45

11. Bean Utilities .. 47

12. Properties .. 49

12.1. Working with properties ... 49

Seam 3

iv

12.2. Querying for properties .. 50

12.3. Property Criteria .. 51

12.3.1. AnnotatedPropertyCriteria ... 51

12.3.2. NamedPropertyCriteria .. 51

12.3.3. TypedPropertyCriteria ... 52

12.3.4. Creating a custom property criteria .. 52

12.4. Fetching the results ... 52

13. Unwrapping Producer Methods ... 55

14. Default Beans .. 57

15. Generic Beans ... 59

15.1. Using generic beans ... 59

15.2. Defining Generic Beans ... 62

16. Service Handler .. 65

17. XML Configuration Introduction ... 67

17.1. Getting Started .. 67

17.2. The Princess Rescue Example .. 69

18. Solder Config XML provider .. 71

18.1. XML Namespaces ... 71

18.2. Adding, replacing and modifying beans .. 72

18.3. Applying annotations using XML .. 73

18.4. Configuring Fields ... 74

18.4.1. Initial Field Values .. 74

18.4.2. Inline Bean Declarations ... 76

18.5. Configuring methods ... 77

18.6. Configuring the bean constructor .. 79

18.7. Overriding the type of an injection point .. 80

18.8. Configuring Meta Annotations .. 80

18.9. Virtual Producer Fields .. 81

18.10. More Information ... 82

Introduction ... lxxxiii

19. Installation ... 85

19.1. Pre-Servlet 3.0 configuration .. 85

20. Servlet event propagation .. 87

20.1. Servlet context lifecycle events .. 87

20.2. Application initialization .. 88

20.3. Servlet request lifecycle events .. 89

20.4. Servlet response lifecycle events ... 91

20.5. Servlet request context lifecycle events .. 92

20.6. Session lifecycle events ... 94

20.7. Session activation events .. 94

21. Injectable Servlet objects and request state .. 97

21.1. @Inject @RequestParam .. 97

21.2. @Inject @HeaderParam .. 98

21.3. @Inject ServletContext .. 99

v

21.4. @Inject ServletRequest / HttpServletRequest .. 99

21.5. @Inject ServletResponse / HttpServletResponse 99

21.6. @Inject HttpSession .. 100

21.7. @Inject HttpSessionStatus ... 100

21.8. @Inject @ContextPath .. 101

21.9. @Inject List<Cookie> ... 101

21.10. @Inject @CookieParam ... 101

21.11. @Inject @ServerInfo ... 102

21.12. @Inject @Principal .. 102

22. Servlet Exception Handling Integration .. 103

22.1. Background ... 103

22.2. Defining a exception handler for a web request 103

23. Retrieving the BeanManager from the servlet context 105

24. Exception Handling - Introduction ... 107

24.1. How Solder's Exception Handling Works ... 107

25. Exception Handling - Usage ... 109

25.1. Eventing into the exception handling framework 109

25.1.1. Manual firing of the event .. 109

25.1.2. Using the @ExceptionHandled Interceptor 110

25.2. Exception handlers .. 110

25.3. Exception handler annotations ... 111

25.3.1. @HandlesExceptions .. 111

25.3.2. @Handles .. 111

25.4. Exception chain processing .. 113

25.5. Exception handler ordering .. 114

25.5.1. Traversal of exception type hierarchy ... 114

25.5.2. Handler precedence .. 116

25.6. APIs for exception information and flow control 117

25.6.1. CaughtException .. 117

25.6.2. ExceptionStack ... 117

26. Exception handling - Advanced Features .. 119

26.1. Exception Modification ... 119

26.1.1. Introduction .. 119

26.1.2. Usage .. 119

26.2. Filtering Stack Traces .. 119

26.2.1. Introduction .. 119

26.2.2. ExceptionStackOutput ... 120

26.2.3. StackFrameFilter .. 120

26.2.4. StackFrameFilterResult ... 120

26.2.5. StackFrame .. 120

27. Exception Handling - Framework Integration ... 123

27.1. Creating and Firing an ExceptionToCatch event 123

27.2. Default Handlers and Qualifiers .. 123

27.2.1. Default Handlers ... 123

Seam 3

vi

27.2.2. Qualifiers .. 124

27.3. Supporting ServiceHandlers ... 124

27.4. Programmatic Handler Registration .. 125

Exception Handling - Glossary .. 127

II. Seam Persistence .. 129

28. Seam Persistence Reference ... 131

28.1. Introduction ... 131

28.2. Getting Started .. 132

28.3. Transaction Management ... 133

28.3.1. Configuration .. 133

28.3.2. Declarative Transaction Management .. 135

28.4. Seam-managed persistence contexts ... 137

28.4.1. Using a Seam-managed persistence context with JPA 137

28.4.2. Seam-managed persistence contexts and atomic conversations 138

28.4.3. Using EL in EJB-QL/HQL .. 138

28.4.4. Setting up the EntityManager .. 139

III. Seam Transaction ... 141

29. Seam Transaction Reference ... 143

29.1. Introduction ... 143

IV. Seam Security .. 145

30. Security - Introduction ... 147

30.1. Overview .. 147

30.1.1. Authentication ... 147

30.1.2. Identity Management .. 147

30.1.3. External Authentication ... 147

30.1.4. Authorization .. 147

30.2. Configuration ... 148

30.2.1. Maven Dependencies ... 148

30.2.2. Enabling the Security Interceptor ... 149

31. Security - Authentication ... 151

31.1. Basic Concepts ... 151

31.2. Built-in Authenticators .. 152

31.3. Which Authenticator will Seam use? ... 152

31.4. Writing a custom Authenticator ... 153

32. Security - Identity Management ... 157

32.1. Overview .. 157

32.2. Configuring Seam to use Identity Management with JPA 157

32.2.1. Recommended database schema .. 157

32.2.2. The @IdentityEntity and @IdentityProperty annotations 158

32.2.3. Identity Object .. 159

32.2.4. Credential .. 160

32.2.5. Identity Object Relationship ... 161

32.2.6. Attributes .. 162

32.3. Managing Users, Groups and Roles ... 163

vii

32.3.1. Managing Users and Groups ... 163

32.3.2. Managing Relationships .. 164

32.3.3. Managing Roles ... 164

33. Security - External Authentication ... 165

33.1. Introduction ... 165

33.1.1. Configuration .. 165

33.2. OpenID ... 165

33.2.1. Overview .. 165

33.2.2. Enabling OpenID for your application ... 166

33.2.3. Choosing which OpenID provider to use 167

33.2.4. Managing the OpenID authentication process 168

34. Security - Authorization ... 171

34.1. Configuration ... 171

34.2. Basic Concepts ... 171

34.2.1. IdentityType .. 172

34.2.2. User ... 172

34.2.3. Group .. 172

34.2.4. Role ... 172

34.2.5. RoleType ... 173

34.3. Role and Group-based authorization ... 173

34.4. Typesafe authorization ... 174

34.4.1. Creating a typesafe security binding .. 174

34.4.2. Creating an authorizer method .. 175

34.4.3. Applying the binding to your business methods 175

34.4.4. Built-in security binding annotations ... 176

35. Security - Events .. 177

35.1. Introduction ... 177

35.2. Event list .. 177

35.3. Usage Example ... 178

V. Seam International .. 181

Introduction .. clxxxiii

36. Installation .. 185

37. Locales ... 187

37.1. Application Locale ... 187

37.2. User Locale .. 187

37.3. Available Locales .. 188

38. Timezones .. 189

38.1. Joda Time .. 189

38.2. Application TimeZone .. 189

38.3. User TimeZone ... 190

38.4. Available TimeZones ... 190

39. Messages ... 193

39.1. Message Creation ... 193

39.2. Properties Files ... 194

Seam 3

viii

VI. Seam Faces ... 195

Introduction ... cxcvii

40. Installation .. 199

40.1. Maven dependency configuration ... 199

40.2. Pre-Servlet 3.0 configuration .. 200

40.3. How to setup JSF in a Java EE 6 webapp .. 200

41. Faces Events Propagation ... 201

41.1. JSF Phase events ... 201

41.1.1. Seam Faces Phase events ... 201

41.1.2. Phase events listing .. 202

41.2. JSF system events .. 203

41.2.1. Seam Faces System events .. 203

41.2.2. System events listing .. 203

41.2.3. Component system events .. 204

42. Faces Scoping Support .. 205

42.1. @RenderScoped ... 205

42.2. @Inject javax.faces.context.Flash flash ... 206

42.3. @ViewScoped ... 206

43. Messages API .. 209

43.1. Adding Messages .. 209

43.2. Displaying pending messages .. 210

44. Faces Artifact Injection .. 211

44.1. @*Scoped and @Inject in Validators and Converters 211

44.2. @Inject'able Faces Artifacts ... 213

45. Seam Faces Components .. 215

45.1. Introduction ... 215

45.2. <s:validateForm> ... 215

45.3. <s:viewAction> .. 218

45.3.1. Motivation .. 219

45.3.2. Usage .. 219

45.3.3. View actions vs the PreRenderViewEvent 222

45.4. ObjectConverter .. 222

45.5. UI Input Container ... 223

VII. Seam Reports ... 225

Introduction ... ccxxvii

46. Installation .. 229

46.1. Installation using Seam Forge .. 229

46.1.1. Plugin Installation ... 229

46.1.2. Plugin Configuration .. 230

47. Usage ... 231

47.1. Quick Start .. 231

47.2. Annotations ... 232

47.3. Troubleshooting ... 233

VIII. Seam Mail .. 235

ix

48. Seam Mail Introduction .. 237

48.1. Getting Started .. 237

49. Configuration ... 239

49.1. Minimal Configuration .. 239

50. Core Usage .. 241

50.1. Intro .. 241

50.2. Contacts ... 241

50.2.1. String Based .. 241

50.2.2. InternetAddress .. 241

50.2.3. EmailContact .. 242

50.2.4. Content .. 243

50.2.5. Attachments ... 243

51. Templating ... 245

51.1. Velocity ... 245

51.2. Freemarker ... 245

52. Advanced Features .. 247

52.1. MailTransporter ... 247

52.2. MailConfig ... 247

IX. Seam Remoting ... 249

53. Seam Remoting - Basic Features ... 251

53.1. Configuration ... 251

53.1.1. Dynamic type loading ... 252

53.2. The "Seam" object .. 252

53.2.1. A Hello World example ... 252

53.2.2. Seam.createBean ... 254

53.3. The Context .. 255

53.3.1. Setting and reading the Conversation ID 255

53.3.2. Remote calls within the current conversation scope 255

53.4. Working with Data types .. 255

53.4.1. Primitives / Basic Types .. 255

53.4.2. JavaBeans ... 256

53.4.3. Dates and Times .. 256

53.4.4. Enums ... 256

53.4.5. Collections ... 256

53.5. Debugging .. 257

53.6. Messages ... 257

53.7. Handling Exceptions .. 259

53.8. The Loading Message ... 260

53.8.1. Changing the message ... 260

53.8.2. Hiding the loading message .. 260

53.8.3. A Custom Loading Indicator .. 260

53.9. Controlling what data is returned .. 261

53.9.1. Constraining normal fields ... 261

53.9.2. Constraining Maps and Collections .. 262

Seam 3

x

53.9.3. Constraining objects of a specific type ... 262

53.9.4. Combining Constraints .. 262

54. Seam Remoting - Model API .. 263

54.1. Introduction ... 263

54.2. Model Operations .. 263

54.3. Fetching a model .. 267

54.3.1. Fetching a bean value .. 270

54.4. Modifying model values ... 270

54.5. Expanding a model ... 271

54.6. Applying Changes ... 272

55. Seam Remoting - Bean Validation ... 275

55.1. Validating a single object ... 275

55.2. Validating a single property .. 276

55.3. Validating multiple objects and/or properties .. 277

55.4. Validation groups .. 278

55.5. Handling validation failures .. 278

X. Seam REST .. 281

Introduction .. cclxxxiii

56. Installation .. 285

56.1. Basics ... 285

56.2. Transitive dependencies .. 285

56.3. Registering JAX-RS components explicitly .. 285

56.4. Servlet container support ... 286

57. Exception Handling .. 287

57.1. Solder Exception Handling Integration .. 287

57.2. Declarative Exception Mapping .. 288

57.2.1. Annotation-based configuration .. 288

57.2.2. XML configuration ... 289

57.2.3. Declarative exception mapping processing 290

58. Bean Validation Integration .. 291

58.1. Validating HTTP requests .. 291

58.1.1. Validating entity body .. 291

58.1.2. Validating resource fields .. 292

58.1.3. Validating other method parameters ... 293

58.2. Validation configuration .. 294

58.3. Using validation groups ... 294

59. Templating support .. 297

59.1. Creating JAX-RS responses using templates .. 297

59.1.1. Accessing the model ... 298

59.2. Built-in support for templating engines .. 299

59.2.1. FreeMarker .. 300

59.2.2. Apache Velocity .. 300

59.2.3. Pluggable support for templating engines 300

59.2.4. Selecting preferred templating engine .. 300

xi

60. RESTEasy Client Framework Integration ... 303

60.1. Using RESTEasy Client Framework with Seam REST 303

60.2. Manual ClientRequest API ... 304

60.3. Client Executor Configuration ... 304

61. Seam REST Dependencies ... 307

61.1. Transitive Dependencies .. 307

61.2. Optional dependencies .. 307

61.2.1. FreeMarker .. 307

61.2.2. Apache Velocity .. 307

61.2.3. RESTEasy ... 307

XI. Seam JCR ... 309

62. Seam JCR - Introduction .. 311

62.1. Introduction ... 311

62.2. Maven dependency configuration ... 311

63. Seam JCR - JBoss ModeShape Integration .. 313

63.1. ModeShape Integration Installation ... 313

63.2. Usage ... 313

64. Seam JCR - JackRabbit Integration ... 315

64.1. JackRabbit Integration Installation .. 315

64.2. Usage ... 315

65. Seam JCR - Event Mapping ... 317

65.1. .. 317

65.2. .. 317

66. Seam JCR - Object Content Mapping ... 319

66.1. What is Object Content Mapping? .. 319

66.2. Mapping and Conversion Capabilities ... 319

66.3. JCR Data Access Objects .. 320

XII. Seam JMS .. 323

67. Introduction .. 325

67.1. Mission statement ... 325

67.2. Seam 3 JMS Module Overview .. 325

68. Installation .. 327

69. Resource Injection ... 329

69.1. JMS Resource Injection ... 329

69.1.1. Destination Based Injection ... 329

69.1.2. Resource Configuration ... 329

69.2. Module Extensions .. 329

70. Messaging API ... 331

70.1. QueueBuilder and TopicBuilder .. 331

70.2. Message Manager ... 331

70.3. Durable Messaging Capabilities ... 333

70.4. MessageListeners versus Message Driven Beans 333

71. Bridging the Gap .. 335

71.1. Event Routing ... 335

Seam 3

xii

71.1.1. Routes ... 335

71.2. Routing CDI Events to JMS ... 336

71.2.1. Usage .. 336

71.3. CDI Events from JMS Messages .. 337

71.3.1. Usage .. 337

72. Annotation Routing APIs ... 339

72.1. Observer Method Interfaces ... 339

XIII. Seam Validation ... 341

73. Introduction .. 343

74. Installation .. 345

74.1. Prerequisites ... 345

74.2. Maven setup ... 345

74.3. Manual setup .. 347

75. Dependency Injection ... 349

75.1. Retrieving of validator factory and validators via dependency injection 349

75.2. Dependency injection for constraint validators ... 350

76. Method Validation .. 353

XIV. Seam Social .. 357

Introduction ... ccclix

77. Getting Started ... 361

77.1. Building .. 361

77.2. Usage big picture .. 361

77.3. Starting with OAuth configuration ... 362

77.3.1. Create an OAutConfigSettings bean thru Seam configuration (in

bean.xml) .. 362

77.3.2. Adding the @ConfigureOAuth annotation when injecting the OAuth

service bean .. 363

77.4. Inject an OAuthService bean with one of the following ways : 363

77.5. Request the Authorization URL for the service and redirect the app to this

url ... 364

77.6. Store the verifier in OAuthService bean and init access token 364

77.7. After what we can send calls to the service ... 365

77.8. Testing ... 365

XV. Seam Spring ... 367

78. Seam Spring - Introduction .. 369

78.1. Features ... 369

79. Seam Spring - Installation .. 371

79.1. Maven dependency configuration ... 371

80. Seam Spring - Architecture and Usage .. 373

80.1. Accessing Spring artifacts from CDI ... 373

80.1.1. Accessing Spring application contexts .. 373

80.1.2. Exposing Spring beans as CDI beans .. 377

80.2. Importing CDI beans into Spring applications .. 377

80.2.1. Registering a BeanManager .. 377

xiii

80.2.2. Importing a CDI bean as a Spring bean 378

XVI. Seam Wicket .. 379

Introduction .. ccclxxxi

81. Installation .. 383

82. Seam for Apache Wicket Features ... 385

82.1. Injection .. 113

82.2. Conversation Control ... 385

82.3. Conversation Propagation .. 386

xiv

Chapter 1.

1

Credits

1.1. List of contributors

Seam is a collaborative project created by the Open Source community. We would like to thank all

of the following people for their contributions, without which Seam would not have been possible.

• Gavin King (Project Founder)

• Shane Bryzak (Project Lead)

• Pete Muir (former Project Lead)

• Dan Allen (Community Liaison)

• John Ament

• Max Rydahl Andersen

• Jay Balunas

• Christian Bauer

• Lincoln Baxter III

• Emmanuel Bernard

• Mike Brock

• Stuart Douglas

• Matt Drees

• Ken Finnigan

• Denis Forveille

• Jose Freitas

• Jordan Ganoff

• George Gastaldi

• Martin Gencur

• Jozef Hartinger

• Peter Hilton

• Ales Justin

Chapter 1. Credits

2

• Nicklas Karlsson

• Marcel Kolsteren

• Brian Leathem

• Cody Lerum

• Gunnar Morling

• Marek Novotny

• Jacob Orshalick

• James Perkins

• Clint Popetz

• Jason Porter

• Karel Piwko

• Ove Ranheim

• Norman Richards

• Daniel Roth

• Antoine Sabot-Durand

• Sebastian Sachtleben

• Amir Sadrinia

• Marek Schmidt

• Ondrej Skutka

• Marek Smigielski

• Mark Struberg

• Tihomir Surdilovic

• Mike Youngstrom

• Michael Yuan

1.2. Would you like to contribute?

We are looking for talented people to help us in making Seam the best application framework in

the world. Seam is an Open Source project with an extensive developer and user community,

consisting of both full time and volunteer team members from all over the world.

Would you like to contribute?

3

There are many ways to contribute, such as:

• Providing code, such as bug fixes and enhancements, or entirely new features

• Improving this documentation - even minor things like typos and grammar correction fixes are

appreciated.

• Participate on the user forums to share your Seam knowledge with other users

• Writing a blog or article about a particular feature of Seam

If you would like to be involved in the ongoing development of Seam please visit us at http://

www.seamframework.org/Seam3/Contribute to find out more.

http://www.seamframework.org/Seam3/Contribute
http://www.seamframework.org/Seam3/Contribute

4

Chapter 2.

5

Seam

2.1. Overview

Seam's mission is to provide a fully-integrated development platform for building rich, standards-

based Internet applications tailored for traditional and cloud deployments.

The Seam 3 project is organized as a collection of modules and developer tooling tailored for Java

EE 6 application development, built on top of the component model defined by JSR-299 Context

and Dependency Injection (CDI). CDI is a JCP standard, you can find out more about it at http://

jcp.org/en/jsr/summary?id=299.

Seam's modules leverage portable CDI extensions to build on the core Java EE functionality

and integrate with JBoss and third-party projects. Together, these modules provide many of the

popular features and integrations from Seam 2 (security, internationalization, JSF, rules, BPM)

while also exploring new integrations and designs.

The developer tooling for Seam is provided by JBoss Tools and Seam Forge. JBoss Tools

enhances Eclipse with features designed to help developers write, test and deploy enterprise Java

applications. Seam Forge is an incremental project enhancement API and shell.

This guide steps you through the modules and select tooling, covering the purpose, APIs and

usage scenarios for each. Collectively, this software should give you everything you need to

develop comprehensive, robust and compelling enterprise applications.

2.2. Seam Bill of Materials

The Seam 3 build is based on Maven 3. Each Seam module is a separate project, with its own

release cycle. Each Seam module is a multi-module project contains the api, implementation,

examples and documentation. Select modules are assembled together to create a Seam

distribution, or stack release.

To keep the modules in sync, the Seam project publishes a special Maven POM known as a "Bill

of Materials" (BOM), which we'll refer to as the Seam BOM. The Seam BOM defines the versions

of all the Seam modules and third-party libraries that are used in the Seam stack using Maven's

dependency management facility.

You can import these version definitions into your project by adding the Seam BOM as a

dependency with scope import. The benefit of doing so is that it relieves you from having to

specify the version of any Seam module explicitly. It also means you can upgrade all your Seam

modules at once by just updating the version of the BOM.

Generally, the easiest way to accomplish this import is by first defining a property for the Seam

BOM version:

<properties>

http://jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=299

Chapter 2. Seam

6

 <seam.version>3.0.0.Final</seam.version>

</properties>

Then you add the following dependency declaration to the dependencyManagement section of

your project's POM file (or parent POM, if you use one).

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>seam-bom</artifactId>

 <version>${seam.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

Then, it's a simple matter to declare which Seam module dependencies your project requires by

adding them inside the dependencies section. There's no need to specify a version of the module

as it gets inherited from the Seam BOM.

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder</artifactId>

</dependency>

To see which version is going to get selected, use the dependency analysis tools in Maven:

mvn dependency:tree

You may upgrade an individual module by specifying the version explicitly. There's no crime in

doing so. The Seam BOM is there as a convenience and a reference point for the recommended

module version matrix. It's up to you how closely to follow it.

Each of the Seam modules also use the Seam BOM to keep the versions of related modules in

sync. Once in a while, a module may specify a version of another module that's different from the

Seam BOM. We usually try to get this worked out by the time we make a Seam stack release

to fix the version matrix.

Seam Bill of Materials

7

Refer to the Build System Architecture [http://seamframework.org/Seam3/

BuildSystemArchitecture] page on the Seam website for more detail about how the Seam 3 project

is structured. Though, for the purpose of using Seam, how to import the module artifacts is likely

all you need to know about the project's build.

http://seamframework.org/Seam3/BuildSystemArchitecture
http://seamframework.org/Seam3/BuildSystemArchitecture
http://seamframework.org/Seam3/BuildSystemArchitecture

8

Part I. Solder

xi

Introduction

Solder is a library of Generally Useful Stuff (TM), particularly if you are developing an application

based on CDI (JSR-299 Java Contexts and Dependency Injection), or a CDI based library or

framework.

This guide is split into three parts. ??? details extensions and utilities which are likely to be of

use to any developer using CDI; ??? describes utilities which are likely to be of use to developers

writing libraries and frameworks that work with CDI; ??? discusses extensions which can be used

to implement configuration for a framework

xii

Chapter 3.

13

Getting Started
Getting started with Solder is easy. All you need to do is put the API and implementation

JARs on the classpath of your CDI application. The features provided by Solder will be enabled

automatically.

Some additional configuration, covered at the end of this chapter, is required if you are using a

pre-Servlet 3.0 environment.

3.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, first make sure you have

configured your build to use the JBoss Community repository [http://community.jboss.org/wiki/

MavenGettingStarted-Users], where you can find all the Seam artifacts. Then, add the following

dependencies to your pom.xml file to get started using Solder:

<dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>solder-api</artifactId>

 <version>${solder.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>solder-impl</artifactId>

 <version>${solder.version}</version>

 <scope>runtime</scope>

</dependency>

Tip

Substitute the expression ${solder.version} with the most recent or

appropriate version of Solder. Alternatively, you can create a Maven

user-defined property [http://www.sonatype.com/books/mvnref-book/reference/

resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to

satisfy this substitution so you can centrally manage the version.

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

http://maven.apache.org/
http://maven.apache.org/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 3. Getting Started

14

3.2. Transitive dependencies

Most of Solder has very few dependencies, only one of which is not provided by Java EE 6:

• javax.enterprise:cdi-api (provided by Java EE 6)

• javax.inject:javax:inject (provided by Java EE 6)

• javax.annotation:jsr250-api (provided by Java EE 6)

• javax.interceptor:interceptor-api (provided by Java EE 6)

• javax.el:el-api (provided by Java EE 6)

Tip

The POM for Solder specifies the versions required. If you are using Maven 3,

you can easily import the dependencyManagement into your POM by declaring the

following in your depdendencyManagement section:

<dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>seam-solder-impl</artifactId>

 <version>${solder.version}</version>

 <type>pom</type>

 <scope>import</scope>

</dependency>

Some features of Solder require additional dependencies (which are declared optional, so will not

be added as transitive dependencies):

org.javassist:javassist

Service Handlers, Unwrapping Producer Methods

javax.servlet:servlet-api

Accessing resources from the Servlet Context

In addition, a logger implementation (SLF4J, Log4J, JBoss Log Manager or the JDK core logging

facility) is required. Refer to Chapter 8, Logging, redesigned for more information about how

logging is handled in Solder.

3.3. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

a Servlet component in your application's web.xml to access resources from the Servlet Context.

Pre-Servlet 3.0 configuration

15

<listener>

 <listener-class>org.jboss.solder.resourceLoader.servlet.ResourceListener</listener-class>

</listener>

This registration happens automatically in a Servlet 3.0 environment through the use of a /META-

INF/web-fragment.xml included in the Solder implementation.

You're all setup. It's time to dive into all the useful stuff that Solder provides!

16

Chapter 4.

17

Enhancements to the CDI

Programming Model
Solder provides a number enhancements to the CDI programming model which are under trial

and may be included in later releases of Contexts and Dependency Injection.

4.1. Preventing a class from being processed

4.1.1. @Veto

Annotating a class @Veto will cause the type to be ignored, such that any definitions on the type

will not be processed, including:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

For example:

@Veto

class Utilities {

 ...

}

Besides, a package can be annotated with @Veto, causing all beans in the package to be

prevented from registration.

Example 4.1. package-info.java

@Veto

package com.example;

import org.jboss.solder.core.Veto;

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed

types.

Chapter 4. Enhancements to th...

18

4.1.2. @Requires

Annotating a class with @Requires will cause the type to be ignored if the class dependencies

cannot be satisfied. Any definitions on the type will not be processed:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

Tip

Solder will use the Thread Context ClassLoader, as well as the classloader of the

type annotated @Requires to attempt to satisfy the class dependency.

For example:

@Requires("javax.persistence.EntityManager")

class EntityManagerProducer {

 @Produces

 EntityManager getEntityManager() {

 ...

 }

}

Annotating a package with @Requires causes all beans in the package to be ignored if the class

dependencies cannot be satisfied. If both a class and it's package are annotated with @Requires,

both package-level and class-level dependencies have to be satisfied for the bean to be installed.

Note

The ProcessAnnotatedType container lifecycle event will be called for required

types.

4.2. @Exact

Annotating an injection point with @Exact allows you to select an exact implementation of the

injection point type to inject. For example:

@Client

19

interface PaymentService {

 ...

}

class ChequePaymentService implements PaymentService {

 ...

}

class CardPaymentService implements PaymentService {

 ...

}

class PaymentProcessor {

 @Inject @Exact(CardPaymentService.class)

 PaymentService paymentService;

 ...

}

4.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want to

differentiate the default system locale from the current client's locale). Solder provides a built in

qualifier, @Client for this purpose.

4.4. Named packages

Solder allows you to annotate the package @Named, which causes every bean defined in the

package to be given its default name. Package annotations are defined in the file package-

info.java. For example, to cause any beans defined in com.acme to be given their default name:

@Named

package com.acme

Chapter 4. Enhancements to th...

20

4.5. @FullyQualified bean names

According to the CDI standard, the @Named annotation assigns a name to a bean equal to the

value specified in the @Named annotation or, if a value is not provided, the simple name of the bean

class. This behavior aligns with the needs of most application developers. However, framework

writers should avoid trampling on the "root" bean namespace. Instead, frameworks should specify

qualified names for built-in components. The motivation is the same as qualifying Java types. The

@FullyQualified provides this facility without sacrificing type-safety.

Solder allows you to customize the bean name using the complementary @FullyQualified

annotation. When the @FullyQualified annotation is added to a @Named bean type, producer

method or producer field, the standard bean name is prefixed with the name of the Java package

in which the bean resides, the segments separated by a period. The resulting fully-qualified bean

name (FQBN) replaces the standard bean name.

package com.acme;

@FullyQualified @Named

public class NamedBean {

 public int getAge()

 {

 return 5;

 }

}

The bean in the previous code listing is assigned the name com.acme.namedBean. The value of its

property age would be referenced in an EL expression (perhaps in a JSF view template) as follows:

#{com.acme.namedBean.age}

The @FullyQualified annotation is permitted on a bean type, producer method or producer field.

It can also be used on a Java package, in which case all @Named beans in that package get a

bean name which is fully-qualified.

@FullyQualified

package com.acme;

If you want to use a different Java package as the namespace of the bean, rather than the Java

package of the bean, you specify any class in that alternative package in the annotation value.

@FullyQualified bean names

21

package com.acme;

@FullyQualified(ClassInOtherPackage.class) @Named

public class CustomNamespacedNamedBean {

 ...

}

22

Chapter 5.

23

Annotation Literals
Solder provides a complete set of AnnotationLiteral classes corresponding to the annotation

types defined in the CDI (JSR-299) and Injection (JSR-330) specifications. These literals are

located in the org.jboss.solder.literal package.

For any annotation that does not define an attribute, its corresponding AnnotationLiteral

contains a static INSTANCE member. You should use this static member whenever you need a

reference to an annotation instance rather than creating a new instance explicitly.

new AnnotatedTypeBuilder<X>().readFromType(type).addToClass(NamedLiteral.INSTANCE);

Literals are provided for the following annotations from Context and Dependency Injection

(including annotations from Dependency Injection for Java):

• @Alternative

• @Any

• @ApplicationScoped

• @ConversationScoped

• @Decorator

• @Default

• @Delegate

• @Dependent

• @Disposes

• @Inject

• @Model

• @Named

• @New

• @Nonbinding

• @NormalScope

• @Observes

• @Produces

Chapter 5. Annotation Literals

24

• @RequestScoped

• @SessionScoped

• @Specializes

• @Stereotype

• @Typed

Literals are also provided for the following annotations from Solder:

• @Client

• @DefaultBean

• @Exact

• @Generic

• @GenericType

• @Mapper

• @MessageBundle

• @Requires

• @Resolver

• @Resource

• @Unwraps

• @Veto

For more information about these annotations, consult the corresponding API documentation.

Chapter 6.

25

Evaluating Unified EL
Solder provides a method to evaluate EL that is not dependent on JSF or JSP, a facility sadly

missing in Java EE. To use it inject Expressions into your bean. You can evaluate value

expressions, or method expressions. The Solder API provides type inference for you. For example:

class FruitBowl {

 @Inject Expressions expressions;

 public void run() {

 String fruitName = expressions.evaluateValueExpression("#{fruitBowl.fruitName}");

 Apple fruit = expressions.evaluateMethodExpression("#{fruitBown.getFruit}");

 }

}

6.1. @Resolver

Solder also contains a qualifier to ease registration of javax.el.ELResolver instances. The

@Resolver will register any javax.el.ELResolver annotated with @Resolver with the application

wide javax.el.ELResolver.

26

Chapter 7.

27

Resource Loading
Solder provides an extensible, injectable resource loader. The resource loader can provide URLs

or managed input streams. By default the resource loader will look at the classpath, and the servlet

context if available.

If the resource name is known at development time, the resource can be injected, either as a URL

or an InputStream:

 @Inject

 @Resource("WEB-INF/beans.xml")

 URL beansXml;

 @Inject

 @Resource("WEB-INF/web.xml")

 InputStream webXml;

If the resource name is not known, the ResourceProvider can be injected, and the resource

looked up dynamically:

 @Inject

 void readXml(ResourceProvider provider, String fileName) {

 InputStream is = provider.loadResourceStream(fileName);

 }

If you need access to all resources under a given name known to the resource loader (as opposed

to first resource loaded), you can inject a collection of resources:

 @Inject

 @Resource("WEB-INF/beans.xml")

 Collection<URL> beansXmls;

 @Inject

 @Resource("WEB-INF/web.xml")

 Collection<InputStream> webXmls;

Chapter 7. Resource Loading

28

Tip

Any input stream injected, or created directly by the ResourceProvider is

managed, and will be automatically closed when the bean declaring the injection

point of the resource or provider is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Properties:

 @Inject

 @Resource("META-INF/aws.properties")

 Properties awsProperties;

7.1. Extending the Resource Loader

If you want to load resources from another location, you can provide an additional resource loader.

First, create the resource loader implementation:

class MyResourceLoader implements ResourceLoader {

 ...

}

And then register it as a service by placing the fully qualified class name of the implementation in

a file called META-INF/services/org.jboss.solder.resourceLoader.ResourceLoader.

Chapter 8.

29

Logging, redesigned
Solder brings a fresh perspective to the ancient art of logging. Rather than just giving you an

injectable version of the same old logging APIs, Solder goes the extra mile by embracing the type-

safety of CDI and eliminating brittle, boilerplate logging statements. The best part is, no matter

how you decide to roll it out, you still get to keep your logging engine of choice (for the logging

wars will never end!).

8.1. JBoss Logging: The foundation

Before talking about Solder Logging, you need to first be introduced to JBoss Logging 3. The

reason is, JBoss Logging provides the foundation on which Solder's declarative programming

model for logging is built. Plus, we have to convince you that you aren't tied to JBoss AS by using it.

JBoss Logging acts as a logging bridge. If you don't add any other logging libraries to your

project, it will delegate all logging calls it handles to the logging facility built into the Java platform

(commonly referred to as JDK logging). That's nice, because it means your deployment headaches

caused by missing logging jars are gone. And you accomplish it all through the use of the

Logger [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html] type. It has

the usual level-based log methods and complimentary ones that provide formatting.

Here's an example of how you obtain a logger and log a basic message:

Logger log = Logger.getLogger(Bean.class);

// log a plain text method

log.debug("I'm using JBoss Logging.");

If you want to use another logging engine, such as SLF4J or Log4J, you just have to add the

native library to the deployment. Keep in mind, though, if your application server provides one of

these frameworks, it will get chosen instead. On JBoss AS, JBoss Logging will prefer the JBoss

LogManager because it's the built-in logging engine. (We are looking into more sophisticated

runtime selection of the logging engine).

Here are the providers JBoss Logging supports (and the order in which it looks for them):

• JBoss LogManager

• Log4J

• SLF4J

• JDK logging

So you get that JBoss Logging is an abstraction. What else is it good for?

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html

Chapter 8. Logging, redesigned

30

JBoss Logging has a facility for formatting log messages, using either the printf syntax or

MessageFormat. This makes it possible to use positional parameters to build dynamic log

messages based on contextual information.

Logger log = Logger.getLogger(Bean.class);

// log a message formatted using printf-style substitutions

log.infof("My name is %s.", "David");

// log a message formatted using MessageFormat-style substitutions

log.errorv("The license for Solder is the {0}", "APL");

The most significant and distinguishing feature of JBoss Logging is support for typed loggers.

A typed logger is an interface that defines methods which serve as logging operations. When

a method is invoked on one of these interfaces, the message defined in an annotation on the

method is interpolated and written to the underlying logging engine.

Here's an example of a typed logger:

import org.jboss.logging.Message;

import org.jboss.logging.LogMessage;

import org.jboss.logging.MessageLogger;

@MessageLogger

public interface CelebritySightingLog {

 @LogMessage @Message("Spotted celebrity %s!")

 void spottedCelebrity(String name);

}

JBoss Logging has parallel support for typed message bundles, whose methods return a formatted

message rather than log it. Combined, these features form the centerpiece of Solder's logging

and message bundle programming model (and a foundation for additional support provided by the

Seam international module). After looking at the samples provided so far, don't pull out your IDE

just yet. We'll get into the details of typed loggers and how to use them in Solder in a later section.

There you have it! JBoss Logging is a low-level API that provides logging abstraction, message

formatting and internationalization, and typed loggers. But it doesn't tie you to JBoss AS!

With that understanding, we'll now move on to what Solder does to turn this foundation into a

programming model and how to use it in your CDI-based application.

Solder Logging: Feature set

31

8.2. Solder Logging: Feature set

Solder builds on JBoss Logging 3 to provide the following feature set:

• An abstraction over common logging backends and frameworks (such as JDK Logging, log4j

and slf4j)

• Injectable loggers and message bundles

• Innovative, typed message loggers and message bundles defined using interfaces

• Build time tooling to generate typed loggers for production

• Full support for internationalization and localization:

• Developers work with interfaces and annotations only

• Translators work with message bundles in properties files

• Access to the "Mapped Diagnostic Context" (MDC) and/or the "Nested Diagnostic

Context" (NDC) (if the underlying logger supports it)

• Serializable loggers for use in contextual components

Note

Seam's international module builds on this programming model to provide even

more features for producing localized message strings.

Without further discussion, let's get into it.

8.3. Typed loggers

To define a typed logger, first create an interface, annotate it, then add methods that will act as

log operations and configure the message it will print using another annotation:

import org.jboss.solder.messages.Message;

import org.jboss.solder.logging.Log;

import org.jboss.solder.logging.MessageLogger;

@MessageLogger

public interface TrainSpotterLog {

 @Log @Message("Spotted %s diesel trains")

 void dieselTrainsSpotted(int number);

Chapter 8. Logging, redesigned

32

}

We have configured the log messages to use printf-style interpolations of parameters (%s).

Note

Make sure you are using the annotations from Solder

(org.jboss.solder.messages and org.jboss.solder.logging packages

only).

You can then inject the typed logger with no further configuration necessary. We use another

optional annotation to set the category of the logger to "trains" at the injection point, overriding the

default category of the fully-qualified class name of the component receiving the injection:

 @Inject @Category("trains")

 private TrainSpotterLog log;

We log a message by simply invoking a method of the typed logger interface:

 log.dieselTrainsSpotted(7);

The default locale will be used unless overridden. Here we configure the logger to use the UK

locale:

 @Inject @Category("trains") @Locale("en_GB")

 private TrainSpotterLog log;

You can also log exceptions.

import org.jboss.solder.messages.Message;

import org.jboss.solder.messages.Cause;

import org.jboss.solder.logging.Log;

import org.jboss.solder.logging.MessageLogger;

@MessageLogger

public interface TrainSpotterLog {

Native logger API

33

 @Log @Message("Failed to spot train %s")

 void missedTrain(String trainNumber, @Cause Exception exception);

}

You can then log a message with an exception as follows:

try {

 ...

} catch (Exception e) {

 log.missedTrain("RH1", e);

}

The stacktrace of the exception parameter will be written to the log along with the message.

Typed loggers also provide internationalization support. Simply add the @MessageBundle

annotation to the logger interface.

If injecting a typed logger seems too "enterprisy" to you, or you need to get a reference to it from

outside of CDI, you can use a static accessor method on Logger:

TrainSpotterLog log = Logger.getMessageLogger(TrainSpotterLog.class, "trains");

log.dieselTrainsSpotted(7);

The injected version is a convenience for those who prefer the declarative style of programming.

If you are looking for a simpler starting point, you can simply use the Logger directly.

8.4. Native logger API

You can also inject a "plain old" Logger (from the JBoss Logging API):

import javax.inject.Inject;

import org.jboss.solder.logging.Logger;

public class LogService {

 @Inject

 private Logger log;

 public void logMessage() {

 log.info("Hey sysadmins!");

 }

Chapter 8. Logging, redesigned

34

}

Log messages created from this Logger will have a category (logger name) equal to the fully-

qualified class name of the bean implementation class. You can specify a category explicitly using

an annotation.

 @Inject @Category("billing")

 private Logger log;

You can also specify a category using a reference to a type:

 @Inject @TypedCategory(BillingService.class)

 private Logger log;

8.5. Typed message bundles

Often times you need to access a localized message. For example, you need to localize an

exception message. Solder let's you retrieve this message from a typed message logger to avoid

having to use hard-coded string messages.

To define a typed message bundle, first create an interface, annotate it, then add methods that

will act as message retrievers and configure the message to produce using another annotation:

import org.jboss.solder.messages.Message;

import org.jboss.solder.messages.MessageBundle;

@MessageBundle

public interface TrainMessages {

 @Message("No trains spotted due to %s")

 String noTrainsSpotted(String cause);

}

Inject it:

 @Inject @MessageBundle

 private TrainMessages messages;

Implementation classes

35

And use it:

 throw new BadDayException(messages.noTrainsSpotted("leaves on the line"));

8.6. Implementation classes

You may have noticed that throughout this chapter, we've only defined interfaces. Yet, we are

injecting and invoking them as though they are concrete classes. So where's the implementation?

Good news. The typed logger and message bundle implementations are generated automatically!

You'll see this strategy used often in Seam 3. It's declarative programming at its finest (or to an

extreme, depending on how you look at it). Either way, it saves you from a whole bunch of typing.

So how are they generated? Let's find out!

8.6.1. Generating the implementation classes

The first time you need logging in your application, you'll likely start with the more casual approach

of using the Logger API directly. There's no harm in that, but it's certainly cleaner to use the

typed loggers, and at the same time leverage the parallel benefits of the typed bundles. So we

recommend that as your long term strategy.

Once you are ready to move to the the typed loggers and message bundles, you'll need to generate

the concrete implementation classes as part of the build. These classes are generated by using

an annotation processor that is provided by Solder and based on the JBoss Logging tools project

[https://github.com/jamezp/jboss-logging-tools]. Don't worry, setting it up is a lot simpler than it

sounds. You just need to do these two simple steps:

• Set the Java compliance to 1.6 (or better)

• Add the Solder tooling library to the build classpath

Warning

If you forget to add the annotation processor to your build, you'll get an error when

you deploy the application that reports: "Invalid bundle interface (implementation

not found)". This error occurs because the concrete implementation classes are

missing.

Setting the Java compliance to 1.6 enables any annotation processors on the classpath to be

activated during compilation.

If you're using Maven, here's how the configuration in your POM file looks:

<dependencies>

https://github.com/jamezp/jboss-logging-tools
https://github.com/jamezp/jboss-logging-tools

Chapter 8. Logging, redesigned

36

 <!-- Annotation processor for generating typed logger and message bundle classes -->

 <dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>solder-tooling</artifactId>

 <scope>provided</scope>

 <optional>true</optional>

 </dependency>

 ...

</dependencies>

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

 </plugin>

 </plugins>

</build>

Note

In the future, you can expect IDE plugins like JBoss Tools to setup this configuration

automatically.

Here are the classes that will be generated for the examples above:

TrainSpotterLog_$logger.java

TrainSpotterLog_$logger_en_GB.java

TrainMessages_$bundle.java

Classes are generated for each language referenced by an annotation or if there is

a .i18n.properties language file in the same package as the interface and has the same root name.

For instance, if we wanted to generate a French version of TrainMessages, we would have to

create the following properties file in the same package as the interface:

TrainMessages.i18n_fr.properties

Including the implementation classes in Arquillian tests

37

Then populate it with the translations (Note the property key is the method name):

noTrainsSpotted=pas de trains repéré en raison de %s

Now the annotation processor will generate the following class:

TrainMessages_$bundle_fr.java

Now you can add typed loggers and message bundles at will (and you won't have to worry about

unsatisfied dependencies).

8.6.2. Including the implementation classes in Arquillian tests

If you are writing an Arquillian test, be sure to include the concrete classes in the ShrinkWrap

archive. Otherwise, you may receive an exception like:

Invalid bundle interface org.example.log.AppLog (implementation not found)

The best approach is to put your typed message loggers and bundles in their own package. Then,

you include the package in the ShrinkWrap archive:

ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addPackage(AppLog.class.getPackage());

This strategy will effectively package the interface and the generated implementation class(es)

(even though you can't see the generated implementation classes in your source tree).

38

Chapter 9.

39

Annotation and AnnotatedType

Utilities
Solder provides a number of utility classes that make working with annotations and

AnnotatedTypes easier. This chapter walks you through each utility, and gives you some ideas

about how to use it. For more detail, take a look at the JavaDoc on each class.

9.1. Annotated Type Builder

Solder provides an AnnotatedType implementation that should be suitable for the needs of most

portable extensions. The AnnotatedType is created from AnnotatedTypeBuilder, typically in an

extension's observer method, as follows:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(type, true) /* readFromType can read from an AnnotatedType or a class */

 .addToClass(ModelLiteral.INSTANCE); /* add the @Model annotation */

 .create()

Here we create a new builder, and initialize it using an existing AnnotatedType. We can then add

or remove annotations from the class, and its members. When we have finished modifying the

type, we call create() to spit out a new, immutable, AnnotatedType.

AnnotatedType redefinedType = builder.create();

One place this is immensely useful is for replacing the AnnotatedType in an extension that

observes the ProcessAnnotatedType event:

public <X> void processAnnotatedType(@Observes ProcessAnnotatedType<X> evt) {

 AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(evt.getAnnotatedType(), true)

 .addToClass(ModelLiteral.INSTANCE);

 evt.setAnnotatedType(builder.create());

}

This type is now effectively annotated with @Model, even if the annotation is not present on the

class definition in the Java source file.

Chapter 9. Annotation and Ann...

40

AnnotatedTypeBuilder also allows you to specify a "redefinition", which can be applied to the

type, a type of member, or all members. The redefiner will receive a callback for any annotations

present which match the annotation type for which the redefinition is applied.

For example, to remove the qualifier @Unique from the type and any of its members, use this:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(type, true)

 .redefine(Unique.class, new AnnotationRedefiner<Unique>() {

 public void redefine(RedefinitionContext<Unqiue> ctx) {

 ctx.getAnnotationBuilder().remove(Unique.class);

 }

 });

AnnotatedType redefinedType = builder.create();

No doubt, this is a key blade in Solder's army knife arsenal of tools. You can quite effectively

change the picture of the type metadata CDI discovers when it scans and processes the classpath

of a bean archive.

9.2. Annotation Instance Provider

Sometimes you may need an annotation instance for an annotation whose type is not known at

development time. Solder provides a AnnotationInstanceProvider class that can create an

AnnotationLiteral instance for any annotation at runtime. Annotation attributes are passed in

via a Map<String,Object>. For example given the follow annotation:

@Retention(RetentionPolicy.RUNTIME)

public @interface MultipleMembers {

 int intMember();

 long longMember();

 short shortMember();

 float floatMember();

 double doubleMember();

 byte byteMember();

 char charMember();

Annotation Inspector

41

 boolean booleanMember();

 int[] intArrayMember();

}

We can create an annotation instance as follows:

/* Create a new provider */

AnnotationInstanceProvider provider = new AnnotationInstanceProvider();

/* Set the value for each of attributes */

Map<String, Object> values = new HashMap<String, Object>();

values.put("intMember", 1);

values.put("longMember", 1);

values.put("shortMember", 1);

values.put("floatMember", 0);

values.put("doubleMember", 0);

values.put("byteMember", ((byte) 1));

values.put("charMember", 'c');

values.put("booleanMember", true);

values.put("intArrayMember", new int[] { 0, 1 });

/* Generate the instance */

MultipleMembers an = provider.get(MultipleMembers.class, values);

9.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated.

For example:

/* Discover all annotations on type which are meta-annotated @Constraint */

Set<Annotation> constraints = AnnotationInspector.getAnnotations(type, Constraint.class);

/* Load the annotation instance for @FacesValidator the annotation may declared on the type, */

/* or, if the type has any stereotypes, on the stereotypes */

FacesValidator validator = AnnotationInspector.getAnnotation(

 type, FacesValidator.class, true, beanManager);

The utility methods work correctly on Stereotypes as well. Let's say you're working with a bean

that was decorated @Model, running the following example will still show you the underlying @Named

Chapter 9. Annotation and Ann...

42

// assuming you have a class..

@Model

public class User {

 ...

}

// Assume type represents the User class

assert AnnotationInspector.isAnnotationPresent(type, Named.class, beanManager);

// Retrieves the underlying @Named instance on the stereotype

Named name = AnnotationInspector.getAnnotation(type, Named.class, true, beanManager);

The search algorithm will first check to see if the annotation is present directly on the annotated

element first, then searches within the stereotype annotations on the element. If you only

want to search for Annotations on Stereotypes, then you can use either of the methods

AnnotationInspector.getAnnotationFromStereotype.

There is an overloaded form of isAnnotationPresent and getAnnotation to control whether it

will search on Stereotypes or not. For both of these methods, a search is performed first directly

on the element before searching in stereotypes.

9.4. Synthetic Qualifiers

When developing an extension to CDI, it can be useful to detect certain injection points, or bean

definitions and based on annotations or other metadata, add qualifiers to further disambiguate the

injection point or bean definition for the CDI bean resolver. Solder's synthetic qualifiers can be

used to easily generate and track such qualifiers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The

provider will track the qualifier, and if a qualifier is requested again for the same original annotation,

the same instance will be returned.

/* Create a provider, giving it a unique namespace */

Synthetic.Provider provider = new Synthetic.Provider("com.acme");

/* Get the a synthetic qualifier for the original annotation instance */

Synthetic synthetic = provider.get(originalAnnotation);

/* Later calls with the same original annotation instance will return the same instance */

/* Alternatively, we can "get and forget" */

Synthetic synthetic2 = provider.get();

Reflection Utilities

43

9.5. Reflection Utilities

Solder comes with a number miscellaneous reflection utilities; these extend JDK reflection, and

some also work on CDI's Annotated metadata. See the javadoc on Reflections for more.

Solder also includes a simple utility, PrimitiveTypes for converting between primitive and their

respective wrapper types, which may be useful when performing data type conversion. Sadly, this

is functionality which is missing from the JDK.

InjectableMethod allows an AnnotatedMethod to be injected with parameter values obtained

by following the CDI type safe resolution rules, as well as allowing the default parameter values

to be overridden.

44

Chapter 10.

45

Obtaining a reference to the

BeanManager
When developing a framework that builds on CDI, you may need to obtain the BeanManager for

the application, you can't simply inject it as you are not working in an object managed by the

container. The CDI specification allows lookup of java:comp/BeanManager in JNDI, however,

some environments don't support binding to this location (e.g. servlet containers such as Tomcat

and Jetty) and some environments don't support JNDI (e.g. the Weld SE container). For this

reason, most framework developers will prefer to avoid a direct JNDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for

example via a context object. For example, you might be able to place the BeanManager in the

ServletContext, and retrieve it at a later date.

On some occasions however there is no suitable context to use, and in this case, you

can take advantage of the abstraction over BeanManager lookup provided by Solder. To

lookup up a BeanManager, you can extend the abstract BeanManagerAware class, and call

getBeanManager():

public class WicketIntegration extends BeanManagerAware {

 public WicketManager getWicketManager() {

 Bean<?> bean = getBeanManager().getBeans(IRequestListener.class);

 ... // and so on to lookup the bean

 }

}

The benefit here is that BeanManagerAware class will first look to see if its BeanManager injection

point was satisfied before consulting the providers. Thus, if injection becomes available to the

class in the future, it will automatically start the more efficient approach.

Occasionally you will be working in an existing class hierarchy, in which case you can use the

accessor on BeanManagerLocator. For example:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManager beanManager = new BeanManagerLocator().getBeanManager();

 ...

Chapter 10. Obtaining a refer...

46

 }

}

If this lookup fails to resolve a BeanManager, the BeanManagerUnavailableException, a runtime

exception, will be thrown. If you want to perform conditional logic based on whether the

BeanManager is available, you can use this check:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManagerLocator locator = new BeanManagerLocator();

 if (locator.isBeanManagerAvailable()) {

 BeanManager beanManager = locator.getBeanManager();

 ... // work with the BeanManager

 }

 else {

 ... // work without the BeanManager

 }

 }

}

However, keep in mind that you can inject into Servlets in Java EE 6!! So it's very likely the lookup

isn't necessary, and you can just do this:

public class ResourceServlet extends HttpServlet {

 @Inject

 private BeanManager beanManager;

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 ... // work with the BeanManager

 }

}

Chapter 11.

47

Bean Utilities
Solder provides a number of base classes which can be extended to create custom beans. Solder

also provides bean builders which can be used to dynamically create beans using a fluent API.

AbstractImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute specification

defaults if null is passed for a particular attribute. Subclasses must implement the create()

and destroy() methods.

AbstractImmutableProducer

An immutable (and hence thread-safe) abstract class for creating producers. Subclasses must

implement produce() and dispose().

BeanBuilder

A builder for creating immutable beans which can read the type and annotations from an

AnnotatedType.

Beans

A set of utilities for working with beans.

ForwardingBean

A base class for implementing Bean which forwards all calls to delegate().

ForwardingInjectionTarget

A base class for implementing InjectionTarget which forwards all calls to delegate().

ForwardingObserverMethod

A base class for implementing ObserverMethod which forwards all calls to delegate().

ImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

ContextualLifecycle may be registered to receive lifecycle callbacks.

ImmutableInjectionPoint

An immutable (and hence thread-safe) injection point.

ImmutableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers).

ImmutablePassivationCapableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

Chapter 11. Bean Utilities

48

ContextualLifecycle may be registered to receive lifecycle callbacks. The bean implements

PassivationCapable, and an id must be provided.

ImmutablePassivationCapableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers). The bean implements PassivationCapable, and an id must be provided.

NarrowingBeanBuilder

A builder for creating immutable narrowing beans which can read the type and annotations

from an AnnotatedType.

The use of these classes is in general trivially understood with an understanding of basic

programming patterns and the CDI specification, so no in depth explanation is provided here. The

JavaDoc for each class and method provides more detail.

Chapter 12.

49

Properties
Properties are a convenient way of locating and working with JavaBean [http://en.wikipedia.org/

wiki/JavaBean] properties. They can be used with properties exposed via a getter/setter method,

or directly via the field of a bean, providing a uniform interface that allows you all properties in

the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

12.1. Working with properties

The Property<V> interface declares a number of methods for interacting with bean properties.

You can use these methods to read or set the property value, and read the property type

information. Properties may be readonly.

Table 12.1. Property methods

Method Description

String getName(); Returns the name of the

property.

Type getBaseType(); Returns the property type.

Class<V> getJavaClass(); Returns the property class.

AnnotatedElement

getAnnotatedElement();

Returns the annotated

element -either the Field or

Method that the property is

based on.

V getValue(); Returns the value of the

property.

void setValue(V value); Sets the value of the property.

Class<?>

getDeclaringClass();

Gets the class declaring the

property.

boolean isReadOnly(); Check if the property can be

written as well as read.

Member getMember(); Get the class member which

retrieves the property (i.e. field

or getter).

void setAccessible Sets the Member to be

accessible to changes.

Should be performed within

a PriviledgedAction to

work correctly with Security

Managers.

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 12. Properties

50

Given a class with two properties, personName and postcode:'

class Person {

 PersonName personName;

 Address address;

 void setPostcode(String postcode) {

 address.setPostcode(postcode);

 }

 String getPostcode() {

 return address.getPostcode();

 }

}

You can create two properties:

 Property<PersonName> personNameProperty = Properties.createProperty(Person.class.getField("personName"));

 Property<String> postcodeProperty = Properties.createProperty(Person.class.getMethod("getPostcode"));

12.2. Querying for properties

To create a property query, use the PropertyQueries class to create a new PropertyQuery

instance:

 PropertyQuery<?> query = PropertyQueries.createQuery(Foo.class);

If you know the type of the property that you are querying for, you can specify it via a type

parameter:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityClass);

Property Criteria

51

12.3. Property Criteria

Once you have created the PropertyQuery instance, you can add search criteria. Solder provides

three built-in criteria types, and it is very easy to add your own. A criteria is added to a query via

the addCriteria() method. This method returns an instance of the PropertyQuery, so multiple

addCriteria() invocations can be stacked.

12.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type.

For example, take the following class:

 public class Foo {

 private String accountNumber;

 private @Scrambled String accountPassword;

 private String accountName;

 }

To query for properties of this bean annotated with @Scrambled, you can use an

AnnotatedPropertyCriteria, like so:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new AnnotatedPropertyCriteria(Scrambled.class));

This query matches the accountPassword property of the Foo bean.

12.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

public class Foo {

 public String getBar() {

 return "foobar";

 }

}

The following query will locate properties with a name of "bar":

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

Chapter 12. Properties

52

 .addCriteria(new NamedPropertyCriteria("bar"));

12.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {

 private Bar bar;

}

The following query will locate properties with a type of Bar:

PropertyQuery<Bar> query = PropertyQueries.<Bar>createQuery(Foo.class)

 .addCriteria(new TypedPropertyCriteria(Bar.class));

12.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the

org.jboss.solder.properties.query.PropertyCriteria interface, which declares the two

methods fieldMatches() and methodMatches. In the following example, our custom criteria

implementation can be used to locate whole number properties:

public class WholeNumberPropertyCriteria implements PropertyCriteria {

 public boolean fieldMatches(Field f) {

 return f.getType() == Integer.class || f.getType() == Integer.TYPE.getClass() ||

 f.getType() == Long.class || f.getType() == Long.TYPE.getClass() ||

 f.getType() == BigInteger.class;

 }

 public boolean methodMatches(Method m) {

 return m.getReturnType() == Integer.class || m.getReturnType() == Integer.TYPE.getClass() ||

 m.getReturnType() == Long.class || m.getReturnType() == Long.TYPE.getClass() ||

 m.getReturnType() == BigInteger.class;

 }

}

12.4. Fetching the results

After creating the PropertyQuery and setting the criteria, the query can be executed by invoking

either the getResultList() or getFirstResult() methods. The getResultList() method

Fetching the results

53

returns a List of Property objects, one for each matching property found that matches all the

specified criteria:

 List<Property<String>> results = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new TypedPropertyCriteria(String.class))

 .getResultList();

If no matching properties are found, getResultList() will return an empty List. If you know that

the query will return exactly one result, you can use the getFirstResult() method instead:

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new NamedPropertyCriteria("bar"))

 .getFirstResult();

If no properties are found, then getFirstResult() will return null. Alternatively, if more than one

result is found, then getFirstResult() will return the first property found.

Alternatively, if you know that the query will return exactly one result, and you want to assert that

assumption is true, you can use the getSingleResult() method instead:

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new NamedPropertyCriteria("bar"))

 .getSingleResult();

If no properties are found, or more than one property is found, then getSingleResult() will throw

an exception. Otherwise, getSingleResult() will return the sole property found.

Sometimes you may not be interested in read only properties, so

getResultList(),getFirstResult() and getSingleResult() have corresponding

getWritableResultList(),getWritableFirstResult() and getWritableSingleResult()

methods, that will only return properties that are not read-only. This means that if there is a field and

a getter method that resolve to the same property, instead of getting a read-only MethodProperty

you will get a writable FieldProperty.

54

Chapter 13.

55

Unwrapping Producer Methods
Unwrapping producer methods allow you to create injectable objects that have "self-managed"

lifecycles, and are particularly useful if you have need a bean whose lifecycle does not exactly

match one of the lifecycles of one of the existing scopes. The lifecycle of the bean is managed by

the bean that defines the producer method, and changes to the unwrapped object are immediately

visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it

@Unwraps. The return type of the managed producer must be proxyable (see Section 5.4.1

of the CDI specification, "Unproxyable bean types" [http://docs.jboss.org/cdi/spec/1.0/html/

injectionelresolution.html#unproxyable]). Every time a method is called on unwrapped object the

invocation is forwarded to the result of calling the unwrapping producer method - the unwrapped

object.

Important

Solder implements this by injecting a proxy rather than the original object. Every

invocation on the injected proxy will cause the unwrapping producer method to be

invoked to obtain the instance on which to invoke the method called. Solder will

then invoke the method on unwrapped instance.

Because of this, it is very important the producer method is lightweight.

For example consider a permission manager (that manages the current permission), and a

security manager (that checks the current permission level). Any changes to permission in the

permission manager are immediately visible to the security manager.

@SessionScoped

class PermissionManager {

 Permission permission;

 void setPermission(Permission permission) {

 this.permission=permission;

 }

 @Unwraps @Current

 Permission getPermission() {

 return this.permission;

 }

}

http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable

Chapter 13. Unwrapping Produc...

56

@SessionScoped

class SecurityManager {

 @Inject @Current

 Permission permission;

 boolean checkAdminPermission() {

 return permission.getName().equals("admin");

 }

}

When permission.getName() is called, the unwrapped Permission forwards the invocation of

getName() to the result of calling PermissionManager.getPermission().

For example you could raise the permission level before performing a sensitive operation, and

then lower it again afterwards:

public class SomeSensitiveOperation {

 @Inject

 PermissionManager permissionManager;

 public void perform() {

 try {

 permissionManager.setPermission(Permissions.ADMIN);

 // Do some sensitive operation

 } finally {

 permissionManager.setPermission(Permissions.USER);

 }

 }

}

Unwrapping producer methods can have parameters injected, including InjectionPoint (which

represents) the calling method.

Chapter 14.

57

Default Beans
Suppose you have a situation where you want to provide a default implementation of a particular

service and allow the user to override it as needed. Although this may sound like a job for an

alternative, they have some restrictions that may make them undesirable in this situation. If you

were to use an alternative it would require an entry in every beans.xml file in an application.

Developers consuming the extension will have to open up the any jar file which references the

default bean, and edit the beans.xml file within, in order to override the service. This is where

default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no

other bean is installed that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that

Solder provides!). If JSF is available we want to use the FunctionMapper provided by the JSF

implementation to resolve functions, otherwise we just want to use a a default FunctionMapper

implementation that does nothing. We can achieve this as follows:

@DefaultBean(FunctionMapper.class)

@Mapper

class FunctionMapperImpl extends FunctionMapper {

 @Override

 public Method resolveFunction(String prefix, String localName) {

 return null;

 }

}

And in the JSF module:

class FunctionMapperProvider {

 @Produces

 @Mapper

 FunctionMapper produceFunctionMapper() {

 return FacesContext.getCurrentInstance().getELContext().getFunctionMapper();

 }

}

Chapter 14. Default Beans

58

If FunctionMapperProvider is present then it will be used by default, otherwise the default

FunctionMapperImpl is used.

A producer method or producer field may be defined to be a default producer by placing the

@DefaultBean annotation on the producer. For example:

class CacheManager {

 @DefaultBean(Cache.class)

 Cache getCache() {

 ...

 }

}

Any producer methods or producer fields declared on a default managed bean are

automatically registered as default producers, with Method.getGenericReturnType() or

Field.getGenericType() determining the type of the default producer. The default producer

type can be overridden by specifying @DefaultBean on the producer method or field.

Chapter 15.

59

Generic Beans
Many common services and API's require the use of more than just one class. When exposing

these services via CDI, it would be time consuming and error prone to force the end developer to

provide producers for all the different classes required. Generic beans provide a solution, allowing

a framework author to provide a set of related beans, one for each single configuration point

defined by the end developer. The configuration points specifies the qualifiers which are inherited

by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an

extension to integrate our custom messaging solution "ACME Messaging" with CDI. The ACME

Messaging API for sending messages consists of several interfaces:

MessageQueue

The message queue, onto which messages can be placed, and acted upon by ACME

Messaging

MessageDispatcher

The dispatcher, responsible for placing messages created by the user onto the queue

DispatcherPolicy

The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSystemConfiguration

The messaging system configuration

We want to be able to create as many MessageQueue configurations as they need, however we do

not want to have to declare each producer and the associated plumbing for every queue. Generic

beans are an ideal solution to this problem.

15.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues

to interact with ACME Messaging, a default queue that is installed with qualifier @Default and a

durable queue that has qualifier @Durable:

class MyMessageQueues {

 @Produces

 @ACMEQueue("defaultQueue")

 MessageSystemConfiguration defaultQueue = new MessageSystemConfiguration();

 @Produces @Durable @ConversationScoped

Chapter 15. Generic Beans

60

 @ACMEQueue("durableQueue")

 MessageSystemConfiguration producerDefaultQueue() {

 MessageSystemConfiguration config = new MessageSystemConfiguration();

 config.setDurable(true);

 return config;

 }

}

Looking first at the default queue, in addition to the @Produces annotation, the generic

configuration annotation ACMEQueue, is used, which defines this to be a generic configuration point

for ACME messaging (and cause a whole set of beans to be created, exposing for example the

dispatcher). The generic configuration annotation specifies the queue name, and the value of the

producer field defines the messaging system's configuration (in this case we use all the defaults).

As no qualifier is placed on the definition, @Default qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of

the queue before having Solder use it). Additionally, it specifies that the generic beans created

(that allow for their scope to be overridden) should be placed in the conversation scope. Finally,

it specifies that the generic beans created should inherit the qualifier @Durable.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration

point:

class MessageLogger {

 @Inject

 MessageDispatcher dispatcher;

 void logMessage(Payload payload) {

 /* Add metaddata to the message */

 Collection<Header> headers = new ArrayList<Header>();

 ...

 Message message = new Message(headers, payload);

 dispatcher.send(message);

 }

}

class DurableMessageLogger {

 @Inject @Durable

 MessageDispatcher dispatcher;

Using generic beans

61

 @Inject @Durable

 DispatcherPolicy policy;

 /* Tweak the dispatch policy to enable duplicate removal */

 @Inject

 void tweakPolicy(@Durable DispatcherPolicy policy) {

 policy.removeDuplicates();

 }

 void logMessage(Payload payload) {

 ...

 }

}

It is also possible to configure generic beans using beans by sub-classing the configuration type,

or installing another bean of the configuration type through the SPI (e.g. using Solder Config). For

example to configure a durable queue via sub-classing:

@Durable @ConversationScoped

@ACMEQueue("durableQueue")

class DurableQueueConfiguration extends MessageSystemConfiguration {

 public DurableQueueConfiguration()

 {

 this.durable = true;

 }

}

And the same thing via Solder Config:

<my:MessageSystemConfiguration>

 <my:Durable/>

 <s:ConversationScoped/>

 <my:ACMEQueue>durableQueue</my:ACMEQueue>

 <my:durable>true</my:durable>

</my:MessageSystemConfiguration>

Chapter 15. Generic Beans

62

15.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating

the generic configuration annotation:

@Retention(RUNTIME)

@GenericType(MessageSystemConfiguration.class)

@interface ACMEQueue {

 String value();

}

The generic configuration annotation a defines the generic configuration type (in this case

MessageSystemConfiguration); the type produced by the generic configuration point must be of

this type. Additionally it defines the member name, used to provide the queue name.

Next, we define the queue manager bean. The manager has one producer method, which creates

the queue from the configuration:

@GenericConfiguration(ACMEQueue.class) @ApplyScope

class QueueManager {

 @Inject @Generic

 MessageSystemConfiguration systemConfig;

 @Inject

 ACMEQueue config;

 MessageQueueFactory factory;

 @PostConstruct

 void init() {

 factory = systemConfig.createMessageQueueFactory();

 }

 @Produces @ApplyScope

 public MessageQueue messageQueueProducer() {

 return factory.createMessageQueue(config.name());

 }

}

Defining Generic Beans

63

The bean is declared to be a generic bean for the @ACMEQueue generic configuration type

annotation by placing the @GenericConfiguration annotation on the class. We can inject the

generic configuration type using the @Generic qualifier, as well the annotation used to define the

queue.

Placing the @ApplyScope annotation on the bean causes it to inherit the scope from the generic

configuration point. As creating the queue factory is a heavy operation we don't want to do it more

than necessary.

Having created the MessageQueueFactory, we can then expose the queue, obtaining its name

from the generic configuration annotation. Additionally, we define the scope of the producer

method to be inherited from the generic configuration point by placing the annotation @ApplyScope

on the producer method. The producer method automatically inherits the qualifiers specified by

the generic configuration point.

Finally we define the message manager, which exposes the message dispatcher, as well as

allowing the client to inject an object which exposes the policy the dispatcher will use when queuing

messages. The client can then tweak the policy should they wish.

@Generic

class MessageManager {

 @Inject @Generic

 MessageQueue queue;

 @Produces @ApplyScope

 MessageDispatcher messageDispatcherProducer() {

 return queue.createMessageDispatcher();

 }

 @Produces

 DispatcherPolicy getPolicy() {

 return queue.getDispatcherPolicy();

 }

}

64

Chapter 16.

65

Service Handler
The service handler facility allow you to declare interfaces and abstract classes as automatically

implemented beans. Any call to an abstract method on the interface or abstract class will be

forwarded to the invocation handler for processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers

may be useful for you, as they allow the end user to map a lookup to a method using domain

specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA

queries upon abstract method calls. First we define the annotation used to mark interfaces as

automatically implemented beans. We meta-annotate it, defining the invocation handler to use:

@ServiceHandlerType(QueryHandler.class)

@Retention(RUNTIME)

@Target({TYPE})

@interface QueryService {}

We now define an annotation which provides the query to execute:

@Retention(RUNTIME)

@Target({METHOD})

@interface Query {

 String value();

}

And finally, the invocation handler, which simply takes the query, and executes it using JPA,

returning the result:

class QueryHandler {

 @Inject EntityManager em;

 @AroundInvoke

 Object handle(InvocationContext ctx) {

 return em.createQuery(ctx.getMethod().getAnnotation(Query.class).value()).getResultList();

 }

Chapter 16. Service Handler

66

}

Note

• The invocation handler is similar to an interceptor. It must have

an @AroundInvoke method that returns an object and takes an

InvocationContext as an argument.

• Do not call InvocationContext.proceed() as there is no method to proceed to.

• Injection is available into the handler class, however the handler is not a bean

definition, so observer methods, producer fields and producer methods defined

on the handler will not be registered.

Finally, we can define (any number of) interfaces which define our queries:

@QueryService

interface UserQuery {

 @Query("select u from User u")

 public List<User> getAllUsers();

}

Finally, we can inject the query interface, and call methods, automatically executing the JPA query.

class UserListManager {

 @Inject

 UserQuery userQuery;

 List<User> users;

 @PostConstruct

 void create() {

 users=userQuery.getAllUsers();

 }

}

Chapter 17.

67

XML Configuration Introduction
Solder provides a method for configuring CDI beans using alternate metadata sources, such

as XML configuration. Currently, the XML provider is the only alternative available. Using a

"type-safe" XML syntax, it is possible to add new beans, override existing beans, and add extra

configuration to existing beans.

17.1. Getting Started

To take advantage of XML Configuration, you need metadata sources in the form of XML files. By

default these are discovered from the classpath in the following locations:

• /META-INF/beans.xml

• /META-INF/seam-beans.xml

The beans.xml file is the preferred way of configuring beans via XML; however some CDI

implementations will not allow this, so seam-beans.xml is provided as an alternative.

Here is a simple example. The following class represents a report:

class Report {

 String filename;

 @Inject

 Datasource datasource;

 //getters and setters

}

And the following support classes:

interface Datasource {

 public Data getData();

}

@SalesQualifier

class SalesDatasource implements Datasource {

 public Data getData()

 {

 //return sales data

 }

}

Chapter 17. XML Configuration...

68

class BillingDatasource implements Datasource {

 public Data getData()

 {

 //return billing data

 }

}

The Report bean is fairly simple. It has a filename that tells the report engine where to load the

report definition from, and a datasource that provides the data used to fill the report. We are going

to configure up multiple Report beans via xml.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:r="urn:java:org.example.reports">

 <r:Report>

 <s:modifies/>

 <r:filename>sales.jrxml<r:filename>

 <r:datasource>

 <r:SalesQualifier/>

 </r:datasource>

 </r:Report>

 <r:Report filename="billing.jrxml">

 <s:replaces/>

 <r:datasource>

 <s:Inject/>

 <s:Exact>org.example.reports.BillingDatasource</s:Exact>

 </r:datasource>

 </r:Report>

</beans>

The namespace urn:java:ee is the XML Config's root namespace. This is where the built-

in elements and CDI annotations live.

There are now multiple namespaces in the beans.xml file. These namespaces correspond

to java package names.

The Princess Rescue Example

69

The namespace urn:java:org.example.reports corresponds to the package

org.example.reports, where the reporting classes live. Multiple java packages can be

aggregated into a single namespace declaration by separating the package names with

colons, e.g. urn:java:org.example.reports:org.example.model. The namespaces are

searched in the order they are specified in the xml document, so if two packages in the

namespace have a class with the same name, the first one listed will be resolved. For more

information see Namespaces.

The <Report> declaration configures an instance of the Report class as a bean.

Beans installed using <s:modifies> read annotations from the existing class, and merge

them with the annotations defined via xml. In addition, if a bean is installed with

<s:modifies>, it prevents the original class being installed as a bean. It is also possible to

add new beans and replace beans altogether. For more information see Adding, modifying

and replacing beans.

The <r:filename> element sets the initial value of the filename field. For more information

on how methods and fields are resolved see Configuring Methods, and Configuring Fields.

The <r:SalesQualifier> element applies the @SalesQualifier to the datasource

field. As the field already has an @Inject on the class definition this will cause the

SalesDatasource bean to be injected.

This is the shorthand syntax for setting a field value.

Beans installed using <s:replaces> do not read annotations from the existing class. In

addition, if a bean is installed with <s:replaces> it prevents the original class being installed

as a bean.

The <s:Inject> element is needed as this bean was installed with <s:replaces>, so

annotations are not read from the class definition.

The <s:Exact> annotation restricts the type of bean that is available for injection without

using qualifiers. In this case BillingDatasource will be injected. This is provided as part

of weld-extensions.

17.2. The Princess Rescue Example

The princess rescue example is a sample web app that uses XML Config. Run it with the following

command:

mvn -Pjetty jetty:run

And then navigate to http://localhost:9090/princess-rescue. The XML configuration for the

example is in src/main/resources/META-INF/seam-beans.xml.

70

Chapter 18.

71

Solder Config XML provider

18.1. XML Namespaces

The main namespace is urn:java:ee. This namespace contains built-in tags and types from core

packages. The built-in tags are:

• Beans

• modifies

• replaces

• parameters

• value

• key

• entry

• e (alias for entry)

• v (alias for value)

• k (alias for key)

• array

• int

• short

• long

• byte

• char

• double

• float

• boolean

as well as classes from the following packages:

• java.lang

Chapter 18. Solder Config XML...

72

• java.util

• javax.annotation

• javax.inject

• javax.enterprise.inject

• javax.enterprise.context

• javax.enterprise.event

• javax.decorator

• javax.interceptor

• org.jboss.solder.core

• org.jboss.solder.unwraps

• org.jboss.solder.resourceLoader

Other namespaces are specified using the following syntax:

 xmlns:my="urn:java:com.mydomain.package1:com.mydomain.package2"

This maps the namespace my to the packages com.mydomain.package1 and

com.mydomain.package2. These packages are searched in order to resolve elements in this

namespace.

For example, you have a class com.mydomain.package2.Report. To configure a Report bean

you would use <my:Report>. Methods and fields on the bean are resolved from the same

namespace as the bean itself. It is possible to distinguish between overloaded methods by

specifying the parameter types, for more information see Configuring Methods.

18.2. Adding, replacing and modifying beans

By default configuring a bean via XML creates a new bean; however there may be cases where

you want to modify an existing bean rather than adding a new one. The <s:replaces> and

<s:modifies> tags allow you to do this.

The <s:replaces> tag prevents the existing bean from being installed, and registers a new one

with the given configuration. The <s:modifies> tag does the same, except that it merges the

annotations on the bean with the annotations defined in XML. Where the same annotation is

specified on both the class and in XML the annotation in XML takes precedence. This has almost

Applying annotations using XML

73

the same effect as modifying an existing bean, except it is possible to install multiple beans that

modify the same class.

Note

Config ignores beans that have the @Veto annotation when using <replaces> and

<modifies>.

<my:Report>

 <s:modifies>

 <my:NewQualifier/>

</my:Report>

<my:ReportDatasource>

 <s:replaces>

 <my:NewQualifier/>

</my:ReportDatasource>

The first entry above adds a new bean with an extra qualifier, in addition to the qualifiers already

present, and prevents the existing Report bean from being installed.

The second prevents the existing bean from being installed, and registers a new bean with a

single qualifier.

18.3. Applying annotations using XML

Annotations are resolved in the same way as normal classes. Conceptually, annotations are

applied to the object their parent element resolves to. It is possible to set the value of annotation

members using the xml attribute that corresponds to the member name. For example:

public @interface OtherQualifier {

 String value1();

 int value2();

 QualifierEnum value();

}

<test:QualifiedBean1>

 <test:OtherQualifier value1="AA" value2="1">A</my:OtherQualifier>

</my:QualifiedBean1>

Chapter 18. Solder Config XML...

74

<test:QualifiedBean2>

 <test:OtherQualifier value1="BB" value2="2" value="B" />

</my:QualifiedBean2>

The value member can be set using the inner text of the node, as seen in the first example. Type

conversion is performed automatically.

Note

It is currently not possible set array annotation members.

18.4. Configuring Fields

It is possible to both apply qualifiers to and set the initial value of a field. Fields reside in the same

namespace as the declaring bean, and the element name must exactly match the field name. For

example if we have the following class:

class RobotFactory {

 Robot robot;

}

The following xml will add the @Produces annotation to the robot field:

<my:RobotFactory>

 <my:robot>

 <s:Produces/>

 </my:robot>

</my:RobotFactory/>

18.4.1. Initial Field Values

Initial field values can be set three different ways as shown below:

<r:MyBean company="Red Hat Inc" />

<r:MyBean>

 <r:company>Red Hat Inc</r:company>

</r:MyBean>

Initial Field Values

75

<r:MyBean>

 <r:company>

 <s:value>Red Hat Inc<s:value>

 <r:SomeQualifier/>

 </r:company>

</r:MyBean>

The third form is the only one that also allows you to add annotations such as qualifiers to the field.

It is possible to set Map,Array and Collection field values. Some examples:

<my:ArrayFieldValue>

 <my:intArrayField>

 <s:value>1</s:value>

 <s:value>2</s:value>

 </my:intArrayField>

 <my:classArrayField>

 <s:value>java.lang.Integer</s:value>

 <s:value>java.lang.Long</s:value>

 </my:classArrayField>

 <my:stringArrayField>

 <s:value>hello</s:value>

 <s:value>world</s:value>

 </my:stringArrayField>

</my:ArrayFieldValue>

<my:MapFieldValue>

 <my:map1>

 <s:entry><s:key>1</s:key><s:value>hello</s:value></s:entry>

 <s:entry><s:key>2</s:key><s:value>world</s:value></s:entry>

 </my:map1>

 <my:map2>

 <s:e><s:k>1</s:k><s:v>java.lang.Integer</s:v></s:e>

 <s:e><s:k>2</s:k><s:v>java.lang.Long</s:v></s:e>

 </my:map2>

</my:MapFieldValue>

Chapter 18. Solder Config XML...

76

Type conversion is done automatically for all primitives and primitive wrappers, Date,

Calendar,Enum and Class fields.

The use of EL to set field values is also supported:

<m:Report>

 <m:name>#{reportName}</m:name>

 <m:parameters>

 <s:key>#{paramName}</s:key>

 <s:value>#{paramValue}</s:key>

 </m:parameters>

</m:Report>

Internally, field values are set by wrapping the InjectionTarget for a bean. This means that the

expressions are evaluated once, at bean creation time.

18.4.2. Inline Bean Declarations

Inline beans allow you to set field values to another bean that is declared inline inside the

field declaration. This allows for the configuration of complex types with nestled classes. Inline

beans can be declared inside both <s:value> and <s:key> elements, and may be used in both

collections and simple field values. Inline beans must not have any qualifier annotations declared

on the bean; instead Solder Config assigns them an artificial qualifier. Inline beans may have any

scope, however the default Dependent scope is recommended.

<my:Knight>

 <my:sword>

 <value>

 <my:Sword type="sharp"/>

 </value>

 </my:sword>

 <my:horse>

 <value>

 <my:Horse>

 <my:name>

 <value>billy</value>

 </my:name>

 <my:shoe>

 <Inject/>

 </my:shoe>

 </my:Horse>

 </value>

 </my:horse>

Configuring methods

77

</my:Knight>

18.5. Configuring methods

It is also possible to configure methods in a similar way to configuring fields:

class MethodBean {

 public int doStuff() {

 return 1;

 }

 public int doStuff(MethodValueBean bean) {

 return bean.value + 1;

 }

 public void doStuff(MethodValueBean[][] beans) {

 /*do stuff */

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:my="urn:java:org.jboss.solder.config.xml.test.method">

 <my:MethodBean>

 <my:doStuff>

 <s:Produces/>

 </my:doStuff>

 <my:doStuff>

 <s:Produces/>

 <my:Qualifier1/>

 <s:parameters>

 <my:MethodValueBean>

 <my:Qualifier2/>

 </my:MethodValueBean>

 </s:parameters>

Chapter 18. Solder Config XML...

78

 </my:doStuff>

 <my:doStuff>

 <s:Produces/>

 <my:Qualifier1/>

 <s:parameters>

 <s:array dimensions="2">

 <my:Qualifier2/>

 <my:MethodValueBean/>

 </s:array>

 </s:parameters>

 </my:doStuff>

 </my:MethodBean>

</beans>

In this example, MethodBean has three methods. They are all named doStuff.

The first <test:doStuff> entry in the XML file configures the method that takes no arguments.

The <s:Produces> element makes it into a producer method.

The next entry in the file configures the method that takes a MethodValueBean as a parameter

and the final entry configures a method that takes a two dimensional array ofMethodValueBeans

as a parameter. For both of these methods, a qualifier was added to the method parameter and

they were made into producer methods.

Method parameters are specified inside the <s:parameters> element. If these parameters have

annotation children they are taken to be annotations on the parameter.

The corresponding Java declaration for the XML above would be:

class MethodBean {

 @Produces

 public int doStuff() {/*method body */}

 @Produces

 @Qualifier1

 public int doStuff(@Qualifier2 MethodValueBean param) {/*method body */}

 @Produces

 @Qualifier1

 public int doStuff(@Qualifier2 MethodValueBean[][] param) {/*method body */}

}

Configuring the bean constructor

79

Array parameters can be represented using the <s:array> element, with a child element to

represent the type of the array. E.g. int method(MethodValueBean[] param); could be

configured via xml using the following:

<my:method>

 <s:array>

 <my:MethodValueBean/>

 </s:array>

</my:method>

Note

If a class has a field and a method of the same name then by default the field will

be resolved. The exception is if the element has a child <parameters> element,

in which case it is resolved as a method.

18.6. Configuring the bean constructor

It is also possible to configure the bean constructor in a similar manner. This is done with a

<s:parameters> element directly on the bean element. The constructor is resolved in the same

way methods are resolved. This constructor will automatically have the @Inject annotation

applied to it. Annotations can be applied to the constructor parameters in the same manner as

method parameters.

<my:MyBean>

 <s:parameters>

 <s:Integer>

 <my:MyQualifier/>

 </s:Integer>

 </s:parameters>

</my:MyBean>

The example above is equivalent to the following java:

class MyBean {

 @Inject

 MyBean(@MyQualifier Integer count)

 {

 ...

Chapter 18. Solder Config XML...

80

 }

}

18.7. Overriding the type of an injection point

It is possible to limit which bean types are available to inject into a given injection point:

class SomeBean

{

 public Object someField;

}

<my:SomeBean>

 <my:someField>

 <s:Inject/>

 <s:Exact>com.mydomain.InjectedBean</s:Exact>

 </my:someField>

</my:SomeBean>

In the example above, only beans that are assignable to InjectedBean will be eligible for injection

into the field. This also works for parameter injection points. This functionality is part of Solder,

and the @Exact annotation can be used directly in java.

18.8. Configuring Meta Annotations

It is possible to make existing annotations into qualifiers, stereotypes or interceptor bindings.

This configures a stereotype annotation SomeStereotype that has a single interceptor binding

and is named:

<my:SomeStereotype>

 <s:Stereotype/>

 <my:InterceptorBinding/>

 <s:Named/>

</my:SomeStereotype>

This configures a qualifier annotation:

<my:SomeQualifier>

Virtual Producer Fields

81

 <s:Qualifier/>

</my:SomeQualifier>

This configures an interceptor binding:

<my:SomeInterceptorBinding>

 <s:InterceptorBinding/>

</my:SomeInterceptorBinding>

18.9. Virtual Producer Fields

Solder XML Config supports configuration of virtual producer fields. These allow for configuration

of resource producer fields, Solder generic bean and constant values directly via XML. For

example:

<s:EntityManager>

 <s:Produces/>

 <s:PersistenceContext unitName="customerPu" />

</s:EntityManager>

<s:String>

 <s:Produces/>

 <my:VersionQualifier />

 <value>Version 1.23</value>

</s:String>

The first example configures a resource producer field. The second configures a bean of type

String, with the qualifier @VersionQualifier and the value 'Version 1.23'. The corresponding

java for the above XML is:

class SomeClass

{

 @Produces

 @PersistenceContext(unitName="customerPu")

 EntityManager field1;

 @Produces

 @VersionQualifier

 String field2 = "Version 1.23";

Chapter 18. Solder Config XML...

82

}

Although these look superficially like normal bean declarations, the <Produces> declaration

means it is treated as a producer field instead of a normal bean.

18.10. More Information

For further information, look at the units tests in the Solder XML Config distribution. Also see

the XML-based metadata chapter in the JSR-299 Public Review Draft [http://jcp.org/aboutJava/

communityprocess/pr/jsr299/index.html], which is where this feature was originally proposed.

http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html

lxxxiii

Introduction

The goal of Solder's Servlet integration features is to provide portable enhancements to the

Servlet API. Features include producers for implicit Servlet objects and HTTP request state,

propagating Servlet events to the CDI event bus, forwarding uncaught exceptions to Solder's

exception handling chain and binding the BeanManager to a Servlet context attribute for convenient

access.

lxxxiv

Chapter 19.

85

Installation

19.1. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

several Servlet components in your application's web.xml to activate the features provided by this

module:

<listener>

 <listener-class>org.jboss.solder.servlet.event.ServletEventBridgeListener</listener-class>

</listener>

<servlet>

 <servlet-name>Servlet Event Bridge Servlet</servlet-name>

 <servlet-class>org.jboss.solder.servlet.event.ServletEventBridgeServlet</servlet-class>

 <!-- Make load-on-startup large enough to be initialized last (thus destroyed first) -->

 <load-on-startup>99999</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Servlet Event Bridge Servlet</servlet-name>

 <url-pattern>/*</url-pattern>

</servlet-mapping>

<filter>

 <filter-name>Exception Filter</filter-name>

 <filter-class>org.jboss.solder.servlet.exception.CatchExceptionFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Exception Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <filter-class>org.jboss.solder.servlet.event.ServletEventBridgeFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <url-pattern>/*</url-pattern>

Chapter 19. Installation

86

</filter-mapping>

Warning

In order for the Servlet event bridge to properly fire the ServletContext initialized

event, the CDI runtime must be started at the time the Servlet listener is invoked.

This ordering is guaranteed in a compliant Java EE 6 environment. If you are using

a CDI implementation in a Servlet environment (e.g., Weld Servlet), and it relies on

a Servlet listener to bootstrap, that listener must be registered before any Servlet

listener in web.xml.

You're now ready to dive into the Servlet enhancements provided for you by Solder!

Chapter 20.

87

Servlet event propagation
By including the Solder module in your web application (and performing the necessary listener

configuration for pre-Servlet 3.0 environments), the servlet lifecycle events will be propagated

to the CDI event bus so you can observe them using observer methods on CDI beans. Solder

also fires additional lifecycle events not offered by the Servlet API, such as when the response

is initialized and destroyed.

20.1. Servlet context lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletContextListener interface. The event propagated is a

javax.servlet.ServletContext (not a javax.servlet.ServletContextEvent, since the

ServletContext is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet context.

The servlet context lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletContextThe servlet context is initialized or destroyed

@Initialized javax.servlet.ServletContextThe servlet context is initialized

@Destroyed javax.servlet.ServletContextThe servlet context is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers on the observer method:

public void observeServletContext(@Observes ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized or destroyed");

}

If you are interested in only a particular lifecycle phase, use one of the provided qualifiers:

public void observeServletContextInitialized(@Observes @Initialized ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized");

}

As with all CDI observers, the name of the method is insignificant.

These events are fired using a built-in servlet context listener. The CDI environment will be active

when these events are fired (including when Weld is used in a Servlet container). The listener is

Chapter 20. Servlet event pro...

88

configured to come before listeners in other extensions, so the initialized event is fired before other

servlet context listeners are notified and the destroyed event is fired after other servlet context

listeners are notified. However, this order cannot be not guaranteed if another extension library

is also configured to be ordered before others.

20.2. Application initialization

The servlet context initialized event described in the previous section provides an ideal opportunity

to perform startup logic as an alternative to using an EJB 3.1 startup singleton. Even better, you

can configure the bean to be destroyed immediately following the initialization routine by leaving

it as dependent scoped (dependent-scoped observers only live for the duration of the observe

method invocation).

Here's an example of entering seed data into the database in a development environment (as

indicated by a stereotype annotation named @Development).

@Stateless

@Development

public class SeedDataImporter {

 @PersistenceContext

 private EntityManager em;

 public void loadData(@Observes @Initialized ServletContext ctx) {

 em.persist(new Product(1, "Black Hole", 100.0));

 }

}

If you'd rather not tie yourself to the Servlet API, you can observe

the org.jboss.solder.servlet.WebApplication rather than the ServletContext.

WebApplication is a informational object provided by Solder that holds select information about

the ServletContext such as the application name, context path, server info and start time.

The web application lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) WebApplication The web application is initialized, started or

destroyed

@Initialized WebApplication The web application is initialized

@Started WebApplication The web application is started (ready)

@Destroyed WebApplication The web application is destroyed

Here's the equivalent of receiving the servlet context initialized event without coupling to the

Servlet API:

Servlet request lifecycle events

89

public void loadData(@Observes @Initialized WebApplication webapp) {

 System.out.println(webapp.getName() + " initialized at " + new Date(webapp.getStartTime()));

}

If you want to perform initialization as late as possible, after all other initialization of the application

is complete, you can observe the WebApplication event qualified with @Started.

public void onStartup(@Observes @Started WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " ready to handle requests");

}

The @Started event is fired in the init method of a built-in Servlet with a load-on-startup value

of 99999.

You can also use WebApplication with the @Destroyed qualifier to be notified when the web

application is stopped. This event is fired by the aforementioned built-in Servlet during it's destroy

method, so likely it should fire when the application is first released.

public void onShutdown(@Observes @Destroyed WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " no longer handling

 requests");

}

20.3. Servlet request lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletRequestListener interface. The event propagated is a

javax.servlet.ServletRequest (not a javax.servlet.ServletRequestEvent, since the

ServletRequest is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request and a secondary qualifier to filter events by servlet path (@Path).

The servlet request lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletRequestA servlet request is initialized or destroyed

@Initialized javax.servlet.ServletRequestA servlet request is initialized

@Destroyed javax.servlet.ServletRequestA servlet request is destroyed

Chapter 20. Servlet event pro...

90

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized

@Destroyed javax.servlet.http.HttpServletRequestAn HTTP servlet request is destroyed

@Path(PATH) javax.servlet.http.HttpServletRequestSelects HTTP request with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers on the observer:

public void observeRequest(@Observes ServletRequest request) {

 // Do something with the servlet "request" object

}

If you are interested in only a particular lifecycle phase, use a qualifier:

public void observeRequestInitialized(@Observes @Initialized ServletRequest request) {

 // Do something with the servlet "request" object upon initialization

}

You can also listen specifically for a javax.servlet.http.HttpServletRequest simply by

changing the expected event type.

public void observeRequestInitialized(@Observes @Initialized HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

}

You can associate an observer with a particular servlet request path (exact match, no leading

slash).

public void observeRequestInitialized(@Observes @Initialized @Path("offer") HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

 // only when servlet path /offer is requested

}

As with all CDI observers, the name of the method is insignificant.

Servlet response lifecycle events

91

These events are fired using a built-in servlet request listener. The listener is configured to

come before listeners in other extensions, so the initialized event is fired before other servlet

request listeners are notified and the destroyed event is fired after other servlet request listeners

are notified. However, this order cannot be not guaranteed if another extension library is also

configured to be ordered before others.

20.4. Servlet response lifecycle events

The Servlet API does not provide a listener for accessing the lifecycle of a response. Therefore,

Solder simulates a response lifecycle listener using CDI events. The event object fired is a

javax.servlet.ServletResponse.

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet response and a secondary qualifier to filter events by servlet path (@Path).

The servlet response lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletResponseA servlet response is initialized or destroyed

@Initialized javax.servlet.ServletResponseA servlet response is initialized

@Destroyed javax.servlet.ServletResponseA servlet response is destroyed

@Default (optional) javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized

@Destroyed javax.servlet.http.HttpServletResponseAn HTTP servlet response is destroyed

@Path(PATH) javax.servlet.http.HttpServletResponseSelects HTTP response with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeResponse(@Observes ServletResponse response) {

 // Do something with the servlet "response" object

}

If you are interested in only a particular one, use a qualifier

public void observeResponseInitialized(@Observes @Initialized ServletResponse response) {

 // Do something with the servlet "response" object upon initialization

}

Chapter 20. Servlet event pro...

92

You can also listen specifically for a javax.servlet.http.HttpServletResponse simply by

changing the expected event type.

public void observeResponseInitialized(@Observes @Initialized HttpServletResponse response) {

 // Do something with the HTTP servlet "response" object upon initialization

}

If you need access to the ServletRequest and/or the ServletContext objects at the same time,

you can simply add them as parameters to the observer methods. For instance, let's assume you

want to manually set the character encoding of the request and response.

public void setupEncoding(@Observes @Initialized ServletResponse res, ServletRequest req) throws Exception {

 if (this.override || req.getCharacterEncoding() == null) {

 req.setCharacterEncoding(encoding);

 if (override) {

 res.setCharacterEncoding(encoding);

 }

 }

}

As with all CDI observers, the name of the method is insignificant.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

20.5. Servlet request context lifecycle events

Rather than having to observe the request and response as separate events, or include the

request object as an parameter on a response observer, it would be convenient to be able to

observe them as a pair. That's why Solder fires an synthetic lifecycle event for the wrapper

type ServletRequestContext. The ServletRequestContext holds the ServletRequest and the

ServletResponse objects, and also provides access to the ServletContext.

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request context and a secondary qualifier to filter events by servlet path (@Path).

The servlet request context lifecycle events are documented in the table below.

Servlet request context lifecycle events

93

Qualifier Type Description

@Default (optional) ServletRequestContext A request is initialized or destroyed

@Initialized ServletRequestContext A request is initialized

@Destroyed ServletRequestContext A request is destroyed

@Default (optional) HttpServletRequestContextAn HTTP request is initialized or destroyed

@Initialized HttpServletRequestContextAn HTTP request is initialized

@Destroyed HttpServletRequestContextAn HTTP request is destroyed

@Path(PATH) HttpServletRequestContextSelects HTTP request with servlet path

matching PATH (drop leading slash)

Let's revisit the character encoding observer and examine how it can be simplified by this event:

public void setupEncoding(@Observes @Initialized ServletRequestContext ctx) throws Exception {

 if (this.override || ctx.getRequest().getCharacterEncoding() == null) {

 ctx.getRequest().setCharacterEncoding(encoding);

 if (override) {

 ctx.getResponse().setCharacterEncoding(encoding);

 }

 }

}

You can also observe the HttpServletRequestContext to be notified only on HTTP requests.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

Since observers that have access to the response can commit it, an

HttpServletRequestContext observer that receives the initialized event can effectively work as

a filter or even a Servlet. Let's consider a primitive welcome page filter that redirects visitors to

the start page:

public void redirectToStartPage(@Observes @Path("") @Initialized HttpServletRequestContext ctx)

 throws Exception {

 String startPage = ctx.getResponse().encodeRedirectURL(ctx.getContextPath() + "/start.jsf");

 ctx.getResponse().sendRedirect(startPage);

}

Chapter 20. Servlet event pro...

94

Now you never have to write a Servlet listener, Servlet or Filter again!

20.6. Session lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

session.

The session lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@Initialized javax.servlet.http.HttpSessionThe session is initialized

@Destroyed javax.servlet.http.HttpSessionThe session is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifier

public void observeSessionInitialized(@Observes @Initialized HttpSession session) {

 // Do something with the "session" object upon being initialized

}

As with all CDI observers, the name of the method is insignificant.

20.7. Session activation events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionActivationListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

Session activation events

95

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@DidActivate and @WillPassivate) that can be used to observe a specific lifecycle phase of

the session.

The session activation events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@DidActivate javax.servlet.http.HttpSessionThe session is activated

@WillPassivate javax.servlet.http.HttpSessionThe session will passivate

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only one particular event, use a qualifier:

public void observeSessionCreated(@Observes @WillPassivate HttpSession session) {

 // Do something with the "session" object when it's being passivated

}

As with all CDI observers, the name of the method is insignificant.

96

Chapter 21.

97

Injectable Servlet objects and

request state
Solder provides producers that expose a wide-range of information available in a Servlet

environment (e.g., implicit objects such as ServletContext and HttpSession and state such as

HTTP request parameters) as beans. You access this information by injecting the beans produced.

This chapter documents the Servlet objects and request state that Solder exposes and how to

inject them.

21.1. @Inject @RequestParam

The @RequestParam qualifier allows you to inject an HTTP request parameter (i.e., URI query

string or URL form encoded parameter).

Assume a request URL of /book.jsp?id=1.

@Inject @RequestParam("id")

private String bookId;

The value of the specified request parameter is retrieved using the method

ServletRequest.getParameter(String). It is then produced as a dependent-scoped bean of

type String qualified @RequestParam.

The name of the request parameter to lookup is either the value of the @RequestParam annotation

or, if the annotation value is empty, the name of the injection point (e.g., the field name).

Here's the example from above modified so that the request parameter name is implied from the

field name:

@Inject @RequestParam

private String id;

If the request parameter is not present, and the injection point is annotated with @DefaultValue,

the value of the @DefaultValue annotation is returned instead.

Here's an example that provides a fall-back value:

@Inject @RequestParam @DefaultValue("25")

private String pageSize;

Chapter 21. Injectable Servle...

98

If the request parameter is not present, and the @DefaultValue annotation is not present, a null

value is injected.

Warning

Since the bean produced is dependent-scoped, use of the @RequestParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @RequestParam("id")

private Instance<String> bookIdResolver;

...

String bookId = bookIdResolver.get();

21.2. @Inject @HeaderParam

Similar to the @RequestParam, you can use the @HeaderParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the user agent string of the client that issued

the request:

@Inject @HeaderParam("User-Agent")

private String userAgent;

The @HeaderParam also supports a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @HeaderParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @HeaderParam("User-Agent")

private Instance<String> userAgentResolver;

...

String userAgent = userAgentResolver.get();

@Inject ServletContext

99

21.3. @Inject ServletContext

The ServletContext is made available as an application-scoped bean. It can be injected safely

into any CDI bean as follows:

@Inject

private ServletContext context;

The producer obtains a reference to the ServletContext by observing the @Initialized

ServletContext event raised by this module's Servlet-to-CDI event bridge.

21.4. @Inject ServletRequest / HttpServletRequest

The ServletRequest is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletRequest. It can be injected safely into any

CDI bean as follows:

@Inject

private ServletRequest request;

or, for HTTP requests

@Inject

private HttpServletRequest httpRequest;

The producer obtains a reference to the ServletRequest by observing the @Initialized

ServletRequest event raised by this module's Servlet-to-CDI event bridge.

21.5. @Inject ServletResponse / HttpServletResponse

The ServletResponse is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletResponse. It can be injected safely into any

CDI bean as follows:

@Inject

private ServletResponse reponse;

or, for HTTP requests

Chapter 21. Injectable Servle...

100

@Inject

private HttpServletResponse httpResponse;

The producer obtains a reference to the ServletResponse by observing the @Initialized

ServletResponse event raised by this module's Servlet-to-CDI event bridge.

21.6. @Inject HttpSession

The HttpSession is made available as a request-scoped bean. It can be injected safely into any

CDI bean as follows:

@Inject

private HttpSession session;

Injecting the HttpSession will force the session to be created. The producer obtains a reference

to the HttpSession by calling the getSession() on the HttpServletRequest. The reference

to the HttpServletRequest is obtained by observing the @Initialized HttpServletRequest

event raised by this module's Servlet-to-CDI event bridge.

If you merely want to know whether the HttpSession exists, you can instead inject the

HttpSessionStatus bean that Solder provides.

21.7. @Inject HttpSessionStatus

The HttpSessionStatus is a request-scoped bean that provides access to the status of the

HttpSession. It can be injected safely into any CDI bean as follows:

@Inject

private HttpSessionStatus sessionStatus;

You can invoke the isActive() method to check if the session has been created, and the

getSession() method to retrieve the HttpSession, which will be created if necessary.

if (!sessionStatus.isActive()) {

 System.out.println("Session does not exist. Creating it now.");

 HttpSession session = sessionStatus.get();

 assert session.isNew();

}

@Inject @ContextPath

101

21.8. @Inject @ContextPath

The context path is made available as a dependent-scoped bean. It can be injected safely into

any request-scoped CDI bean as follows:

@Inject @ContextPath

private String contextPath;

You can safely inject the context path into a bean with a wider scope using an instance provider:

@Inject @ContextPath

private Instance<String> contextPathProvider;

...

String contextPath = contextPathProvider.get();

The context path is retrieved from the HttpServletRequest.

21.9. @Inject List<Cookie>

The list of Cookie objects is made available as a request-scoped bean. It can be injected safely

into any CDI bean as follows:

@Inject

private List<Cookie> cookies;

The producer uses a reference to the request-scoped HttpServletRequest bean to retrieve the

Cookie instances by calling getCookie().

21.10. @Inject @CookieParam

Similar to the @RequestParam, you can use the @CookieParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the username of the last logged in user (assuming

you have previously stored it in a cookie):

@Inject @CookieParam

private String username;

If the type at the injection point is Cookie, the Cookie object will be injected instead of the value.

Chapter 21. Injectable Servle...

102

@Inject @CookieParam

private Cookie username;

The @CookieParam also support a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @CookieParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @CookieParam("username")

private Instance<String> usernameResolver;

...

String username = usernameResolver.get();

21.11. @Inject @ServerInfo

The server info string is made available as a dependent-scoped bean. It can be injected safely

into any CDI bean as follows:

@Inject @ServerInfo

private String serverInfo;

The context path is retrieved from the ServletContext.

21.12. @Inject @Principal

The security Principal for the current user is made available by CDI as an injectable resource

(not provided by Solder). It can be injected safely into any CDI bean as follows:

@Inject

private Principal principal;

Chapter 22.

103

Servlet Exception Handling

Integration
Solder provides a simple, yet robust foundation for modules and/or applications to establish

a customized exception handling process. Solder's Servlet integration ties into the exception

handling model by forwarding all unhandled Servlet exceptions to the exception handling

framework so that they can be handled in a centralized, extensible and uniform manner.

22.1. Background

The Servlet API is extremely weak when it comes to handling exceptions. You are limited to

handling exceptions using the built-in, declarative controls provided in web.xml. Those controls

give you two options:

• send an HTTP status code

• forward to an error page (servlet path)

To make matters more painful, you are required to configure these exception mappings in

web.xml. It's really a dinosaur left over from the past. In general, the Servlet specification seems

to be pretty non-chalant about exceptions, telling you to "handle them appropriately." But how?

That's where the exception handling integration in comes in. Solder's exception handling

framework traps all unhandled exceptions (those that bubble outside of the Servlet and any filters)

and forwards them on to Solder. Exception handlers are free to handle the exception anyway they

like, either programmatically or via a declarative mechanism.

If a exception handler registered with Solder handles the exception, then the integration closes

the response without raising any additional exceptions. If the exception is still unhandled after

Solder finishes processing it, then the integration allows it to pass through to the normal Servlet

exception handler.

22.2. Defining a exception handler for a web request

You can define an exception handler for a web request using the normal syntax of a Solder

exception handler. Let's catch any exception that bubbles to the top and respond with a 500 error.

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Catch!");

 }

Chapter 22. Servlet Exception...

104

}

That's all there is to it! If you only want this handler to be used for exceptions raised by a web

request (excluding web service requests like JAX-RS), then you can add the @WebRequest qualifier

to the handler:

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles @WebRequest

 CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Solder!");

 }

}

Note

@WebRequest may be added to limit handlers to only catch exceptions initiated by

the Servlet integration.

Let's consider another example. When the custom AccountNotFound exception is thrown, we'll

send a 404 response using this handler.

void handleAccountNotFound(@Handles @WebRequest

 CaughtException<AccountNotFound> caught, HttpServletResponse response) {

 response.sendError(404, "Account not found: " + caught.getException().getAccountId());

}

Chapter 23.

105

Retrieving the BeanManager from

the servlet context
Typically, the BeanManager is obtained using some form of injection. However, there are scenarios

where the code being executed is outside of a managed bean environment and you need a way

in. In these cases, it's necessary to lookup the BeanManager from a well-known location.

Warning

In general, you should isolate external BeanManager lookups to integration code.

The standard mechanism for locating the BeanManager from outside a managed bean

environment, as defined by the JSR-299 specification, is to look it up in JNDI. However, JNDI

isn't the most convenient technology to depend on when you consider all popular deployment

environments (think Tomcat and Jetty).

As a simpler alternative, Solder binds the BeanManager to the following servlet context attribute

(whose name is equivalent to the fully-qualified class name of the BeanManager interface:

javax.enterprise.inject.spi.BeanManager

Solder also includes a provider that retrieves the BeanManager from this location. Anytime

the Solder module needs a reference to the BeanManager, it uses this lookup mechanism to

ensure that the module works consistently across deployment environments, especially in Servlet

containers.

You can retrieve the BeanManager in the same way. If you want to hide the lookup, you

can extend the BeanManagerAware class and retrieve the BeanManager from the the method

getBeanManager(), as shown here:

public class NonManagedClass extends BeanManagerAware {

 public void fireEvent() {

 getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Alternatively, you can retrieve the BeanManager from the method getBeanManager() on the

BeanManagerLocator class, as shown here:

Chapter 23. Retrieving the Be...

106

public class NonManagedClass {

 public void fireEvent() {

 new BeanManagerLocator().getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Tip

The best way to transfer execution of the current context to the managed bean

environment is to send an event to an observer bean, as this example above

suggests.

Under the covers, these classes look for the BeanManager in the servlet context attribute covered

in this section, among other available strategies. Refer to Chapter 10, Obtaining a reference to the

BeanManager for information on how to leverage the servlet context attribute provider to access

the BeanManager from outside the CDI environment.

Chapter 24.

107

Exception Handling - Introduction
Exceptions are a fact of life. As developers, we need to be prepared to deal with them in the most

graceful manner possible. Solder's exception handling framework provides a simple, yet robust

foundation for modules and/or applications to establish a customized exception handling process.

By employing a delegation model, Solder allows exceptions to be addressed in a centralized,

extensible and uniform manner.

In this guide, we'll explore the various options you have for handling exceptions using Solder, as

well as how framework authors can offer Solder exception handling integration.

24.1. How Solder's Exception Handling Works

Exception handling in Solder is based around the CDI eventing model. While the implementation

of exception handlers may not be the same as a CDI event, and the programming model is not

exactly the same as specifying a CDI event / observer, the concepts are very similar. Solder makes

use of events for many of its features. Eventing is actually the only way to start using Solder's

exception handling.

This event is fired either by the application or a Solder exception handling integration. Solder

then hands the exception off to a chain of registered handlers, which deal with the exception

appropriately. The use of CDI events to connect exceptions to handlers makes this strategy of

exception handling non-invasive and minimally coupled to the exception handling infrastructure.

The exception handling process remains mostly transparent to the developer. In most cases,

you register an exception handler simply by annotating a handler method. Alternatively, you can

handle an exception programmatically, just as you would observe an event in CDI.

There are other events that are fired during the exception handling process that will allow great

customization of the exception, stack trace, and status. This allows the application developer to

have the most control possible while still following a defined workflow. These events and other

advanced usages will be covered in the next chapter.

108

Chapter 25.

109

Exception Handling - Usage

25.1. Eventing into the exception handling framework

The entire exception handling process starts with an event. This helps keep your application

minimally coupled to Solder, but also allows for further extension. Exception handling in Solder

is all about letting you take care of exceptions the way that makes the most sense for your

application. Events provide this delicate balance.

There are three means of firing the event to start the exception handling process:

• manual firing of the event

• using an interceptor

• module integration - no code needs to be changed

25.1.1. Manual firing of the event

Manually firing an event to use Solder's exception handling is primarily used in your own try/catch

blocks. It's very painless and also easy. Let's examine an sample that might exist inside of a simple

business logic lookup into an inventory database:

@Stateless

public class InventoryActions {

 @PersistenceContext private EntityManager em;

 @Inject private Event<ExceptionToCatch> catchEvent;

 public Integer queryForItem(Item item) {

 try {

 Query q = em.createQuery("SELECT i from Item i where i.id = :id");

 q.setParameter("id", item.getId());

 return q.getSingleResult();

 } catch (PersistenceException e) {

 catchEvent.fire(new ExceptionToCatch(e));

 }

 }

}

The Event of generic type ExceptionToCatch is injected into your class for use later within

a try/catch block.

Chapter 25. Exception Handlin...

110

The event is fired with a new instance of ExceptionToCatch constructed with the exception

to be handled.

25.1.2. Using the @ExceptionHandled Interceptor

A CDI Interceptor has been added to help with integration of Solder exception handling into your

application. It's used just like any interceptor, and must be enabled in the beans.xml file for your

bean archive. This interceptor can be used at the class or method level.

This interceptor is a typical AroundInvoke interceptor and is invoked before the method (which in

this case merely wraps the call to the intercepted method in a try / catch block). The intercepted

method is called then, if an exception (actually a Throwable) occurs during execution of the

intercepted method the exception is passed to Solder (without any qualifiers). Normal flow

continues from there, however, take not of the following warning:

Warning

Using the interceptor may cause unexpected behavior to methods that call

intercepted methods in which an exception occurs, please see the API

docs [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/

control/ExceptionHandledInterceptor.html] for more information about returns if an

exception occurs.

25.2. Exception handlers

As an application developer (i.e., an end user of Solder's exception handling), you'll be focused

on writing exception handlers. An exception handler is a method on a CDI bean that is invoked to

handle a specific type of exception. Within that method, you can implement any logic necessary

to handle or respond to the exception.

Note

If there are no exception handlers for an exception, the exception is rethrown.

Given that exception handler beans are CDI beans, they can make use of dependency injection,

be scoped, have interceptors or decorators and any other functionality available to CDI beans.

Exception handler methods are designed to follow the syntax and semantics of CDI observers,

with some special purpose exceptions explained in this guide. The advantage of this design is that

exception handlers will be immediately familiar to you if you are studying or well-versed in CDI.

In this and subsequent chapters, you'll learn how to define an exception handler, explore how and

when it gets invoked, modify an exception and a stack trace, and even extend exception handling

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html

Exception handler annotations

111

further through events that are fired during the handling workflow. We'll begin by covering the two

annotations that are used to declare an exception handler, @HandlesExceptions and @Handles.

25.3. Exception handler annotations

Exception handlers are contained within exception handler beans, which are CDI beans annotated

with @HandlesExceptions. Exception handlers are methods which have a parameter which is an

instance of CaughtException<T extends Throwable> annotated with the @Handles annotation.

25.3.1. @HandlesExceptions

The @HandlesException annotation is simply a marker annotation that instructs the Solder

exception handling CDI extension to scan the bean for handler methods.

Let's designate a CDI bean as an exception handler by annotating it with @HandlesException.

@HandlesExceptions

public class MyHandlers {}

That's all there is to it. Now we can begin defining exception handling methods on this bean.

Note

The @HandlesExceptions annotation may be deprecated in favor of annotation

indexing at a later date.

25.3.2. @Handles

@Handles is a method parameter annotation that designates a method as an exception handler.

Exception handler methods are registered on beans annotated with @HandlesExceptions. Solder

will discover all such methods at deployment time.

Let's look at an example. The following method is invoked for every exception that Solder

processes and prints the exception message to stdout. (Throwable is the base exception type in

Java and thus represents all exceptions).

@HandlesExceptions

public class MyHandlers

{

 void printExceptions(@Handles CaughtException<Throwable> evt)

 {

 System.out.println("Something bad happened: " +

Chapter 25. Exception Handlin...

112

 evt.getException().getMessage());

 evt.markHandled();

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

The @Handles annotation on the first parameter designates this method as an exception

handler (though it is not required to be the first parameter). This parameter must be of type

CaughtException<T extends Throwable>, otherwise it's detected as a definition error.

The type parameter designates which exception the method should handle. This method is

notified of all exceptions (requested by the base exception type Throwable).

The CaughtException instance provides access to information about the exception and can

be used to control exception handling flow. In this case, it's used to read the current exception

being handled in the exception chain, as returned by getException().

This handler does not modify the invocation of subsequent handlers, as designated by

invoking markHandled() on CaughtException. As this is the default behavior, this line could

be omitted.

The @Handles annotation must be placed on a parameter of the method, which must be of type

CaughtException<T extends Throwable>. Handler methods are similar to CDI observers and,

as such, follow the same principles and guidelines as observers (such as invocation, injection of

parameters, qualifiers, etc) with the following exceptions:

• a parameter of a handler method must be a CaughtException

• handlers are ordered before they are invoked (invocation order of observers is non-

deterministic)

• any handler can prevent subsequent handlers from being invoked

In addition to designating a method as exception handler, the @Handles annotation specifies two

pieces of information about when the method should be invoked relative to other handler methods:

• a precedence relative to other handlers for the same exception type. Handlers with higher

precedence are invoked before handlers with lower precedence that handle the same exception

type. The default precedence (if not specified) is 0.

• the type of the traversal mode (i.e., phase) during which the handler is invoked. The default

traversal mode (if not specified) is TraversalMode.DEPTH_FIRST.

Let's take a look at more sophisticated example that uses all the features of handlers to log all

exceptions.

@HandlesExceptions

Exception chain processing

113

public class MyHandlers

{

 void logExceptions(@Handles(during = TraversalMode.BREADTH_FIRST)

 @WebRequest CaughtException<Throwable> evt,

 Logger log)

 {

 log.warn("Something bad happened: " + evt.getException().getMessage());

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

This handler has a default precedence of 0 (the default value of the precedence attribute

on @Handles). It's invoked during the breadth first traversal mode. For more information on

traversal, see the section Section 25.5.1, “Traversal of exception type hierarchy”.

This handler is qualified with @WebRequest. When Solder calculates the handler chain, it filters

handlers based on the exception type and qualifiers. This handler will only be invoked for

exceptions passed to Solder that carry the @WebRequest qualifier. We'll assume this qualifier

distinguishes a web page request from a REST request.

Any additional parameters of a handler method are treated as injection points. These

parameters are injected into the handler when it is invoked by Solder. In this case, we are

injecting a Logger bean that must be defined within the application (or by an extension).

A handler is guaranteed to only be invoked once per exception (automatically muted), unless it

re-enables itself by invoking the unmute() method on the CaughtException instance.

Handlers must not throw checked exceptions, and should avoid throwing unchecked exceptions.

Should a handler throw an unchecked exception it will propagate up the stack and all handling

done via Solder will cease. Any exception that was being handled will be lost.

25.4. Exception chain processing

When an exception is thrown, chances are it's nested (wrapped) inside other exceptions. (If you've

ever examined a server log, you'll appreciate this fact). The collection of exceptions in its entirety

is termed an exception chain.

The outermost exception of an exception chain (e.g., EJBException, ServletException, etc) is

probably of little use to exception handlers. That's why Solder doesn't simply pass the exception

chain directly to the exception handlers. Instead, it intelligently unwraps the chain and treats the

root exception cause as the primary exception.

The first exception handlers to be invoked by Solder are those that match the type of root

cause. Thus, instead of seeing a vague EJBException, your handlers will instead see an

Chapter 25. Exception Handlin...

114

meaningful exception such as ConstraintViolationException. This feature, alone, makes

Solder's exception handling a worthwhile tool.

Solder continues to work through the exception chain, notifying handlers of each exception in the

stack, until a handler flags the exception as handled. Once an exception is marked as handled,

Solder stops processing the exception. If a handler instructed Solder to rethrow the exception

(by invoking CaughtException#rethrow(), Solder will rethrow the exception outside the Solder

exception handling infrastructure. Otherwise, it simply returns flow control to the caller.

Consider a exception chain containing the following nested causes (from outer cause to root

cause):

• EJBException

• PersistenceException

• SQLGrammarException

Solder will unwrap this exception and notify handlers in the following order:

1. SQLGrammarException

2. PersistenceException

3. EJBException

If there's a handler for PersistenceException, it will likely prevent the handlers for EJBException

from being invoked, which is a good thing since what useful information can really be obtained

from EJBException?

25.5. Exception handler ordering

While processing one of the causes in the exception chain, Solder has a specific order it uses to

invoke the handlers, operating on two axes:

• traversal of exception type hierarchy

• relative handler precedence

We'll first address the traversal of the exception type hierarchy, then cover relative handler

precedence.

25.5.1. Traversal of exception type hierarchy

Solder doesn't simply invoke handlers that match the exact type of the exception. Instead, it walks

up and down the type hierarchy of the exception. It first notifies least specific handler in breadth

first traversal mode, then gradually works down the type hierarchy toward handlers for the actual

exception type, still in breadth first traversal. Once all breadth first traversal handlers have been

Traversal of exception type hierarchy

115

invoked, the process is reversed for depth first traversal, meaning the most specific handlers are

notified first and Solder continues walking up the hierarchy tree.

There are two modes of this traversal:

• BREADTH_FIRST

• DEPTH_FIRST

By default, handlers are registered into the DEPTH_FIRST traversal path. That means in most

cases, Solder starts with handlers of the actual exception type and works up toward the handler

for the least specific type.

However, when a handler is registered to be notified during the BREADTH_FIRST traversal, as

in the example above, Solder will notify that exception handler before the exception handler for

the actual type is notified.

Let's consider an example. Assume that Solder is handling the SocketException. It will notify

handlers in the following order:

1. Throwable (BREADTH_FIRST)

2. Exception (BREADTH_FIRST)

3. IOException (BREADTH_FIRST)

4. SocketException (BREADTH_FIRST)

5. SocketException (DEPTH_FIRST)

6. IOException (DEPTH_FIRST)

7. Exception (DEPTH_FIRST)

8. Throwable (DEPTH_FIRST)

The same type traversal occurs for each exception processed in the chain.

In order for a handler to be notified of the IOException before the SocketException, it would

have to specify the BREADTH_FIRST traversal path explicitly:

void handleIOException(@Handles(during = TraversalMode.BREADTH_FIRST)

 CaughtException<IOException> evt)

{

 System.out.println("An I/O exception occurred, but not sure what type yet");

}

Chapter 25. Exception Handlin...

116

BREADTH_FIRST handlers are typically used for logging exceptions because they are not likely to

be short-circuited (and thus always get invoked).

25.5.2. Handler precedence

When Solder finds more than one handler for the same exception type, it orders the handlers

by precedence. Handlers with higher precedence are executed before handlers with a lower

precedence. If Solder detects two handlers for the same type with the same precedence, it detects

it as an error and throws an exception at deployment time.

Let's define two handlers with different precedence:

void handleIOExceptionFirst(@Handles(precedence = 100) CaughtException<IOException> evt)

{

 System.out.println("Invoked first");

}

void handleIOExceptionSecond(@Handles CaughtException<IOException> evt)

{

 System.out.println("Invoked second");

}

The first method is invoked first since it has a higher precedence (100) than the second method,

which has the default precedence (0).

To make specifying precedence values more convenient, Solder provides several built-in

constants, available on the Precedence class:

• BUILT_IN = -100

• FRAMEWORK = -50

• DEFAULT = 0

• LOW = 50

• HIGH = 100

To summarize, here's how Solder determines the order of handlers to invoke (until a handler

marks exception as handled):

1. Unwrap exception stack

2. Begin processing root cause

APIs for exception information and flow control

117

3. Find handler for least specific handler marked for BREADTH_FIRST traversal

4. If multiple handlers for same type, invoke handlers with higher precedence first

5. Find handler for most specific handler marked for DEPTH_FIRST traversal

6. If multiple handlers for same type, invoke handlers with higher precedence first

7. Continue above steps for each exception in stack

25.6. APIs for exception information and flow control

There are two APIs provided by Solder that should be familiar to application developers:

• CaughtException

• ExceptionStack

25.6.1. CaughtException

In addition to providing information about the exception being handled, the CaughtException

object contains methods to control the exception handling process, such as rethrowing the

exception, aborting the handler chain or unmuting the current handler.

Five methods exist on the CaughtException object to give flow control to the handler

• abort() - terminate all handling immediately after this handler, does not mark the exception as

handled, does not re-throw the exception.

• rethrow() - continues through all handlers, but once all handlers have been called (assuming

another handler does not call abort() or handled()) the initial exception passed to Solder is

rethrown. Does not mark the exception as handled.

• handled() - marks the exception as handled and terminates further handling.

• markHandled() - default. Marks the exception as handled and proceeds with the rest of the

handlers.

• dropCause() - marks the exception as handled, but proceeds to the next cause in the cause

container, without calling other handlers for the current cause.

Once a handler is invoked it is muted, meaning it will not be run again for that exception chain,

unless it's explicitly marked as unmuted via the unmute() method on CaughtException.

25.6.2. ExceptionStack

ExceptionStack contains information about the exception causes relative to the current

exception cause. It is also the source of the exception types the invoked handlers are

Chapter 25. Exception Handlin...

118

matched against. It is accessed in handlers by calling the method getExceptionStack() on

the CaughtException object. Please see API docs [http://docs.jboss.org/seam/3/solder/latest/

api/org/jboss/solder/exception/control/ExceptionStack.html] for more information, all methods are

fairly self-explanatory.

Tip

This object is mutable and can be modified before any handlers are invoked by

an observer:

public void modifyStack(@Observes ExceptionStack stack) {

 ...

}

Modifying the ExceptionStack may be useful to remove exception types that

are effectively meaningless such as EJBException, changing the exception type

to something more meaningful such as cases like SQLException, or wrapping

exceptions as custom application exception types.

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html

Chapter 26.

119

Exception handling - Advanced

Features

26.1. Exception Modification

26.1.1. Introduction

At times it may be useful to change the exception to something a little more specific or meaningful

before it is sent to handlers. Solder provides the means to make this happen. A prime use case

for this behavior is a persistence-related exception coming from the database. Many times what

we get from the database is an error number inside of a SQLException, which isn't very helpful.

26.1.2. Usage

Before any handlers are notified of an exception, Solder will raise an event of type

ExceptionStack. This type contains all the exceptions in the chain, and will allow

you to change the exception elements that will be used to notify handlers using the

setCauseElements(Collection) method. Do not use any of the other methods as they only

return copies of the chain.

Tip

When changing the exception, it is strongly recommended you keep the same stack

trace for the exceptions you are changing. If the stack trace is not set then the new

exception will not contain any stack information save from the time it was created,

which is likely to be of little use to any handler.

26.2. Filtering Stack Traces

26.2.1. Introduction

Stack traces are an everyday occurrence for the Java developer, unfortunately the base stack

trace isn't very helpful and can be difficult to understand and see the root problem. Solder helps

make this easier by:

• turning the stack upside down and showing the root cause first, and

• allowing the stack trace to be filtered

The great part about all of this: it's done without a need for CDI! You can use it in a basic Java

project, just include the Solder jar. There are four classes to be aware of when using filtering

Chapter 26. Exception handlin...

120

• ExceptionStackOutput

• StackFrameFilter

• StackFrameFilterResult

• StackFrame

26.2.2. ExceptionStackOutput

There's not much to this, pass it the exception to print and the filter to use in the constructor and

call printTrace() which returns a string -- the stack trace (filtered or not). If no filter is passed to

the constructor, calling printTrace() will still unwrap the stack and print the root cause first. This

can be used in place ofThrowable#printStackTrace(), provided the returned string is actually

printed to standard out or standard error.

26.2.3. StackFrameFilter

This is the workhorse interface that will need to be implemented to do any filtering for a stack

trace. It only has one method:public StackFrameFilterResult process(StackFrame frame).

Further below are methods on StackFrame andStackFrameFilterResult. Some examples are

included below to get an idea what can be done and how to do it.

26.2.4. StackFrameFilterResult

This is a simple enumeration of valid return values for the process method. Please

see the API docs [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/

StackFrameFilterResult.html] for definitions of each value.

26.2.5. StackFrame

This contains methods to help aid in determining what to do in the filter, it also allows you to

completely replace the StackTraceElement if desired. The four "mark" methods deal with marking

a stack trace and are used if "folding" a stack trace is desired, instead of dropping the frame. The

StackFrame will allow for multiple marks to be set. The last method,getIndex(), will return the

index of the StackTraceElement from the exception.

Example 26.1. Terminate

 @Override

 public StackFrameFilterResult process(StackFrame frame) {

 return StackFrameFilterResult.TERMINATE;

 }

This example will simply show the exception, no stack trace.

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html

StackFrame

121

Example 26.2. Terminate After

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 return StackFrameFilterResult.TERMINATE_AFTER;

 }

This is similar to the previous example, save the first line of the stack is shown.

Example 26.3. Drop Remaining

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 if (frame.getIndex() >= 5) {

 return StackFrameFilterResult.DROP_REMAINING;

 }

 return StackFrameFilterResult.INCLUDE;

 }

This filter drops all stack elements after the fifth element.

Example 26.4. Folding

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 if (frame.isMarkSet("reflections.invoke")) {

 if (frame.getStackTraceElement().getClassName().contains("java.lang.reflect")) {

 frame.clearMark("reflections.invoke");

 return StackFrameFilterResult.INCLUDE;

 }

 else if (frame.getStackTraceElement().getMethodName().startsWith("invoke")) {

 return StackFrameFilterResult.DROP;

 }

 }

 if (frame.getStackTraceElement().getMethodName().startsWith("invoke")) {

 frame.mark("reflections.invoke");

 return StackFrameFilterResult.DROP;

 }

 return StackFrameFilterResult.INCLUDE;

Chapter 26. Exception handlin...

122

 }

Certainly the most complicated example, however, this shows a possible way of "folding" a

stack trace. In the example any internal reflection invocation methods are folded into a single

java.lang.reflect.Method.invoke() call, no more internal com.sun calls in the trace.

Chapter 27.

123

Exception Handling - Framework

Integration
Integration of Solder's exception handling with other frameworks consists of one main step, and

two other optional (but highly encouraged) steps:

• creating and firing an ExceptionToCatch

• adding any default handlers and qualifiers with annotation literals (optional)

• supporting ServiceHandlers for creating exception handlers

27.1. Creating and Firing an ExceptionToCatch event

An ExceptionToCatch is constructed by passing a Throwable and optionally qualifiers for

handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting

a Event<ExceptionToCatch> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception

handling mechanism of the integrating framework, if any exist. By tying into the framework's

exception handling, any uncaught exceptions should be routed through Solder's exception

handling system and allow handlers to be invoked. This is the typical way of using Solder to

handle exceptions. Of course, it doesn't stop the application developer from firing their own

ExceptionToCatch within a catch block.

Tip

The integration should check to see if the exception was handled and rethrow the

exception if it was not handled. It should also wrap the firing of the event in a

try catch, and unwrap any exceptions that are thrown. This exception should be

javax.enterprise.event.ObserverException and should wrap the exception

that should be rethrown.

27.2. Default Handlers and Qualifiers

27.2.1. Default Handlers

An integration with Solder can define it's own handlers to always be used. It's recommended

that any built-in handler from an integration have a very low precedence, be a handler for as

generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for

Chapter 27. Exception Handlin...

124

PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the

integration. This helps limit any collisions with handlers the application developer may create.

27.2.2. Qualifiers

Solder supports qualifiers for the CaughtException. To add qualifiers to be used when notifying

handlers, the qualifiers must be added to the ExceptionToCatch instance via the constructor

(please see API docs for more info). Qualifiers for integrations should be used to avoid collisions

in the application error handling both when defining handlers and when firing events from the

integration.

27.3. Supporting ServiceHandlers

ServiceHandlers make for a very easy and concise way to define exception handlers. The following

example is a possible usage of ServiceHandlers within a JAX-RS application:

@HandlesExceptions

@ExceptionResponseService

public interface DeclarativeRestExceptionHandlers

{

 @SendHttpResponse(status = 403, message = "Access to resource denied (Annotation-

configured response)")

 void onNoAccess(@Handles @RestRequest CaughtException<AccessControlException> e);

 @SendHttpResponse(status = 400, message = "Invalid identifier (Annotation-configured

 response)")

 void onInvalidIdentifier(@Handles @RestRequest CaughtException<IllegalArgumentException> e);

}

All the vital information that would normally be done in the handler method is actually contained

in the @SendHttpResponse annotation. The only thing left is some boiler plate code to setup the

Response. In a jax-rs application (or even in any web application) this approach helps developers

cut down on the amount of boiler plate code they have to write in their own handlers and should be

implemented in any Solder integration, however, there may be situations where ServiceHandlers

simply do not make sense.

Note

If ServiceHandlers are implemented make sure to document if any of the methods

are called from CaughtException, specifically abort(), handled() or rethrow().

Programmatic Handler Registration

125

These methods affect invocation of other handlers (or rethrowing the exception in

the case of rethrow()).

27.4. Programmatic Handler Registration

Handlers can be registered programatically at runtime instead of solely at deploy

time. This done very simply by injecting HandlerMethodContainer and calling

registerHandlerMethod(HandlerMethod).

HandlerMethod has been relaxed in this version as well, and is not tied directly to Java. It is

therefore feasible handlers written using other JVM based languages could be easily registered

and participate in exception handling.

126

127

Exception Handling - Glossary

E
Exception Chain An exception chain is made up of many different exceptions or

causes until the root exception is found at the bottom of the

chain. When all of the causes are removed or looked at this forms

the causing container. The container may be traversed either

ascending (root cause first) or descending (outer most first).

H
Handler Bean A CDI enabled Bean which contains handler methods. Annotated

with the @HandlesExceptions annotation.

See Also Handler Method.

Handler Method A method within a handler bean which is marked as a handler

using the @Handlers on an argument, which must be an instance

of CaughtException. Handler methods typically are public with

a void return. Other parameters of the method will be treated as

injection points and will be resolved via CDI and injected upon

invocation.

See Also Handler Bean.

128

Part II. Seam Persistence

Chapter 28.

131

Seam Persistence Reference
Seam provides extensive support for the two most popular persistence architectures for Java:

Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique state-

management architecture allows the most sophisticated ORM integration of any web application

framework.

28.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of

the previous generation of Java application architectures. The state management architecture

of Seam was originally designed to solve problems relating to persistence — in particular

problems associated withoptimistic transaction processing. Scalable online applications always

use optimistic transactions. An atomic (database/JTA) level transaction should not span a user

interaction unless the application is designed to support only a very small number of concurrent

clients. But almost all interesting work involves first displaying data to a user, and then, slightly

later, updating the same data. So Hibernate was designed to support the idea of a persistence

context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no

construct for representing an optimistic transaction. So, instead, these architectures provided

persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems

for users, and is the cause of the number one user complaint about Hibernate: the dreaded

LazyInitializationException. What we need is a construct for representing an optimistic

transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful

session bean) with an extended persistence context scoped to the lifetime of the component.

This is a partial solution to the problem (and is a useful construct in and of itself) however there

are two problems:

• The lifecycle of the stateful session bean must be managed manually via code in the web tier

(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

• Propagation of the persistence context between stateful components in the same optimistic

transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components

scoped to the conversation. (Most conversations actually represent optimistic transactions in the

data layer.) This is sufficient for many simple applications (such as the Seam booking demo) where

persistence context propagation is not needed. For more complex applications, with many loosely-

interacting components in each conversation, propagation of the persistence context across

components becomes an important issue. So Seam extends the persistence context management

model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

Chapter 28. Seam Persistence ...

132

28.2. Getting Started

To get started with Seam persistence you need to add the seam-persistence.jar and the seam-

solder.jar to you deployment. If you are in a java SE environment you will probably also require

seam-xml.jar as well for configuration purposes. The relevant maven configuration is as follows:

<dependency>

 <groupId>org.jboss.seam.persistence</groupId>

 <artifactId>seam-persistence-api</artifactId>

 <version>${seam.persistence.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.persistence</groupId>

 <artifactId>seam-persistence-impl</artifactId>

 <version>${seam.persistence.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder</artifactId>

 <version>${seam.solder.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.xml</groupId>

 <artifactId>seam-xml-config</artifactId>

 <version>${seam.xml.version}</version>

</dependency>

You will also need to have a JPA provider on the classpath. If you are using java EE this is taken

care of for you. If not, we recommend hibernate.

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-core</artifactId>

 <version>3.5.1-Final</version>

</dependency>

Transaction Management

133

28.3. Transaction Management

Unlike EJB session beans CDI beans are not transactional by default. Seam brings declarative

transaction management to CDI beans by enabling them to use@TransactionAttribute. Seam

also provides the @Transactional annotation, for environments where java EE APIs are not

present.

28.3.1. Configuration

In order to enable declarative transaction management for managed beans you need to list the

transaction interceptor in beans.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <interceptors>

 <class>org.jboss.seam.transaction.TransactionInterceptor</class>

 </interceptors>

</beans>

If you are in a Java EE 6 environment then you are good to go, no additional configuration is

required.

Note

If you are deploying to JBoss AS6 it is important to know that it does not

support meta data per bean archive and will throw a deployment error if defined

twice. Additionally some Seam 3 modules such as Security already enable this

Interceptor and defining it again will result in a deployment error.

This is not an issue with JBoss AS7 or Glassfish.

If you are not in an EE environment you may need to configure some things with seam-xml. You

may need the following entries in your beans.xml file:

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:t="urn:java:org.jboss.seam.transaction"

Chapter 28. Seam Persistence ...

134

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <t:SeSynchronizations>

 <s:modifies/>

 </t:SeSynchronizations>

 <t:EntityTransaction>

 <s:modifies />

 </t:EntityTransaction>

</beans>

Let's look at these individually.

<t:SeSynchronizations>

 <s:modifies/>

</t:SeSynchronizations>

Seam will attempt to use JTA synchronizations if possible. If not then you need to

install the SeSynchronzations bean to allow seam to handle synchronizations manually.

Synchronizations allow seam to respond to transaction events such as beforeCompletion()

andafterCompletion(), and are needed for the proper operation of the Seam Managed

Persistence Context.

<t:EntityTransaction>

 <s:modifies />

</t:EntityTransaction>

By default seam will attempt to look up java:comp/UserTransaction from JNDI (or alternatively

retrieve it from the EJBContext if a container managed transaction is active). Installing

EntityTransaction tells seam to use the JPA EntityTransaction instead. To use this you must

have a Seam Managed Persistence Context installed with qualifier@Default.

If your entity manager is installed with a different qualifier, then you need to use the following

configuration (this assumes that my has been bound to the namespace that contains the

appropriate qualifier, see the Seam Config XML documentation for more details):

<t:EntityTransaction>

 <s:modifies />

Declarative Transaction Management

135

 <t:entityManager>

 <my:SomeQualifier/>

 </tentityManager>

</t:EntityTransaction>

Note

You should avoid EntityTransaction if you have more than one persistence unit

in your application. Seam does not support installing multiple EntityTransaction

beans, and the EntityTransaction interface does not support two phase commit,

so unless you are careful you may have data consistency issues. If you need

multiple persistence units in your application then we highly recommend using an

EE 6 compatible server, such as JBoss 6.

28.3.2. Declarative Transaction Management

Seam adds declarative transaction support to managed beans. Seam re-uses the

EJB @TransactionAttribute for this purpose, however it also provides an alternative

@Transactional annotation for environments where the EJB API's are not available. An

alternative to@ApplicationException, @SeamApplicationException is also provided. Unlike

EJBs, managed beans are not transactional by default, you can change this by adding the

@TransactionAttribute to the bean class.

Unlike in Seam 2, transactions will not roll back whenever a non-application exception propagates

out of a bean, unless the bean has the transaction interceptor enabled.

If you are using seam managed transactions as part of the seam-faces module you do not need

to worry about declarative transaction management. Seam will automatically start a transaction

for you at the start of the faces request, and commit it before the render response phase.

Warning

@SeamApplicationException will not control transaction rollback when using

EJB container managed transactions. If you are in an EE environment

then you should always use the EJB API's, namely @TransactionAttribute

and@ApplicationException.

Chapter 28. Seam Persistence ...

136

Note

TransactionAttributeType.REQUIRES_NEW and

TransactionAttributeType.NOT_SUPPORTED are not yet supported on managed

beans.

Let's have a look at some code. Annotations applied at a method level override annotations applied

at the class level.

@TransactionAttribute /*Defaults to TransactionAttributeType.REQUIRED */

 class TransactionalBean

 {

 /* This is a transactional method, when this method is called a transaction

 * will be started if one does not already exist.

 * This behavior is inherited from the @TransactionAttribute annotation on

 * the class.

 */

 void doWork()

 {

 ...

 }

 /* A transaction will not be started for this method, however it */

 /* will not complain if there is an existing transaction active. */

 @TransactionAttributeType(TransactionAttributeType.SUPPORTED)

 void doMoreWork()

 {

 ...

 }

 /* This method will throw an exception if there is no transaction active when */

 /* it is invoked. */

 @TransactionAttributeType(TransactionAttributeType.MANDATORY)

 void doEvenMoreWork()

 {

 ...

 }

 /* This method will throw an exception if there is a transaction active when */

 /* it is invoked. */

 @TransactionAttributeType(TransactionAttributeType.NOT_SUPPORTED)

Seam-managed persistence contexts

137

 void doOtherWork()

 {

 ...

 }

 }

28.4. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to

manage the persistence context lifecycle for you. Even if you are in an EE environment, you might

have a complex application with many loosely coupled components that collaborate together in the

scope of a single conversation, and in this case you might find that propagation of the persistence

context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session

(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam

component that manages an instance of EntityManager or Session in the conversation (or any

other) context. You can inject it with@Inject.

28.4.1. Using a Seam-managed persistence context with JPA

@ExtensionManaged

 @Produces

 @PersistenceUnit

 @ConversationScoped

 EntityManagerFactory producerField;

This is just an ordinary resource producer field as defined by the CDI specification, however

the presence of the @ExtensionManaged annotation tells seam to create a seam managed

persistence context from thisEntityManagerFactory. This managed persistence context can be

injected normally, and has the same scope and qualifiers that are specified on the resource

producer field.

This will work even in a SE environment where @PersistenceUnit injection is not

normally supported. This is because the seam persistence extensions will bootstrap the

EntityManagerFactory for you.

Now we can have our EntityManager injected using:

@Inject EntityManager entityManager;

Chapter 28. Seam Persistence ...

138

Note

The more eagle eyed among you may have noticed that the resource producer field

appears to be conversation scoped, which the CDI specification does not require

containers to support. This is actually not the case, as the @ConversationScoped

annotation is removed by the seam persistence portable extension. It only specifies

the scope of the created SMPC, not the EntityManagerFactory.

Warning

If you are using EJB3 and mark your class or method

@TransactionAttribute(REQUIRES_NEW) then the transaction and persistence

context shouldn't be propagated to method calls on this object. However as the

Seam-managed persistence context is propagated to any component within the

conversation, it will be propagated to methods markedREQUIRES_NEW. Therefore,

if you mark a method REQUIRES_NEW then you should access the entity manager

using @PersistenceContext.

28.4.2. Seam-managed persistence contexts and atomic

conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions

that span multiple requests to the server without the need to use the merge() operation , without

the need to re-load data at the beginning of each request, and without the need to wrestle with

the LazyInitializationException or NonUniqueObjectException.

As with any optimistic transaction management, transaction isolation and consistency can be

achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.1 make it very easy

to use optimistic locking, by providing the @Version annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of

each transaction. This is sometimes the desired behavior. But very often, we would prefer that

all changes are held in memory and only written to the database when the conversation ends

successfully. This allows for truly atomic conversations. Unfortunately there is currently no simple,

usable and portable way to implement atomic conversations using EJB 3.1 persistence. However,

Hibernate provides this feature as a vendor extension to the FlushModeTypes defined by the

specification, and it is our expectation that other vendors will soon provide a similar extension.

28.4.3. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-managed

persistence context. This lets you use EL expressions in your query strings, safely and efficiently.

For example, this:

Setting up the EntityManager

139

User user = em.createQuery("from User where username=#{user.username}")

 .getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")

 .setParameter("username", user.getUsername())

 .getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!

 .getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

Warning

This only works with seam managed persistence contexts, not persistence

contexts that are injected with @PersistenceContext.

28.4.4. Setting up the EntityManager

Sometimes you may want to perform some additional setup on the EntityManager after it has

been created. For example, if you are using Hibernate you may want to set a filter. Seam

persistence fires a SeamManagedPersistenceContextCreated event when a Seam managed

persistence context is created. You can observe this event and perform any setup you require in

an observer method. For example:

public void setupEntityManager(@Observes SeamManagedPersistenceContextCreated

 event) {

 Session session = (Session)event.getEntityManager().getDelegate();

 session.enableFilter("myfilter");

 }

140

Part III. Seam Transaction

Chapter 29.

143

Seam Transaction Reference

29.1. Introduction

144

Part IV. Seam Security

Chapter 30.

147

Security - Introduction

30.1. Overview

The Seam Security module provides a number of useful features for securing your Java EE

application, which are briefly summarised in the following sections. The rest of the chapters

contained in this documentation each focus on one major aspect of each of the following features.

30.1.1. Authentication

Authentication is the act of establishing, or confirming, the identity of a user. In many applications

a user confirms their identity by providing a username and password (also known as their

credentials). Seam Security allows the developer to control how users are authenticated, by

providing a flexible Authentication API that can be easily configured to allow authentication against

any number of sources, including but not limited to databases, LDAP directory servers or some

other external authentication service.

If none of the built-in authentication providers are suitable for your application, then it is also

possible to write your own custom Authenticator implementation.

30.1.2. Identity Management

Identity Management is a set of useful APIs for managing the users, groups and roles within your

application. The identity management features in Seam are provided by PicketLink IDM, and allow

you to manage users stored in a variety of backend security stores, such as in a database or

LDAP directory.

30.1.3. External Authentication

Seam Security contains an external authentication sub-module that provides a number of features

for authenticating your application users against external authentication services, such as OpenID

and SAML.

30.1.4. Authorization

While authentication is used to confirm the identity of the user, authorization is used to control

which actions a user may perform within your application. Authorization can be roughly divided

into two categories; coarse-grained and fine-grained. An example of a coarse-grained restriction is

allowing only members of a certain group or role to perform a privileged operation. A fine-grained

restriction on the other hand may allow only a certain individual user to perform a specific action

on a specific object within your application.

There are also rule-based permissions, which bridge the gap between fine-grained and coarse-

grained restrictions. These permissions may be used to determine a user's privileges based on

certain business logic.

Chapter 30. Security - Introd...

148

30.2. Configuration

30.2.1. Maven Dependencies

The Maven artifacts for all Seam modules are hosted within the JBoss Maven repository. Please

refer to the Maven Getting Started Guide [http://community.jboss.org/wiki/MavenGettingStarted-

Users] for information about configuring your Maven installation to use the JBoss repository.

To use Seam Security within your Maven-based project, it is advised that you import the Seam

BOM (Bill of Materials) which declares the versions for all Seam modules. First declare a property

value for ${seam.version} as follows:

<properties>

 <seam.version>3.1.0.Final</seam.version>

</properties>

You can check the JBoss Maven Repository [https://repository.jboss.org/nexus/content/groups/

public/org/jboss/seam/seam-bom/] directly to determine the latest version of the Seam BOM to

use.

Now add the following lines to the list of dependencies within the dependencyManagement section

of your project's pom.xml file:

<dependency>

 <groupId>org.jboss.seam</groupId>

 <artifactId>seam-bom</artifactId>

 <version>${seam.version}</version>

 <type>pom</type>

 <scope>import</scope>

</dependency>

Once that is done, add the following dependency (no version is required as it comes from seam-

bom):

<dependency>

 <groupId>org.jboss.seam.security</groupId>

 <artifactId>seam-security</artifactId>

</dependency>

If you wish to use the external authentication module in your application to allow authentication

using OpenID or SAML, then add the following dependency also:

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/

Enabling the Security Interceptor

149

<dependency>

 <groupId>org.jboss.seam.security</groupId>

 <artifactId>seam-security-external</artifactId>

</dependency>

30.2.2. Enabling the Security Interceptor

To enable many of the features of Seam Security, the Security interceptor must be configured

in your application's beans.xml file. Add the following configuration to your beans.xml to enable

the Security Interceptor:

 <interceptors>

 <class>org.jboss.seam.security.SecurityInterceptor</class>

 </interceptors>

150

Chapter 31.

151

Security - Authentication

31.1. Basic Concepts

The majority of the Security API is centered around the Identity bean. This bean represents

the identity of the current user, the default implementation of which is a session-scoped, named

bean. This means that once logged in, a user's identity is scoped to the lifecycle of their current

session. The two most important methods that you need to know about at this stage in regard to

authentication are login() and logout(), which as the names suggest are used to log the user

in and out, respectively.

As the default implementation of the Identity bean is named, it may be referenced via an EL

expression, or be used as the target of an EL action. Take the following JSF code snippet for

example:

 <h:commandButton action="#{identity.login}" value="Log in"/>

This JSF command button would typically be used in a login form (which would also contain inputs

for the user's username and password) that allows the user to log into the application.

Note

The bean type of the Identity bean is org.jboss.seam.security.Identity.

This interface is what you should inject if you need to access the

Identity bean from your own beans. The default implementation is

org.jboss.seam.security.IdentityImpl.

The other important bean to know about right now is the Credentials bean. Its' purpose is to

hold the user's credentials (such as their username and password) before the user logs in. The

default implementation of the Credentials bean is also a session-scoped, named bean (just like

the Identity bean).

The Credentials bean has two properties, username and credential that are used to hold the

current user's username and credential (e.g. a password) values. The default implementation of

the Credentials bean provides an additional convenience property called password, which may

be used in lieu of the credential property when a simple password is required.

Note

The bean type of the Credential bean is

org.jboss.seam.security.Credentials. The default implementation for this

Chapter 31. Security - Authen...

152

bean type is org.jboss.seam.security.CredentialsImpl. Also, as credentials

may come in many forms (such as passwords, biometric data such as that from a

fingerprint reader, etc) the credential property of the Credentials bean must be

able to support each variation, not just passwords. To allow for this, any credential

that implements the org.picketlink.idm.api.Credential interface is a valid

value for the credential property.

31.2. Built-in Authenticators

The Seam Security module provides the following built-in Authenticator implementations:

• org.jboss.seam.security.jaas.JaasAuthenticator - used to authenticate against a JAAS

configuration defined by the container.

• org.jboss.seam.security.management.IdmAuthenticator - used to authenticate against

an Identity Store using the Identity Management API. See the Identity Management chapter for

details on how to configure this authenticator.

• org.jboss.seam.security.external.openid.OpenIdAuthenticator (provided by the

external module) - used to authenticate against an external OpenID provider, such as Google,

Yahoo, etc. See the External Authentication chapter for details on how to configure this

authenticator.

31.3. Which Authenticator will Seam use?

The Identity bean has an authenticatorClass property, which if set will be used to determine

which Authenticator bean implementation to invoke during the authentication process. This

property may be set by configuring it with a predefined authenticator type, for example by using

Solder XML Config. The following XML configuration example shows how you would configure

the Identity bean to use the com.acme.MyCustomerAuthenticator bean for authentication:

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:security="urn:java:org.jboss.seam.security"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/

beans_1_0.xsd">

 <security:IdentityImpl>

 <s:modifies/>

 <security:authenticatorClass>com.acme.MyCustomAuthenticator</

security:authenticatorClass>

 </security:IdentityImpl>

Writing a custom Authenticator

153

</beans>

Alternatively, if you wish to be able to select the Authenticator to authenticate with by specifying

the name of the Authenticator implementation (i.e. for those annotated with the @Named

annotation), the authenticatorName property may be set instead. This might be useful if you

wish to offer your users the choice of how they would like to authenticate, whether it be through

a local user database, an external OpenID provider, or some other method.

The following example shows how you might configure the authenticatorName property with the

Seam Config module:

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:security="urn:java:org.jboss.seam.security"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/

beans_1_0.xsd">

 <security:IdentityImpl>

 <s:modifies/>

 <security:authenticatorName>openIdAuthenticator</security:authenticatorName>

 </security:IdentityImpl>

</beans>

If neither the authenticatorClass or authenticatorName properties are set, then the

authentication process with automatically use a custom Authenticator implementation, if the

developer has provided one (and only one) within their application.

If neither property is set, and the user has not provided a custom Authenticator, then the

authentication process will fall back to the Identity Management API to attempt to authenticate

the user.

31.4. Writing a custom Authenticator

All Authenticator implementations must implement the

org.jboss.seam.security.Authenticator interface. This interface defines the following

methods:

public interface Authenticator {

 void authenticate();

 void postAuthenticate();

 User getUser();

 AuthenticationStatus getStatus();

Chapter 31. Security - Authen...

154

}

The authenticate() method is invoked during the authentication process and is responsible for

performing the work necessary to validate whether the current user is who they claim to be.

The postAuthenticate() method is invoked after the authentication process has already

completed, and may be used to perform any post-authentication business logic, such as setting

session variables, logging, auditing, etc.

The getUser() method should return an instance of org.picketlink.idm.api.User, which is

generally determined during the authentication process.

The getStatus() method must return the current status of authentication, represented by

the AuthenticationStatus enum. Possible values are SUCCESS, FAILURE and DEFERRED. The

DEFERRED value should be used for special circumstances, such as asynchronous authentication

as a result of authenticating against a third party as is the case with OpenID, etc.

The easiest way to get started writing your own custom authenticator is to extend the

org.jboss.seam.security.BaseAuthenticator abstract class. This class implements the

getUser() and getStatus() methods for you, and provides setUser() and setStatus()

methods for setting both the user and status values.

Warning

An Authenticator implementation cannot be a stateless session bean.

To access the user's credentials from within the authenticate() method, you can inject the

Credentials bean like so:

@Inject Credentials credentials;

Once the credentials are injected, the authenticate() method is responsible for checking that

the provided credentials are valid. Here is a complete example:

public class SimpleAuthenticator extends BaseAuthenticator implements Authenticator {

 @Inject Credentials credentials;

 @Override

 public void authenticate() {

 if ("demo".equals(credentials.getUsername()) &&

 credentials.getCredential() instanceof PasswordCredential &&

 "demo".equals(((PasswordCredential) credentials.getCredential()).getValue())) {

 setStatus(AuthenticationStatus.SUCCESS);

Writing a custom Authenticator

155

 setUser(new SimpleUser("demo"));

 }

 }

}

Note

The above code was taken from the simple authentication example, included in

the Seam Security distribution.

In the above code, the authenticate() method checks that the user has provided a username of

demo and a password of demo. If so, the authentication is deemed as successful and the status is

set to AuthenticationStatus.SUCCESS, and a new SimpleUser instance is created to represent

the authenticated user.

Warning

The Authenticator implementation must return a non-null value when getUser()

is invoked if authentication is successful. Failure to return a non-null value will result

in an AuthenticationException being thrown.

156

Chapter 32.

157

Security - Identity Management

32.1. Overview

Identity Management is a feature that allows you to manage the users, groups and roles in your

application. The Identity Management features in Seam Security are provided by PicketLink IDM

[http://www.jboss.org/picketlink/IDM]. The best place to find more information about PicketLink

IDM is the reference documentation, available here [http://anonsvn.jboss.org/repos/picketlink/idm/

downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.html].

PicketLink provides two identity store implementations to allow you to use Hibernate or

LDAP to store identity-related data (please refer to the PicketLink IDM documentation for

details on configuring these). Seam Security provides an additional implementation called

JpaIdentityStore, which allows you to store your identity data using JPA.

In a Seam-based application it probably makes more sense to use the standards-based

JpaIdentityStore rather than HibernateIdentityStore, as you will most likely be running in an

Java EE container that supports JPA. JpaIdentityStore is an implementation of the PicketLink

IdentityStore interface, provided by Seam Security. This identity store allows you to store your

identity model inside a relational database, accessible via JPA. It provides an immense amount

of flexibility in the way you define your identity model, and in most cases should be compatible

with existing database schemas.

Note

See the idmconsole example application (included in the Seam distribution) for a

demonstration of Seam's Identity Management features.

32.2. Configuring Seam to use Identity Management

with JPA

Like all authentication providers in Seam, Identity Management is supported via a concrete

Authenticator implementation called IdmAuthenticator. To use Identity Management in your

own application, you don't need to do anything! Simply don't configure any authenticator, and as

long as you have an identity store configured (see the next section), the Identity Management API

will be used to authenticate automatically.

32.2.1. Recommended database schema

While JpaIdentityStore should be compatible with a large variety of database schemas, the

following diagram displays the recommended database schema to use:

http://www.jboss.org/picketlink/IDM
http://www.jboss.org/picketlink/IDM
http://anonsvn.jboss.org/repos/picketlink/idm/downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.html
http://anonsvn.jboss.org/repos/picketlink/idm/downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.html
http://anonsvn.jboss.org/repos/picketlink/idm/downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.html

Chapter 32. Security - Identi...

158

32.2.2. The @IdentityEntity and @IdentityProperty annotations

Seam Security provides two annotations for configuring your entity beans for use with

JpaIdentityStore. The first, @IdentityEntity is a class annotation used to mark an entity bean

so that JpaIdentityStore knows it contains identity-related data. It has a single member of type

EntityType, that tells JpaIdentityStore what type of identity data it contains. Possible values

are:

• IDENTITY_OBJECT

• IDENTITY_CREDENTIAL

• IDENTITY_RELATIONSHIP

• IDENTITY_ATTRIBUTE

• IDENTITY_ROLE_NAME

The second one, IdentityProperty, is a field or method annotation which is used to configure

which properties of the bean contain identity values. This annotation declares two values, value

and attributeName:

package org.jboss.seam.security.annotations.management;

public @interface IdentityProperty {

 PropertyType value();

Identity Object

159

 String attributeName() default "";

}

The value() member is of type PropertyType, which is an enum that defines the following values:

public enum PropertyType {

 NAME, TYPE, VALUE, RELATIONSHIP_FROM, RELATIONSHIP_TO, CREDENTIAL,

 CREDENTIAL_TYPE, ATTRIBUTE }

By placing the IdentityProperty annotation on various fields of your entity beans,

JpaIdentityStore can determine how identity-related data must be stored within your database

tables.

In the following sections we'll look at how each of the main entities are configured.

32.2.3. Identity Object

Let's start by looking at identity object. In the recommended database schema, the

IDENTITY_OBJECT table is responsible for storing objects such as users and groups. This table

may be represented by the following entity bean:

@Entity

@IdentityEntity(IDENTITY_OBJECT)

public class IdentityObject implements Serializable {

 @Id @GeneratedValue private Long id;

 @IdentityProperty(PropertyType.NAME)

 private String name;

 @ManyToOne @IdentityProperty(PropertyType.TYPE)

 @JoinColumn(name = "IDENTITY_OBJECT_TYPE_ID")

 private IdentityObjectType type;

 // snip getter and setter methods

}

In the above code both the name and type fields are annotated with @IdentityProperty. This

tells JpaIdentityStore that these two fields are significant in terms of identity management-

related state. By annotating the name field with @IdentityProperty(PropertyType.NAME),

JpaIdentityStore knows that this field is used to store the name of the identity object. Likewise,

the @IdentityProperty(PropertyType.TYPE) annotation on the type field indicates that the

value of this field is used to represent the type of identity object.

Chapter 32. Security - Identi...

160

The IdentityObjectType entity is simply a lookup table containing the names of the valid

identity types. The field representing the actual name of the type itself should be annotated with

@IdentityProperty(PropertyType.NAME):

@Entity

public class IdentityObjectType implements Serializable {

 @Id @GeneratedValue private Long id;

 @IdentityProperty(PropertyType.NAME) private String name;

 // snip getter and setter methods

}

32.2.4. Credential

The credentials table is used to store user credentials, such as passwords. Here's an example of

an entity bean configured to store identity object credentials:

@Entity

@IdentityEntity(IDENTITY_CREDENTIAL)

public class IdentityObjectCredential implements Serializable {

 @Id @GeneratedValue private Long id;

 @ManyToOne @JoinColumn(name = "IDENTITY_OBJECT_ID")

 private IdentityObject identityObject;

 @ManyToOne @IdentityProperty(PropertyType.TYPE)

 @JoinColumn(name = "CREDENTIAL_TYPE_ID")

 private IdentityObjectCredentialType type;

 @IdentityProperty(PropertyType.VALUE)

 private String value;

 // snip getter and setter methods

}

The IdentityObjectCredentialType entity is used to store a list of valid credential types. Like

IdentityObjectType, it is a simple lookup table with the field representing the credential type

name annotated with @IdentityProperty(PropertyType.NAME):

@Entity

Identity Object Relationship

161

public class IdentityObjectCredentialType implements Serializable

{

 @Id @GeneratedValue private Long id;

 @IdentityProperty(PropertyType.NAME)

 private String name;

 // snip getter and setter methods

}

32.2.5. Identity Object Relationship

The relationship table stores associations between identity objects. Here's an example of an entity

bean that has been configured to store identity object relationships:

@Entity

@IdentityEntity(IDENTITY_RELATIONSHIP)

public class IdentityObjectRelationship implements Serializable

{

 @Id @GeneratedValue private Long id;

 @IdentityProperty(PropertyType.NAME)

 private String name;

 @ManyToOne @IdentityProperty(PropertyType.TYPE) @JoinColumn(name = "RELATIONSHIP_TYPE_ID")

 private IdentityObjectRelationshipType relationshipType;

 @ManyToOne @IdentityProperty(PropertyType.RELATIONSHIP_FROM) @JoinColumn(name = "FROM_IDENTITY_ID")

 private IdentityObject from;

 @ManyToOne @IdentityProperty(PropertyType.RELATIONSHIP_TO) @JoinColumn(name = "TO_IDENTITY_ID")

 private IdentityObject to;

 // snip getter and setter methods

}

The name property is annotated with @IdentityProperty(PropertyType.NAME) to indicate that

this field contains the name value for named relationships. An example of a named relationship

is a role, which uses the name property to store the role type name.

The relationshipType property is annotated with @IdentityProperty(PropertyType.TYPE)

to indicate that this field represents the type of relationship. This is typically a value in a lookup

table.

Chapter 32. Security - Identi...

162

The from property is annotated with @IdentityProperty(PropertyType.RELATIONSHIP_FROM)

to indicate that this field represents the IdentityObject on the from side of the relationship.

The to property is annotated with @IdentityProperty(PropertyType.RELATIONSHIP_TO) to

indicate that this field represents the IdentityObject on the to side of the relationship.

The IdentityObjectRelationshipType entity is a lookup table containing the valid relationship

types. The @IdentityProperty(PropertyType.NAME) annotation is used to indicate the field

containing the relationship type names:

@Entity

public class IdentityObjectRelationshipType implements Serializable {

 @Id @GeneratedValue private Long id;

 @IdentityProperty(PropertyType.NAME)

 private String name;

 // snip getter and setter methods

}

32.2.6. Attributes

The attribute table is used to store any additional information that is to be associated with identity

objects. Here's an example of an entity bean used to store attributes:

@Entity

@IdentityEntity(IDENTITY_ATTRIBUTE)

public class IdentityObjectAttribute implements Serializable {

 @Id @GeneratedValue private Integer attributeId;

 @ManyToOne

 @JoinColumn(name = "IDENTITY_OBJECT_ID")

 private IdentityObject identityObject;

 @IdentityProperty(PropertyType.NAME)

 private String name;

 @IdentityProperty(PropertyType.VALUE)

 private String value;

 // snip getter and setter methods

Managing Users, Groups and Roles

163

}

The name field is annotated with @IdentityProperty(PropertyType.NAME) to indicate

that this field contains the attribute name. The value field is annotated with

@IdentityProperty(PropertyType.VALUE) to indicate that this field contains the attribute value.

32.3. Managing Users, Groups and Roles

The Identity Management features are provided by a number of manager objects, which can

be access from an IdentitySession. The IdentitySession may be injected directly into your

beans like so:

import org.picketlink.idm.api.IdentitySession;

 public @Model class IdentityAction {

 @Inject IdentitySession identitySession;

 // code goes here...

 }

Once you have the IdentitySession object, you can use it to perform various identity

management operations. You should refer to the PicketLink documentation for a complete

description of the available features, however the following sections contain a brief overview.

32.3.1. Managing Users and Groups

Users and groups are managed by a PersistenceManager, which can be obtained by calling

getPersistenceManager() on the IdentitySession object:

PersistenceManager pm = identitySession.getPersistenceManager();

Once you have the PersistenceManager object, you can create User objects with the

createUser() method:

User user = pm.createUser("john");

Similarly, you can create Group objects with the createGroup() method:

Group headOffice = pm.createGroup("Head Office", "OFFICE");

Chapter 32. Security - Identi...

164

You can also remove users and groups by calling the removeUser() or removeGroup() method.

32.3.2. Managing Relationships

Relationships are used to associate User objects with Group objects. Relationships can

be managed with the RelationshipManager object, which can be obtained by calling

getRelationshipManager() on the IdentitySession:

RelationshipManager rm = identitySession.getRelationshipManager();

Relationships are created by invoking the associateUser() method, and passing in the group

and user objects that should be associated:

rm.associateUser(headOffice, user);

32.3.3. Managing Roles

Roles are managed via the RoleManager object, which can be obtained by invoke the

getRoleManager() method on the IdentitySession object:

RoleManager roleManager = identitySession.getRoleManager();

Roles are an association between a user and a group, however they are slightly more complex

than a simple group membership as the association also has a role type. The role type is generally

used to describe a particular function of the user within the group. Role types are represented by

the RoleType object, and can be created with the createRoleType() method:

RoleType manager = roleManager.createRoleType("manager");

Roles can be assigned to users by invoking the createRole() method, and passing in the

RoleType, User and Group:

Role r = roleManager.createRole(manager, user, headOffice);

Chapter 33.

165

Security - External Authentication

33.1. Introduction

The external authentication module is an optional add-on to the core Seam Security module,

which provides a number of features that enable your application to authenticate against third

party identity services, via a number of supported protocols.

Warning

The features described in this chapter are a preview only. The APIs described may

change in a subsequent version of Seam, and may not be backwards-compatible

with previous versions.

Currently this module supports authentication via OpenID, and other protocols (such as SAML

and OAuth) are currently under development for the next version of Seam.

33.1.1. Configuration

If your project is Maven-based, then add the following dependency to your project:

<dependency>

 <groupId>org.jboss.seam.security</groupId>

 <artifactId>seam-security-external</artifactId>

</dependency>

If you are not using Maven, you must add the seam-security-external.jar library to your

project, which can be found in the Seam Security downloadable distribution.

33.2. OpenID

OpenID allows the users of your application to authenticate without requiring them to create an

account. When using OpenID, your user is temporarily redirected to the web site of their OpenID

provider so that they can enter their password, after which they are redirected back to your

application. The OpenID authentication process is safe - at no time is the user's password seen

by any site besides their OpenID provider.

33.2.1. Overview

The external authentication module provides support for OpenID based on OpenID4Java [http://

code.google.com/p/openid4java/], an open source OpenID library (licensed under the Apache

http://code.google.com/p/openid4java/
http://code.google.com/p/openid4java/
http://code.google.com/p/openid4java/

Chapter 33. Security - Extern...

166

v2 license) with both Relying Party and Identity Provider capabilities. This feature allows your

application to authenticate its users against an external OpenID provider, such as Google or

Yahoo, or to turn your application into an OpenID provider itself.

Note

To see the OpenID features in action, take a look at the openid-rp example

included in the Seam Security distribution.

33.2.2. Enabling OpenID for your application

To use OpenID in your own application, you must configure Seam Security to use

OpenIdAuthenticator, an Authenticator implementation that performs authentication against

an OpenID provider. This authenticator is a named, session-scoped bean, with the following

declaration:

public @Named("openIdAuthenticator") @SessionScoped class OpenIdAuthenticator

33.2.2.1. Using OpenID as your only authentication method

If your application only uses OpenID to provide authentication services, then it is recommended

that OpenIdAuthenticator is selected by configuring the authenticatorClass property of the

Identity bean. The following code sample demonstrates how this might be done by using Solder:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:security="urn:java:org.jboss.seam.security"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/

beans_1_0.xsd">

 <security:Identity>

 <s:modifies/>

 <security:authenticatorClass>org.jboss.seam.security.external.openid.OpenIdAuthenticator</

security:authenticatorClass>

 </security:Identity>

Choosing which OpenID provider to use

167

33.2.2.2. Using OpenID as one of many possible authentication

methods

If your application gives the user a choice of which authentication method to use, then it is not

possible to pre-configure which Authenticator implementation is used to authenticate. In these

circumstances, it is recommended that you configure the authenticator by specifying a value for

the authenticatorName property of the Identity bean. This can be done by binding a view-layer

control such as a radio group directly to this property, to allow the user to select the method of

authentication they wish to use. See the following JSF code as an example:

<h:outputLabel value="Authenticate using:"/>

<h:selectOneRadio id="authenticator" value="#{identity.authenticatorName}">

 <f:selectItem itemLabel="OpenID" itemValue="openIdAuthenticator" />

 <f:selectItem itemLabel="Custom" itemValue="customAuthenticator" />

</h:selectOneRadio>

33.2.3. Choosing which OpenID provider to use

Seam provides built-in support for a number of well-known OpenID providers. The

OpenIdAuthenticator bean may be configured to select which OpenID provider will be used to

process an authentication request. Each concrete provider implements the following interface:

public interface OpenIdProvider {

 String getCode();

 String getName();

 String getUrl();

}

The following table lists the providers that come pre-packaged in Seam:

Provider Code Name URL

CustomOpenIdProvider custom Google

GoogleOpenIdProvider google Google https://

www.google.com/

accounts/o8/id

MyOpenIdProvider myopenid MyOpenID https://myopenid.com

YahooOpenIdProvider yahoo Yahoo https://me.yahoo.com

To select one of the built-in providers to use for an authentication request, the providerCode

property of the OpenIdAuthenticator bean should be set to one of the Code values from

Chapter 33. Security - Extern...

168

the above table. The OpenIdAuthenticator bean provides a convenience method called

getProviders() that returns a list of all known providers. This may be used in conjunction with

a radio group to allow the user to select which OpenID provider they wish to authenticate with -

see the following JSF snippet for an example:

<h:selectOneRadio value="#{openIdAuthenticator.providerCode}">

 <f:selectItems value="#{openIdAuthenticator.providers}" var="p" itemValue="#{p.code}" itemLabel="#{p.name}"/

>

</h:selectOneRadio>

33.2.3.1. Using a custom OpenID provider

If you would like to allow your users to specify an OpenID provider that is not supported out of the

box by Seam, then the CustomOpenIdProvider may be used. As it is a @Named bean, it can be

accessed directly from the view layer via EL. The following JSF code shows how you might allow

the user to specify their own OpenID provider:

<h:outputLabel value="If you have selected the Custom OpenID provider, please provide a URL:"/

>

<h:inputText value="#{customOpenIdProvider.url}"/>

33.2.4. Managing the OpenID authentication process

Your application must provide an implementation of the OpenIdRelyingPartySpi interface to

process OpenID callback events. This interface declares the following methods:

public interface OpenIdRelyingPartySpi {

 void loginSucceeded(OpenIdPrincipal principal, ResponseHolder responseHolder);

 void loginFailed(String message, ResponseHolder responseHolder);

The implementation is responsible for processing the response of the OpenID authentication, and

is typically used to redirect the user to an appropriate page depending on whether authentication

was successful or not.

There are two API calls that must be made in the case of a successful authentication. The first

one should notify the OpenIdAuthenticator that the authentication attempt was successful, and

pass it the OpenIdPrincipal object:

Managing the OpenID authentication process

169

Warning

If the following two API calls are omitted, unpredictable results may occur!

openIdAuthenticator.success(principal);

Secondly, a DeferredAuthenticationEvent must be fired to signify that a deferred

authentication attempt has been completed:

deferredAuthentication.fire(new DeferredAuthenticationEvent());

After making these two API calls, the implementation may perform whatever additional logic is

required. The following code shows a complete example:

import java.io.IOException;

import javax.enterprise.event.Event;

import javax.inject.Inject;

import javax.servlet.ServletContext;

import org.jboss.seam.security.events.DeferredAuthenticationEvent;

import org.jboss.seam.security.external.api.ResponseHolder;

import org.jboss.seam.security.external.openid.OpenIdAuthenticator;

import org.jboss.seam.security.external.openid.api.OpenIdPrincipal;

import org.jboss.seam.security.external.spi.OpenIdRelyingPartySpi;

public class OpenIdRelyingPartySpiImpl implements OpenIdRelyingPartySpi {

 @Inject private ServletContext servletContext;

 @Inject OpenIdAuthenticator openIdAuthenticator;

 @Inject Event<DeferredAuthenticationEvent> deferredAuthentication;

 public void loginSucceeded(OpenIdPrincipal principal, ResponseHolder responseHolder) {

 try {

 openIdAuthenticator.success(principal);

 deferredAuthentication.fire(new DeferredAuthenticationEvent());

 responseHolder.getResponse().sendRedirect(servletContext.getContextPath() + "/

UserInfo.jsf");

 } catch (IOException e) {

Chapter 33. Security - Extern...

170

 throw new RuntimeException(e);

 }

 }

 public void loginFailed(String message, ResponseHolder responseHolder) {

 try {

 responseHolder.getResponse().sendRedirect(servletContext.getContextPath() + "/

AuthenticationFailed.jsf");

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

}

Chapter 34.

171

Security - Authorization

34.1. Configuration

Before using any of Seam's authorization features, you must enable the SecurityInterceptor

by adding the following code to your application's beans.xml:

 <interceptors>

 <class>org.jboss.seam.security.SecurityInterceptor</class>

 </interceptors>

34.2. Basic Concepts

Seam Security provides a number of facilities for restricting access to certain parts of your

application. As mentioned previously, the security API is centered around the Identity bean,

which is a session-scoped bean used to represent the identity of the current user.

To be able to restrict the sensitive parts of your code, you may inject the Identity bean into

your class:

@Inject Identity identity;

Once you have injected the Identity bean, you may invoke its methods to perform various types

of authorization. The following sections will examine each of these in more detail.

The security model in Seam Security is based upon the PicketLink API. Let's briefly examine a

few of the core interfaces provided by PicketLink that are used in Seam.

Chapter 34. Security - Author...

172

34.2.1. IdentityType

This is the common base interface for both User and Group. The getKey() method should return

a unique identifying value for the identity type.

34.2.2. User

Represents a user. The getId() method should return a unique value for each user.

34.2.3. Group

Represents a group. The getName() method should return the name of the group, while the

getGroupType() method should return the group type.

34.2.4. Role

Represents a role, which is a direct one-to-one typed relationship between a User and a Group.

The getRoleType() method should return the role type. The getUser() method should return

RoleType

173

the User for which the role is assigned, and the getGroup() method should return the Group that

the user is associated with.

34.2.5. RoleType

Represents a role type. The getName() method should return the name of the role type. Some

examples of role types might be admin, superuser, manager, etc.

34.3. Role and Group-based authorization

This is the simplest type of authorization, used to define coarse-grained privileges for users

assigned to a certain role or belonging to a certain group. Users may belong to zero or more roles

and groups, and inversely, roles and groups may contain zero or more members.

Note

The concept of a role in Seam Security is based upon the model defined by

PicketLink. I.e, a role is a direct relationship between a user and a group, which

consists of three aspects - a member, a role name and a group (see the class

diagram above). For example, user Bob (the member) may be an admin (the role

name) user in the HEAD OFFICE group.

The Identity bean provides the following two methods for checking role membership:

boolean hasRole(String role, String group, String groupType);

void checkRole(String role, String group, String groupType);

These two methods are similar in function, and both accept the same parameter values. Their

behaviour differs when an authorization check fails. The hasRole() returns a value of false when

the current user is not a member of the specified role. The checkRole() method on the other

hand, will throw an AuthorizationException. Which of the two methods you use will depend

on your requirements.

The following code listing contains a usage example for the hasRole() method:

 if (identity.hasRole("manager", "Head Office", "OFFICE")) {

 report.addManagementSummary();

 }

Groups can be used to define a collection of users that meet some common criteria. For example,

an application might use groups to define users in different geographical locations, their role in

the company, their department or division or some other criteria which may be significant from

Chapter 34. Security - Author...

174

a security point of view. As can be seen in the above class diagram, groups consist of a unique

combination of group name and group type. Some examples of group types may be "OFFICE",

"DEPARTMENT", "SECURITY_LEVEL", etc. An individual user may belong to many different

groups.

The Identity bean provides the following methods for checking group membership:

boolean inGroup(String name, String groupType);

void checkGroup(String group, String groupType);

These methods are similar in behaviour to the role-specific methods above. The inGroup()

method returns a value of false when the current user isn't in the specified group, and the

checkGroup() method will throw an exception.

34.4. Typesafe authorization

Seam Security provides a way to secure your bean classes and methods by annotating them

with a typesafe security binding. Each security binding must have a matching authorizer method,

which is responsible for performing the business logic required to determine whether a user has

the necessary privileges to invoke a bean method. Creating and applying a security binding is

quite simple, and is described in the following steps.

34.4.1. Creating a typesafe security binding

A typesafe security binding is an annotation, meta-annotated with the SecurityBindingType

annotation:

import org.jboss.seam.security.annotations.SecurityBindingType;

@SecurityBindingType

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.METHOD})

public @interface Admin { }

The security binding annotation may also define member values, which are taken into account

when matching the annotated bean class or method with an authorizer method. All member values

are taken into consideration, except for those annotated with @Nonbinding, in much the same

way as a qualifier binding type.

import javax.enterprise.util.Nonbinding;

import org.jboss.seam.security.annotations.SecurityBindingType;

Creating an authorizer method

175

@SecurityBindingType

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.METHOD})

public @interface Foo {

 String bar();

 @Nonbinding String other() default "";

}

34.4.2. Creating an authorizer method

The next step after creating the security binding type is to create a matching authorizer method.

This method must contain the business logic required to perform the required authorization check,

and return a boolean value indicating whether the authorization check passed or failed.

An authorizer method must be annotated with the @Secures annotation, and the security binding

types for which it is performing the authorization check. An authorizer method may declare zero

or more method parameters. Any parameters defined by the authorizer method are treated as

injection points, and are automatically injected by the Seam Security extension. The following

example demonstrates an authorizer method that injects the Identity bean, which is then used

to perform the authorization check.

import org.jboss.seam.security.annotations.Secures;

public class Restrictions {

 public @Secures @Admin boolean isAdmin(Identity identity) {

 return identity.hasRole("admin", "USERS", "GROUP");

 }

}

Note

Authorizer methods will generally make use of the security API to perform their

security check, however this is not a hard restriction.

34.4.3. Applying the binding to your business methods

Once the security binding annotation and the matching authorizer method have been created,

the security binding type may be applied to a bean class or method. If applied at the class level,

every method of the bean class will have the security restriction applied. Methods annotated with a

security binding type also inherit any security bindings on their declaring class. Both bean classes

and methods may be annotated with multiple security bindings.

Chapter 34. Security - Author...

176

public @ConversationScoped class UserAction {

 public @Admin void deleteUser(String userId) {

 // code

 }

}

If a security check fails when invoking a method annotated with a security binding type, an

AuthorizationException is thrown. Solder can be used to handle this exception gracefully, for

example by redirecting them to an error page or displaying an error message. Here's an example

of an exception handler that creates a JSF error message:

@HandlesExceptions

public class ExceptionHandler {

 @Inject FacesContext facesContext;

 public void handleAuthorizationException(@Handles

 CaughtException<AuthorizationException> evt) {

 facesContext.addMessage(null, new FacesMessage(FacesMessage.SEVERITY_ERROR,

 "You do not have the necessary permissions to perform that operation", ""));

 evt.handled();

 }

}

34.4.4. Built-in security binding annotations

Seam Security provides one security binding annotation out of the box, @LoggedIn. This

annotation may be applied to a bean to restrict its methods to only those users that are currently

authenticated.

import org.jboss.seam.security.annotations.LoggedIn;

public @LoggedIn class CustomerAction {

 public void createCustomer() {

 // code

 }

}

Chapter 35.

177

Security - Events

35.1. Introduction

A number of CDI events are fired during the course of many security-related operations, allowing

additional business logic to be executed in response to certain security events. This is useful if you

would like to generate additional logging or auditing, or produce messages to display to the user.

35.2. Event list

The following table contains the list of event classes that may be fired by Seam Security,

along with a description of when the event is fired. All event classes are contained in the

org.jboss.seam.security.events package.

Event Description

AlreadyLoggedInEvent Fired when a user who is already logged in

attempts to log in again

AuthorizationCheckEvent Fired when an authorization

check is performed, such as

Identity.hasPermission().

CredentialsUpdatedEvent Fired whenever a user's credentials (such as

their username or password) are updated.

DeferredAuthenticationEvent Fired when a deferred authentication occurs.

For example, at the end of the OpenID

authentication process when the OpenID

provider redirects the user back to the

application.

LoggedInEvent Fired when the user is successfully logged in.

LoginFailedEvent Fired when an authentication attempt by the

user fails.

NotAuthorizedEvent Fired when the user is not authorized to invoke

a particular operation.

NotLoggedInEvent Fired when the user attempts to invoke

a privileged operation before they have

authenticated.

PreAuthenticateEvent Fired just before a user is authenticated

PostAuthenticateEvent Fired after a user has authenticated

successfully.

PreLoggedOutEvent Fired just before a user is logged out.

PostLoggedOutEvent Fired after a user has logged out.

Chapter 35. Security - Events

178

Event Description

PrePersistUserEvent Fired just before a new user is persisted (when

using Identity Management).

PrePersistUserRoleEvent Fired just before a new user role is persisted

(when using Identity Management).

QuietLoginEvent Fired when a user is quietly authenticated.

SessionInvalidatedEvent Fired when a user's session is invalidated.

UserAuthenticatedEvent Fired when a user is authenticated.

UserCreatedEvent

35.3. Usage Example

The following code listing shows the SecurityEventMessages class, from the Seam Security

implementation library. This class (which is disabled by default due to the @Veto annotation) uses

the Messages API from Seam International to generate user-facing messages in response to

certain security events.

package org.jboss.seam.security;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.event.Observes;

import org.jboss.seam.international.status.Messages;

import org.jboss.seam.security.events.AlreadyLoggedInEvent;

import org.jboss.seam.security.events.LoggedInEvent;

import org.jboss.seam.security.events.LoginFailedEvent;

import org.jboss.seam.security.events.NotLoggedInEvent;

import org.jboss.seam.security.events.PostAuthenticateEvent;

import org.jboss.solder.core.Requires;

import org.jboss.solder.core.Veto;

public @ApplicationScoped @Veto @Requires("org.jboss.seam.international.status.Messages")

class SecurityEventMessages {

 private static final String DEFAULT_LOGIN_FAILED_MESSAGE = "Login failed - please check

 your username and password before trying again.";

 private static final String DEFAULT_LOGIN_SUCCESSFUL_MESSAGE = "Welcome, {0}.";

 private static final String DEFAULT_ALREADY_LOGGED_IN_MESSAGE = "You're already

 logged in. Please log out first if you wish to log in again.";

 private static final String DEFAULT_NOT_LOGGED_IN_MESSAGE = "Please log in first.";

 public void postAuthenticate(@Observes PostAuthenticateEvent event, Messages messages,

 Identity identity) {

Usage Example

179

 messages.info(DEFAULT_LOGIN_SUCCESSFUL_MESSAGE, identity.getUser().getId());

 }

 public void addLoginFailedMessage(@Observes LoginFailedEvent event, Messages

 messages) {

 messages.error(DEFAULT_LOGIN_FAILED_MESSAGE);

 }

 public void addLoginSuccessMessage(@Observes LoggedInEvent event, Messages

 messages, Credentials credentials) {

 messages.info(DEFAULT_LOGIN_SUCCESSFUL_MESSAGE, credentials.getUsername());

 }

 public void addAlreadyLoggedInMessage(@Observes AlreadyLoggedInEvent event, Messages

 messages) {

 messages.error(DEFAULT_ALREADY_LOGGED_IN_MESSAGE);

 }

 public void addNotLoggedInMessage(@Observes NotLoggedInEvent event, Messages

 messages) {

 messages.error(DEFAULT_NOT_LOGGED_IN_MESSAGE);

 }

}

180

Part V. Seam International

clxxxiii

Introduction

The goal of Seam International is to provide a unified approach to configuring locale, timezone

and language. With features such as Status message propagation to UI, multiple property storage

implementations and more.

clxxxiv

Chapter 36.

185

Installation
Most features of Seam International are installed automatically by including seam-

international.jar in the web application library folder. If you are using Maven [http://

maven.apache.org/] as your build tool, you can add the following dependency to your pom.xml file:

<dependency>

 <groupId>org.jboss.seam.international</groupId>

 <artifactId>seam-international</artifactId>

 <version>${seam-international-version}</version>

</dependency>

Tip

Replace ${seam-international-version} with the most recent or appropriate version

of Seam International.

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

186

Chapter 37.

187

Locales

37.1. Application Locale

In a similar fashion to TimeZones we have an Application Locale:

@Inject

private java.util.Locale lc;

accessible via EL with "defaultLocale".

By default the Locale will be set to the JVM default, unless you produce a String annotated with

@DefaultLocale. This can be achieved through either the Seam Config module, with any bean

that @Produces a method or field that matches the type and qualifier.

This will set the application language to be English with the country of US:

@Produces

@DefaultLocale

private String defaultLocaleKey = "en_US";

As you can see from the previous example, you can define the Locale with

lang_country_variant. It's important to note that the first two parts of the locale definition are

not expected to be greater than 2 characters otherwise an error will be produced and it will default

to the JVM Locale.

37.2. User Locale

The Locale associated with the User Session can be retrieved by:

@Inject

@Client

private java.util.Locale locale;

which is EL accessible via userLocale.

By default the Locale will be that of the Application when the User Session is initialized. However,

changing the User's Locale is a simple matter of firing an event to update it. An example would be:

@Inject

Chapter 37. Locales

188

@Client

@Alter

private Event<java.util.Locale> localeEvent;

public void setUserLocale() {

 Locale canada = Locale.CANADA;

 localeEvent.fire(canada);

}

37.3. Available Locales

We've also provided a list of available Locales that can be accessed via:

@Inject

private List<java.util.Locale> locales;

The locales that will be returned as available can be defined by extending LocaleConfiguration.

As seen here:

public class CustomLocaleConfiguration extends LocaleConfiguration {

 @PostConstruct

 public void setup() {

 addSupportedLocaleKey("en");

 addSupportedLocaleKey("fr");

 }

}

Chapter 38.

189

Timezones
To support a more developer friendly way of handling TimeZones, in addition to supporting JDK

TimeZone, we have added support for using Joda-Time through their DateTimeZone class. Don't

worry, it provides convenience methods for converting to JDK TimeZone.

38.1. Joda Time

To activate Joda-Time for i18n within your project you will need to add the following Maven

dependency:

<dependency>

 <groupId>joda-time</groupId>

 <artifactId>joda-time</artifactId>

 <version>1.6</version>

 </dependency>

38.2. Application TimeZone

We have an Application time zone that is available with Joda-Time (DateTimeZone) or the JDK

(TimeZone) that can be retrieved with

@Inject

private DateTimeZone applicationDateTimeZone;

@Inject

private TimeZone applicationTimeZone

It can also be accessed through EL by the name "defaultDateTimeZone" for Joda-Time or

"defaultTimeZone" for JDK!

By default the TimeZone will be set to the JVM default, unless you produce a String annotated with

@DefaultTimeZone. This can be achieved through either the Seam Config module or any bean

that @Produces a method or field that matches the type and qualifier.

This will set the application time zone to be Tijuana:

@Produces

@DefaultTimeZone

private String defaultTimeZoneId = "America/Tijuana";

Chapter 38. Timezones

190

38.3. User TimeZone

In addition to the Application time zone, there is also a time zone assigned to each User Session.

@Inject

@Client

private DateTimeZone userDateTimeZone;

@Inject

@Client

private TimeZone userTimeZone;

It can also be accessed through EL using "userDateTimeZone" for Joda-Time and

"userTimeZone" for JDK.

By default the DateTimeZone and TimeZone for a User Session is initialized to the same as the

Application. However, changing the User's DateTimeZone and TimeZone is a simple matter of

firing an event to update it. An example would be

@Inject

@Client

@Alter

private Event<DateTimeZone> dtzEvent;

@Inject

@Client

@Alter

private Event<TimeZone> tzEvent;

public void setUserDateTimeZone() {

 DateTimeZone dtzTijuana = DateTimeZone.forID("America/Tijuana");

 dtzEvent.fire(dtzTijuana);

 TimeZone tzTijuana = TimeZone.getTimeZone("America/Tijuana");

 tzEvent.fire(tzTijuana);

}

38.4. Available TimeZones

We've also provided a list of available TimeZones that can be accessed via

Available TimeZones

191

@Inject

private List<ForwardingDateTimeZone> dateTimeZones;

@Inject

private List<ForwardingTimeZone> timeZones;

192

Chapter 39.

193

Messages

39.1. Message Creation

There are currently two ways to create a message within the module.

The first would mostly be used when you don't want to add the generated message directly to the

UI, but want to log it out, or store it somewhere else

@Inject

private MessageFactory factory;

public String getMessage() {

 MessageBuilder builder = factory.info("There are {0} cars, and they are all {1}; {1} is the best

 color.", 5, "green");

 return builder.build().getText();

}

The second is to add the message to a list that will be returned to the UI for display.

@Inject

private Messages messages;

public void setMessage() {

 messages.info("There are {0} cars, and they are all {1}; {1} is the best color.", 5, "green");

}

Either of these methods supports the four message levels which are info, warning, error and fatal.

Both MessageFactory and Messages support four ways in which to create a Message:

• Directly adding the message

• Directly adding the message and replacing parameters

• Retrieving the message from a bundle

• Retrieving the message from a bundle and replacing parameters

Examples for each of these are:

•
messages.info("Simple Text");

Chapter 39. Messages

194

•
messages.info("Simple Text with {0} parameter", 1);

•
messages.info(new BundleKey("org.jboss.international.seam.test.TestBundle", "key1"));

•
messages.info(new BundleKey("org.jboss.international.seam.test.TestBundle", "key2"), 1);

39.2. Properties Files

The examples in the previous section on how to create a message from a properties file made the

assumption that you had already created it! Now we tell you how to actually do that.

When creating a BundleKey in the previous section, we were passing it a bundle name of

"org.jboss.international.seam.test.TestBundle". This name is essentially the path to the properties

file! Let me explain. As we all know properties files need to be on the classpath for our code to find

them, so "org.jboss.international.seam.test.TestBundle" is telling our code that on the classpath

there is a TestBundle.properties file located at a path of org/jboss/international/seam/

test.

To create a property file for another language, it's simply a case of appending the name of

the locale to the end of the file name. Such as TestBundle_fr.properties for French or

TestBundle_en_US.properties for American English.

Note
If you only ever intend to use a single language within your application, there is

no need to create a locale specific properties file, as the non locale version will be

used if a locale specific properties file is not present.

Part VI. Seam Faces

cxcvii

Introduction

The goal of Seam Faces is to provide a fully integrated CDI programming model to the JavaServer

Faces (JSF) 2.0 web-framework. With features such as observing Events, providing injection

support for life-cycle artifacts (FacesContext, NavigationHandler,) and more.

cxcviii

Chapter 40.

199

Installation

40.1. Maven dependency configuration

To use the Seam Faces module, you need to put the API and implementation JARs on the

classpath of your web application. Most of the features of Seam Faces are enabled automatically

when it's added to the classpath. Some extra configuration, covered below, is required if you are

not using a Servlet 3-compliant container.

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam Faces:

<dependency>

 <groupId>org.jboss.seam.faces</groupId>

 <artifactId>seam-faces</artifactId>

 <version>${seam.faces.version}</version>

</dependency>

Tip

Substitute the expression ${seam.faces.version} with the most recent or

appropriate version of Seam Faces. Alternatively, you can create a Maven

user-defined property [http://www.sonatype.com/books/mvnref-book/reference/

resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to

satisfy this substitution so you can centrally manage the version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertently depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.faces</groupId>

 <artifactId>seam-faces-api</artifactId>

 <version>${seam.faces.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.seam.faces</groupId>

 <artifactId>seam-faces-impl</artifactId>

 <version>${seam.faces.version}</version>

http://maven.apache.org/
http://maven.apache.org/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 40. Installation

200

 <scope>runtime</scope>

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

40.2. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

several Servlet components in your application's web.xml to activate the features provided by this

module:

<listener>

 <listener-class>org.jboss.seam.faces.beanManager.BeanManagerServletContextListener</

listener-class>

</listener>

You're now ready to dive into the JSF enhancements provided for you by the Seam Faces module!

40.3. How to setup JSF in a Java EE 6 webapp

Seam Faces requires a working JSF 2.0 configuration. To get a working JSF 2.0 environment in

a Java EE 6 environment, you need one of the following:

1. Bundle the seam-faces jar in your web-app (this sets up jsf for you)

2. if not #1, you need empty faces-config.xml, where the root element must be present.

3. if not #1 or #2, you need a web.xml with the Faces Servlet defined.

The JBoss JSF documentation [http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/

jsf.deployer.config.html] provides further details on #2 and #3 above, but these steps are

unnecessary when you use Seam Faces (#1). this is because Seam Faces scans for the presence

of the Seam Servlet, and programatically registers it for you if it's not present.

http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/jsf.deployer.config.html
http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/jsf.deployer.config.html
http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/jsf.deployer.config.html

Chapter 41.

201

Faces Events Propagation
When the seam-faces module is installed in a web application, JSF events will automatically be

propagated via the CDI event-bridge, enabling managed beans to easily observe all Faces events.

There are two categories of events: JSF phase events, and JSF system events. Phase events are

triggered as JSF processes each lifecycle phase, while system events are raised at more specific,

fine-grained events during request processing.

41.1. JSF Phase events

A JSF phase listener is a class that implements javax.faces.event.PhaseListener and is

registered in the web application's faces-config.xml file. By implementing the methods of the

interfaces, the user can observe events fired before or after any of the six lifecycle phases of a

JSF request: restore view, apply request values, process validations, update model

values, invoke application or render view.

Tip

In order to observe events in an EJB JAR, the beans.xml file must be in both the

WEB-INF folder of the WAR, and inside the EJB JAR containing the observer.

41.1.1. Seam Faces Phase events

What Seam provides is propagation of these Phase events to the CDI event bus; therefore, you

can observe events using normal CDI @Observes methods. Bringing the events to CDI beans

removes the need to register phase listener classes via XML, and gives the added benefit of

injection, alternatives, interceptors and access to all other features of CDI.

Creating an observer method in CDI is simple; just provide a method in a managed bean that is

annotated with @Observes. Each observer method must accept at least one method parameter:

the event object; the type of this object determines the type of event being observed. Additional

parameters may also be specified, and their values will be automatically injected by the container

as per the CDI specification.

In this case, the event object passed along from the phase listener is a

javax.faces.event.PhaseEvent. The following example observes all Phase events.

public void observeAll(@Observes PhaseEvent e)

{

 // Do something with the event object

}

Chapter 41. Faces Events Prop...

202

Events can be further filtered by adding Qualifiers. The name of the method itself is not significant.

(See the CDI Reference Guide for more information on events and observing.)

Since the example above simply processes all events, however, it might be appropriate to filter

out some events that we aren't interested in. As stated earlier, there are six phases in the JSF

lifecycle, and an event is fired before and after each, for a total of 12 events. The @Before and

@After "temporal" qualifiers can be used to observe events occurring only before or only after a

Phase event. For example:

public void observeBefore(@Observes @Before PhaseEvent e)

{

 // Do something with the "before" event object

}

public void observeAfter(@Observes @After PhaseEvent e)

{

 // Do something with the "after" event object

}

If we are interested in both the "before" and "after" event of a particular phase, we can limit them

by adding a "lifecycle" qualifier that corresponds to the phase:

public void observeRenderResponse(@Observes @RenderResponse PhaseEvent e)

{

 // Do something with the "render response" event object

}

By combining a temporal and lifecycle qualifier, we can achieve the most specific qualification:

public void observeBeforeRenderResponse(@Observes @Before @RenderResponse PhaseEvent e)

{

 // Do something with the "before render response" event object

}

41.1.2. Phase events listing

This is the full list of temporal and lifecycle qualifiers

JSF system events

203

Qualifier Type Description

@Before temporal Qualifies events before lifecycle phases

@After temporal Qualifies events after lifecycle phases

@RestoreView lifecycle Qualifies events from the "restore view" phase

@ApplyRequestValueslifecycle Qualifies events from the "apply request values" phase

@ProcessValidationslifecycle Qualifies events from the "process validations" phase

@UpdateModelValueslifecycle Qualifies events from the "update model values" phase

@InvokeApplicationlifecycle Qualifies events from the "invoke application" phase

@RenderResponselifecycle Qualifies events from the "render response" phase

The event object is always a javax.faces.event.PhaseEvent and according to the general CDI

principle, filtering is tightened by adding qualifiers and loosened by omitting them.

41.2. JSF system events

Similar to JSF Phase Events, System Events take place when specific events occur within the

JSF life-cycle. Seam Faces provides a bridge for all JSF System Events, and propagates these

events to CDI.

41.2.1. Seam Faces System events

This is an example of observing a Faces system event:

public void observesThisEvent(@Observes ExceptionQueuedEvent e)

{

 // Do something with the event object

}

41.2.2. System events listing

Since all JSF system event objects are distinct, no qualifiers are needed to observe them. The

following events may be observed:

Event object Context Description

SystemEvent all All events

ComponentSystemEvent component All component events

PostAddToViewEvent component After a component was added to the view

PostConstructViewMapEvent component After a view map was created

PostRestoreStateEvent component After a component has its state restored

Chapter 41. Faces Events Prop...

204

Event object Context Description

PostValidateEvent component After a component has been validated

PreDestroyViewMapEvent component Before a view map has been restored

PreRemoveFromViewEvent component Before a component has been removed from

the view

PreRenderComponentEvent component After a component has been rendered

PreRenderViewEvent component Before a view has been rendered

PreValidateEvent component Before a component has been validated

ExceptionQueuedEvent system When an exception has been queued

PostConstructApplicationEvent system After the application has been constructed

PostConstructCustomScopeEvent system After a custom scope has been constructed

PreDestroyApplicationEvent system Before the application is destroyed

PreDestroyCustomScopeEvent system Before a custom scope is destroyed

41.2.3. Component system events

There is one qualifier, @Component that can be used with component events by

specifying the component ID. Note that view-centric component events PreRenderViewEvent,

PostConstructViewMapEvent and PreDestroyViewMapEvent do not fire with the @Component

qualifier.

public void observePrePasswordValidation(@Observes @Component("form:password") PreValidateEvent e)

{

// Do something with the "before password is validated" event object

}

Global system events are observer without the component qualifier

public void observeApplicationConstructed(@Observes PostConstructApplicationEvent e)

{

// Do something with the "after application is constructed" event object

}

The name of the observing method is not relevant; observers are defined solely via annotations.

Chapter 42.

205

Faces Scoping Support
JSF 2.0 introduced the concept of the Flash object and the @ViewScope; however, JSF 2.0 did not

provide annotations accessing the Flash, and CDI does not support the non-standard ViewScope

by default. The Seam Faces module does both, in addition to adding a new @RenderScoped

context. Beans stored in the Render Scope will survive until the next page is rendered. For the

most part, beans stored in the ViewScope will survive as long as a user remains on the same

page, and data in the JSF 2 Flash will survive as long as the flash survives).

42.1. @RenderScoped

Beans placed in the @RenderScoped context are effectively scoped to, and live through but not

after, "the next Render Response phase".

You should think about using the Render scope if you want to store information that will be relevant

to the user even after an action sends them to another view. For instance, when a user submits

a form, you may want to invoke JSF navigation and redirect the user to another page in the site;

if you needed to store a message to be displayed when the next page is rendered -but no longer-

you would store that message in the RenderContext. Fortunately, Seam provides RenderScoped

messages by default, via the Seam Messages API.

To place a bean in the Render scope, use the @org.jboss.seam.faces.context.RenderScoped

annotation. This means that your bean will be stored in the

org.jboss.seam.context.RenderContext object until the next page is rendered, at which point

the RenderScope will be cleared.

@RenderScoped

public class Bean {

 // ...

}

@RenderScoped beans are destroyed when the next JSF RENDER_RESPONSE phase ends, however,

if a user has multiple browser windows open for the same user-session, multiple RenderContexts

will be created, one for each incoming request. Seam Faces keeps track of which RenderContext

belongs to each request, and will restore/destroy them appropriately. If there is more than one

active RenderContext at the time when you issue a redirect, you will see a URL parameter ?

fid=... appended to the end of the outbound URL, this is to ensure the correct context is restored

when the request is received by the server, and will not be present if only one context is active.

Caution

If you want to use the Render Scope with custom navigation in your application, be

sure to call ExternalContext.encodeRedirectURL(String url, Map<String,

Chapter 42. Faces Scoping Support

206

List<String>> queryParams) on any URL before using it to issue a redirect.

This will ensure that the RenderContext ID is properly appended to the URL,

enabling the RenderContext to be restored on the subsequent request. This is

only necessary if issuing a Servlet Redirect; for the cases where Faces non-

redirecting navigation is used, no URL parameter is necessary, and the context

will be destroyed at the end of the current request.

42.2. @Inject javax.faces.context.Flash flash

JSF 2 does not provide proper system events to create a functional @FlashScoped

context annotation integrated with CDI, so until a workaround can be found, or JSF 2 is

enhanced, you can access the Flash via the @Inject annotation. For more information on

the JSF Flash [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/

Flash.html], read this API doc [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/

javax/faces/context/Flash.html].

public class Bean {

 @Inject private Flash flash;

 // ...

}

42.3. @ViewScoped

To scope a bean to the View, use the @javax.faces.bean.ViewScoped annotation. This means

that your bean will be stored in the javax.faces.component.UIViewRoot object associated with

the view in which it was accessed. Each JSF view (faces-page) will store its own instance of the

bean, just like each HttpServletRequest has its own instance of a @RequestScoped bean.

@ViewScoped

public class Bean {

 // ...

}

Caution

@ViewScoped beans are destroyed when the JSF UIViewRoot object is destroyed.

This means that the life-span of @ViewScoped beans is dependent on the

javax.faces.STATE_SAVING_METHOD employed by the application itself, but in

https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html

@ViewScoped

207

general one can assume that the bean will live as long as the user remains on the

same page.

208

Chapter 43.

209

Messages API
While JSF already has the concept of adding FacesMessage objects to the FacesContext in order

for those messages to be displayed to the user when the view is rendered, Seam Faces takes

this concept one step farther with the Messages API provided by the Seam International module.

Messages are template-based, and can be added directly via the code, or templates can be loaded

from resource bundles using a BundleKey.

43.1. Adding Messages

Consistent with the CDI programming model, the Messages API is provided via

bean injection. To add a new message to be displayed to the user, inject

org.jboss.seam.international.status.Messages and call one of the Message factory

methods. As mentioned earlier, factory methods accept either a plain-text template, or a

BundleKey, specifying the name of the resource bundle to use, and the name of the key to use

as a message template.

@Named

public class Example

{

 @Inject

 Messages messages;

 public String action()

 {

 messages.info("This is an {0} message, and will be displayed to {1}.", "INFO", "the user");

 return null;

 }

}

Adds the message: "This is an INFO message, and will be displayed to the user."

Notice how {0}, {1} ... {N} are replaced with the given parameters, and may be used more than

once in a given template. In the case where a BundleKey is used to look up a message template,

default text may be provided in case the resource cannot be loaded; default text uses the same

parameters supplied for the bundle template. If no default text is supplied, a String representation

of the BundleKey and its parameters will be displayed instead.

public String action()

{

 messages.warn(new BundleKey("org.jboss.seam.faces.exampleBundle", "messageKey"), "unique");

 return null;

Chapter 43. Messages API

210

}

classpath:/org/jboss/seam/faces/exampleBundle.properties

messageKey=This {0} parameter is not so {0}, see?

Adds the message: "This unique parameter is not so unique, see?"

43.2. Displaying pending messages

It's great when messages are added to the internal buffer, but it doesn't do much good unless the

user actually sees them. In order to display messages, simply use the <h:messages /> tag from

JSF. Any pending messages will be displayed on the page just like normal FacesMessages.

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:s="http://jboss.org/seam/faces"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h1>Welcome to Seam Faces!</h1>

 <p>All Messages and FacesMessages will be displayed below:</p>

 <h:messages />

</html>

Messages added to the internal buffer via the Messages API are stored in a central location during

each request, and may be displayed by any view-technology that supports the Messages API.

Seam Faces provides an integration that makes all of this automatic for you as a developer, and in

addition, messages will automatically survive JSF navigation and redirects, as long as the redirect

URL was encoded using ExternalContext.encodeRedirectURL(...). If you are using JSF-

compliant navigation, all of this is handled for you.

Chapter 44.

211

Faces Artifact Injection
One of the goals of the Seam Faces Module is to make support for CDI a more ubiquitous

experience, by allowing injection of JSF Lifecycle Artifacts into managed beans, and also by

providing support for @Inject where it would not normally be available. This section describes the

additional CDI integration for faces artifact injection

44.1. @*Scoped and @Inject in Validators and

Converters

Frequently when performing complex validation, it is necessary to access data stored in a

database or in other contextual objects within the application itself. JSF does not, by default,

provide support for @Inject in Converters and Validators, but Seam Faces makes this available.

In addition to injection, it is sometimes convenient to be able to scope a validator just as we would

scope a managed bean; this feature is also added by Seam Faces.

Notice how the Validator below is actually @RequestScoped, in addition to using injection to obtain

an instance of the UserService with which to perform an email database lookup.

@RequestScoped

@FacesValidator("emailAvailabilityValidator")

public class EmailAvailabilityValidator implements Validator

{

 @Inject

 UserService us;

 @Override

 public void validate(final FacesContext context, final UIComponent component, final Object value)

 throws ValidatorException

 {

 String field = value.toString();

 try

 {

 us.getUserByEmail(field);

 FacesMessage msg = new FacesMessage("That email address is unavailable");

 throw new ValidatorException(msg);

 }

 catch (NoSuchObjectException e)

 {

 }

 }

}

Chapter 44. Faces Artifact In...

212

Warning

We recommend to always use @RequestScoped converters/validators unless a

longer scope is required, in which case you should use the appropriate scope

annotation, but it should not be omitted.

Because of the way JSF persists Validators between requests, particularly when

using @Inject inside a validator or converter, forgetting to use a @*Scoped

annotation could in fact cause @Inject'ed objects to become null.

An example Converter using @Inject

@SessionScoped

@FacesConverter("authorConverter")

public class UserConverter implements Converter

{

 @Inject

 private UserService service;

 @PostConstruct

 public void setup()

 {

 System.out.println("UserConverter started up");

 }

 @PreDestroy

 public void shutdown()

 {

 System.out.println("UserConverter shutting down");

 }

 @Override

 public Object getAsObject(final FacesContext arg0, final UIComponent arg1, final String userName)

 {

 // ...

 return service.getUserByName(userName);

 }

 @Override

 public String getAsString(final FacesContext context, final UIComponent comp, final Object user)

 {

 // ...

 return ((User)user).getUsername();

@Inject'able Faces Artifacts

213

 }

}

44.2. @Inject'able Faces Artifacts

This is the list of inject-able artifacts provided through Seam Faces. These objects would normally

require static method-calls in order to obtain handles, but Seam Faces attempts to break that

coupling by providing @Inject'able artifacts. This means it will be possible to more easily provide

mocked objects during unit and integration testing, and also simplify bean code in the application

itself.

Artifact Class Example

javax.faces.context.FacesContext
public class Bean {

 @Inject FacesContext context;

}

javax.faces.context.ExternalContext
public class Bean {

 @Inject ExternalContext context;

}

javax.faces.application.NavigationHandler
public class Bean {

 @Inject NavigationHandler handler;

}

javax.faces.context.Flash
public class Bean {

 @Inject Flash flash;

}

214

Chapter 45.

215

Seam Faces Components
While Seam Faces does not provide layout components or other UI-design related features, it

does provide functional components designed to make developing JSF applications easier, more

functional, more scalable, and more practical.

For layout and design components, take a look at RichFaces [http://jboss.org/richfaces], a UI

component library specifically tailored for easy, rich web-interfaces.

45.1. Introduction

In order to use the Seam Faces components, you must first add the namespace to your view file,

just like the standard JSF component libraries.

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:s="http://jboss.org/seam/faces"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h1>Welcome to Seam Faces!</h1>

 <p>

 This view imports the Seam Faces component library.

 Read on to discover what components it provides.

 </p>

</html>

Tip

All Seam Faces components use the following namespace: http://jboss.org/

seam/faces

45.2. <s:validateForm>

On many occasions you might find yourself needing to compare the values of multiple input fields

on a given page submit: confirming a password; re-enter password; address lookups; and so on.

Performing cross-field form validation is simple - just place the <s:validateForm> component in

the form you wish to validate, then attach your custom Validator.

<h:form id="locationForm">

http://jboss.org/richfaces
http://jboss.org/richfaces

Chapter 45. Seam Faces Components

216

 <h:inputText id="city" value="#{bean.city}" />

 <h:inputText id="state" value="#{bean.state}" />

 <h:inputText id="zip" value="#{bean.zip}" />

 <h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

 <s:validateForm validatorId="locationValidator" />

</h:form>

The corresponding Validator for the example above would look something like this:

@FacesValidator("locationValidator")

public class LocationValidator implements Validator

{

 @Inject

 Directory directory;

 @Inject

 @InputField

 private Object city;

 @Inject

 @InputField

 private Object state;

 @Inject

 @InputField

 private ZipCode zip;

 @Override

 public void validate(final FacesContext context, final UIComponent comp, final Object values)

 throws ValidatorException

 {

 if(!directory.exists(city, state, zip))

 {

 throw new ValidatorException(

 new FacesMessage("Sorry, that location is not in our database. Please try again."));

 }

 }

}

<s:validateForm>

217

Tip

You may inject the correct type directly.

@Inject

@InputField

private ZipCode zip;

Notice that the IDs of the inputText components match the IDs of your Validator @InputFields;

each @Inject @InputField member will be injected with the value of the form input field who's ID

matches the name of the variable.

In other words - the name of the @InputField annotated member variable will automatically be

matched to the ID of the input component, unless overridden by using a field ID alias (see below.)

<h:form id="locationForm">

 <h:inputText id="cityId" value="#{bean.city}" />

 <h:inputText id="stateId" value="#{bean.state}" />

 <h:inputText id="zip" value="#{bean.zip}" />

 <h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

 <s:validateForm fields="city=cityId state=stateId" validatorId="locationValidator" />

</h:form>

Notice that "zip" will still be referenced normally; you need only specify aliases for fields that differ

in name from the Validator @InputFields.

Tip

Using @InputField("customID") with an ID override can also be used to specify

a custom ID, instead of using the default: the name of the field. This gives you the

ability to change the name of the private field, without worrying about changing the

name of input fields in the View itself.

@Inject

@InputField("state")

private String sectorTwo;

Chapter 45. Seam Faces Components

218

An alternate way of accessing those fields on the validator by injecting an InputElement. It works

similarly to @InputField, but stores the clientId and a JSF UIComponent, along with the field value.

@FacesValidator("fooValidator")

public class FooValidator implements Validator {

 @Inject

 private InputElement<String> firstNameElement;

 @Inject

 private InputElement<String> lastNameElement;

 @Inject

 private InputElement<Date> startDateElement;

 @Inject

 private InputElement<Date> endDateElement;

 ...

 }

Use get methods to access those information

public void validate(final FacesContext ctx, final UIComponent form, final Object value) throws ValidatorException {

 Date startDate = startDateElement.getValue();

 Calendar calendar = Calendar.getInstance();

 calendar.add(Calendar.DAY_OF_MONTH, -1);

 if (startDate.before(calendar.getTime())) {

 String message = messageBuilder.get().key(new DefaultBundleKey("booking_checkInNotFutureDate"))

 .targets(startDateElement.getClientId()).build().getText();

 throw new ValidatorException(new FacesMessage(message));

 }

 ...

 }

45.3. <s:viewAction>

The view action component (UIViewAction) is an ActionSource2 UIComponent that specifies an

application-specific command (or action), using an EL method expression, to be invoked during

one of the JSF lifecycle phases proceeding Render Response (i.e., view rendering).

Motivation

219

View actions provide a lightweight front-controller for JSF, allowing the application to

accommodate scenarios such as registration confirmation links, security and sanity checking a

request (e.g., ensuring the resource can be loaded). They also allow JSF to work alongside action-

oriented frameworks, and existing applications that use them.

45.3.1. Motivation

JSF employs an event-oriented architecture. Listeners are invoked in response to user-interface

events, such as the user clicking on a button or changing the value of a form input. Unfortunately,

the most important event on the web, a URL request (initiated by the user clicking on a link,

entering a URL into the browser's location bar or selecting a bookmark), has long been overlooked

in JSF. Historically, listeners have exclusively been activated on postback, which has led to the

common complaint that in JSF, "everything is a POST."

We want to change that perception.

Processing a URL request event is commonly referred to as bookmarkable or GET support. Some

GET support was added to JSF 2.0 with the introduction of view parameters and the pre-render

view event. View parameters are used to bind query string parameters to model properties. The

pre-render view event gives the developer a window to invoke a listener immediately prior to the

view being rendered.

That's a start.

Seam brings the GET support full circle by introducing the view action component. A view action is

the compliment of a UICommand for an initial (non-faces) request. Like its cohort, it gets executed

by default during the Invoke Application phase (now used on both faces and non-faces requests).

A view action can optionally be invoked on postback as well.

View actions (UIViewAction) are closely tied to view parameters (UIViewParameter). Most of

the time, the view parameter is used to populate the model with data that is consumed by the

method being invoked by a UIViewAction component, much like form inputs populate the model

with data to support the method being invoked by a UICommand component.

45.3.2. Usage

Let's consider a typical scenario in web applications. You want to display the contents of a blog

entry that matches the identifier specified in the URL. We'll assume the URL is:

http://localhost:8080/blog/entry.jsf?id=10

We'll use a view parameter to capture the identifier of the entry from the query string and a view

action to fetch the entry from the database.

<f:metadata>

 <f:viewParam name="id" value="#{blogManager.entryId}"/>

Chapter 45. Seam Faces Components

220

 <s:viewAction action="#{blogManager.loadEntry}"/>

</f:metadata>

Tip

The view action component must be declared as a child of the view metadata facet

(i.e., <f:metadata>) so that it gets incorporated into the JSF lifecycle on both non-

faces (initial) requests and faces (postback) requests. If you put it anywhere else

in the page, the behavior is undefined.

Warning

The JSF 2 specification specifies that there must be at least one view parameter

for the view metadata facet to be processed on an initial request. This requirement

was introduced into the JSF specification inadvertently. But not to worry. Seam

Faces inserts a placeholder view parameter into the view metadata if it contains

other components but no view parameters. That means you can use a view action

without a view parameter, contrary to the JSF specification.

What do we do if the blog entry can't be found? View actions support declarative navigation just

like UICommand components. So you can write a navigation rule that will be consulted before the

page is rendered. If the rule matches, navigation occurs just as though this were a postback.

<navigation-rule>

 <from-view-id>/entry.xhtml</from-view-id>

 <navigation-case>

 <from-action>#{blogManager.loadEntry}</from-action>

 <if>#{empty entry}</if>

 <to-view-id>/home.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

 </navigation-rule>

After each view action is invoked, the navigation handler looks for a navigation case that matches

the action's EL method signature and outcome. If a navigation case is matched, or the response

is marked complete by the action, subsequent view actions are short-circuited. The lifecycle then

advances appropriately.

By default, a view action is not executed on postback, since the primary intention of a view action

is to support a non-faces request. If your application (or use case) is decidedly stateless, you

Usage

221

may need the view action to execute on any type of request. You can enable the view action on

postback using the onPostback attribute:

<s:viewAction action="#{blogManager.loadEntry}" onPostback="true"/>

You may only want the view action to be invoked under certain conditions. For instance, you may

only need it to be invoked if the conversation is transient. For that, you can use the if attribute,

which accepts an EL value expression:

<s:viewAction action="#{blogEditor.loadEntry}" if="#{conversation.transient}"/>

There are two ways to control the phase in which the view action is invoked. You can set the

immediate attribute to true, which moves the invocation to the Apply Request Values phase

instead of the default, the Invoke Application phase.

<s:viewAction action="#{sessionManager.validateSession}" immediate="true"/>

You can also just specify the phase directly, using the name of the phase constant in the PhaseId

class (the case does not matter).

<s:viewAction action="#{sessionManager.validateSession}" phase="APPLY_REQUEST_VALUES"/

>

Tip

The valid phases for a view action are:

• APPLY_REQUEST_VALUES (default if immediate="true")

• UPDATE_MODEL_VALUES

• PROCESS_VALIDATIONS

• INVOKE_APPLICATION (default)

If the phase is set, it takes precedence over the immediate flag.

Chapter 45. Seam Faces Components

222

45.3.3. View actions vs the PreRenderViewEvent

The purpose of the view action is similar to use of the PreRenderViewEvent. In fact, the code to

load a blog entry before the page is rendered could be written as:

<f:metadata>

 <f:viewParam name="id" value="#{blogManager.entryId}"/>

 <f:event type="preRenderView" listener="#{blogManager.loadEntry}"/>

</f:metadata>

However, the view action has several important advantages:

• It's lightweight

• It's timing can be controlled

• It's contextual

• It can trigger navigation

View actions are lightweight because they get processed on a non-faces (initial) request before the

full component tree is built. When the view actions are invoked, the component tree only contains

view metadata.

As demonstrated above, you can specify a prerequisite condition for invoking the view action,

control whether it's invoked on postback, specify the phase in which it's invoked and tie the

invocation into the declarative navigation system. The PreRenderViewEvent is quite basic in

comparison.

45.4. ObjectConverter

The ObjectConverter is a simple converter that can be used on any

Java Object, including JPA entities. It can be used via it's converter id

org.jboss.seam.faces.conversion.ObjectConverter or by it's tag <s:objectConverter/>.

Warning

This converter should only be used within a long running conversation to

allow conversions happen correctly. When used with a @ConversationScoped

EntityManager no merges or re-fetch should need to occur when using JPA

entities.

UI Input Container

223

45.5. UI Input Container

UIInputContainer is a supplemental component for a JSF 2.0 composite component encapsulating

one or more input components (EditableValueHolder), their corresponding message components

(UIMessage) and a label (HtmlOutputLabel).

This component takes care of wiring the label to the first input and the messages to each input

in sequence. It also assigns two implicit attribute values, "required" and "invalid" to indicate that

a required input field is present and whether there are any validation errors, respectively. To

determine if a input field is required, both the required attribute is consulted and whether the

property has Bean Validation constraints.

Finally, if the "label" attribute is not provided on the composite component, the label value will be

derived from the id of the composite component, for convenience.

There's a composite componente that ships with seam-faces under the url:

http://java.sun.com/jsf/composite/components/seamfaces.

xmlns:sc="http://java.sun.com/jsf/composite/components/seamfaces"

 <sc:inputContainer label="name" id="name">

 <h:inputText id="input" value="#{person.name}"/>

 </sc:inputContainer>

If you want to define your own composite component, follow this definition example (minus layout):

<cc:interface componentType="org.jboss.seam.faces.InputContainer"/>

 <cc:implementation>

 <h:outputLabel id="label" value="#{cc.attrs.label}:" styleClass="#{cc.attrs.invalid ? 'invalid' :

 ''}">

 <h:outputText styleClass="required" rendered="#{cc.attrs.required}" value="*"/>

 </h:outputLabel>

 <h:panelGroup>

 <cc:insertChildren/>

 </h:panelGroup>

 <h:message id="message" errorClass="invalid message" rendered="#{cc.attrs.invalid}"/>

 </cc:implementation>

Tip

it's currently required to wrap the insertChildren tag with a jsf panelGroup. Please

see http://java.net/jira/browse/JAVASERVERFACES-1991 for more details.

Chapter 45. Seam Faces Components

224

Tip

NOTE: Firefox does not properly associate a label with the target input if the

input id contains a colon (:), the default separator character in JSF. JSF 2

allows developers to set the value via an initialization parameter (context-param

in web.xml) keyed to javax.faces.SEPARATOR_CHAR. We recommend that you

override this setting to make the separator an underscore (_).

Part VII. Seam Reports

ccxxvii

Introduction

The goal of Seam Reports is to provide a fully integrated CDI programming model portable

extension for Java EE that provides APIs for compiling, populating and rendering reports from

existing report frameworks.

Seam Reports contains similar functionality to that of the Excel and PDF templates of Seam 2,

however, the creation and compilation of the reports is quite different. Seam Reports aligns much

better with existing tools in a business, making use of knowledge and expertise that exists outside

of development. The functionality in Seam 2 was largely targeted to creating flyers and simple

pages. Seam Reports can accomplish this, but also allows for easy creation of multi-page business

reports by integrating with JasperReports [http://jasperforge.org/projects/jasperreports], Pentaho

[http://www.pentaho.com/], and XDocReports [http://code.google.com/p/xdocreport/]. Integration

with other reporting solutions can also be done easily by implementing five small interfaces

provided by Seam Reports, see chapter 3 for more information about adding reporting engines.

http://jasperforge.org/projects/jasperreports
http://jasperforge.org/projects/jasperreports
http://www.pentaho.com/
http://www.pentaho.com/
http://code.google.com/p/xdocreport/
http://code.google.com/p/xdocreport/

ccxxviii

Chapter 46.

229

Installation
Most features of Seam Reports are installed automatically by including the seam-reports-api.jar

and the respective provider implementation (along with its dependencies) in the web application

library folder. If you are using Maven [http://maven.apache.org/] as your build tool, you can add

the following dependency to your pom.xml file:

<dependency>

 <groupId>org.jboss.seam.reports</groupId>

 <artifactId>seam-reports-api</artifactId>

 <version>${seam-reports-version}</version>

</dependency>

<!-- If you are using Jasper Reports, add the following dependency -->

<dependency>

 <groupId>org.jboss.seam.reports</groupId>

 <artifactId>seam-reports-jasper</artifactId>

 <version>${seam-reports-version}</version>

</dependency>

<!-- If you are using Pentaho, add the following dependency -->

<dependency>

 <groupId>org.jboss.seam.reports</groupId>

 <artifactId>seam-reports-pentaho</artifactId>

 <version>${seam-reports-version}</version>

</dependency>

Tip

Replace ${seam-reports-version} with the most recent or appropriate version of

Seam Reports.

46.1. Installation using Seam Forge

If you are using Seam Forge, you may use the seam-reports plugin to help with the setup.

46.1.1. Plugin Installation

If not already installed yet on Forge, you may install the plugin by running the following command

inside Forge:

http://maven.apache.org/
http://maven.apache.org/

Chapter 46. Installation

230

forge git-plugin git://github.com/forge/plugin-seam-reports.git

46.1.2. Plugin Configuration

• To add only the api:

seam-reports setup

• To configure Seam Reports to work with JasperReports:

seam-reports setup --provider JASPER

• To configure Seam Reports to work with Pentaho Reporting Engine:

seam-reports setup --provider PENTAHO

Chapter 47.

231

Usage

47.1. Quick Start

Using Seam Reports is a simple four step process. These steps are the same regardless of the

reporting engine being used.

1. Create a report using a favorite report editor

2. Load the created report

3. Fill the report with data

4. Render the report

Of course some of these steps will have different ways of accomplishing the task, but at a high

level they are all the same. For simplicity this quick start will use JasperReports and the first step

will be assumed to have already taken place and the report is available in the deployed archive.

The location of the report isn't important, the ability to pull it into an InputStream is all that really

matters.

The following code demonstrates a basic way of fulfilling the last three steps in using Seam

Reports using JasperReports as the reporting engine. The report has already been created and

is bundled inside the deployable archive. There are no paramaters for the report. The report is a

simple listing of people's names and contact information.

@Model

public class PersonContactReport {

 @Inject @Resource("WEB-INF/jasperreports/personContact.jrxml")

 private InputStream reportTemplate;

 @Inject @Jasper

 private ReportCompiler reportCompiler;

 @Inject @Jasper @PDF

 private ReportRenderer pdfRenderer;

 @Inject

 private EntityManager em;

 public OutputStream render() {

 final Report filledReport = this.fillReport();

 final OutputStream os = new ByteArrayOutputStream();

Chapter 47. Usage

232

 this.pdfRenderer.render(filledReport, os);

 return os;

 }

 private Report fillReport() {

 final ReportDefinition rd = this.reportCompiler.compile(reportTemplate);

 return rd.fill(this.createDatasource(), Collections.EMPTY_MAP);

 }

 private JRDataSource createDatasource() {

 final List<Person> personList = this.em.createQuery("select p from

 Person", Person.class).getResultList();

 return new JRBeanCollectionDataSource(personList);

 }

}

Solder allows easy resource injection for files available in the archive. This injects the report

template which has been created previously (perhaps by someone else in the business) and

added to the deployable archive.

A ReportCompiler is an interface from Seam Reports which abstracts compiling the

report template into ReportDefinition. Seam Reports makes use of CDI's type safety

features by using qualifiers to further narrow the intended type. This allows programs to

remain implementation agnostic. The Jasper qualifier annotation instructs CDI to inject an

implementation of the ReportCompiler which contains the same qualifer.

This is an instance of using both a qualifer (@Jasper) and also a metadata annotation, which

happens to be a stereotype. The @PDF annotation is a CDI stereotype, which essentially

means it's a group of other annotations. It carries metadata about the type it is decorating.

More about this later.

The render method is the only entry point into the class, it also returns the final output of

generating a report. It makes use of other methods in the class to finish the steps outlined

above to generate a report using Seam Reports.

At this stage data to populate the report is retrieved and added to the compiled

ReportDefinition. This particular report doesn't make use of any parameters, hence the

empty map instance being passed.

This last stage of using Seam Reports is the only place that may require the application to

use the report engine API. In this example a list of JPA entities is retrieved and added to a

JasperReports datasource, which is then used by the calling method to populate the report

template as mentioned above.

47.2. Annotations

There are four API level annotations to be aware of when using Seam Reports. All four of them

declare metadata about objects that are being injected. They're also all CDI stereotypes which

instruct the implementing renderer the mimetype that should be used.

Troubleshooting

233

• CSV

• HTML

• PDF

• XLS

• XML

These annotations are only used when injecting a ReportRenderer. Only one of them may be

used per renderer. Multiple renderers must be injected if multiple renderering types are desired.

47.3. Troubleshooting

234

Part VIII. Seam Mail

Chapter 48.

237

Seam Mail Introduction
Seam mail is an portable CDI extension designed to make working with Java Mail easier via

standard methods or plugable templating engines.

48.1. Getting Started

No better way to start off then with a simple example to show what we are talking about.

@Inject

private Instance<MailMessage> mailMessage;

public void sendMail() {

 MailMessage m = mailMessage.get();

 m.from("John Doe<john@test.com>")

 .to("Jane Doe<jane@test.com>")

 .subject(subject)

 .bodyHtml(htmlBody)

 .importance(MessagePriority.HIGH)

 .send();

}

Very little is required to enable this level of functionality in your application. Let's start off with a

little required configuration.

238

Chapter 49.

239

Configuration
By default the configuration parameters for Seam Mail are handled via configuration read from your

application's seam-beans.xml. This file is then parsed by Seam Solder to configure the MailConfig

class. You can override this and provide your own configuration outside of Seam Mail but we will

get into that later.

49.1. Minimal Configuration

First lets add the relevant maven configuration to your pom.xml

 <dependency>

 <groupId>org.jboss.seam.mail</groupId>

 <artifactId>seam-mail-impl</artifactId>

 <version>${seam.mail.version}</version>

</dependency>

Now now that is out of the way lets provide JavaMail with the details of your SMTP server so that

it can connect and send your mail on it's way.

This configuration is handled via Seam Solder which reads in the configuration from your

application's seam-beans.xml and configures the MailConfig class prior to injection.

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:mail="urn:java:org.jboss.seam.mail.core"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/javaee

 http://docs.jboss.org/cdi/beans_1_0.xsd">

 <mail:MailConfig

 serverHost="my-server.test.com"

 serverPort="25">

 <s:modifies/>

 </mail:MailConfig>

</beans>

Chapter 49. Configuration

240

That is all the configuration necessary to send a simple email message. Next we will take a look

at how to configure and use the supported templating engines.

Important

JBoss AS 7.0.x does not correctly load all the modules to support sending

mail AS7-1375 [https://issues.jboss.org/browse/AS7-1375]. This is easily fixed By

replacing the module definition at $JBOSS_HOME/modules/javax/activation/api/

main/module.xml with the following

<module xmlns="urn:jboss:module:1.0" name="javax.activation.api">

 <dependencies>

 <module name="javax.api" />

 <module name="javax.mail.api" >

 <imports><include path="META-INF"/></imports>

 </module>

 </dependencies>

 <resources>

 <resource-root path="activation-1.1.1.jar"/>

 <!-- Insert resources here -->

 </resources>

</module>

This will be fixed in AS 7.1.x

https://issues.jboss.org/browse/AS7-1375
https://issues.jboss.org/browse/AS7-1375

Chapter 50.

241

Core Usage

50.1. Intro

While Seam Mail does provide methods to produce templated email, there is a core set of

functionality that is shared whether you use a templating engine or not.

50.2. Contacts

At it's base an email consists of various destinations and content. Seam Mail provides a wide

varerity of methods of ways to configure the following address fields

• From

• To

• CC

• BCC

• REPLY-TO

50.2.1. String Based

Seam Mail leverages the JavaMail InternetAddress object internally for parsing and storage and

provides a varargs method for each of the contact types. Thus you can provide either a String,

multiple Strings or a String []. Addresses are parsed as RFC 822 addresses and can be a valid

Email Address or a Name + Email Address.

 MailMessage m = mailMessage.get();

 m.from("John Doe<john@test.com>")

 .to("jane@test.com")

 .cc("Dan<dan@test.com", "bill@test.com")

50.2.2. InternetAddress

Since we leverage standard InternetAddress object we might as well provide a method to use it.

 MailMessage m = mailMessage.get();

 m.from(new InternetAddress("John Doe<john@test.com>"))

Chapter 50. Core Usage

242

50.2.3. EmailContact

Since applications frequently have their own object to represent a user who will have an email set

to them we provide a simple interface which your object can implement.

 public interface EmailContact {

 public String getName();

 public String getAddress();

 }

Let's define this interface on an example user entity

 @Entity

 public class User implements EmailContact {

 private String username; //"john@test.com"

 private String firstName; //"John"

 private String lastName; //"Doe"

 public String getName() {

 return firstName + " " + lastName;

 }

 public String getAddress() {

 return username;

 }

 }

Now we can use our User object directly in an of the contact methods

 User user;

 MailMessage m = mailMessage.get();

 m.from("John Doe<john@test.com>")

 .to(user)

Content

243

50.2.4. Content

TODO

50.2.5. Attachments

TODO

244

Chapter 51.

245

Templating

51.1. Velocity

TO DO

51.2. Freemarker

TO DO

246

Chapter 52.

247

Advanced Features

52.1. MailTransporter

TO DO

52.2. MailConfig

TO DO

248

Part IX. Seam Remoting

Chapter 53.

251

Seam Remoting - Basic Features
Seam provides a convenient method of remotely accessing CDI beans from a web page, using

AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with

almost no up-front development effort - your beans only require simple annotating to become

accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled web

page, then goes on to explain the features of the Seam Remoting framework in more detail.

53.1. Configuration

To use remoting, the Seam Remoting servlet must first be configured in your web.xml file:

<servlet>

 <servlet-name>Remoting Servlet</servlet-name>

 <servlet-class>org.jboss.seam.remoting.Remoting</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Remoting Servlet</servlet-name>

 <url-pattern>/seam/resource/remoting/*</url-pattern>

</servlet-mapping>

Note
If your application is running within a Servlet 3.0 (or greater) environment, then

the servlet configuration listed above is not necessary as the Seam Remoting

JAR library bundles a web-fragment.xml that configures the Remoting servlet

automatically.

The next step is to import the necessary Javascript into your web page. There are a minimum of

two scripts that must be imported. The first one contains all the client-side framework code that

enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

By default, the client-side JavaScript is served in compressed form, with white space compacted

and JavaScript comments removed. For a development environment, you may wish to use the

uncompressed version of remote.js for debugging and testing purposes. To do this, simply add

the compress=false parameter to the end of the url:

Chapter 53. Seam Remoting - B...

252

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js?

compress=false"></script>

The second script that you need contains the stubs and type definitions for the beans you wish

to call. It is generated dynamically based on the method signatures of your beans, and includes

type definitions for all of the classes that can be used to call its remotable methods. The name of

the script reflects the name of your bean. For example, if you have a named bean annotated with

@Named, then your script tag should look like this (for a bean class called CustomerAction):

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction"></script>

Otherwise, you can simply specify the fully qualified class name of the bean:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?com.acme.myapp.CustomerAction"></script>

If you wish to access more than one bean from the same page, then include them all as parameters

of your script tag:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

53.1.1. Dynamic type loading

If you forget to import a bean or other class that is required by your bean, don't worry. Seam

Remoting has a dynamic type loading feature that automatically loads any JavaScript stubs for

bean types that it doesn't recognize.

53.2. The "Seam" object

Client-side interaction with your beans is all performed via the Seam Javascript object. This object

is defined in remote.js, and you'll be using it to make asynchronous calls against your bean.

It contains methods for creating client-side bean objects and also methods for executing remote

requests. The easiest way to become familiar with this object is to start with a simple example.

53.2.1. A Hello World example

Let's step through a simple example to see how the Seam object works. First of all, let's create a

new bean called helloAction:

A Hello World example

253

@Named

public class HelloAction implements HelloLocal {

 @WebRemote public String sayHello(String name) {

 return "Hello, " + name;

 }

}

Take note of the @WebRemote annotation on the sayHello() method in the above listing. This

annotation makes the method accessible via the Remoting API. Besides this annotation, there's

nothing else required on your bean to enable it for remoting.

Note

If you are performing a persistence operation in the method marked @WebRemote

you will also need to add a @Transactional annotation to the method. Otherwise,

your method would execute outside of a transaction without this extra hint.That's

because unlike a JSF request, Seam does not wrap the remoting request in a

transaction automatically.

Now for our web page - create a new JSF page and import the helloAction bean:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?helloAction

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">

 //<![CDATA[

 function sayHello() {

 var name = prompt("What is your name?");

 Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

 }

 function sayHelloCallback(result) {

Chapter 53. Seam Remoting - B...

254

 alert(result);

 }

 //]]>

</script>

We're done! Deploy your application and open the page in a web browser. Click the button, and

enter a name when prompted. A message box will display the hello message confirming that the

call was successful. If you want to save some time, you'll find the full source code for this Hello

World example in the /examples/helloworld directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start

with, you can see from the Javascript code listing that we have implemented two methods - the first

method is responsible for prompting the user for their name and then making a remote request.

Take a look at the following line:

Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

The first section of this line, Seam.createBean("helloAction") returns a proxy, or "stub" for our

helloAction bean. We can invoke the methods of our bean against this stub, which is exactly

what happens with the remainder of the line: sayHello(name, sayHelloCallback);.

What this line of code in its completeness does, is invoke the sayHello method of our bean,

passing in name as a parameter. The second parameter, sayHelloCallback isn't a parameter of

our bean's sayHello method, instead it tells the Seam Remoting framework that once it receives

the response to our request, it should pass it to the sayHelloCallback Javascript method. This

callback parameter is entirely optional, so feel free to leave it out if you're calling a method with

a void return type or if you don't care about the result.

The sayHelloCallback method, once receiving the response to our remote request then pops

up an alert message displaying the result of our method call.

53.2.2. Seam.createBean

The Seam.createBean JavaScript method is used to create client-side instances of both action

and "state" beans. For action beans (which are those that contain one or more methods annotated

with @WebRemote), the stub object provides all of the remotable methods exposed by the bean.

For "state" beans (i.e. beans that simply carry state, for example Entity beans) the stub object

provides all the same accessible properties as its server-side equivalent. Each property also has

a corresponding getter/setter method so you can work with the object in JavaScript in much the

same way as you would in Java.

The Context

255

53.3. The Context

The Seam Remoting Context contains additional information which is sent and received as part

of a remoting request/response cycle. It currently contains the conversation ID and Call ID, and

may be expanded to include other properties in the future.

53.3.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to

read or set the conversation ID in the Seam Remoting Context. To read the conversation ID after

making a remote request call Seam.context.getConversationId(). To set the conversation ID

before making a request, call Seam.context.setConversationId().

If the conversation ID hasn't been explicitly set with Seam.context.setConversationId(), then

it will be automatically assigned the first valid conversation ID that is returned by any remoting call.

If you are working with multiple conversations within your page, then you may need to explicitly

set the conversation ID before each call. If you are working with just a single conversation, then

you don't need to do anything special.

53.3.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current

view's conversation. To do this, you must explicitly set the conversation ID to that of the view

before making the remote call. This small snippet of JavaScript will set the conversation ID that

is used for remoting calls to the current view's conversation ID:

Seam.context.setConversationId(#{conversation.id});

53.4. Working with Data types

53.4.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values as a rule

are compatible with either their primitive type or their corresponding wrapper class.

53.4.1.1. String

Simply use Javascript String objects when setting String parameter values.

53.4.1.2. Number

There is support for all number types supported by Java. On the client side, number values are

always serialized as their String representation and then on the server side they are converted

to the correct destination type. Conversion into either a primitive or wrapper type is supported for

Byte, Double, Float, Integer, Long and Short types.

Chapter 53. Seam Remoting - B...

256

53.4.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java

boolean.

53.4.2. JavaBeans

In general these will be either entity beans or JavaBean classes, or some other non-bean class.

Use Seam.createBean() to create a new instance of the object.

53.4.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the

client side, use a JavaScript Date object to work with date values. On the server side, use any

java.util.Date (or descendent, such as java.sql.Date or java.sql.Timestamp class.

53.4.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum

parameter, simply use the String representation of the enum. Take the following bean as an

example:

@Named

public class paintAction {

 public enum Color {red, green, blue, yellow, orange, purple};

 public void paint(Color color) {

 // code

 }

}

To call the paint() method with the color red, pass the parameter value as a String literal:

Seam.createBean("paintAction").paint("red");

The inverse is also true - that is, if a bean method returns an enum parameter (or contains an enum

field anywhere in the returned object graph) then on the client-side it will be converted to a String.

53.4.5. Collections

53.4.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see

the next section for those), and are implemented client-side as a JavaScript array. When calling

Debugging

257

a bean method that accepts one of these types as a parameter, your parameter should be a

JavaScript array. If a bean method returns one of these types, then the return value will also be a

JavaScript array. The remoting framework is clever enough on the server side to convert the bag

to an appropriate type (including sophisticated support for generics) for the bean method call.

53.4.5.2. Maps

As there is no native support for Maps within JavaScript, a simple Map implementation is provided

with the Seam Remoting framework. To create a Map which can be used as a parameter to a

remote call, create a new Seam.Map object:

var map = new Seam.Map();

This JavaScript implementation provides basic methods for working with Maps: size(),

isEmpty(), keySet(), values(), get(key), put(key, value), remove(key) and

contains(key). Each of these methods are equivalent to their Java counterpart. Where the

method returns a collection, such as keySet() and values(), a JavaScript Array object will be

returned that contains the key or value objects (respectively).

53.5. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents

of all the packets send back and forth between the client and server in a popup window. To enable

debug mode, set the Seam.debug property to true in Javascript:

Seam.debug = true;

If you want to write your own messages to the debug log, call Seam.log(message).

53.6. Messages

The Seam International module provides a Messages API that allows generation of view-

independent messages. This is useful if you want to convey additional information to a user that

is not returned directly from the result of a method invocation.

Using the Messages API is extremely easy. Simply add the Seam International libraries to your

application (see the Seam International configuration chapter to learn how to do this), then inject

the Messages object into your bean. The Messages object provides several methods for adding

messages, see the Seam International documentation for more information. Here's a simple

example showing how to create an info message (messages generally follow the same DEBUG,

INFO, WARN, ERROR levels that a typical logging framework would provide):

import javax.inject.Inject;

Chapter 53. Seam Remoting - B...

258

import org.jboss.seam.international.status.Messages;

import org.jboss.seam.remoting.annotations.WebRemote;

public class HelloAction {

 @Inject Messages messages;

 @WebRemote

 public String sayHello(String name) {

 messages.info("Invoked HelloAction.sayHello()");

 return "Hello, " + name;

 }

}

After creating the message in your server-side code, you still need to write some client-side code to

handle any messages that are returned by your remote invocations. Thankfully this is also simple,

you just need to write a JavaScript handler function and assign it to Seam.messageHandler.

If any messages are returned from a remote method invocation, the message handler function

will be invoked and passed a list of Message objects. These objects declare three methods for

retrieving various properties of the message - getLevel() returns the message level (such as

DEBUG, INFO, etc). The getTargets() method returns the targets of the message - these may

be the ID's for specific user interface controls, which is helpful for conveying validation failures for

certain field values. The getTargets() method may return null, if the message is not specific to

any field value. Lastly, the getText() method returns the actual text of the message.

Here's a really simple example showing how you would display an alert box for any messages

returned:

 function handleMessages(msgs) {

 for (var i = 0; i < msgs.length; i++) {

 alert("Received message - Level: " + msgs[i].getLevel() + " Text: " + msgs[i].getText();

 }

 }

 Seam.messageHandler = handleMessages;

You can see the Messages API in action in the HelloWorld example. Simply choose the "Formal"

option for the Formality, and "Localized (English)" for the Localization. Invoking this combination

will cause a server-side message to be created, which you will then see in the Messages list at

the top of the screen.

Handling Exceptions

259

53.7. Handling Exceptions

When invoking a remote bean method, it is possible to specify an exception handler which will

process the response in the event of an exception during bean invocation. To specify an exception

handler function, include a reference to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.createBean("helloAction").sayHello(name, callback, exceptionHandler);

If you do not have a callback handler defined, you must specify null in its place:

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.createBean("helloAction").sayHello(name, null, exceptionHandler);

The exception object that is passed to the exception handler exposes two methods,

getExceptionClass() which returns the name of the exception class that was thrown, and

getMessage(), which returns the exception message which is produced by the exception thrown

by the @WebRemote method.

It is also possible to register a global exception handler, which will be invoked if there is no

exception handler defined for an individual invocation. By default, the global exception handler will

display an alert message notifying the user that there was an exception - here's what the default

exception handler looks like:

Seam.defaultExceptionHandler = function(exception) {

 alert("An exception has occurred while executing a remote request: " +

 exception.getExceptionClass() + ":" + exception.getMessage());

};

If you would like to provide your own global exception handler, then simply override the value of

Seam.exceptionHandler with your own custom exception handler, as in the following example:

 function customExceptionHandler(exception) {

 alert("Uh oh, something bad has happened! [" + exception.getExceptionClass() + ":" +

 exception.getMessage() + "]");

 }

 Seam.exceptionHandler = customExceptionHandler;

Chapter 53. Seam Remoting - B...

260

53.8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,

its rendering customised or even turned off completely.

53.8.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of

Seam.loadingMessage:

Seam.loadingMessage = "Loading...";

53.8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of

displayLoadingMessage() and hideLoadingMessage() with functions that instead do nothing:

// don't display the loading indicator

Seam.displayLoadingMessage = function() {};

Seam.hideLoadingMessage = function() {};

53.8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else

that you want. To do this override the displayLoadingMessage() and hideLoadingMessage()

messages with your own implementation:

 Seam.displayLoadingMessage = function() {

 // Write code here to display the indicator

 };

 Seam.hideLoadingMessage = function() {

 // Write code here to hide the indicator

 };

Controlling what data is returned

261

53.9. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned

to the client. This response is then unmarshaled by the client into a JavaScript object. For

complex types (i.e. Javabeans) that include references to other objects, all of these referenced

objects are also serialized as part of the response. These objects may reference other objects,

which may reference other objects, and so forth. If left unchecked, this object "graph" could

potentially be enormous, depending on what relationships exist between your objects. And as

a side issue (besides the potential verbosity of the response), you might also wish to prevent

sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain" the object graph, by specifying the

exclude field of the remote method's @WebRemote annotation. This field accepts a String array

containing one or more paths specified using dot notation. When invoking a remote method, the

objects in the result's object graph that match these paths are excluded from the serialized result

packet.

For all our examples, we'll use the following Widget class:

public class Widget

{

 private String value;

 private String secret;

 private Widget child;

 private Map<String,Widget> widgetMap;

 private List<Widget> widgetList;

 // getters and setters for all fields

}

53.9.1. Constraining normal fields

If your remote method returns an instance of Widget, but you don't want to expose the secret

field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})

public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't

care about exposing this particular field to the client. Instead, notice that the Widget value that

is returned has a field child that is also a Widget. What if we want to hide the child's secret

value instead? We can do this by using dot notation to specify this field's path within the result's

object graph:

Chapter 53. Seam Remoting - B...

262

@WebRemote(exclude = {"child.secret"})

public Widget getWidget();

53.9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of

collection (List, Set, Array, etc). Collections are easy, and are treated like any other field. For

example, if our Widget contained a list of other Widgets in its widgetList field, to constrain the

secret field of the Widgets in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})

public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's

field name will constrain the Map's key object values, while [value] will constrain the value object

values. The following example demonstrates how the values of the widgetMap field have their

secret field constrained:

@WebRemote(exclude = {"widgetMap[value].secret"})

public Widget getWidget();

53.9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter

where in the result's object graph it appears. This notation uses either the name of the bean (if

the object is a named bean) or the fully qualified class name (only if the object is not a named

bean) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})

public Widget getWidget();

53.9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})

public Widget getWidget();

Chapter 54.

263

Seam Remoting - Model API

54.1. Introduction

The Model API builds on top of Seam Remoting's object serialization features to provide a

component-based approach to working with a server-side object model, as opposed to the RPC-

based approach provided by the standard Remoting API. This allows a client-side representation

of a server-side object graph to be modified ad hoc by the client, after which the changes made to

the objects in the graph can be applied to the corresponding server-side objects. When applying

the changes the client determines exactly which objects have been modified by recursively walking

the client-side object tree and generating a delta by comparing the original property values of the

objects with their new property values.

This approach, when used in conjunction with the extended persistence context provided by

Seam elegantly solves a number of problems faced by AJAX developers when working remotely

with persistent objects. A persistent, managed object graph can be loaded at the start of a

new conversation, and then across multiple requests the client can fetch the objects, make

incremental changes to them and apply those changes to the same managed objects after which

the transaction can be committed, thereby persisting the changes made.

One other useful feature of the Model API is its ability to expand a model. For example, if you

are working with entities with lazy-loaded associations it is usually not a good idea to blindly fetch

the associated objects (which may in turn themselves contain associations to other entities, ad

nauseum), as you may inadvertently end up fetching the bulk of your database. Seam Remoting

already knows how to deal with lazy-loaded associations by automatically excluding them when

marshalling instances of entity beans, and assigning them a client-side value of undefined (which

is a special JavaScript value, distinct from null). The Model API goes one step further by giving

the client the option of manipulating the associated objects also. By providing an expand operation,

it allows for the initialization of a previously-uninitialized object property (such as a lazy-loaded

collection), by dynamically "grafting" the initialized value onto the object graph. By expanding the

model in this way, we have at our disposal a powerful tool for building dynamic client interfaces.

54.2. Model Operations

For the methods of the Model API that accept action parameters, an instance of Seam.Action

should be used. The constructor for Seam.Action takes no parameters:

 var action = new Seam.Action();

The following table lists the methods used to define the action. Each of the following methods

return a reference to the Seam.Action object, so methods can be chained.

Chapter 54. Seam Remoting - M...

264

Table 54.1. Seam.Action method reference

Method Description

setBeanType(beanType) Sets the class name of the bean to be invoked.

• beanType - the fully qualified class name of the bean

type to be invoked.

setQualifiers(qualifiers) Sets the qualifiers for the bean to be invoked.

• qualifiers - a comma-separated list of bean qualifier

names. The names may either be the simple or fully

qualified names of the qualifier classes.

setMethod(method) Sets the name of the bean method.

• method - the name of the bean method to invoke.

addParam(param) Adds a parameter value for the action method. This

method should be called once for each parameter value

to be added, in the correct parameter order.

• param - the parameter value to add.

The following table describes the methods provided by the Seam.Model object. To work with the

Model API in JavaScript you must first create a new Model object:

 var model = new Seam.Model();

Table 54.2. Seam.Model method reference

Method Description

addBean(alias, bean,

qualifiers)

Adds a bean value to the model. When the model is

fetched, the value of the specified bean will be read and

placed into the model, where it may be accessed by

using the getValue() method with the specified alias.

Can only be used before the model is fetched.

• alias - the local alias for the bean value.

• bean - the name of the bean, either specified by the

@Named annotation or the fully qualified class name.

• qualifiers (optional) - a list of bean qualifiers.

Model Operations

265

Method Description

addBeanProperty(alias, bean,

property, qualifiers)

Adds a bean property value to the model. When the

model is fetched, the value of the specified property on

the specified bean will be read and placed into the model,

where it may be accessed by using the getValue()

method with the specified alias.

Can only be used before the model is fetched.

Example:

 addBeanProperty("account", "AccountAction",

 "account", "@Qualifier1", "@Qualifier2");

• alias - the local alias for the bean value.

• bean - the name of the bean, either specified by the

@Named annotation or the fully qualified class name.

• property - the name of the bean property.

• qualifiers (optional) - a list of bean qualifiers. This

parameter (and any after it) are treated as bean

qualifiers.

fetch(action, callback) Fetches the model - this operation causes an

asynchronous request to be sent to the server. The

request contains a list of the beans and bean properties

(set by calling the addBean() and addBeanProperty()

methods) for which values will be returned. Once the

response is received, the callback method (if specified)

will be invoked, passing in a reference to the model as

a parameter.

A model should only be fetched once.

• action (optional) - a Seam.Action instance

representing the bean action to invoke before the

model values are read and stored in the model.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the model has been

fetched. A reference to the model instance is passed

to the callback method as a parameter.

Chapter 54. Seam Remoting - M...

266

Method Description

getValue(alias) This method returns the value of the object with the

specified alias.

• alias - the alias of the value to return.

expand(value, property,

callback)

Expands the model by initializing a property value that

was previously uninitialized. This operation causes an

asynchronous request to be sent to the server, where

the uninitialized property value (such as a lazy-loaded

collection within an entity bean association) is initialized

and the resulting value is returned to the client. Once the

response is received, the callback method (if specified)

will be invoked, passing in a reference to the model as

a parameter.

• value - a reference to the value containing the

uninitialized property to fetch. This can be any value

within the model, and does not need to be a "root"

value (i.e. it doesn't need to be a value specified

by addBean() or addBeanProperty(), it can exist

anywhere within the object graph.

• property - the name of the uninitialized property to be

initialized.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the model has

been expanded. A reference to the model instance is

passed to the callback method as a parameter.

applyUpdates(action, callback) Applies the changes made to the objects contained in the

model. This method causes an asynchronous request to

be sent to the server containing a delta consisting of a

list of the changes made to the client-side objects.

• action (optional) - a Seam.Action instance

representing a bean method to be invoked after the

client-side model changes have been applied to their

corresponding server-side objects.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the updates have

been applied. A reference to the model instance is

passed to the callback method as a parameter.

Fetching a model

267

54.3. Fetching a model

To fetch a model, one or more values must first be specified using addBean() or

addBeanProperty() before invoking the fetch() operation. Let's work through an example - here

we have an entity bean called Customer:

@Entity Customer implements Serializable {

 private Integer customerId;

 private String firstName;

 private String lastName;

 @Id @GeneratedValue public Integer getCustomerId() { return customerId; }

 public void setCustomerId(Integer customerId) { this.customerId = customerId; }

 public String getFirstName() { return firstName; }

 public void setFirstName(String firstName) { this.firstName = firstName; }

 public String getLastName() { return lastName; }

 public void setLastName(String lastName) { this.lastName = lastName; }

}

We also have a bean called CustomerAction, which is responsible for creating and editing

Customer instances. Since we're only interested in editing a customer right now, the following

code only shows the editCustomer() method:

@ConversationScoped @Named

public class CustomerAction {

 @Inject Conversation conversation;

 @PersistenceContext EntityManager entityManager;

 public Customer customer;

 public void editCustomer(Integer customerId) {

 conversation.begin();

 customer = entityManager.find(Customer.class, customerId);

 }

 public void saveCustomer() {

 entityManager.merge(customer);

 conversation.end();

 }

}

Chapter 54. Seam Remoting - M...

268

In the client section of this example, we wish to make changes to an existing Customer instance, so

we need to use the editCustomer() method of CustomerAction to first load the customer entity,

after which we can access it via the public customer field. Our model object must therefore be

configured to fetch the CustomerAction.customer property, and to invoke the editCustomer()

method when the model is fetched. We start by using the addBeanProperty() method to add a

bean property to the model:

 var model = new Seam.Model();

 model.addBeanProperty("customer", "CustomerAction", "customer");

The first parameter of addBeanProperty() is the alias (in this case customer), which is used to

access the value via the getValue() method. The addBeanProperty() and addBean() methods

can be called multiple times to bind multiple values to the model. An important thing to note is

that the values may come from multiple server-side beans, they aren't all required to come from

the same bean.

Fetching a model

269

We also specify the action that we wish to invoke (i.e. the editCustomer() method). In this

example we know the value of the customerId that we wish to edit, so we can specify this value

as an action method parameter:

 var action = new Seam.Action()

 .setBeanType("CustomerAction")

 .setMethod("editCustomer")

 .addParam(123);

Once we've specified the bean properties we wish to fetch and the action to invoke, we can then

fetch the model. We pass in a reference to the action object as the first parameter of the fetch()

method. Also, since this is an asynchronous request we need to provide a callback method to deal

with the response. The callback method is passed a reference to the model object as a parameter.

Chapter 54. Seam Remoting - M...

270

 var callback = function(model) { alert("Fetched customer: "

 model.getValue("customer").firstName +

 " " + model.getValue("customer").lastName); };

 model.fetch(action, callback);

When the server receives a model fetch request, it first invokes the action (if one is specified)

before reading the requested property values and returning them to the client.

54.3.1. Fetching a bean value

Alternatively, if you don't wish to fetch a bean property but rather a bean itself (such as a value

created by a producer method) then the addBean() method is used instead. Let's say we have a

producer method that returns a qualified UserSettings value:

 @Produces @ConversationScoped @Settings UserSettings getUserSettings() {

 /* snip code */

 }

We would add this value to our model with the following code:

 model.addBean("settings", "UserSettings", "@Settings");

The first parameter is the local alias for the value, the second parameter is the fully qualified class

of the bean, and the third (and subsequent) parameter/s are optional bean qualifiers.

54.4. Modifying model values

Once a model has been fetched its values may be read using the getValue() method. Continuing

on with the previous example, we would retrieve the Customer object via it's local alias (customer)

like this:

 var customer = model.getValue("customer");

We are then free to read or modify the properties of the value (or any of the other values within

its object graph).

 alert("Customer name is: " + customer.firstName + " " + customer.lastName);

 customer.setLastName("Jones"); // was Smith, but Peggy got married on the weekend

Expanding a model

271

54.5. Expanding a model

We can use the Model API's ability to expand a model to load uninitialized branches of the objects

in the model's object graph. To understand how this works exactly, let's flesh out our example a

little more by adding an Address entity class, and creating a one-to-many relationship between

Customer and Address.

@Entity Address implements Serializable {

 private Integer addressId;

 private Customer customer;

 private String unitNumber;

 private String streetNumber;

 private String streetName;

 private String suburb;

 private String zip;

 private String state;

 private String country;

 @Id @GeneratedValue public Integer getAddressId() { return addressId; }

 public void setAddressId(Integer addressId) { this.addressId = addressId; }

 @ManyToOne public Customer getCustomer() { return customer; }

 public void setCustomer(Customer customer) { this.customer = customer; }

 /* Snipped other getter/setter methods */

}

Here's the new field and methods that we also need to add to the Customer class:

Chapter 54. Seam Remoting - M...

272

 private Collection<Address> addresses;

 @OneToMany(fetch = FetchType.LAZY, mappedBy = "customer", cascade = CascadeType.ALL)

 public Collection<Address> getAddresses() { return addresses; }

 public void setAddresses(Collection<Address> addresses) { this.addresses = addresses; }

As we can see, the @OneToMany annotation on the getAddresses() method specifies a fetch

attribute of LAZY, meaning that by default the customer's addresses won't be loaded automatically

when the customer is. When reading the uninitialized addresses property value from a newly-

fetched Customer object in JavaScript, a value of undefined will be returned.

 getValue("customer").addresses == undefined; // returns true

We can expand the model by making a special request to initialize this uninitialized property

value. The expand() operation takes three parameters - the value containing the property to

be initialized, the name of the property and an optional callback method. The following example

shows us how the customer's addresses property can be initialized:

 model.expand(model.getValue("customer"), "addresses");

The expand() operation makes an asynchronous request to the server, where the property value

is initialized and the value returned to the client. When the client receives the response, it reads

the initialized value and appends it to the model.

 // The addresses property now contains an array of address objects

 alert(model.getValue("customer").addresses.length + " addresses loaded");

54.6. Applying Changes

Once you have finished making changes to the values in the model, you can apply them with the

applyUpdates() method. This method scans all of the objects in the model, compares them with

their original values and generates a delta which may contain one or more changesets to send to

the server. A changeset is simply a list of property value changes for a single object.

Like the fetch() command you can also specify an action to invoke when applying updates,

although the action is invoked after the model updates have been applied. In a typical situation the

invoked action would do things like commit a database transaction, end the current conversation,

etc.

Applying Changes

273

Since the applyUpdates() method sends an asynchronous request like the fetch() and

expand() methods, we also need to specify a callback function if we wish to do something when

the operation completes.

 var action = new Seam.Action();

 .setBeanType("CustomerAction")

 .setMethod("saveCustomer");

 var callback = function() { alert("Customer saved."); };

 model.applyUpdates(action, callback);

The applyUpdates() method performs a refresh of the model, retrieving the latest state of the

objects contained in the model after all updates have been applied and the action method (if

specified) invoked.

274

Chapter 55.

275

Seam Remoting - Bean Validation
Seam Remoting provides integrated support for JSR-303 Bean Validation, which defines a

standard approach for validating Java Beans no matter where they are used; web tier or

persistence tier, server or client. Bean validation for remoting delivers JSR-303's vision by making

all of the validation constraints declared by the server-side beans available on the client side, and

allows developers to perform client-side bean validation in an easy to use, consistent fashion.

Client-side validation by its very nature is an asynchronous operation, as it is possible that

the client may encounter a custom validation constraint for which it has no knowledge of the

corresponding validation logic. Under these circumstances, the client will make a request to the

server for the validation to be performed server-side, after which it receives the result will forward it

to the client-side callback method. All built-in validation types defined by the JSR-303 specification

are executed client-side without requiring a round-trip to the server. It is also possible to provide

the client-side validation API with custom JavaScript to allow client-side execution of custom

validations.

55.1. Validating a single object

The Seam.validateBean() method may be used to validate a single object. It accepts the

following parameter values:

 Seam.validateBean(bean, callback, groups);

The bean parameter is the object to validate.

The callback parameter should contain a reference to the callback method to invoke once

validation is complete.

The groups parameter is optional, however may be specified if only certain validation groups

should be validated. The groups parameter may be a String or an array of String values for

when multiple groups are to be validated.

Here's an example showing how a bean called customer is validated:

 function test() {

 var customer = Seam.createBean("com.acme.model.Customer");

 customer.setFirstName("John");

 customer.setLastName("Smith");

 Seam.validateBean(customer, validationCallback);

 }

 function validationCallback(violations) {

Chapter 55. Seam Remoting - B...

276

 if (violations.length == 0) alert("All validations passed!");

 }

Tip

By default, when Seam Remoting performs validation for a single bean it will

traverse the entire object graph for that bean and validate each unique object that

it finds. If you don't wish to validate the entire object graph, then please refer to the

section on validating multiple objects later in this chapter for an alternative.

55.2. Validating a single property

Sometimes it might not be desirable to perform validation for all properties of a bean. For example,

you might have a dynamic form which displays validation errors as the user tabs between fields.

In this situation, you may use the Seam.validateProperty() method to validate a single bean

property.

Seam.validateProperty(bean, property, callback, groups)

The bean parameter is the object containing the property that is to be validated.

The property parameter is the name of the property to validate.

The callback parameter is a reference to the callback function to invoke once the property has

been validated.

The groups parameter is optional, however may be specified if validating the property against a

certain validation group. The groups parameter may be a String or an array of String values

for multiple groups.

Here's an example showing how to validate the firstName property of a bean called customer:

 function test() {

 var customer = Seam.createBean("com.acme.model.Customer");

 customer.setFirstName("John");

 Seam.validateProperty(customer, "firstName", validationCallback);

 }

 function validationCallback(violations) {

 if (violations.length == 0) alert("All validations passed!");

 }

Validating multiple objects and/or properties

277

55.3. Validating multiple objects and/or properties

It is also possible to perform multiple validations for beans and bean properties in one go. This

might be useful for example to perform validation of forms that present data from more than one

bean. The Seam.validate() method takes the following parameters:

 Seam.validate(validations, callback, groups);

The validations parameter should contain a list of the validations to perform. It may either be an

associative array (for a single validation), or an array of associative arrays (for multiple validations)

which define the validations that should be performed. We'll look at this parameter more closely

in just a moment.

The callback parameter should contain a reference to the callback function to invoke once

validation is complete. The optional groups parameter should contain the group name/s for which

to perform validation.

The groups parameter allows one or more validation groups (specified by providing a String or

array of String values) to be validated. The validation groups specified here will be applied to all

bean values contained in the validations parameter.

The simplest example, in which we wish to validate a single object would look like this:

 Seam.validate({bean:customer}, callback);

In the above example, validation will be performed for the customer object, after which the function

named validationCallback will be invoked.

Validate multiple beans is done by passing in an array of validations:

 Seam.validate([{bean:customer}, {bean:order}], callback);

Single properties can be validated by specifying a property name:

 Seam.validate({bean:customer, property: "firstName"}, callback);

To prevent the entire object graph from being validated, the traverse property may be set to

false:

Chapter 55. Seam Remoting - B...

278

 Seam.validate({bean:customer, traverse: false}, callback);

Validation groups may also be set for each individual validation, by setting the groups property

to a String or array of Strings value:

 Seam.validate({bean:customer, groups: "default"}, callback);

55.4. Validation groups

Validation group names should be the unqualified class name of the group class. For example,

for the class com.acme.InternalRegistration, the client-side group name should be specified

as InternalRegistration:

 Seam.validateBean(user, callback, "InternalRegistration"

It is also possible to set the default validation groups against which all validations will be performed,

by setting the Seam.ValidationGroups property:

 Seam.ValidationGroups = ["Default", "ExternalRegistration"];

If no explicit group is set for the default, and no group is specified when performing validation,

then the validation process will be executed against the 'Default' group.

55.5. Handling validation failures

If any validations fail during the validation process, then the callback method specified in the

validation function will be invoked with an array of constraint violations. If all validations pass, this

array will be empty. Each object in the array represents a single constraint violation, and contains

the following property values:

bean - the bean object for which the validation failed.

property - the name of the property that failed validation

value - the value of the property that failed validation

message - a message string describing the nature of the validation failure

The callback method should contain business logic that will process the constraint violations and

update the user interface accordingly to inform the user that validation has failed. The following

Handling validation failures

279

minimalistic example demonstrates how the validation errors can be displayed to the user as

popup alerts:

 function validationCallback(violations) {

 for (var i = 0; i < violations.length; i++) {

 alert(violations[i].property + "=" + violations[i].value + " [violation] -> " + violations[i].message);

280

Part X. Seam REST

cclxxxiii

Introduction

Seam REST is a lightweight module that provides additional integration of technologies within the

Java EE platform as well as third party technologies.

Seam REST is independent from CDI and JAX-RS implementations and thus fully portable

between Java EE 6 environments.

cclxxxiv

Chapter 56.

285

Installation
The Seam REST module runs only on Java EE 6 compliant servers such as JBoss Application

Server [http://www.jboss.org/jbossas] or GlassFish [https://glassfish.dev.java.net/] .

56.1. Basics

To use the Seam REST module, add seam-rest and seam-rest-api jars into the web application.

If using Maven, add the following dependency into the web application's pom.xml configuration file.

Example 56.1. Dependency added to pom.xml

<dependency>

 <groupId>org.jboss.seam.rest</groupId>

 <artifactId>seam-rest</artifactId>

 <version>${seam.rest.version}</version>

</dependency>

Tip

Substitute the expression ${seam.rest.version} with the most recent or

appropriate version of Seam REST. Alternatively, you can create a Maven

user-defined property [http://www.sonatype.com/books/mvnref-book/reference/

resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to

satisfy this substitution so you can centrally manage the version.

56.2. Transitive dependencies

Besides, Seam REST has several transitive dependencies (which are added automatically when

using maven). Refer to Section 61.1, “Transitive Dependencies” for more details.

56.3. Registering JAX-RS components explicitly

The Seam REST module registers SeamExceptionMapper to hook into the exception processing

mechanism of JAX-RS and TemplatingMessageBodyWriter to provide templating support.

These components are registered by default if classpath scanning of JAX-RS resources and

providers is enabled (an empty javax.ws.rs.core.Application subclass is provided).

@ApplicationPath("/api/*")

http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 56. Installation

286

public class MyApplication extends Application {}

Otherwise, if the Application's getClasses() method is overridden to select resources and

providers explicitly add SeamExceptionMapper and TemplatingMessageBodyWriter .

@ApplicationPath("/api/*")

public class MyApplication extends Application

{

 @Override

 public Set<Class<?>> getClasses()

 {

 Set<Class<?>> classes = new HashSet<Class<?>>();

 ...

 ...

 ...

 classes.add(SeamExceptionMapper.class);

 classes.add(TemplatingMessageBodyWriter.class);

 return classes;

 }

}

56.4. Servlet container support

Seam REST can be used with plain Servlet containers such as Apache Tomcat 7. Firstly, we

need to enhance the Servlet container capabilities. This is done by bundling Weld and RESTEasy

within the application and configuring them. See the jaxrs-exceptions example and its tomcat

build profile for more details.

In a EE6-compliant environment, Seam REST would be bootstrapped by a Servlet listener.

However, weld-servlet does not support CDI injection into Servlet listeners. Therefore, add the

following line to your application's web.xml file to bootstrap Seam REST using Servlet.

<servlet>

 <display-name>Servlet REST Listener Startup</display-name>

 <servlet-class>org.jboss.seam.rest.SeamRestStartupListener</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

Chapter 57.

287

Exception Handling
The JAX-RS specification defines the mechanism for exception mapping providers as the standard

mechanism for Java exception handling. The Seam REST module comes with an alternative

approach, which is more consistent with the CDI programming model. It is also easier to use and

still remains portable.

The Seam REST module allows you to:

• integrate with Solder exception handling framework and thus handle exceptions that occur in

different parts of an application uniformly;

• define exception handling rules declaratively with annotations or XML.

57.1. Solder Exception Handling Integration

Solder exception handling framework handles exceptions within the Seam REST module: as

result, an exception that occurs during an invocation of a JAX-RS service is routed through the

Solder exception handling mechanism similar to the CDI event bus. This allows you to implement

the exception handling logic in a loosely-coupled fashion.

The following code sample demonstrates a simple exception handler that converts the

NoResultException exception to a 404 HTTP response.

Example 57.1. Solder Integration - NoResultException handler

@HandlesExceptions

public class ExceptionHandler

{

 @Inject @RestResource

 ResponseBuilder builder

 public void handleException(@Handles @RestRequest CaughtException<NoResultEx ception> event)

 {

 builder.status(404).entity("The requested resource does not exist.");

 }

}

The @HandlesExceptions annotation marks the ExceptionHandler bean as capable of

handling exceptions.

The ResponseBuilder for creating the HTTP response is injected.

A method for handling NoResultException instances. Note that the ExceptionHandler can

define multiple exception handling methods for various exception types.

Chapter 57. Exception Handling

288

Similarly to the CDI event bus, exceptions handled by a handler method can be filtered by

qualifiers. The example above treats only exceptions that occur in a JAX-RS service invocation

(as opposed to all exceptions of the given type that occur in the application, for example in the

view layer). Thus, the @RestRequest qualifier is used to enable the handler only for exceptions

that occur during JAX-RS service invocation.

For more information on Solder exception handling, refer to Solder reference documentation

[http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part5.html] .

57.2. Declarative Exception Mapping

Exception-mapping rules are often fairly simple. Thus, instead of being implemented

programmatically, they can be expressed declaratively through metadata such as Java

annotations or XML. The Seam REST module supports both ways of declarative configurations.

For each exception type, you can specify a status code and an error message of the HTTP

response.

57.2.1. Annotation-based configuration

You can configure Seam REST exception mapping directly in your Java code with Java

Annotations. An exception mapping rule is defined as a @ExceptionMapping annotation. Use an

@ExceptionMapping.List annotation to define multiple exception mappings.

Example 57.2. Annotation-based exception mapping configuration

@ExceptionMapping.List({

 @ExceptionMapping(exceptionType = NoResultException.class, status = 404, message = "Requested

 resource does not exist."),

 @ExceptionMapping(exceptionType = IllegalArgumentException.class, status = 400, message = "Illegal

 argument value.")

})

@ApplicationPath("/api")

public MyApplication extends Application {

The @ExceptionMapping annotation can be applied on any Java class in the deployment.

However, it is recommended to keep all exception mapping declarations in the same place, for

example, in the javax.ws.rs.core.Application subclass.

Table 57.1. @ExceptionMapping properties

Name Required Default value Description

exceptionType true - Fully-qualified class

name of the exception

class

http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part5.html
http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part5.html

XML configuration

289

Name Required Default value Description

status true - HTTP status code

message false - Error message sent

within the HTTP

response

useExceptionMessage false false Exception error

message

interpolateMessageBodyfalse true Enabling/disabling the

EL interpolation of the

error message

useJaxb false true Enabling/disabling

wrapping of the error

message within a

JAXB object. This

allows marshalling

to various media

formats such as

application/xml,

application/json,

etc.

57.2.2. XML configuration

As an alternative to the annotation-based configuration, you can use the configuration facilities

provided by Solder to configure the SeamRestConfiguration class in XML.

For more information on how to use Solder for configuring beans, refer to the Solder reference

documentation [http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html] .

Once you have added the Seam XML module, specify the configuration in the seam-beans.xml

file, located in the WEB-INF folder of the web archive.

Example 57.3. Exception mapping configuration in seam-beans.xml

<rest:SeamRestConfiguration>

 <rest:mappings>

 <s:value>

 <rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">

 <rest:message>Requested resource does not exist.</rest:message>

 </rest:Mapping>

 </s:value>

 <s:value>

 <rest:Mapping exceptionType="java.lang.IllegalArgumentException" statusCode="400">

http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html
http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html
http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html

Chapter 57. Exception Handling

290

 <rest:message>Illegal value.</rest:message>

 </rest:Mapping>

 </s:value>

 </rest:mappings>

</rest:SeamRestConfiguration>

Furthermore, you can use EL expressions in message templates to provide dynamic and more

descriptive error messages.

Example 57.4. Exception mapping configuration in seam-beans.xml

<rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">

 <rest:message>Requested resource (#{uriInfo.path}) does not exist.</rest:message>

</rest:Mapping>

57.2.3. Declarative exception mapping processing

When an exception occurs at runtime, the SeamExceptionMapper first looks for a matching

exception mapping rule. If it finds one, it creates an HTTP response with the specified status code

and error message.

The error message is marshalled within a JAXB object and is thus available in multiple media

formats. The most commonly used formats are XML and JSON. Most JAX-RS implementations

provide media providers for both of these formats. In addition, the error message is also available

in plain text.

Example 57.5. Sample HTTP response

HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: 123

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<error>

 <message>Requested resource does not exist.</message>

</error>

Chapter 58.

291

Bean Validation Integration
Bean Validation (JSR-303) is a specification introduced as a part of Java EE 6. It aims to provide

a standardized way of validating the domain model across all application layers.

The Seam REST module follows the Bean Validation specification and the incoming HTTP

requests can be validated with this standardized mechanism.

58.1. Validating HTTP requests

Firstly, enable the ValidationInterceptor in the beans.xml configuration file.

<interceptors>

 <class>org.jboss.seam.rest.validation.ValidationInterceptor</class>

</interceptors>

Then, enable validation of a particular method by decorating it with the @ValidateRequest

annotation.

@PUT

@ValidateRequest

public void updateTask(Task incommingTask)

{

...

}

Now, the HTTP request's entity body (the incomingTask parameter) will be validated prior to

invoking the method.

58.1.1. Validating entity body

By default, the entity parameter (the parameter with no annotations that represent the body of the

HTTP request) is validated. If the object is valid, the web service method is executed. Otherwise,

a ValidationException exception is thrown.

The ValidationException exception is a simple carrier of constraint violations found by the Bean

Validation provider. The exception can be handled by an ExceptionMapper or Solder exception

handler.

Seam REST comes with a built-in ValidationException handler, which is registered by default.

The exception handler converts the ValidationException to an HTTP response with the 400

(Bad request) status code. Furthermore, it sends messages relevant to the violated constraints

within the message body of the HTTP response.

Chapter 58. Bean Validation I...

292

Example 58.1. HTTP response

HTTP/1.1 400 Bad Request

Content-Type: application/xml

Content-Length: 129

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<error>

 <messages>

 <message>Name length must be between 1 and 100.</message>

 </messages>

</error>

58.1.2. Validating resource fields

Besides the message body, the JAX-RS specification allows various parts of the HTTP request

to be injected into the JAX-RS resource or passed as method parameters. These parameters are

usually HTTP form parameters, query parameters, path parameters, headers, etc.

Example 58.2. JAX-RS resource

public class PersonResource

{

 @QueryParam("search")

 @Size(min = 1, max = 30)

 private String query;

 @QueryParam("start")

 @DefaultValue("0")

 @Min(0)

 private int start;

 @QueryParam("limit")

 @DefaultValue("20")

 @Min(0) @Max(50)

 private int limit;

...

If a method of a resource is annotated with an @ValidateRequest annotation, the fields of a

resource are validated by default.

Validating other method parameters

293

Important

Since the JAX-RS injection occurs only at resource creation time, do not use the

JAX-RS field injection for other than @RequestScoped resources.

58.1.3. Validating other method parameters

The JAX-RS specification allows path parameters, query parameters, matrix parameters, cookie

parameters and headers to be passed as parameters of a resource method.

Example 58.3. JAX-RS method parameters

@GET

public List<Person>search(@QueryParam("search") String query,

 @QueryParam("start") @DefaultValue("0") int start,

 @QueryParam("limit") @DefaultValue("20") int limit)

Note

Currently, Seam REST validates only JavaBean parameters (as opposed to

primitive types, Strings and so on). Therefore, to validate these types of

parameters, either use resource field validation described in Section 58.1.2,

“Validating resource fields” or read further and use parameter objects.

In order to prevent an oversized method signature when the number of parameters is too

large, JAX-RS implementations provide implementations of the Parameter Object pattern

[http://sourcemaking.com/refactoring/introduce-parameter-object] . These objects aggregate

multiple parameters into a single object, for example RESTEasy Form Object [http://

docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html] or Apache CXF Parameter

Bean [http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans] . These parameters can

be validated by Seam REST. To trigger the validation, annotate the parameter with a

javax.validation.Valid annotation.

Example 58.4. RESTEasy parameter object

public class MyForm {

 @FormParam("stuff")

 @Size(min = 1, max = 30)

 private int stuff;

 @HeaderParam("myHeader")

http://sourcemaking.com/refactoring/introduce-parameter-object
http://sourcemaking.com/refactoring/introduce-parameter-object
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans

Chapter 58. Bean Validation I...

294

 private String header;

 @PathParam("foo")

 public void setFoo(String foo) {...}

}

@POST

@Path("/myservice")

@ValidateRequest

public void post(@Valid @Form MyForm form) {...}

58.2. Validation configuration

Table 58.1. @ValidateRequest annotation properties

@ValidateRequest attribute Description Default value

validateMessageBody Enabling/disabling validation

of message body parameters

true

validateResourceFields Enabling/disabling validation

of fields of a JAX-RS resource

true

groups Validation groups to be used

for validation

javax.validation.groups.Default

58.3. Using validation groups

In some cases, it is desired to have a specific group of constraints used for validation of web

service parameters. These constraints are usually weaker than the default constraints of a domain

model. Take partial updates as an example.

Consider the following example:

Example 58.5. Employee.java

public class Employee {

 @NotNull

 @Size(min = 2, max = 30)

 private String name;

 @NotNull

 @Email

 private String email;

 @NotNull

 private Department department;

Using validation groups

295

 // getters and setters

}

The Employee resource in the example above is not allowed to have the null value specified in any

of its fields. Thus, the entire representation of a resource (including the department and related

object graph) must be sent to update the resource.

When using partial updates, only values of modified fields are required to be sent within the update

request, while the non-null values of the received object are updated. Therefore, two groups

of constraints are needed: group for partial updates (including @Size and @Email, excluding

@NotNull) and the default group (@NotNull).

A validation group is a simple Java interface:

Example 58.6. PartialUpdateGroup.java

public interface PartialUpdateGroup {}

Example 58.7. Employee.java

@GroupSequence({ Default.class, PartialUpdateGroup.class })

public class Employee {

 @NotNull

 @Size(min = 2, max = 30, groups = PartialUpdateGroup.class)

 private String name;

 @NotNull

 @Email(groups = PartialUpdateGroup.class)

 private String email;

 @NotNull

 private Department department;

 // getters and setters

}

The @NotNull constraint belongs to the default validation group.

The @Size constraint belongs to the partial update validation group.

The @GroupsSequence annotation indicates that both validation groups are used by default

(for example, when persisting the entity).

Finally, the ValidationInterceptor is configured to validate the PartialUpdateGroup group

only.

Chapter 58. Bean Validation I...

296

Example 58.8. EmployeeResource.java

@Path("/{id}")

 @PUT

 @Consumes("application/xml")

 @ValidateRequest(groups = PartialUpdateGroup.class)

 public void updateEmployee(Employee e, @PathParam("id") long id)

 {

 Employee employee = em.find(Employee.class, id);

 if (e.getName() != null)

 {

 employee.setName(e.getName());

 }

 if (e.getEmail() != null)

 {

 employee.setEmail(e.getEmail());

 }

 }

The partial update validation group is used for web service parameter validation.

Partial update — only the not-null fields of the transferred representation are used for update.

The null fields are not updated.

Chapter 59.

297

Templating support
Seam REST allows to create HTTP responses based on the defined templates. Instead of being

bound to a particular templating engine, Seam REST comes with a support for multiple templating

engines and support for others can be plugged in.

59.1. Creating JAX-RS responses using templates

REST-based web services are often expected to return multiple representations of a resource.

The templating support is useful for producing media formats such as XHTML and it can be also

used instead of JAXB to produce domain-specific XML representations of a resource. Besides,

almost any other representation of a resource can be described in a template.

To enable templating for a particular method, decorate the method with the @ResponseTemplate

annotation. Path to a template file to be used for rendering is required.

Example 59.1. @ResponseTemplate in action

@ResponseTemplate("/freemarker/task.ftl")

public Task getTask(@PathParam("taskId") long taskId) {

...

}

The @ResponseTemplate annotation offers several other options. For example, it is possible for

a method to offer multiple representations of a resource, each rendered with a different template.

In the example below, the produces member of the @ResponseTemplate annotation is used to

distinguish between produced media types.

Example 59.2. Multiple @ResponseTemplate s

@GET

@Produces({ "application/json", "application/categories+xml", "application/categories-short

+xml" })

@ResponseTemplate.List({

 @ResponseTemplate(value = "/freemarker/categories.ftl", produces = "application/categories

+xml"),

 @ResponseTemplate(value = "/freemarker/categories-short.ftl", produces = "application/

categories-short+xml")

})

public List<Category> getCategories()

Chapter 59. Templating support

298

Table 59.1. @ResponseTemplate options

Name Required Default value Description

value true - Path to the template

(for example /

freemarker/

categories.ftl)

produces false */* Restriction of media

type produced by

the template (useful

in situations when

a method produces

multiple media types,

with different

templates)

responseName false response Name under which

the object returned

by the JAX-RS

method is available

in the template

(for example, Hello

${response.name})

59.1.1. Accessing the model

There are several ways of accessing the domain data within a template.

Firstly, the object returned by the JAX-RS method is available under the "response" name by

default. The object can be made available under a different name using the responseName

member of the @ResponseTemplate annotation.

Example 59.3. hello.ftl

Hello ${response.name}

Secondly, every bean reachable via an EL expression is available within a template.

Example 59.4. Using EL names in a template

#foreach(${student} in ${university.students})

 <student>${student.name}</student>

#end

Built-in support for templating engines

299

Note

Note that the syntax of the expression depends on the particular templating

engine and mostly differs from the syntax of EL expressions. For example,

${university.students} must be used instead of #{university.students} in

a FreeMarker template.

Last but not least, the model can be populated programmatically. In order to do that, inject the

TemplatingModel bean and put the desired objects into the underlying data map. In the following

example, the list of professors is available under the "professors" name.

Example 59.5. Defining model programmatically

@Inject

private TemplatingModel model;

@GET

@ResponseTemplate("/freemarker/university.ftl")

public University getUniversity()

{

 // load university and professors

 University university = ...

 List<Professor> professors = ...

 model.getData().put("professors", professors);

 return university;

}

Tip

When using JAXB-annotated classes as a return type for JAX-RS methods, you

may see the following RESTEasy message: “Could not find JAXBContextFinder

for media type: text/html” . This is caused by the built-in JAXB provider being too

eager. You can prevent the built-in JAXB provider from being used for a method

by adding the @DoNotUseJAXBProvider annotation on the method.

59.2. Built-in support for templating engines

Seam REST currently comes with built-in templating providers for FreeMarker and Apache

Velocity.

Chapter 59. Templating support

300

59.2.1. FreeMarker

FreeMarker is one of the most popular templating engines. To enable Seam REST FreeMarker

support, bundle the FreeMarker jar with the web application.

For more information on writing FreeMarker templates, refer to the FreeMarker Manual [http://

freemarker.sourceforge.net/docs/index.html] .

59.2.2. Apache Velocity

Apache Velocity is another popular Java-based templating engine. Similarly to FreeMarker

support, Velocity support is enabled automatically if Velocity libraries are detected on the

classpath.

For more information on writing Velocity templates, refer to the Apache Velocity User Guide [http://

velocity.apache.org/engine/releases/velocity-1.5/user-guide.html]

59.2.3. Pluggable support for templating engines

All that needs to be done to extend the set of supported templating engines is to implement

the TemplatingProvider interface. Refer to Javadoc [http://docs.jboss.org/seam/3/rest/latest/

api/org/jboss/seam/rest/templating/TemplatingProvider.html] for hints.

59.2.4. Selecting preferred templating engine

In certain deployment scenarios it is not possible to control the classpath completely and multiple

template engines may be available at the same time. If that happens, Seam REST fails to operate

with the following message:

Multiple TemplatingProviders found on classpath. Select the preferred one.

In such case, define the preferred templating engine in the XML configuration as demonstrated

below to resolve the TemplatingProvider ambiguity.

Example 59.6. Preferred provider

<beans xmlns:rest="urn:java:org.jboss.seam.rest:org.jboss.seam.rest.exceptions">

 <rest:SeamRestConfiguration preferedTemplatingProvider="org.jboss.seam.rest.templating.freemarker.FreeMarkerProvider">

</beans>

http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html

Selecting preferred templating engine

301

Table 59.2. Built-in templating providers

Name FQCN

FreeMarker org.jboss.seam.rest.templating.freemarker.FreeMarkerProvider

Apache Velocity org.jboss.seam.rest.templating.velocity.VelocityProvider

302

Chapter 60.

303

RESTEasy Client Framework

Integration
The RESTEasy Client Framework is a framework for writing clients for REST-based web

services. It reuses JAX-RS metadata for creating HTTP requests. For more information about

the framework, refer to the project documentation [http://docs.jboss.org/resteasy/docs/2.0.0.GA/

userguide/html/RESTEasy_Client_Framework.html] .

Integration with the RESTEasy Client Framework is optional in Seam REST and only available

when RESTEasy is available on classpath.

Tip

Although RESTEasy is part of JBoss AS 7, not all of the required dependencies are

exposed to the application classpath automatically. To enable RESTEasy Client

Framework on JBoss AS 7, add the following line to META-INF/MANIFEST.MF

Dependencies: org.apache.httpcomponents

60.1. Using RESTEasy Client Framework with Seam

REST

Let us assume as an example that a remote server exposes a web service for providing task

details to the client through the TaskService interface below.

Example 60.1. Sample JAX-RS annotated interface

@Path("/task")

@Produces("application/xml")

public interface TaskService

{

 @GET

 @Path("/{id}")

 Task getTask(@PathParam("id")long id);

}

To access the remote web service, Seam REST builds and injects a client object of the web

service.

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html

Chapter 60. RESTEasy Client F...

304

Example 60.2. Injecting REST Client

@Inject @RestClient("http://example.com")

private TaskService taskService;

...

Task task = taskService.getTask(1);

The Seam REST module injects a proxied TaskService interface and the RESTEasy Client

Framework converts every method invocation on the TaskService to an HTTP request and sends

it over the wire to http://example.com . The HTTP response is unmarshalled automatically and

the response object is returned by the method call.

URI definition supports EL expressions.

@Inject @RestClient("#{example.service.uri}")

60.2. Manual ClientRequest API

Besides proxying JAX-RS interfaces, the RESTEasy Client Framework provides the

ClientRequest API for manual building of HTTP requests. For more information on

the ClientRequest API, refer to the project documentation [http://docs.jboss.org/resteasy/

docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest] .

Example 60.3. Injecting ClientRequest

@Inject @RestClient("http://localhost:8080/test/ping")

private ClientRequest request;

...

request.accept(MediaType.TEXT_PLAIN_TYPE);

ClientResponse<String> response = request.get(String.class);

60.3. Client Executor Configuration

If not specified otherwise, every request is executed by the default Apache HTTP Client 4

configuration. Provide an alternative ClientExecutor implementation to change this.

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest

Client Executor Configuration

305

Example 60.4. Custom Apache HTTP Client 4 configuration

@Produces

public ClientExecutor createExecutor()

{

 HttpParams params = new BasicHttpParams();

 ConnManagerParams.setMaxTotalConnections(params, 3);

 ConnManagerParams.setTimeout(params, 1000);

 SchemeRegistry schemeRegistry = new SchemeRegistry();

 schemeRegistry.register(new Scheme("http", PlainSocketFactory.getSocketFactory(), 80));

 ClientConnectionManager cm = new ThreadSafeClientConnManager(params, schemeRegistry);

 HttpClient httpClient = new DefaultHttpClient(cm, params);

 return new ApacheHttpClient4Executor(httpClient);

}

306

Chapter 61.

307

Seam REST Dependencies

61.1. Transitive Dependencies

The Seam REST module depends on the Seam Solder [http://seamframework.org/Seam3/Solder]

module.

61.2. Optional dependencies

61.2.1. FreeMarker

FreeMarker can be used for rendering HTTP responses. For more information on using

FreeMarker with Seam REST, refer to Section 59.2.1, “FreeMarker”

<dependency>

 <groupId>org.freemarker</groupId>

 <artifactId>freemarker</artifactId>

 <version>${freemarker.version}</version>

</dependency>

61.2.2. Apache Velocity

Apache Velocity can be used for rendering HTTP responses. For more information on using

Velocity with Seam REST, refer to Section 59.2.2, “Apache Velocity”

<dependency>

 <groupId>org.apache.velocity</groupId>

 <artifactId>velocity</artifactId>

 <version>${velocity.version}</version>

</dependency>

<dependency>

 <groupId>org.apache.velocity</groupId>

 <artifactId>velocity-tools</artifactId>

 <version>${velocity.tools.version}</version>

</dependency>

61.2.3. RESTEasy

RESTEasy Client Framework can be used for building clients of RESTful web services. For

more information on using RESTEasy Client Framework, refer to Chapter 60, RESTEasy Client

Framework Integration

http://seamframework.org/Seam3/Solder
http://seamframework.org/Seam3/Solder

Chapter 61. Seam REST Depende...

308

<dependency>

 <groupId>org.jboss.resteasy</groupId>

 <artifactId>resteasy-jaxrs</artifactId>

 <version>${resteasy.version}</version>

</dependency>

Note

Note that RESTEasy is provided on JBoss Application Server 6 and 7 and thus

you do not need to bundle it with the web application.

Part XI. Seam JCR

Chapter 62.

311

Seam JCR - Introduction

62.1. Introduction

The Seam JCR Module aims to simplify the integration points between JCR implementations and

CDI applications.

The Seam JCR module is compatible with JCR 2.0 implementations. It strictly compiles against

JCR 2.0. However, test cases are executed against both ModeShape and JackRabbit to ensure

compatibility.

62.2. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam JCR:

<dependency>

 <groupId>org.jboss.seam.jcr</groupId>

 <artifactId>seam-jcr</artifactId>

 <version>${seam.jcr.version}</version>

</dependency>

Tip

Substitute the expression ${seam.jcr.version} with the most recent or appropriate

version of Seam JCR. Alternatively, you can create a Maven user-defined property

to satisfy this substitution so you can centrally manage the version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.jcr</groupId>

 <artifactId>seam-jcr-api</artifactId>

 <version>${seam.jcr.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.seam.jcr</groupId>

http://maven.apache.org/
http://maven.apache.org/

Chapter 62. Seam JCR - Introd...

312

 <artifactId>seam-jcr</artifactId>

 <version>${seam.jcr.version}</version>

 <scope>runtime</scope>

</dependency>

In addition to your Seam JCR dependencies, you must also declare a dependency on a JCR

Implementation.

Chapter 63.

313

Seam JCR - JBoss ModeShape

Integration

63.1. ModeShape Integration Installation

In order to activate ModeShape support within your application, you need to include ModeShape

on your classpath. At a minimum, the following maven dependencies must be satisfied.

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-jcr</artifactId>

 <version>${modeshape.version}</version>

</dependency>

<dependency>

 <groupId>org.apache.lucene</groupId>

 <artifactId>lucene-core</artifactId>

 <version>${lucene.version}</version>

</dependency>

Tip

Substitute ${modeshape.version} for the ModeShape version you are running

against. Currently, Seam JCR tests against 2.5.0.Final. In addition, Lucene is

required to run ModeShape. Please consult the ModeShape getting stated guide

for exact versions.

63.2. Usage

In order to use ModeShape's Repository and Session objects in your application, you must

define an injection point using the JcrConfiguration annotation based on ModeShape's required

configuration parameters. Please review the ModeShape getting started guide for further details.

 @Inject @JcrConfiguration(name="org.modeshape.jcr.URL",value="file:path/to/

modeshape.xml?repositoryName=MyRepo")

 Repository repository;

Chapter 63. Seam JCR - JBoss ...

314

 @Inject @JcrConfiguration(name="org.modeshape.jcr.URL",value="file:path/to/

modeshape.xml?repositoryName=MyRepo")

 Session session;

Chapter 64.

315

Seam JCR - JackRabbit Integration

64.1. JackRabbit Integration Installation

In order to activate JackRabbit support within your application, you need to include JackRabbit on

your classpath. At a minimum, the following maven dependency must be satisfied.

<dependency>

 <groupId>org.apache.jackrabbit</groupId>

 <artifactId>jackrabbit-core</artifactId>

 <version>${jackrabbit.version}</version>

</dependency>

Tip

Substitute ${jackrabbit.version} for the JackRabbit version you are running against.

Currently, Seam JCR tests against 2.2.4. Please review JackRabbit documentation

to determine any additional dependencies.

64.2. Usage

In order to use JackRabbit's Repository and Session objects in your application, you must

define an injection point using the JcrConfiguration annotation based on JackRabbit's required

configuration parameters.

 @Inject @JcrConfiguration(name="org.apache.jackrabbit.repository.home",value="target")

 Repository repository;

 @Inject @JcrConfiguration(name="org.apache.jackrabbit.repository.home",value="target")

 Session session;

316

Chapter 65.

317

Seam JCR - Event Mapping
Seam JCR provides functionality to fire CDI Events based on events found in JCR. The rules of

how events are fired are based around the underlying implementation.

Tip
You will not have an active JCR Session during the event firing, a new one will

need to be created.

Tip
Some JCR implementations, like Modeshape fires events on a separate thread,

so probably you will get errors if your observer method is declared on a

@RequestScoped object, for example.

To observe an event, use the @Observes and the additional qualifiers on seam-jcr-api module

(Check package org.jboss.seam.jcr.annotations.events). If you need to watch any JCR event,

then avoid using any Qualifier at all.

 import javax.jcr.observation.Event;

 public void observeAdded(@Observes @NodeAdded Event evt) {

 // Called when a node is added

 }

 public void observeAll(@Observes javax.jcr.observation.Event evt) {

 // Called when any node event occurs

 }

318

Chapter 66.

319

Seam JCR - Object Content Mapping

66.1. What is Object Content Mapping?

Object Content Mapping is a design paradigm, in the same light as ORM (Object Relational

Mapping) frameworks such as JPA or Hibernate, where statically typed objects are bound to a

storage mechanism, in this case a JCR store. Seam JCR OCM is provided as annotations only

on top of entities that are discovered during the CDI Phase ProcessAnnotatedType. In addition,

Seam JCR's OCM implementation provides ServiceHandlers for working with entities over JCR.

66.2. Mapping and Conversion Capabilities

The mapping API is very simple and designed to be clean. In order to define an entity, you simply

need to use the annotation org.jboss.seam.jcr.annotations.ocm.JcrNode to define that this

is an entity to map. All fields by default will be mapped to their field names. You can override this

behavior by using the annotation org.jboss.seam.jcr.annotations.ocm.JcrProperty which

will map the property to a different property name. The JcrProperty annotation can be placed

on both field and getter method. You can define a special property uuid of type String that will

represent the identifier for the node. This is a sample node mapping:

 @JcrNode("nt:unstructured")

public class BasicNode implements java.io.Serializable {

 @JcrProperty("myvalue")

 private String value;

 private String uuid;

 private String lordy;

 public String getValue() {

 return value;

 }

 public void setValue(String value) {

 this.value = value;

 }

 public String getUuid() {

 return uuid;

 }

 public void setUuid(String uuid) {

 this.uuid = uuid;

 }

 @JcrProperty("notaproperty")

 public String getLordy() {

 return lordy;

 }

Chapter 66. Seam JCR - Object...

320

 public void setLordy(String lordy) {

 this.lordy = lordy;

 }

}

The simplest way to convert entities is to use CDI Events. There are two event

objects that can be fired to support parsing, org.jboss.seam.jcr.ocm.ConvertToNode and

org.jboss.seam.jcr.ocm.ConvertToObject. By passing in a node and a pre-constructed object

you can convert the full node to object or object to node depending on your need. Here is a sample

parsing (from our test cases):

 @Inject Event<ConvertToObject< objectEvent;

 @Inject Event<ConvertToNode< nodeEvent;

 Node root = session.getRootNode();

 Node ocmnode1 = root.addNode("ocmnode1","nt:unstructured");

 BasicNode bn = new BasicNode();

 bn.setValue("Hello, World!");

 bn.setLordy("this was saved.");

 nodeEvent.fire(new ConvertToNode(bn,ocmnode1));

 Node hello2 = root.getNode("ocmnode1");

 BasicNode bn2 = new BasicNode();

 objectEvent.fire(new ConvertToObject(hello2,bn2));

66.3. JCR Data Access Objects

If you have ever worked with entities, the term DAO should be very familiar to you. Seam JCR

OCM supports DAOs in a highly automated fashion. Using annotations and interfaces only, you

can automate querying, finds and saving entities into their mapped node types. There are four

annotations to support DAOs:

1. org.jboss.seam.jcr.annotations.ocm.JcrDao Defines this interface as a DAO interface.

The ServiceHandler will be used to process these methods. This annotation should be placed

at the interface level.

2. org.jboss.seam.jcr.annotations.ocm.JcrFind Defines this method as a find method,

loading by identifier. The method should take a single String parameter and return a mapped

node type.

JCR Data Access Objects

321

3. org.jboss.seam.jcr.annotations.ocm.JcrQuery Defines this method as returning a

java.util.List of mapped entities that can be mapped using the query results. Has properties

defining the type to return, query to use, and the query language.

4. org.jboss.seam.jcr.annotations.ocm.JcrParam JcrParams are placed on the parameter

arguments to a method annotated JcrQuery. Each argument should be a Value object and map

based on bind parameters in the query.

Here is a sample definition of an interface, describing the objects that can be used:

 import static org.jboss.seam.jcr.ConfigParams.MODESHAPE_URL;

import java.util.List;

import org.jboss.seam.jcr.annotations.JcrConfiguration;

import org.jboss.seam.jcr.annotations.ocm.JcrDao;

import org.jboss.seam.jcr.annotations.ocm.JcrFind;

import org.jboss.seam.jcr.annotations.ocm.JcrQuery;

import org.jboss.seam.jcr.annotations.ocm.JcrSave;

import org.jboss.seam.jcr.test.ocm.BasicNode;

@JcrDao(

 @JcrConfiguration(name = MODESHAPE_URL,

 value = "file:target/test-classes/modeshape.xml?repositoryName=CarRepo")

)

public interface BasicNodeDAO {

 @JcrFind

 public BasicNode findBasicNode(String uuid);

 @JcrQuery(query="select * from [nt:unstructured]",language="JCR-

SQL2",resultClass=BasicNode.class)

 public List<BasicNode> findAllNodes();

 @JcrSave

 public String save(String path, BasicNode basicNode);

}

In this case, we are telling the JcrDao BasicNodeDAO to use the JCR Session based on the

annotated JcrConfiguration noted. Since BasicNode is mapped to nt:unstructured, we can map

any nt:unstructured to it by calling findAllNodes. We can save a basic node to a given path as well

as find based on uuid. The best part is that there is no implementation necessary on your side.

You can use this interface as is.

Chapter 66. Seam JCR - Object...

322

 @Inject

 BasicNodeDAO basicDAO;

 BasicNode bn = new BasicNode();

 bn.setValue("this is my node.");

 String uuid = basicDAO.save("/anypathone",bn);

 System.out.println("The UUID is: "+uuid);

 BasicNode bn2 = basicDAO.findBasicNode(uuid);

 System.out.printf("The original node was %s and the new node is

 \n",bn.getValue(), bn2.getValue());

 List<BasicNode> nodes = basicDAO.findAllNodes();

 System.out.println(nodes);

Part XII. Seam JMS

Chapter 67.

325

Introduction
Seam extends the CDI programming model into the messaging world by allowing you to inject

JMS resources into your beans. Furthermore, Seam bridges the CDI event bus over JMS; this

gives you the benefits of CDI-style type-safety for inter-application communication.

67.1. Mission statement

The JMS module for Seam 3 is to provide injection of JMS resources and the necessary scaffolding

for a bidirectional propagation of CDI event over JMS.

67.2. Seam 3 JMS Module Overview

The general goals can be divided into two categories: injection of JMS resources and bridging

of events:

JMS Resource Injection

• ConnectionFactory

• Connection

• Session

• Topics & Queues

• Message Producer

• Message Consumer

Event Bridge

• Inbound: Routes CDI events to JMS destinations

• Outbound: Fires CDI events based on the reception of JMS messages

326

Chapter 68.

327

Installation
Seam JMS can be used by including a few libraries in your application's library folder:

• seam-jms-api.jar

• seam-jms.jar

• solder-api.jar

• solder-impl.jar

• solder-logging.jar

If you are using Maven [http://maven.apache.org/] as your build tool use the following dependency,

which will bring in both API and Implementation for Seam JMS:

<dependency>

 <groupId>org.jboss.seam.jms</groupId>

 <artifactId>seam-jms</artifactId>

 <version>${seam.jms.version}</version>

</dependency>

Tip

Define or replace the property ${seam.jms.version} with a valid version of Seam

JMS.

The runtime of Seam JMS is defined in two sections. The first section is related to creating

observers, which happens within the Seam JMS CDI Extension. Observers need to be defined

prior to starting up the container, and cannot be created once the application is running. This part

happens automatically. The second section is related to creating listeners. This is managed in the

component org.jboss.seam.jms.bridge.RouteBuilder.

Tip

In order to start any listeners, you may need to inject an instance of the

RouteBuilder in to your class.

If you are running within a Servlet Container, and include the Solder, RouteBuilder

will automatically start up.

The default implementation expects to find a ConnectionFactory at the JNDI

location /ConnectionFactory. This can be changed by using Solder Config by

http://maven.apache.org/
http://maven.apache.org/

Chapter 68. Installation

328

using a snippet similar to the one below in seam-beans.xml. This will change the

JNDI location Seam JMS looks to jms/ConnectionFactory

<?xml version="1.0" encoding="UTF-8"?>

 <beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:jmsi="urn:java:org.jboss.seam.jms.inject"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://docs.jboss.org/

cdi/beans_1_0.xsd">

 <jmsi:JmsConnectionFactoryProducer>

 <s:modifies />

 <jmsi:connectionFactoryJNDILocation>jms/ConnectionFactory</

jmsi:connectionFactoryJNDILocation>

 </jmsi:JmsConnectionFactoryProducer>

 </beans>

Chapter 69.

329

Resource Injection
In this chapter we'll look at how to inject some of the common JMS resource types.

69.1. JMS Resource Injection

The following JMS resources are available for injection:

• javax.jms.Connection

• javax.jms.Session

Destination-based resources:

• javax.jms.Topic

• javax.jms.Queue

69.1.1. Destination Based Injection

The qualifier @JmsDestination is available to decorate JNDI oriented objects. This includes

instances of javax.jms.Destination as well as MessageConsumers and MessageProducers.

@Inject @JmsDestination(jndiName="jms/MyTopic") Topic t;

@Inject @JmsDestination(jndiName="jms/MyQueue") Queue q;

69.1.2. Resource Configuration

You can use the @JmsSession annotation when injecting javax.jms.Session to specify

transacted and acknowledgement mode:

@Inject @JmsSession(transacted=false, acknowledgementMode=Session.CLIENT_ACKNOWLEDGE) Session s;

69.2. Module Extensions

The Seam JMS module has certain points of extension, where the application developer can

customize the behavior to match their needs. This is done by extending any of three base classes:

• org.jboss.seam.jms.inject.JmsConnectionFactoryProducer

Chapter 69. Resource Injection

330

• org.jboss.seam.jms.inject.JmsConnectionProducer

• org.jboss.seam.jms.inject.JmsSessionProducer

This can be done using CDI specializations and extending the base class to change the

produced object. This allows the application developer to customize the produced behavior. For

example, the base implementation assumes a Java EE container, however an extension to the

JmsConnectionFactoryProducer could bootstrap a JMS container for you or change the default

JNDI location of the ConnectionFactory

Each producer in these classes generates an instance based on The @JmsDefault annotation.

This object is used within other places of the API, so you can control the Session generated that

is injected into a MessageManager this way.

Chapter 70.

331

Messaging API
The Seam JMS Messaging API is a higher level abstraction of the JMS API to provide a number

of convenient methods for creating consumers, producers, etc.

70.1. QueueBuilder and TopicBuilder

The QueueBuilder and TopicBuilder interfaces are meant to ease the integration of JMS

while still sticking close to the base APIs. Within the single class you can work with both

listeners and send messages. References to these classes can be injected or retrieved from a

MessageManager instance (seen below).

Some example usages.

@RequestScoped

@Named

public class FormBean {

 private String formData;

 @Inject QueueBuilder queueBuilder;

 @Inject TopicBuilder topicBuilder;

 public void sendFormDataToQueue() {

 queueBuilder.destination("jms/SomeQueue").sendString(formData);

 }

 public void sendFormDataToTopic() {

 topicBuilder.destination("jms/SomeTopic").sendString(formData);

 }

}

70.2. Message Manager

The MessageManager interface (org.jboss.seam.jms.MessageManager) is the main

consolidated API for Seam JMS. It provides almost all of the background functionality for Seam

JMS's features (Observer Interfaces, Routing API). The default implementation works against

javax.naming.Context assuming running within the same local application server.

public interface MessageManager {

 public ObjectMessage createObjectMessage(Object object);

 public TextMessage createTextMessage(String string);

 public MapMessage createMapMessage(Map<Object,Object> map);

 public BytesMessage createBytesMessage(byte[] bytes);

Chapter 70. Messaging API

332

 public void sendMessage(Message message, String... destinations);

 public void sendObjectToDestinations(Object object, String... destinations);

 public void sendTextToDestinations(String string, String... destinations);

 public void sendMapToDestinations(Map map, String... destinations);

 public void sendBytesToDestinations(byte[] bytes, String... destinations);

 public void sendMessage(Message message, Destination... destinations);

 public void sendObjectToDestinations(Object object, Destination... destinations);

 public void sendTextToDestinations(String string, Destination... destinations);

 public void sendMapToDestinations(Map map, Destination... destinations);

 public void sendBytesToDestinations(byte[] bytes, Destination... destinations);

 public Session getSession();

 public MessageProducer createMessageProducer(String destination);

 public TopicPublisher createTopicPublisher(String destination);

 public QueueSender createQueueSender(String destination);

 public MessageConsumer createMessageConsumer(String destination, MessageListener... listeners);

 public MessageConsumer createMessageConsumer(Destination destination, MessageListener... listeners);

 public TopicSubscriber createTopicSubscriber(String destination, MessageListener... listeners);

 public QueueReceiver createQueueReceiver(String destination, MessageListener... listeners);

 public TopicBuilder createTopicBuilder();

 public QueueBuilder createQueueBuilder();

}

The interface above defines a full set of capabilities for creating and sending messages. In

addition, we expose methods for creating producers (and A destination specific publisher and

sender) as well as consumers (and A destination specific subscriber and receiver). In addition,

if injected within a session scoped object, or similar, you can define a durable subscriber and

unsubscriber for that subscriber. Below is an example.

The durable subscriber pattern works very well for session based message management. If you

want to define a durable subscriber per user session, this is the easiest way to do it.

@SessionScoped

 public class UserSession {

 @Inject MessageManager messageManager;

 @Inject MySessionJMSListener listener;

 private String clientId;

 @PostConstruct

 public void registerListener() {

 clientId = UUID.randomUUID().toString();

 messageManager.createDurableSubscriber("jms/UserTopic",clientId,listener);

 }

 @PreDestroy

 public void shutdownListener() {

Durable Messaging Capabilities

333

 messageManager.unsubscribe(clientId);

 }

 }

70.3. Durable Messaging Capabilities

Seam JMS provides a Messaging API around the JMS Durable Topic Subscriber concept. In order

to use it within your code, you need to inject a DurableMessageManager.

 @Inject @Durable DurableMessageManager durableMsgManager;

This implementation of MessageManager provides additional methods to first login to the

connection with a ClientID, additional methods to create subscribers and an unsubscribe that

can be called to unsubscribe a listener.

 public void login(String clientId);

 public TopicSubscriber createDurableSubscriber(String topic, String id, MessageListener... listeners);

 public TopicSubscriber createDurableSubscriber(Topic topic, String id, MessageListener... listeners);

 public void unsubscribe(String id);

Tip

From a design pattern standpoint, it makes sense to create an ApplicationScoped

object that all subscribers are created from, injecting a DurableMessageManager

for use across the application, producing SessionScoped sessions for use by

clients.

70.4. MessageListeners versus Message Driven Beans

One of the difficult choices we had to make was support for Message-Driven Beans. MDBs

are a little complicated in CDI as they are not managed within the CDI life cycle. This makes

integration with them a bit cumbersome. We wouldn't be able to work with a JMS Session

in these cases, as an example. As a result, Seam JMS only supports defining instances of

javax.jms.MessageListener. To support this, we have created a partial implementation -

org.jboss.seam.jms.AbstractMessageListener. This special MessageListener is designed

Chapter 70. Messaging API

334

for bridging the external context of a JMS Message into the application you are working with. We

do this by tweaking classloaders.

The best way to work with MessageListeners is to simply instantiate your own based on our base

implementation.

 //where cl is the class loader, and beanManager is the BeanManager

 MessageListener ml = new SessionListener(beanManager,cl,this);

 messageManager.createTopicSubscriber("/jms/myTopic", ml);

Or you may define your own subclass that makes specific invocations to the parent. Here is an

example of that:

@SessionScoped

 public class SessionListener extends AbstractMessageListener {

 private MySessionObject mso;

 public SessionListener(BeanManager beanManager, ClassLoader classLoader,

 MySessionObject mso){

 super(beanManager,classLoader);

 this.mso = mso;

 }

 @Override

 protected void handlMessage(Message msg) throws JMSException {

 //your business logic goes here

 }

 }

Chapter 71.

335

Bridging the Gap
This chapter is designed to detail how to configure the CDI to JMS event bridge. Routing has

two sides, sending of events to JMS destinations and translating received messages from JMS

destinations back into CDI events. The sections of this chapter describe how to achieve both.

71.1. Event Routing

Simply sending or receiving a message over JMS involves a few players: Connection, Session,

Destination, and the message itself. Surely you can inject all required resources and perform the

routing yourself but that takes away from the whole reason you're using a tool in the first place!

71.1.1. Routes

Routing CDI events to and from JMS can be configured by defining a Route. As you would

normally create an observer method for an event you can define a route to control which events

get forwarded to what destination. Or conversely, what message types sent to which destinations

generate CDI events.

public interface Route {

 public <D extends Destination> Route connectTo(Class<D> d, D destination);

 public Route addQualifiers(Annotation... qualifiers);

 ...

}

Routes allows for simple mapping of event types, complete with qualifiers, to a set of destinations.

They can be configured by adding qualifiers and providing destinations they should interact with

and are created from a RouteManager. Here's a simple route that forwards CDI events on to a

queue:

@EventRouting public Route registerMyRoute(RouteManager routeManager)

{

 Queue myQueue = lookupQueue("/jms/MyQueue");

 return routeManager.createRoute(RouteType.EGRESS, MyEvent.class).connectTo(Queue.class, myQueue);

}

Chapter 71. Bridging the Gap

336

A RouteManager is a factory object for creating new Routes. An instance of it is injected into every

@EventRouting method. Classes with methods that are decorated with EventRouting must meet

a few criteria items:

• A default, no arg constructor.

• Be a non bean (no dependencies on injection)

• Return either Route instances or Collection<Route> instances.

These requirements exist because of when the generation of Routes must happen. There are

no CDI beans active within the context. A class identified for routing will automatically be veto'd

from the context.

Routes are registered by returning them from a non-bean method annotated with @EventRouting:

@EventRouting public Route myConfig()

{

 return bridge.createRoute(RouteType.INGRESS, MyEvent.class).addDestinationJndiName("/

jms/MyTopic");

}

71.2. Routing CDI Events to JMS

Forwarding CDI events to JMS is configured by creating an egress route. Let's say you wanted

to forward all MyEvent events with @Bridged qualifier to the queue jms/EventQueue. Simple,

register a route:

AnnotationLiteral<Bridged> BRIDGED = new AnnotationLiteral<Bridged>() {};

@EventRouting public Route registerMyEventRoute(RouteManager routeManager)

{

 return routeManager.createRoute(RouteType.EGRESS, MyEvent.class).addQualifiers(BRIDGED).addDestinationJndiName("/

jms/EventQueue");

}

71.2.1. Usage

With your routing defined you can simply fire events that match the route's payload type and

qualifiers and these events will be forwarded over JMS as object messages. A special note,

CDI Events from JMS Messages

337

we have added the qualifier @Routing(RouteType.EGRESS). This is necessary to avoid circular

routings.

@Inject @Bridged @Routing(RouteType.EGRESS) Event<MyEvent> event;

...

event.fire(myEvent);

71.3. CDI Events from JMS Messages

Similar to egress routes, ingress routes are defined the same way. In this case, they listen for

messages on the specified destination(s) and fire events. All of the data will be type safe, assuming

you have defined your routes correctly.

Similar to the above example, this creates ingress routes from the Queue jms/EventQueue and

fires events based on the MyEvent objects that are carried over the wire.

AnnotationLiteral<Bridged> BRIDGED = new AnnotationLiteral<Bridged>() {};

@EventRouting public Route registerMyEventRoute(RouteManager routeManager)

{

 return routeManager.createRoute(RouteType.INGRESS, MyEvent.class).addQualifiers(BRIDGED).addDestinationJndiName("/

jms/EventQueue");

}

71.3.1. Usage

Once you define an ingress route, you handle it using an observer method. We use the

same payload type and qualifiers, however we need to add the same qualifier, but for ingress

@Routing(RouteType.INGRESS)

 public void handleInboundMyEvent(@Observes @Routing(RouteType.INGRESS) MyEvent e) {

 }

338

Chapter 72.

339

Annotation Routing APIs
This chapter is meant to describe the behavior of mapping interfaces, where event mapping to

data flowing through JMS Queues and Topics are handled via events. These APIs are an alternate

way to define routes as mentioned earlier in the document.

72.1. Observer Method Interfaces

Observer Method Interfaces are simple Plain Old Java Interfaces (POJIs) that define either a

route. These interfaces exist within your code and are read at deployment time. This is a sample

interface:

 public interface MappingInterface {

 @Inbound

 public void routeStringsFromTopic(@Observes String s, @JmsDestination(jndiName="jms/

MyTopic") Topic t);

 @Outbound

 public void routeLongsToQueue(@Observes Long l, @JmsDestination(jndiName="jms/

MyQueue") Queue q);

 public void bidirectionRouteDoublesToQueue(@Observes Double d, @JmsDestination(jndiName="jms/

DblQueue") Queue q);

 }

This interface defines three routes. The first one being an ingress route - messages coming

in to the topic jms/MyTopic will be fired as events with the type String. We indicate this

by using the @Inbound annotation or @Routing(RouteType.INGRESS). The second being an

egress route - events fired of type Long will be turned into ObjectMessages and using a

MessageProducer sent to the queue jms/MyQueue. We indicate this by using the @Outbound

annotation or @Routing(RouteType.EGRESS). The last is a bidirectional route, it defines

messages that get fired in both directions. You can leave the method unannotated or use the

@Routing(RouteType.BOTH) annotation.

The object being observed can have qualifiers. These qualifiers will be carried over in the fired

event and follow the CDI rules for observer method selection. In all cases, the return type of the

method is ignored.

The destinations can have any qualifier. In addition, there is basic support for @Resource on the

method level to define the destination. This in general not 100% portable from the application

developer perspective, we recommend heavy testing of the behavior on your application server.

Chapter 72. Annotation Routin...

340

In order to work with these routes, you raise events in CDI. In order to fire an event, first inject the

Event object into your code with necessary annotations, for any egress route. For ingress routes,

you need to define an observer method. Taking the third route as an example, here is how you

would raise events to it

 @Inject @Outbound Event<Double> doubleEvent

 ...

 doubleEvent.fire(d);

and this is the appropriate observer method to handle the incoming messages.

 public class MyEventObserverBean {

 public void sendMessage(@Observes @Inbound Double d) {

 System.out.println(d);

 }

 }

Part XIII. Seam Validation

Chapter 73.

343

Introduction
The Seam Validation module aims at integrating Hibernate Validator [http://

validator.hibernate.org/], the reference implementation for the Bean Validation API (JSR 303

[http://jcp.org/en/jsr/detail?id=303]), with CDI (JSR 299 [http://jcp.org/en/jsr/detail?id=299]).

This integration falls into two main areas:

• Enhanced dependency injection services for validators, validator factories and constraint

validators

• Automatic validation of method parameters and return values based on Hibernate Validator's

method validation feature

Note

The Seam Validation module is based on version 4.2 or later of Hibernate Validator.

As of March 2011 Hibernate Validator 4.2 is still in the works and no final release

exists yet.

This means that - though unlikely - also changes to the API of the Seam Validation

module might become necessary.

The Seam Validation module is therefore released as a technology preview with

the Seam 3 release train, with a final version following soon. Nevertheless you

should give it a try already today and see what the Seam Validation module and

especially the automatic method validation feature can do for you. Please refer

to the module home page [http://seamframework.org/Seam3/ValidationModule] for

any news on Seam Validation.

The remainder of this reference guide covers the following topics:

• Installation of Seam Validation

• Dependency injection services for Hibernate Validator

• Automatic method validation

http://validator.hibernate.org/
http://validator.hibernate.org/
http://validator.hibernate.org/
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://seamframework.org/Seam3/ValidationModule
http://seamframework.org/Seam3/ValidationModule

344

Chapter 74.

345

Installation
This chapter describes the steps required to getting started with the Seam Validation Module.

74.1. Prerequisites

Not very much is needed in order to use the Seam Validation Module. Just be sure to run on

JDK 5 or later, as the Bean Validation API and therefore this Seam module are heavily based

on Java annotations.

74.2. Maven setup

The recommended way for setting up Seam Validation is using Apache Maven [http://

maven.apache.org/]. The Seam Validation Module artifacts are deployed to the JBoss Maven

repository. If not yet the case, therefore add this repository to your settings.xml file (typically in

~/.m2/settings.xml) in order to download the dependencies from there:

Example 74.1. Setting up the JBoss Maven repository in settings.xml

...

<profiles>

 <profile>

 <repositories>

 <repository>

 <id>jboss-public</id>

 <url>http://repository.jboss.org/nexus/content/groups/public-jboss/</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

</profiles>

<activeProfiles>

 <activeProfile>jboss-public</activeProfile>

</activeProfiles>

...

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Chapter 74. Installation

346

General information on the JBoss Maven repository is available in the JBoss community

wiki [http://community.jboss.org/wiki/MavenGettingStarted-Users], more information on Maven's

settings.xml file can be found in the settings reference [???].

Having set up the repository you can add the Seam Validation Module as dependency to the

pom.xml of your project. As most Seam modules the validation module is split into two parts,

API and implementation. Generally you should be using only the types from the API within your

application code. In order to avoid unintended imports from the implementation it is recommended

to add the API as compile-time dependency, while the implementation should be added as runtime

dependency only:

Example 74.2. Specifying the Seam Validation Module dependencies in

pom.xml

...

<properties>

 <seam.validation.version>x.y.z</weld.version>

</properties>

...

<dependencies>

 ...

 <dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>seam-validation-api</artifactId>

 <version>${seam.validation.version}</version>

 <scope>compile</scope>

 </dependency>

 <dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>seam-validation</artifactId>

 <version>${seam.validation.version}</version>

 <scope>runtime</scope>

 </dependency>

 ...

</dependencies>

...

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
???
???

Manual setup

347

Note

Replace "x.y.z" in the properties block with the Seam Validation version you want

to use.

74.3. Manual setup

In case you are not working with Maven or a comparable build management tool you can also

add Seam Validation manually to you project.

Just download the latest distribution file from SourceForge [http://sourceforge.net/projects/jboss/

files/Seam/Validation/], un-zip it and add seam-validation.jar api as well as all JARs contained in

the lib folder of the distribution to the classpath of your project.

http://sourceforge.net/projects/jboss/files/Seam/Validation/
http://sourceforge.net/projects/jboss/files/Seam/Validation/
http://sourceforge.net/projects/jboss/files/Seam/Validation/

348

Chapter 75.

349

Dependency Injection
The Seam Validation module provides enhanced support for dependency injection services

related to bean validation. This support falls into two areas:

• Retrieval of javax.validation.ValidatorFactory and javax.validation.Validator via

dependency injection in non-Java EE environments

• Dependency injection for constraint validators

75.1. Retrieving of validator factory and validators via

dependency injection

As the Bean Validation API is part of Java EE 6 there is an out-of-the-box support for retrieving

validator factories and validators instances via dependency injection in any Java EE 6 container.

The Seam Validation module provides the same service for non-Java EE environments

such as for instance stand-alone web containers. Just annotate any field of type

javax.validation.ValidatorFactory with @Inject to have the default validator factory

injected:

Example 75.1. Injection of default validator factory

package com.mycompany;

import javax.inject.Inject;

import javax.validation.Validator;

import javax.validation.ValidatorFactory;

public class MyBean {

 @Inject

 private ValidatorFactory validatorFactory;

 public void doSomething() {

 Validator validator = validatorFactory.getValidator();

 //...

 }

}

Chapter 75. Dependency Injection

350

Note

The injected factory is the default validator factory returned by the Bean

Validation bootstrapping mechanism. This factory can customized with help of the

configuration file META-INF/validation.xml. The Hibernate Validator Reference

Guide describes in detail [http://docs.jboss.org/hibernate/stable/validator/

reference/en-US/html/validator-xmlconfiguration.html] the available configuration

options.

It is also possible to directly inject a validator created by the default validator factory:

Example 75.2. Injection of a validator from the default validator factory

package com.mycompany;

import java.util.Set;

import javax.inject.Inject;

import javax.validation.ConstraintViolation;

import javax.validation.Validator;

public class MyBean {

 @Inject

 private Validator validator;

 public void doSomething(Foo bar) {

 Set<ConstraintViolation<Foo>> constraintViolations = validator.validate(bar);

 //...

 }

}

75.2. Dependency injection for constraint validators

The Seam Validation module provides support for dependency injection within

javax.validation.ConstraintValidator implementations. This is very useful if you need to

access other CDI beans within you constraint validator such as business services etc. In order to

make use of dependency injection within a constraint validator implementation it must be a valid

bean type as described by the CDI specification, in particular it must be defined within a bean

deployment archive.

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html

Dependency injection for constraint validators

351

Warning

Relying on dependency injection reduces portability of a validator implementation,

i.e. it won't function properly without the Seam Validation module or a similar

solution.

To make use of dependency injection in constraint validators you have to configure

org.jboss.seam.validation.InjectingConstraintValidatorFactory as the constraint

validator factory to be used by the bean validation provider. To do so create the file META-INF/

validation.xml with the following contents:

Example 75.3. Configuration of InjectingConstraintValidatorFactory in

META-INF/validation.xml

<?xml version="1.0" encoding="UTF-8"?>

<validation-config

 xmlns="http://jboss.org/xml/ns/javax/validation/configuration" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration validation-

configuration-1.0.xsd">

 <constraint-validator-factory>

 org.jboss.seam.validation.InjectingConstraintValidatorFactory

 </constraint-validator-factory>

</validation-config>

Having configured the constraint validator factory you can inject arbitrary CDI beans into you

validator implementations. Listing Example 75.4, “Dependency injection within ConstraintValidator

implementation” shows a ConstraintValidator implementation for the @Past constraint which

uses an injected time service instead of relying on the JVM's current time to determine whether

a given date is in the past or not.

Example 75.4. Dependency injection within ConstraintValidator

implementation

package com.mycompany;

import java.util.Date;

import javax.inject.Inject;

Chapter 75. Dependency Injection

352

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

import javax.validation.constraints.Past;

import com.mycompany.services.TimeService;

public class CustomPastValidator implements ConstraintValidator<Past, Date>

{

 @Inject

 private TimeService timeService;

 @Override

 public void initialize(Past constraintAnnotation)

 {

 }

 @Override

 public boolean isValid(Date value, ConstraintValidatorContext context)

 {

 if (value == null)

 {

 return true;

 }

 return value.before(timeService.getCurrentTime());

 }

}

Note

If you want to redefine the constraint validators for built-in constraints such

as @Past these validator implementations have to be registered with a custom

constraint mapping. More information can be found in the Hibernate Validator

Reference Guide [http://docs.jboss.org/hibernate/stable/validator/reference/en-

US/html/validator-xmlconfiguration.html#d0e2024].

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024

Chapter 76.

353

Method Validation
Hibernate Validator provides several advanced validation features and related functionality which

go beyond what is defined by JSR 303 ("Bean Validation API"). One of these additional features

is a facility for the validation of method parameters and return values. With that API a style of

program design known as "Programming by Contract" can be implemented using the concepts

defined by the Bean Validation API.

This means that any Bean Validation constraints can be used to describe

• any preconditions that must be met before a method may legally be invoked (by annotating

method parameters with constraints) and

• any postconditions that are guaranteed after a method invocation returns (by annotating

methods)

To give an example listing Example 76.1, “Exemplary repository with constraint annotations”

shows a fictional repository class which retrieves customer objects for a given name. Constraint

annotations are used here to express the following pre-/postconditions:

• The value for the name parameter may not be null and must be at least three characters long

• The method may never return null and each Customer object contained in the returned set is

valid with respect to all constraints it hosts

Example 76.1. Exemplary repository with constraint annotations

@AutoValidating

public class CustomerRepository {

 @NotNull @Valid Set<Customer> findCustomersByName(@NotNull @Size(min=3) String name);

}

Hibernate Validator itself provides only an API for validating method parameters and return values,

but it does not trigger this validation itself.

This is where Seam Validation comes into play. Seam Validation provides a so called business

method interceptor which intercepts client invocations of a method and performs a validation of

the method arguments before as well as a validation of the return value after the actual method

invocation.

To control for which types such a validation shall be performed, Seam Validation provides an

interceptor binding, @AutoValidating. If this annotation is declared on a given type an automatic

validation of each invocation of any this type's methods will be performed.

Chapter 76. Method Validation

354

If either during the parameter or the return value validation at least one constraint violation

is detected (e.g. because findCustomersByName() from listing Example 76.1, “Exemplary

repository with constraint annotations” was invoked with a String only two characters long), a

MethodConstraintViolationException is thrown. That way it is ensured that all parameter

constraints are fulfilled when the call flow comes to the method implementation (so it is not

necessary to perform any parameter null checks manually for instance) and all return value

constraints are fulfilled when the call flow returns to the caller of the method.

The exception thrown by Seam Validation (which would typically be written to a log file) gives a

clear overview what went wrong during method invocation:

Example 76.2. Output of MethodConstraintViolationException

org.hibernate.validator.MethodConstraintViolationException: 1 constraint violation(s) occurred

 during method invocation.

Method: public java.lang.Set

 com.mycompany.service.CustomerRepository.findCustomersByName(java.lang.String)

Argument values: [B]

Constraint violations:

 (1) Kind: PARAMETER

 parameter index: 0

 message: size must be between 3 and 2147483647

 root bean: com.mycompany.service.org$jboss$weld$bean-flat-ManagedBean-class_com

$mycompany$service$$CustomerRepository_$$_WeldSubclass@3f72c47b

 property path: CustomerRepository#findCustomersByName(arg0)

 constraint:

 @javax.validation.constraints.Size(message={javax.validation.constraints.Size.message},

 min=3, max=2147483647, payload=[], groups=[])

To make use of Seam Validation's validation interceptor it has to be registered in your component's

beans.xml descriptor as shown in listing Example 76.3, “Registering the validation interceptor in

beans.xml”:

Example 76.3. Registering the validation interceptor in beans.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/

beans_1_0.xsd">

 <interceptors>

 <class>org.jboss.seam.validation.ValidationInterceptor</class>

355

 </interceptors>

</beans>

It is recommended that you consult the Hibernate Validator reference guide [http://docs.jboss.org/

hibernate/stable/validator/reference/en-US/html/] to learn more about the method validation

feature in general or for instance the rules that apply for constraining methods in inheritance

hierarchies in particular.

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/

356

Part XIV. Seam Social

ccclix

Introduction

The goal of Seam Social is to provide CDI components to access some of the social network

services. It is focused on OAuth 1.0 and 2.0 services. At least Seam Social provides a way to get

one's profile for a given service. There are services like Twitter for which Seam Social provides a

lot of model object to manage timeline and friends in the service.

Seam social was created with genericity and polymorphism concepts in minds allowing users to

deal with a collection of OAuth sessions, it also allows you to create your own extension to connect

to an OAuth server.

This version of Seam Social provides support for the following OAuth Services with the following

level

Table 8.

Service Profile Update Timeline Friends

Twitter X X O O

LinkedIn X O O O

Facebook X X O O

More services and level of support to come.

ccclx

Chapter 77.

361

Getting Started
Provides CDI Beans and extensions to interact with major social network.

Provides:

• OAuth connectors to authentify with an OAuth providers

• Support for Authentication for Twitter, LinkedIn and Facebook only right now

• Status update for Facebook Twitter and LinkedIn

• Support for multi-account (multi-service and multi session for the same service)

Seam Social is independent of CDI implementation and fully portable between Java EE

6 and Servlet environments enhanced with CDI. It can be also used with CDI in JSE

(desktop application). It is build on top of scribe-java from fernandezpablo85 [https://github.com/

fernandezpablo85/scribe-java]

For more information, see the Seam Social project page [http://seamframework.org/Seam3/

Social].

77.1. Building

mvn -Pweld-ee-embedded-1.1 clean install

you need to be connected to internet to launch the tests. You can build without the tests like that :

mvn clean install -DskipTests=true

77.2. Usage big picture

The Web example app is quite simple and give a good idea of possibilities of Seam Social

Framework.

Main steps to use Seam Social are :

• Declare an OAuth configuration

• Inject an OAuthService bean

https://github.com/fernandezpablo85/scribe-java
https://github.com/fernandezpablo85/scribe-java
https://github.com/fernandezpablo85/scribe-java
http://seamframework.org/Seam3/Social
http://seamframework.org/Seam3/Social
http://seamframework.org/Seam3/Social

Chapter 77. Getting Started

362

• Request the Authorization URL for the service and get a request token

• Store the verifier in OAuthService bean and init access token

• Use the service

Should you need to fully understand each step, the complete OAuth lifecycle can be found

here [https://dev.twitter.com/docs/auth/oauth] or here [https://developer.linkedin.com/documents/

authentication]

77.3. Starting with OAuth configuration

To consume an OAuth service you need to declare an application on the service platform (i.e.

for Twitter you can do, this on https://dev.twitter.com/apps/new). The declaration of an application

contains at least :

• an API public key

• an API private/secret key

To use an OAuth service bean in Seam social you need to provide these configuration information

in two ways :

• thru an OAuthConfigSettings bean

• by adding the @ConfigureOAuth annotation when injecting the OAuth service bean

77.3.1. Create an OAutConfigSettings bean thru Seam

configuration (in bean.xml)

Right now, Seam Social provides only one convenient way to declare an OAuthConfigSettings

bean. It can be done thru Seam configuration file (beans.xml). Here is an example of such a

configuration :

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:o="urn:java:org.jboss.seam.social.core">

 <o:OAuthServiceSettingsImpl>

 <s:modifies />

 <o:RelatedTo>Twitter</o:RelatedTo>

 <o:apiKey>FQzlQC49UhvbMZoxUIvHTQ</o:apiKey>

 <o:apiSecret>VQ5CZHG4qUoAkUUmckPn4iN4yyjBKcORTW0wnok4r1k

https://dev.twitter.com/docs/auth/oauth
https://dev.twitter.com/docs/auth/oauth
https://developer.linkedin.com/documents/authentication
https://developer.linkedin.com/documents/authentication
https://developer.linkedin.com/documents/authentication
https://dev.twitter.com/apps/new

Adding the @ConfigureOAuth annotation when injecting the OAuth service bean

363

 </o:apiSecret>

 <o:callback>http://localhost:8080/social-web-client/callback.jsf

 </o:callback>

 </o:OAuthServiceSettingsImpl>

</beans>

Api Key and Api secret is provided by the service you want to consume (here Twitter). You can use

the values above since they're coming from "Seam Social" Twitter application. Callback depends

on your application : it's the URL that will collect OAuth verifier

77.3.2. Adding the @ConfigureOAuth annotation when injecting

the OAuth service bean

You can simply add the @ConfigureOAuth annotation to the injection point. It can be done like

that :

@Inject

@ConfigureOAuth(apiKey = "FQzlQC49UhvbMZoxUIvHTQ", apiSecret =

 "VQ5CZHG4qUoAkUUmckPn4iN4yyjBKcORTW0wnok4r1k", callback="http://localhost:8080/

social-web-client/callback.jsf")

Twitter twitter;

With this notation the injected bean is configured with the given OAuth values.

77.4. Inject an OAuthService bean with one of the

following ways :

Using the Interface of the service

@Named

@SessionScoped

public class mySessionBean implements Serializable {

 ...

 @Inject

 public Twitter twitter;

 ...

}

or using the generic OAuthService with a Qualifier

Chapter 77. Getting Started

364

@Named

@SessionScoped

public class mySessionBean implements Serializable {

 ...

 @Inject

 @RelatedTo("Twitter")

 OAuthService service;

 ...

}

The two are equivalent but the second one give you a way to do polymorphic calls to the service.

The OAuthService provides methods in relation to authentication.

77.5. Request the Authorization URL for the service and

redirect the app to this url

If we go on with the same example, we can get this authorization URL with this call :

twitter.getAuthorizationUrl();

It will return the URL needed to initiate connection to the service.

77.6. Store the verifier in OAuthService bean and init

access token

When we return from the service connection to the callback URL, we get a verifier that we need

to store in the OAuthService and init the access token In JSF we do this like that

<f:metadata>

 <f:viewParam name="#{mySessionBean.twitter.verifierParamName}"

 value="#{mySessionBean.twitter.verifier}"

 required="true"

 requiredMessage="Error with Twitter. Retry later"/>

 <f:event type="preRenderView"

 listener="#{mySessionBean.twitter.initAccessToken()}"/>

</f:metadata>

After what we can send calls to the service

365

77.7. After what we can send calls to the service

Getting the Twitter user profile

TwitterProfile user = twitter.getMyProfile();

String fullName = user.getFullName();

77.8. Testing

After building you can deploy the war generated in example/web-client/target in a Java EE 6

container implementing web profile (tested with JBoss 6 but should work in glassfish too)

366

Part XV. Seam Spring

Chapter 78.

369

Seam Spring - Introduction
The Seam Spring module aims to provide a mechanism for integrating the Spring [http://

www.springframework.org] development model with CDI [http://jcp.org/en/jsr/detail?id=299].

78.1. Features

The current version of the module provides support for:

• bootstrapping a Spring application context and making it accessible as a CDI bean;

• registering an independently bootstrapped application context as a CDI bean;

• making Spring beans accessible via CDI (i.e. as managed beans) - for injection and lookup;

• accessing CDI beans from within a Spring application context;

http://www.springframework.org
http://www.springframework.org
http://www.springframework.org
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299

370

Chapter 79.

371

Seam Spring - Installation

79.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include the Seam Spring module.

<dependency>

 <groupId>org.jboss.seam.spring</groupId>

 <artifactId>seam-spring-core</artifactId>

 <version>${seam.spring.version}</version>

</dependency>

Tip

Substitute the expression ${seam.spring.version} with the most recent or

appropriate version of Seam Spring.

http://maven.apache.org/
http://maven.apache.org/

372

Chapter 80.

373

Seam Spring - Architecture and

Usage
The functionality of the Seam Spring module is provided by two sets of components:

• A CDI portable extension for accessing Spring application contexts and managing Spring beans;

• A FactoryBean and corresponding namespace for accessing BeanManagers and importing CDI

beans into Spring.

80.1. Accessing Spring artifacts from CDI

The Seam Spring module uses the resource producer pattern for accessing Spring contexts and

beans from within CDI. The Spring extension is responsible for producing the actual instances.

This mechanism allows the Spring beans to participate in regular CDI injection and the injection

targets to be agnostic of the provenience of the injected references, enforcing true separation

of concerns. Through this mechanisms Spring contexts can be injected as Spring beans too, if

necessary.

The resource producer pattern is used for:

• producing Spring application context instances;

• producing Spring beans;

The registration of Spring application contexts as CDI beans is a prerequisite for accessing the

Spring beans that are created by them.

80.1.1. Accessing Spring application contexts

The Seam Spring module can access two types of contexts:

• contexts created by the application (e.g. bootstrapped by Spring's ContextLoaderListener);

and

• contexts bootstrapped by the extension itself.

80.1.1.1. The @SpringContext qualifier

As a general rule, Spring ApplicationContext instances that the extension is interacting with

are installed as CDI beans with a @SpringContext qualifier, with the following structure:

@Qualifier

@Inherited

@Documented

@Retention(RetentionPolicy.RUNTIME)

Chapter 80. Seam Spring - Arc...

374

@Target({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER})

public @interface SpringContext {

 String name() default "default";

}

The name attribute of the context helps identifying between different ApplicationContexts, if the

extension needs to deal with multiple such instances.

Table 80.1. Attributes of @org.jboss.seam.spring.context.SpringContext

Attribute Type Significance

name String Unique identifier for a Spring

application context bean

80.1.1.2. Producing Spring contexts

CDI applications can install Spring contexts as CDI beans by defining producer fields with the

following general pattern:

@Produces

@SpringContext

@<Context-Type>

ApplicationContext context;

This will create a CDI bean of the ApplicationContext type. The nature of the context (bootstrapped

by the extension, or looked up elsewhere) is controlled by a specific annotation. The supported

annotations are detailed in the following subsections.

Tip

As a reminder, if the name attribute of the @SpringContext qualifier is not set, it

will be set to 'default'.

80.1.1.2.1. Installing a web application context as a CDI bean

The Seam Spring extension can install a web application context (the application context created

by a ContextLoaderListener) by defining a producer field, as follows:

package org.jboss.seam.spring.test.bootstrap;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

Accessing Spring application contexts

375

import org.jboss.seam.spring.context.SpringContext;

import org.jboss.seam.spring.context.Web;

import org.springframework.context.ApplicationContext;

public class WebContextProducer {

 @Produces

 @SpringContext

 @Web

 ApplicationContext context;

}

Note

The example above will work only in a web application with a Spring application

context boostrapped by a ContextLoaderListener.

The @org.jboss.seam.spring.context.Web annotation must be placed only on the producer

field for the ApplicationContext, and it will register a producer that looks up the parent web

ApplicationContext.

80.1.1.2.2. Installing a custom-configured Spring application context

The Seam Spring extension can create a Spring application ad-hoc and install it as a Spring

context as follows:

package org.jboss.seam.spring.test.bootstrap;

import javax.enterprise.inject.Produces;

import org.jboss.seam.spring.context.Configuration;

import org.jboss.seam.spring.bocontextpringContext;

import org.springframework.context.ApplicationContext;

public class ConfigurationContextProducer {

 @Produces

 @SpringContext

 @Configuration(locations = "classpath*:org/jboss/seam/spring/test/bootstrap/

applicationContext.xml")

 ApplicationContext context;

Chapter 80. Seam Spring - Arc...

376

}

The @org.jboss.seam.spring.context.Configuration annotation must be placed only on

the producer field of the ApplicationContext, and it will register a producer that creates an

ApplicationContext from the files in the locations attribute of the annotation.

The attributes supported by @org.jboss.seam.spring.bootstrap.Configuration are listed in the

following table:

Table 80.2. Attributes of the @org.jboss.seam.spring.context.Configuration

Attribute Type Significance

locations String Comma-separated list of

file locations. Observes the

conventions regarding the

'classpath:', 'classpath*:' and

'file:' prefixes of Spring

80.1.1.3. Implicit Spring context bootstrapping

The producer fields provide a convenient and accesible way of registering a Spring

ApplicationContext, especially for looking up contexts created externally (although direct bootstrap

is supported as well). A number of Spring ApplicationContexts can also be created by the

extension itself.

This can be done by creating a file named /META-INF/org.jboss.seam.spring.contexts which

contains a number of key-value pairs, with the keys representing context names and values

representing context locations, as follows:

default=classpath*:org/jboss/seam/spring/test/bootstrap/applicationContext.xml

Note

The extension supports the registration of multiple application contexts.

An important feature of Spring context bootstrapping is that Spring beans will be automatically

vetoed as CDI beans.

The main difference between implicit bootstrapping and producer-field based bootstrapping is that

implicit bootstrapping creates the Spring context during CDI deployment and explicit bootstrapping

creates a Spring context after deployment. As such, implicit deployment can do various tasks such

as auto-vetoing Spring beans and preventing them to be deployed as CDI beans.

Exposing Spring beans as CDI beans

377

80.1.2. Exposing Spring beans as CDI beans

Spring beans can be added as CDI beans explicitly, using a producer field. In order to do so, a

Spring ApplicationContext must be registered if they are created by one of the CDI-accessible

Spring contexts, as shown in the previous section. This can be done by producer fields and the

@SpringBean annotation, as in the following example:

public class SimpleBeanProducer {

 @Produces @SpringBean(fromContext = "context2") SimpleBean simpleBean;

 @Produces @SpringBean ComplicatedBean complicatedBean;

}

The result is that two CDI beans are available for injection and lookup: one based on the

SimpleBean Spring bean defined in the Spring context registered as 'context2' and the other,

based on the ComplicatedBean defined in the Spring context registered as 'default'.

80.2. Importing CDI beans into Spring applications

The Seam Spring module also supports the registration of CDI beans as Spring beans as well.

Once CDI beans are imported into a Spring ApplicationContext, they can be injected as regular

Spring beans, either via XML or by annotations.

This can be done by using the dedicated CDI namespace, which can be defined as in the following

example:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:cdi="http://www.jboss.org/schema/seam/spring"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.jboss.org/schema/seam/spring http://www.jboss.org/schema/seam/spring/seam-

spring.xsd">

 <!-- bean definitions -->

</beans>

80.2.1. Registering a BeanManager

Spring applications can get access to a BeanManager through the following bean definition.

Chapter 80. Seam Spring - Arc...

378

<cdi:bean-manager/>

The bean has the id 'beanManager' by default.

80.2.2. Importing a CDI bean as a Spring bean

A CDI bean can be imported as a Spring bean by using a namespace element as follows:

<cdi:bean-reference id="cdiBean" type="org.jboss.seam.spring.test.injection.CdiBean"/>

A CDI bean with qualfiers can be imported as follows:

<cdi:bean-

reference id="secondCdiBean" type="org.jboss.seam.spring.test.injection.SecondCdiBean">

 <cdi:qualifier type="org.jboss.seam.spring.test.injection.CdiQualifier"/>

</cdi:bean-reference>

If the qualifiers have attributes, the bean can be imported as follows:

<cdi:bean-

reference id="thirdCdiBean" type="org.jboss.seam.spring.test.injection.ThirdCdiBean">

 <cdi:qualifier type="org.jboss.seam.spring.test.injection.CdiQualifierWithAttributes">

 <cdi:attribute name="name" value="myBean"/>

 </cdi:qualifier>

 </cdi:bean-reference>

The conversion from String to the actual type of the attribute is handled by Spring's

ConversionService.

CDI beans are imported as prototype-scoped Spring beans, which means that a new reference

is acquired every time the bean is injected into a Spring bean. This is done in order to preserve

the original scope of the CDI bean.

Part XVI. Seam Wicket

ccclxxxi

Introduction

The goal of Seam for Apache Wicket is to provide a fully integrated CDI programming model

to the Apache Wicket web framework. Although Apache components (pages, panels, buttons,

etc.) are created by direct construction using "new", and therefore are not themselves CDI

contextual instances, with seam-wicket they can receive injections of scoped contextual instances

via @Inject. In addition, conversation propagation is supported to allow a conversation scope to

be tied to a wicket page and propagated across pages.

ccclxxxii

Chapter 81.

383

Installation
The seam-wicket.jar should be placed in the web application library folder. If you are using

Maven [http://maven.apache.org/] as your build tool, you can add the following dependency to

your pom.xml file:

<dependency>

 <groupId>org.jboss.seam.wicket</groupId>

 <artifactId>seam-wicket</artifactId>

 <version>${seam-wicket-version}</version>

</dependency>

Tip

Replace ${seam-wicket-version} with the most recent or appropriate version of

Seam for Apache Wicket.

As Wicket is normally used in a servlet (non-JavaEE) environment, you most likely will need to

bootstrap the CDI container yourself. This is most easily accomplished using the Weld Servlet

integration, described in the Weld Reference Guide [http://docs.jboss.org/weld/reference/latest/

en-US/html/environments.html].

You must extend org.jboss.seam.wicket.SeamApplication rather than

org.apache.wicket.protocol.http.WebApplication. In addition:

• if you override newRequestCycleProcessor() to return your own IRequestCycleProcessor

subclass, you must instead override getWebRequestCycleProcessorClass() and return the

class of your processor, and your processor must extend SeamWebRequestCycleProcessor.

• if you override newRequestCycle to return your own RequestCycle subclass, you must make

that subclass extend SeamRequestCycle.

If you can't extend SeamApplication, for example if you use an alternate Application

superclass for which you do not control the source, you can duplicate the

three steps SeamApplication takes, i.e. return a SeamWebRequestCycleProcessor

NonContextual instance in newRequestCycleProcessor(), return a SeamRequestCycle

instance in newRequestCycle(), and add a SeamComponentInstantiationListener with

addComponentInstantiationListener().

http://maven.apache.org/
http://maven.apache.org/
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html

384

Chapter 82.

385

Seam for Apache Wicket Features
Seam's integration with Wicket is focused on two tasks: conversation propagation through Wicket

page metadata and contextual injection of Wicket components.

82.1. Injection

Any object that extends org.apache.wicket.Component or one of its subclasses is eligible for

injection with CDI beans. This is accomplished by annotating fields of the component with the

@javax.inject.Inject annotation:

public class MyPage extends WebPage {

 @Inject SomeDependency dependency;

 public MyPage()

 {

 depedency.doSomeWork();

 }

Note that since Wicket components must be serializable, any non-transient field of a Wicket

component must be serializable. In the case of injected dependencies, the injected object itself

will be serializable if the scope of the dependency is not @Dependent, because the object injected

will be a serializable proxy, as required by the CDI specification. For injections of non-serializable

@Dependent objects, the field should be marked transient and the injection should be looked up

again in a component-specific attach() override, using the BeanManager API.

Upon startup, the CDI container will examine your component classes to ensure that the injections

you use are resolvable and unambiguous, as per the CDI specification. If any injections fail this

check, your application will fail to bootstrap.

The scopes available are similar to those in a JSF application, and are described by the CDI

specification. The container, in a Java EE environment, or the Servlet listeners, in a Servlet

environment, will set up the application, session, and request scopes. The conversation scope is

set up by the SeamWebRequestCycle as outlined in the next two sections.

82.2. Conversation Control

Application conversation control is accomplished as per the CDI specification. By default, like

JSF/CDI, each Wicket HTTP request (whether AJAX or not) has a transient conversation, which

is destroyed at the end of the request. A conversation is marked long-running by injecting the

javax.enterprise.context.Conversation bean and calling its begin() method.

public class MyPage extends WebPage {

Chapter 82. Seam for Apache W...

386

 @Inject Conversation conversation;

 public MyPage()

 {

 conversation.begin();

 //set up components here

 }

Similarly, a conversation is ended with the Conversation bean's end() method.

82.3. Conversation Propagation

A transient conversation is created when the first Wicket IRequestTarget is set during a request.

If the request target is an IPageRequestTarget for a page which has previously marked a

conversation as non-transient, or if the cid parameter is present in the request, the specified

conversation will be activated. If the conversation is missing (i.e. has timed out and been

destroyed), SeamRequestCycle.handleMissingConversation() will be invoked. By default this

does nothing, and your conversation will be new and transient. You can however override this, for

example to throw a PageExpiredException or something similar. Upon the end of a response,

SeamRequestCycleProcessor will store the cid of a long running conversation, if one exists, to the

current page's metadata map, if there is a current page. The key for the cid in the metadata map is

the singleton SeamMetaData.CID. Finally, upon detach(), the SeamRequestCycle will invalidate

and deactive the conversation context.

Note that the above process indicates that after a conversation is marked long-running

by a page, requests made back to that page (whether AJAX or not) will activate that

conversation. It also means that new Page objects assigned as a RequestTarget, whether directly

via setResponsePage(somePageInstance) or with setResponsePage(SomePage.class,

pageParameters), will have the conversation propagated to them. This can be avoided by:

1. ending the conversation before the call to setResponsePage,

2. using a BookmarkablePageLink rather than directly instantiating the response page, or

3. specifying an empty cid parameter in PageParameters when using setResponsePage().

Note

The final case also provides a mechanism for switching conversations: if a cid is

specified in PageParameters, it will be used by bookmarkable pages, rather than

the current conversation.

	Seam 3
	Table of Contents
	Chapter 1. Credits
	1.1. List of contributors
	1.2. Would you like to contribute?

	Chapter 2. Seam
	2.1. Overview
	2.2. Seam Bill of Materials

	Part I. Solder
	Introduction
	Chapter 3. Getting Started
	3.1. Maven dependency configuration
	3.2. Transitive dependencies
	3.3. Pre-Servlet 3.0 configuration

	Chapter 4. Enhancements to the CDI Programming Model
	4.1. Preventing a class from being processed
	4.1.1. @Veto
	4.1.2. @Requires

	4.2. @Exact
	4.3. @Client
	4.4. Named packages
	4.5. @FullyQualified bean names

	Chapter 5. Annotation Literals
	Chapter 6. Evaluating Unified EL
	6.1. @Resolver

	Chapter 7. Resource Loading
	7.1. Extending the Resource Loader

	Chapter 8. Logging, redesigned
	8.1. JBoss Logging: The foundation
	8.2. Solder Logging: Feature set
	8.3. Typed loggers
	8.4. Native logger API
	8.5. Typed message bundles
	8.6. Implementation classes
	8.6.1. Generating the implementation classes
	8.6.2. Including the implementation classes in Arquillian tests

	Chapter 9. Annotation and AnnotatedType Utilities
	9.1. Annotated Type Builder
	9.2. Annotation Instance Provider
	9.3. Annotation Inspector
	9.4. Synthetic Qualifiers
	9.5. Reflection Utilities

	Chapter 10. Obtaining a reference to the BeanManager
	Chapter 11. Bean Utilities
	Chapter 12. Properties
	12.1. Working with properties
	12.2. Querying for properties
	12.3. Property Criteria
	12.3.1. AnnotatedPropertyCriteria
	12.3.2. NamedPropertyCriteria
	12.3.3. TypedPropertyCriteria
	12.3.4. Creating a custom property criteria

	12.4. Fetching the results

	Chapter 13. Unwrapping Producer Methods
	Chapter 14. Default Beans
	Chapter 15. Generic Beans
	15.1. Using generic beans
	15.2. Defining Generic Beans

	Chapter 16. Service Handler
	Chapter 17. XML Configuration Introduction
	17.1. Getting Started
	17.2. The Princess Rescue Example

	Chapter 18. Solder Config XML provider
	18.1. XML Namespaces
	18.2. Adding, replacing and modifying beans
	18.3. Applying annotations using XML
	18.4. Configuring Fields
	18.4.1. Initial Field Values
	18.4.2. Inline Bean Declarations

	18.5. Configuring methods
	18.6. Configuring the bean constructor
	18.7. Overriding the type of an injection point
	18.8. Configuring Meta Annotations
	18.9. Virtual Producer Fields
	18.10. More Information

	Introduction
	Chapter 19. Installation
	19.1. Pre-Servlet 3.0 configuration

	Chapter 20. Servlet event propagation
	20.1. Servlet context lifecycle events
	20.2. Application initialization
	20.3. Servlet request lifecycle events
	20.4. Servlet response lifecycle events
	20.5. Servlet request context lifecycle events
	20.6. Session lifecycle events
	20.7. Session activation events

	Chapter 21. Injectable Servlet objects and request state
	21.1. @Inject @RequestParam
	21.2. @Inject @HeaderParam
	21.3. @Inject ServletContext
	21.4. @Inject ServletRequest / HttpServletRequest
	21.5. @Inject ServletResponse / HttpServletResponse
	21.6. @Inject HttpSession
	21.7. @Inject HttpSessionStatus
	21.8. @Inject @ContextPath
	21.9. @Inject List<Cookie>
	21.10. @Inject @CookieParam
	21.11. @Inject @ServerInfo
	21.12. @Inject @Principal

	Chapter 22. Servlet Exception Handling Integration
	22.1. Background
	22.2. Defining a exception handler for a web request

	Chapter 23. Retrieving the BeanManager from the servlet context
	Chapter 24. Exception Handling - Introduction
	24.1. How Solder's Exception Handling Works

	Chapter 25. Exception Handling - Usage
	25.1. Eventing into the exception handling framework
	25.1.1. Manual firing of the event
	25.1.2. Using the @ExceptionHandled Interceptor

	25.2. Exception handlers
	25.3. Exception handler annotations
	25.3.1. @HandlesExceptions
	25.3.2. @Handles

	25.4. Exception chain processing
	25.5. Exception handler ordering
	25.5.1. Traversal of exception type hierarchy
	25.5.2. Handler precedence

	25.6. APIs for exception information and flow control
	25.6.1. CaughtException
	25.6.2. ExceptionStack

	Chapter 26. Exception handling - Advanced Features
	26.1. Exception Modification
	26.1.1. Introduction
	26.1.2. Usage

	26.2. Filtering Stack Traces
	26.2.1. Introduction
	26.2.2. ExceptionStackOutput
	26.2.3. StackFrameFilter
	26.2.4. StackFrameFilterResult
	26.2.5. StackFrame

	Chapter 27. Exception Handling - Framework Integration
	27.1. Creating and Firing an ExceptionToCatch event
	27.2. Default Handlers and Qualifiers
	27.2.1. Default Handlers
	27.2.2. Qualifiers

	27.3. Supporting ServiceHandlers
	27.4. Programmatic Handler Registration

	Exception Handling - Glossary

	Part II. Seam Persistence
	Chapter 28. Seam Persistence Reference
	28.1. Introduction
	28.2. Getting Started
	28.3. Transaction Management
	28.3.1. Configuration
	28.3.2. Declarative Transaction Management

	28.4. Seam-managed persistence contexts
	28.4.1. Using a Seam-managed persistence context with JPA
	28.4.2. Seam-managed persistence contexts and atomic conversations
	28.4.3. Using EL in EJB-QL/HQL
	28.4.4. Setting up the EntityManager

	Part III. Seam Transaction
	Chapter 29. Seam Transaction Reference
	29.1. Introduction

	Part IV. Seam Security
	Chapter 30. Security - Introduction
	30.1. Overview
	30.1.1. Authentication
	30.1.2. Identity Management
	30.1.3. External Authentication
	30.1.4. Authorization

	30.2. Configuration
	30.2.1. Maven Dependencies
	30.2.2. Enabling the Security Interceptor

	Chapter 31. Security - Authentication
	31.1. Basic Concepts
	31.2. Built-in Authenticators
	31.3. Which Authenticator will Seam use?
	31.4. Writing a custom Authenticator

	Chapter 32. Security - Identity Management
	32.1. Overview
	32.2. Configuring Seam to use Identity Management with JPA
	32.2.1. Recommended database schema
	32.2.2. The @IdentityEntity and @IdentityProperty annotations
	32.2.3. Identity Object
	32.2.4. Credential
	32.2.5. Identity Object Relationship
	32.2.6. Attributes

	32.3. Managing Users, Groups and Roles
	32.3.1. Managing Users and Groups
	32.3.2. Managing Relationships
	32.3.3. Managing Roles

	Chapter 33. Security - External Authentication
	33.1. Introduction
	33.1.1. Configuration

	33.2. OpenID
	33.2.1. Overview
	33.2.2. Enabling OpenID for your application
	33.2.2.1. Using OpenID as your only authentication method
	33.2.2.2. Using OpenID as one of many possible authentication methods

	33.2.3. Choosing which OpenID provider to use
	33.2.3.1. Using a custom OpenID provider

	33.2.4. Managing the OpenID authentication process

	Chapter 34. Security - Authorization
	34.1. Configuration
	34.2. Basic Concepts
	34.2.1. IdentityType
	34.2.2. User
	34.2.3. Group
	34.2.4. Role
	34.2.5. RoleType

	34.3. Role and Group-based authorization
	34.4. Typesafe authorization
	34.4.1. Creating a typesafe security binding
	34.4.2. Creating an authorizer method
	34.4.3. Applying the binding to your business methods
	34.4.4. Built-in security binding annotations

	Chapter 35. Security - Events
	35.1. Introduction
	35.2. Event list
	35.3. Usage Example

	Part V. Seam International
	Introduction
	Chapter 36. Installation
	Chapter 37. Locales
	37.1. Application Locale
	37.2. User Locale
	37.3. Available Locales

	Chapter 38. Timezones
	38.1. Joda Time
	38.2. Application TimeZone
	38.3. User TimeZone
	38.4. Available TimeZones

	Chapter 39. Messages
	39.1. Message Creation
	39.2. Properties Files

	Part VI. Seam Faces
	Introduction
	Chapter 40. Installation
	40.1. Maven dependency configuration
	40.2. Pre-Servlet 3.0 configuration
	40.3. How to setup JSF in a Java EE 6 webapp

	Chapter 41. Faces Events Propagation
	41.1. JSF Phase events
	41.1.1. Seam Faces Phase events
	41.1.2. Phase events listing

	41.2. JSF system events
	41.2.1. Seam Faces System events
	41.2.2. System events listing
	41.2.3. Component system events

	Chapter 42. Faces Scoping Support
	42.1. @RenderScoped
	42.2. @Inject javax.faces.context.Flash flash
	42.3. @ViewScoped

	Chapter 43. Messages API
	43.1. Adding Messages
	43.2. Displaying pending messages

	Chapter 44. Faces Artifact Injection
	44.1. @*Scoped and @Inject in Validators and Converters
	44.2. @Inject'able Faces Artifacts

	Chapter 45. Seam Faces Components
	45.1. Introduction
	45.2. <s:validateForm>
	45.3. <s:viewAction>
	45.3.1. Motivation
	45.3.2. Usage
	45.3.3. View actions vs the PreRenderViewEvent

	45.4. ObjectConverter
	45.5. UI Input Container

	Part VII. Seam Reports
	Introduction
	Chapter 46. Installation
	46.1. Installation using Seam Forge
	46.1.1. Plugin Installation
	46.1.2. Plugin Configuration

	Chapter 47. Usage
	47.1. Quick Start
	47.2. Annotations
	47.3. Troubleshooting

	Part VIII. Seam Mail
	Chapter 48. Seam Mail Introduction
	48.1. Getting Started

	Chapter 49. Configuration
	49.1. Minimal Configuration

	Chapter 50. Core Usage
	50.1. Intro
	50.2. Contacts
	50.2.1. String Based
	50.2.2. InternetAddress
	50.2.3. EmailContact
	50.2.4. Content
	50.2.5. Attachments

	Chapter 51. Templating
	51.1. Velocity
	51.2. Freemarker

	Chapter 52. Advanced Features
	52.1. MailTransporter
	52.2. MailConfig

	Part IX. Seam Remoting
	Chapter 53. Seam Remoting - Basic Features
	53.1. Configuration
	53.1.1. Dynamic type loading

	53.2. The "Seam" object
	53.2.1. A Hello World example
	53.2.2. Seam.createBean

	53.3. The Context
	53.3.1. Setting and reading the Conversation ID
	53.3.2. Remote calls within the current conversation scope

	53.4. Working with Data types
	53.4.1. Primitives / Basic Types
	53.4.1.1. String
	53.4.1.2. Number
	53.4.1.3. Boolean

	53.4.2. JavaBeans
	53.4.3. Dates and Times
	53.4.4. Enums
	53.4.5. Collections
	53.4.5.1. Bags
	53.4.5.2. Maps

	53.5. Debugging
	53.6. Messages
	53.7. Handling Exceptions
	53.8. The Loading Message
	53.8.1. Changing the message
	53.8.2. Hiding the loading message
	53.8.3. A Custom Loading Indicator

	53.9. Controlling what data is returned
	53.9.1. Constraining normal fields
	53.9.2. Constraining Maps and Collections
	53.9.3. Constraining objects of a specific type
	53.9.4. Combining Constraints

	Chapter 54. Seam Remoting - Model API
	54.1. Introduction
	54.2. Model Operations
	54.3. Fetching a model
	54.3.1. Fetching a bean value

	54.4. Modifying model values
	54.5. Expanding a model
	54.6. Applying Changes

	Chapter 55. Seam Remoting - Bean Validation
	55.1. Validating a single object
	55.2. Validating a single property
	55.3. Validating multiple objects and/or properties
	55.4. Validation groups
	55.5. Handling validation failures

	Part X. Seam REST
	Introduction
	Chapter 56. Installation
	56.1. Basics
	56.2. Transitive dependencies
	56.3. Registering JAX-RS components explicitly
	56.4. Servlet container support

	Chapter 57. Exception Handling
	57.1. Solder Exception Handling Integration
	57.2. Declarative Exception Mapping
	57.2.1. Annotation-based configuration
	57.2.2. XML configuration
	57.2.3. Declarative exception mapping processing

	Chapter 58. Bean Validation Integration
	58.1. Validating HTTP requests
	58.1.1. Validating entity body
	58.1.2. Validating resource fields
	58.1.3. Validating other method parameters

	58.2. Validation configuration
	58.3. Using validation groups

	Chapter 59. Templating support
	59.1. Creating JAX-RS responses using templates
	59.1.1. Accessing the model

	59.2. Built-in support for templating engines
	59.2.1. FreeMarker
	59.2.2. Apache Velocity
	59.2.3. Pluggable support for templating engines
	59.2.4. Selecting preferred templating engine

	Chapter 60. RESTEasy Client Framework Integration
	60.1. Using RESTEasy Client Framework with Seam REST
	60.2. Manual ClientRequest API
	60.3. Client Executor Configuration

	Chapter 61. Seam REST Dependencies
	61.1. Transitive Dependencies
	61.2. Optional dependencies
	61.2.1. FreeMarker
	61.2.2. Apache Velocity
	61.2.3. RESTEasy

	Part XI. Seam JCR
	Chapter 62. Seam JCR - Introduction
	62.1. Introduction
	62.2. Maven dependency configuration

	Chapter 63. Seam JCR - JBoss ModeShape Integration
	63.1. ModeShape Integration Installation
	63.2. Usage

	Chapter 64. Seam JCR - JackRabbit Integration
	64.1. JackRabbit Integration Installation
	64.2. Usage

	Chapter 65. Seam JCR - Event Mapping
	65.1.
	65.2.

	Chapter 66. Seam JCR - Object Content Mapping
	66.1. What is Object Content Mapping?
	66.2. Mapping and Conversion Capabilities
	66.3. JCR Data Access Objects

	Part XII. Seam JMS
	Chapter 67. Introduction
	67.1. Mission statement
	67.2. Seam 3 JMS Module Overview

	Chapter 68. Installation
	Chapter 69. Resource Injection
	69.1. JMS Resource Injection
	69.1.1. Destination Based Injection
	69.1.2. Resource Configuration

	69.2. Module Extensions

	Chapter 70. Messaging API
	70.1. QueueBuilder and TopicBuilder
	70.2. Message Manager
	70.3. Durable Messaging Capabilities
	70.4. MessageListeners versus Message Driven Beans

	Chapter 71. Bridging the Gap
	71.1. Event Routing
	71.1.1. Routes

	71.2. Routing CDI Events to JMS
	71.2.1. Usage

	71.3. CDI Events from JMS Messages
	71.3.1. Usage

	Chapter 72. Annotation Routing APIs
	72.1. Observer Method Interfaces

	Part XIII. Seam Validation
	Chapter 73. Introduction
	Chapter 74. Installation
	74.1. Prerequisites
	74.2. Maven setup
	74.3. Manual setup

	Chapter 75. Dependency Injection
	75.1. Retrieving of validator factory and validators via dependency injection
	75.2. Dependency injection for constraint validators

	Chapter 76. Method Validation

	Part XIV. Seam Social
	Introduction
	Chapter 77. Getting Started
	77.1. Building
	77.2. Usage big picture
	77.3. Starting with OAuth configuration
	77.3.1. Create an OAutConfigSettings bean thru Seam configuration (in bean.xml)
	77.3.2. Adding the @ConfigureOAuth annotation when injecting the OAuth service bean

	77.4. Inject an OAuthService bean with one of the following ways :
	77.5. Request the Authorization URL for the service and redirect the app to this url
	77.6. Store the verifier in OAuthService bean and init access token
	77.7. After what we can send calls to the service
	77.8. Testing

	Part XV. Seam Spring
	Chapter 78. Seam Spring - Introduction
	78.1. Features

	Chapter 79. Seam Spring - Installation
	79.1. Maven dependency configuration

	Chapter 80. Seam Spring - Architecture and Usage
	80.1. Accessing Spring artifacts from CDI
	80.1.1. Accessing Spring application contexts
	80.1.1.1. The @SpringContext qualifier
	80.1.1.2. Producing Spring contexts
	80.1.1.2.1. Installing a web application context as a CDI bean
	80.1.1.2.2. Installing a custom-configured Spring application context

	80.1.1.3. Implicit Spring context bootstrapping

	80.1.2. Exposing Spring beans as CDI beans

	80.2. Importing CDI beans into Spring applications
	80.2.1. Registering a BeanManager
	80.2.2. Importing a CDI bean as a Spring bean

	Part XVI. Seam Wicket
	Introduction
	Chapter 81. Installation
	Chapter 82. Seam for Apache Wicket Features
	82.1. Injection
	82.2. Conversation Control
	82.3. Conversation Propagation

