Seam Documentation

Reference Guide

3.1.0.Final

T O <Y o £ 1

1.1, List Of CONIDULOISuiiiiiiiiee e e e et e e e eaaens 1
1.2. Would you [iKe t0 CONIDULE? ...coiieiiiiii e 2
ST o PP 5
N O 1YY 4 TP 5
2.2. Seam Bill Of MAterialSoooiiiiiiiiiii e 5
RS Yo o =T P 9
T 10 To 18Tl 1o) o [P PP Xi
3. GettiNg SEAMEA ..oovniiieii e 13
3.1. Maven dependency configurationcccoceuieiiiiieiiieeiii e 13

3.2. Transitive dependenCIeScoeuuuiiiiiiii ettt 14

3.3. Pre-Serviet 3.0 configurationccoveiiiiiiiii i 14

4. Enhancements to the CDI Programming Modelcooooiiiiiiiiiiiiiii, 17
4.1. Preventing a class from being processedcccovvviiiiiiiiiiiii i, 17
I I (21 Y=Y (o T 17

O (] = L= o [1= 18

4.2, @ EXACE vt 18

O T (271 @1 1Y o) 19

4.4, NaMEd PACKAGES .. ciiiiniieeiii ettt 19

4.5, @FullyQualified bean NameSsc.cciiiiiiiiiii e 20

5. ANNOLAtioN LItEralS ..ouuiiiii i 23
6. Evaluating Unified ELcooiiiiiiii e e 25
B.1. @RESOIVET ..eeieiiee e 25

7. Injecting Resources and System Propertiesccoovvviiiiiiiiiiiiciie e, 27
7.1. RESOUICE LOAUING ..ceiviiieiiiiii ettt 27
7.1.1. Extending the Resource Loaderccooveiiiiiiiiieiiii e, 28

7.2. SYSIEM PIOPEITIES ...uiiiiiiii ettt ettt et e e e e e e 28

8. LOgQing, redeSIigNEdcoiiiuiiiii e 31
8.1. JBoss Logging: The foundationccooieiiiiiiiiiiiine e 31

8.2. Solder Logging: FEAtUIE Sccuuiiiiiiiiiii e 33

8.3, TYPEA lOQUEIS ..nniiiiiiee ettt 33

8.4. Native 10ggEI AP ..o 35

8.5. Typed message BUNAIEScoouuiiiiiiiiiiii e 36

8.6. Implementation CIASSEScc.iiiiiiiiiii i 37
8.6.1. Generating the implementation Classescccceevvvviiiiniiiiiineccennnn, 37

8.6.2. Including the implementation classes in Arquillian tests 39

9. Annotation and AnnotatedType ULIlItiesccooviiiiiiiiiiiii e, 41
9.1. Annotated Type BUIIAENcouviiiiii e 41

9.2. Annotation INStance ProVidercooooiiiiiiiiiiiei e 42

9.3. ANNOLALION INSPECION ...ivieiii i e e e e e e e e et eeaaeeees 43

9.4. Synthetic QUANTIEISiiiii e 44

9.5, Reflection ULIIILIESoiiieiiieiiii e e 45

10. Obtaining a reference to the BeanManagercooeuiieiiiiinieiiiiineeece e a7
O ST = T U]] A= ST 49

Seam Documentation

12. Property ULITITIES ..o 51
12.1. Working With Propertiesuveieuiiiiii i 51
12.2. Querying for ProPertiesoeiiiiiii e 52
12.3. Property CrtEIIAiiiuieii e e e e e e e e e e aaas 53

12.3.1. AnnotatedPropertyCriteriaovevveriieieiiii e 53
12.3.2. NamedPropertyCritelaccuuveieiieeiiie e e ee e e e e e e 53
12.3.3. TypedPropertyCriterialccuuuuieeiiiiie et 54
12.3.4. Creating a custom property Criteriacoccevveiiiiieeiiieiiii e, 54
12.4. Fetching the rESUILScoouuiiiii e e 54

13. Unwrapping Producer Methodsc.oeiiiiiiiii e 57

14, DEfAUIt BEANS .ieuiiiiiieiii ettt e e e e e e e e e e e e 59

15, GENEIIC BEANS ..vuiiiiiii ittt e et e et e e 61
15.1. USING GENENIC DBANSciiiiiiiiiiii et 61
15.2. Defining GENEIC BEANSccvuiiiiiiiiiii e 64

16. Service HanAIEr ... e e 67

17. XML Configuration IntrodUCtiONoiiiiiiiiiii e 69
17.1. Getting STAMEAuuiiiiiii e 69
17.2. The Princess Rescue EXamplecooooeiiiiiiiiiiiiiiii e 71

18. Solder Config XML ProVIOEroiiiiiiiiieiii e 73
18.1. XML NAMESPACES ..vuieuiiiiiiiii et a e ans 73
18.2. Adding, replacing and modifying beansccccooviiiiiiiiiiiinn e 74
18.3. Applying annotations using XMLccocoiiiiiiiiiiiiin e 75
18.4. Configuring FIeldSooiiiiiiiii e 76

18.4.1. Initial Field ValUESiiiiiiii e 76

18.4.2. Inline Bean DecClarationscoccuiveiiiiiiiiiieiieiieeee e e e 78
18.5. Configuring MEthOASciiiiii e 79
18.6. Configuring the bean CONSIIUCIONoviiiiiiiiiii e 81
18.7. Overriding the type of an injection pointcccciiiiiiiiini e, 82
18.8. Configuring Meta ANNOLALIONSccuvuuiiiiiiii e 82
18.9. Virtual Producer FIeldsSoooouuiiiiiiiiiciee e 83
18.10. More INFOrMALIONiieiieiii e e e e e e e 84

a1 g0 o 18Tl 1 o] o [N PP IXxxv

S [RS2 = 1| = L o T PP 87
19.1. Pre-Servlet 3.0 configurationccooeuiiiiiiieiiiiieeee e 87

20. Serviet event Propagation ..o 89
20.1. Servlet context lifeCyCle BVENTSeiviiiiiiiii e 89
20.2. Application iNitialiZationcoeuuiiiiiii e 90
20.3. Servlet request lifeCyCle BVENLSiiiiiiiiiii e 91
20.4. Servlet response lifecyCle eVENLSoviiiiiiiiiiiii e 93
20.5. Servlet request context lifecycle eventsccoeveiiiiiiiicii i, 94
20.6. Session [IfeCYCle EVENLScoiuuiiiiiii e 96
20.7. SeSSION aCtivationN EBVENTSiiiiiiiiieiiiii et e et e e e e eaeens 96

21. Injectable Servlet objects and request Statec.coooeviiiiiiiiiiiiei 99
21.1. @Inject @REQUESIPAraMuiiiiiiiiiieiie e e e e aens 99

21.2. @Inject @HEAdErParamc.oveiiiiiiiiieei e 100

21.3. @INJeCt SErvIEtCONTEXE ...civviiiii e e e e 101
21.4. @Inject ServletRequest / HttpServietRequestccoeveveiinieiiiiineeeeiinnn, 101
21.5. @Inject ServletResponse / HttpServletReSPONSEecoccvvvevviieviiiievinnennnnn, 101
21.6. @INJECT HIPSESSIONcieieiieieii ettt e s 102
21.7. @Inject HItPSESSIONSIALUSucvvviiiiicii e e 102
21.8. @Inject @CONEXIPALNcoeviiiiii e 103
21.9. @INject LiStKCOOKIE™iiiiiiiiii e 103
21.10. @Inject @COOKIEPArAMoiiiiiiii e 103
21.11. @INjeCt @SEINVEIINOccviiiiiici e 104
21.12. @Inject @PIINCIPAloveeiieiee e 104

22. Servlet Exception Handling Integrationc.cccoviiiiiiii i 105
22.1. BACKGIOUNG ...ooiiiiiiiii ettt 105
22.2. Defining a exception handler for a web requestcocccoveiiiiiiiieciine, 105

23. Retrieving the BeanManager from the servilet contextcccccovveiiiiinieiinnnnen. 107
24. Loading web resources without ServletContextccoeevviiiiiiiieiiiieiin e, 109
25. Exception Handling - INtrodUCHioNiiiiiiiiiiiiii e 111
25.1. How Solder's Exception Handling WOorkscccooeviiiiiiiiiciiiiciie e, 111

26. Exception Handling - USAQEcooiiiiiiiiiiieiii et 113
26.1. Eventing into the exception handling frameworkccooeeiiiivinennnn... 113
26.1.1. Manual firing of the eventcooooiiiiiii 113

26.1.2. Using the @ExceptionHandled Interceptorc.cccoveviiiiiinnennnnn. 114

26.2. Exception handlers ..o 114
26.3. Exception handler annotationsc.cccoeeviiiiiiiiicii e 115
26.3.1. @HaNAIESEXCEPLIONScvveiiiieeie e e e e 115

26.3.2. @HANAIES ...oeeeeieie e 115

26.4. Exception chain ProCESSINGieeiiiiniieiiiiieee e 117
26.5. Exception handler orderingc.ccoviiiiiiiiiiiiii e, 118
26.5.1. Traversal of exception type hierarchycccoooeviiiiiiiiiiiinnenennnn, 118

26.5.2. Handler preCedenCeccoceuiiiiiiiiiii e 120

26.6. APIs for exception information and flow controlcccccooeviiinieiinnnnnn. 121
26.6.1. CaUGhIEXCEPLON ...ccvviiiiiiciii e e e 121

26.6.2. EXCEPLONSIACK ... cceeviiieiiiiiieieii et 121

27. Exception handling - Advanced Featuresccooveviiieiiiiiiiiii e, 123
27.1. Exception MOIfiCatioNc.couuiiiiiiiiiiiii e 123

b2 A 05t O [11 o To [o3 1T I PP 123

27.0.2. USAQE ...ceiiiiiiii ettt 123

27.2. Filtering Stack TraCeScccuuiiiiiiiiiii i e e e e 123

A7 0% W [11 o T ¥ X4 o I 123

27.2.2. EXceptionStaCckOULPULciviiiii e e 124

27.2.3. StackFrameFilter ..o 124

27.2.4. StackFrameFilterReSUILuiiiiiiiiiii e 124

27.2.5. STACKFIAME ...eeiiiii e 124

28. Exception Handling - Framework Integrationccooeeiiiiiiii i, 127

Seam Documentation

28.1. Creating and Firing an ExceptionToCatch eventcccoeeviiiviiineennenn. 127
28.2. Default Handlers and Qualifierscccooeviiiiiiii i 127
28.2.1. Default HandIErsoiiiiiiiiiec e e e 127

28.2.2. QUANIIEIS ..veeeii e 128

28.3. Supporting ServiceHandIersoooeiiiiiiiiiii e 128
28.4. Programmatic Handler Registrationccooveiiieeiiiieiiii e, 129
Exception HandliNg = GlOSSAYccouuuiiiiiiiieiii et 131
[I. SEAM PEISISIEINCE ...eiitiiiiiii ettt e e et e ettt r e e e et e e e et s e e e eatn s e e eestnaeeaes 133
29. Seam Persistence REfEreNCEovviiiiiii i 135
b2 I 1o o o U1 1 o] o SRR 135
29.2. GEttiNg STAMEAiiiiiii e 136
29.3. Seam-managed PEersiSteNCce CONEXLScveivierinieriiieeiie e e e eaneeen 137
29.3.1. Using a Seam-managed persistence context with JPA 137

29.3.2. Seam-managed persistence contexts and atomic conversations.... 138

29.3.3. Using EL in EIB-QL/HQLccovviiiiiiiii e 138

29.3.4. Setting up the EntityManagerc.cocoeieeiiiiiiiiieiie e 139

1T TT= 1o ¢ B I = 1 1= Vo 1o T o P 141
30. Seam Transaction REFEreNCEiiiiiiiiiii e 143
110 100 I [o1 1 o o [Tod 1T o I PR 143
30.2. Transaction ManagemMENtccouuiiiiiiieiii e e e 143
30.2.1. CoNfIQUIALION ...ccovvieiiiie e 143

30.2.2. Declarative Transaction Managementc.ccceeevviiieiiineeinneennnn. 145

30.2.3. ServletReqUESELISIENETuviiiiiiieecii et 147

V. SEAM SECUILY ovuiiiiiiii et e e e e e e e et e e e e et e e et e e et e e et e e et e e et eeenans 149
31. SecUrity - INTrOUCTION ...uuiiiiiiii e 151
3 I R @ 1Y 1= PR 151
31.1.1. AUhENtICAtION ...vuiieieei e 151

31.1.2. Identity ManagemeNtc.oveviiiieiiieeii e 151

31.1.3. External Authenticationcoovuiiriiiieii i 151

31.1.4. AULNOKIZALION ...iieiiiiiiie e 151

31.2. CONFIQUIALION .euiiiiit e e 152
31.2.1. Maven DependenCIeScc.uveiuiieiiiiieiiie e e 152

31.2.2. Enabling the Security INterceptorccvoiveiiiinieiiii e, 153

32. Security - AUthentiCationccoiiiiii i 155
32.1. BASIC CONCEPLS ...eieeiiieieiii ettt ettt e et e s 155
32.2. BUIlt-in AUtNENEICALOISvuiieiiiiii e et e e e e e e 156
32.3. Which Authenticator Will SEam USE?coeveiiiiiiiiiiieeeee e 156
32.4. Writing a custom AUthentiCatorc.ooeviiiiiiii i 157

33. Security - Identity Managementc.uiiiiiiiiiiiii e 161
3 I O 1Y 1= SRR 161
33.2. Configuring Seam to use ldentity Management with JPAcccccceeee. 161
33.2.1. Recommended database schemaccccoovvviiiiiiiiii e 161

33.2.2. The @IdentityEntity and @IdentityProperty annotations 162

33.2.3. Identity ODBJECT .. covniiii i 163

Vi

33.2.4, Credentialoeeeieiei i 164

33.2.5. Identity Object Relationshipccocviiiiiiiiiii e 165

33.2.6. AUIDULES ...oeeei e e 166

33.3. Managing Users, Groups and ROIEScoceeuiieiiiiiiiiiiiiiece e, 167
33.3.1. Managing Users and GrOUPSccuuuieeirrineeeriineeeniiaeeeniaeeeninnnns 167

33.3.2. Managing Relationshipscccoviiiiiiiiiiiee e 168

33.3.3. Managing ROIEScooiiuiiiiiiii e 168

34. Security - External Authenticationccooviiiii i 169
7 I [o1 o o [Tod 1T o I PR 169
34.1.1. CoNnfIQUIAtiONcoovniiiiiie e e e e e e e e 169

34.2. OPENID .ot 169
B4.2.1. OVEIVIEW .vuiiieiiiiieeeeii ettt e et e e et e e e et e e e et s e e e eatnneeeeatnaeeeenes 169

34.2.2. Enabling OpenlD for your applicationcccooeevevvineeiiiinneereninnnn. 170

34.2.3. Choosing which OpenlID provider t0 USecoccevveviiieiiieeiieeannn. 171

34.2.4. Managing the OpenlD authentication processccccoevvvveeeuneenn. 172

35. Security - AULhOTIZAtiON ... 175
35.1. CONFIQUIALION ..uuiiiiiit et 175
I = T T ol @] (o =T o (PN 175
35.2. 2. 1dENtEYTYPE ..neieiii e 176

B5.2.2. USEI ittt 176

35.2.3. GIOUP ittt ettt 176

35.2.4. ROIE ..o 176

35.2.5. ROIETYPE oo 177

35.3. Role and Group-based authorizationccoooeiiiiiiiiin e, 177
35.4. Typesafe authorizationooiiiiiiiiiiiii e 178
35.4.1. Creating a typesafe security bindingccoccoiviiiiiiniineeennn, 178

35.4.2. Creating an authorizer methodcccooviiiiiiiiiiii e, 179

35.4.3. Applying the binding to your business methodscc.ccuune. 179

35.4.4. Built-in security binding annotationsccceevviiiiiieiiiiineeeenenn 180

36. SECUTILY = EVENTIS Lo e aaas 181
101 200 [1o o [Tod 1T o I PSRN 181
36.2. EVENT IS ..t 181
36.3. Usage EXAmMPIeiiiiiiii e 182

V. Seam INEINALIONEAIuuniiiiii et e et e e et e e e et e e e aea s 185
10T [T 1o] o PP clxxxvii
7. INSTAIALION . 189
2. T o Yo - 1= 191
38.1. Application LOCAIEciiiiiiiii e 191

TS T U LY g o o | = 191
38.3. Available LOCAIEScoeeveiiiiiii e 192

1S TR T 1= 2o] 1= PP 193
TS R N o To - W 1 4= PP 193
39.2. Application TIMEZONEcoouuiiiiiiii et 193
39.3. USEI TIMEZONE ..iiiiiieeiiie ettt e e et e e 194

Vii

Seam Documentation

39.4. Available TIMEZONESciuiiiiii et e e e 194

40, MBS SAGRS vuiiniiuiiit ittt 197
40.1. MESSAJE CrEALIONeevuniiiiii ettt ettt ettt e eerb e eeeees 197
40.2. PropertieS FlESiiiuiiii i e 198

VI SEAIM FACES ..o et 199
T 0o 18Tl 1o] o [N CCi
g O 1 1S3 = 11 =4 T o 203
41.1. Maven dependency configurationcccoceuiieiiieeiiiiieii e e e 203
41.2. Pre-Servlet 3.0 configurationoooeeuiieiiiinieiiiii e 204
41.3. How to setup JSF in a Java EE 6 webappc.cccoeeviiiiiiiieii e, 204

42. FACeS SCOPING SUPPOIT ..ttt et e e e eab e e eanes 205
b R 1] 2 =T g o [T S Yoo o =T PN 205
42.2. @Inject javax.faces.context.Flash flashcccoooiii 206
42.3. @VIBWSCOPEA ..ouiiiiiiiiii et e e e e e e e e e 206

43, MESSAGES AP i 209
G T I Ao [[[o Y =TT Vo [P 209
43.2. Displaying pending MESSAQESccuuiiiiiiiieiiiiiie et e e e et e e eees 210

N o T o 1= PSP 211
45. Seam Faces COMPONENTSiiiiiiii it et e e eees 213
% I 1 To 11 i o) o [PP 213
45.2. <S:ValidateFOrM> ... 213
45.3. <SIVIBWACTIONS ..ottt e e e et e e e 216
T T I /o] 1)Y= 11 [ISP 217

45,32, USAQE oottt 217

45.3.3. View actions vs the PreRenderViewEventccc.cccovvviiviennnn. 220

R B @] o)1= (@] 4 1Y/ =Y o (= PN 220
45.5. Ul INPUL CONTAINET ...ciiiiiieeiii ettt e e e eeees 221

46. Faces Artifact INJECHION ... 223
46.1. @*Scoped and @Inject in Validators and Convertersc.ccccovveveeennnnn. 223
46.2. @Inject'able Faces Artifactscoocvuiiiiiii i 225

47. Faces EVentS Propagation ..ot 227
A7.1. JSF PhaSE EVENLS ...ciiiiiiiiiiii it e et e eeeat e e eees 227
47.1.1. Seam Faces Phase eVentscccoovviiiiiiiiiiiiicc e 227

47.1.2. Phase events lIStiNgccoviiiiiiiie e 228

47.2. JSF SYSIEM BVENES ...iiiiiiiiieiiee ettt e 229
47.2.1. Seam Faces SYSemM EVENLSvviiiiiiiiiieie e 229

47.2.2. System events lIStiNgccouvviiiiiiiiii e 229

47.2.3. Component SYSTEM EVENLSovvvieiiiiiiiiini e 230

48. Project Stage SUPPOIT ..ottt e 231
48.1. Project Stage INJECONccuiiiiiiii e 231
48.2. Restricting Bean ACVALIONcc.uiiiiiiiiiiiiiie e 231

49. Faces View Configurationcoiiiiiiiiiii e 235
49.1. Configuration With Annotated ENUMScooeviiiiiiiiiiiiiiiiecci e, 235
49.2. Configuring View REeSIIHCHONSoiiiiiiiiiiiciii e 236

viii

49.2.1. Writing Seam security ANNOtAtiONSc.uvveviiiniiiiiiine e, 236

49.2.2. Applying the Security ReStrCtiONSccocovvieiiiiiiiiiieie e, 237

49.2.3. Changing the Restriction Phasescccccovviviiiiiiiiiiiieciieees 237

49.3. Configuring URL REWIItINGcvvniiiiicii e 237
49.4. Configuring "faces-redireCt"coooieiiiiiiii e 238

VIl SBAM REPOIS ettt et e e e e e e e en e 239
a1 0T [T 1o o I PP cexli
B0, INSTAIALION . 243
50.1. Installation using Seam FOIgeviiiiiiiiiiiiiiie e 243
50.1.1. Plugin Installationcccouiiiiiiiiii e 243

50.1.2. Plugin Configurationccoeceeuiieiiiiiiieeeii e 244

D U SO oottt 245
51,1, QUICK SEAIT ..o e 245

LN 2 N o g o] 7= 110] F= SRR 246
51.3. TroubleShOOtNGccuuniiiiiiii e 247

RV LIS Y= T I 1 -V PP 249
52. Seam Mail INtrodUCTION ...oeeniiiii e e e 251
52.1. Getting Startedcouiiiiiiiii e 251

53, CONFIQUIALION ittt et e 253
53.1. Minimal Configurationceeiuiiiiiii e e e e e 253

54, COTE USAQE ...iiiiiiiii ittt 255
Lot I [01 (o T PP 255
B2, CONTACES ..ieuiiiiiiie ettt 255
54.2.1. StrNG BASEAcovviiiiiiii e 255

54.2.2. INtErNEtAAAIESS ...oevuiiiiei e e 255

54.2.3. EMAICONTACEcooviiiiiiiiieics et 256

Lo B @] o (=] | AP 257

54.2.5. AHACHMENLS ...ciiiiiiiiic e 257

B, TEMIPIALING ettt et et 259
L0 I V=Y o Yo 1 Y/ N 259
I o (=TT 1 - T =] G 259

56. ADVANCEA FEALUIES ...uiiiiiiii et e et e e et eeera s 261
56.1. MailTrANSPOITEEuieiiiiiiee ettt e e e et e e eeaa e eees 261
56.2. MalCONTIG 1ouniiiiiiiii e 261

IX. SEAM REMOLING .oevtniiiiii ettt et e e e e eeaans 263
57. Seam Remoting - BasiC FEAUIESc.viviiiiiiii i 265
57.1. CONFIQUIALION .euuiiiiii e 265
57.1.1. Dynamic type 10adingccooeeiiiiiiiiiiiin e 266

57.2. The "Seam™ ODJECTiiiiiii e 266
57.2.1. A Hello World exampleccoooiiiiiiiiiiie e 266

57.2.2. SEamM.CreateBeaNcoouiiiiiiiiei e 268

LS T I 0T T O 0] 1 1= AP PT 269
57.3.1. Setting and reading the Conversation IDocceviiiiiiiiinneennnn, 269

57.3.2. Remote calls within the current conversation SCOpec.ccuuueens 269

Seam Documentation

57.4. Working With Data tyPeSccuuuiiiiiiiiiiii e 269
57.4.1. Primitives / BaSIC TYPES ...cvuuiiiiiiieiiiieiiieeeie e e e e e e e e e 269

57.4.2. JaVaBEANSiiiiiii 270

57.4.3. Dates and TiMESoviiiiiiieiiiii et e s 270

B7. 4.4, ENUIMS ..ot e e ens 270

57.4.5. COlECHONS . .cevtiiiiiiii et e e 270

B57.5. DEDUGUING - eeiiiieiiii et 271
D7 8. MBS SATRS .uituiiiiiii ettt e 271
57.7. HandliNg EXCEPLIONS ...covviiiiiiiiieeeiti ettt 273
57.8. The Loading MESSAQTEuiiuueiiiiiiiii e et e e e e e e e e et e eaae e 274
57.8.1. Changing the MeSSagecccuuiiiiiiiiiiiiiii e 274

57.8.2. Hiding the loading MeSSAgecoevviiiiiieiiii e, 274

57.8.3. A Custom Loading INdiCatOrccuuiiiiiiiiiiiiiiiieeeii e 274

57.9. Controlling what data is returnedccoocoiiiiiiiiii e 275
57.9.1. Constraining normal fieldsccoooiiiiiii 275

57.9.2. Constraining Maps and ColleCtionscccoeeviiiieiiiiiiiiiecieeeiees 276

57.9.3. Constraining objects of a Specific typeccccovvvviiiiiiiiiiiee, 276

57.9.4. Combining CONSIIAINESccvvuiiiiii e e e 276

58. Seam Remoting - MOdel APl ... 277
LTS I 1o i o o 0T i o] o ST PPT 277
58.2. Model OPEIAtiONSociiiiiieiiii e 277
58.3. Fetching @ MOdeloiiiiiii e 281
58.3.1. Fetching a bean valueoooiiiiiiii 284

58.4. Modifying model VaIUESceiiiiiiiii e 284
58.5. EXpanding @ MOdelcooouuiiiiiiiiiiii e 285
58.6. APPIYING ChaNgEScovuniiiiiii e e ea s 286

59. Seam Remoting - Bean Validationcccooviiiiiiiiiiiiii e, 289
59.1. Validating a Single ODJECEccvvniii e 289
59.2. Validating a Single ProPertycooveeueiiiiiie e 290
59.3. Validating multiple objects and/or propertiesccoooevveveiiieiiinecieeeennnn, 291
59.4. Validation grOUPS ... ccceuuneiiiiiieeiiii et e ettt e e ettt e et e e e e e e eena e eeens 292
59.5. Handling validation failuresccooooieiiiiiiiin e, 292

DS T T T 4 = 4 PR 295
[T 0o 18 Td 1o] o [N PP cexevii
LT IR =3 =L =1 4o) o 299
L0 R =7] T PSP 299
60.2. Transitive dependenCIeSoveiiiiiiiiiiiiie e 299
60.3. Registering JAX-RS components expliCitlycccoooviiiiiiiiiiines 299
60.4. Servlet CoNtaINEr SUPPOIToiieiiiieieiii et 300

61. Exception HandliNgooiiiiiiiii e 301
61.1. Solder Exception Handling Integrationccooveeveviinieiiiiineeeiineeeeiinnn, 301
61.2. Declarative Exception Mappingcoceuuieeiiiiiiiiieiiieeeie e e e e e eaens 302
61.2.1. Annotation-based configurationccccooeiiiiiiiiiii 302

61.2.2. XML configurationcccoeeiiiiiiiiiiiii e e 303

61.2.3. Declarative exception mapping ProCesSiNgcoeeveevenrereruenierennn 304

62. Bean Validation INtegrationcccciiiiiiiiiii e 305
62.1. Validating HTTP reQUESESiiiiiiiiieiiiii et 305
62.1.1. Validating entity bodycccoiiiiiiiiiii 305

62.1.2. Validating resource fieldsoooiiiiiiiiiiiii e 306

62.1.3. Validating other method parameterscccocceeveviiieiiinciiieccieee, 307

62.2. Validation configurationcovoiiiiiiiiiiii e 308
62.3. Using validation groUPSccuuieiiiioiiiieeei e e e e e e e s e e e e aana e 308

63. TeMPIatiNng SUPPOTT ..ottt 311
63.1. Creating JAX-RS responses using templatescccoovevieeiiiieiiineeiineennn, 311
63.1.1. Accessing the modelcoooiiiiiiiiii 312

63.2. Built-in support for templating enginesccccoeveiiiiiiiieiii e 313
63.2.1. FreeMAarkeriieiiiiii e 314

63.2.2. Apache VEIOCItYccovuiiiiiiii e 314

63.2.3. Pluggable support for templating enginescccoevviiiviiieinnnes 314

63.2.4. Selecting preferred templating enginecccoooeiieiiiiiineeene, 314

64. RESTEasy Client Framework Integrationcoooioiiiiiini e 317
64.1. Using RESTEasy Client Framework with Seam RESTcccovevvnn. 317
64.2. Manual ClientRequeSt AP ... 318
64.3. Client Executor Configurationcccoceuiieiiiiiiiiiecin e e e 318

65. Seam REST DepPenUenCIeSuuiiiiiiiiieiii et 321
65.1. Transitive DEPENdENCIESccivuiiiiiiiiii e e e 321
65.2. Optional dependencCiesov i 321
65.2.1. FrEEMAIKET ...ciieiiieeiiie et e 321

65.2.2. APache VElOCItYccovuuiiiiiiiii e 321

65.2.3. RESTEASY .iiiitiiiiiiiiiie ittt ettt 321

DTS 1T 1o 1 [P 323
66. Seam JCR - INtrOAUCTIONiiiiiiiieiiii e 325
LTS 00 I [1 o o [Tod 1T o I PR 325
66.2. Maven dependency configurationc.ccoviiiieeiiiieiin e 325

67. Seam JCR - JBoss ModeShape Integrationccoooeeuiiiiiiiiiineiiiiieeeeii e 327
67.1. ModeShape Integration Installationc.ccoiieiiiiiiiiin e 327
B7.2. USBQGE ..eeiieiiiiii ettt 327

68. Seam JCR - JackRabbit Integrationc.cccoiiiiiiiiiiin e 329
68.1. JackRabbit Integration Installationc.oooieiiiiiiiinie e, 329
8.2, USA0E iiuiiiiiiiie ittt 329

69. Seam JCR - EVENt MaPPING ovvuiiiiiiiieiiii e 331
69.1. Introduction to Event Mappingccocuieiiiieiiieii e 331
69.2. ODSErVING JMS BVENLSiiiiiiiiiiiiii et e e e e eens 331

70. Seam JCR - Object Content Mapping ...cc.oeeeeuiiiiiiieiie e e e e 333
70.1. What is Object Content Mapping?oeeeeuuieieiiiieeeeiie e 333
70.2. Mapping and Conversion Capabilitiescccoeeeiiiiiiiiiiic e, 333
70.3. JCR Data ACCESS ODJECLES ...covuiiiiiiiieiiiii e 334

XL SEAM JIMS .ttt ettt e et e e e e ettt e e e et e e e e tt s e e e et e e e e eatneeeetan e aaees 337

Xi

Seam Documentation

4 O 14 o To ¥] § o 1 o I PP 339
71.1. MiISSION STAIEMENT ..oouvuiiiiiii e e e e s 339
71.2. Seam 3 JMS MOAUIE OVEIVIEWccvunieiiieiiiiieei e e e e 339

T2, INSTAIIALION L. 341

73. RESOUICE INJECHION ..iiiiiiiiiieiii e e e e 343
73.1. JMS RESOUICE INJECHIONovuiiiieeiii e e e e 343

73.1.1. Destination Based INJECtiONcccuuiviiiiiiiiiiiiicc e, 343
73.1.2. Resource Configurationccccuiiiiiiiiiiiii i e e 343
73.2. Module EXIENSIONScovuiiiiiieiie e e e e e 343

T4, MESSAQING APl L 345
74.1. QueueBuilder and TopiCBUIlderccooiiiiiiiii e 345
T4.2. MESSAGE MaANAGET ...iviiiiitiitii it e e e eas 346
74.3. Durable Messaging Capabilitiescoooiiiiiiiiii e, 347
74.4. Messagelisteners versus Message Driven Beansc.ccoevevvveviinennnnn. 348

75. Bridging the Gap ...c..uii i 351
75.1. EVENE ROULING «.ovvniiiiiii et e e e et e e e eaa s 351

T5.1.0. ROULES oottt et e e ees 351
75.2. Routing CDI EVENtS t0 JMS ...ouiiiiiiiiii e e e e e 352
5.2, 0. USAQE ...eeiiiiiiiiii ettt et 352
75.3. CDI Events from JMS MESSAQESucvuiiniiniiiieiieeiee e e e e e eeaeeanas 353
75.3. 1. USAQE ...ceiiiiiiiiieee ettt 353

76. Annotation ROULING APIS ... 355

76.1. Observer Method Interfacescoooeiiiiiiiiiiii e 355
D LTI STt Lo g BV = o o1 o] o PP 357

4 1214 e To 1V 1] § o 1 o RSP 359

T8. INSTAIALION . 361
78.1. Prer@QUISITESeuuiiiiiiieieii ettt ettt ettt e s 361
T8.2. MAVEN SEIUP ouiiiiiiiie ittt e e e e e e a 361
78.3. MANUAI SELUD ...oiiiiieiiiii et 363

A R D 1T oT=T g Yo L= o Ton YA 1o = Tox 41 0] o I P 365
79.1. Retrieving of validator factory and validators via dependency injection 365
79.2. Dependency injection for constraint validatorscc.ccoeeeviiiiiiineinnen, 366

80. Method Validationccoeuiiiiiiii e e e e 369

DAV ST 1o I Yool - PP 373

T 0T 1T 1o o I P ccelxxv

S 1= {1 o IS - o (=T [P 377

82. Seam Social iIN 5 MINUEIES ..o.uuiiiiiei e e 379
82.1. Declaring an OAuth Configurationccoceiieiiiciiii e, 379
82.2. Configuration with a producer method or a bean definition 379
82.3. Injecting the Service Bean into your COecccoevviiiiiiiieeiii e, 380
82.4. Request the OAuth authorization URL ... 380
82.5. Set the verifier and initiate CONNECIONcccvvvviiiiiiiiiieeiii e, 381
82.6. Send request t0 the SEIVICEovi i 381

83. Seam Social Qualifiers and BEaANScceeiiiiiiiiiiiiiiecie e 383

Xii

83.1. Service QUAlIFIEISiiii i 383

83.2. BASIC JSON BEANS ...uiiiiiiieiiiiiiieee it e e e e e et e et e e et e e e 383
83.3. Beans created by @OAUthAPPIICALIONccoovviiiiiiiiiiii e 383

84. Seam Social AdVanCed USAQEveiiiiiiiiiiiiiie e 385
84.1. Working with Multi Service Managercccoovvvieiiiiieiiiiiieeeei e 385
84.2. Provided MOUIESccoouuiiiiiiiiiee e e e 385
84.3. Extending Seam SOCIAIccc.uuiiiiiiiiiici 385

DY A ST 1o ¢ IS o]] o PN 387
85. Seam Spring - INtrOAUCTIONiiiiii e 389
85.1. FRALUINES ..ot 389

86. Seam Spring - INStallationoiiiiiiiii 391
86.1. Maven dependency configurationc.ccccivieiieeiiiieiiie e 391

87. Seam Spring - Architecture and USageccoevviiiiiiieiiiiieieii e 393
87.1. Accessing Spring artifacts from CDIccoovviiiiiiiiiii e 393
87.1.1. Accessing Spring application CONEXLSevveiiriiiiiiiiiieeeeiiinen. 393

87.1.2. Exposing Spring beans as CDI beanscccooeveiiiiiiciieccinee, 397

87.2. Importing CDI beans into Spring applicationsccccoovveiiiiiieiiiiinneeens 397
87.2.1. Registering a BeanManagerc.cccvveviiiiiiiieiiii e 397

87.2.2. Importing a CDI bean as a Spring beancccoeivviiiiiinieeinnnnnn. 398

XV SEAM WICKEL .vuiiiiiii et e e e et e et e e et aeeeaa e 399
T 10T 1T o] o 1P cdi
88. INSTAIIAtION ..t 403
89. Seam for Apache Wicket FEatUresccooviiiiiiiiiiii e 405
L3S 0 [0 =T o2 1 T o T 117
89.2. Conversation CONMIOLcoeueiiii i e aens 405
89.3. Conversation Propagationcceevuuiieiiiieiiiieeiie e e e e e s e e e eaae e 406

Xiii

Xiv

Chapter 1.

Credits

1.1. List of contributors

Seam is a collaborative project created by the Open Source community. We would like to thank all
of the following people for their contributions, without which Seam would not have been possible.
« Gavin King (Project Founder)

« Shane Bryzak (Project Lead)

» Pete Muir (former Project Lead)
e Dan Allen (Community Liaison)
« John Ament

* Max Rydahl Andersen

« Jay Balunas

 Christian Bauer

* Lincoln Baxter lll

« Emmanuel Bernard

* Mike Brock

 Stuart Douglas

* Matt Drees

* Ken Finnigan

* Denis Forveille

» Jose Freitas

+ Jordan Ganoff

» George Gastaldi

* Martin Gencur

» Jozef Hartinger

 Peter Hilton

¢ Ales Justin

Chapter 1. Credits

* Nicklas Karlsson
* Marcel Kolsteren
* Brian Leathem

e Cody Lerum

» Gunnar Morling

* Marek Novotny

» Jacob Orshalick
« James Perkins
 Clint Popetz

» Jason Porter

» Karel Piwko

* Ove Ranheim

* Norman Richards
» Daniel Roth

* Antoine Sabot-Durand
» Sebastian Sachtleben
* Amir Sadrinia

* Marek Schmidt

e Ondrej Skutka

« Marek Smigielski
e Mark Struberg
 Tihomir Surdilovic
« Mike Youngstrom

* Michael Yuan

1.2. Would you like to contribute?

We are looking for talented people to help us in making Seam the best application framework in
the world. Seam is an Open Source project with an extensive developer and user community,
consisting of both full time and volunteer team members from all over the world.

Would you like to contribute?

There are many ways to contribute, such as:

» Providing code, such as bug fixes and enhancements, or entirely new features

« Improving this documentation - even minor things like typos and grammar correction fixes are
appreciated.

Participate on the user forums to share your Seam knowledge with other users

Writing a blog or article about a particular feature of Seam

If you would like to be involved in the ongoing development of Seam please visit us at http://
www.seamframework.org/Seam3/Contribute to find out more.

http://www.seamframework.org/Seam3/Contribute
http://www.seamframework.org/Seam3/Contribute

Chapter 2.

Seam

2.1. Overview

Seam's mission is to provide a fully-integrated development platform for building rich, standards-
based Internet applications tailored for traditional and cloud deployments.

The Seam 3 project is organized as a collection of modules and developer tooling tailored for Java
EE 6 application development, built on top of the component model defined by JSR-299 Context
and Dependency Injection (CDI). CDI is a JCP standard, you can find out more about it at http://
jcp-org/en/jsr/summary?id=299.

Seam's modules leverage portable CDI extensions to build on the core Java EE functionality
and integrate with JBoss and third-party projects. Together, these modules provide many of the
popular features and integrations from Seam 2 (security, internationalization, JSF, rules, BPM)
while also exploring new integrations and designs.

The developer tooling for Seam is provided by JBoss Tools and Seam Forge. JBoss Tools
enhances Eclipse with features designed to help developers write, test and deploy enterprise Java
applications. Seam Forge is an incremental project enhancement API and shell.

This guide steps you through the modules and select tooling, covering the purpose, APIs and
usage scenarios for each. Collectively, this software should give you everything you need to
develop comprehensive, robust and compelling enterprise applications.

2.2. Seam Bill of Materials

The Seam 3 build is based on Maven 3. Each Seam module is a separate project, with its own
release cycle. Each Seam module is a multi-module project contains the api, implementation,
examples and documentation. Select modules are assembled together to create a Seam
distribution, or stack release.

To keep the modules in sync, the Seam project publishes a special Maven POM known as a "Bill
of Materials" (BOM), which we'll refer to as the Seam BOM. The Seam BOM defines the versions
of all the Seam modules and third-party libraries that are used in the Seam stack using Maven's
dependency management facility.

You can import these version definitions into your project by adding the Seam BOM as a
dependency with scope i nport. The benefit of doing so is that it relieves you from having to
specify the version of any Seam module explicitly. It also means you can upgrade all your Seam
modules at once by just updating the version of the BOM.

Generally, the easiest way to accomplish this import is by first defining a property for the Seam
BOM version:

<properties>

http://jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=299

Chapter 2. Seam

<seam.version>3.1.0.Final</seam.version>
</properties>

Then you add the following dependency declaration to the dependencyManagenent section of
your project's POM file (or parent POM, if you use one).

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>seam-bom</artifactid>
<version>${seam.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Then, it's a simple matter to declare which Seam module dependencies your project requires by
adding them inside the dependenci es section. There's no need to specify a version of the module
as it gets inherited from the Seam BOM.

<dependency>
<groupld>org.jboss.seam.solder</groupld>
<artifactld>seam-solder</artifactld>
</dependency>

To see which version is going to get selected, use the dependency analysis tools in Maven:

mvn dependency:tree

You may upgrade an individual module by specifying the version explicitly. There's no crime in
doing so. The Seam BOM is there as a convenience and a reference point for the recommended
module version matrix. It's up to you how closely to follow it.

Each of the Seam modules also use the Seam BOM to keep the versions of related modules in
sync. Once in a while, a module may specify a version of another module that's different from the
Seam BOM. We usually try to get this worked out by the time we make a Seam stack release
to fix the version matrix.

Seam Bill of Materials

Refer to the Build System Architecture [http://seamframework.org/Seam3/
BuildSystemArchitecture] page on the Seam website for more detail about how the Seam 3 project
is structured. Though, for the purpose of using Seam, how to import the module artifacts is likely
all you need to know about the project's build.

http://seamframework.org/Seam3/BuildSystemArchitecture
http://seamframework.org/Seam3/BuildSystemArchitecture
http://seamframework.org/Seam3/BuildSystemArchitecture

Part |. Solder

Introduction

Solder is a library of Generally Useful Stuff (TM), particularly if you are developing an application
based on CDI (JSR-299 Java Contexts and Dependency Injection), or a CDI based library or
framework.

This guide is split into three parts. ??7? details extensions and utilities which are likely to be of
use to any developer using CDI; ??? describes utilities which are likely to be of use to developers
writing libraries and frameworks that work with CDI; ??? discusses extensions which can be used
to implement configuration for a framework

Xi

Xii

Chapter 3.

Getting Started

Getting started with Solder is easy. All you need to do is put the APl and implementation
JARs on the classpath of your CDI application. The features provided by Solder will be enabled
automatically.

Some additional configuration, covered at the end of this chapter, is required if you are using a
pre-Servlet 3.0 environment.

3.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, first make sure you have
configured your build to use the JBoss Community repository [http://community.jboss.org/wiki/
MavenGettingStarted-Users], where you can find all the Seam artifacts. Then, add the following
dependencies to your pom xni file to get started using Solder:

<dependency>
<groupld>org.jboss.solder</groupld>
<artifactld>solder-api</artifactld>
<version>${solder.version}</version>
<scope>compile</scope>
</dependency>

<dependency>
<groupld>org.jboss.solder</groupld>
<artifactld>solder-impl</artifactld>
<version>${solder.version}</version>
<scope>runtime</scope>
</dependency>

Tip

Substitute the expression ${solder.version} with the most recent or
appropriate version of Solder. Alternatively, you can create a Maven
user-defined property [http://www.sonatype.com/books/mvnref-book/reference/
resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to
satisfy this substitution so you can centrally manage the version.

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

13

http://maven.apache.org/
http://maven.apache.org/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 3. Getting Started

3.2. Transitive dependencies

Most of Solder has very few dependencies, only one of which is not provided by Java EE 6:

e javax.enterprise: cdi-api (provided by Java EE 6)

e javax.inject:javax:inject (provided by Java EE 6)

e javax. annotation:j sr250-api (provided by Java EE 6)

e javax.interceptor:interceptor-api (provided by Java EE 6)

* javax.el:el -api (provided by Java EE 6)

Tip

The POM for Solder specifies the versions required. If you are using Maven 3,
you can easily import the dependencyManagenent into your POM by declaring the
following in your depdendencyManagenent section:

<dependency>
<groupld>org.jboss.solder</groupld>
<artifactld>seam-solder-impl</artifactld>
<version>${solder.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

Some features of Solder require additional dependencies (which are declared optional, so will not
be added as transitive dependencies):

org.javassi st:javassi st
Service Handlers, Unwrapping Producer Methods

j avax. servl et : servl et - api
Accessing resources from the Servlet Context

In addition, a logger implementation (SLF4J, Log4J, JBoss Log Manager or the JDK core logging
facility) is required. Refer to Chapter 8, Logging, redesigned for more information about how
logging is handled in Solder.

3.3. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register
a Servlet component in your application's web.xml to access resources from the Servlet Context.

14

Pre-Servlet 3.0 configuration

<listener>
<listener-class>org.jboss.solder.resourceLoader.servlet.ResourceListener</listener-class>
</listener>

This registration happens automatically in a Servlet 3.0 environment through the use of a /META-
INF/web-fragment.xml included in the Solder implementation.

You're all setup. It's time to dive into all the useful stuff that Solder provides!

15

16

Chapter 4.

Enhancements to the CDI
Programming Model

Solder provides a number enhancements to the CDI programming model which are under trial
and may be included in later releases of Contexts and Dependency Injection.

4.1. Preventing a class from being processed

4.1.1. @Veto

Annotating a class @et o will cause the type to be ignored, such that any definitions on the type
will not be processed, including:

» the managed bean, decorator, interceptor or session bean defined by the type
 any producer methods or producer fields defined on the type
« any observer methods defined on the type

For example:

@Veto
class Utilities {

Besides, a package can be annotated with @/t o, causing all beans in the package to be
prevented from registration.

Example 4.1. package-info.java

@Veto
package com.example;

import org.jboss.solder.core.Veto;

17

Chapter 4. Enhancements to th...

4.1.2. @Requires

Annotating a class with @equi r es will cause the type to be ignored if the class dependencies
cannot be satisfied. Any definitions on the type will not be processed:

» the managed bean, decorator, interceptor or session bean defined by the type
 any producer methods or producer fields defined on the type

 any observer methods defined on the type

Tip

Solder will use the Thread Context ClassLoader, as well as the classloader of the
type annotated @Requi r es to attempt to satisfy the class dependency.

For example:

@Requires("javax.persistence.EntityManager")
class EntityManagerProducer {

@Produces
EntityManager getEntityManager() {

Annotating a package with @Requi r es causes all beans in the package to be ignored if the class
dependencies cannot be satisfied. If both a class and it's package are annotated with @rRequi r es,
both package-level and class-level dependencies have to be satisfied for the bean to be installed.

4.2. @Exact

Annotating an injection point with @xact allows you to select an exact implementation of the
injection point type to inject. For example:

18

@Client

interface PaymentService {

class ChequePaymentService implements PaymentService {

class CardPaymentService implements PaymentService {

class PaymentProcessor {

@Inject @Exact(CardPaymentService.class)
PaymentService paymentService;

4.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want to
differentiate the default system locale from the current client's locale). Solder provides a built in
qualifier, @ i ent for this purpose.

4.4. Named packages

Solder allows you to annotate the package @anmed, which causes every bean defined in the
package to be given its default name. Package annotations are defined in the file package-
i nfo. j ava. For example, to cause any beans defined in com acne to be given their default name:

@Named
package com.acme

19

Chapter 4. Enhancements to th...

4.5. @FullyQualified bean names

According to the CDI standard, the @amed annotation assigns a name to a bean equal to the
value specified in the @amed annotation or, if a value is not provided, the simple name of the bean
class. This behavior aligns with the needs of most application developers. However, framework
writers should avoid trampling on the "root" bean namespace. Instead, frameworks should specify
qualified names for built-in components. The motivation is the same as qualifying Java types. The
@ul I yQual i fi ed provides this facility without sacrificing type-safety.

Solder allows you to customize the bean name using the complementary @ul | yQualified
annotation. When the @ul | yQual i fi ed annotation is added to a @anmed bean type, producer
method or producer field, the standard bean name is prefixed with the name of the Java package
in which the bean resides, the segments separated by a period. The resulting fully-qualified bean
name (FQBN) replaces the standard bean name.

package com.acme;

@FullyQualified @Named
public class NamedBean {
public int getAge()
{

return 5;

The bean in the previous code listing is assigned the name com acne. namedBean. The value of its
property age would be referenced in an EL expression (perhaps in a JSF view template) as follows:

#{com.acme.namedBean.age}

The @ul | yQual i fi ed annotation is permitted on a bean type, producer method or producer field.
It can also be used on a Java package, in which case all @amed beans in that package get a
bean name which is fully-qualified.

@FullyQualified
package com.acme;

If you want to use a different Java package as the namespace of the bean, rather than the Java
package of the bean, you specify any class in that alternative package in the annotation value.

20

@FullyQualified bean names

package com.acme;

@FullyQualified(ClassIinOtherPackage.class) @Named
public class CustomNamespacedNamedBean {

21

22

Chapter 5.

Annotation Literals

Solder provides a complete set of Annot ati onLi teral classes corresponding to the annotation
types defined in the CDI (JSR-299) and Injection (JSR-330) specifications. These literals are
located in the or g. j boss. sol der. | i teral package.

For any annotation that does not define an attribute, its corresponding Annot ati onLi t er al
contains a static | NSTANCE member. You should use this static member whenever you need a
reference to an annotation instance rather than creating a new instance explicitly.

new AnnotatedTypeBuilder<X>().readFromType(type).addToClass(NamedLiteral.INSTANCE);

Literals are provided for the following annotations from Context and Dependency Injection
(including annotations from Dependency Injection for Java):
e QAN ternative

* @ny

e @\pplicationScoped

e @onversati onScoped

e (@pecorator

o @efault

* @el egat e

* @ependent

e @i sposes

* @nject

* @bdel

e @\amed

o @ew

e @\onbi ndi ng

e @Nor mal Scope

e @Dbserves

e @roduces

23

Chapter 5. Annotation Literals

* @Request Scoped
e @essi onScoped
* @peci alizes

* @5t ereotype

* @yped

Literals are also provided for the following annotations from Solder:

e @l ient

e @ef aul t Bean
e (@xact

e @=xneric

* @enericType
* @mbpper

e @kssageBundl e
e @Requires

* @Resol ver

e @Resource

e @nwr aps

e @to

For more information about these annotations, consult the corresponding APl documentation.

24

Chapter 6.

Evaluating Unified EL

Solder provides a method to evaluate EL that is not dependent on JSF or JSP, a facility sadly
missing in Java EE. To use it inject Expressions into your bean. You can evaluate value
expressions, or method expressions. The Solder API provides type inference for you. For example:

class FruitBowl {
@Inject Expressions expressions;

public void run() {
String fruitName = expressions.evaluateValueExpression("#{fruitBowl.fruitName}");
Apple fruit = expressions.evaluateMethodExpression("#{fruitBown.getFruit}");
}
}

6.1. @Resolver

Solder also contains a qualifier to ease registration of j avax. el . ELResol ver instances. The
@resol ver will register any j avax. el . ELResol ver annotated with @Resol ver with the application
wide j avax. el . ELResol ver.

25

26

Chapter 7.

Injecting Resources and System
Properties

7.1. Resource Loading

Solder provides an extensible, injectable resource loader. The resource loader can provide URLs
or managed input streams. By default the resource loader will look at the classpath, and the servlet
context if available.

If the resource name is known at development time, the resource can be injected, either as a URL
or an InputStream:

@Inject
@Resource("WEB-INF/beans.xml")
URL beansXml;

@Inject
@Resource("WEB-INF/web.xml")
InputStream webXml;

If the resource name is not known, the Resour ceProvi der can be injected, and the resource
looked up dynamically:

@Inject
void readXml(ResourceProvider provider, String fleName) {
InputStream is = provider.loadResourceStream(fileName);

}

If you need access to all resources under a given name known to the resource loader (as opposed
to first resource loaded), you can inject a collection of resources:

@Inject
@Resource("WEB-INF/beans.xml")
Collection<URL> beansXmls;

@Inject
@Resource("WEB-INF/web.xml")
Collection<InputStream> webXmls;

27

Chapter 7. Injecting Resource...

Tip

Any input stream injected, or created directly by the ResourceProvider is
managed, and will be automatically closed when the bean declaring the injection
point of the resource or provider is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Properti es:

@Inject
@Resource("META-INF/aws.properties")
Properties awsProperties;

7.1.1. Extending the Resource Loader

If you want to load resources from another location, you can provide an additional resource loader.
First, create the resource loader implementation:

class MyResourceLoader implements ResourcelLoader {

And then register it as a service by placing the fully qualified class name of the implementation in
a file called META- | NF/ servi ces/ org. j boss. sol der. resour ceLoader. Resour ceLoader .

7.2. System Properties

Solder allows system properties to be easily injected using the @yst emqualifier. The following
code snippet shows how you can inject system properties directly into your own bean:

import java.util.Properties;
import org.jboss.solder.core.System;
import javax.inject.Inject;

public class Foo {
@Inject @System Properties properties;

1.

28

System Properties

Solder also exposes the system properties as a named bean called sysPr op, allowing them to
be referenced directly via EL (Expression Language), for example from a JSF page definition.

Please refer to the org.j boss. sol der. system SystenProperties class in the Solder API
documentation for a list of the available methods.

29

30

Chapter 8.

Logging, redesigned

Solder brings a fresh perspective to the ancient art of logging. Rather than just giving you an
injectable version of the same old logging APIs, Solder goes the extra mile by embracing the type-
safety of CDI and eliminating brittle, boilerplate logging statements. The best part is, no matter
how you decide to roll it out, you still get to keep your logging engine of choice (for the logging
wars will never end!).

8.1. JBoss Logging: The foundation

Before talking about Solder Logging, you need to first be introduced to JBoss Logging 3. The
reason is, JBoss Logging provides the foundation on which Solder's declarative programming
model for logging is built. Plus, we have to convince you that you aren't tied to JBoss AS by using it.

JBoss Logging acts as a logging bridge. If you don't add any other logging libraries to your
project, it will delegate all logging calls it handles to the logging facility built into the Java platform
(commonly referred to as JDK logging). That's nice, because it means your deployment headaches
caused by missing logging jars are gone. And you accomplish it all through the use of the
Logger [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html] type. It has
the usual level-based log methods and complimentary ones that provide formatting.

Here's an example of how you obtain a logger and log a basic message:

Logger log = Logger.getLogger(Bean.class);
/l'log a plain text method
log.debug("I'm using JBoss Logging.");

If you want to use another logging engine, such as SLF4J or Log4J, you just have to add the
native library to the deployment. Keep in mind, though, if your application server provides one of
these frameworks, it will get chosen instead. On JBoss AS, JBoss Logging will prefer the JBoss
LogManager because it's the built-in logging engine. (We are looking into more sophisticated
runtime selection of the logging engine).

Here are the providers JBoss Logging supports (and the order in which it looks for them):

» JBoss LogManager
e Log4J

* SLF4J

JDK logging

So you get that JBoss Logging is an abstraction. What else is it good for?

31

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html

Chapter 8. Logging, redesigned

JBoss Logging has a facility for formatting log messages, using either the printf syntax or
MessageFor mat . This makes it possible to use positional parameters to build dynamic log
messages based on contextual information.

Logger log = Logger.getLogger(Bean.class);

/l'log a message formatted using printf-style substitutions
log.infof("My name is %s.", "David");

/l'log a message formatted using MessageFormat-style substitutions
log.errorv("The license for Solder is the {0}", "APL");

The most significant and distinguishing feature of JBoss Logging is support for typed loggers.
A typed logger is an interface that defines methods which serve as logging operations. When
a method is invoked on one of these interfaces, the message defined in an annotation on the
method is interpolated and written to the underlying logging engine.

Here's an example of a typed logger:

import org.jboss.logging.Message;
import org.jboss.logging.LogMessage;
import org.jboss.logging.Messagelogger;

@MessagelLogger
public interface CelebritySightingLog {

@LogMessage @Message("Spotted celebrity %s!")
void spottedCelebrity(String name);

JBoss Logging has parallel support for typed message bundles, whose methods return a formatted
message rather than log it. Combined, these features form the centerpiece of Solder's logging
and message bundle programming model (and a foundation for additional support provided by the
Seam international module). After looking at the samples provided so far, don't pull out your IDE
just yet. We'll get into the details of typed loggers and how to use them in Solder in a later section.

There you have it! JBoss Logging is a low-level API that provides logging abstraction, message
formatting and internationalization, and typed loggers. But it doesn't tie you to JBoss AS!

With that understanding, we'll now move on to what Solder does to turn this foundation into a
programming model and how to use it in your CDI-based application.

32

Solder Logging: Feature set

8.2. Solder Logging: Feature set

Solder builds on JBoss Logging 3 to provide the following feature set:

« An abstraction over common logging backends and frameworks (such as JDK Logging, log4j
and slf4j)

* Injectable loggers and message bundles

 Innovative, typed message loggers and message bundles defined using interfaces

« Build time tooling to generate typed loggers for production

 Full support for internationalization and localization:
» Developers work with interfaces and annotations only
» Translators work with message bundles in properties files

* Access to the "Mapped Diagnostic Context® (MDC) and/or the "Nested Diagnostic
Context" (NDC) (if the underlying logger supports it)

 Serializable loggers for use in contextual components

° Note

Seam's international module builds on this programming model to provide even
more features for producing localized message strings.

Without further discussion, let's get into it.

8.3. Typed loggers

To define a typed logger, first create an interface, annotate it, then add methods that will act as
log operations and configure the message it will print using another annotation:

import org.jboss.solder.messages.Message;
import org.jboss.solder.logging.Log;
import org.jboss.solder.logging.MessagelLogger;

@MessagelLogger
public interface TrainSpotterLog {

@Log @Message("'Spotted %s diesel trains")
void dieselTrainsSpotted(int number);

33

Chapter 8. Logging, redesigned

We have configured the log messages to use printf-style interpolations of parameters (%s).

j=deo

Note

Make sure you are using the annotations from Solder
(org.jboss. sol der. nessages and org.jboss. sol der.|oggi ng packages

only).

You can then inject the typed logger with no further configuration necessary. We use another
optional annotation to set the category of the logger to "trains" at the injection point, overriding the
default category of the fully-qualified class name of the component receiving the injection:

@Inject @Category("trains")
private TrainSpotterLog log;

We log a message by simply invoking a method of the typed logger interface:

log.dieselTrainsSpotted(7);

The default locale will be used unless overridden. Here we configure the logger to use the UK

locale:

@Inject @Category(“"trains") @Locale("en_GB")
private TrainSpotterLog log;

You can also log exceptions.

import org.jboss.solder.messages.Message;
import org.jboss.solder.messages.Cause;
import org.jboss.solder.logging.Log;

import org.jboss.solder.logging.MessagelL ogger;

@MessagelLogger
public interface TrainSpotterLog {

34

Native logger API

@Log @Message("Failed to spot train %s")
void missedTrain(String trainNumber, @Cause Exception exception);

You can then log a message with an exception as follows:

try {

} catch (Exception e) {
log.missedTrain("RH1", e);

The stacktrace of the exception parameter will be written to the log along with the message.

Typed loggers also provide internationalization support. Simply add the @tssageBundl e
annotation to the logger interface.

If injecting a typed logger seems too "enterprisy” to you, or you need to get a reference to it from
outside of CDI, you can use a static accessor method on Logger :

TrainSpotterLog log = Logger.getMessagelLogger(TrainSpotterLog.class, "trains");
log.dieselTrainsSpotted(7);

The injected version is a convenience for those who prefer the declarative style of programming.
If you are looking for a simpler starting point, you can simply use the Logger directly.

8.4. Native logger API

You can also inject a "plain old" Logger (from the JBoss Logging API):

import javax.inject.Inject;
import org.jboss.solder.logging.Logger;
public class LogService {

@Inject

private Logger log;

public void logMessage() {
log.info("Hey sysadmins!");

35

Chapter 8. Logging, redesigned

Log messages created from this Logger will have a category (logger name) equal to the fully-
qualified class name of the bean implementation class. You can specify a category explicitly using
an annotation.

@Inject @Category("billing")
private Logger log;

You can also specify a category using a reference to a type:

@Inject @TypedCategory(BillingService.class)
private Logger log;

8.5. Typed message bundles

Often times you need to access a localized message. For example, you need to localize an
exception message. Solder let's you retrieve this message from a typed message logger to avoid
having to use hard-coded string messages.

To define a typed message bundle, first create an interface, annotate it, then add methods that
will act as message retrievers and configure the message to produce using another annotation:

import org.jboss.solder.messages.Message;
import org.jboss.solder.messages.MessageBundle;

@MessageBundle
public interface TrainMessages {

@Message("No trains spotted due to %s")
String noTrainsSpotted(String cause);

Inject it:

@Inject @MessageBundle
private TrainMessages messages;

36

Implementation classes

And use it:

throw new BadDayException(messages.noTrainsSpotted("leaves on the line"));

8.6. Implementation classes

You may have noticed that throughout this chapter, we've only defined interfaces. Yet, we are
injecting and invoking them as though they are concrete classes. So where's the implementation?

Good news. The typed logger and message bundle implementations are generated automatically!
You'll see this strategy used often in Seam 3. It's declarative programming at its finest (or to an
extreme, depending on how you look at it). Either way, it saves you from a whole bunch of typing.

So how are they generated? Let's find out!

8.6.1. Generating the implementation classes

The first time you need logging in your application, you'll likely start with the more casual approach
of using the Logger API directly. There's no harm in that, but it's certainly cleaner to use the
typed loggers, and at the same time leverage the parallel benefits of the typed bundles. So we
recommend that as your long term strategy.

Once you are ready to move to the the typed loggers and message bundles, you'll need to generate
the concrete implementation classes as part of the build. These classes are generated by using
an annotation processor that is provided by Solder and based on the JBoss Logging tools project
[https://github.com/jamezp/jboss-logging-tools]. Don't worry, setting it up is a lot simpler than it
sounds. You just need to do these two simple steps:

» Set the Java compliance to 1.6 (or better)

« Add the Solder tooling library to the build classpath

Warning

If you forget to add the annotation processor to your build, you'll get an error when
you deploy the application that reports: "Invalid bundle interface (implementation
not found)". This error occurs because the concrete implementation classes are
missing.

Setting the Java compliance to 1.6 enables any annotation processors on the classpath to be
activated during compilation.

If you're using Maven, here's how the configuration in your POM file looks:

<dependencies>

37

https://github.com/jamezp/jboss-logging-tools
https://github.com/jamezp/jboss-logging-tools

Chapter 8. Logging, redesigned

<!I-- Annotation processor for generating typed logger and message bundle classes -->
<dependency>

<groupld>org.jboss.solder</groupld>

<artifactld>solder-tooling</artifactld>

<scope>provided</scope>

<optional>true</optional>
</dependency>

</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-compiler-plugin</artifactld>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
</plugins>
</build>

Here are the classes that will be generated for the examples above:

TrainSpotterLog_$logger.java
TrainSpotterLog_%$logger_en_GB.java
TrainMessages_$bundle.java

Classes are generated for each language referenced by an annotation or if there is
a .il8n.properties language file in the same package as the interface and has the same root name.
For instance, if we wanted to generate a French version of Tr ai nMessages, we would have to
create the following properties file in the same package as the interface:

TrainMessages.il8n_fr.properties

38

Including the implementation classes in Arquillian tests

Then populate it with the translations (Note the property key is the method name):

noTrainsSpotted=pas de trains repéré en raison de %s

Now the annotation processor will generate the following class:

TrainMessages_$bundle_fr.java

Now you can add typed loggers and message bundles at will (and you won't have to worry about
unsatisfied dependencies).

8.6.2. Including the implementation classes in Arquillian tests

If you are writing an Arquillian test, be sure to include the concrete classes in the ShrinkWrap
archive. Otherwise, you may receive an exception like:

Invalid bundle interface org.example.log.AppLog (implementation not found)

The best approach is to put your typed message loggers and bundles in their own package. Then,
you include the package in the ShrinkWrap archive:

ShrinkWrap.create(JavaArchive.class, "test.jar")
.addPackage(AppLog.class.getPackage());

This strategy will effectively package the interface and the generated implementation class(es)
(even though you can't see the generated implementation classes in your source tree).

39

40

Chapter 9.

Annotation and AnnotatedType
Utilities

Solder provides a number of utility classes that make working with annotations and
Annot at edTypes easier. This chapter walks you through each utility, and gives you some ideas
about how to use it. For more detail, take a look at the JavaDoc on each class.

9.1. Annotated Type Builder

Solder provides an Annot at edType implementation that should be suitable for the needs of most
portable extensions. The Annot at edType is created from Annot at edTypeBui | der, typically in an
extension's observer method, as follows:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()
.readFromType(type, true) /* readFromType can read from an AnnotatedType or a class */
.addToClass(ModelLiteral.INSTANCE); /* add the @Model annotation */
.create()

Here we create a new builder, and initialize it using an existing Annot at edType. We can then add
or remove annotations from the class, and its members. When we have finished modifying the
type, we call cr eat e() to spit out a new, immutable, Annot at edType.

AnnotatedType redefinedType = builder.create();

One place this is immensely useful is for replacing the Annot at edType in an extension that
observes the Pr ocessAnnot at edType event:

public <X> void processAnnotatedType(@Observes ProcessAnnotatedType<X> evt) {
AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()
.readFromType(evt.getAnnotatedType(), true)
.addToClass(ModelLiteral.INSTANCE);
evt.setAnnotatedType(builder.create());

This type is now effectively annotated with @wdel , even if the annotation is not present on the
class definition in the Java source file.

41

Chapter 9. Annotation and Ann...

Annot at edTypeBui | der also allows you to specify a "redefinition", which can be applied to the
type, a type of member, or all members. The redefiner will receive a callback for any annotations
present which match the annotation type for which the redefinition is applied.

For example, to remove the qualifier @i que from the type and any of its members, use this:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()
.readFromType(type, true)
.redefine(Unique.class, new AnnotationRedefiner<Unique>() {

public void redefine(RedefinitionContext<Ungiue> ctx) {
ctx.getAnnotationBuilder().remove(Unique.class);

}
D
AnnotatedType redefinedType = builder.create();

No doubt, this is a key blade in Solder's army knife arsenal of tools. You can quite effectively
change the picture of the type metadata CDI discovers when it scans and processes the classpath
of a bean archive.

9.2. Annotation Instance Provider
Sometimes you may need an annotation instance for an annotation whose type is not known at
development time. Solder provides a Annot at i onl nst ancePr ovi der class that can create an

Annot at i onLi t eral instance for any annotation at runtime. Annotation attributes are passed in
via a Map<St ri ng, Qbj ect >. For example given the follow annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface MultipleMembers {
int intMember();
long longMember();
short shortMember();
float floatMember();
double doubleMember();

byte byteMember();

char charMember();

42

Annotation Inspector

boolean booleanMember();

int[] intArrayMember();

We can create an annotation instance as follows:

[* Create a new provider */
AnnotationinstanceProvider provider = new AnnotationinstanceProvider();

[* Set the value for each of attributes */
Map<String, Object> values = new HashMap<String, Object>();
values.put("intMember", 1);
values.put("longMember", 1);
values.put("shortMember", 1);
values.put(“floatMember", 0);
values.put("doubleMember", 0);
values.put("byteMember", ((byte) 1));
values.put("charMember", 'c";
values.put("booleanMember", true);
values.put("intArrayMember", new int[] { 0, 1 });

[* Generate the instance */
MultipleMembers an = provider.get(MultipleMembers.class, values);

9.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated.

For example:

/* Discover all annotations on type which are meta-annotated @Constraint */
Set<Annotation> constraints = Annotationinspector.getAnnotations(type, Constraint.class);

/* Load the annotation instance for @FacesValidator the annotation may declared on the type, */

[* or, if the type has any stereotypes, on the stereotypes */
FacesValidator validator = Annotationinspector.getAnnotation(
type, FacesValidator.class, true, beanManager);

The utility methods work correctly on St er eot ypes as well. Let's say you're working with a bean
that was decorated @mbdel , running the following example will still show you the underlying @Named

43

Chapter 9. Annotation and Ann...

/[assuming you have a class..
@Model
public class User {

/I Assume type represents the User class
assert Annotationinspector.isAnnotationPresent(type, Named.class, beanManager);

/I Retrieves the underlying @Named instance on the stereotype
Named name = AnnotationIinspector.getAnnotation(type, Named.class, true, beanManager);

The search algorithm will first check to see if the annotation is present directly on the annotated
element first, then searches within the stereotype annotations on the element. If you only
want to search for Annot ati ons on Stereotypes, then you can use either of the methods
Annot ati onl nspect or. get Annot at i onFr onft er eot ype.

There is an overloaded form of i sAnnot at i onPresent and get Annot at i on to control whether it
will search on St er eot ypes or not. For both of these methods, a search is performed first directly
on the element before searching in stereotypes.

9.4. Synthetic Qualifiers

When developing an extension to CDI, it can be useful to detect certain injection points, or bean
definitions and based on annotations or other metadata, add qualifiers to further disambiguate the
injection point or bean definition for the CDI bean resolver. Solder's synthetic qualifiers can be
used to easily generate and track such qualifiers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The
provider will track the qualifier, and if a qualifier is requested again for the same original annotation,
the same instance will be returned.

[* Create a provider, giving it a unique namespace */
Synthetic.Provider provider = new Synthetic.Provider("com.acme");

/* Get the a synthetic qualifier for the original annotation instance */
Synthetic synthetic = provider.get(originalAnnotation);

[* Later calls with the same original annotation instance will return the same instance */
[* Alternatively, we can "get and forget" */

Synthetic synthetic2 = provider.get();

44

Reflection Utilities

9.5. Reflection Utilities

Solder comes with a number miscellaneous reflection utilities; these extend JDK reflection, and
some also work on CDI's Annotated metadata. See the javadoc on Ref | ecti ons for more.

Solder also includes a simple utility, Pri mi ti veTypes for converting between primitive and their
respective wrapper types, which may be useful when performing data type conversion. Sadly, this
is functionality which is missing from the JDK.

I nj ect abl eMet hod allows an Annot at edMet hod to be injected with parameter values obtained
by following the CDI type safe resolution rules, as well as allowing the default parameter values
to be overridden.

45

46

Chapter 10.

Obtaining a reference to the
BeanManager

When developing a framework that builds on CDI, you may need to obtain the BeanManager for
the application, you can't simply inject it as you are not working in an object managed by the
container. The CDI specification allows lookup of j ava: conp/ BeanManager in JNDI, however,
some environments don't support binding to this location (e.g. servlet containers such as Tomcat
and Jetty) and some environments don't support JNDI (e.g. the Weld SE container). For this
reason, most framework developers will prefer to avoid a direct INDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for
example via a context object. For example, you might be able to place the BeanManager in the
Ser vl et Cont ext , and retrieve it at a later date.

On some occasions however there is no suitable context to use, and in this case, you
can take advantage of the abstraction over BeanManager lookup provided by Solder. To
lookup up a BeanManager, you can extend the abstract BeanManager Awar e class, and call
get BeanManager () :

public class Wicketintegration extends BeanManagerAware {

public WicketManager getWicketManager() {
Bean<?> bean = getBeanManager().getBeans(IRequestListener.class);
... /I and so on to lookup the bean

The benefit here is that BeanManager Awar e class will first look to see if its BeanManager injection
point was satisfied before consulting the providers. Thus, if injection becomes available to the
class in the future, it will automatically start the more efficient approach.

Occasionally you will be working in an existing class hierarchy, in which case you can use the
accessor on BeanManager Locat or . For example:

public class ResourceServlet extends HttpServlet {

protected void doGet(HttpServletRequest req, HttpServietResponse resp)
throws ServletException, IOException {
BeanManager beanManager = new BeanManagerLocator().getBeanManager();

47

Chapter 10. Obtaining a refer...

If this lookup fails to resolve a BeanManager , the BeanManager Unavai | abl eExcept i on, a runtime
exception, will be thrown. If you want to perform conditional logic based on whether the
BeanManager is available, you can use this check:

public class ResourceServlet extends HttpServlet {

protected void doGet(HttpServletRequest req, HttpServietResponse resp)
throws ServletException, IOException {
BeanManagerLocator locator = new BeanManagerLocator();
if (locator.isBeanManagerAvailable()) {
BeanManager beanManager = locator.getBeanManager();
... I work with the BeanManager

}
else {
... Il work without the BeanManager
}
}

However, keep in mind that you can inject into Servlets in Java EE 6!! So it's very likely the lookup
isn't necessary, and you can just do this:

public class ResourceServlet extends HttpServlet {

@Inject
private BeanManager beanManager;

protected void doGet(HttpServletRequest req, HttpServietResponse resp)
throws ServletException, IOException {
... Il work with the BeanManager

48

Chapter 11.

Bean Utilities

Solder provides a number of base classes which can be extended to create custom beans. Solder
also provides bean builders which can be used to dynamically create beans using a fluent API.

Abst ract | rmut abl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute specification
defaults if nul | is passed for a particular attribute. Subclasses must implement the cr eat e()
and dest roy() methods.

Abst ract | mut abl ePr oducer
Animmutable (and hence thread-safe) abstract class for creating producers. Subclasses must
implement pr oduce() and di spose() .

BeanBui | der
A builder for creating immutable beans which can read the type and annotations from an
Annot at edType.

Beans
A set of utilities for working with beans.

For war di ngBean
A base class for implementing Bean which forwards all calls to del egat e() .

For war di ngl nj ecti onTar get
A base class for implementing | nj ecti onTar get which forwards all calls to del egat e() .

For war di ngQbser ver Met hod
A base class for implementing Cbser ver Met hod which forwards all calls to del egat e() .

| mut abl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute
specification defaults if nul | is passed for a particular attribute. An implementation of
Cont ext ual Li f ecycl e may be registered to receive lifecycle callbacks.

| mmrut abl el nj ecti onPoi nt
An immutable (and hence thread-safe) injection point.

| mmut abl eNar r owi ngBean
An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build
a general purpose bean (likely a producer method), and register it for a narrowed type (or
qualifiers).

| mmrut abl ePassi vat i onCapabl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute
specification defaults if nul | is passed for a particular attribute. An implementation of

49

Chapter 11. Bean Utilities

Cont ext ual Li f ecycl e may be registered to receive lifecycle callbacks. The bean implements
Passi vat i onCapabl e, and an id must be provided.

| mrut abl ePassi vat i onCapabl eNar r owi ngBean
An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build
a general purpose bean (likely a producer method), and register it for a narrowed type (or
qualifiers). The bean implements Passi vat i onCapabl e, and an id must be provided.

Nar r owi ngBeanBui | der
A builder for creating immutable narrowing beans which can read the type and annotations
from an Annot at edType.

The use of these classes is in general trivially understood with an understanding of basic
programming patterns and the CDI specification, so no in depth explanation is provided here. The
JavaDoc for each class and method provides more detail.

50

Chapter 12.

Property Utilities

Solder provides a number of convenient features for querying and working with JavaBean [http://
en.wikipedia.org/wiki/JavaBean] properties. They can be used with properties exposed via a
getter/setter method, or directly via the field of a bean, providing a uniform interface that allows
you to work with all properties in the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

12.1. Working with properties

The Property<V> interface declares a number of methods for interacting with bean properties.
You can use these methods to read or set the property value, and read the property type
information. Properties may be readonly.

Table 12.1. Property methods

Method

String getNanme();

Type get BaseType();
Cl ass<V> get Javad ass();

Annot at edEl enent
get Annot at edEl ermrent () ;

V get Val ue();

voi d set Val ue(V val ue);
Gl ass<?>

get Decl ari ngCl ass();

bool ean i sReadOnl y();

Menmber get Menber () ;

voi d set Accessi bl e

Description

Returns the name of the
property.

Returns the property type.
Returns the property class.

Returns the annotated
element -either the Field or
Met hod that the property is
based on.

Returns the value of the
property.
Sets the value of the property.

Gets the class declaring the
property.

Check if the property can be
written as well as read.

Get the class member which
retrieves the property (i.e. field
or getter).

Sets the Menber to be
accessible to changes.
Should be performed within
a PriviledgedAction to
work correctly with Security
Managers.

51

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 12. Property Utilities

Given a class with two properties, per sonNanme and post code:'

class Person {
PersonName personName;
Address address;

void setPostcode(String postcode) {
address.setPostcode(postcode);

}

String getPostcode() {
return address.getPostcode();

You can create two properties:

Property<PersonName> personNameProperty = Properties.createProperty(Person.class.getField("personName")
Property<String> postcodeProperty = Properties.createProperty(Person.class.getMethod("getPostcode™"));

12.2. Querying for properties

To create a property query, use the PropertyQueries class to create a new PropertyQuery
instance:

PropertyQuery<?> query = PropertyQueries.createQuery(Foo.class);

If you know the type of the property that you are querying for, you can specify it via a type
parameter:

PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityClass);

52

Property Criteria

12.3. Property Criteria
Once you have created the Pr oper t yQuer y instance, you can add search criteria. Solder provides
three built-in criteria types, and it is very easy to add your own. A criteria is added to a query via

the addCri teri a() method. This method returns an instance of the Pr opert yQuery, so multiple
addCriteria() invocations can be stacked.

12.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type.
For example, take the following class:

public class Foo {
private String accountNumber;
private @Scrambled String accountPassword,;
private String accountName;

}

To query for properties of this bean annotated with @scranbl ed, you can use an
Annot at edPropertyCriteri a, like so:

PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(new AnnotatedPropertyCriteria(Scrambled.class));

This query matches the account Passwor d property of the Foo bean.

12.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

public class Foo {
public String getBar() {
return "foobar";

The following query will locate properties with a name of " bar " :

PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

53

Chapter 12. Property Utilities

.addCriteria(new NamedPropertyCriteria("bar"));

12.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {
private Bar bar;

}

The following query will locate properties with a type of Bar :

PropertyQuery<Bar> query = PropertyQueries.<Bar>createQuery(Foo.class)
.addCriteria(new TypedPropertyCriteria(Bar.class));

12.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the
org.j boss. sol der. properties. query. PropertyCriteria interface, which declares the two
methods fi el dvat ches() and met hodMat ches. In the following example, our custom criteria
implementation can be used to locate whole number properties:

public class WholeNumberPropertyCriteria implements PropertyCriteria {
public boolean fieldMatches(Field f) {
return f.getType() == Integer.class || f.getType() == Integer. TYPE.getClass() ||
f.getType() == Long.class || f.getType() == Long.TYPE.getClass() ||
f.getType() == Biglnteger.class;

public boolean methodMatches(Method m) {
return m.getReturnType() == Integer.class || m.getReturnType() == Integer.TYPE.getClass() ||
m.getReturnType() == Long.class || m.getReturnType() == Long.TYPE.getClass() ||
m.getReturnType() == Biglnteger.class;

12.4. Fetching the results

After creating the Pr opert yQuery and setting the criteria, the query can be executed by invoking
either the get Resul t Li st () or get FirstResult() methods. The get Resul tList() method

54

Fetching the results

returns a Li st of Property objects, one for each matching property found that matches all the
specified criteria:

List<Property<String>> results = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(new TypedPropertyCriteria(String.class))
.getResultList();

If no matching properties are found, get Resul t Li st () will return an empty Li st . If you know that
the query will return exactly one result, you can use the get Fi r st Resul t () method instead:

Property<String> result = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(new NamedPropertyCriteria("bar"))
.getFirstResult();

If no properties are found, then get Fi r st Resul t () will return null. Alternatively, if more than one
result is found, then get Fi r st Resul t () will return the first property found.

Alternatively, if you know that the query will return exactly one result, and you want to assert that
assumption is true, you can use the get Si ngl eResul t () method instead:

Property<String> result = PropertyQueries.<String>createQuery(Foo.class)
.addCriteria(new NamedPropertyCriteria("bar"))
.getSingleResult();

If no properties are found, or more than one property is found, then get Si ngl eResul t () will throw
an exception. Otherwise, get Si ngl eResul t () will return the sole property found.

Sometimes you may not be interested in read only properties, so
get Resul t Li st (),get FirstResult() and get SingleResult() have corresponding
get Witabl eResultList(),getWitableFirstResult() and getWitableSingl eResult()
methods, that will only return properties that are not read-only. This means that if there is a field and
a getter method that resolve to the same property, instead of getting a read-only Met hodPr operty
you will get a writable Fi el dProperty.

55

56

Chapter 13.

Unwrapping Producer Methods

Unwrapping producer methods allow you to create injectable objects that have "self-managed"
lifecycles. An unwrapped injectable object is useful if you need a bean whose lifecycle does not
exactly match one of the lifecycles of the existing scopes. The lifecycle of the bean is managed by
the bean that defines the producer method, and changes to the unwrapped object are immediately
visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it
@nwr aps. The return type of the managed producer must be proxyable (see Section 5.4.1
of the CDI specification, "Unproxyable bean types" [http://docs.jboss.org/cdi/spec/1.0/html/
injectionelresolution.html#unproxyable]). Every time a method is called on unwrapped object the
invocation is forwarded to the result of calling the unwrapping producer method - the unwrapped
object.

Important
Solder implements this by injecting a proxy rather than the original object. Every

invocation on the injected proxy will cause the unwrapping producer method to be
invoked to obtain the instance on which to invoke the method called. Solder will
then invoke the method on unwrapped instance.

Because of this, it is very important the producer method is lightweight.

For example consider a permission manager (that manages the current permission), and a
security manager (that checks the current permission level). Any changes to permission in the
permission manager are immediately visible to the security manager.

@SessionScoped
class PermissionManager {

Permission permission;

void setPermission(Permission permission) {
this.permission=permission;

}

@Unwraps @Current
Permission getPermission() {
return this.permission;

}
}

57

http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable

Chapter 13. Unwrapping Produc...

@SessionScoped
class SecurityManager {

@Inject @Current
Permission permission;

boolean checkAdminPermission() {
return permission.getName().equals("admin");

When per mi ssi on. get Nane() is called, the unwrapped Permission forwards the invocation of
get Name() to the result of calling Per ni ssi onManager . get Per ni ssi on() .

For example you could raise the permission level before performing a sensitive operation, and
then lower it again afterwards:

public class SomeSensitiveOperation {

@Inject
PermissionManager permissionManager;

public void perform() {
try {
permissionManager.setPermission(Permissions.ADMIN);
/I Do some sensitive operation
}finally {
permissionManager.setPermission(Permissions.USER);
}
}

Unwrapping producer methods can have parameters injected, including | nj ect i onPoi nt (which
represents) the calling method.

58

Chapter 14.

Default Beans

Suppose you have a situation where you want to provide a default implementation of a particular
service and allow the user to override it as needed. Although this may sound like a job for an
alternative, they have some restrictions that may make them undesirable in this situation. If you
were to use an alternative it would require an entry in every beans. xn file in an application.

Developers consuming the extension will have to open up the any jar file which references the
default bean, and edit the beans. xn file within, in order to override the service. This is where
default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no
other bean is installed that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that
Solder provides!). If JSF is available we want to use the Functi onMapper provided by the JSF
implementation to resolve functions, otherwise we just want to use a a default Funct i onMapper
implementation that does nothing. We can achieve this as follows:

@DefaultBean(FunctionMapper.class)

@Mapper
class FunctionMapperimpl extends FunctionMapper {

@Override
public Method resolveFunction(String prefix, String localName) {
return null;

And in the JSF module:

class FunctionMapperProvider {

@Produces
@Mapper
FunctionMapper produceFunctionMapper() {
return FacesContext.getCurrentinstance().getELContext().getFunctionMapper();

59

Chapter 14. Default Beans

If Functi onMapper Provi der is present then it will be used by default, otherwise the default
Funct i onMapper | npl is used.

A producer method or producer field may be defined to be a default producer by placing the
@ef aul t Bean annotation on the producer. For example:

class CacheManager {

@DefaultBean(Cache.class)
Cache getCache() {

Any producer methods or producer fields declared on a default managed bean are
automatically registered as default producers, with Met hod. get Generi cRet urnType() or
Fi el d. get Generi cType() determining the type of the default producer. The default producer
type can be overridden by specifying @ef aul t Bean on the producer method or field.

60

Chapter 15.

Generic Beans

Many common services and API's require the use of more than just one class. When exposing
these services via CDI, it would be time consuming and error prone to force the end developer to
provide producers for all the different classes required. Generic beans provide a solution, allowing
a framework author to provide a set of related beans, one for each single configuration point
defined by the end developer. The configuration points specifies the qualifiers which are inherited
by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an
extension to integrate our custom messaging solution "ACME Messaging" with CDI. The ACME
Messaging API for sending messages consists of several interfaces:

MessageQueue
The message queue, onto which messages can be placed, and acted upon by ACME
Messaging

MessageDi spat cher
The dispatcher, responsible for placing messages created by the user onto the queue

Di spat cher Pol i cy
The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSyst enConfi gurati on
The messaging system configuration

We want to be able to create as many MessageQueue configurations as they need, however we do
not want to have to declare each producer and the associated plumbing for every queue. Generic
beans are an ideal solution to this problem.

15.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues
to interact with ACME Messaging, a default queue that is installed with qualifier @ef aul t and a
durable queue that has qualifier @ur abl e:

class MyMessageQueues {
@Produces
@ACMEQueue("defaultQueue™)

MessageSystemConfiguration defaultQueue = new MessageSystemConfiguration();

@Produces @Durable @ConversationScoped

61

Chapter 15. Generic Beans

@ACMEQueue("durableQueue")

MessageSystemConfiguration producerDefaultQueue() {
MessageSystemConfiguration config = new MessageSystemConfiguration();
config.setDurable(true);
return config;

}

}

Looking first at the default queue, in addition to the @Produces annotation, the generic
configuration annotation ACMEQueue, is used, which defines this to be a generic configuration point
for ACME messaging (and cause a whole set of beans to be created, exposing for example the
dispatcher). The generic configuration annotation specifies the queue name, and the value of the
producer field defines the messaging system's configuration (in this case we use all the defaults).
As no qualifier is placed on the definition, @ef aul t qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of
the queue before having Solder use it). Additionally, it specifies that the generic beans created
(that allow for their scope to be overridden) should be placed in the conversation scope. Finally,
it specifies that the generic beans created should inherit the qualifier @ur abl e.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration

point:

class MessagelLogger {

@Inject
MessageDispatcher dispatcher;

void logMessage(Payload payload) {
/* Add metaddata to the message */
Collection<Header> headers = new ArrayList<Header>();

Message message = new Message(headers, payload);
dispatcher.send(message);

}

class DurableMessagelLogger {

@Inject @Durable
MessageDispatcher dispatcher;

62

Using generic beans

@Inject @Durable
DispatcherPolicy policy;

/* Tweak the dispatch policy to enable duplicate removal */

@Inject

void tweakPolicy(@Durable DispatcherPolicy policy) {
policy.removeDuplicates();

}

void logMessage(Payload payload) {

It is also possible to configure generic beans using beans by sub-classing the configuration type,
or installing another bean of the configuration type through the SPI (e.g. using Solder Config). For
example to configure a durable queue via sub-classing:

@Durable @ConversationScoped
@ACMEQueue("durableQueue")
class DurableQueueConfiguration extends MessageSystemConfiguration {

public DurableQueueConfiguration()

{
this.durable = true;
}
}

And the same thing via Solder Config:

<my:MessageSystemConfiguration>
<my:Durable/>
<s:ConversationScoped/>
<my:ACMEQueue>durableQueue</my:ACMEQueue>
<my:durable>true</my:durable>
</my:MessageSystemConfiguration>

63

Chapter 15. Generic Beans

15.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating
the generic configuration annotation:

@Retention(RUNTIME)
@GenericType(MessageSystemConfiguration.class)
@interface ACMEQueue {

String value();

The generic configuration annotation a defines the generic configuration type (in this case
MessageSyst enConf i gur ati on); the type produced by the generic configuration point must be of
this type. Additionally it defines the member nane, used to provide the queue name.

Next, we define the queue manager bean. The manager has one producer method, which creates
the queue from the configuration:

@GenericConfiguration(ACMEQueue.class) @ApplyScope
class QueueManager {

@Inject @Generic
MessageSystemConfiguration systemConfig;

@Inject
ACMEQueue config;

MessageQueueFactory factory;

@PostConstruct
void init() {
factory = systemConfig.createMessageQueueFactory();

}

@Produces @ApplyScope
public MessageQueue messageQueueProducer() {
return factory.createMessageQueue(config.name());

}
}

64

Defining Generic Beans

The bean is declared to be a generic bean for the @\CMEQueue generic configuration type
annotation by placing the @seneri cConfi gur ati on annotation on the class. We can inject the
generic configuration type using the @seneri ¢ qualifier, as well the annotation used to define the
queue.

Placing the @ppl yScope annotation on the bean causes it to inherit the scope from the generic
configuration point. As creating the queue factory is a heavy operation we don't want to do it more
than necessary.

Having created the MessageQueueFact ory, we can then expose the queue, obtaining its name
from the generic configuration annotation. Additionally, we define the scope of the producer
method to be inherited from the generic configuration point by placing the annotation @ppl yScope
on the producer method. The producer method automatically inherits the qualifiers specified by
the generic configuration point.

Finally we define the message manager, which exposes the message dispatcher, as well as
allowing the client to inject an object which exposes the policy the dispatcher will use when queuing
messages. The client can then tweak the policy should they wish.

@Generic
class MessageManager {

@Inject @Generic
MessageQueue queue;

@Produces @ApplyScope
MessageDispatcher messageDispatcherProducer() {
return queue.createMessageDispatcher();

@Produces
DispatcherPolicy getPolicy() {
return queue.getDispatcherPolicy();

65

66

Chapter 16.

Service Handler

The service handler facility allow you to declare interfaces and abstract classes as automatically
implemented beans. Any call to an abstract method on the interface or abstract class will be
forwarded to the invocation handler for processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers
may be useful for you, as they allow the end user to map a lookup to a method using domain
specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA
queries upon abstract method calls. First we define the annotation used to mark interfaces as
automatically implemented beans. We meta-annotate it, defining the invocation handler to use:

@ServiceHandlerType(QueryHandler.class)
@Retention(RUNTIME)

@Target({TYPE})

@interface QueryService {}

We now define an annotation which provides the query to execute:

@Retention(RUNTIME)
@Target{METHODY})
@interface Query {

String value();

And finally, the invocation handler, which simply takes the query, and executes it using JPA,
returning the result:

class QueryHandler {
@Inject EntityManager em;

@Aroundinvoke
Object handle(InvocationContext ctx) {
return em.createQuery(ctx.getMethod().getAnnotation(Query.class).value()).getResultList();

}

67

Chapter 16. Service Handler

Finally, we can define (any number of) interfaces which define our queries:

@QueryService
interface UserQuery {

@Query("select u from User u")
public List<User> getAllUsers();

}

Finally, we can inject the query interface, and call methods, automatically executing the JPA query.

class UserListManager {
@Inject
UserQuery userQuery;

List<User> users;

@PostConstruct
void create() {
users=userQuery.getAllUsers();

}

68

Chapter 17.

XML Configuration Introduction

Solder provides a method for configuring CDI beans using alternate metadata sources, such
as XML configuration. Currently, the XML provider is the only alternative available. Using a
"type-safe” XML syntax, it is possible to add new beans, override existing beans, and add extra
configuration to existing beans.

17.1. Getting Started

To take advantage of XML Configuration, you need metadata sources in the form of XML files. By
default these are discovered from the classpath in the following locations:

e [META- | NF/ beans. xm
e /[META- | NF/ seam beans. xm

The beans. xnl file is the preferred way of configuring beans via XML; however some CDI
implementations will not allow this, so seam beans. xn is provided as an alternative.

Here is a simple example. The following class represents a report:

class Report {
String filename;

@Inject
Datasource datasource;

/lgetters and setters

}

And the following support classes:

interface Datasource {
public Data getData();

}

@SalesQualifier
class SalesDatasource implements Datasource {
public Data getData()
{
/Ireturn sales data
}
}

69

Chapter 17. XML Configuration...

class BillingDatasource implements Datasource {
public Data getData()
{
/Ireturn billing data
}
}

The Report bean is fairly simple. It has a filename that tells the report engine where to load the
report definition from, and a datasource that provides the data used to fill the report. We are going
to configure up multiple Report beans via xml.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:s="urn:java:ee" 1

xmlns:r="urn:java:org.example.reports"> 2
<r:Report> 3
<s:modifies/> S
<r:filename>sales.jrxmi<r:filename> 5

<r.datasource>

<r:SalesQuialifier/> 6
</r.datasource>
</r:Report>

<r:Report filename="billing.jrxml"> L

<s:replaces/> 8
<r:datasource>
<s:Inject/> o
<s:Exact>org.example.reports.BillingDatasource</s:Exact> 10
</r:datasource>
</r:Report>

</beans>

11 The namespace ur n: j ava: ee is the XML Config's root namespace. This is where the built-
in elements and CDI annotations live.

2. There are now multiple namespaces in the beans. xni file. These hamespaces correspond
to java package names.

70

The Princess Rescue Example

10

The namespace urn:java:org.exanple.reports corresponds to the package
org. exanpl e. reports, where the reporting classes live. Multiple java packages can be
aggregated into a single namespace declaration by separating the package names with
colons, e.g. urn: j ava: or g. exanpl e. reports: or g. exanpl e. nodel . The namespaces are
searched in the order they are specified in the xml document, so if two packages in the
namespace have a class with the same name, the first one listed will be resolved. For more
information see Namespaces.

The <Report > declaration configures an instance of the Report class as a bean.

Beans installed using <s: nodi fi es> read annotations from the existing class, and merge
them with the annotations defined via xml. In addition, if a bean is installed with
<s: nodi fi es>, it prevents the original class being installed as a bean. It is also possible to
add new beans and replace beans altogether. For more information see Adding, modifying
and replacing beans.

The <r: fil ename> element sets the initial value of the filename field. For more information
on how methods and fields are resolved see Configuring Methods, and Configuring Fields.
The <r:SalesQualifier> element applies the @al esQualifier to the datasource
field. As the field already has an @nject on the class definition this will cause the
Sal esDat asour ce bean to be injected.

This is the shorthand syntax for setting a field value.

Beans installed using <s: repl aces> do not read annotations from the existing class. In
addition, if a bean is installed with <s: r epl aces> it prevents the original class being installed
as a bean.

The <s:1nject> element is needed as this bean was installed with <s: repl aces>, so
annotations are not read from the class definition.

The <s: Exact > annotation restricts the type of bean that is available for injection without
using qualifiers. In this case Bi | | i ngDat asour ce will be injected. This is provided as part
of weld-extensions.

17.2. The Princess Rescue Example

The princess rescue example is a sample web app that uses XML Config. Run it with the following

command:

mvn -Pjetty jetty:run

And then navigate to htt p: / /| ocal host : 9090/ pri ncess-r escue. The XML configuration for the
example is in src/ mai n/ r esour ces/ META- | NF/ seam beans. xni .

71

72

Chapter 18.

Solder Config XML provider

18.1. XML Namespaces

The main nhamespace is ur n: j ava: ee. This namespace contains built-in tags and types from core

packages. The built-in tags are:

* Beans

* nodifies

* repl aces

e parameters

e val ue

* key

* entry

* e (alias for entry)
* v (alias for value)
* k (alias for key)
e array

* int

* short

* | ong

* byte

* char

e doubl e

e float

e bool ean

as well as classes from the following packages:

* java.l ang

73

Chapter 18. Solder Config XML...

e java. util

* javax. annotation

* javax.inject

e javax.enterprise.inject
* javax.enterprise.context
* javax.enterprise. event

* javax. decorat or

* javax.interceptor

* org.jboss.sol der.core

* org.jboss. sol der. unw aps
* org.jboss. sol der.resourcelLoader

Other namespaces are specified using the following syntax:

xmins:my="urn:java:com.mydomain.packagel:com.mydomain.package2"

This maps the namespace ny to the packages com nydonain.packagel and
com nydomai n. package2. These packages are searched in order to resolve elements in this
namespace.

For example, you have a class com nydonai n. package2. Report. To configure a Report bean
you would use <ny: Report>. Methods and fields on the bean are resolved from the same
namespace as the bean itself. It is possible to distinguish between overloaded methods by
specifying the parameter types, for more information see Configuring Methods.

18.2. Adding, replacing and modifying beans

By default configuring a bean via XML creates a new bean; however there may be cases where
you want to modify an existing bean rather than adding a new one. The <s: repl aces> and
<s: nodi f i es> tags allow you to do this.

The <s: repl aces> tag prevents the existing bean from being installed, and registers a new one
with the given configuration. The <s: nodi fi es> tag does the same, except that it merges the
annotations on the bean with the annotations defined in XML. Where the same annotation is
specified on both the class and in XML the annotation in XML takes precedence. This has almost

74

Applying annotations using XML

the same effect as modifying an existing bean, except it is possible to install multiple beans that
modify the same class.

° Note

Config ignores beans that have the @/t o annotation when using <r epl aces> and
<nmodi fi es>.

<my:Report>
<s:modifies>
<my:NewQualifier/>
</my:Report>

<my:ReportDatasource>
<s:replaces>
<my:NewQualifier/>
</my:ReportDatasource>

The first entry above adds a new bean with an extra qualifier, in addition to the qualifiers already
present, and prevents the existing Repor t bean from being installed.

The second prevents the existing bean from being installed, and registers a new bean with a
single qualifier.

18.3. Applying annotations using XML

Annotations are resolved in the same way as normal classes. Conceptually, annotations are
applied to the object their parent element resolves to. It is possible to set the value of annotation
members using the xml attribute that corresponds to the member name. For example:

public @interface OtherQualifier {
String valuel();
int value2();
QualifierEnum value();

}

<test:QualifiedBeanl1>
<test:OtherQualifier value1l="AA" value2="1">A</my:OtherQualifier>
</my:QualifiedBean1>

75

Chapter 18. Solder Config XML...

<test:QualifiedBean2>
<test:OtherQualifier value1l="BB" value2="2" value="B" />
</my:QualifiedBean2>

The val ue member can be set using the inner text of the node, as seen in the first example. Type
conversion is performed automatically.

18.4. Configuring Fields

It is possible to both apply qualifiers to and set the initial value of a field. Fields reside in the same
namespace as the declaring bean, and the element name must exactly match the field name. For
example if we have the following class:

class RobotFactory {
Robot robot;

}

The following xml will add the @r oduces annotation to the r obot field:

<my:RobotFactory>
<my:robot>
<s:Produces/>
</my:robot>
</my:RobotFactory/>

18.4.1. Initial Field Values

Initial field values can be set three different ways as shown below:

<r:MyBean company="Red Hat Inc" />

<r:MyBean>
<r:company>Red Hat Inc</r:company>
</r:MyBean>

76

Initial Field Values

<r:MyBean>
<r.company>
<s:value>Red Hat Inc<s:value>
<r:SomeQualifier/>
</r:company>

</r:MyBean>

The third form is the only one that also allows you to add annotations such as qualifiers to the field.

It is possible to set Map,Ar ray and Col | ect i on field values. Some examples:

<my:ArrayFieldValue>

<my:intArrayField>
<s:value>1</s:value>
<s:.value>2</s:value>

</my:intArrayField>

<my:classArrayField>
<s:value>java.lang.Integer</s:value>
<s:value>java.lang.Long</s:value>

</my:classArrayField>

<my:stringArrayField>
<s:value>hello</s:value>
<s:.value>world</s:value>

</my:stringArrayField>

</my:ArrayFieldValue>

<my:MapFieldValue>

<my:mapl>
<s:.entry><s:key>1</s:key><s:value>hello</s:value></s:entry>
<s:entry><s:key>2</s:key><s:value>world</s:value></s:entry>
</my:map1>

<my:map2>
<s:e><s:k>1</s:k><s:v>java.lang.Integer</s:v></s:e>
<s:e><s:k>2</s:k><s:v>java.lang.Long</s:v></s:e>
</my:map2>

</my:MapFieldValue>

77

Chapter 18. Solder Config XML...

Type conversion is done automatically for all primitives and primitive wrappers, Date,
Cal endar ,Enumand Cl ass fields.

The use of EL to set field values is also supported:

<m:Report>
<m:name>#{reportName}</m:name>
<m:parameters>
<s:key>#{paramName}</s:key>
<s:value>#{paramValue}</s:key>
</m:parameters>
</m:Report>

Internally, field values are set by wrapping the | nj ecti onTar get for a bean. This means that the
expressions are evaluated once, at bean creation time.

18.4.2. Inline Bean Declarations

Inline beans allow you to set field values to another bean that is declared inline inside the
field declaration. This allows for the configuration of complex types with nestled classes. Inline
beans can be declared inside both <s: val ue> and <s: key> elements, and may be used in both
collections and simple field values. Inline beans must not have any qualifier annotations declared
on the bean; instead Solder Config assigns them an artificial qualifier. Inline beans may have any
scope, however the default Dependent scope is recommended.

<my:Knight>
<my:sword>
<value>
<my:Sword type="sharp"/>
</value>
</my:sword>
<my:horse>
<value>
<my:Horse>
<my:name>
<value>billy</value>
</my:name>
<my:shoe>
<Inject/>
</my:shoe>
</my:Horse>
</value>
</my:horse>

78

Configuring methods

</my:Knight>

18.5. Configuring methods

It is also possible to configure methods in a similar way to configuring fields:

class MethodBean {

public int doStuff() {
return 1;

public int doStuff(MethodValueBean bean) {
return bean.value + 1;

public void doStuff(MethodValueBean[][] beans) {
/*do stuff */

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:my="urn:java:org.jboss.solder.config.xml.test. method">
<my:MethodBean>

<my:doStuff>
<s:Produces/>
</my:doStuff>

<my:doStuff>

<s:Produces/>

<my:Qualifierl/>

<s:parameters>
<my:MethodValueBean>

<my:Qualifier2/>

</my:MethodValueBean>

</s:parameters>

79

Chapter 18. Solder Config XML...

</my:doStuff>

<my:doStuff>
<s:Produces/>
<my:Qualifierl/>
<s:parameters>
<s:array dimensions="2">
<my:Qualifier2/>
<my:MethodValueBean/>
</s:array>
</s:parameters>
</my:doStuff>

</my:MethodBean>
</beans>

In this example, Met hodBean has three methods. They are all named doSt uf f .

The first <t est : doSt uf f > entry in the XML file configures the method that takes no arguments.
The <s: Produces> element makes it into a producer method.

The next entry in the file configures the method that takes a Met hodVal ueBean as a parameter
and the final entry configures a method that takes a two dimensional array ofMet hodVal ueBeans
as a parameter. For both of these methods, a qualifier was added to the method parameter and
they were made into producer methods.

Method parameters are specified inside the <s: par anet er s> element. If these parameters have
annotation children they are taken to be annotations on the parameter.

The corresponding Java declaration for the XML above would be:

class MethodBean {

@Produces
public int doStuff() {{*method body */}

@Produces
@Qualifierl
public int doStuff(@Qualifier2 MethodValueBean param) {/*method body */}

@Produces
@Qualifierl
public int doStuff(@Qualifier2 MethodValueBean[][] param) {/*method body */}

}

80

Configuring the bean constructor

Array parameters can be represented using the <s: array> element, with a child element to
represent the type of the array. E.g. i nt et hod(Met hodVval ueBean[] param); could be
configured via xml using the following:

<my:method>
<s:array>
<my:MethodValueBean/>
</s:array>
</my:method>

18.6. Configuring the bean constructor

It is also possible to configure the bean constructor in a similar manner. This is done with a
<s: par anet er s> element directly on the bean element. The constructor is resolved in the same
way methods are resolved. This constructor will automatically have the @ nj ect annotation
applied to it. Annotations can be applied to the constructor parameters in the same manner as
method parameters.

<my:MyBean>
<s:parameters>
<s:Integer>
<my:MyQualifier/>
</s:Integer>
</s:parameters>
</my:MyBean>

The example above is equivalent to the following java:

class MyBean {
@Inject
MyBean(@MyQualifier Integer count)
{

81

Chapter 18. Solder Config XML...

18.7. Overriding the type of an injection point

It is possible to limit which bean types are available to inject into a given injection point:

class SomeBean

{
public Object someField;

}

<my:SomeBean>
<my:someField>
<s:lnject/>
<s:Exact>com.mydomain.InjectedBean</s:Exact>
</my:someField>
</my:SomeBean>

In the example above, only beans that are assignable to InjectedBean will be eligible for injection
into the field. This also works for parameter injection points. This functionality is part of Solder,
and the @xact annotation can be used directly in java.

18.8. Configuring Meta Annotations

It is possible to make existing annotations into qualifiers, stereotypes or interceptor bindings.

This configures a stereotype annotation SoneSt er eot ype that has a single interceptor binding
and is named:

<my:SomeStereotype>
<s:Stereotype/>
<my:InterceptorBinding/>
<s:Named/>

</my:SomeStereotype>

This configures a qualifier annotation:

<my:SomeQualifier>

82

Virtual Producer Fields

<s:Qualifier/>
</my:SomeQualifier>

This configures an interceptor binding:

<my:SomelnterceptorBinding>
<s:InterceptorBinding/>
</my:SomelnterceptorBinding>

18.9. Virtual Producer Fields

Solder XML Config supports configuration of virtual producer fields. These allow for configuration
of resource producer fields, Solder generic bean and constant values directly via XML. For
example:

<s:EntityManager>

<s:Produces/>

<s:PersistenceContext unitName="customerPu" />
</s:EntityManager>

<s:String>
<s:Produces/>
<my:VersionQualifier />
<value>Version 1.23</value>
</s:String>

The first example configures a resource producer field. The second configures a bean of type
String, with the qualifier @/er si onQual i fi er and the value ' Versi on 1. 23'. The corresponding
java for the above XML is:

class SomeClass

{

@Produces
@PersistenceContext(unitName="customerPu")
EntityManager field1;

@Produces
@VersionQualifier
String field2 = "Version 1.23";

83

Chapter 18. Solder Config XML...

Although these look superficially like normal bean declarations, the <Produces> declaration
means it is treated as a producer field instead of a normal bean.

18.10. More Information

For further information, look at the units tests in the Solder XML Config distribution. Also see
the XML-based metadata chapter in the JSR-299 Public Review Draft [http://jcp.org/aboutJava/
communityprocess/pr/jsr299/index.html], which is where this feature was originally proposed.

84

http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html

Introduction

The goal of Solder's Servlet integration features is to provide portable enhancements to the
Servlet API. Features include producers for implicit Servlet objects and HTTP request state,
propagating Servlet events to the CDI event bus, forwarding uncaught exceptions to Solder's
exception handling chain and binding the BeanManager to a Servlet context attribute for convenient

access.

IXxxv

Ixxxvi

Chapter 19.

Installation

19.1. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register
several Servlet components in your application's web.xml to activate the features provided by this
module:

<listener>
<listener-class>org.jboss.solder.servlet.event.ServletEventBridgeListener</listener-class>
</listener>

<servlet>
<servlet-name>Servlet Event Bridge Servlet</serviet-name>
<servlet-class>org.jboss.solder.servlet.event.ServletEventBridgeServlet</serviet-class>
<!I-- Make load-on-startup large enough to be initialized last (thus destroyed first) -->
<load-on-startup>99999</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Servlet Event Bridge Servlet</serviet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

<filter>
<filter-name>Exception Filter</filter-name>
<filter-class>org.jboss.solder.servlet.exception.CatchExceptionFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Exception Filter</filter-name>
<url-pattern>/*</url-pattern>
<ffilter-mapping>

<filter>
<filter-name>Servlet Event Bridge Filter</filter-name>
<filter-class>org.jboss.solder.servlet.event.ServlietEventBridgeFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Servlet Event Bridge Filter</filter-name>
<url-pattern>/*</url-pattern>

87

Chapter 19. Installation

<[filter-mapping>

Warning

In order for the Servlet event bridge to properly fire the Ser vl et Cont ext initialized
event, the CDI runtime must be started at the time the Servlet listener is invoked.
This ordering is guaranteed in a compliant Java EE 6 environment. If you are using
a CDI implementation in a Servlet environment (e.g., Weld Servlet), and it relies on
a Servlet listener to bootstrap, that listener must be registered before any Servlet
listener in web. xm .

You're now ready to dive into the Servlet enhancements provided for you by Solder!

88

Chapter 20.

Servlet event propagation

By including the Solder module in your web application (and performing the necessary listener
configuration for pre-Servlet 3.0 environments), the servlet lifecycle events will be propagated
to the CDI event bus so you can observe them using observer methods on CDI beans. Solder
also fires additional lifecycle events not offered by the Servlet API, such as when the response
is initialized and destroyed.

20.1. Servlet context lifecycle events

This category of events corresponds to the event receivers on the
javax. servl et. Servl et Cont ext Li stener interface. The event propagated is a
javax. servl et. Servl et Context (not a javax.servlet. Servl et Cont ext Event, since the
Ser vl et Cont ext is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss. sol der.servlet.event package
(@nitialized and @estroyed) that can be used to observe a specific lifecycle phase of the
servlet context.

The servlet context lifecycle events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.ServletContdwa serviet context is initialized or destroyed
@lnitialized javax.servlet.ServletConidnd servlet context is initialized

@Destroyed javax.servlet.ServletConidnd servlet context is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers on the observer method:

public void observeServletContext(@Observes ServletContext ctx) {
System.out.printin(ctx.getServletContextName() + " initialized or destroyed");

If you are interested in only a particular lifecycle phase, use one of the provided qualifiers:

public void observeServletContextinitialized(@Observes @Initialized ServletContext ctx) {
System.out.printin(ctx.getServletContextName() + " initialized");

As with all CDI observers, the name of the method is insignificant.

These events are fired using a built-in servlet context listener. The CDI environment will be active
when these events are fired (including when Weld is used in a Servlet container). The listener is

89

Chapter 20. Servlet event pro...

configured to come before listeners in other extensions, so the initialized event is fired before other
servlet context listeners are notified and the destroyed event is fired after other servlet context
listeners are notified. However, this order cannot be not guaranteed if another extension library
is also configured to be ordered before others.

20.2. Application initialization

The servlet context initialized event described in the previous section provides an ideal opportunity
to perform startup logic as an alternative to using an EJB 3.1 startup singleton. Even better, you
can configure the bean to be destroyed immediately following the initialization routine by leaving
it as dependent scoped (dependent-scoped observers only live for the duration of the observe
method invocation).

Here's an example of entering seed data into the database in a development environment (as
indicated by a stereotype annotation named @evel opnent).

@Stateless

@Development

public class SeedDatalmporter {
@PersistenceContext
private EntityManager em;

public void loadData(@Observes @Initialized ServletContext ctx) {
em.persist(new Product(1, "Black Hole", 100.0));

If you'd rather not tie yourself to the Servlet API, you can observe
the org.jboss.sol der.servlet. WbApplication rather than the ServletContext.
WebAppl i cati on is a informational object provided by Solder that holds select information about
the Ser vl et Cont ext such as the application name, context path, server info and start time.

The web application lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) WebApplication The web application is initialized, started or
destroyed

@]Initialized WebApplication The web application is initialized

@Started WebApplication The web application is started (ready)

@Destroyed WebApplication The web application is destroyed

Here's the equivalent of receiving the servlet context initialized event without coupling to the
Servlet API:

90

Servlet request lifecycle events

public void loadData(@Observes @Initialized WebApplication webapp) {
System.out.printin(webapp.getName() + " initialized at " + new Date(webapp.getStartTime()));

If you want to perform initialization as late as possible, after all other initialization of the application
is complete, you can observe the WebAppl i cat i on event qualified with @t art ed.

public void onStartup(@Observes @Started WebApplication webapp) {
System.out.printin("Application at " + webapp.getContextPath() + " ready to handle requests");

The @t art ed event is fired in the init method of a built-in Servlet with a load-on-startup value
of 99999.

You can also use WebAppl i cati on with the @estroyed qualifier to be notified when the web
application is stopped. This event is fired by the aforementioned built-in Servlet during it's destroy
method, so likely it should fire when the application is first released.

public void onShutdown(@Observes @Destroyed WebApplication webapp) {
System.out.printin("Application at " + webapp.getContextPath() + " no longer handling
requests");

}

20.3. Servlet request lifecycle events

This category of events corresponds to the event receivers on the
javax. servl et. Servl et Request Li stener interface. The event propagated is a
javax. servl et. Servl et Request (not a javax.servlet. Servl et Request Event, since the
Ser vl et Request is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss. sol der.servlet.event package
(@nitialized and @estroyed) that can be used to observe a specific lifecycle phase of the
servlet request and a secondary qualifier to filter events by servlet path (@rat h).

The servlet request lifecycle events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.ServletReglestrviet request is initialized or destroyed
@Initialized javax.servlet.ServletRegMessrviet request is initialized

@Destroyed javax.servlet.ServletRegMestrviet request is destroyed

91

Chapter 20. Servlet event pro...

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSetwietREGResterviet request is initialized or
destroyed

@Initialized javax.servlet.http.HttpSetwidiR@gusstviet request is initialized

@Destroyed javax.servlet.http.HttpSetvidiRegusstviet request is destroyed

@Path(PATH) javax.servlet.http.HttpSebdifrequdETP request with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers on the observer:

public void observeRequest(@Observes ServletRequest request) {
/I Do something with the servlet "request" object

If you are interested in only a particular lifecycle phase, use a qualifier:

public void observeRequestlnitialized(@Observes @Initialized ServietRequest request) {
/I Do something with the servlet "request" object upon initialization

You can also listen specifically for a j avax. servlet. http. Ht pServl et Request simply by
changing the expected event type.

public void observeRequestinitialized(@Observes @Initialized HttpServletRequest request) {
/I Do something with the HTTP servlet "request" object upon initialization

You can associate an observer with a particular servlet request path (exact match, no leading
slash).

public void observeRequestinitialized(@Observes @Initialized @Path("offer") HttpServletRequest request) {
/I Do something with the HTTP servlet "request" object upon initialization
/I only when servlet path /offer is requested

As with all CDI observers, the name of the method is insignificant.

92

Servlet response lifecycle events

These events are fired using a built-in servlet request listener. The listener is configured to
come before listeners in other extensions, so the initialized event is fired before other servlet
request listeners are notified and the destroyed event is fired after other servlet request listeners
are notified. However, this order cannot be not guaranteed if another extension library is also
configured to be ordered before others.

20.4. Servlet response lifecycle events

The Servlet API does not provide a listener for accessing the lifecycle of a response. Therefore,
Solder simulates a response lifecycle listener using CDI events. The event object fired is a
j avax. servl et. Servl et Response.

There are two qualifiers provided in the org.jboss. sol der.servlet.event package
(@nitialized and @est royed) that can be used to observe a specific lifecycle phase of the
servlet response and a secondary qualifier to filter events by servlet path (@at h).

The servlet response lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletResp@wselet response is initialized or destroyed
@]Initialized javax.servlet.ServletResp@eselet response is initialized
@Destroyed javax.servlet.ServletResp@eselet response is destroyed

@Default (optional) javax.servlet.http.HttpSetwietiREEBossevlet response is initialized or

destroyed
@Initialized javax.servlet.http.HttpSetvidiR&sheasdet response is initialized
@Destroyed javax.servlet.http.HttpSetvidiR&speesdet response is destroyed
@Path(PATH) javax.servlet.http.HttpSeBdifrespbiER response with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeResponse(@Observes ServletResponse response) {
/I Do something with the servlet "response” object

If you are interested in only a particular one, use a qualifier

public void observeResponselnitialized(@Observes @Initialized ServletResponse response) {
/I Do something with the servlet "response” object upon initialization

93

Chapter 20. Servlet event pro...

You can also listen specifically for a j avax. servl et. http. Ht t pSer vl et Response simply by
changing the expected event type.

public void observeResponselnitialized(@Observes @Initialized HttpServletResponse response) {
/I Do something with the HTTP servlet "response” object upon initialization

If you need access to the Ser vl et Request and/or the Ser vl et Cont ext objects at the same time,
you can simply add them as parameters to the observer methods. For instance, let's assume you
want to manually set the character encoding of the request and response.

public void setupEncoding(@Observes @Initialized ServletResponse res, ServletRequest req) throws Exception {
if (this.override || req.getCharacterEncoding() == null) {
reqg.setCharacterEncoding(encoding);
if (override) {
res.setCharacterEncoding(encoding);

As with all CDI observers, the name of the method is insignificant.

Tip

If the response is committed by one of the observers, the request will not be sent
to the target Servlet and the filter chain is skipped.

20.5. Servlet request context lifecycle events

Rather than having to observe the request and response as separate events, or include the
request object as an parameter on a response observer, it would be convenient to be able to
observe them as a pair. That's why Solder fires an synthetic lifecycle event for the wrapper
type Ser vl et Request Cont ext . The Ser vl et Request Cont ext holds the Ser vl et Request and the
Ser vl et Response objects, and also provides access to the Ser vl et Cont ext .

There are two qualifiers provided in the org.jboss. sol der.servlet.event package
(@nitialized and @estroyed) that can be used to observe a specific lifecycle phase of the
servlet request context and a secondary qualifier to filter events by servlet path (@Pat h).

The servlet request context lifecycle events are documented in the table below.

94

Servlet request context lifecycle events

Qualifier Type Description

@Default (optional) ServletRequestContext A request is initialized or destroyed
@]Initialized ServletRequestContext A request is initialized

@Destroyed ServletRequestContext A request is destroyed

@Default (optional) HttpServietRequestCont&rtHTTP request is initialized or destroyed

@Initialized HttpServietRequestCont&rtHTTP request is initialized
@Destroyed HttpServletRequestContdrtHT TP request is destroyed
@Path(PATH) HttpServietRequestContggtects HTTP request with servlet path

matching PATH (drop leading slash)

Let's revisit the character encoding observer and examine how it can be simplified by this event:

public void setupEncoding(@Observes @Initialized ServletRequestContext ctx) throws Exception {
if (this.override || ctx.getRequest().getCharacterEncoding() == null) {
ctx.getRequest().setCharacterEncoding(encoding);
if (override) {
ctx.getResponse().setCharacterEncoding(encoding);

You can also observe the Htt pSer vl et Request Cont ext to be notified only on HTTP requests.

Tip

If the response is committed by one of the observers, the request will not be sent
to the target Servlet and the filter chain is skipped.

Since observers that have access to the response can commit it, an
Ht t pSer vl et Request Cont ext observer that receives the initialized event can effectively work as
a filter or even a Servlet. Let's consider a primitive welcome page filter that redirects visitors to
the start page:

public void redirectToStartPage(@Observes @Path(") @Initialized HttpServletRequestContext ctx)
throws Exception {
String startPage = ctx.getResponse().encodeRedirectURL(ctx.getContextPath() + "/start.jsf");
ctx.getResponse().sendRedirect(startPage);

95

Chapter 20. Servlet event pro...

Now you never have to write a Servlet listener, Servlet or Filter again!

20.6. Session lifecycle events

This category of events corresponds to the event receivers on the
javax.servlet. http. Ht pSessi onLi stener interface. The event propagated is a
javax.servlet.http. HtpSession(notajavax. servlet. http. Ht t pSessi onEvent, since the
Ht t pSessi on is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss. sol der.servlet.event package
(@nitialized and @est royed) that can be used to observe a specific lifecycle phase of the
session.

The session lifecycle events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.http.HttpSeBs@ression is initialized or destroyed
@Initialized javax.servlet.http.HttpSeBs@maession is initialized

@Destroyed javax.servlet.http.HttpSeBs@®ression is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers
will observe all events with a H t pSessi on as event object.

public void observeSession(@Observes HttpSession session) {
/I Do something with the "session" object

If you are interested in only a particular one, use a qualifier

public void observeSessioninitialized(@Observes @Initialized HttpSession session) {
/I Do something with the "session" object upon being initialized

As with all CDI observers, the name of the method is insignificant.

20.7. Session activation events

This category of events corresponds to the event receivers on the
javax.servlet.http. Ht pSessi onActi vati onLi st ener interface. The event propagated is a
javax. servlet. http. Ht pSession(notajavax. servl et. http. Ht t pSessi onEvent, since the
Ht t pSessi on is the only relevant information this event provides).

96

Session activation events

There are two qualifiers provided in the org.jboss. sol der.servlet.event package
(@i dActi vat e and @V | | Passi vat e) that can be used to observe a specific lifecycle phase of
the session.

The session activation events are documented in the table below.

Qualifier Type Description
@Default (optional) javax.servlet.http.HttpSeBs@ression is initialized or destroyed
@DidActivate javax.servlet.http.HttpSeBs@®eession is activated

@WillPassivate javax.servlet.http.HttpSeBs®ression will passivate

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers
will observe all events with a Ht t pSessi on as event object.

public void observeSession(@Observes HttpSession session) {
/I Do something with the "session" object

If you are interested in only one particular event, use a qualifier:

public void observeSessionCreated(@Observes @WillPassivate HttpSession session) {

/I Do something with the "session" object when it's being passivated

As with all CDI observers, the name of the method is insignificant.

97

98

Chapter 21.

Injectable Servlet objects and
request state

Solder provides producers that expose a wide-range of information available in a Servlet
environment (e.g., implicit objects such as Ser vl et Cont ext and Htt pSessi on and state such as
HTTP request parameters) as beans. You access this information by injecting the beans produced.
This chapter documents the Servlet objects and request state that Solder exposes and how to
inject them.

21.1. @Inject @RequestParam

The @equest Par am qualifier allows you to inject an HTTP request parameter (i.e., URI query
string or URL form encoded parameter).

Assume a request URL of /book.jsp?id=1.

@Inject @RequestParam("id")
private String bookld;

The value of the specified request parameter is retrieved using the method
Ser vl et Request . get Paranmet er (String) . It is then produced as a dependent-scoped bean of
type String qualified @Request Par am

The name of the request parameter to lookup is either the value of the @Request Par amannotation
or, if the annotation value is empty, the name of the injection point (e.g., the field name).

Here's the example from above modified so that the request parameter name is implied from the
field name:

@Inject @RequestParam
private String id;

If the request parameter is not present, and the injection point is annotated with @ef aul t Val ue,
the value of the @ef aul t Val ue annotation is returned instead.

Here's an example that provides a fall-back value:

@Inject @RequestParam @DefaultValue("25")
private String pageSize;

99

Chapter 21. Injectable Servle...

If the request parameter is not present, and the @ef aul t Val ue annotation is not present, a null
value is injected.

Warning

Since the bean produced is dependent-scoped, use of the @Request Param
annotation on class fields and bean properties is only safe for request-scoped
beans. Beans with wider scopes should wrap this bean in an | nst ance bean and
retrieve the value within context of the thread in which it's needed.

@Inject @RequestParam("id")
private Instance<String> bookldResolver;

String bookld = bookldResolver.get();

21.2. @Inject @HeaderParam

Similar to the @Request Par am you can use the @eader Par amqualifier to inject an HTTP header
parameter. Here's an example of how you inject the user agent string of the client that issued
the request:

@Inject @HeaderParam("User-Agent")
private String userAgent;

The @4eader Par amalso supports a default value using the @ef aul t Val ue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @+eader Param
annotation on class fields and bean properties is only safe for request-scoped
beans. Beans with wider scopes should wrap this bean in an I nst ance bean and
retrieve the value within context of the thread in which it's needed.

@Inject @HeaderParam("User-Agent")
private Instance<String> userAgentResolver;

String userAgent = userAgentResolver.get();

100

@Inject ServletContext

21.3. @Inject ServiletContext

The Ser vl et Cont ext is made available as an application-scoped bean. It can be injected safely
into any CDI bean as follows:

@Inject
private ServletContext context;

The producer obtains a reference to the Servl et Cont ext by observing the @nitialized
Ser vl et Cont ext event raised by this module's Servlet-to-CDI event bridge.

21.4. @Inject ServletRequest / HttpServietRequest
The Ser vl et Request is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an Ht t pSer vl et Request . It can be injected safely into any
CDI bean as follows:

@Inject
private ServletRequest request;

or, for HTTP requests

@Inject
private HttpServletRequest httpRequest;

The producer obtains a reference to the Servl et Request by observing the @nitialized
Ser vl et Request event raised by this module's Servlet-to-CDI event bridge.

21.5. @Inject ServletResponse / HitpServletResponse

The Ser vl et Response is made available as a request-scoped bean. If the current request is an
HTTP request, the produced bean is an Ht t pSer vl et Response. It can be injected safely into any
CDI bean as follows:

@Inject
private ServletResponse reponse;

or, for HTTP requests

101

Chapter 21. Injectable Servle...

@Inject
private HttpServletResponse httpResponse;

The producer obtains a reference to the Servl et Response by observing the @nitialized
Ser vl et Response event raised by this module's Servlet-to-CDI event bridge.

21.6. @Inject HttpSession

The Ht t pSessi on is made available as a request-scoped bean. It can be injected safely into any
CDI bean as follows:

@Inject
private HttpSession session;

Injecting the Ht t pSessi on will force the session to be created. The producer obtains a reference
to the Htt pSessi on by calling the get Sessi on() on the Htt pSer vl et Request . The reference
to the Ht t pSer vl et Request is obtained by observing the @nitiali zed HttpServl et Request
event raised by this module's Servlet-to-CDI event bridge.

If you merely want to know whether the Htt pSessi on exists, you can instead inject the
Ht t pSessi onSt at us bean that Solder provides.

21.7. @Inject HttpSessionStatus

The Htt pSessi onSt at us is a request-scoped bean that provides access to the status of the
Ht t pSessi on. It can be injected safely into any CDI bean as follows:

@Inject
private HttpSessionStatus sessionStatus;

You can invoke the i sActive() method to check if the session has been created, and the
get Sessi on() method to retrieve the Ht t pSessi on, which will be created if necessary.

if (IsessionStatus.isActive()) {
System.out.printin("Session does not exist. Creating it now.");
HttpSession session = sessionStatus.get();
assert session.isNew();

102

@Inject @ContextPath

21.8. @Inject @ContextPath

The context path is made available as a dependent-scoped bean. It can be injected safely into
any request-scoped CDI bean as follows:

@Inject @ContextPath
private String contextPath;

You can safely inject the context path into a bean with a wider scope using an instance provider:

@Inject @ContextPath
private Instance<String> contextPathProvider;

String contextPath = contextPathProvider.get();

The context path is retrieved from the Ht t pSer vl et Request .

21.9. @Inject List<Cookie>

The list of Cooki e objects is made available as a request-scoped bean. It can be injected safely
into any CDI bean as follows:

@Inject
private List<Cookie> cookies;

The producer uses a reference to the request-scoped Ht t pSer vl et Request bean to retrieve the
Cooki e instances by calling get Cooki e() .

21.10. @Inject @CookieParam

Similar to the @Request Par am you can use the @ooki ePar amqualifier to inject an HTTP header
parameter. Here's an example of how you inject the username of the last logged in user (assuming
you have previously stored it in a cookie):

@Inject @CookieParam
private String username;

If the type at the injection point is Cooki e, the Cooki e object will be injected instead of the value.

103

Chapter 21. Injectable Servle...

@Inject @CookieParam
private Cookie username;

The @ooki ePar amalso support a default value using the @ef aul t Val ue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @ooki eParam
annotation on class fields and bean properties is only safe for request-scoped
beans. Beans with wider scopes should wrap this bean in an | nst ance bean and
retrieve the value within context of the thread in which it's needed.

@Inject @CookieParam("username")
private Instance<String> usernameResolver;

String username = usernameResolver.get();

21.11. @Inject @Serverinfo

The server info string is made available as a dependent-scoped bean. It can be injected safely
into any CDI bean as follows:

@Inject @Serverinfo
private String serverlnfo;

The context path is retrieved from the Ser vl et Cont ext .

21.12. @Inject @Principal

The security Pri nci pal for the current user is made available by CDI as an injectable resource
(not provided by Solder). It can be injected safely into any CDI bean as follows:

@Inject
private Principal principal;

104

Chapter 22.

Servlet Exception Handling
Integration

Solder provides a simple, yet robust foundation for modules and/or applications to establish
a customized exception handling process. Solder's Servlet integration ties into the exception
handling model by forwarding all unhandled Servlet exceptions to the exception handling
framework so that they can be handled in a centralized, extensible and uniform manner.

22.1. Background

The Servlet API is extremely weak when it comes to handling exceptions. You are limited to
handling exceptions using the built-in, declarative controls provided in web. xnl . Those controls
give you two options:

» send an HTTP status code
 forward to an error page (servlet path)

To make matters more painful, you are required to configure these exception mappings in
web. xm . It's really a dinosaur left over from the past. In general, the Servlet specification seems
to be pretty non-chalant about exceptions, telling you to "handle them appropriately." But how?

That's where the exception handling integration in comes in. Solder's exception handling
framework traps all unhandled exceptions (those that bubble outside of the Servlet and any filters)
and forwards them on to Solder. Exception handlers are free to handle the exception anyway they
like, either programmatically or via a declarative mechanism.

If a exception handler registered with Solder handles the exception, then the integration closes
the response without raising any additional exceptions. If the exception is still unhandled after
Solder finishes processing it, then the integration allows it to pass through to the normal Servlet
exception handler.

22.2. Defining a exception handler for a web request

You can define an exception handler for a web request using the normal syntax of a Solder
exception handler. Let's catch any exception that bubbles to the top and respond with a 500 error.

@HandlesExceptions
public class ExceptionHandlers {
void handleAll(@Handles CaughtException<Throwable> caught, HttpServietResponse response) {
response.sendError(500, "You've been caught by Catch!");

105

Chapter 22. Servlet Exception...

That's all there is to it! If you only want this handler to be used for exceptions raised by a web
request (excluding web service requests like JAX-RS), then you can add the @ébRequest qualifier
to the handler:

@HandlesExceptions
public class ExceptionHandlers {
void handleAll(@Handles @WebRequest
CaughtException<Throwable> caught, HttpServletResponse response) {
response.sendError(500, "You've been caught by Solder!");

° Note

@ebRequest may be added to limit handlers to only catch exceptions initiated by
the Servlet integration.

Let's consider another example. When the custom Account Not Found exception is thrown, we'll
send a 404 response using this handler.

void handleAccountNotFound(@Handles @WebRequest
CaughtException<AccountNotFound> caught, HttpServletResponse response) {
response.sendError(404, "Account not found: " + caught.getException().getAccountid());

106

Chapter 23.

Retrieving the BeanManager from
the servlet context

Typically, the BeanManager is obtained using some form of injection. However, there are scenarios
where the code being executed is outside of a managed bean environment and you need a way
in. In these cases, it's necessary to lookup the BeanManager from a well-known location.

Warning

In general, you should isolate external BeanManager lookups to integration code.

The standard mechanism for locating the BeanManager from outside a managed bean
environment, as defined by the JSR-299 specification, is to look it up in JNDI. However, JNDI
isn't the most convenient technology to depend on when you consider all popular deployment
environments (think Tomcat and Jetty).

As a simpler alternative, Solder binds the BeanManager to the following servlet context attribute
(whose name is equivalent to the fully-qualified class name of the BeanManager interface:

javax.enterprise.inject.spi.BeanManager

Solder also includes a provider that retrieves the BeanManager from this location. Anytime
the Solder module needs a reference to the BeanManager, it uses this lookup mechanism to
ensure that the module works consistently across deployment environments, especially in Servlet
containers.

You can retrieve the BeanManager in the same way. If you want to hide the lookup, you
can extend the BeanManager Awar e class and retrieve the BeanManager from the the method
get BeanManager (), as shown here:

public class NonManagedClass extends BeanManagerAware {
public void fireEvent() {
getBeanManager().fireEvent("Send me to a managed bean");

Alternatively, you can retrieve the BeanManager from the method get BeanManager () on the
BeanManager Locat or class, as shown here:

107

Chapter 23. Retrieving the Be...

public class NonManagedClass {
public void fireEvent() {
new BeanManagerLocator().getBeanManager().fireEvent("Send me to a managed bean");

Tip

The best way to transfer execution of the current context to the managed bean
environment is to send an event to an observer bean, as this example above
suggests.

Under the covers, these classes look for the BeanManager in the servlet context attribute covered
in this section, among other available strategies. Refer to Chapter 10, Obtaining a reference to the
BeanManager for information on how to leverage the servlet context attribute provider to access
the BeanManager from outside the CDI environment.

108

Chapter 24.

Loading web resources without
ServiletContext

Sometimes developers need to access web application resources from application code. Typically
the Servl et Cont ext is used to load resources by calling get Resource(). Unfortunately the
Servl et Cont ext cannot be accessed in all situations. Especially CDI extensions can be
problematic in this regard as they are executed during a stage in the application startup in which
the Ser vl et Cont ext may not have been created yet.

Solder offers some help in this situation. The class WebResour ceLocat or provides a simple
way to obtain resources from the web application. Under the covers this class uses the
WebResour ceLocat i onProvi der SPI to retrieve the location of the resources.

The following example shows how to use the class:

WebResourcelLocator locator = new WebResourcelLocator();
InputStream stream = locator.getWebResource("/WEB-INF/web.xml");
if (stream !=null) {

/I parse the input stream

As you can see using the WebResour ceLocat or is very easy. Just create an instance of the class
and then use get WebResour ce() to retrieve an InputStream.

Warning

Please note that you should always prefer to use the standard Servlet API to load
resources from the web application if possible. This Solder APl is only intended to
be used if it is not possible to use the Ser vl et Cont ext (like for example in CDI
extensions).

109

110

Chapter 25.

Exception Handling - Introduction

Exceptions are a fact of life. As developers, we need to be prepared to deal with them in the most
graceful manner possible. Solder's exception handling framework provides a simple, yet robust
foundation for modules and/or applications to establish a customized exception handling process.
By employing a delegation model, Solder allows exceptions to be addressed in a centralized,
extensible and uniform manner.

In this guide, we'll explore the various options you have for handling exceptions using Solder, as
well as how framework authors can offer Solder exception handling integration.

25.1. How Solder's Exception Handling Works

Exception handling in Solder is based around the CDI eventing model. While the implementation
of exception handlers may not be the same as a CDI event, and the programming model is not
exactly the same as specifying a CDI event/ observer, the concepts are very similar. Solder makes
use of events for many of its features. Eventing is actually the only way to start using Solder's
exception handling.

This event is fired either by the application or a Solder exception handling integration. Solder
then hands the exception off to a chain of registered handlers, which deal with the exception
appropriately. The use of CDI events to connect exceptions to handlers makes this strategy of
exception handling non-invasive and minimally coupled to the exception handling infrastructure.

The exception handling process remains mostly transparent to the developer. In most cases,
you register an exception handler simply by annotating a handler method. Alternatively, you can
handle an exception programmatically, just as you would observe an event in CDI.

There are other events that are fired during the exception handling process that will allow great
customization of the exception, stack trace, and status. This allows the application developer to
have the most control possible while still following a defined workflow. These events and other
advanced usages will be covered in the next chapter.

111

112

Chapter 26.

Exception Handling - Usage

26.1. Eventing into the exception handling framework

The entire exception handling process starts with an event. This helps keep your application
minimally coupled to Solder, but also allows for further extension. Exception handling in Solder
is all about letting you take care of exceptions the way that makes the most sense for your
application. Events provide this delicate balance.

There are three means of firing the event to start the exception handling process:

» manual firing of the event
 using an interceptor

« module integration - no code needs to be changed

26.1.1. Manual firing of the event

Manually firing an event to use Solder's exception handling is primarily used in your own try/catch
blocks. It's very painless and also easy. Let's examine an sample that might exist inside of a simple
business logic lookup into an inventory database:

@Stateless
public class InventoryActions {
@PersistenceContext private EntityManager em;

@Inject private Event<ExceptionToCatch> catchEvent; 1

public Integer queryForltem(ltem item) {
try {
Query g = em.createQuery("SELECT i from Item i where i.id = :id");
g.setParameter("id", item.getld());
return g.getSingleResult();
} catch (PersistenceException e) {

catchEvent.fire(new ExceptionToCatch(e)); 2
}
}
}

11 The Event of generic type Except i onToCat ch is injected into your class for use later within
a try/catch block.

113

Chapter 26. Exception Handlin...

2. The event is fired with a new instance of Except i onToCat ch constructed with the exception
to be handled.

26.1.2. Using the @xceptionHand ed INterceptor

A CDI Interceptor has been added to help with integration of Solder exception handling into your
application. It's used just like any interceptor, and must be enabled in the beans. xm file for your
bean archive. This interceptor can be used at the class or method level.

This interceptor is a typical Ar oundl nvoke interceptor and is invoked before the method (which in
this case merely wraps the call to the intercepted method in a try / catch block). The intercepted
method is called then, if an exception (actually a Thr owabl e) occurs during execution of the
intercepted method the exception is passed to Solder (without any qualifiers). Normal flow
continues from there, however, take not of the following warning:

Warning

Using the interceptor may cause unexpected behavior to methods that call
intercepted methods in which an exception occurs, please see the API
docs [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/
control/ExceptionHandledInterceptor.html] for more information about returns if an
exception occurs.

26.2. Exception handlers

As an application developer (i.e., an end user of Solder's exception handling), you'll be focused
on writing exception handlers. An exception handler is a method on a CDI bean that is invoked to
handle a specific type of exception. Within that method, you can implement any logic necessary
to handle or respond to the exception.

° Note

If there are no exception handlers for an exception, the exception is rethrown.

Given that exception handler beans are CDI beans, they can make use of dependency injection,
be scoped, have interceptors or decorators and any other functionality available to CDI beans.

Exception handler methods are designed to follow the syntax and semantics of CDI observers,
with some special purpose exceptions explained in this guide. The advantage of this design is that
exception handlers will be immediately familiar to you if you are studying or well-versed in CDI.

In this and subsequent chapters, you'll learn how to define an exception handler, explore how and
when it gets invoked, modify an exception and a stack trace, and even extend exception handling

114

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html

Exception handler annotations

further through events that are fired during the handling workflow. We'll begin by covering the two
annotations that are used to declare an exception handler, @andl esExcept i ons and @andl es.

26.3. Exception handler annotations

Exception handlers are contained within exception handler beans, which are CDI beans annotated
with @and| esExcept i ons. Exception handlers are methods which have a parameter which is an
instance of Caught Except i on<T ext ends Thr owabl e> annotated with the @iandl es annotation.

26.3.1. @HandlesExceptions

The @dandl esException annotation is simply a marker annotation that instructs the Solder
exception handling CDI extension to scan the bean for handler methods.

Let's designate a CDI bean as an exception handler by annotating it with @andl esExcept i on.

@HandlesExceptions
public class MyHandlers {}

That's all there is to it. Now we can begin defining exception handling methods on this bean.

° Note

The @andl esExcept i ons annotation may be deprecated in favor of annotation
indexing at a later date.

26.3.2. @Handles

@andl es is a method parameter annotation that designates a method as an exception handler.
Exception handler methods are registered on beans annotated with @and| esExcept i ons. Solder
will discover all such methods at deployment time.

Let's look at an example. The following method is invoked for every exception that Solder
processes and prints the exception message to stdout. (Thr owabl e is the base exception type in
Java and thus represents all exceptions).

@HandlesExceptions !
public class MyHandlers

{

void printExceptions(@Handles CaughtException<Throwable> evt) 2

{
System.out.printin("Something bad happened: " +

115

Chapter 26. Exception Handlin...

evt.getException().getMessage()); 3
evt.markHandled(); L

}
}

11 The @Handl esExcepti ons annotation signals that this bean contains exception handler
methods.

2 The @andl es annotation on the first parameter designates this method as an exception
handler (though it is not required to be the first parameter). This parameter must be of type
Caught Excepti on<T extends Throwabl e>, otherwise it's detected as a definition error.
The type parameter designates which exception the method should handle. This method is
notified of all exceptions (requested by the base exception type Thr owabl e).

3 The Caught Except i on instance provides access to information about the exception and can
be used to control exception handling flow. In this case, it's used to read the current exception
being handled in the exception chain, as returned by get Excepti on() .

4 This handler does not modify the invocation of subsequent handlers, as designated by
invoking mar kHandl ed() on Caught Except i on. As this is the default behavior, this line could
be omitted.

The @andl es annotation must be placed on a parameter of the method, which must be of type
Caught Except i on<T ext ends Thr owabl e>. Handler methods are similar to CDI observers and,
as such, follow the same principles and guidelines as observers (such as invocation, injection of
parameters, qualifiers, etc) with the following exceptions:

« a parameter of a handler method must be a Caught Excepti on

e handlers are ordered before they are invoked (invocation order of observers is non-
deterministic)

« any handler can prevent subsequent handlers from being invoked

In addition to designating a method as exception handler, the @andl es annotation specifies two
pieces of information about when the method should be invoked relative to other handler methods:

« a precedence relative to other handlers for the same exception type. Handlers with higher
precedence are invoked before handlers with lower precedence that handle the same exception
type. The default precedence (if not specified) is 0.

« the type of the traversal mode (i.e., phase) during which the handler is invoked. The default
traversal mode (if not specified) is Tr aver sal Mode. DEPTH_FI RST.

Let's take a look at more sophisticated example that uses all the features of handlers to log all
exceptions.

@HandlesExceptions 1

116

Exception chain processing

public class MyHandlers

{
void logExceptions(@Handles(during = TraversalMode.BREADTH_FIRST) 2

@WebRequest CaughtException<Throwable> evt, 3

Logger log) 4

{
log.warn("Something bad happened: " + evt.getException().getMessage());

1 The @andl esExcepti ons annotation signals that this bean contains exception handler
methods.

2 This handler has a default precedence of 0 (the default value of the precedence attribute
on @andl es). It's invoked during the breadth first traversal mode. For more information on
traversal, see the section Section 26.5.1, “Traversal of exception type hierarchy”.

& This handler is qualified with @¢bRequest . When Solder calculates the handler chain, it filters
handlers based on the exception type and qualifiers. This handler will only be invoked for
exceptions passed to Solder that carry the @ebRequest qualifier. We'll assume this qualifier
distinguishes a web page request from a REST request.

4 Any additional parameters of a handler method are treated as injection points. These
parameters are injected into the handler when it is invoked by Solder. In this case, we are
injecting a Logger bean that must be defined within the application (or by an extension).

A handler is guaranteed to only be invoked once per exception (automatically muted), unless it
re-enables itself by invoking the unmut e() method on the Caught Except i on instance.

Handlers must not throw checked exceptions, and should avoid throwing unchecked exceptions.
Should a handler throw an unchecked exception it will propagate up the stack and all handling
done via Solder will cease. Any exception that was being handled will be lost.

26.4. Exception chain processing

When an exception is thrown, chances are it's nested (wrapped) inside other exceptions. (If you've
ever examined a server log, you'll appreciate this fact). The collection of exceptions in its entirety
is termed an exception chain.

The outermost exception of an exception chain (e.g., EJBException, ServletException, etc) is
probably of little use to exception handlers. That's why Solder doesn't simply pass the exception
chain directly to the exception handlers. Instead, it intelligently unwraps the chain and treats the
root exception cause as the primary exception.

The first exception handlers to be invoked by Solder are those that match the type of root
cause. Thus, instead of seeing a vague EJBException, your handlers will instead see an

117

Chapter 26. Exception Handlin...

meaningful exception such as Constr ai nt Vi ol ati onExcepti on. This feature, alone, makes
Solder's exception handling a worthwhile tool.

Solder continues to work through the exception chain, notifying handlers of each exception in the
stack, until a handler flags the exception as handled. Once an exception is marked as handled,
Solder stops processing the exception. If a handler instructed Solder to rethrow the exception
(by invoking Caught Except i on#r et hr ow() , Solder will rethrow the exception outside the Solder
exception handling infrastructure. Otherwise, it simply returns flow control to the caller.

Consider a exception chain containing the following nested causes (from outer cause to root
cause):

» EJBException
» PersistenceException
* SQLGrammarException

Solder will unwrap this exception and notify handlers in the following order:

1. SQLGrammarException
2. PersistenceException
3. EJBException

If there's a handler for Per si st enceExcept i on, it will likely prevent the handlers for EJBExcept i on
from being invoked, which is a good thing since what useful information can really be obtained
from EJBExcepti on?

26.5. Exception handler ordering

While processing one of the causes in the exception chain, Solder has a specific order it uses to
invoke the handlers, operating on two axes:

« traversal of exception type hierarchy

« relative handler precedence

We'll first address the traversal of the exception type hierarchy, then cover relative handler
precedence.

26.5.1. Traversal of exception type hierarchy

Solder doesn't simply invoke handlers that match the exact type of the exception. Instead, it walks
up and down the type hierarchy of the exception. It first notifies least specific handler in breadth
first traversal mode, then gradually works down the type hierarchy toward handlers for the actual
exception type, still in breadth first traversal. Once all breadth first traversal handlers have been

118

Traversal of exception type hierarchy

invoked, the process is reversed for depth first traversal, meaning the most specific handlers are
notified first and Solder continues walking up the hierarchy tree.

There are two modes of this traversal:

* BREADTH_FIRST
* DEPTH_FIRST

By default, handlers are registered into the DEPTH_FIRST traversal path. That means in most
cases, Solder starts with handlers of the actual exception type and works up toward the handler
for the least specific type.

However, when a handler is registered to be notified during the BREADTH_FIRST traversal, as
in the example above, Solder will notify that exception handler before the exception handler for
the actual type is notified.

Let's consider an example. Assume that Solder is handling the Socket Except i on. It will notify
handlers in the following order:

1. Thr owabl e (BREADTH_FIRST)

2. Except i on (BREADTH_FIRST)

3. | OExcepti on (BREADTH_FIRST)

4. Socket Except i on (BREADTH_FIRST)

5. Socket Excepti on (DEPTH_FIRST)

6. | CExcepti on (DEPTH_FIRST)

7. Exception (DEPTH_FIRST)

8. Thr owabl e (DEPTH_FIRST)

The same type traversal occurs for each exception processed in the chain.

In order for a handler to be notified of the | OExcept i on before the Socket Excepti on, it would
have to specify the BREADTH_FI RST traversal path explicitly:

void handlelOException(@Handles(during = TraversalMode.BREADTH_FIRST)
CaughtException<IOException> evt)

{

System.out.printin("An I/O exception occurred, but not sure what type yet");

}

119

Chapter 26. Exception Handlin...

BREADTH_FI RST handlers are typically used for logging exceptions because they are not likely to
be short-circuited (and thus always get invoked).

26.5.2. Handler precedence

When Solder finds more than one handler for the same exception type, it orders the handlers
by precedence. Handlers with higher precedence are executed before handlers with a lower
precedence. If Solder detects two handlers for the same type with the same precedence, it detects
it as an error and throws an exception at deployment time.

Let's define two handlers with different precedence:

void handlelOExceptionFirst(@Handles(precedence = 100) CaughtException<lOException> evt)
{

System.out.printin("Invoked first");

}

void handlelOExceptionSecond(@Handles CaughtException<IOException> evt)
{

System.out.printin("Invoked second");

}

The first method is invoked first since it has a higher precedence (100) than the second method,
which has the default precedence (0).

To make specifying precedence values more convenient, Solder provides several built-in
constants, available on the Precedence class:

e BUILT_IN =-100

« FRAMEWORK =-50

« DEFAULT =0

« LOW =50

e HIGH =100

To summarize, here's how Solder determines the order of handlers to invoke (until a handler
marks exception as handled):

1. Unwrap exception stack

2. Begin processing root cause

120

APIs for exception information and flow control

3. Find handler for least specific handler marked for BREADTH_FIRST traversal
4. If multiple handlers for same type, invoke handlers with higher precedence first
5. Find handler for most specific handler marked for DEPTH_FIRST traversal

6. If multiple handlers for same type, invoke handlers with higher precedence first

7. Continue above steps for each exception in stack

26.6. APIs for exception information and flow control

There are two APIs provided by Solder that should be familiar to application developers:

e Caught Excepti on

* ExceptionStack

26.6.1. CaughtException

In addition to providing information about the exception being handled, the Caught Excepti on
object contains methods to control the exception handling process, such as rethrowing the
exception, aborting the handler chain or unmuting the current handler.

Five methods exist on the Caught Except i on object to give flow control to the handler
e abort () -terminate all handling immediately after this handler, does not mark the exception as
handled, does not re-throw the exception.

e rethrow() - continues through all handlers, but once all handlers have been called (assuming
another handler does not call abort() or handled()) the initial exception passed to Solder is
rethrown. Does not mark the exception as handled.

« handl ed() - marks the exception as handled and terminates further handling.

e mar kHandl ed() - default. Marks the exception as handled and proceeds with the rest of the
handlers.

e dropCause() - marks the exception as handled, but proceeds to the next cause in the cause
container, without calling other handlers for the current cause.

Once a handler is invoked it is muted, meaning it will not be run again for that exception chain,
unless it's explicitly marked as unmuted via the unnut e() method on Caught Excepti on.

26.6.2. ExceptionStack

ExceptionStack contains information about the exception causes relative to the current
exception cause. It is also the source of the exception types the invoked handlers are

121

Chapter 26. Exception Handlin...

matched against. It is accessed in handlers by calling the method get Excepti onSt ack() on
the Caught Excepti on object. Please see API docs [http://docs.jboss.org/seam/3/solder/latest/
api/orgl/jboss/solder/exception/control/ExceptionStack.html] for more information, all methods are
fairly self-explanatory.

Tip

This object is mutable and can be modified before any handlers are invoked by
an observer:

public void modifyStack(@Observes ExceptionStack stack) {

Modifying the Excepti onSt ack may be useful to remove exception types that
are effectively meaningless such as EJBExcept i on, changing the exception type
to something more meaningful such as cases like SQ.Excepti on, or wrapping
exceptions as custom application exception types.

122

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html

Chapter 27.

Exception handling - Advanced
Features

27.1. Exception Modification

27.1.1. Introduction

At times it may be useful to change the exception to something a little more specific or meaningful
before it is sent to handlers. Solder provides the means to make this happen. A prime use case
for this behavior is a persistence-related exception coming from the database. Many times what
we get from the database is an error number inside of a SQLExcept i on, which isn't very helpful.

27.1.2. Usage

Before any handlers are notified of an exception, Solder will raise an event of type
ExceptionStack. This type contains all the exceptions in the chain, and will allow
you to change the exception elements that will be used to notify handlers using the
set CauseEl ement s(Col | ecti on) method. Do not use any of the other methods as they only
return copies of the chain.

Tip

When changing the exception, it is strongly recommended you keep the same stack
trace for the exceptions you are changing. If the stack trace is not set then the new
exception will not contain any stack information save from the time it was created,
which is likely to be of little use to any handler.

27.2. Filtering Stack Traces

27.2.1. Introduction

Stack traces are an everyday occurrence for the Java developer, unfortunately the base stack
trace isn't very helpful and can be difficult to understand and see the root problem. Solder helps
make this easier by:

« turning the stack upside down and showing the root cause first, and

« allowing the stack trace to be filtered

The great part about all of this: it's done without a need for CDI! You can use it in a basic Java
project, just include the Solder jar. There are four classes to be aware of when using filtering

123

Chapter 27. Exception handlin...

ExceptionStackOutput

StackFrameFilter

StackFrameFilterResult

* StackFrame

27.2.2. ExceptionStackOutput

There's not much to this, pass it the exception to print and the filter to use in the constructor and
call print Trace() which returns a string -- the stack trace (filtered or not). If no filter is passed to
the constructor, calling pri nt Tr ace() will still unwrap the stack and print the root cause first. This
can be used in place of Thr owabl e#pri nt St ackTrace(), provided the returned string is actually
printed to standard out or standard error.

27.2.3. StackFramekFilter

This is the workhorse interface that will need to be implemented to do any filtering for a stack
trace. It only has one method:publ i ¢ St ackFranmeFi |l ter Resul t process(StackFrane frame).
Further below are methods on St ackFr anme andSt ackFr aneFi | t er Resul t . Some examples are
included below to get an idea what can be done and how to do it.

27.2.4. StackFrameFilterResult

This is a simple enumeration of valid return values for the process method. Please
see the API docs [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/
StackFrameFilterResult.html] for definitions of each value.

27.2.5. StackFrame

This contains methods to help aid in determining what to do in the filter, it also allows you to
completely replace the St ackTr aceEl ement if desired. The four "mark" methods deal with marking
a stack trace and are used if "folding" a stack trace is desired, instead of dropping the frame. The
St ackFr ame will allow for multiple marks to be set. The last method,get | ndex(), will return the
index of the St ackTr aceEl enent from the exception.

Example 27.1. Terminate

@Override
public StackFrameFilterResult process(StackFrame frame) {
return StackFrameFilterResult. TERMINATE;

This example will simply show the exception, no stack trace.

124

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html

StackFrame

Example 27.2. Terminate After

@Override
public StackFrameFilterResult process(StackFrame frame) {
return StackFrameFilterResult. TERMINATE_AFTER;

}

This is similar to the previous example, save the first line of the stack is shown.

Example 27.3. Drop Remaining

@Override
public StackFrameFilterResult process(StackFrame frame) {
if (frame.getindex() >=5) {
return StackFrameFilterResult. DROP_REMAINING;

}
return StackFrameFilterResult.INCLUDE;

This filter drops all stack elements after the fifth element.

Example 27.4. Folding

@Override
public StackFrameFilterResult process(StackFrame frame) {
if (frame.isMarkSet("reflections.invoke")) {

if (frame.getStackTraceElement().getClassName().contains(“java.lang.reflect")) {
frame.clearMark("reflections.invoke");
return StackFrameFilterResult.INCLUDE;

}

else if (frame.getStackTraceElement().getMethodName().startsWith("invoke™)) {
return StackFrameFilterResult.DROP;

if (frame.getStackTraceElement().getMethodName().startsWith("invoke")) {
frame.mark("reflections.invoke™);
return StackFrameFilterResult. DROP;

return StackFrameFilterResult.INCLUDE;

125

Chapter 27. Exception handlin...

Certainly the most complicated example, however, this shows a possible way of "folding" a
stack trace. In the example any internal reflection invocation methods are folded into a single
java.l ang. refl ect. Mt hod. i nvoke() call, no more internal com.sun calls in the trace.

126

Chapter 28.

Exception Handling - Framework
Integration

Integration of Solder's exception handling with other frameworks consists of one main step, and
two other optional (but highly encouraged) steps:

 creating and firing an Except i onToCat ch
» adding any default handlers and qualifiers with annotation literals (optional)

 supporting ServiceHandlers for creating exception handlers

28.1. Creating and Firing an ExceptionToCatch event

An ExceptionToCat ch is constructed by passing a Throwabl e and optionally qualifiers for
handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting
a Event <Except i onToCat ch> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception
handling mechanism of the integrating framework, if any exist. By tying into the framework's
exception handling, any uncaught exceptions should be routed through Solder's exception
handling system and allow handlers to be invoked. This is the typical way of using Solder to
handle exceptions. Of course, it doesn't stop the application developer from firing their own
Except i onToCat ch within a catch block.

Tip

The integration should check to see if the exception was handled and rethrow the
exception if it was not handled. It should also wrap the firing of the event in a
try catch, and unwrap any exceptions that are thrown. This exception should be
j avax. enterpri se. event . Obser ver Excepti on and should wrap the exception
that should be rethrown.

28.2. Default Handlers and Qualifiers

28.2.1. Default Handlers

An integration with Solder can define it's own handlers to always be used. It's recommended
that any built-in handler from an integration have a very low precedence, be a handler for as
generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for

127

Chapter 28. Exception Handlin...

PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the
integration. This helps limit any collisions with handlers the application developer may create.

28.2.2. Qualifiers

Solder supports qualifiers for the Caught Except i on. To add qualifiers to be used when notifying
handlers, the qualifiers must be added to the Excepti onToCat ch instance via the constructor
(please see API docs for more info). Qualifiers for integrations should be used to avoid collisions
in the application error handling both when defining handlers and when firing events from the
integration.

28.3. Supporting ServiceHandlers

ServiceHandlers make for a very easy and concise way to define exception handlers. The following
example is a possible usage of ServiceHandlers within a JAX-RS application:

@HandlesExceptions
@ExceptionResponseService
public interface DeclarativeRestExceptionHandlers

{

@SendHttpResponse(status = 403, message = "Access to resource denied (Annotation-
configured response)”)
void onNoAccess(@Handles @RestRequest CaughtException<AccessControlException> e);

@SendHttpResponse(status = 400, message = "Invalid identifier (Annotation-configured
response)")
void onlinvalidldentifier(@Handles @RestRequest CaughtException<lllegalArgumentException> e);

}

All the vital information that would normally be done in the handler method is actually contained
in the @endHt t pResponse annotation. The only thing left is some boiler plate code to setup the
Response. In a jax-rs application (or even in any web application) this approach helps developers
cut down on the amount of boiler plate code they have to write in their own handlers and should be
implemented in any Solder integration, however, there may be situations where Ser vi ceHandl er s
simply do not make sense.

° Note

If ServiceHandlers are implemented make sure to document if any of the methods
are called from Caught Except i on, specifically abor t (), handl ed() orret hrow() .

128

Programmatic Handler Registration

These methods affect invocation of other handlers (or rethrowing the exception in
the case of ret hrow()).

28.4. Programmatic Handler Registration

Handlers can be registered programatically at runtime instead of solely at deploy
time. This done very simply by injecting Handl er Met hodContainer and calling
r egi st er Handl er Met hod(Handl er Met hod) .

Handl er Met hod has been relaxed in this version as well, and is not tied directly to Java. It is
therefore feasible handlers written using other JVM based languages could be easily registered
and participate in exception handling.

129

130

Exception Handling - Glossary

E

Exception Chain

H

Handler Bean

Handler Method

An exception chain is made up of many different exceptions or
causes until the root exception is found at the bottom of the
chain. When all of the causes are removed or looked at this forms
the causing container. The container may be traversed either
ascending (root cause first) or descending (outer most first).

A CDI enabled Bean which contains handler methods. Annotated
with the @4andl esExcept i ons annotation.
See Also Handler Method.

A method within a handler bean which is marked as a handler
using the @andl er s on an argument, which must be an instance
of Caught Except i on. Handler methods typically are public with
a void return. Other parameters of the method will be treated as
injection points and will be resolved via CDI and injected upon
invocation.

See Also Handler Bean.

131

132

Part Il. Seam Persistence

Chapter 29.

Seam Persistence Reference

Seam provides extensive support for the two most popular persistence architectures for Java:
Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique state-
management architecture allows the most sophisticated ORM integration of any web application
framework.

Note

=de

Previously the Seam Persistence module provided transactional-related features
also, however as transactions are not an exclusive feature of the persistence
domain, these features have been moved into a separate module called Seam
Transactions.

29.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of
the previous generation of Java application architectures. The state management architecture
of Seam was originally designed to solve problems relating to persistence — in particular
problems associated withoptimistic transaction processing. Scalable online applications always
use optimistic transactions. An atomic (database/JTA) level transaction should not span a user
interaction unless the application is designed to support only a very small number of concurrent
clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence
context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no
construct for representing an optimistic transaction. So, instead, these architectures provided
persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems
for users, and is the cause of the number one user complaint about Hibernate: the dreaded
Lazyl nitializationException. What we need is a construct for representing an optimistic
transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful
session bean) with an extended persistence context scoped to the lifetime of the component. This
is a partial solution to the problem (and is a useful construct in and of itself) however there are
two problems:

« The lifecycle of the stateful session bean must be managed manually via code in the web tier
(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

» Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but tricky.

135

Chapter 29. Seam Persistence ...

Seam solves the first problem by providing conversations, and stateful session bean components
scoped to the conversation. (Most conversations actually represent optimistic transactions in the
data layer.) This is sufficient for many simple applications (such as the Seam booking demo) where
persistence context propagation is not needed. For more complex applications, with many loosely-
interacting components in each conversation, propagation of the persistence context across
components becomes an important issue. So Seam extends the persistence context management
model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

29.2. Getting Started

To get started with Seam Persistence you need to add seam per si st ence. j ar and sol der -
i mpl . j ar to your deployment. The relevant Maven configuration is as follows:

<dependency>
<groupld>org.jboss.seam.persistence</groupld>
<artifactld>seam-persistence-api</artifact!d>
<version>${seam.persistence.version}</version>
</dependency>

<dependency>
<groupld>org.jboss.seam.persistence</groupld>
<artifactld>seam-persistence</artifactld>
<version>${seam.persistence.version}</version>
</dependency>

<dependency>
<groupld>org.jboss.solder</groupld>
<artifactld>solder-impl</artifactld>
<version>${solder.version}</version>
</dependency>

You will also need to have a JPA provider on the classpath. If you are using java EE this is taken
care of for you. If not, we recommend hibernate.

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-core</artifactld>
<version>3.5.1-Final</version>
</dependency>

136

Seam-managed persistence contexts

29.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to
manage the persistence context lifecycle for you. Even if you are in an EE environment, you might
have a complex application with many loosely coupled components that collaborate together in the
scope of a single conversation, and in this case you might find that propagation of the persistence
context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session
(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam
component that manages an instance of Ent i t yManager or Sessi on in the conversation (or any
other) context. You can inject it with@ nj ect .

29.3.1. Using a Seam-managed persistence context with JPA

@ExtensionManaged

@Produces

@PersistenceUnit
@ConversationScoped
EntityManagerFactory producerField;

This is just an ordinary resource producer field as defined by the CDI specification, however
the presence of the @txt ensi onManaged annotation tells seam to create a seam managed
persistence context from thisent i t yManager Fact or y. This managed persistence context can be
injected normally, and has the same scope and qualifiers that are specified on the resource
producer field.

This will work even in a SE environment where @PersistenceUnit injection is not
normally supported. This is because the seam persistence extensions will bootstrap the
Enti t yManager Fact ory for you.

Now we can have our Ent i t yManager injected using:

@Inject EntityManager entityManager;

Note

j=deo

The more eagle eyed among you may have noticed that the resource producer field
appears to be conversation scoped, which the CDI specification does not require
containers to support. This is actually not the case, as the @onver sati onScoped

137

Chapter 29. Seam Persistence ...

annotation is removed by the Seam Persistence portable extension. It only
specifies the scope of the created SMPC, not the Ent i t yManager Fact ory.

Warning

If are wusing EJB3 and mark your class or method
@r ansact i onAttri but e(REQUI RES NEW then the transaction and persistence
context shouldn't be propagated to method calls on this object. However as the
Seam-managed persistence context is propagated to any component within the
conversation, it will be propagated to methods marked REQUI RES_NEW Therefore,
if you mark a method REQUI RES_NEWthen you should access the entity manager
using @er si st enceCont ext .

29.3.2. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions
that span multiple requests to the server without the need to use the mer ge() operation , without
the need to re-load data at the beginning of each request, and without the need to wrestle with
the Lazyl nitial i zati onExcepti on or NonUni queQObj ect Except i on.

As with any optimistic transaction management, transaction isolation and consistency can be
achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.1 make it very easy
to use optimistic locking, by providing the @/er si on annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of
each transaction. This is sometimes the desired behavior. But very often, we would prefer that
all changes are held in memory and only written to the database when the conversation ends
successfully. This allows for truly atomic conversations. Unfortunately there is currently no simple,
usable and portable way to implement atomic conversations using EJB 3.1 persistence. However,
Hibernate provides this feature as a vendor extension to the Fl ushMbdeTypes defined by the
specification, and it is our expectation that other vendors will soon provide a similar extension.

29.3.3. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-managed
persistence context. This lets you use EL expressions in your query strings, safely and efficiently.
For example, this:

User user = em.createQuery("from User where username=#{user.username}")
.getSingleResult();

is equivalent to:

138

Setting up the EntityManager

User user = em.createQuery("from User where username=:username")
.setParameter("username", user.getUsername())
.getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!
.getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

E Warning

This only works with Seam managed persistence contexts, not persistence
contexts that are injected with @er si st enceCont ext .

29.3.4. Setting up the EntityManager

Sometimes you may want to perform some additional setup on the Entit yManager after it has
been created. For example, if you are using Hibernate you may want to set a filter. Seam
persistence fires a SeanvanagedPer si st enceCont ext Cr eat ed event when a Seam managed
persistence context is created. You can observe this event and perform any setup you require in
an observer method. For example:

public void setupEntityManager(@Observes SeamManagedPersistenceContextCreated
event) {
Session session = (Session) event.getEntityManager().getDelegate();
session.enableFilter("myfilter”);

}

139

140

Part lll. Seam Transaction

Chapter 30.

Seam Transaction Reference

30.1. Introduction

Unlike EJB session beans CDI beans are not transactional by default. Seam Transaction
brings declarative transaction management to CDI beans by enabling them to use
@r ansacti onAttri but e. Seam also provides the @r ansact i onal annotation, for environments
where java EE APIs are not present.

30.2. Transaction Management

30.2.1. Configuration

In order to enable declarative transaction management for managed beans you need to list the
transaction interceptor in beans.xmil:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlIns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1 0.xsd">
<interceptors>
<class>org.jboss.seam.transaction.TransactionlInterceptor</class>
</interceptors>
</beans>

If you are in a Java EE 6 environment then you are good to go, no additional configuration is
required.

If you are not in an EE environment you may need to configure some things with Solder. You may
need the following entries in your beans. xni file:

143

Chapter 30. Seam Transaction ...

<beans xmlIns="http://java.sun.com/xml/ns/javaee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:s="urn:java:ee"
xmlns:t="urn:java:org.jpboss.seam.transaction"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee

http://docs.jboss.org/cdi/beans_1 0.xsd">

<t:SeSynchronizations>
<s:modifies/>
</t:SeSynchronizations>

<t:EntityTransaction>
<s:modifies />
</t:EntityTransaction>

</beans>

Let's look at these individually.

<t:SeSynchronizations>
<s:modifies/>
</t:SeSynchronizations>

Seam will attempt to use JTA synchronizations if possible. If not then you need to
install the SeSynchronzations bean to allow seam to handle synchronizations manually.
Synchronizations allow Seam to respond to transaction events such as bef or eConpl et i on() and
af t er Conpl eti on(), and are needed for the proper operation of the Seam Managed Persistence
Context.

<t:EntityTransaction>
<s:modifies />
</t:EntityTransaction>

By default Seam will attempt to look up j ava: conp/ User Tr ansact i on from JNDI (or alternatively
retrieve it from the EJBContext if a container managed transaction is active). Installing
EntityTransaction tells Seam to use the JPA EntityTransaction instead. To use this you
must have a Seam Managed Persistence Context (see the Seam Persistence documentation for
details) installed with qualifier@ef aul t .

144

Declarative Transaction Management

If your entity manager is installed with a different qualifier, then you need to use the following
configuration (this assumes that nmy has been bound to the namespace that contains the
appropriate qualifier, see the Solder documentation for more details):

<t:EntityTransaction>
<s:modifies />
<t:entityManager>
<my:SomeQualifier/>
</t:entityManager>
</t:EntityTransaction>

° Note

You should avoid Ent i t yTr ansact i on if you have more than one persistence unit
in your application. Seam does not support installing multiple Enti t yTr ansact i on
beans, and the Ent i t yTr ansact i on interface does not support two phase commit,
so unless you are careful you may have data consistency issues. If you need
multiple persistence units in your application then we highly recommend using an
EE 6 compatible server, such as JBoss AS7.

30.2.2. Declarative Transaction Management

Seam adds declarative transaction support to managed beans. Seam re-uses the
EJB @ransactionAttribute for this purpose, however it also provides an alternative
@r ansacti onal annotation for environments where the EJB API's are not available. An
alternative to@\ppl i cati onExcepti on, @eamAppl i cati onExcepti on is also provided. Unlike
EJBs, managed beans are not transactional by default, you can change this by adding the
@r ansacti onAt tri but e to the bean class.

Unlike in Seam 2, transactions will not roll back whenever a non-application exception propagates
out of a bean, unless the bean has the transaction interceptor enabled.

If you are using seam managed transactions as part of the seam-faces module you do not need
to worry about declarative transaction management. Seam will automatically start a transaction
for you at the start of the faces request, and commit it before the render response phase.

Warning

@eamAppl i cati onException will not control transaction rollback when using
EJB container managed transactions. If you are in an EE environment
then you should always use the EJB API's, namely @ransacti onAttribute
and@\ppl i cat i onExcept i on.

145

Chapter 30. Seam Transaction ...

Let's have a look at some code. Annotations applied at a method level override annotations applied
at the class level.

@TransactionAttribute /*Defaults to TransactionAttributeType.REQUIRED */
class TransactionalBean

{

[* This is a transactional method, when this method is called a transaction
* will be started if one does not already exist.

* This behavior is inherited from the @ TransactionAttribute annotation on
* the class.

*/

void doWork()

{

/* A transaction will not be started for this method, however it */

/* will not complain if there is an existing transaction active. */
@TransactionAttribute Type(TransactionAttribute Type.SUPPORTED)
void doMoreWork()

{

[* This method will throw an exception if there is no transaction active when */
[* it is invoked. */

@TransactionAttribute Type(TransactionAttribute Type.MANDATORY)
void doEvenMoreWork()

{

[* This method will throw an exception if there is a transaction active when */
/* itis invoked. */
@TransactionAttribute Type(TransactionAttribute Type.NOT_SUPPORTED)

146

ServletRequestListener

void doOtherWork()
{

30.2.3. ServletRequestListener

Seam Transaction has a built in Servl et Request Li st ener which automatically begins and
commits (or rolls back if the transaction is set to rollback) a transaction for each request! This
should end having to manually specify transactions, or wonder if a transaction is inplace.

Tip

Should the need arise for disabling this listener, a context param in web.xml
named or g. j boss. seam t ransact i on. di sabl eLi st ener settotrue will disable
the listener.

147

148

Part V. Seam Security

Chapter 31.

Security - Introduction

31.1. Overview

The Seam Security module provides a number of useful features for securing your Java EE
application, which are briefly summarised in the following sections. The rest of the chapters
contained in this documentation each focus on one major aspect of each of the following features.

31.1.1. Authentication

Authentication is the act of establishing, or confirming, the identity of a user. In many applications
a user confirms their identity by providing a username and password (also known as their
credentials). Seam Security allows the developer to control how users are authenticated, by
providing a flexible Authentication API that can be easily configured to allow authentication against
any number of sources, including but not limited to databases, LDAP directory servers or some
other external authentication service.

If none of the built-in authentication providers are suitable for your application, then it is also
possible to write your own custom Authenticator implementation.

31.1.2. Identity Management

Identity Management is a set of useful APIs for managing the users, groups and roles within your
application. The identity management features in Seam are provided by PicketLink IDM, and allow
you to manage users stored in a variety of backend security stores, such as in a database or
LDAP directory.

31.1.3. External Authentication

Seam Security contains an external authentication sub-module that provides a number of features
for authenticating your application users against external authentication services, such as OpenlD
and SAML.

31.1.4. Authorization

While authentication is used to confirm the identity of the user, authorization is used to control
which actions a user may perform within your application. Authorization can be roughly divided
into two categories; coarse-grained and fine-grained. An example of a coarse-grained restriction is
allowing only members of a certain group or role to perform a privileged operation. A fine-grained
restriction on the other hand may allow only a certain individual user to perform a specific action
on a specific object within your application.

There are also rule-based permissions, which bridge the gap between fine-grained and coarse-
grained restrictions. These permissions may be used to determine a user's privileges based on
certain business logic.

151

Chapter 31. Security - Introd...

31.2. Configuration

31.2.1. Maven Dependencies

The Maven artifacts for all Seam modules are hosted within the JBoss Maven repository. Please
refer to the Maven Getting Started Guide [http://community.jboss.org/wiki/MavenGettingStarted-
Users] for information about configuring your Maven installation to use the JBoss repository.

To use Seam Security within your Maven-based project, it is advised that you import the Seam
BOM (Bill of Materials) which declares the versions for all Seam modules. First declare a property
value for ${ seam ver si on} as follows:

<properties>
<seam.version>3.1.0.Final</seam.version>
</properties>

You can check the JBoss Maven Repository [https://repository.jboss.org/nexus/content/groups/
public/org/jboss/seam/seam-bom/] directly to determine the latest version of the Seam BOM to
use.

Now add the following lines to the list of dependencies within the dependencyManagenent section
of your project's pom xn file:

<dependency>
<groupld>org.jboss.seam</groupld>
<artifactld>seam-bom</artifactld>
<version>${seam.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>

Once that is done, add the following dependency (no version is required as it comes from seam

bom):

<dependency>
<groupld>org.jboss.seam.security</groupld>
<artifactld>seam-security</artifactld>
</dependency>

If you wish to use the external authentication module in your application to allow authentication
using OpenlD or SAML, then add the following dependency also:

152

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/
https://repository.jboss.org/nexus/content/groups/public/org/jboss/seam/seam-bom/

Enabling the Security Interceptor

<dependency>
<groupld>org.jboss.seam.security</groupld>
<artifactld>seam-security-external</artifactld>
</dependency>

31.2.2. Enabling the Security Interceptor

To enable many of the features of Seam Security, the Security interceptor must be configured
in your application's beans. xni file. Add the following configuration to your beans. xnl to enable
the Security Interceptor:

<interceptors>
<class>org.jboss.seam.security.Securitylnterceptor</class>
</interceptors>

153

154

Chapter 32.

Security - Authentication

32.1. Basic Concepts

The majority of the Security API is centered around the | denti ty bean. This bean represents
the identity of the current user, the default implementation of which is a session-scoped, named
bean. This means that once logged in, a user's identity is scoped to the lifecycle of their current
session. The two most important methods that you need to know about at this stage in regard to
authentication are | ogi n() and | ogout (), which as the names suggest are used to log the user
in and out, respectively.

As the default implementation of the I denti ty bean is named, it may be referenced via an EL
expression, or be used as the target of an EL action. Take the following JSF code snippet for
example:

<h:commandButton action="#{identity.login}" value="Log in"/>

This JSF command button would typically be used in a login form (which would also contain inputs
for the user's username and password) that allows the user to log into the application.

The other important bean to know about right now is the Credenti al s bean. Its' purpose is to
hold the user's credentials (such as their username and password) before the user logs in. The
default implementation of the Cr edent i al s bean is also a session-scoped, named bean (just like
the I denti ty bean).

The Credenti al s bean has two properties, user nane and cr edent i al that are used to hold the
current user's username and credential (e.g. a password) values. The default implementation of
the Credenti al s bean provides an additional convenience property called passwor d, which may
be used in lieu of the credent i al property when a simple password is required.

155

Chapter 32. Security - Authen...

bean type is or g. j boss. seam security. Credenti al sl npl . Also, as credentials
may come in many forms (such as passwords, biometric data such as that from a
fingerprint reader, etc) the cr edent i al property of the Cr edent i al s bean must be
able to support each variation, not just passwords. To allow for this, any credential
that implements the or g. pi cket i nk.i dm api . Credenti al interface is a valid
value for the credent i al property.

32.2. Built-in Authenticators

The Seam Security module provides the following built-in Aut hent i cat or implementations:

e org.jboss.seam security.jaas.JaasAut henti cat or - used to authenticate against a JAAS
configuration defined by the container.

e org.jboss.seam security. managenent. | dmAut henti cat or - used to authenticate against
an Identity Store using the Identity Management API. See the Identity Management chapter for
details on how to configure this authenticator.

e org.jboss.seam security. external.openid. Openl dAut henticator (provided by the
external module) - used to authenticate against an external OpenlID provider, such as Google,
Yahoo, etc. See the External Authentication chapter for details on how to configure this
authenticator.

32.3. Which Authenticator will Seam use?

The I denti ty bean has an aut henti cat or O ass property, which if set will be used to determine
which Aut henti cat or bean implementation to invoke during the authentication process. This
property may be set by configuring it with a predefined authenticator type, for example by using
Solder XML Config. The following XML configuration example shows how you would configure
the I dent ity bean to use the com acrme. MyCust onmer Aut hent i cat or bean for authentication:

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:security="urn:java:org.jposs.seam.security"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/
beans 1 0.xsd">

<security:ldentitylmpl>
<s:modifies/>
<security:authenticatorClass>com.acme.MyCustomAuthenticator</
security:authenticatorClass>
</security:ldentitylmpl>

156

Writing a custom Authenticator

</beans>

Alternatively, if you wish to be able to select the Aut hent i cat or to authenticate with by specifying
the name of the Aut henticator implementation (i.e. for those annotated with the @aned
annotation), the aut hent i cat or Name property may be set instead. This might be useful if you
wish to offer your users the choice of how they would like to authenticate, whether it be through
a local user database, an external OpenlID provider, or some other method.

The following example shows how you might configure the aut hent i cat or Nane property with the
Seam Config module:

<beans xmlIns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:security="urn:java:org.jboss.seam.security"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/
beans 1 0.xsd">
<security:ldentitylmpl>
<s:modifies/>
<security:authenticatorName>openldAuthenticator</security:authenticatorName>
</security:ldentitylmpl>
</beans>

If neither the authenticatorC ass or authenticatorName properties are set, then the
authentication process with automatically use a custom Aut henti cat or implementation, if the
developer has provided one (and only one) within their application.

If neither property is set, and the user has not provided a custom Aut henti cat or, then the
authentication process will fall back to the Identity Management API to attempt to authenticate
the user.

32.4. Writing a custom Authenticator

All Aut hent i cat or implementations must implement the
org.j boss. seam security. Aut henti cator interface. This interface defines the following
methods:

public interface Authenticator {
void authenticate();
void postAuthenticate();
User getUser();
AuthenticationStatus getStatus();

157

Chapter 32. Security - Authen...

The aut hent i cat e() method is invoked during the authentication process and is responsible for
performing the work necessary to validate whether the current user is who they claim to be.

The post Aut henti cate() method is invoked after the authentication process has already
completed, and may be used to perform any post-authentication business logic, such as setting
session variables, logging, auditing, etc.

The get User () method should return an instance of or g. pi cketli nk. i dm api . User, which is
generally determined during the authentication process.

The get Status() method must return the current status of authentication, represented by
the Aut henti cati onSt at us enum. Possible values are SUCCESS, FAI LURE and DEFERRED. The
DEFERRED value should be used for special circumstances, such as asynchronous authentication
as a result of authenticating against a third party as is the case with OpenliD, etc.

The easiest way to get started writing your own custom authenticator is to extend the
org.j boss. seam security. BaseAut henti cat or abstract class. This class implements the
get User () and get Status() methods for you, and provides set User () and set Stat us()
methods for setting both the user and status values.

Warning

An Aut hent i cat or implementation cannot be a stateless session bean.

To access the user's credentials from within the aut henti cat e() method, you can inject the
Credenti al s bean like so:

@Inject Credentials credentials;

Once the credentials are injected, the aut henti cat e() method is responsible for checking that
the provided credentials are valid. Here is a complete example:

public class SimpleAuthenticator extends BaseAuthenticator implements Authenticator {
@Inject Credentials credentials;

@Override
public void authenticate() {
if ("demo".equals(credentials.getUsername()) &&
credentials.getCredential() instanceof PasswordCredential &&
"demo".equals(((PasswordCredential) credentials.getCredential()).getValue())) {
setStatus(AuthenticationStatus.SUCCESS);

158

Writing a custom Authenticator

setUser(new SimpleUser("dema"));

° Note

The above code was taken from the simple authentication example, included in
the Seam Security distribution.

In the above code, the aut hent i cat e() method checks that the user has provided a username of
demo and a password of demo. If so, the authentication is deemed as successful and the status is
set to Aut hent i cati onSt at us. SUCCESS, and a new Si npl eUser instance is created to represent
the authenticated user.

Warning

The Aut hent i cat or implementation must return a non-null value when get User ()
is invoked if authentication is successful. Failure to return a non-null value will result
in an Aut hent i cat i onExcept i on being thrown.

159

160

Chapter 33.

Security - ldentity Management

33.1. Overview

Identity Management is a feature that allows you to manage the users, groups and roles in your
application. The Identity Management features in Seam Security are provided by PicketLink IDM
[http://www.jboss.org/picketlink/IDM]. The best place to find more information about PicketLink
IDM is the reference documentation, available here [http://anonsvn.jboss.org/repos/picketlink/idm/
downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.htmil].

PicketLink provides two identity store implementations to allow you to use Hibernate or
LDAP to store identity-related data (please refer to the PicketLink IDM documentation for
details on configuring these). Seam Security provides an additional implementation called
Jpal denti t ySt or e, which allows you to store your identity data using JPA.

In a Seam-based application it probably makes more sense to use the standards-based
Jpal dent i t ySt or e rather than Hi ber nat el dent i t ySt or e, as you will most likely be running in an
Java EE container that supports JPA. Jpal denti t ySt or e is an implementation of the PicketLink
I dentityStor e interface, provided by Seam Security. This identity store allows you to store your
identity model inside a relational database, accessible via JPA. It provides an immense amount
of flexibility in the way you define your identity model, and in most cases should be compatible
with existing database schemas.

° Note

See the idmconsole example application (included in the Seam distribution) for a
demonstration of Seam's Identity Management features.

33.2. Configuring Seam to use Identity Management
with JPA

Like all authentication providers in Seam, Identity Management is supported via a concrete
Aut hent i cat or implementation called | dmAut hent i cat or. To use ldentity Management in your
own application, you don't need to do anything! Simply don't configure any authenticator, and as
long as you have an identity store configured (see the next section), the Identity Management API
will be used to authenticate automatically.

33.2.1. Recommended database schema

While Jpal dent i t ySt or e should be compatible with a large variety of database schemas, the
following diagram displays the recommended database schema to use:

161

http://www.jboss.org/picketlink/IDM
http://www.jboss.org/picketlink/IDM
http://anonsvn.jboss.org/repos/picketlink/idm/downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.html
http://anonsvn.jboss.org/repos/picketlink/idm/downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.html
http://anonsvn.jboss.org/repos/picketlink/idm/downloads/docs/1.0.0.GA/ReferenceGuide/en-US/html_single/index.html

Chapter 33. Security - Identi...

IDENTITY OBJECT RELATIONSHIP_TYPE

*TDENTITY OBJECT RELATIONSHIP TYPE TD TINTEGER

+*NAME VARCHAR2
IDENTITY OBJECT RELATIONSHIF
+IDENTITY OBJECT RELATIONSHIP ID INTEGER
oNAME VARCHAR2
oIDENTITY_DBJECT_RELATIONSHIP_TYPE_ID INTEGER
+FROM_IDENTITY_OBJECT_ID INTEGER
+T0_IDENTITY_OBJECT INTEGER

IDENTITY OBJECT ROLE_TYPE

+TDENTITY OBJECT ROLE TYPE ID TNTEGER

“NAME

VARCHARZ

IDENTITY OBJECT

+*IDENTITY OBJECT ID INTEGER

VVY

IDENTITY OBJECT CREDENTIAL

*IDENTITY OBJECT CREDENTIAL TD INTEGER
“*IDENTITY OBJECT_ID INTEGER
«IDENTITY_OBJECT_CREDENTIAL_ TYPE_ID INTEGER
SVALUE VARCHARZ

IDENTITY OBJECT CREDENTIAL_TYPE

+IDENTITY OBJECT CREDENTIAL TYPE_TD TNTEGER

*NAME

VARCHARZ

[W

IDENTITY OBJECT ATTRIBUTE

*IDENTITY OBJECT ATTRIBUTE ID INTEGER

*IDENTITY_OBJECT_ID INTEGER
*NAME VARCHARZ
SWVALUE VARCHARZ

VY

*NAME VARCHARZ
*IDENTITY OBJECT TYPE ID INTEGER

IDENTITY _OBJECT TYPE

+TDENTITY OBJECT TYPE ID INTEGER

*NAME VARCHARZ

33.2.2. The @dentityEntity and @dentityProperty annotations

Seam Security provides two annotations for configuring your entity beans for use with
Jpal dentityStore. Thefirst, @dent it yEntity isaclass annotation used to mark an entity bean
so that Jpal denti t ySt or e knows it contains identity-related data. It has a single member of type
EntityType, that tells Jpal denti t ySt or e what type of identity data it contains. Possible values
are:

IDENTITY_OBJECT
IDENTITY_CREDENTIAL
IDENTITY_RELATIONSHIP
IDENTITY_ATTRIBUTE

IDENTITY_ROLE_NAME

The second one, I dentityProperty, is a field or method annotation which is used to configure
which properties of the bean contain identity values. This annotation declares two values, val ue
and at tri but eNane:

package org.jboss.seam.security.annotations.management;

public @interface ldentityProperty {

PropertyType value();

162

Identity Object

String attributeName() default ";
}

Theval ue() memberis of type Pr oper t yType, which is an enum that defines the following values:

public enum PropertyType {
NAME, TYPE, VALUE, RELATIONSHIP_FROM, RELATIONSHIP_TO, CREDENTIAL,
CREDENTIAL_TYPE, ATTRIBUTE }

By placing the IdentityProperty annotation on various fields of your entity beans,
Jpal denti t ySt or e can determine how identity-related data must be stored within your database
tables.

In the following sections we'll look at how each of the main entities are configured.

33.2.3. Identity Object

Let's start by looking at identity object. In the recommended database schema, the
| DENTI TY_OBJECT table is responsible for storing objects such as users and groups. This table
may be represented by the following entity bean:

@Entity

@IdentityEntity(IDENTITY_OBJECT)

public class IdentityObject implements Serializable {
@Id @GeneratedValue private Long id;

@IldentityProperty(Property Type.NAME)
private String name;

@ManyToOne @IdentityProperty(PropertyType.TYPE)
@JoinColumn(name = "IDENTITY_OBJECT_TYPE_ID")
private IdentityObjectType type;

/I snip getter and setter methods

In the above code both the nane and t ype fields are annotated with @ dent it yProperty. This
tells Jpal denti t ySt or e that these two fields are significant in terms of identity management-
related state. By annotating the nane field with @dentityProperty(PropertyType. NAVE) ,
Jpal dent it ySt or e knows that this field is used to store the name of the identity object. Likewise,
the @dentityProperty(PropertyType. TYPE) annotation on the type field indicates that the
value of this field is used to represent the type of identity object.

163

Chapter 33. Security - Identi...

The I dentityQoject Type entity is simply a lookup table containing the names of the valid
identity types. The field representing the actual name of the type itself should be annotated with
@dentityProperty(PropertyType. NAMVE) :

@Entity
public class IdentityObjectType implements Serializable {

@Ild @GeneratedValue private Long id;
@IdentityProperty(PropertyType.NAME) private String name;

/I snip getter and setter methods

}

33.2.4. Credential

The credentials table is used to store user credentials, such as passwords. Here's an example of
an entity bean configured to store identity object credentials:

@Entity

@IdentityEntity(IDENTITY_CREDENTIAL)

public class IdentityObjectCredential implements Serializable {
@Id @GeneratedValue private Long id;

@ManyToOne @JoinColumn(name = "IDENTITY_OBJECT_ID")
private IdentityObject identityObject;

@ManyToOne @IdentityProperty(PropertyType. TYPE)
@JoinColumn(name = "CREDENTIAL_TYPE_ID")
private IdentityObjectCredentialType type;

@IdentityProperty(PropertyType.VALUE)
private String value;

/I snip getter and setter methods

The | denti t yObj ect Credent i al Type entity is used to store a list of valid credential types. Like
I dentityQbj ect Type, it is a simple lookup table with the field representing the credential type
name annotated with @ dent i t yPr opert y(PropertyType. NAVE) :

@Entity

164

Identity Object Relationship

public class IdentityObjectCredentialType implements Serializable
@Id @GeneratedValue private Long id;

@IldentityProperty(Property Type.NAME)
private String name;

/I snip getter and setter methods

33.2.5. Identity Object Relationship

The relationship table stores associations between identity objects. Here's an example of an entity
bean that has been configured to store identity object relationships:

@Entity
@IldentityEntity(IDENTITY_RELATIONSHIP)
public class IdentityObjectRelationship implements Serializable

@Id @GeneratedValue private Long id;

@IdentityProperty(PropertyType.NAME)
private String name;

@ManyToOne @ldentityProperty(PropertyType. TYPE) @JoinColumn(name = "RELATIONSHIP_TYPE_ID")
private IdentityObjectRelationshipType relationshipType;

@ManyToOne @IdentityProperty(PropertyType.RELATIONSHIP_FROM) @JoinColumn(name = "FROM_IDENTI
private IdentityObject from;

@ManyToOne @IldentityProperty(PropertyType.RELATIONSHIP_TO) @JoinColumn(name = "TO_IDENTITY_ID'
private IdentityObject to;

/I snip getter and setter methods

The nane property is annotated with @ dent i t yProperty(PropertyType. NAME) to indicate that
this field contains the name value for named relationships. An example of a named relationship
is a role, which uses the nanme property to store the role type name.

The rel ati onshi pType property is annotated with @ dent it yPropert y(PropertyType. TYPE)
to indicate that this field represents the type of relationship. This is typically a value in a lookup

table.

165

Chapter 33. Security - Identi...

The f r omproperty is annotated with @ dent i t yPr operty(PropertyType. RELATI ONSHI P_FROM
to indicate that this field represents the | dent i t yObj ect on the from side of the relationship.

The t o property is annotated with @ dentityProperty(PropertyType. RELATI ONSHI P_TO) to
indicate that this field represents the | dent i t yObj ect on the to side of the relationship.

The I denti t yObj ect Rel ati onshi pType entity is a lookup table containing the valid relationship
types. The @dentityProperty(PropertyType. NAME) annotation is used to indicate the field
containing the relationship type names:

@Entity
public class IdentityObjectRelationshipType implements Serializable {
@Id @GeneratedValue private Long id;

@IldentityProperty(Property Type.NAME)
private String name;

/I snip getter and setter methods

}

33.2.6. Attributes

The attribute table is used to store any additional information that is to be associated with identity
objects. Here's an example of an entity bean used to store attributes:

@Entity
@IdentityEntity(IDENTITY_ATTRIBUTE)
public class IdentityObjectAttribute implements Serializable {

@Id @GeneratedValue private Integer attributeld;
@ManyToOne
@JoinColumn(name = "IDENTITY_OBJECT _ID")

private IdentityObject identityObject;

@IldentityProperty(Property Type.NAME)
private String name;

@IdentityProperty(PropertyType.VALUE)
private String value;

/I snip getter and setter methods

166

Managing Users, Groups and Roles

The nane field is annotated with @dentityProperty(PropertyType. NAME) to indicate
that this field contains the attribute name. The value field is annotated with
@dentityProperty(PropertyType. VALUE) toindicate that this field contains the attribute value.

33.3. Managing Users, Groups and Roles
The Identity Management features are provided by a number of manager objects, which can

be access from an | dent i t ySessi on. The I dentit ySessi on may be injected directly into your
beans like so:

import org.picketlink.idm.api.ldentitySession;

public @Model class IdentityAction {
@Inject IdentitySession identitySession;

/I code goes here...

}

Once you have the IdentitySession object, you can use it to perform various identity
management operations. You should refer to the PicketLink documentation for a complete
description of the available features, however the following sections contain a brief overview.

33.3.1. Managing Users and Groups

Users and groups are managed by a Per si st enceManager, which can be obtained by calling
get Per si st enceManager () on the I denti t ySessi on object:

PersistenceManager pm = identitySession.getPersistenceManager();

Once you have the Persi st enceManager object, you can create User objects with the
creat eUser () method:

User user = pm.createUser("john");
Similarly, you can create G oup objects with the cr eat eG oup() method:

Group headOffice = pm.createGroup("Head Office", "OFFICE");

167

Chapter 33. Security - Identi...

You can also remove users and groups by calling the r enoveUser () or renoveG oup() method.

33.3.2. Managing Relationships

Relationships are used to associate User objects with G oup objects. Relationships can
be managed with the Rel ati onshi pManager object, which can be obtained by calling
get Rel at i onshi pManager () onthe | dentitySession:

RelationshipManager rm = identitySession.getRelationshipManager();

Relationships are created by invoking the associ at eUser () method, and passing in the group
and user objects that should be associated:

rm.associateUser(headOffice, user);

33.3.3. Managing Roles

Roles are managed via the Rol eManager object, which can be obtained by invoke the
get Rol eManager () method on the | dent i t ySessi on object:

RoleManager roleManager = identitySession.getRoleManager();

Roles are an association between a user and a group, however they are slightly more complex
than a simple group membership as the association also has a role type. The role type is generally
used to describe a particular function of the user within the group. Role types are represented by
the Rol eType object, and can be created with the cr eat eRol eType() method:

RoleType manager = roleManager.createRoleType("manager");

Roles can be assigned to users by invoking the creat eRol e() method, and passing in the
Rol eType, User and G oup:

Role r = roleManager.createRole(manager, user, headOffice);

168

Chapter 34.

Security - External Authentication

34.1. Introduction

The external authentication module is an optional add-on to the core Seam Security module,
which provides a number of features that enable your application to authenticate against third
party identity services, via a number of supported protocols.

Warning

The features described in this chapter are a preview only. The APIs described may
change in a subsequent version of Seam, and may not be backwards-compatible
with previous versions.

Currently this module supports authentication via OpenlD, and other protocols (such as SAML
and OAuth) are currently under development for the next version of Seam.

34.1.1. Configuration

If your project is Maven-based, then add the following dependency to your project:

<dependency>
<groupld>org.jboss.seam.security</groupld>
<artifactld>seam-security-external</artifactld>
</dependency>

If you are not using Maven, you must add the seam security-external.jar library to your
project, which can be found in the Seam Security downloadable distribution.

34.2. OpeniD

OpenlD allows the users of your application to authenticate without requiring them to create an
account. When using OpenlID, your user is temporarily redirected to the web site of their OpenID
provider so that they can enter their password, after which they are redirected back to your
application. The OpenlID authentication process is safe - at no time is the user's password seen
by any site besides their OpenlD provider.

34.2.1. Overview

The external authentication module provides support for OpenlD based on OpenlD4Java [http://
code.google.com/p/openid4java/], an open source OpenlD library (licensed under the Apache

169

http://code.google.com/p/openid4java/
http://code.google.com/p/openid4java/
http://code.google.com/p/openid4java/

Chapter 34. Security - Extern...

v2 license) with both Relying Party and Identity Provider capabilities. This feature allows your
application to authenticate its users against an external OpenlID provider, such as Google or
Yahoo, or to turn your application into an OpenlD provider itself.

° Note

To see the OpenlID features in action, take a look at the openi d-rp example
included in the Seam Security distribution.

34.2.2. Enabling OpenlD for your application

To use OpenIiD in your own application, you must configure Seam Security to use
Openl dAut hent i cat or, an Aut hent i cat or implementation that performs authentication against
an OpenlID provider. This authenticator is a named, session-scoped bean, with the following
declaration:

public @Named("openldAuthenticator") @SessionScoped class OpenldAuthenticator

34.2.2.1. Using OpenlID as your only authentication method

If your application only uses OpenlID to provide authentication services, then it is recommended
that Openl dAut hent i cat or is selected by configuring the aut hent i cat or O ass property of the
I denti t y bean. The following code sample demonstrates how this might be done by using Solder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:security="urn:java:org.jposs.seam.security"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/
beans 1 0.xsd">

<security:ldentity>
<s:modifies/>
<security:authenticatorClass>org.jboss.seam.security.external.openid.OpenldAuthenticator</
security:authenticatorClass>
</security:ldentity>

170

Choosing which OpenlD provider to use

34.2.2.2. Using OpenlD as one of many possible authentication
methods

If your application gives the user a choice of which authentication method to use, then it is not
possible to pre-configure which Aut hent i cat or implementation is used to authenticate. In these
circumstances, it is recommended that you configure the authenticator by specifying a value for
the aut hent i cat or Nane property of the | dent i t y bean. This can be done by binding a view-layer
control such as a radio group directly to this property, to allow the user to select the method of
authentication they wish to use. See the following JSF code as an example:

<h:outputLabel value="Authenticate using:"/>

<h:selectOneRadio id="authenticator" value="#{identity.authenticatorName}">
<f:selectltem itemLabel="OpenID" itemValue="openldAuthenticator" />
<f:selectltem itemLabel="Custom" itemValue="customAuthenticator" />

</h:selectOneRadio>

34.2.3. Choosing which OpenlID provider to use

Seam provides built-in support for a number of well-known OpenID providers. The
Openl dAut hent i cat or bean may be configured to select which OpenlID provider will be used to
process an authentication request. Each concrete provider implements the following interface:

public interface OpenldProvider {
String getCode();
String getName();
String getUrl();

}

The following table lists the providers that come pre-packaged in Seam:

Provider Code Name URL

CustomOpenldProvider custom Google

GoogleOpenldProvider google Google https://
www.google.com/
accounts/o8/id

MyOpenldProvider myopenid MyOpenID https://myopenid.com

YahooOpenldProvider yahoo Yahoo https://me.yahoo.com

To select one of the built-in providers to use for an authentication request, the provi der Code
property of the Openl dAut henti cat or bean should be set to one of the Code values from

171

Chapter 34. Security - Extern...

the above table. The Openl dAut henti cator bean provides a convenience method called
get Provi der s() that returns a list of all known providers. This may be used in conjunction with
a radio group to allow the user to select which OpenlID provider they wish to authenticate with -
see the following JSF snippet for an example:

<h:selectOneRadio value="#{openldAuthenticator.providerCode}">
<f:selectltewadue="#{openldAuthenticator.providengdt t@gmValue="#{p.codie@mLabel="#{p.name}"/
>

</h:selectOneRadio>

34.2.3.1. Using a custom OpenlD provider

If you would like to allow your users to specify an OpenlID provider that is not supported out of the
box by Seam, then the Cust onOpenl dPr ovi der may be used. As it is a @aned bean, it can be
accessed directly from the view layer via EL. The following JSF code shows how you might allow
the user to specify their own OpenlID provider:

<h:outputLabel value="If you have selected the Custom OpenlID provider, please provide a URL:"/
>

<h:inputText value="#{customOpenldProvider.url}"/>

34.2.4. Managing the OpenlID authentication process

Your application must provide an implementation of the Openl dRel yi ngPart ySpi interface to
process OpenlD callback events. This interface declares the following methods:

public interface OpenldRelyingPartySpi {
void loginSucceeded(OpenldPrincipal principal, ResponseHolder responseHolder);
void loginFailed(String message, ResponseHolder responseHolder);

The implementation is responsible for processing the response of the OpenlD authentication, and
is typically used to redirect the user to an appropriate page depending on whether authentication
was successful or not.

There are two API calls that must be made in the case of a successful authentication. The first
one should notify the Openl dAut hent i cat or that the authentication attempt was successful, and
pass it the Openl dPri nci pal object:

172

Managing the OpenlD authentication process

Warning

If the following two API calls are omitted, unpredictable results may occur!

openldAuthenticator.success(principal);

Secondly, a DeferredAuthenticationEvent must be fired to signify that a deferred
authentication attempt has been completed:

deferredAuthentication.fire(new DeferredAuthenticationEvent());

After making these two API calls, the implementation may perform whatever additional logic is
required. The following code shows a complete example:

import java.io.|OException;

import javax.enterprise.event.Event;
import javax.inject.Inject;
import javax.servlet.ServletContext;

import org.jboss.seam.security.events.DeferredAuthenticationEvent;
import org.jpboss.seam.security.external.api.ResponseHolder;
import org.jboss.seam.security.external.openid.OpenldAuthenticator;
import org.jpboss.seam.security.external.openid.api.OpenldPrincipal;
import org.jboss.seam.security.external.spi.OpenldRelyingPartySpi;

public class OpenldRelyingPartySpilmpl implements OpenldRelyingPartySpi {
@Inject private ServletContext servletContext;
@Inject OpenldAuthenticator openldAuthenticator;
@Inject Event<DeferredAuthenticationEvent> deferredAuthentication;

public void loginSucceeded(OpenldPrincipal principal, ResponseHolder responseHolder) {
try {
openldAuthenticator.success(principal);
deferredAuthentication.fire(new DeferredAuthenticationEvent());

responseHolder.getResponse().sendRedirect(servletContext.getContextPath() + "/
UserlInfo.jsf");
} catch (IOException e) {

173

Chapter 34. Security - Extern...

throw new RuntimeException(e);

}
}

public void loginFailed(String message, ResponseHolder responseHolder) {
try {
responseHolder.getResponse().sendRedirect(servletContext.getContextPath() + "/
AuthenticationFailed.jsf");
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}

174

Chapter 35.

Security - Authorization

35.1. Configuration

Before using any of Seam's authorization features, you must enable the Securi tyl nt er cept or
by adding the following code to your application's beans. xni :

<interceptors>
<class>org.jboss.seam.security.Securitylnterceptor</class>
</interceptors>

35.2. Basic Concepts

Seam Security provides a number of facilities for restricting access to certain parts of your
application. As mentioned previously, the security API is centered around the I dentity bean,
which is a session-scoped bean used to represent the identity of the current user.

To be able to restrict the sensitive parts of your code, you may inject the | dentity bean into
your class:

@Inject Identity identity;

Once you have injected the | dent i t y bean, you may invoke its methods to perform various types
of authorization. The following sections will examine each of these in more detail.

The security model in Seam Security is based upon the PicketLink API. Let's briefly examine a
few of the core interfaces provided by PicketLink that are used in Seam.

175

Chapter 35. Security - Author...

pkgora.picketlink. Idm.apu

<<interfacez
ldentityType

+ getkeyd : 5tring

<< |nterface= =

User

< <interface= =
RoleType

+ getName() : String

+ getid(: string

<<interface ==
Group

+ gatame : String
+ getGroupType(; String

< <interface ==
Role

+ getRoleType) : RoleType
+ getlser(. User
+ getGroupd) @ Group

35.2.1. IdentityType

This is the common base interface for both User and Gr oup. The get Key() method should return

a unique identifying value for the identity type.

35.2.2. User

Represents a user. The get | d() method should return a unique value for each user.

35.2.3. Group

Represents a group. The get Nane() method should return the name of the group, while the

get GroupType() method should return the group type.

35.2.4. Role

Represents a role, which is a direct one-to-one typed relationship between a User and a Group.
The get Rol eType() method should return the role type. The get User () method should return

176

RoleType

the User for which the role is assigned, and the get G oup() method should return the Group that
the user is associated with.

35.2.5. RoleType

Represents a role type. The get Nane() method should return the name of the role type. Some
examples of role types might be admi n, super user, manager, etc.

35.3. Role and Group-based authorization

This is the simplest type of authorization, used to define coarse-grained privileges for users
assigned to a certain role or belonging to a certain group. Users may belong to zero or more roles
and groups, and inversely, roles and groups may contain zero or more members.

Note

4o

The concept of a role in Seam Security is based upon the model defined by
PicketLink. I.e, a role is a direct relationship between a user and a group, which
consists of three aspects - a member, a role name and a group (see the class
diagram above). For example, user Bob (the member) may be an admin (the role
name) user in the HEAD OFFICE group.

The I dentity bean provides the following two methods for checking role membership:

boolean hasRole(String role, String group, String groupType);
void checkRole(String role, String group, String groupType);

These two methods are similar in function, and both accept the same parameter values. Their
behaviour differs when an authorization check fails. The hasRol e() returns a value of f al se when
the current user is not a member of the specified role. The checkRol e() method on the other
hand, will throw an Aut hori zati onExcepti on. Which of the two methods you use will depend
on your requirements.

The following code listing contains a usage example for the hasRol e() method:

if (identity.hasRole("manager”, "Head Office", "OFFICE")) {
report.addManagementSummary();

}

Groups can be used to define a collection of users that meet some common criteria. For example,
an application might use groups to define users in different geographical locations, their role in
the company, their department or division or some other criteria which may be significant from

177

Chapter 35. Security - Author...

a security point of view. As can be seen in the above class diagram, groups consist of a unique
combination of group name and group type. Some examples of group types may be "OFFICE",
"DEPARTMENT", "SECURITY_LEVEL", etc. An individual user may belong to many different
groups.

The I denti ty bean provides the following methods for checking group membership:

boolean inGroup(String name, String groupType);
void checkGroup(String group, String groupType);

These methods are similar in behaviour to the role-specific methods above. The i nG oup()
method returns a value of fal se when the current user isn't in the specified group, and the
checkG oup() method will throw an exception.

35.4. Typesafe authorization

Seam Security provides a way to secure your bean classes and methods by annotating them
with a typesafe security binding. Each security binding must have a matching authorizer method,
which is responsible for performing the business logic required to determine whether a user has
the necessary privileges to invoke a bean method. Creating and applying a security binding is
quite simple, and is described in the following steps.

35.4.1. Creating a typesafe security binding

A typesafe security binding is an annotation, meta-annotated with the Securi t yBi ndi ngType
annotation:

import org.jboss.seam.security.annotations.SecurityBindingType;

@SecurityBindingType
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHODY})
public @interface Admin {}

The security binding annotation may also define member values, which are taken into account
when matching the annotated bean class or method with an authorizer method. All member values
are taken into consideration, except for those annotated with @onbi ndi ng, in much the same
way as a qualifier binding type.

import javax.enterprise.util. Nonbinding;
import org.jboss.seam.security.annotations.SecurityBindingType;

178

Creating an authorizer method

@SecurityBindingType
@Retention(RetentionPolicy. RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
public @interface Foo {

String bar();

@Nonbinding String other() default ";
}

35.4.2. Creating an authorizer method

The next step after creating the security binding type is to create a matching authorizer method.
This method must contain the business logic required to perform the required authorization check,
and return a bool ean value indicating whether the authorization check passed or failed.

An authorizer method must be annotated with the @ecur es annotation, and the security binding
types for which it is performing the authorization check. An authorizer method may declare zero
or more method parameters. Any parameters defined by the authorizer method are treated as
injection points, and are automatically injected by the Seam Security extension. The following
example demonstrates an authorizer method that injects the | dent i t y bean, which is then used
to perform the authorization check.

import org.jboss.seam.security.annotations.Secures;

public class Restrictions {
public @Secures @Admin boolean isAdmin(ldentity identity) {
return identity.hasRole("admin”, "USERS", "GROUP");
}
}

° Note

Authorizer methods will generally make use of the security API to perform their
security check, however this is not a hard restriction.

35.4.3. Applying the binding to your business methods

Once the security binding annotation and the matching authorizer method have been created,
the security binding type may be applied to a bean class or method. If applied at the class level,
every method of the bean class will have the security restriction applied. Methods annotated with a
security binding type also inherit any security bindings on their declaring class. Both bean classes
and methods may be annotated with multiple security bindings.

179

Chapter 35. Security - Author...

public @ConversationScoped class UserAction {
public @Admin void deleteUser(String userld) {
/l code
}
}

If a security check fails when invoking a method annotated with a security binding type, an
Aut hori zat i onExcepti on is thrown. Solder can be used to handle this exception gracefully, for
example by redirecting them to an error page or displaying an error message. Here's an example
of an exception handler that creates a JSF error message:

@HandlesExceptions
public class ExceptionHandler {
@Inject FacesContext facesContext;
public void handleAuthorizationException(@Handles
CaughtException<AuthorizationException> ewvt) {
facesContext.addMessage(null, new FacesMessage(FacesMessage.SEVERITY_ERROR,
"You do not have the necessary permissions to perform that operation”, ");
evt.handled();

}
}

35.4.4. Built-in security binding annotations

Seam Security provides one security binding annotation out of the box, @oggedln. This
annotation may be applied to a bean to restrict its methods to only those users that are currently
authenticated.

import org.jboss.seam.security.annotations.Loggedin;

public @LoggedIn class CustomerAction {
public void createCustomer() {
// code

}
}

180

Chapter 36.

Security - Events

36.1. Introduction

A number of CDI events are fired during the course of many security-related operations, allowing
additional business logic to be executed in response to certain security events. This is useful if you
would like to generate additional logging or auditing, or produce messages to display to the user.

36.2. Event list

The following table contains the list of event classes that may be fired by Seam Security,
along with a description of when the event is fired. All event classes are contained in the
org.j boss. seam security. event s package.

Event Description

AlreadylLoggedInEvent Fired when a user who is already logged in
attempts to log in again

AuthorizationCheckEvent Fired when an authorization
check is performed, such as
Identity. hasPerm ssion().

CredentialsUpdatedEvent Fired whenever a user's credentials (such as
their username or password) are updated.

DeferredAuthenticationEvent Fired when a deferred authentication occurs.
For example, at the end of the OpenID
authentication process when the OpenID
provider redirects the user back to the

application.
LoggedInEvent Fired when the user is successfully logged in.
LoginFailedEvent Fired when an authentication attempt by the
user fails.
NotAuthorizedEvent Fired when the user is not authorized to invoke

a particular operation.

NotLoggedInEvent Fired when the user attempts to invoke
a privileged operation before they have
authenticated.

PreAuthenticateEvent Fired just before a user is authenticated

PostAuthenticateEvent Fired after a wuser has authenticated

successfully.
PreLoggedOutEvent Fired just before a user is logged out.

PostLoggedOutEvent Fired after a user has logged out.

181

Chapter 36. Security - Events

Event Description

PrePersistUserEvent Fired just before a new user is persisted (when
using ldentity Management).

PrePersistUserRoleEvent Fired just before a new user role is persisted
(when using Identity Management).

QuietLoginEvent Fired when a user is quietly authenticated.
SessionlnvalidatedEvent Fired when a user's session is invalidated.
UserAuthenticatedEvent Fired when a user is authenticated.
UserCreatedEvent

36.3. Usage Example

The following code listing shows the SecurityEvent Messages class, from the Seam Security
implementation library. This class (which is disabled by default due to the @/et o annotation) uses
the Messages API from Seam International to generate user-facing messages in response to
certain security events.

package org.jboss.seam.security;

import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.event.Observes;

import org.jboss.seam.international.status.Messages;

import org.jboss.seam.security.events.AlreadyLoggedInEvent;
import org.jboss.seam.security.events.LoggedInEvent;

import org.jboss.seam.security.events.LoginFailedEvent;
import org.jboss.seam.security.events.NotLoggedInEvent;
import org.jboss.seam.security.events.PostAuthenticateEvent;
import org.jboss.solder.core.Requires;

import org.jboss.solder.core.Veto;

public @ApplicationScoped @Veto @Requires("org.jboss.seam.international.status.Messages")
class SecurityEventMessages {

private static final String DEFAULT_LOGIN_FAILED_MESSAGE = "Login failed - please check
your username and password before trying again.";

private static final String DEFAULT_LOGIN_SUCCESSFUL_MESSAGE = "Welcome, {0}.";

private static final String DEFAULT _ALREADY_LOGGED_IN_MESSAGE = "You're already

logged in. Please log out first if you wish to log in again.";

private static final String DEFAULT_NOT_LOGGED_IN_MESSAGE = "Please log in first.";

public void postAuthenticate(@Observes PostAuthenticateEvent event, Messages messages,
Identity identity) {

182

Usage Example

messages.info(DEFAULT _LOGIN_SUCCESSFUL_MESSAGE, identity.getUser().getld());

public void addLoginFailedMessage(@Observes LoginFailedEvent event, Messages
messages) {
messages.error(DEFAULT _LOGIN_FAILED MESSAGE);

public void addLoginSuccessMessage(@Observes LoggedInEvent event, Messages
messages, Credentials credentials) {
messages.info(DEFAULT _LOGIN_SUCCESSFUL_MESSAGE, credentials.getUsername());

}

public void addAlreadyLoggedinMessage(@Observes AlreadyLoggedinEvent event, Messages
messages) {
messages.error(DEFAULT_ALREADY _LOGGED_IN_MESSAGE);

public void addNotLoggedinMessage(@Observes NotLoggedInEvent event, Messages
messages) {
messages.error(DEFAULT _NOT_LOGGED_IN_MESSAGE);

183

184

Part V. Seam International

Introduction

The goal of Seam International is to provide a unified approach to configuring locale, timezone
and language. With features such as Status message propagation to Ul, multiple property storage
implementations and more.

chxxxvii

clxxxviii

Chapter 37.

Installation

Most features of Seam International are installed automatically by including seam
international.jar in the web application library folder. If you are using Maven [http://
maven.apache.org/] as your build tool, you can add the following dependency to your pom xni file:

<dependency>
<groupld>org.jboss.seam.international</groupld>
<artifactld>seam-international</artifactld>
<version>${seam-international-version}</version>
</dependency>

Tip

Replace ${seam-international-version} with the most recent or appropriate version
of Seam International.

189

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

190

Chapter 38.

Locales

38.1. Application Locale

In a similar fashion to TimeZones we have an Application Local e:

@Inject
private java.util.Locale Ic;

accessible via EL with "defaultLocale".

By default the Local e will be set to the JVM default, unless you produce a String annotated with
@ef aul t Local e. This can be achieved through either the Seam Config module, with any bean
that @r oduces a method or field that matches the type and qualifier.

This will set the application language to be English with the country of US:

@Produces
@DefaultLocale
private String defaultLocaleKey = "en_US";

As you can see from the previous example, you can define the Locale with
 ang_country_vari ant . It's important to note that the first two parts of the locale definition are
not expected to be greater than 2 characters otherwise an error will be produced and it will default
to the JVM Local e.

38.2. User Locale

The Locale associated with the User Session can be retrieved by:

@Inject
@Client
private java.util.Locale locale;

which is EL accessible via user Local e.
By default the Local e will be that of the Application when the User Session is initialized. However,

changing the User's Local e is a simple matter of firing an event to update it. An example would be:

@Inject

191

Chapter 38. Locales

@Client
@Alter
private Event<java.util.Locale> localeEvent;

public void setUserLocale() {
Locale canada = Locale.CANADA,;
localeEvent.fire(canada);

38.3. Available Locales

We've also provided a list of available Locales that can be accessed via:

@Inject
private List<java.util.Locale> locales;

The locales that will be returned as available can be defined by extending Local eConf i gur ati on.
As seen here:

public class CustomLocaleConfiguration extends LocaleConfiguration {
@PostConstruct
public void setup() {
addSupportedLocaleKey("en");
addSupportedLocaleKey("fr");

192

Chapter 39.

Timezones

To support a more developer friendly way of handling TimeZones, in addition to supporting JDK
Ti meZone, we have added support for using Joda-Time through their Dat eTi meZone class. Don't
worry, it provides convenience methods for converting to JDK Ti neZone.

39.1. Joda Time

To activate Joda-Time for i18n within your project you will need to add the following Maven
dependency:

<dependency>
<groupld>joda-time</groupld>
<artifactld>joda-time</artifactld>
<version>1.6</version>
</dependency>

39.2. Application TimeZone

We have an Application time zone that is available with Joda-Time (Dat eTi meZone) or the JDK
(Ti meZone) that can be retrieved with

@Inject
private DateTimeZone applicationDateTimeZone;

@Inject
private TimeZone applicationTimeZone

It can also be accessed through EL by the name "defaultDateTimeZone" for Joda-Time or
"defaultTimeZone" for JDK!

By default the Ti mezone will be set to the JVM default, unless you produce a String annotated with
@ef aul t Ti meZone. This can be achieved through either the Seam Config module or any bean
that @r oduces a method or field that matches the type and qualifier.

This will set the application time zone to be Tijuana:

@Produces
@DefaultTimeZone
private String defaultTimeZoneld = "America/Tijuana”;

193

Chapter 39. Timezones

39.3. User TimeZone

In addition to the Application time zone, there is also a time zone assigned to each User Session.

@Inject
@Client
private DateTimeZone userDateTimeZone;

@Inject
@Client
private TimeZone userTimeZone;

It can also be accessed through EL using "userDateTimeZone" for Joda-Time and
"userTimeZone" for JDK.

By default the Dat eTi neZone and Ti neZone for a User Session is initialized to the same as the
Application. However, changing the User's Dat eTi meZone and Ti meZone is a simple matter of
firing an event to update it. An example would be

@Inject

@Client

@Alter

private Event<DateTimeZone> dtzEvent;

@Inject

@Client

@Alter

private Event<TimeZone> tzEvent;

public void setUserDateTimeZone() {
DateTimeZone dtzTijuana = DateTimeZone.forID("America/Tijuana");

dtzEvent.fire(dtzTijuana);

TimeZone tzTijuana = TimeZone.getTimeZone("America/Tijuana");
tzEvent.fire(tzTijuana);

39.4. Available TimeZones

We've also provided a list of available TimeZones that can be accessed via

194

Available TimeZones

@Inject
private List<ForwardingDateTimeZone> dateTimeZones;

@Inject
private List<ForwardingTimeZone> timeZones;

195

196

Chapter 40.

Messages

40.1. Message Creation

There are currently two ways to create a message within the module.

The first would mostly be used when you don't want to add the generated message directly to the
Ul, but want to log it out, or store it somewhere else

@Inject
private MessageFactory factory;

public String getMessage() {

MessageBuilder builder = factory.info("There are {0} cars, and they are all {1}; {1} is the best
color.", 5, "green");

return builder.build().getText();

The second is to add the message to a list that will be returned to the Ul for display.

@Inject
private Messages messages;

public void setMessage() {
messages.info("There are {0} cars, and they are all {1}; {1} is the best color.", 5, "green");

Either of these methods supports the four message levels which are info, warning, error and fatal.

Both MessageFactory and Messages support four ways in which to create a Message:

Directly adding the message

Directly adding the message and replacing parameters

Retrieving the message from a bundle
» Retrieving the message from a bundle and replacing parameters

Examples for each of these are:

messages.info("Simple Text");

197

Chapter 40. Messages

messages.info("Simple Text with {0} parameter”, 1);

messages.info(new BundleKey("org.jboss.international.seam.test. TestBundle", "key1™));

messages.info(new BundleKey("org.jboss.international.seam.test. TestBundle", "key2"), 1);

40.2. Properties Files

The examples in the previous section on how to create a message from a properties file made the
assumption that you had already created it! Now we tell you how to actually do that.

When creating a Bundl eKey in the previous section, we were passing it a bundle name of
"org.jboss.international.seam.test. TestBundle". This name is essentially the path to the properties
file! Let me explain. As we all know properties files need to be on the classpath for our code to find
them, so "org.jboss.international.seam.test.TestBundle" is telling our code that on the classpath
there is a Test Bundl e. properti es file located at a path of or g/ j boss/i nt er nati onal / seam
test.

To create a property file for another language, it's simply a case of appending the name of
the locale to the end of the file name. Such as TestBundl e _fr. properties for French or
Test Bundl e_en_US. properti es for American English.

Note

If you only ever intend to use a single language within your application, there is
no need to create a locale specific properties file, as the non locale version will be
used if a locale specific properties file is not present.

=de

198

Part VI. Seam Faces

Introduction

The goal of Seam Faces is to provide a fully integrated CDI programming model to the JavaServer
Faces (JSF) 2.0 web-framework. With features such as observing Events, providing injection
support for life-cycle artifacts (FacesContext, NavigationHandler,) and more.

cci

ccii

Chapter 41.

Installation

41.1. Maven dependency configuration

To use the Seam Faces module, you need to put the API and implementation JARs on the
classpath of your web application. Most of the features of Seam Faces are enabled automatically
when it's added to the classpath. Some extra configuration, covered below, is required if you are
not using a Servlet 3-compliant container.

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following
single dependency to your pom.xml file to include Seam Faces:

<dependency>
<groupld>org.jboss.seam.faces</groupld>
<artifactld>seam-faces</artifactld>
<version>${seam.faces.version}</version>
</dependency>

Tip

Substitute the expression ${seam f aces. versi on} with the most recent or
appropriate version of Seam Faces. Alternatively, you can create a Maven
user-defined property [http://www.sonatype.com/books/mvnref-book/reference/
resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to
satisfy this substitution so you can centrally manage the version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.
This protects you from inadvertently depending on an implementation class.

<dependency>
<groupld>org.jboss.seam.faces</groupld>
<artifactld>seam-faces-api</artifactld>
<version>${seam.faces.version}</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.faces</groupld>
<artifactld>seam-faces-impl</artifactld>
<version>${seam.faces.version}</version>

203

http://maven.apache.org/
http://maven.apache.org/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 41. Installation

<scope>runtime</scope>
</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

41.2. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register
several Servlet components in your application's web.xml to activate the features provided by this
module:

<listener>
<listener-class>org.jboss.seam.faces.beanManager.BeanManagerServletContextListener</

listener-class>

</listener>

You're now ready to dive into the JSF enhancements provided for you by the Seam Faces module!

41.3. How to setup JSF in a Java EE 6 webapp

Seam Faces requires a working JSF 2.0 configuration. To get a working JSF 2.0 environment in
a Java EE 6 environment, you need one of the following:

1. Bundle the seam-faces jar in your web-app (this sets up jsf for you)

2. if not #1, you need empty faces-config.xml, where the root element must be present.

3. if not #1 or #2, you need a web.xml with the Faces Servlet defined.

The JBoss JSF documentation [http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/
jsf.deployer.config.html] provides further details on #2 and #3 above, but these steps are
unnecessary when you use Seam Faces (#1). this is because Seam Faces scans for the presence
of the Seam Servlet, and programatically registers it for you if it's not present.

204

http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/jsf.deployer.config.html
http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/jsf.deployer.config.html
http://docs.jboss.org/jbossas/6/JSF_Guide/en-US/html/jsf.deployer.config.html

Chapter 42.

Faces Scoping Support

JSF 2.0 introduced the concept of the Flash object and the @ViewScope; however, JSF 2.0 did not
provide annotations accessing the Flash, and CDI does not support the non-standard ViewScope
by default. The Seam Faces module does both, in addition to adding a new @RenderScoped
context. Beans stored in the Render Scope will survive until the next page is rendered. For the
most part, beans stored in the ViewScope will survive as long as a user remains on the same
page, and data in the JSF 2 Flash will survive as long as the flash survives).

42.1. @RenderScoped

Beans placed in the @RenderScoped context are effectively scoped to, and live through but not
after, "the next Render Response phase".

You should think about using the Render scope if you want to store information that will be relevant
to the user even after an action sends them to another view. For instance, when a user submits
a form, you may want to invoke JSF navigation and redirect the user to another page in the site;
if you needed to store a message to be displayed when the next page is rendered -but no longer-
you would store that message in the RenderContext. Fortunately, Seam provides RenderScoped
messages by default, via the Seam Messages API.

To place a bean in the Render scope, use the @r g. j boss. seam f aces. cont ext . Render Scoped
annotation. This means that your bean will be stored in the
org. j boss. seam cont ext . Render Cont ext object until the next page is rendered, at which point
the RenderScope will be cleared.

@RenderScoped
public class Bean {
...

@ender Scoped beans are destroyed when the next JSF RENDER _RESPONSE phase ends, however,
if a user has multiple browser windows open for the same user-session, multiple Render Cont ext s
will be created, one for each incoming request. Seam Faces keeps track of which Render Cont ext
belongs to each request, and will restore/destroy them appropriately. If there is more than one
active Render Cont ext at the time when you issue a redirect, you will see a URL parameter ?
fid=... appended to the end of the outbound URL, this is to ensure the correct context is restored
when the request is received by the server, and will not be present if only one context is active.

Caution

¥

If you want to use the Render Scope with custom navigation in your application, be
sure to call Ext er nal Cont ext . encodeRedi rect URL(String url, Map<String,

205

Chapter 42. Faces Scoping Support

42.2. @Inject javax.faces.context.Flash flash

JSF 2 does not provide proper system events to create a functional @l ashScoped
context annotation integrated with CDI, so until a workaround can be found, or JSF 2 is
enhanced, you can access the Flash via the @Inject annotation. For more information on
the JSF Flash [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/
Flash.html], read this API doc [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/
javax/faces/context/Flash.html].

public class Bean {
@Inject private Flash flash;
...

}

42.3. @ViewScoped

To scope a bean to the View, use the @ avax. f aces. bean. Vi ewScoped annotation. This means
that your bean will be stored in the j avax. f aces. conponent . Ul Vi ewRoot object associated with
the view in which it was accessed. Each JSF view (faces-page) will store its own instance of the
bean, just like each HttpServletRequest has its own instance of a @RequestScoped bean.

@ViewScoped
public class Bean {
...

}

https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html

@ViewScoped

207

208

Chapter 43.

Messages API

While JSF already has the concept of adding FacesMessage objects to the FacesContext in order
for those messages to be displayed to the user when the view is rendered, Seam Faces takes
this concept one step farther with the Messages API provided by the Seam International module.
Messages are template-based, and can be added directly via the code, or templates can be loaded
from resource bundles using a Bundl eKey.

43.1. Adding Messages

Consistent with the CDI programming model, the Messages APl is provided via
bean injection. To add a new message to be displayed to the user, inject
org.jboss.seaminternational.status. Messages and call one of the Message factory
methods. As mentioned earlier, factory methods accept either a plain-text template, or a
Bundl eKey, specifying the name of the resource bundle to use, and the name of the key to use
as a message template.

@Named
public class Example
{

@Inject

Messages messages;

public String action()

{
messages.info("This is an {0} message, and will be displayed to {1}.", "INFO", "the user");
return null;

Adds the message: "This is an INFO message, and will be displayed to the user."

Notice how {0}, {1} ... {N} are replaced with the given parameters, and may be used more than
once in a given template. In the case where a Bundl eKey is used to look up a message template,
default text may be provided in case the resource cannot be loaded; default text uses the same
parameters supplied for the bundle template. If no default text is supplied, a String representation
of the Bund! eKey and its parameters will be displayed instead.

public String action()

{
messages.warn(new BundleKey("org.jboss.seam.faces.exampleBundle", "messageKey"), "unique");
return null;

209

Chapter 43. Messages API

cl asspat h:/org/j boss/ seani f aces/ exanpl eBundl e. properties
messageKey=This {0} parameter is not so {0}, see?

Adds the message: "This unique parameter is not so unique, see?"

43.2. Displaying pending messages

It's great when messages are added to the internal buffer, but it doesn't do much good unless the
user actually sees them. In order to display messages, simply use the <h: nessages /> tag from
JSF. Any pending messages will be displayed on the page just like normal FacesMessages.

<html xmlIns="http://www.w3.0rg/1999/xhtm|"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:s="http://jboss.org/seam/faces"
xmlns:ui="http://java.sun.com/jsf/facelets">

<h1>Welcome to Seam Faces!</h1>
<p>All Messages and FacesMessages will be displayed below:</p>

<h:messages />

</htm|>

Messages added to the internal buffer via the Messages API are stored in a central location during
each request, and may be displayed by any view-technology that supports the Messages API.
Seam Faces provides an integration that makes all of this automatic for you as a developer, and in
addition, messages will automatically survive JSF navigation and redirects, as long as the redirect
URL was encoded using Ext er nal Cont ext . encodeRedirect URL(...). If you are using JSF-
compliant navigation, all of this is handled for you.

210

Chapter 44.

Locale

In addition to Chapter 38, Locales, Seam Faces provides an additional producer which returns
the supported locale of the Ul Vi ewRoot or Vi ewHandl er . This Local e has the @aces qualifier to
help distinguish it from other produced locales.

Seam Faces also provides easy access to the configured list of locales for the application
both via injection and via EL. Using EL thould would be #{supportedLocal es} and
#{ def aul t FacesLocal e}. Via injection one would use

@Inject @Faces
List<Locale> supportedLocales;

or

@Inject @Faces @DefaultLocale
Locale defaultLocale;

211

212

Chapter 45.

Seam Faces Components

While Seam Faces does not provide layout components or other Ul-design related features, it
does provide functional components designed to make developing JSF applications easier, more
functional, more scalable, and more practical.

For layout and design components, take a look at RichFaces [http://jboss.org/richfaces], a Ul
component library specifically tailored for easy, rich web-interfaces.

45.1. Introduction

In order to use the Seam Faces components, you must first add the namespace to your view file,
just like the standard JSF component libraries.

<html xmIns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html|"
xmlns:s="http://jboss.org/seam/faces"
xmlns:ui="http://java.sun.com/jsf/facelets">

<h1>Welcome to Seam Faces!</h1>
<p>
This view imports the Seam Faces component library.
Read on to discover what components it provides.
</p>

</html!>

-
2 All Seam Faces components use the following namespace: http://j boss. or g/
seam f aces

45.2. <s:validateForm>

On many occasions you might find yourself needing to compare the values of multiple input fields
on a given page submit: confirming a password; re-enter password; address lookups; and so on.
Performing cross-field form validation is simple - just place the <s:validateForm> component in
the form you wish to validate, then attach your custom Validator.

<h:form id="locationForm">

213

http://jboss.org/richfaces
http://jboss.org/richfaces

Chapter 45. Seam Faces Components

<h:inputText id="city" value="#{bean.city}" />

<h:inputText id="state" value="#{bean.state}" />

<h:inputText id="zip" value="#{bean.zip}" />

<h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

<s:validateForm validatorld="locationValidator" />
</h:form>

The corresponding Validator for the example above would look something like this:

@FacesValidator("locationValidator")
public class LocationValidator implements Validator
{

@Inject

Directory directory;

@Inject
@InputField
private Object city;

@Inject
@InputField
private Object state;

@Inject
@InputField
private ZipCode zip;

@Override
public void validate(final FacesContext context, final UIComponent comp, final Object values)
throws ValidatorException
{
if('directory.exists(city, state, zip))
{
throw new ValidatorException(
new FacesMessage("Sorry, that location is not in our database. Please try again."));

214

<s:validateForm>

Tip

You may inject the correct type directly.

Notice that the IDs of the inputText components match the IDs of your Validator @InputFields;
each @Inject @InputField member will be injected with the value of the form input field who's ID
matches the name of the variable.

In other words - the name of the @InputField annotated member variable will automatically be
matched to the ID of the input component, unless overridden by using a field ID alias (see below.)

<h:form id="locationForm">
<h:inputText id="cityld" value="#{bean.city}" />
<h:inputText id="stateld" value="#{bean.state}" />
<h:inputText id="zip" value="#{bean.zip}" />
<h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

<s:validateForm fields="city=cityld state=stateld" validatorld="locationValidator" />
</h:form>

Notice that "zip" will still be referenced normally; you need only specify aliases for fields that differ
in name from the Validator @InputFields.

Tip

Usi ng @ nput Fi el d("cust om D') with an ID override can also be used to specify
a custom ID, instead of using the default: the name of the field. This gives you the
ability to change the name of the private field, without worrying about changing the
name of input fields in the View itself.

215

Chapter 45. Seam Faces Components

An alternate way of accessing those fields on the validator by injecting an InputElement. It works
similarly to @InputField, but stores the clientld and a JSF UIComponent, along with the field value.

@FacesValidator(“fooValidator")

public class FooValidator implements Validator {
@Inject
private InputElement<String> firstNameElement;
@Inject
private InputElement<String> lastNameElement;

@Inject
private InputElement<Date> startDateElement;

@Inject
private InputElement<Date> endDateElement;

Use get methods to access those information

public void validate(final FacesContext ctx, final UIComponent form, final Object value) throws ValidatorExceptiol
Date startDate = startDateElement.getValue();

Calendar calendar = Calendar.getinstance();
calendar.add(Calendar.DAY_OF_MONTH, -1);

if (startDate.before(calendar.getTime())) {
String message = messageBuilder.get().key(new DefaultBundleKey("booking_checkinNotFutureDate"))
.targets(startDateElement.getClientld()).build().getText();
throw new ValidatorException(new FacesMessage(message));

45.3. <s:viewAction>

The view action component (Ul Vi ewAct i on) is an Act i onSour ce2 Ul Conponent that specifies an
application-specific command (or action), using an EL method expression, to be invoked during
one of the JSF lifecycle phases proceeding Render Response (i.e., view rendering).

216

Motivation

View actions provide a lightweight front-controller for JSF, allowing the application to
accommodate scenarios such as registration confirmation links, security and sanity checking a
request (e.g., ensuring the resource can be loaded). They also allow JSF to work alongside action-
oriented frameworks, and existing applications that use them.

45.3.1. Motivation

JSF employs an event-oriented architecture. Listeners are invoked in response to user-interface
events, such as the user clicking on a button or changing the value of a form input. Unfortunately,
the most important event on the web, a URL request (initiated by the user clicking on a link,
entering a URL into the browser's location bar or selecting a bookmark), has long been overlooked
in JSF. Historically, listeners have exclusively been activated on postback, which has led to the
common complaint that in JSF, "everything is a POST."

We want to change that perception.

Processing a URL request event is commonly referred to as bookmarkable or GET support. Some
GET support was added to JSF 2.0 with the introduction of view parameters and the pre-render
view event. View parameters are used to bind query string parameters to model properties. The
pre-render view event gives the developer a window to invoke a listener immediately prior to the
view being rendered.

That's a start.

Seam brings the GET support full circle by introducing the view action component. A view action is
the compliment of a Ul Conmand for an initial (non-faces) request. Like its cohort, it gets executed
by default during the Invoke Application phase (how used on both faces and non-faces requests).
A view action can optionally be invoked on postback as well.

View actions (Ul Vi ewAct i on) are closely tied to view parameters (Ul Vi ewPar anet er). Most of
the time, the view parameter is used to populate the model with data that is consumed by the
method being invoked by a Ul Vi ewAct i on component, much like form inputs populate the model
with data to support the method being invoked by a Ul Conmand component.

45.3.2. Usage

Let's consider a typical scenario in web applications. You want to display the contents of a blog
entry that matches the identifier specified in the URL. We'll assume the URL is:

http://localhost:8080/blog/entry.jsf?id=10

We'll use a view parameter to capture the identifier of the entry from the query string and a view
action to fetch the entry from the database.

<f:metadata>
<fiviewParam name="id" value="#{blogManager.entryld}"'/>

217

Chapter 45. Seam Faces Components

<s:viewAction action="#{blogManager.loadEntry}"/>

</f:metadata>

Tip

The view action component must be declared as a child of the view metadata facet
(i.e., <f : met adat a>) so that it gets incorporated into the JSF lifecycle on both non-
faces (initial) requests and faces (postback) requests. If you put it anywhere else
in the page, the behavior is undefined.

Warning

The JSF 2 specification specifies that there must be at least one view parameter
for the view metadata facet to be processed on an initial request. This requirement
was introduced into the JSF specification inadvertently. But not to worry. Seam
Faces inserts a placeholder view parameter into the view metadata if it contains
other components but no view parameters. That means you can use a view action
without a view parameter, contrary to the JSF specification.

What do we do if the blog entry can't be found? View actions support declarative navigation just
like Ul Command components. So you can write a navigation rule that will be consulted before the
page is rendered. If the rule matches, navigation occurs just as though this were a postback.

<navigation-rule>

<from-view-id>/entry.xhtml</from-view-id>

<navigation-case>
<from-action>#{blogManager.loadEntry}</from-action>
<if>#{empty entry}</if>
<to-view-id>/home.xhtml</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

After each view action is invoked, the navigation handler looks for a navigation case that matches
the action's EL method signature and outcome. If a navigation case is matched, or the response
is marked complete by the action, subsequent view actions are short-circuited. The lifecycle then
advances appropriately.

By default, a view action is not executed on postback, since the primary intention of a view action
is to support a non-faces request. If your application (or use case) is decidedly stateless, you

218

Usage

may need the view action to execute on any type of request. You can enable the view action on
postback using the onPost back attribute:

<s:viewAction action="#{blogManager.loadEntry}" onPostback="true"/>

You may only want the view action to be invoked under certain conditions. For instance, you may
only need it to be invoked if the conversation is transient. For that, you can use the i f attribute,
which accepts an EL value expression:

<s:viewAction action="#{blogEditor.loadEntry}" if="#{conversation.transient}"/>

There are two ways to control the phase in which the view action is invoked. You can set the
i mredi at e attribute to true, which moves the invocation to the Apply Request Values phase
instead of the default, the Invoke Application phase.

<s:viewAction action="#{sessionManager.validateSession}" immediate="true"/>

You can also just specify the phase directly, using the name of the phase constant in the Phasel d
class (the case does not matter).

<s:viewActioaction="#{sessionManager.validateSessionphase="APPLY_REQUEST_ VALUES"/
>

Tip

The valid phases for a view action are:

APPLY_REQUEST_VALUES (default if i mredi at e="true")
UPDATE_MODEL _ VALUES
PROCESS_VALI DATI ONS

| NVOKE_APPLI CATI ON (default)

If the phase is set, it takes precedence over the immediate flag.

219

Chapter 45. Seam Faces Components

45.3.3. View actions vs the PreRenderViewEvent

The purpose of the view action is similar to use of the PreRenderViewEvent. In fact, the code to
load a blog entry before the page is rendered could be written as:

<f:metadata>

<f:viewParam name="id" value="#{blogManager.entryld}"/>

<f:event type="preRenderView" listener="#{blogManager.loadEntry}"/>
</f:metadata>

However, the view action has several important advantages:

It's lightweight

« It's timing can be controlled

It's contextual

It can trigger navigation

View actions are lightweight because they get processed on a non-faces (initial) request before the
full component tree is built. When the view actions are invoked, the component tree only contains
view metadata.

As demonstrated above, you can specify a prerequisite condition for invoking the view action,
control whether it's invoked on postback, specify the phase in which it's invoked and tie the
invocation into the declarative navigation system. The PreRenderViewEvent is quite basic in
comparison.

45.4. ObjectConverter

The ObjectConverter is a simple converter that can be wused on any
Java Object, including JPA entities. It can be wused via it's converter id

org. j boss. seam f aces. conver si on. Obj ect Converter or by it's tag <s: obj ect Converter/>.

Warning

This converter should only be used within a long running conversation to
allow conversions happen correctly. When used with a @onver sati onScoped
Entit yManager no merges or re-fetch should need to occur when using JPA
entities.

220

Ul Input Container

45.5. Ul Input Container

UllnputContainer is a supplemental component for a JSF 2.0 composite component encapsulating
one or more input components (EditableValueHolder), their corresponding message components
(UIMessage) and a label (HtmIOutputLabel).

This component takes care of wiring the label to the first input and the messages to each input
in sequence. It also assigns two implicit attribute values, "required” and "invalid" to indicate that
a required input field is present and whether there are any validation errors, respectively. To
determine if a input field is required, both the required attribute is consulted and whether the
property has Bean Validation constraints.

Finally, if the "label" attribute is not provided on the composite component, the label value will be
derived from the id of the composite component, for convenience.

There's a composite componente that ships with seam-faces under the url:

http://java.sun.com/jsf/composite/components/seamfaces.

xmlins:sc="http://java.sun.com/jsf/composite/components/seamfaces"
<sc:inputContainer label="name" id="name">
<h:inputText id="input" value="#{person.name}"/>
</sc:inputContainer>

If you want to define your own composite component, follow this definition example (minus layout):

<cc:interface componentType="org.jboss.seam.faces.InputContainer"/>
<cc:implementation>
<h:outputLabel id="label" value="#{cc.attrs.label};" styleClass="#{cc.attrs.invalid ? 'invalid' :
">
<h:outputText styleClass="required" rendered="#{cc.attrs.required}" value="*"/>
</h:outputLabel>
<h:panelGroup>
<cc:insertChildren/>
</h:panelGroup>
<h:message id="message" errorClass="invalid message" rendered="#{cc.attrs.invalid}"/>
</cc:implementation>

. p
2 it's currently required to wrap the insertChildren tag with a jsf panelGroup. Please
see http://java.net/jira/browse/JAVASERVERFACES-1991 for more details.

221

Chapter 45. Seam Faces Components

Tip

NOTE: Firefox does not properly associate a label with the target input if the
input id contains a colon (), the default separator character in JSF. JSF 2
allows developers to set the value via an initialization parameter (context-param
in web.xml) keyed to j avax. f aces. SEPARATOR CHAR. We recommend that you
override this setting to make the separator an underscore ().

222

Chapter 46.

Faces Artifact Injection

One of the goals of the Seam Faces Module is to make support for CDI a more ubiquitous
experience, by allowing injection of JSF Lifecycle Artifacts into managed beans, and also by
providing support for @Inject where it would not normally be available. This section describes the
additional CDI integration for faces artifact injection

46.1. @*Scoped and @Inject in Validators and
Converters

Frequently when performing complex validation, it is necessary to access data stored in a
database or in other contextual objects within the application itself. JSF does not, by default,
provide support for @ nj ect in Converters and Validators, but Seam Faces makes this available.
In addition to injection, it is sometimes convenient to be able to scope a validator just as we would
scope a managed bean; this feature is also added by Seam Faces.

Notice how the Validator below is actually @Request Scoped, in addition to using injection to obtain
an instance of the User Ser vi ce with which to perform an email database lookup.

@RequestScoped
@FacesValidator("emailAvailabilityValidator")
public class EmailAvailabilityValidator implements Validator
{

@Inject

UserService us;

@Override

public void validate(final FacesContext context, final UIComponent component, final Object value)

throws ValidatorException

{
String field = value.toString();
try
{
us.getUserByEmail(field);
FacesMessage msg = new FacesMessage("That email address is unavailable");
throw new ValidatorException(msg);
}
catch (NoSuchObjectException e)
{
}
}
}

223

Chapter 46. Faces Artifact In...

Warning

We recommend to always use @equest Scoped converters/validators unless a
longer scope is required, in which case you should use the appropriate scope
annotation, but it should not be omitted.

Because of the way JSF persists Validators between requests, particularly when
using @nj ect inside a validator or converter, forgetting to use a @ Scoped
annotation could in fact cause @ nj ect 'ed objects to become null.

An example Converter using @Inject

@SessionScoped
@FacesConverter("authorConverter")
public class UserConverter implements Converter

{
@Inject
private UserService service;

@PostConstruct
public void setup()

{

System.out.printin("UserConverter started up");

}

@PreDestroy
public void shutdown()

{

System.out.printin("UserConverter shutting down");

}

@Override
public Object getAsObiject(final FacesContext arg0, final UIComponent argl, final String userName)
{

...

return service.getUserByName(userName);

@Override
public String getAsString(final FacesContext context, final UIComponent comp, final Object user)
{

...

return ((User)user).getUsername();

224

@Inject'able Faces Artifacts

46.2. @Inject'able Faces Artifacts

This is the list of inject-able artifacts provided through Seam Faces. These objects would normally
require static method-calls in order to obtain handles, but Seam Faces attempts to break that
coupling by providing @Inject'able artifacts. This means it will be possible to more easily provide
mocked objects during unit and integration testing, and also simplify bean code in the application

itself.

Artifact Class

javax.faces.context.FacesContext

javax.faces.context.ExternalContext

javax.faces.application.NavigationH

javax.faces.context.Flash

Example

public class Bean {
@Inject FacesContext context;

}

public class Bean {
@Inject ExternalContext context;

}

public class Bean {
@Inject NavigationHandler handler;

}

public class Bean {
@Inject Flash flash;

}

225

226

Chapter 47.

Faces Events Propagation

When the seam-faces module is installed in a web application, JSF events will automatically be
propagated via the CDI event-bridge, enabling managed beans to easily observe all Faces events.

There are two categories of events: JSF phase events, and JSF system events. Phase events are
triggered as JSF processes each lifecycle phase, while system events are raised at more specific,
fine-grained events during request processing.

47.1. JSF Phase events

A JSF phase listener is a class that implements j avax. f aces. event . PhaseLi st ener and is
registered in the web application's f aces- confi g. xn file. By implementing the methods of the
interfaces, the user can observe events fired before or after any of the six lifecycle phases of a
JSF request: restore view, apply request val ues, process validations, update nodel
val ues, i nvoke applicationorrender view.

Tip
& In order to observe events in an EJB JAR, the beans.xml file must be in both the
WEB-INF folder of the WAR, and inside the EJB JAR containing the observer.

47.1.1. Seam Faces Phase events

What Seam provides is propagation of these Phase events to the CDI event bus; therefore, you
can observe events using normal CDI @»ser ves methods. Bringing the events to CDI beans
removes the need to register phase listener classes via XML, and gives the added benefit of
injection, alternatives, interceptors and access to all other features of CDI.

Creating an observer method in CDI is simple; just provide a method in a managed bean that is
annotated with @bser ves. Each observer method must accept at least one method parameter:
the event object; the type of this object determines the type of event being observed. Additional
parameters may also be specified, and their values will be automatically injected by the container
as per the CDI specification.

In this case, the event object passed along from the phase listener is a
j avax. f aces. event . PhaseEvent . The following example observes all Phase events.

public void observeAll(@Observes PhaseEvent e)

{

/I Do something with the event object

227

Chapter 47. Faces Events Prop...

Events can be further filtered by adding Qualifiers. The name of the method itself is not significant.
(See the CDI Reference Guide for more information on events and observing.)

Since the example above simply processes all events, however, it might be appropriate to filter
out some events that we aren't interested in. As stated earlier, there are six phases in the JSF
lifecycle, and an event is fired before and after each, for a total of 12 events. The @ef ore and
@\ ter "temporal" qualifiers can be used to observe events occurring only before or only after a
Phase event. For example:

public void observeBefore(@Observes @Before PhaseEvent e)

{

/I Do something with the "before™ event object

public void observeAfter(@Observes @After PhaseEvent e)
{

/I Do something with the "after" event object

If we are interested in both the "before” and "after" event of a particular phase, we can limit them
by adding a "lifecycle" qualifier that corresponds to the phase:

public void observeRenderResponse(@Observes @RenderResponse PhaseEvent e)

{

/I Do something with the "render response" event object

By combining a temporal and lifecycle qualifier, we can achieve the most specific qualification:

public void observeBeforeRenderResponse(@Observes @Before @RenderResponse PhaseEvent e)

{

/I Do something with the "before render response" event object

47.1.2. Phase events listing

This is the full list of temporal and lifecycle qualifiers

228

JSF system events

Qualifier Type Description

@Before temporal Qualifies events before lifecycle phases

@After temporal Qualifies events after lifecycle phases

@RestoreView lifecycle Qualifies events from the "restore view" phase
@ApplyRequestValifesycle Qualifies events from the "apply request values" phase
@ProcessValidatiotigecycle Qualifies events from the "process validations" phase
@UpdateModelValiigscycle Qualifies events from the "update model values” phase
@InvokeApplicatiotifecycle Qualifies events from the "invoke application" phase
@RenderResponsdifecycle Qualifies events from the "render response” phase

The event object is always a j avax. f aces. event . PhaseEvent and according to the general CDI
principle, filtering is tightened by adding qualifiers and loosened by omitting them.

47.2. JSF system events

Similar to JSF Phase Events, System Events take place when specific events occur within the
JSF life-cycle. Seam Faces provides a bridge for all JSF System Events, and propagates these
events to CDI.

47.2.1. Seam Faces System events

This is an example of observing a Faces system event:

public void observesThisEvent(@Observes ExceptionQueuedEvent e)

{

/I Do something with the event object

47.2.2. System events listing

Since all JSF system event objects are distinct, no qualifiers are needed to observe them. The
following events may be observed:

Event object Context Description

SystemEvent all All events

ComponentSystemEvent component All component events
PostAddToViewEvent component After a component was added to the view
PostConstructViewMapEvent component After a view map was created
PostRestoreStateEvent component After a component has its state restored

229

Chapter 47. Faces Events Prop...

Event object Context Description

PostValidateEvent component After a component has been validated

PreDestroyViewMapEvent component Before a view map has been restored

PreRemoveFromViewEvent component Before a component has been removed from
the view

PreRenderComponentEvent component After a component has been rendered

PreRenderViewEvent component Before a view has been rendered

PreValidateEvent component Before a component has been validated

ExceptionQueuedEvent system When an exception has been queued

PostConstructApplicationEvent system After the application has been constructed
PostConstructCustomScopeEvent system After a custom scope has been constructed
PreDestroyApplicationEvent system Before the application is destroyed

PreDestroyCustomScopeEvent system Before a custom scope is destroyed

47.2.3. Component system events

There is one qualifier, @onponent that can be used with component events by
specifying the component ID. Note that view-centric component events PreRender Vi ewEvent ,
Post Const ruct Vi ewMapEvent and PreDest royVi ewvapEvent do not fire with the @onponent
qualifier.

public void observePrePasswordValidation(@Observes @Component(“form:password") PreValidateEvent e)

{

/I Do something with the "before password is validated" event object

}

Global system events are observer without the component qualifier

public void observeApplicationConstructed(@Observes PostConstructApplicationEvent e)

{

/I Do something with the "after application is constructed" event object

}

The name of the observing method is not relevant; observers are defined solely via annotations.

230

Chapter 48.

Project Stage Support

The Seam Faces module provides integration with the JSF project stage system. Beside the
injection of the current project stage into beans, Seam Faces also allows to enable specific beans
only for certain project stages.

48.1. Project Stage Injection

Seam Faces supports the injection of the current project stage directly into CDI managed beans.
This allows to implement special behavior for certain project stages very easily.

public class Bean {

@Inject
private ProjectStage projectStage;

public void someMethod() {

if (projectStage == ProjectStage.Development) {
/* do something special for development mode here */

48.2. Restricting Bean Activation

Seam Faces provides a set of annotations that can be used to activate beans only in specific
project stages. The following table shows the JSF project stages and the corresponding Seam
Faces annotations.

Project Stage ProjectStage Enum Seam Faces Anntotation
Production Pr oj ect St age. Producti on @r oducti on
Development Proj ect St age. Devel opment ~ @evel opnent

UnitTest Proj ect St age. Uni t Test @Jni t Test

SystemTest Proj ect St age. Syst enilest @Byst enTest

To restrict a bean to a project stage just place the correspoding annotation on the class.

231

Chapter 48. Project Stage Support

The following example shows a bean that logs the beginning and end of each JSF lifecycle phase.
As the bean is annotated with @evel opnent , it will only be activated if the application runs in the
Devel opnent project stage.

@Development
public class PhaseEventLogBean {

public void before(@Observes @Before PhaseEvent event) {

log.debug("Before: " + event.getPhaseld());

public void after(@Observes @After PhaseEvent event) {
log.debug("After: " + event.getPhaseld());

Tip

You can place more than one project stage annotation on a bean. So if a bean
should be active in all project stages except for Pr oduct i on, define it like this:

@Development @SystemTest @UnitTest
public class Bean {

Seam Faces will automatically detect the project stage that is used for the application. If you want
Seam Faces to use a different project stage, you can use one of the following two ways.

The first possibility to change the project stage for Seam Faces is to set the system property
org.j boss. seam f aces. PROJOECT_STAGE. This option is the most easiest to use but is also very
unflexible because the project stage be set for all applications running in a container.

-Dorg.jboss.seam.faces.PROJECT STAGE=Development

232

Restricting Bean Activation

If you need more control over the project stage that is used you can implement the Seam
Faces SPI org.jboss. seam faces. proj ect st age. Proj ect St ageDet ect or. Just implement
this interface and add the fully-qualified classname of the class to the file META- | NF/ ser vi ces/
org.j boss. seam f aces. proj ect st age. Pr oj ect St ageDet ect or . See the following class for an

example:

public class MyProjectStageDetector implements ProjectStageDetector {
@Override

public int getPrecedence() {
return 10;

@Override
public ProjectStage getProjectStage() {
if (System.getProperty("user.name").startsWith("dev-")) {

return ProjectStage.Development;

return ProjectStage.Production;

233

234

Chapter 49.

Faces View Configuration

Seam Faces aims to provide JSF web developers with a truly worthy framework for web
development by ironing out some of the JSF pain points, integrating tightly with CDI, and offering
out of the box integration with the other Seam Modules. The view configuration presented here
provides a central means of configuring seemingly disparate concerns.

Adhering to the CDI core tenet of type safety, Seam Faces offers a type-safe way to configure the
behaviour of your JSF views. So far these configurable behaviors include:

» Configuring view access by integrating with Seam Security

» Configuring URL rewriting by integrating with Pretty Faces (or any other pluggable URL rewriting
framework)

« A personal favorite of the Seam Faces lead: setting f aces- di r ect =t r ue when navigating to
a view.

The Seam Faces example application faces-vi ewconfig, demonstrates all the view
configuration techniques discussed in this chapter.

49.1. Configuration With Annotated Enums

Faces pages are configured by placing annotations on the properties of an Java enum The
annotation @/ ewConfi g is placed on a Java i nt er f ace, which contains a static enum. It is the
properties of this static enum that hold the individual annotations used to configure the view.

@ViewConfig
public interface Pages {

static enum Pagesl1 {

@ViewPattern("/admin.xhtml")
@Admin
ADMIN,

@UrlMapping(pattern="/item/#{item}/")
@ViewPattern("/item.xhtml")

@Owner

ITEM,

@FacesRedirect

235

Chapter 49. Faces View Config...

@ViewPattern("/*")
@AccessDeniedView("/denied.xhtml")
@LoginView("/login.xhtml")

ALL;

The interface containing the enum is required due to a limitation in version 1.0 of the CDI
specification. If the @i ewConfi g is placed directly on the enum, the CDI specification does not
require the annotations to be scanned.

Each property of the enum is annotated with at least the @i ewPatt er n annotation. This view
pattern is used to match against the JSF view ids, to determine which annotations apply to a given
view id. The view patterns themselves support the * wild character. A view is matched against all
view parameters that apply to determine the relevant annotations. If conflicting annotations are
found, the annotation paired with the most specific matching view pattern takes precedence.

49.2. Configuring View Restrictions

Securing view access is achieved through integration with Seam Security, which must be explicitly
bundled with your web application. Refer to the Seam Security documentation for details on how
to setup authentication. What we'll cover here is the authorisation to JSF views.

49.2.1. Writing Seam security Annotations

To secure a view, we start by writing an annotation qualified with a @ecuri t yBi ndi ngType
qualifier:

@SecurityBindingType

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.FIELD, ElementType.METHOD, ElementType.TYPE})
public @interface Owner {

}

This @ecurityBi ndi ngType qualified annotation is placed on an enum property in the
@i ewConfi g annotated interface, adjacent to the @ViewPattern to which the security
restriction applies. View patterns with wildcards are supported for security based annotations.

236

Applying the Security Restrictions

49.2.2. Applying the Security Restrictions

Methods that enforce the Security restriction are annotated with the @ecur es annotation, as
well as the same @ecuri t yBi ndi ngType qualified annotation used on the @i ewConfi g enum

property.

public @Secures @Owner boolean ownerChecker(ldentity identity, @Current Item item) {
if (item == null || identity.getUser() == null) {
return false;
}else {
return item.getOwner().equals(identity.getUser().getld());

When a JSF view is visited, matching @/i ewPat t er n patterns are found, and their associated
@securi tyBi ndi ngType qualified annotations are looked up. The corresponding method is
invoked, and access is either granted or denied. If access is denied, and the user is not yet logged
in, the user will be redirected to a view specified in a @.ogi nvi ewannotation for that view. However
if access is denied, and the user is logged in, navigation will be redirected to a view specified in
the @\ccessDei ned annotation.

Refer to the Seam Security documentation for further details on writing @ecur es methods for
restricting view access, including support for parameter injection.

49.2.3. Changing the Restriction Phases

By default, Security restrictions are enforced before the I nvoke Application phase, and
before the Render Response phase. Restrictions are enforced twice per lifecycle, as the view
id normally changes at the end of the | nvoke Application phase. However, use cases exist
requiring enforcement of a Security restriction at a different phase. For instance it is desirable to
enforce a role-based restriction as early in the lifecycle as possible, to prevent any unnecessary
computations from occurring. This is achieved using the @est ri ct At Vi ew annotation.

By qualifying a @ecuri t yBi ndi ngType qualified annotation with the @Rest ri ct At Vi ew qualifier,
one is able to specify at which phase that individual Security restriction should be applied.
Additionally, the @restri ct At Vi ew annotation can be applied directly to a @i ewConfi g enum
property, to determine the restriction phase of all associated @ecur it yBi ndi ngType qualified
annotations.

49.3. Configuring URL Rewriting

Seam Faces delegates URL Rewriting to Pretty Faces [http://ocpsoft.com/prettyfaces/]. The
Rewriting mechanism however is pluggable, and an alternate URL Rewriting engine could easily

237

http://ocpsoft.com/prettyfaces/
http://ocpsoft.com/prettyfaces/

Chapter 49. Faces View Config...

be used instead. What makes SeamFaces unique in it's approach to URL rewriting, is that the
rewrite configuration is done via the @i ewConf i g mechanism, so all view configuration is done
consistently.

To configure UrlRewriting, use the @QJr | Rew i t e Seam Faces annotation:

@UrlMapping(pattern="/item/#{item}/")
@ViewPattern("/item.xhtml")
ITEM;

The above listing would rewrite the url /item jsf/itens2 into/itenm 2/. See the Pretty Faces
documentation for further details on configuring URL rewriting.

49.4. Configuring "faces-redirect"

A @/i ewPat t er n annotated with @acesRedi r ect will cause all navigations to views that match
that pattern to have their faces-redirect property set to true. This alleviates the requirement to
append ?f aces-redi rect =t rue to all implicit navigation rules, and neither does it have to be
specified in the navigation rules defined in the faces-config.xml.

238

Part VII. Seam Reports

Introduction

The goal of Seam Reports is to provide a fully integrated CDI programming model portable
extension for Java EE that provides APIs for compiling, populating and rendering reports from
existing report frameworks.

Seam Reports contains similar functionality to that of the Excel and PDF templates of Seam 2,
however, the creation and compilation of the reports is quite different. Seam Reports aligns much
better with existing tools in a business, making use of knowledge and expertise that exists outside
of development. The functionality in Seam 2 was largely targeted to creating flyers and simple
pages. Seam Reports can accomplish this, but also allows for easy creation of multi-page business
reports by integrating with JasperReports [http://jasperforge.org/projects/jasperreports], Pentaho
[http:/Iwww.pentaho.com/], and XDocReports [http://code.google.com/p/xdocreport/]. Integration
with other reporting solutions can also be done easily by implementing five small interfaces
provided by Seam Reports, see chapter 3 for more information about adding reporting engines.

ccxli

http://jasperforge.org/projects/jasperreports
http://jasperforge.org/projects/jasperreports
http://www.pentaho.com/
http://www.pentaho.com/
http://code.google.com/p/xdocreport/
http://code.google.com/p/xdocreport/

cexlii

Chapter 50.

Installation

Most features of Seam Reports are installed automatically by including the seam-reports-api.jar
and the respective provider implementation (along with its dependencies) in the web application
library folder. If you are using Maven [http://maven.apache.org/] as your build tool, you can add
the following dependency to your pom.xml file:

<dependency>
<groupld>org.jboss.seam.reports</groupld>
<artifactld>seam-reports-api</artifactld>
<version>${seam-reports-version}</version>
</dependency>

<I-- If you are using Jasper Reports, add the following dependency -->

<dependency>
<groupld>org.jboss.seam.reports</groupld>
<artifactld>seam-reports-jasper</artifactld>
<version>${seam-reports-version}</version>

</dependency>

<!-- If you are using Pentaho, add the following dependency -->
<dependency>
<groupld>org.jboss.seam.reports</groupld>
<artifactld>seam-reports-pentaho</artifactld>
<version>${seam-reports-version}</version>
</dependency>

Tip
= Replace ${seam-reports-version} with the most recent or appropriate version of
Seam Reports.

50.1. Installation using Seam Forge
If you are using Seam Forge, you may use the seam-reports plugin to help with the setup.

50.1.1. Plugin Installation

If not already installed yet on Forge, you may install the plugin by running the following command
inside Forge:

243

http://maven.apache.org/
http://maven.apache.org/

Chapter 50. Installation

forge git-plugin git://github.com/forge/plugin-seam-reports.git

50.1.2. Plugin Configuration

e To add only the api:

seam-reports setup

» To configure Seam Reports to work with JasperReports:

seam-reports setup --provider JASPER

» To configure Seam Reports to work with Pentaho Reporting Engine:

seam-reports setup --provider PENTAHO

244

Chapter 51.

Usage

51.1. Quick Start

Using Seam Reports is a simple four step process. These steps are the same regardless of the
reporting engine being used.

1. Create a report using a favorite report editor
2. Load the created report

3. Fill the report with data

4. Render the report

Of course some of these steps will have different ways of accomplishing the task, but at a high
level they are all the same. For simplicity this quick start will use JasperReports and the first step
will be assumed to have already taken place and the report is available in the deployed archive.
The location of the report isn't important, the ability to pull it into an | nput St r eamis all that really
matters.

The following code demonstrates a basic way of fulfilling the last three steps in using Seam
Reports using JasperReports as the reporting engine. The report has already been created and
is bundled inside the deployable archive. There are no paramaters for the report. The report is a
simple listing of people's names and contact information.

@Model
public class PersonContactReport {

@Inject @Resource("WEB-INF/jasperreports/personContact.jrxml*) g
private InputStream reportTemplate;

@Inject @Jasper 2
private ReportCompiler reportCompiler;

@Inject @Jasper @PDF 3
private ReportRenderer pdfRenderer;

@Inject
private EntityManager em;

public OutputStream render() {
final Report filledReport = this.fillReport();
final OutputStream os = new ByteArrayOutputStream();

245

Chapter 51. Usage

this.pdfRenderer.render(filledReport, 0s);
return os;

}

private Report fillReport() {
final ReportDefinition rd = this.reportCompiler.compile(reportTemplate);
return rd.fill(this.createDatasource(), Collections.EMPTY_MAP);

}

private JRDataSource createDatasource() {

final List<Person> personList = this.em.createQuery("select p from

Person”, Person.class).getResultList();
return new JRBeanCollectionDataSource(personList);

}
}

Solder allows easy resource injection for files available in the archive. This injects the report
template which has been created previously (perhaps by someone else in the business) and
added to the deployable archive.

A Report Conpil er is an interface from Seam Reports which abstracts compiling the
report template into Report Defi niti on. Seam Reports makes use of CDI's type safety
features by using qualifiers to further narrow the intended type. This allows programs to
remain implementation agnostic. The Jasper qualifier annotation instructs CDI to inject an
implementation of the Repor t Conpi | er which contains the same qualifer.

This is an instance of using both qualifers (@asper and @DF).

The render method is the only entry point into the class, it also returns the final output of
generating a report. It makes use of other methods in the class to finish the steps outlined
above to generate a report using Seam Reports.

At this stage data to populate the report is retrieved and added to the compiled
Report Def i ni ti on. This particular report doesn't make use of any parameters, hence the
empty map instance being passed.

This last stage of using Seam Reports is the only place that may require the application to
use the report engine API. In this example a list of JPA entities is retrieved and added to a
JasperReports datasource, which is then used by the calling method to populate the report
template as mentioned above.

51.2. Annotations

There are four API level annotations to be aware of when using Seam Reports. All four of them
declare metadata about objects that are being injected. They're also all CDI qualifiers which
instruct the implementing renderer the mimetype that should be used.

« CSV

246

Troubleshooting

HTML
- PDF
« XLS
« XML

These annotations are only used when injecting a Repor t Render er . Only one of them may be
used per renderer. Multiple renderers must be injected if multiple renderering types are desired.

51.3. Troubleshooting

247

248

Part VIll. Seam Mall

Chapter 52.

Seam Mail Introduction

Seam mail is an portable CDI extension designed to make working with Java Mail easier via
standard methods or pl ugabl e templating engines.

52.1. Getting Started

No better way to start off then with a simple example to show what we are talking about.

@Inject
private Instance<MailMessage> mailMessage;

public void sendMail() {

MailMessage m = mailMessage.get();
m.from("John Doe<john@test.com>")
.to("Jane Doe<jane @test.com>")

.subject(subject)
.bodyHtml(htmIBody)
.importance(MessagePriority.HIGH)
.send();

Very little is required to enable this level of functionality in your application. Let's start off with a
little required configuration.

251

252

Chapter 53.

Configuration

By default the configuration parameters for Seam Mail are handled via configuration read from your
application's seam-beans.xml. This file is then parsed by Seam Solder to configure the MailConfig
class. You can override this and provide your own configuration outside of Seam Mail but we will
get into that later.

53.1. Minimal Configuration

First lets add the relevant maven configuration to your pom.xml

<dependency>
<groupld>org.jboss.seam.mail</groupld>
<artifactld>seam-mail-impl</artifactid>
<version>${seam.mail.version}</version>
</dependency>

Now now that is out of the way lets provide JavaMai | with the details of your SMIP server so that
it can connect and send your mail on it's way.

This configuration is handled via Seam Solder which reads in the configuration from your
application's seam beans. xnl and configures the Mai | Confi g class prior to injection.

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:mail="urn:java:org.jpboss.seam.mail.core"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd">

<mail:MailConfig
serverHost="my-server.test.com"
serverPort="25">
<s:modifies/>
</mail:MailConfig>

</beans>

253

Chapter 53. Configuration

That is all the configuration necessary to send a simple email message. Next we will take a look
at how to configure and use the supported templating engines.

Important

JBoss AS 7.0.x does not correctly load all the modules to support sending
mail AS7-1375 [https://issues.jboss.org/browse/AS7-1375]. This is easily fixed By
replacing the module definition at $JBOSS_HOME/modules/javax/activation/api/
main/module.xml with the following

<module xmIns="urn:jboss:module:1.0" name="javax.activation.api">

<dependencies>
<module name="javax.api" />
<module name="javax.mail.api" >
<imports><include path="META-INF"/></imports>
</module>
</dependencies>

<resources>
<resource-root path="activation-1.1.1.jar"/>

<!I-- Insert resources here -->
</resources>
</module>

This will be fixed in AS 7.1.x

254

https://issues.jboss.org/browse/AS7-1375
https://issues.jboss.org/browse/AS7-1375

Chapter 54.

Core Usage

54.1. Intro

While Seam Mail does provide methods to produce templated email, there is a core set of
functionality that is shared whether you use a templating engine or not.

54.2. Contacts

At it's base an email consists of various destinations and content. Seam Mail provides a wide
varerity of methods of ways to configure the following address fields

e From
« ToO
e« CC

« BCC

REPLY-TO

54.2.1. String Based

Seam Mail leverages the JavaMail InternetAddress object internally for parsing and storage and
provides a varargs method for each of the contact types. Thus you can provide either a String,
multiple Strings or a String []. Addresses are parsed as RFC 822 addresses and can be a valid
Email Address or a Name + Email Address.

MailMessage m = mailMessage.get();
m.from("John Doe<john@test.com>")
.to("jane@test.com")
.cc("Dan<dan@test.com”, "bill@test.com")

54.2.2. InternetAddress

Since we leverage standard InternetAddress object we might as well provide a method to use it.

MailMessage m = mailMessage.get();
m.from(new InternetAddress("John Doe<john@test.com>"))

255

Chapter 54. Core Usage

54.2.3. EmailContact

Since applications frequently have their own object to represent a user who will have an email set
to them we provide a simple interface which your object can implement.

public interface EmailContact {
public String getName();

public String getAddress();
}

Let's define this interface on an example user entity

@Entity
public class User implements EmailContact {

private String username; //"john@test.com"
private String firstName; //"John”

private String lastName; //"Doe"

public String getName() {

return firstName + " " + lastName;

public String getAddress() {
return username;

Now we can use our User object directly in an of the contact methods

User user;

MailMessage m = mailMessage.get();
m.from("John Doe<john@test.com>")
.to(user)

256

Content

54.2.4. Content

TODO

54.2.5. Attachments

TODO

257

258

Chapter 55.

Templating

55.1. Velocity

TO DO

55.2. Freemarker

TO DO

259

260

Chapter 56.

Advanced Features

56.1. MailTransporter

TO DO

56.2. MailConfig

TO DO

261

262

Part IX. Seam Remoting

Chapter 57.

Seam Remoting - Basic Features

Seam provides a convenient method of remotely accessing CDI beans from a web page, using
AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with
almost no up-front development effort - your beans only require simple annotating to become
accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled web
page, then goes on to explain the features of the Seam Remoting framework in more detail.

57.1. Configuration

To use remoting, the Seam Remoting servlet must first be configured in your web. xnm file;

<servlet>
<servlet-name>Remoting Servlet</serviet-name>
<servlet-class>org.jboss.seam.remoting.Remoting</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Remoting Servlet</serviet-name>
<url-pattern>/seam/resource/remoting/*</url-pattern>
</servlet-mapping>

Note

If your application is running within a Servlet 3.0 (or greater) environment, then
the servlet configuration listed above is not necessary as the Seam Remoting
JAR library bundles a web-fragnent.xm that configures the Remoting servlet
automatically.

j=do

The next step is to import the necessary Javascript into your web page. There are a minimum of
two scripts that must be imported. The first one contains all the client-side framework code that
enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

By default, the client-side JavaScript is served in compressed form, with white space compacted
and JavaScript comments removed. For a development environment, you may wish to use the
uncompressed version of r enot e. j s for debugging and testing purposes. To do this, simply add
the conpr ess=f al se parameter to the end of the url:

265

Chapter 57. Seam Remoting - B...

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js?
compress=false"></script>

The second script that you need contains the stubs and type definitions for the beans you wish
to call. It is generated dynamically based on the method signatures of your beans, and includes
type definitions for all of the classes that can be used to call its remotable methods. The name of
the script reflects the name of your bean. For example, if you have a named bean annotated with
@laned, then your script tag should look like this (for a bean class called Cust onmer Act i on):

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction"></script>

Otherwise, you can simply specify the fully qualified class nhame of the bean:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?com.acme.myapp.CustomerAction"></script>

If you wish to access more than one bean from the same page, then include them all as parameters
of your script tag:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

57.1.1. Dynamic type loading

If you forget to import a bean or other class that is required by your bean, don't worry. Seam
Remoting has a dynamic type loading feature that automatically loads any JavaScript stubs for
bean types that it doesn't recognize.

57.2. The "Seam" object

Client-side interaction with your beans is all performed via the SeamJavascript object. This object
is defined in renot e. j s, and you'll be using it to make asynchronous calls against your bean.
It contains methods for creating client-side bean objects and also methods for executing remote
requests. The easiest way to become familiar with this object is to start with a simple example.

57.2.1. A Hello World example

Let's step through a simple example to see how the Seamobject works. First of all, let's create a
new bean called hel | oActi on:

266

A Hello World example

@Named
public class HelloAction implements HelloLocal {
@WebRemote public String sayHello(String name) {
return "Hello, " + name;

Take note of the @¢bRenot e annotation on the sayHel | o() method in the above listing. This
annotation makes the method accessible via the Remoting API. Besides this annotation, there's
nothing else required on your bean to enable it for remoting.

Now for our web page - create a new JSF page and import the hel | oAct i on bean:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?helloAction

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">
/I<\[CDATA[

function sayHello() {
var name = prompt("What is your name?");
Seam.createBean("helloAction™).sayHello(name, sayHelloCallback);

}

function sayHelloCallback(result) {

267

Chapter 57. Seam Remoting - B...

alert(result);

}

1>
</script>

We're done! Deploy your application and open the page in a web browser. Click the button, and
enter a name when prompted. A message box will display the hello message confirming that the
call was successful. If you want to save some time, you'll find the full source code for this Hello
World example in the / exanpl es/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start
with, you can see from the Javascript code listing that we have implemented two methods - the first
method is responsible for prompting the user for their name and then making a remote request.
Take a look at the following line:

Seam.createBean("helloAction™).sayHello(name, sayHelloCallback);

The first section of this line, Seam cr eat eBean(" hel | oActi on") returns a proxy, or "stub"” for our
hel | oActi on bean. We can invoke the methods of our bean against this stub, which is exactly
what happens with the remainder of the line: sayHel | o(nane, sayHel | oCal | back); .

What this line of code in its completeness does, is invoke the sayHel | o method of our bean,
passing in nane as a parameter. The second parameter, sayHel | oCal | back isn't a parameter of
our bean's sayHel | o method, instead it tells the Seam Remoting framework that once it receives
the response to our request, it should pass it to the sayHel | oCal | back Javascript method. This
callback parameter is entirely optional, so feel free to leave it out if you're calling a method with
a voi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops
up an alert message displaying the result of our method call.

57.2.2. Seam.createBean

The Seam cr eat eBean JavaScript method is used to create client-side instances of both action
and "state" beans. For action beans (which are those that contain one or more methods annotated
with @ebRenot e), the stub object provides all of the remotable methods exposed by the bean.
For "state" beans (i.e. beans that simply carry state, for example Entity beans) the stub object
provides all the same accessible properties as its server-side equivalent. Each property also has
a corresponding getter/setter method so you can work with the object in JavaScript in much the
same way as you would in Java.

268

The Context

57.3. The Context

The Seam Remoting Context contains additional information which is sent and received as part
of a remoting request/response cycle. It currently contains the conversation ID and Call ID, and
may be expanded to include other properties in the future.

57.3.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to
read or set the conversation ID in the Seam Remoting Context. To read the conversation ID after
making a remote request call Seam cont ext . get Conver sati onl d() . To set the conversation ID
before making a request, call Seam cont ext . set Conversati onl d().

If the conversation ID hasn't been explicitly set with Seam cont ext . set Conver sati onl d(), then
it will be automatically assigned the first valid conversation ID that is returned by any remoting call.
If you are working with multiple conversations within your page, then you may need to explicitly
set the conversation ID before each call. If you are working with just a single conversation, then
you don't need to do anything special.

57.3.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current
view's conversation. To do this, you must explicitly set the conversation ID to that of the view
before making the remote call. This small snippet of JavaScript will set the conversation ID that
is used for remoting calls to the current view's conversation ID:

Seam.context.setConversationld(#{conversation.id});

57.4. Working with Data types

57.4.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values as a rule
are compatible with either their primitive type or their corresponding wrapper class.

57.4.1.1. String

Simply use Javascript String objects when setting String parameter values.
57.4.1.2. Number

There is support for all number types supported by Java. On the client side, number values are
always serialized as their String representation and then on the server side they are converted
to the correct destination type. Conversion into either a primitive or wrapper type is supported for
Byt e, Doubl e, Fl oat, I nt eger, Long and Short types.

269

Chapter 57. Seam Remoting - B...

57.4.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java
boolean.

57.4.2. JavaBeans

In general these will be either entity beans or JavaBean classes, or some other non-bean class.
Use Seam cr eat eBean() to create a hew instance of the object.

57.4.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the
client side, use a JavaScript Dat e object to work with date values. On the server side, use any
java. util. Date (or descendent, such asj ava. sql . Dat e orj ava. sql . Ti mest anp class.

57.4.4. Enums

On the client side, enums are treated the same as St ri ngs. When setting the value for an enum
parameter, simply use the Stri ng representation of the enum. Take the following bean as an
example:

@Named
public class paintAction {
public enum Color {red, green, blue, yellow, orange, purple};

public void paint(Color color) {
/I code

}
}

To call the pai nt () method with the color r ed, pass the parameter value as a St ri ng literal:

Seam.createBean("paintAction”).paint("red");

The inverse is also true - that is, if a bean method returns an enum parameter (or contains an enum
field anywhere in the returned object graph) then on the client-side it will be convertedtoa Stri ng.

57.4.5. Collections

57.4.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see
the next section for those), and are implemented client-side as a JavaScript array. When calling

270

Debugging

a bean method that accepts one of these types as a parameter, your parameter should be a
JavaScript array. If a bean method returns one of these types, then the return value will also be a
JavaScript array. The remoting framework is clever enough on the server side to convert the bag
to an appropriate type (including sophisticated support for generics) for the bean method call.

57.4.5.2. Maps

As there is no native support for Maps within JavaScript, a simple Map implementation is provided
with the Seam Remoting framework. To create a Map which can be used as a parameter to a
remote call, create a new Seam Map object:

var map = new Seam.Map();

This JavaScript implementation provides basic methods for working with Maps: si ze(),
i sEmpty(), keySet(), values(), get(key), put(key, val ue), renove(key) and
cont ai ns(key) . Each of these methods are equivalent to their Java counterpart. Where the
method returns a collection, such as keySet () and val ues(), a JavaScript Array object will be
returned that contains the key or value objects (respectively).

57.5. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents
of all the packets send back and forth between the client and server in a popup window. To enable
debug mode, set the Seam debug property to t r ue in Javascript:

Seam.debug = true;

If you want to write your own messages to the debug log, call Seam | og(message) .

57.6. Messages

The Seam International module provides a Messages API that allows generation of view-
independent messages. This is useful if you want to convey additional information to a user that
is not returned directly from the result of a method invocation.

Using the Messages API is extremely easy. Simply add the Seam International libraries to your
application (see the Seam International configuration chapter to learn how to do this), then inject
the Messages object into your bean. The Messages object provides several methods for adding
messages, see the Seam International documentation for more information. Here's a simple
example showing how to create an i nf o message (messages generally follow the same DEBUG,
INFO, WARN, ERROR levels that a typical logging framework would provide):

import javax.inject.Inject;

271

Chapter 57. Seam Remoting - B...

import org.jboss.seam.international.status.Messages;
import org.jboss.seam.remoting.annotations.WebRemote;

public class HelloAction {
@Inject Messages messages;

@WebRemote

public String sayHello(String name) {
messages.info('Invoked HelloAction.sayHello()");
return "Hello, " + name;

After creating the message in your server-side code, you still need to write some client-side code to
handle any messages that are returned by your remote invocations. Thankfully this is also simple,
you just need to write a JavaScript handler function and assign it to Seam nessageHandl er .

If any messages are returned from a remote method invocation, the message handler function
will be invoked and passed a list of Message objects. These objects declare three methods for
retrieving various properties of the message - get Level () returns the message level (such as
DEBUG, INFO, etc). The get Tar get s() method returns the targets of the message - these may
be the ID's for specific user interface controls, which is helpful for conveying validation failures for
certain field values. The get Tar get s() method may return null, if the message is not specific to
any field value. Lastly, the get Text () method returns the actual text of the message.

Here's a really simple example showing how you would display an alert box for any messages
returned:

function handleMessages(msgs) {
for (var i = 0; i < msgs.length; i++) {
alert("Received message - Level: " + msgs[i].getLevel() + " Text: " + msgs|i].getText();
}
}

Seam.messageHandler = handleMessages;

You can see the Messages APl in action in the HelloWorld example. Simply choose the "Formal”
option for the Formality, and "Localized (English)" for the Localization. Invoking this combination
will cause a server-side message to be created, which you will then see in the Messages list at
the top of the screen.

272

Handling Exceptions

57.7. Handling Exceptions

When invoking a remote bean method, it is possible to specify an exception handler which will
process the response in the event of an exception during bean invocation. To specify an exception
handler function, include a reference to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };
var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };
Seam.createBean("helloAction™).sayHello(name, callback, exceptionHandler);

If you do not have a callback handler defined, you must specify nul | in its place:

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };
Seam.createBean("helloAction").sayHello(name, null, exceptionHandler);

The exception object that is passed to the exception handler exposes two methods,
get Excepti onC ass() which returns the name of the exception class that was thrown, and
get Message() , which returns the exception message which is produced by the exception thrown
by the @\ébRenot e method.

It is also possible to register a global exception handler, which will be invoked if there is no
exception handler defined for an individual invocation. By default, the global exception handler will
display an alert message notifying the user that there was an exception - here's what the default
exception handler looks like:

Seam.defaultExceptionHandler = function(exception) {
alert("An exception has occurred while executing a remote request:
exception.getExceptionClass() + ":" + exception.getMessage());

%

"4

If you would like to provide your own global exception handler, then simply override the value of
Seam except i onHandl er with your own custom exception handler, as in the following example:

function customExceptionHandler(exception) {
alert("Uh oh, something bad has happened! [" + exception.getExceptionClass() + ":" +
exception.getMessage() + "");

}

Seam.exceptionHandler = customExceptionHandler;

273

Chapter 57. Seam Remoting - B...

57.8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,
its rendering customised or even turned off completely.

57.8.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of
Seam | oadi ngMessage:

Seam.loadingMessage = "Loading...";

57.8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of
di spl ayLoadi ngMessage() and hi deLoadi ngMessage() with functions that instead do nothing:

/I don't display the loading indicator
Seam.displayLoadingMessage = function() {};
Seam.hideLoadingMessage = function() {};

57.8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else
that you want. To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage()
messages with your own implementation:

Seam.displayLoadingMessage = function() {
/I Write code here to display the indicator

3

Seam.hideLoadingMessage = function() {
/I Write code here to hide the indicator

3

274

Controlling what data is returned

57.9. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned
to the client. This response is then unmarshaled by the client into a JavaScript object. For
complex types (i.e. Javabeans) that include references to other objects, all of these referenced
objects are also serialized as part of the response. These objects may reference other objects,
which may reference other objects, and so forth. If left unchecked, this object "graph” could
potentially be enormous, depending on what relationships exist between your objects. And as
a side issue (besides the potential verbosity of the response), you might also wish to prevent
sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain” the object graph, by specifying the
excl ude field of the remote method's @ébRenot e annotation. This field accepts a String array
containing one or more paths specified using dot notation. When invoking a remote method, the
objects in the result's object graph that match these paths are excluded from the serialized result
packet.

For all our examples, we'll use the following W dget class:

public class Widget
{
private String value;
private String secret;
private Widget child;
private Map<String,Widget> widgetMap;
private List<Widget> widgetList;

/I getters and setters for all fields

57.9.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secr et
field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})
public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't
care about exposing this particular field to the client. Instead, notice that the W dget value that
is returned has a field chi | d that is also a W dget . What if we want to hide the chi | d's secret
value instead? We can do this by using dot notation to specify this field's path within the result's
object graph:

275

Chapter 57. Seam Remoting - B...

@WebRemote(exclude = {"child.secret"})
public Widget getWidget();

57.9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of
collection (Li st, Set, Array, etc). Collections are easy, and are treated like any other field. For
example, if our W dget contained a list of other W dget s in its wi dget Li st field, to constrain the
secr et field of the W dget s in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})
public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's
field name will constrain the Map's key object values, while [val ue] will constrain the value object
values. The following example demonstrates how the values of the wi dget Map field have their
secr et field constrained:

@WebRemote(exclude = {"widgetMap[value].secret"})
public Widget getWidget();

57.9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter
where in the result's object graph it appears. This notation uses either the name of the bean (if
the object is a named bean) or the fully qualified class name (only if the object is not a named
bean) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})
public Widget getWidget();
57.9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret”, "widgetMap[value].secret"})
public Widget getWidget();

276

Chapter 58.

Seam Remoting - Model API

58.1. Introduction

The Model API builds on top of Seam Remoting's object serialization features to provide a
component-based approach to working with a server-side object model, as opposed to the RPC-
based approach provided by the standard Remoting API. This allows a client-side representation
of a server-side object graph to be modified ad hoc by the client, after which the changes made to
the objects in the graph can be applied to the corresponding server-side objects. When applying
the changes the client determines exactly which objects have been modified by recursively walking
the client-side object tree and generating a delta by comparing the original property values of the
objects with their new property values.

This approach, when used in conjunction with the extended persistence context provided by
Seam elegantly solves a number of problems faced by AJAX developers when working remotely
with persistent objects. A persistent, managed object graph can be loaded at the start of a
new conversation, and then across multiple requests the client can fetch the objects, make
incremental changes to them and apply those changes to the same managed objects after which
the transaction can be committed, thereby persisting the changes made.

One other useful feature of the Model API is its ability to expand a model. For example, if you
are working with entities with lazy-loaded associations it is usually not a good idea to blindly fetch
the associated objects (which may in turn themselves contain associations to other entities, ad
nauseum), as you may inadvertently end up fetching the bulk of your database. Seam Remoting
already knows how to deal with lazy-loaded associations by automatically excluding them when
marshalling instances of entity beans, and assigning them a client-side value of undef i ned (which
is a special JavaScript value, distinct from nul I). The Model API goes one step further by giving
the client the option of manipulating the associated objects also. By providing an expand operation,
it allows for the initialization of a previously-uninitialized object property (such as a lazy-loaded
collection), by dynamically "grafting" the initialized value onto the object graph. By expanding the
model in this way, we have at our disposal a powerful tool for building dynamic client interfaces.

58.2. Model Operations

For the methods of the Model API that accept action parameters, an instance of Seam Acti on
should be used. The constructor for Seam Act i on takes no parameters:

var action = new Seam.Action();

The following table lists the methods used to define the action. Each of the following methods
return a reference to the Seam Act i on object, so methods can be chained.

277

Chapter 58. Seam Remoting - M...

Table 58.1. Seam.Action method reference

Method

set BeanType(beanType)

setQualifiers(qualifiers)

set Met hod(et hod)

addPar anm(par an)

Description

Sets the class name of the bean to be invoked.

* beanType - the fully qualified class name of the bean
type to be invoked.

Sets the qualifiers for the bean to be invoked.

* qualifiers-acomma-separated list of bean qualifier
names. The names may either be the simple or fully
qualified names of the qualifier classes.

Sets the name of the bean method.

* et hod - the name of the bean method to invoke.

Adds a parameter value for the action method. This
method should be called once for each parameter value
to be added, in the correct parameter order.

* par am- the parameter value to add.

The following table describes the methods provided by the Seam Model object. To work with the
Model API in JavaScript you must first create a new Model object:

var model = new Seam.Model();

Table 58.2. Seam.Model method reference

Method

addBean(al i as,
qualifiers)

bean,

Description

Adds a bean value to the model. When the model is
fetched, the value of the specified bean will be read and
placed into the model, where it may be accessed by
using the get Val ue() method with the specified alias.

Can only be used before the model is fetched.

* al i as - the local alias for the bean value.

» bean - the name of the bean, either specified by the
@laned annotation or the fully qualified class name.

e qualifiers (optional) - a list of bean qualifiers.

278

Model Operations

Method

addBeanProperty(ali as,

property, qualifiers)

fetch(action,

cal | back)

bean,

Description

Adds a bean property value to the model. When the
model is fetched, the value of the specified property on
the specified bean will be read and placed into the model,
where it may be accessed by using the get Val ue()
method with the specified alias.

Can only be used before the model is fetched.

Example:

addBeanProperty("account”, "AccountAction",
"account", "@Qualifierl", "@Qualifier2");

» al i as - the local alias for the bean value.

* bean - the name of the bean, either specified by the
@laned annotation or the fully qualified class name.

» property - the name of the bean property.

e qualifiers (optional) - a list of bean qualifiers. This
parameter (and any after it) are treated as bean
qualifiers.

Fetches the model - this operation causes an
asynchronous request to be sent to the server. The
request contains a list of the beans and bean properties
(set by calling the addBean() and addBeanPr operty()
methods) for which values will be returned. Once the
response is received, the callback method (if specified)
will be invoked, passing in a reference to the model as
a parameter.

A model should only be fetched once.

* action (optional) - a Seam Action instance
representing the bean action to invoke before the
model values are read and stored in the model.

» cal | back (optional) - a reference to a JavaScript
function that will be invoked after the model has been
fetched. A reference to the model instance is passed
to the callback method as a parameter.

279

Chapter 58. Seam Remoting - M...

Method

get Val ue(al i as)

expand(val ue,
cal | back)

appl yUpdat es(acti on,

property,

cal | back)

Description

This method returns the value of the object with the
specified alias.

* al i as - the alias of the value to return.

Expands the model by initializing a property value that
was previously uninitialized. This operation causes an
asynchronous request to be sent to the server, where
the uninitialized property value (such as a lazy-loaded
collection within an entity bean association) is initialized
and the resulting value is returned to the client. Once the
response is received, the callback method (if specified)
will be invoked, passing in a reference to the model as
a parameter.

* value - a reference to the value containing the
uninitialized property to fetch. This can be any value
within the model, and does not need to be a "root"
value (i.e. it doesn't need to be a value specified
by addBean() or addBeanProperty(), it can exist
anywhere within the object graph.

» property - the name of the uninitialized property to be
initialized.

e cal I back (optional) - a reference to a JavaScript
function that will be invoked after the model has
been expanded. A reference to the model instance is
passed to the callback method as a parameter.

Applies the changes made to the objects contained in the
model. This method causes an asynchronous request to
be sent to the server containing a delta consisting of a
list of the changes made to the client-side objects.

e action (optional) - a Seam Action instance
representing a bean method to be invoked after the
client-side model changes have been applied to their
corresponding server-side objects.

» cal I back (optional) - a reference to a JavaScript
function that will be invoked after the updates have
been applied. A reference to the model instance is
passed to the callback method as a parameter.

280

Fetching a model

58.3. Fetching a model

To fetch a model, one or more values must first be specified using addBean() or
addBeanPr operty() before invoking the f et ch() operation. Let's work through an example - here
we have an entity bean called Cust oner :

@Entity Customer implements Serializable {
private Integer customerld;
private String firstName;
private String lastName;

@Id @GeneratedValue public Integer getCustomerld() { return customerlid; }
public void setCustomerld(Integer customerld) { this.customerld = customerld; }

public String getFirstName() { return firstName; }
public void setFirstName(String firstName) { this.firstName = firstName; }

public String getLastName() { return lastName; }
public void setLastName(String lastName) { this.lastName = lastName; }

}

We also have a bean called Customer Acti on, which is responsible for creating and editing
Cust oner instances. Since we're only interested in editing a customer right now, the following
code only shows the edi t Cust oner () method:

@ConversationScoped @Named

public class CustomerAction {
@Inject Conversation conversation;
@PersistenceContext EntityManager entityManager;
public Customer customer;

public void editCustomer(Integer customerld) {
conversation.begin();
customer = entityManager.find(Customer.class, customerid);

}

public void saveCustomer() {
entityManager.merge(customer);
conversation.end();

}
}

281

Chapter 58. Seam Remoting - M...

In the client section of this example, we wish to make changes to an existing Cust ormer instance, so
we need to use the edi t Cust oner () method of Cust omer Act i on to first load the customer entity,
after which we can access it via the public cust oner field. Our model object must therefore be
configured to fetch the Cust omer Act i on. cust oner property, and to invoke the edi t Cust omer ()
method when the model is fetched. We start by using the addBeanPr operty() method to add a
bean property to the model:

var model = new Seam.Model();
model.addBeanProperty(“customer”, "

CustomerAction", "customer");

The first parameter of addBeanPr opert y() is the alias (in this case cust onmer), which is used to
access the value via the get Val ue() method. The addBeanPr operty() and addBean() methods
can be called multiple times to bind multiple values to the model. An important thing to note is
that the values may come from multiple server-side beans, they aren't all required to come from
the same bean.

282

Fetching a model

CLIENT SERVER

Customer

+customerId: Integerl
+TirstName: 5tring

Model
+lastName: 5tring
Values (Entity Bean)
CUSmmerh CustomerAction
[-conversation: Conversation

\ -entityManager: EntityManager
M1 |+customer: Customer I
+createCustomer(): wvoid

+editCustomer (customer: Custome
+saveCustomer(): wvoid

(Conversation-scoped actior

We also specify the action that we wish to invoke (i.e. the edit Cust omer () method). In this
example we know the value of the cust oner | d that we wish to edit, so we can specify this value

as an action method parameter:

var action = new Seam.Action()
.setBeanType("CustomerAction")
.setMethod("editCustomer")
.addParam(123);

Once we've specified the bean properties we wish to fetch and the action to invoke, we can then
fetch the model. We pass in a reference to the action object as the first parameter of the f et ch()
method. Also, since this is an asynchronous request we need to provide a callback method to deal
with the response. The callback method is passed a reference to the model object as a parameter.

283

Chapter 58. Seam Remoting - M...

var callback = function(model) { alert("Fetched customer: "
model.getValue("customer").firstName +
" " + model.getValue("customer").lastName); };
model.fetch(action, callback);

When the server receives a model fetch request, it first invokes the action (if one is specified)
before reading the requested property values and returning them to the client.

58.3.1. Fetching a bean value

Alternatively, if you don't wish to fetch a bean property but rather a bean itself (such as a value
created by a producer method) then the addBean() method is used instead. Let's say we have a
producer method that returns a qualified User Set t i ngs value:

@Produces @ConversationScoped @Settings UserSettings getUserSettings() {
[* snip code */

}

We would add this value to our model with the following code:
model.addBean("settings", "UserSettings", "@Settings");

The first parameter is the local alias for the value, the second parameter is the fully qualified class
of the bean, and the third (and subsequent) parameter/s are optional bean qualifiers.

58.4. Modifying model values

Once a model has been fetched its values may be read using the get Val ue() method. Continuing
on with the previous example, we would retrieve the Cust oner object viait's local alias (cust oner)
like this:

var customer = model.getValue("customer");

We are then free to read or modify the properties of the value (or any of the other values within
its object graph).

alert("Customer name is: " + customer.firstName + " " + customer.lastName);
customer.setLastName("Jones"); // was Smith, but Peggy got married on the weekend

284

Expanding a model

58.5. Expanding a model

We can use the Model API's ability to expand a model to load uninitialized branches of the objects
in the model's object graph. To understand how this works exactly, let's flesh out our example a
little more by adding an Addr ess entity class, and creating a one-to-many relationship between

Cust omer and Addr ess.

Customer

+customerld: Integer
+firstName: 5tring
+lastName: 5tring
+addresses: List<Address=

customer

addresses

Ad dres;

@Entity Address implements Serializable {
private Integer addresslid;
private Customer customer;
private String unitNumber;
private String streetNumber;
private String streetName;
private String suburb;
private String zip;
private String state;
private String country;

1

¥

@Ild @GeneratedValue public Integer getAddressld() { return addressld; }
public void setAddressld(Integer addressld) { this.addressld = addresslid; }

@ManyToOne public Customer getCustomer() { return customer; }

public void setCustomer(Customer customer) { this.customer = customer; }

[* Snipped other getter/setter methods */

Here's the new field and methods that we also need to add to the Cust omer class:

+addressId: In-
+customer: Cuss
+unitNumber: 5°
+s5treetNumber:
+s5treetName: 5°
+suburb: String
+zip: 5tring

+state: 5tring
+country: S5tri

285

Chapter 58. Seam Remoting - M...

private Collection<Address> addresses;

@OneToMany(fetch = FetchType.LAZY, mappedBYy = "customer”, cascade = CascadeType.ALL)
public Collection<Address> getAddresses() { return addresses; }
public void setAddresses(Collection<Address> addresses) { this.addresses = addresses; }

As we can see, the @neToMany annotation on the get Addr esses() method specifies a f et ch
attribute of LAZY, meaning that by default the customer's addresses won't be loaded automatically
when the customer is. When reading the uninitialized addr esses property value from a newly-
fetched Cust omer object in JavaScript, a value of undef i ned will be returned.

getValue("customer").addresses == undefined; // returns true

We can expand the model by making a special request to initialize this uninitialized property
value. The expand() operation takes three parameters - the value containing the property to
be initialized, the name of the property and an optional callback method. The following example
shows us how the customer's addr esses property can be initialized:

model.expand(model.getValue("customer”), "addresses");

The expand() operation makes an asynchronous request to the server, where the property value
is initialized and the value returned to the client. When the client receives the response, it reads
the initialized value and appends it to the model.

/I The addresses property how contains an array of address objects
alert(model.getValue("customer”).addresses.length + " addresses loaded");

58.6. Applying Changes

Once you have finished making changes to the values in the model, you can apply them with the
app! yUpdat es() method. This method scans all of the objects in the model, compares them with
their original values and generates a delta which may contain one or more changesets to send to
the server. A changeset is simply a list of property value changes for a single object.

Like the fet ch() command you can also specify an action to invoke when applying updates,
although the action is invoked after the model updates have been applied. In a typical situation the
invoked action would do things like commit a database transaction, end the current conversation,
etc.

286

Applying Changes

Since the appl yUpdat es() method sends an asynchronous request like the fetch() and
expand() methods, we also need to specify a callback function if we wish to do something when
the operation completes.

var action = new Seam.Action();
.setBeanType("CustomerAction™)
.setMethod("saveCustomer");

var callback = function() { alert("Customer saved."); };

model.applyUpdates(action, callback);

The appl yUpdat es() method performs a refresh of the model, retrieving the latest state of the
objects contained in the model after all updates have been applied and the action method (if
specified) invoked.

287

288

Chapter 59.

Seam Remoting - Bean Validation

Seam Remoting provides integrated support for JSR-303 Bean Validation, which defines a
standard approach for validating Java Beans no matter where they are used; web tier or
persistence tier, server or client. Bean validation for remoting delivers JSR-303's vision by making
all of the validation constraints declared by the server-side beans available on the client side, and
allows developers to perform client-side bean validation in an easy to use, consistent fashion.

Client-side validation by its very nature is an asynchronous operation, as it is possible that
the client may encounter a custom validation constraint for which it has no knowledge of the
corresponding validation logic. Under these circumstances, the client will make a request to the
server for the validation to be performed server-side, after which it receives the result will forward it
to the client-side callback method. All built-in validation types defined by the JSR-303 specification
are executed client-side without requiring a round-trip to the server. It is also possible to provide
the client-side validation APl with custom JavaScript to allow client-side execution of custom
validations.

59.1. Validating a single object

The Seam val i dat eBean() method may be used to validate a single object. It accepts the
following parameter values:

Seam.validateBean(bean, callback, groups);

The bean parameter is the object to validate.

The cal | back parameter should contain a reference to the callback method to invoke once
validation is complete.

The gr oups parameter is optional, however may be specified if only certain validation groups
should be validated. The gr oups parameter may be a String or an array of Stri ng values for
when multiple groups are to be validated.

Here's an example showing how a bean called cust oner is validated:

function test() {
var customer = Seam.createBean("com.acme.model.Customer");
customer.setFirstName("John");
customer.setLastName("Smith");
Seam.validateBean(customer, validationCallback);

function validationCallback(violations) {

289

Chapter 59. Seam Remoting - B...

if (violations.length == 0) alert("All validations passed!");

}

Tip

By default, when Seam Remoting performs validation for a single bean it will
traverse the entire object graph for that bean and validate each unique object that
it finds. If you don't wish to validate the entire object graph, then please refer to the
section on validating multiple objects later in this chapter for an alternative.

59.2. Validating a single property

Sometimes it might not be desirable to perform validation for all properties of a bean. For example,
you might have a dynamic form which displays validation errors as the user tabs between fields.
In this situation, you may use the Seam val i dat eProperty() method to validate a single bean

property.
Seam.validateProperty(bean, property, callback, groups)

The bean parameter is the object containing the property that is to be validated.
The property parameter is the name of the property to validate.

The cal | back parameter is a reference to the callback function to invoke once the property has
been validated.

The gr oups parameter is optional, however may be specified if validating the property against a
certain validation group. The gr oups parameter may be a Stri ng or an array of Stri ng values
for multiple groups.

Here's an example showing how to validate the fi r st Name property of a bean called cust oner:

function test() {
var customer = Seam.createBean("com.acme.model.Customer");
customer.setFirstName("John");
Seam.validateProperty(customer, "firstName", validationCallback);

}

function validationCallback(violations) {
if (violations.length == 0) alert("All validations passed!");

}

290

Validating multiple objects and/or properties

59.3. Validating multiple objects and/or properties

It is also possible to perform multiple validations for beans and bean properties in one go. This
might be useful for example to perform validation of forms that present data from more than one
bean. The Seam val i dat e() method takes the following parameters:

Seam.validate(validations, callback, groups);

The val i dat i ons parameter should contain a list of the validations to perform. It may either be an
associative array (for a single validation), or an array of associative arrays (for multiple validations)
which define the validations that should be performed. We'll look at this parameter more closely
in just a moment.

The cal | back parameter should contain a reference to the callback function to invoke once
validation is complete. The optional gr oups parameter should contain the group name/s for which
to perform validation.

The gr oups parameter allows one or more validation groups (specified by providing a St ri ng or
array of St ri ng values) to be validated. The validation groups specified here will be applied to all
bean values contained in the val i dat i ons parameter.

The simplest example, in which we wish to validate a single object would look like this:
Seam.validate({bean:customer}, callback);

In the above example, validation will be performed for the cust oner object, after which the function
named val i dat i onCal | back will be invoked.

Validate multiple beans is done by passing in an array of validations:
Seam.validate([{bean:customer}, {bean:order}], callback);

Single properties can be validated by specifying a pr operty name:
Seam.validate({bean:customer, property: “firstName"}, callback);

To prevent the entire object graph from being validated, the tr aver se property may be set to
fal se:

201

Chapter 59. Seam Remoting - B...

Seam.validate({bean:customer, traverse: false}, callback);

Validation groups may also be set for each individual validation, by setting the gr oups property
toa String or array of Stri ngs value:

Seam.validate({bean:customer, groups: "default"}, callback);

59.4. Validation groups

Validation group names should be the unqualified class name of the group class. For example,
for the class com acne. | nt er nal Regi strati on, the client-side group name should be specified
as | nternal Regi strati on:

Seam.validateBean(user, callback, "InternalRegistration"

Itis also possible to set the default validation groups against which all validations will be performed,
by setting the Seam Val i dat i onG oups property:

Seam.ValidationGroups = ['Default", "ExternalRegistration"];

If no explicit group is set for the default, and no group is specified when performing validation,
then the validation process will be executed against the 'Default’ group.

59.5. Handling validation failures

If any validations fail during the validation process, then the callback method specified in the
validation function will be invoked with an array of constraint violations. If all validations pass, this
array will be empty. Each object in the array represents a single constraint violation, and contains
the following property values:

bean - the bean object for which the validation failed.

property - the name of the property that failed validation

val ue - the value of the property that failed validation

message - @ message string describing the nature of the validation failure

The callback method should contain business logic that will process the constraint violations and
update the user interface accordingly to inform the user that validation has failed. The following

292

Handling validation failures

minimalistic example demonstrates how the validation errors can be displayed to the user as
popup alerts:

function validationCallback(violations) {
for (var i = 0; i < violations.length; i++) {
alert(violations]i].property + "=" + violations[i].value + " [violation] -> " + violations[i].message);

293

294

Part X. Seam REST

Introduction

Seam REST is a lightweight module that provides additional integration of technologies within the
Java EE platform as well as third party technologies.

Seam REST is independent from CDI and JAX-RS implementations and thus fully portable
between Java EE 6 environments.

ccxevii

cexceviii

Chapter 60.

Installation

The Seam REST module runs only on Java EE 6 compliant servers such as JBoss Application
Server [http://www.jboss.org/jbossas] or GlassFish [https://glassfish.dev.java.net/] .

60.1. Basics

To use the Seam REST module, add seam r est and seam r est - api jars into the web application.
If using Maven, add the following dependency into the web application's pom xn configuration file.

Example 60.1. Dependency added to pom.xml

<dependency>
<groupld>org.jboss.seam.rest</groupld>
<artifactld>seam-rest</artifactld>
<version>${seam.rest.version}</version>
</dependency>

Tip

Substitute the expression ${seam.rest.version} with the most recent or
appropriate version of Seam REST. Alternatively, you can create a Maven
user-defined property [http://www.sonatype.com/books/mvnref-book/reference/
resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to
satisfy this substitution so you can centrally manage the version.

60.2. Transitive dependencies

Besides, Seam REST has several transitive dependencies (which are added automatically when
using maven). Refer to Section 65.1, “Transitive Dependencies” for more details.

60.3. Registering JAX-RS components explicitly

The Seam REST module registers SeanExcept i onMapper to hook into the exception processing
mechanism of JAX-RS and Tenpl at i ngMessageBodyW i t er to provide templating support.

These components are registered by default if classpath scanning of JAX-RS resources and
providers is enabled (an empty j avax. ws. rs. core. Appl i cati on subclass is provided).

@ApplicationPath("/api/*")

299

http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 60. Installation

public class MyApplication extends Application {}

Otherwise, if the Application's get C asses() method is overridden to select resources and
providers explicitly add SeanExcept i onMapper and Tenpl ati ngMessageBodyWiter .

@ApplicationPath("/api/*")
public class MyApplication extends Application
{

@Override

public Set<Class<?>> getClasses()

{

Set<Class<?>> classes = new HashSet<Class<?>>();

classes.add(SeamExceptionMapper.class);
classes.add(TemplatingMessageBodyWriter.class);
return classes;

60.4. Servlet container support

Seam REST can be used with plain Servlet containers such as Apache Tomcat 7. Firstly, we
need to enhance the Servlet container capabilities. This is done by bundling Weld and RESTEasy
within the application and configuring them. See the jaxrs-exceptions example and its t ontat
build profile for more details.

In a EE6-compliant environment, Seam REST would be bootstrapped by a Servlet listener.
However, wel d- ser vl et does not support CDI injection into Servlet listeners. Therefore, add the
following line to your application's web. xm file to bootstrap Seam REST using Servlet.

<servlet>
<display-name>Servlet REST Listener Startup</display-name>
<servlet-class>org.jboss.seam.rest.SeamRestStartupListener</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

300

Chapter 61.

Exception Handling

The JAX-RS specification defines the mechanism for exception mapping providers as the standard
mechanism for Java exception handling. The Seam REST module comes with an alternative
approach, which is more consistent with the CDI programming model. It is also easier to use and
still remains portable.

The Seam REST module allows you to:

« integrate with Solder exception handling framework and thus handle exceptions that occur in
different parts of an application uniformly;

« define exception handling rules declaratively with annotations or XML.

61.1. Solder Exception Handling Integration

Solder exception handling framework handles exceptions within the Seam REST module:; as
result, an exception that occurs during an invocation of a JAX-RS service is routed through the
Solder exception handling mechanism similar to the CDI event bus. This allows you to implement
the exception handling logic in a loosely-coupled fashion.

The following code sample demonstrates a simple exception handler that converts the
NoResul t Except i on exception to a 404 HTTP response.

Example 61.1. Solder Integration - NoResul t Excepti on handler

@HandlesExceptions 1
public class ExceptionHandler

{

@Inject @RestResource

ResponseBuilder builder 2

public void handleException(@Handles @RestRequest CaughtException<NoResultEx 3 ception> event)

{
builder.status(404).entity("The requested resource does not exist.");
}
}

11 The @andl esExcepti ons annotation marks the Excepti onHandl er bean as capable of
handling exceptions.
2 The ResponseBui | der for creating the HTTP response is injected.

3 A method for handling NoResul t Except i on instances. Note that the Except i onHandl er can
define multiple exception handling methods for various exception types.

301

Chapter 61. Exception Handling

Similarly to the CDI event bus, exceptions handled by a handler method can be filtered by
qualifiers. The example above treats only exceptions that occur in a JAX-RS service invocation
(as opposed to all exceptions of the given type that occur in the application, for example in the
view layer). Thus, the @est Request qualifier is used to enable the handler only for exceptions
that occur during JAX-RS service invocation.

For more information on Solder exception handling, refer to Solder reference documentation
[http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part5.html] .

61.2. Declarative Exception Mapping

Exception-mapping rules are often fairly simple. Thus, instead of being implemented
programmatically, they can be expressed declaratively through metadata such as Java
annotations or XML. The Seam REST module supports both ways of declarative configurations.

For each exception type, you can specify a status code and an error message of the HTTP
response.

61.2.1. Annotation-based configuration

You can configure Seam REST exception mapping directly in your Java code with Java
Annotations. An exception mapping rule is defined as a @xcept i onMappi ng annotation. Use an
@xcept i onMappi ng. Li st annotation to define multiple exception mappings.

Example 61.2. Annotation-based exception mapping configuration

@ExceptionMapping.List({

@ExceptionMapping(exceptionType=NoResultException.class status=404 message="Requested
resource does not exist."),

@ExceptionMapping(exceptionType=lllegalArgumentException.class status=400message="lllegal
argument value.")

)

@ApplicationPath("/api")

public MyApplication extends Application {

The @xcepti onMappi ng annotation can be applied on any Java class in the deployment.
However, it is recommended to keep all exception mapping declarations in the same place, for
example, inthe j avax. ws. rs. core. Appl i cati on subclass.

Table 61.1. @xceptionMappi ng properties

Name Required Default value Description

excepti onType true - Fully-qualified class
name of the exception
class

302

http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part5.html
http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part5.html

XML configuration

Name Required
status true
message false

useExcept i onMessage false

i nt er pol at eMessageBodyse

useJaxb false

61.2.2. XML configuration

Default value

false

true

true

Description
HTTP status code

Error message sent
within the HTTP
response

Exception error
message

Enabling/disabling the
EL interpolation of the
error message

Enabling/disabling
wrapping of the error
message within a
JAXB object. This
allows marshalling
to various media
formats such as
application/xm,
application/json,
etc.

As an alternative to the annotation-based configuration, you can use the configuration facilities
provided by Solder to configure the SeanRest Confi gurati on class in XML.

For more information on how to use Solder for configuring beans, refer to the Solder reference
documentation [http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html] .
Once you have added the Seam XML module, specify the configuration in the seam beans. xni
file, located in the VEB- | NF folder of the web archive.

Example 61.3. Exception mapping configuration in seam-beans.xml

<rest:SeamRestConfiguration>
<rest:mappings>
<s:value>

<rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">
<rest:message>Requested resource does not exist.</rest:message>

</rest:Mapping>
</s:value>
<s:value>

<rest:Mapping exceptionType="java.lang.lllegalArgumentException" statusCode="400">

303

http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html
http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html
http://docs.jboss.org/seam/3/solder/snapshot/reference/en-US/html/part4.html

Chapter 61. Exception Handling

<rest:message>lllegal value.</rest:message>
</rest:Mapping>
</s:value>
</rest:mappings>
</rest:SeamRestConfiguration>

Furthermore, you can use EL expressions in message templates to provide dynamic and more
descriptive error messages.

Example 61.4. Exception mapping configuration in seam-beans.xml

<rest:Mapping exceptionType="javax.persistence.NoResultException" statusCode="404">
<rest:message>Requested resource (#{urilnfo.path}) does not exist.</rest:message>
</rest:Mapping>

61.2.3. Declarative exception mapping processing

When an exception occurs at runtime, the SeanExcepti onMapper first looks for a matching
exception mapping rule. If it finds one, it creates an HTTP response with the specified status code
and error message.

The error message is marshalled within a JAXB object and is thus available in multiple media
formats. The most commonly used formats are XML and JSON. Most JAX-RS implementations
provide media providers for both of these formats. In addition, the error message is also available
in plain text.

Example 61.5. Sample HTTP response

HTTP/1.1 404 Not Found
Content-Type: application/xml
Content-Length: 123

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<error>

<message>Requested resource does not exist.</message>
</error>

304

Chapter 62.

Bean Validation Integration

Bean Validation (JSR-303) is a specification introduced as a part of Java EE 6. It aims to provide
a standardized way of validating the domain model across all application layers.

The Seam REST module follows the Bean Validation specification and the incoming HTTP
requests can be validated with this standardized mechanism.

62.1. Validating HTTP requests

Firstly, enable the Val i dat i onl nt er cept or in the beans. xnl configuration file.

<interceptors>
<class>org.jboss.seam.rest.validation.ValidationInterceptor</class>
</interceptors>

Then, enable validation of a particular method by decorating it with the @val i dat eRequest
annotation.

@PUT
@ValidateRequest
public void updateTask(Task incommingTask)

{

Now, the HTTP request's entity body (the i ncomi ngTask parameter) will be validated prior to
invoking the method.

62.1.1. Validating entity body

By default, the entity parameter (the parameter with no annotations that represent the body of the
HTTP request) is validated. If the object is valid, the web service method is executed. Otherwise,
a Val i dati onExcept i on exception is thrown.

The Val i dati onExcept i on exception is a simple carrier of constraint violations found by the Bean
Validation provider. The exception can be handled by an Except i onMapper or Solder exception
handler.

Seam REST comes with a built-in Val i dat i onExcept i on handler, which is registered by default.
The exception handler converts the Val i dat i onExcepti on to an HTTP response with the 400
(Bad request) status code. Furthermore, it sends messages relevant to the violated constraints
within the message body of the HTTP response.

305

Chapter 62. Bean Validation I...

Example 62.1. HTTP response

HTTP/1.1 400 Bad Request
Content-Type: application/xml
Content-Length: 129

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<error>
<messages>
<message>Name length must be between 1 and 100.</message>
</messages>
</error>

62.1.2. Validating resource fields

Besides the message body, the JAX-RS specification allows various parts of the HTTP request
to be injected into the JAX-RS resource or passed as method parameters. These parameters are
usually HTTP form parameters, query parameters, path parameters, headers, etc.

Example 62.2. JAX-RS resource

public class PersonResource

{
@QueryParam("search")
@Size(min = 1, max = 30)
private String query;
@QueryParam("start")
@DefaultValue("0")
@Min(0)
private int start;
@QueryParam("limit")
@DefaultValue("20")
@Min(0) @Max(50)
private int limit;

If a method of a resource is annotated with an @al i dat eRequest annotation, the fields of a
resource are validated by default.

306

Validating other method parameters

Important
Since the JAX-RS injection occurs only at resource creation time, do not use the

JAX-RS field injection for other than @Request Scoped resources.

62.1.3. Validating other method parameters

The JAX-RS specification allows path parameters, query parameters, matrix parameters, cookie
parameters and headers to be passed as parameters of a resource method.

Example 62.3. JAX-RS method parameters

@GET

public List<Person>search(@QueryParam("search") String query,
@QueryParam("start") @DefaultValue("0") int start,
@QueryParam("limit") @DefaultValue("20") int limit)

Note

j=deo

Currently, Seam REST validates only JavaBean parameters (as opposed to
primitive types, Strings and so on). Therefore, to validate these types of
parameters, either use resource field validation described in

or read further and use parameter objects.

In order to prevent an oversized method signature when the number of parameters is too
large, JAX-RS implementations provide implementations of the Parameter Object pattern
[http://[sourcemaking.com/refactoring/introduce-parameter-object] . These objects aggregate
multiple parameters into a single object, for example RESTEasy Form Object [http://
docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html] or Apache CXF Parameter
Bean [http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans] . These parameters can
be validated by Seam REST. To trigger the validation, annotate the parameter with a
j avax. val i dati on. Val i d annotation.

Example 62.4. RESTEasy parameter object

public class MyForm {
@FormParam("stuff")
@Size(min = 1, max = 30)
private int stuff;

@HeaderParam("myHeader")

307

http://sourcemaking.com/refactoring/introduce-parameter-object
http://sourcemaking.com/refactoring/introduce-parameter-object
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/_Form.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans

Chapter 62. Bean Validation I...

private String header;

@PathParam(“foo")
public void setFoo(String foo) {...}

}

@POST

@Path("/myservice")

@ValidateRequest

public void post(@Valid @Form MyForm form) {...}

62.2. Validation configuration

Table 62.1. @val i dat eRequest annotation properties

@val i dat eRequest attribute Description Default value

val i dat eMessageBody Enabling/disabling validation true
of message body parameters

val i dat eResour ceFi el ds Enabling/disabling validation true
of fields of a JAX-RS resource

groups Validation groups to be used javax.validation.groups.Default
for validation

62.3. Using validation groups

In some cases, it is desired to have a specific group of constraints used for validation of web
service parameters. These constraints are usually weaker than the default constraints of a domain
model. Take partial updates as an example.

Consider the following example:

Example 62.5. Employee.java

public class Employee {
@NotNull
@Size(min = 2, max = 30)
private String name;
@NotNull
@Email
private String email;
@NotNull
private Department department;

308

Using validation groups

Il getters and setters

The Employee resource in the example above is not allowed to have the null value specified in any
of its fields. Thus, the entire representation of a resource (including the department and related
object graph) must be sent to update the resource.

When using partial updates, only values of modified fields are required to be sent within the update
request, while the non-null values of the received object are updated. Therefore, two groups
of constraints are needed: group for partial updates (including @i ze and @nwsi | , excluding
@t Nul 1) and the default group (@NotNull).

A validation group is a simple Java interface:

Example 62.6. Partial Updat eG oup. j ava

public interface PartialUpdateGroup {}

Example 62.7. Employee.java

@GroupSequence({ Default.class, PartialUpdateGroup.class }) 3
public class Employee {

@NotNull 1

@Size(min = 2, max = 30, groups = PartialUpdateGroup.class) 2

private String name;

@NotNull

@Email(groups = PartialUpdateGroup.class)

private String email;

@NotNull

private Department department;

Il getters and setters

11 The @bt Nul | constraint belongs to the default validation group.
2 The @i ze constraint belongs to the partial update validation group.

3 The @ oupsSequence annotation indicates that both validation groups are used by default
(for example, when persisting the entity).

Finally, the Vval i dati onl nt er cept or is configured to validate the Parti al Updat eG oup group
only.

309

Chapter 62. Bean Validation I...

Example 62.8. Enpl oyeeResour ce. j ava

@Path("/{id}")

@PUT
@Consumes("application/xml")
@ValidateRequest(groups = PartialUpdateGroup.class) 1
public void updateEmployee(Employee e, @PathParam("id") long id)
{

Employee employee = em.find(Employee.class, id);

if (e.getName() != null) 2

{

employee.setName(e.getName());

}

if (e.getEmail() = null)

{

employee.setEmail(e.getEmail());

11 The partial update validation group is used for web service parameter validation.

2 Partial update — only the not-null fields of the transferred representation are used for update.
The null fields are not updated.

310

Chapter 63.

Templating support

Seam REST allows to create HTTP responses based on the defined templates. Instead of being
bound to a particular templating engine, Seam REST comes with a support for multiple templating
engines and support for others can be plugged in.

63.1. Creating JAX-RS responses using templates

REST-based web services are often expected to return multiple representations of a resource.
The templating support is useful for producing media formats such as XHTML and it can be also
used instead of JAXB to produce domain-specific XML representations of a resource. Besides,
almost any other representation of a resource can be described in a template.

To enable templating for a particular method, decorate the method with the @responseTenpl at e
annotation. Path to a template file to be used for rendering is required.

Example 63.1. @responseTenpl ate in action

@ResponseTemplate("/freemarker/task.ftl")
public Task getTask(@PathParam("taskld") long taskid) {

The @responseTenpl at e annotation offers several other options. For example, it is possible for
a method to offer multiple representations of a resource, each rendered with a different template.
In the example below, the produces member of the @ResponseTenpl at e annotation is used to
distinguish between produced media types.

Example 63.2. Multiple @esponseTenpl ate S

@GET
@Produces({ "application/json", "application/categories+xml”, "application/categories-short
+xml" })
@ResponseTemplate.List({

@ResponseTemplate(value = "/freemarker/categories.ftl", produces = "application/categories
+xml"),

@ResponseTemplate(value = "/freemarker/categories-short.ftl", produces = "application/

categories-short+xml")

)
public List<Category> getCategories()

311

Chapter 63. Templating support

Table 63.1. @esponseTenpl ate Options

Name Required Default value Description

val ue true - Path to the template
(for example /
freemarker/

categories.ftl)

pr oduces false *[* Restriction of media
type produced by
the template (useful
in situations when
a method produces
multiple media types,

with different
templates)
r esponseNane false response Name under which

the object returned
by the JAX-RS
method is available
in the template
(for example, Hello
${response.name})

63.1.1. Accessing the model

There are several ways of accessing the domain data within a template.

Firstly, the object returned by the JAX-RS method is available under the "response" name by
default. The object can be made available under a different name using the r esponseNane
member of the @rResponseTenpl at e annotation.

Example 63.3. hello.ftl
Hello ${response.name}

Secondly, every bean reachable via an EL expression is available within a template.
Example 63.4. Using EL names in a template
#foreach(${student} in ${university.students})

<student>${student.name}</student>
#end

312

Built-in support for templating engines

Last but not least, the model can be populated programmatically. In order to do that, inject the
Tenpl at i ngvbdel bean and put the desired objects into the underlying dat a map. In the following
example, the list of professors is available under the "professors" name.

Example 63.5. Defining model programmatically

@Inject
private TemplatingModel model;

@GET
@ResponseTemplate("/freemarker/university.ftl")
public University getUniversity()
{

/[load university and professors

University university = ...

List<Professor> professors = ...

model.getData().put("professors"”, professors);
return university;

Tip

When using JAXB-annotated classes as a return type for JAX-RS methods, you
may see the following RESTEasy message: “Could not find JAXBContextFinder
for media type: text/html|” . This is caused by the built-in JAXB provider being too
eager. You can prevent the built-in JAXB provider from being used for a method
by adding the @oNot UseJAXBPr ovi der annotation on the method.

63.2. Built-in support for templating engines

Seam REST currently comes with built-in templating providers for FreeMarker and Apache
Velocity.

313

Chapter 63. Templating support

63.2.1. FreeMarker

FreeMarker is one of the most popular templating engines. To enable Seam REST FreeMarker
support, bundle the FreeMarker jar with the web application.

For more information on writing FreeMarker templates, refer to the FreeMarker Manual [http://
freemarker.sourceforge.net/docs/index.html] .

63.2.2. Apache Velocity

Apache Velocity is another popular Java-based templating engine. Similarly to FreeMarker
support, Velocity support is enabled automatically if Velocity libraries are detected on the
classpath.

For more information on writing Velocity templates, refer to the Apache Velocity User Guide [http://
velocity.apache.org/engine/releases/velocity-1.5/user-guide.html]

63.2.3. Pluggable support for templating engines
All that needs to be done to extend the set of supported templating engines is to implement
the Tenpl ati ngProvi der interface. Refer to Javadoc [http://docs.jboss.org/seam/3/rest/latest/

api/orgl/jboss/seam/rest/templating/TemplatingProvider.html] for hints.

63.2.4. Selecting preferred templating engine
In certain deployment scenarios it is not possible to control the classpath completely and multiple

template engines may be available at the same time. If that happens, Seam REST fails to operate
with the following message:

Multiple TemplatingProviders found on classpath. Select the preferred one.

In such case, define the preferred templating engine in the XML configuration as demonstrated
below to resolve the Tenpl at i ngPr ovi der ambiguity.

Example 63.6. Preferred provider

<beans xmlns:rest="urn:java:org.jboss.seam.rest:org.jboss.seam.rest.exceptions">

<rest:SeamRestConfiguration preferedTemplatingProvider="org.jboss.seam.rest.templating.freemarker.FreeMar
</beans>

314

http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html
http://docs.jboss.org/seam/3/rest/latest/api/org/jboss/seam/rest/templating/TemplatingProvider.html

Selecting preferred templating engine

Table 63.2. Built-in templating providers

Name FQCN
FreeMarker org.jboss.seam.rest.templating.freemarker.FreeMarkerProvider
Apache Velocity org.jboss.seam.rest.templating.velocity.VelocityProvider

315

316

Chapter 64.

RESTEasy Client Framework
Integration

The RESTEasy Client Framework is a framework for writing clients for REST-based web
services. It reuses JAX-RS metadata for creating HTTP requests. For more information about
the framework, refer to the project documentation [http://docs.jboss.org/resteasy/docs/2.0.0.GA/
userguide/html/RESTEasy_Client_Framework.html] .

Integration with the RESTEasy Client Framework is optional in Seam REST and only available
when RESTEasy is available on classpath.

Tip

Although RESTEasy is part of JBoss AS 7, not all of the required dependencies are
exposed to the application classpath automatically. To enable RESTEasy Client
Framework on JBoss AS 7, add the following line to META- | NF/ MANI FEST. M-

64.1. Using RESTEasy Client Framework with Seam
REST

Let us assume as an example that a remote server exposes a web service for providing task
details to the client through the TaskSer vi ce interface below.

Example 64.1. Sample JAX-RS annotated interface

@Path("/task")
@Produces("application/xml")
public interface TaskService
{
@GET
@Path("/{id}")
Task getTask(@PathParam("id")long id);

To access the remote web service, Seam REST builds and injects a client object of the web
service.

317

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html

Chapter 64. RESTEasy Client F...

Example 64.2. Injecting REST Client

@Inject @RestClient("http://example.com™)
private TaskService taskService;

Task task = taskService.getTask(1);

The Seam REST module injects a proxied TaskSer vi ce interface and the RESTEasy Client
Framework converts every method invocation on the TaskSer vi ce to an HTTP request and sends
it over the wire to ht t p: / / exanpl e. com. The HTTP response is unmarshalled automatically and
the response object is returned by the method call.

URI definition supports EL expressions.

@Inject @RestClient("#{example.service.uri}")

64.2. Manual ClientRequest API

Besides proxying JAX-RS interfaces, the RESTEasy Client Framework provides the
ClientRequest APl for manual building of HTTP requests. For more information on
the ClientRequest API, refer to the project documentation [http://docs.jboss.org/resteasy/
docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest] .

Example 64.3. Injecting ClientRequest

@Inject @RestClient("http://localhost:8080/test/ping™)
private ClientRequest request;

request.accept(MediaType. TEXT_PLAIN_TYPE);
ClientResponse<String> response = request.get(String.class);

64.3. Client Executor Configuration

If not specified otherwise, every request is executed by the default Apache HTTP Client 4
configuration. Provide an alternative d i ent Execut or implementation to change this.

318

http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest
http://docs.jboss.org/resteasy/docs/2.0.0.GA/userguide/html/RESTEasy_Client_Framework.html#ClientRequest

Client Executor Configuration

Example 64.4. Custom Apache HTTP Client 4 configuration

@Produces
public ClientExecutor createExecutor()

{

HttpParams params = new BasicHttpParams();
ConnManagerParams.setMaxTotalConnections(params, 3);
ConnManagerParams.setTimeout(params, 1000);

SchemeRegistry schemeRegistry = new SchemeRegistry();
schemeRegistry.register(new Scheme("http", PlainSocketFactory.getSocketFactory(), 80));

ClientConnectionManager cm = new ThreadSafeClientConnManager(params, schemeRegistry);
HttpClient httpClient = new DefaultHttpClient(cm, params);

return new ApacheHttpClient4Executor(httpClient);

319

320

Chapter 65.

Seam REST Dependencies

65.1. Transitive Dependencies

The Seam REST module depends on the Seam Solder [http://seamframework.org/Seam3/Solder]
module.

65.2. Optional dependencies

65.2.1. FreeMarker

FreeMarker can be used for rendering HTTP responses. For more information on using
FreeMarker with Seam REST, refer to Section 63.2.1, “FreeMarker”

<dependency>
<groupld>org.freemarker</groupld>
<artifactld>freemarker</artifactld>
<version>${freemarker.version}</version>
</dependency>

65.2.2. Apache Velocity

Apache Velocity can be used for rendering HTTP responses. For more information on using
Velocity with Seam REST, refer to Section 63.2.2, “Apache Velocity”

<dependency>
<groupld>org.apache.velocity</groupld>
<artifactld>velocity</artifactld>
<version>${velocity.version}</version>

</dependency>

<dependency>
<groupld>org.apache.velocity</groupld>
<artifactld>velocity-tools</artifactld>
<version>${velocity.tools.version}</version>

</dependency>

65.2.3. RESTEasy

RESTEasy Client Framework can be used for building clients of RESTful web services. For
more information on using RESTEasy Client Framework, refer to Chapter 64, RESTEasy Client
Framework Integration

321

http://seamframework.org/Seam3/Solder
http://seamframework.org/Seam3/Solder

Chapter 65. Seam REST Depende...

<dependency>
<groupld>org.jboss.resteasy</groupld>
<artifactld>resteasy-jaxrs</artifactld>
<version>${resteasy.version}</version>
</dependency>

322

Part Xl. Seam JCR

Chapter 66.

Seam JCR - Introduction

66.1. Introduction

The Seam JCR Module aims to simplify the integration points between JCR implementations and
CDI applications.

The Seam JCR module is compatible with JCR 2.0 implementations. It strictly compiles against
JCR 2.0. However, test cases are executed against both ModeShape and JackRabbit to ensure
compatibility.

66.2. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following
single dependency to your pom.xml file to include Seam JCR:

<dependency>
<groupld>org.jboss.seam.jcr</groupld>
<artifactld>seam-jcr</artifactld>
<version>${seam.jcr.version}</version>
</dependency>

Tip

Substitute the expression ${seam.jcr.version} with the most recent or
appropriate version of Seam JCR. Alternatively, you can create a Maven
user-defined property [http://www.sonatype.com/books/mvnref-book/reference/
resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to
satisfy this substitution so you can centrally manage the version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.
This protects you from inadvertantly depending on an implementation class.

<dependency>
<groupld>org.jboss.seam.jcr</groupld>
<artifactld>seam-jcr-api</artifactld>
<version>${seam.jcr.version}</version>
<scope>compile</scope>
</dependency>

325

http://maven.apache.org/
http://maven.apache.org/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 66. Seam JCR - Introd...

<dependency>
<groupld>org.jboss.seam.jcr</groupld>
<artifactld>seam-jcr</artifactld>
<version>${seam.jcr.version}</version>
<scope>runtime</scope>
</dependency>

In addition to your Seam JCR dependencies, you must also declare a dependency on a JCR
Implementation.

326

Chapter 67.

Seam JCR - JBoss ModeShape
Integration

67.1. ModeShape Integration Installation

In order to activate ModeShape support within your application, you need to include ModeShape
on your classpath. At a minimum, the following maven dependencies must be satisfied.

<dependency>
<groupld>org.modeshape</groupld>
<artifactld>modeshape-jcr</artifactld>
<version>${modeshape.version}</version>

</dependency>

<dependency>
<groupld>org.apache.lucene</groupld>
<artifactld>lucene-core</artifactld>
<version>${lucene.version}</version>

</dependency>

Tip

Substitute ${modeshape.version} for the ModeShape version you are running
against. Currently, Seam JCR tests against 2.5.0.Final. In addition, Lucene is
required to run ModeShape. Please consult the ModeShape Getting Started
Guide [http://docs.jboss.org/modeshape/latest/manuals/gettingstarted/ntml/] for
exact versions.

67.2. Usage

In order to use ModeShape's Repository and Session objects in your application, you
must define an injection point using the JcrConfiguration annotation based on ModeShape's
required configuration parameters. Please review the ModeShape Getting Started Guide [http://
docs.jboss.org/modeshape/latest/manuals/gettingstarted/html/] for further details.

@Inject @JcrConfiguration(name="org.modeshape.jcr.URL",value="file:path/to/
modeshape.xml?repositoryName=MyRepo")
Repository repository;

327

http://docs.jboss.org/modeshape/latest/manuals/gettingstarted/html/
http://docs.jboss.org/modeshape/latest/manuals/gettingstarted/html/
http://docs.jboss.org/modeshape/latest/manuals/gettingstarted/html/
http://docs.jboss.org/modeshape/latest/manuals/gettingstarted/html/
http://docs.jboss.org/modeshape/latest/manuals/gettingstarted/html/
http://docs.jboss.org/modeshape/latest/manuals/gettingstarted/html/

Chapter 67. Seam JCR - JBosSS ...

@Inject @JcrConfiguration(name="org.modeshape.jcr.URL",value="file:path/to/
modeshape.xml?repositoryName=MyRepo")
Session session;

328

Chapter 68.

Seam JCR - JackRabbit Integration

68.1. JackRabbit Integration Installation

In order to activate JackRabbit support within your application, you need to include JackRabbit on
your classpath. At a minimum, the following maven dependency must be satisfied.

<dependency>
<groupld>org.apache.jackrabbit</groupld>
<artifactld>jackrabbit-core</artifactld>
<version>${jackrabbit.version}</version>
</dependency>

Tip

Substitute ${jackrabbit.version} for the JackRabbit version you are running
against. Currently, Seam JCR tests against 2.2.4. Please review
the JackRabbit documentation [http://jackrabbit.apache.org/getting-started-with-
apache-jackrabbit.html] to determine any additional dependencies.

68.2. Usage

In order to use JackRabbit's Repository and Session objects in your application, you must
define an injection point using the Jcr Conf i gur at i on annotation based on JackRabbit's required
configuration parameters.

@Inject @JcrConfiguration(hname="org.apache.jackrabbit.repository.home",value="target")
Repository repository;

@Inject @JcrConfiguration(name="org.apache.jackrabbit.repository.home",value="target")
Session session;

329

http://jackrabbit.apache.org/getting-started-with-apache-jackrabbit.html
http://jackrabbit.apache.org/getting-started-with-apache-jackrabbit.html
http://jackrabbit.apache.org/getting-started-with-apache-jackrabbit.html

330

Chapter 69.

Seam JCR - Event Mapping

69.1. Introduction to Event Mapping

Seam JCR provides functionality to fire CDI Events based on events found in JCR. The rules of
how events are fired are based around the underlying implementation.

Tip
You will not have an active JCR Session during the event firing, a new one will
need to be created.

Tip

Some JCR implementations, like Modeshape fires events on a separate thread,
so probably you will get errors if your observer method is declared on a
@RequestScoped object, for example.

69.2. Observing JMS events

To observe an event, use the @bserves and the additional qualifiers from the seam j cr - api
module (Check package or g. j boss. seam j cr. annot at i ons. event s). If you need to watch any
JCR event, then avoid using any qualifier at all.

import javax.jcr.observation.Event;
public void observeAdded(@Observes @NodeAdded Event evt) {

/I Called when a node is added

public void observeAll(@Observes javax.jcr.observation.Event evt) {
/I Called when any node event occurs

331

332

Chapter 70.

Seam JCR - Object Content Mapping

70.1. What is Object Content Mapping?

Object Content Mapping is a design paradigm, in the same light as ORM (Object Relational
Mapping) frameworks such as JPA or Hibernate, where statically typed objects are bound to a
storage mechanism, in this case a JCR store. Seam JCR OCM is provided as annotations only
on top of entities that are discovered during the CDI Phase ProcessAnnotatedType. In addition,
Seam JCR's OCM implementation provides ServiceHandlers for working with entities over JCR.

70.2. Mapping and Conversion Capabilities

The mapping APl is very simple and designed to be clean. In order to define an entity, you simply
need to use the annotation or g. j boss. seam j cr. annot ati ons. ocm Jcr Node to define that this
is an entity to map. All fields by default will be mapped to their field names. You can override this
behavior by using the annotation or g. j boss. seam j cr. annot ati ons. ocm Jcr Proper ty which
will map the property to a different property name. The Jcr Pr oper t y annotation can be placed
on both field and getter method. You can define a special property uui d of type String that will
represent the identifier for the node. This is a sample node mapping:

@JcrNode("nt:unstructured")
public class BasicNode implements java.io.Serializable {
@JcrProperty("myvalue")
private String value;
private String uuid;
private String lordy;
public String getValue() {
return value;
}
public void setValue(String value) {
this.value = value;
}
public String getUuid() {
return uuid;
}
public void setUuid(String uuid) {
this.uuid = uuid;
}
@JcrProperty("notaproperty")
public String getLordy() {
return lordy;

333

Chapter 70. Seam JCR - Object...

public void setLordy(String lordy) {
this.lordy = lordy;

The simplest way to convert entities is to use CDI Events. There are two event
objects that can be fired to support parsing, org.j boss. seam jcr.ocm Convert ToNode and
org. j boss. seamjcr.ocm Convert ToObj ect . By passing in a node and a pre-constructed object
you can convert the full node to object or object to node depending on your need. Here is a sample
parsing (from our test cases):

@Inject Event<ConvertToObject< objectEvent;
@Inject Event<ConvertToNode< nodeEvent;

Node root = session.getRootNode();

Node ocmnodel = root.addNode("ocmnodel","nt:unstructured");
BasicNode bn = new BasicNode();

bn.setValue("Hello, World!");

bn.setLordy("this was saved.");

nodeEvent.fire(new ConvertToNode(bn,ocmnodel));

Node hello2 = root.getNode("ocmnodel");
BasicNode bn2 = new BasicNode();
objectEvent.fire(new ConvertToObject(hello2,bn2));

70.3. JCR Data Access Objects

If you have ever worked with entities, the term DAO should be very familiar to you. Seam JCR
OCM supports DAOs in a highly automated fashion. Using annotations and interfaces only, you
can automate querying, finds and saving entities into their mapped node types. There are four
annotations to support DAOSs:

1. org.j boss. seam jcr. annot ati ons. ocm Jcr Dao Defines this interface as a DAO interface.
The ServiceHandler will be used to process these methods. This annotation should be placed
at the interface level.

2. 0rg.jboss.seamjcr.annotations.ocm Jcr Fi nd Defines this method as a find method,
loading by identifier. The method should take a single String parameter and return a mapped
node type.

334

JCR Data Access Objects

3. org.jboss.seamjcr.annotations.ocm JcrQery Defines this method as returning a
java. util.List of mapped entities that can be mapped using the query results. Has properties
defining the type to return, query to use, and the query language.

4. org.j boss. seamjcr. annot ati ons. ocm Jcr Par amJcrParams are placed on the parameter
arguments to a method annotated JcrQuery. Each argument should be a Value object and map
based on bind parameters in the query.

Here is a sample definition of an interface, describing the objects that can be used:

import static org.jboss.seam.jcr.ConfigParams.MODESHAPE_URL;

import java.util.List;

import org.jpboss.seam.jcr.annotations.JcrConfiguration;
import org.jboss.seam.jcr.annotations.ocm.JcrDao;
import org.jpboss.seam.jcr.annotations.ocm.JcrFind,;
import org.jpboss.seam.jcr.annotations.ocm.JcrQuery;
import org.jposs.seam.jcr.annotations.ocm.JcrSave;
import org.jboss.seam.jcr.test.ocm.BasicNode;

@JcrDao(

@JcrConfiguration(name = MODESHAPE_URL,

value = "file:target/test-classes/modeshape.xml?repositoryName=CarRepo")

)
public interface BasicNodeDAO {

@JcrFind

public BasicNode findBasicNode(String uuid);

@JcrQuery(query="select * from [nt:unstructured]”,language="JCR-

SQL2" resultClass=BasicNode.class)

public List<BasicNode> findAlINodes();

@JcrSave

public String save(String path, BasicNode basicNode);

In this case, we are telling the JcrDao BasicNodeDAO to use the JCR Session based on the
annotated JcrConfiguration noted. Since BasicNode is mapped to nt:unstructured, we can map
any nt:unstructured to it by calling findAlINodes. We can save a basic node to a given path as well
as find based on uuid. The best part is that there is no implementation necessary on your side.
You can use this interface as is.

335

Chapter 70. Seam JCR - Object...

@Inject
BasicNodeDAO basicDAO;

BasicNode bn = new BasicNode();
bn.setValue("this is my node.");

String uuid = basicDAO.save("/anypathone",bn);
System.out.printin("The UUID is: "+uuid);

BasicNode bn2 = basicDAO.findBasicNode(uuid);
System.out.printf("The original node was %s and the new node is
\n",bn.getValue(), bn2.getValue());

List<BasicNode> nodes = basicDAO.findAlINodes();
System.out.printin(nodes);

336

Part Xll. Seam JMS

Chapter 71.

Introduction

Seam extends the CDI programming model into the messaging world by allowing you to inject
JMS resources into your beans. Furthermore, Seam bridges the CDI event bus over JMS; this
gives you the benefits of CDI-style type-safety for inter-application communication.

71.1. Mission statement

The JMS module for Seam 3 is to provide injection of IMS resources and the necessary scaffolding
for a bidirectional propagation of CDI event over JMS.

71.2. Seam 3 JMS Module Overview

The general goals can be divided into two categories: injection of JMS resources and bridging
of events:

JMS Resource Injection

» ConnectionFactory
« Connection

» Session

» Topics & Queues
* Message Producer

¢ Message Consumer

Event Bridge

* Inbound: Routes CDI events to JMS destinations

» Outbound: Fires CDI events based on the reception of IMS messages

339

340

Chapter 72.

Installation

Seam JMS can be used by including a few libraries in your application's library folder:

e seam-jms-api.jar
e seam-jms.jar

* solder-api.jar

* solder-impl.jar

« solder-logging.jar

If you are using Maven [http://maven.apache.org/] as your build tool use the following dependency,
which will bring in both APl and Implementation for Seam JMS:

<dependency>
<groupld>org.jboss.seam.jms</groupld>
<artifactld>seam-jms</artifactld>
<version>${seam.jms.version}</version>
</dependency>

Tip

Define or replace the property ${seam.jms.version} with a valid version of Seam
JMS.

The runtime of Seam JMS is defined in two sections. The first section is related to creating
observers, which happens within the Seam JMS CDI Extension. Observers need to be defined
prior to starting up the container, and cannot be created once the application is running. This part
happens automatically. The second section is related to creating listeners. This is managed in the
component org.jboss.seam.jms.bridge.RouteBuilder.

Tip
In order to start any listeners, you may need to inject an instance of the

RouteBuilder in to your class.

If you are running within a Servlet Container, and include the Solder, RouteBuilder
will automatically start up.

The default implementation expects to find a ConnectionFactory at the JNDI
location / Connect i onFact ory. This can be changed by using Solder Config by

341

http://maven.apache.org/
http://maven.apache.org/

Chapter 72. Installation

using a snippet similar to the one below in seam-beans.xml. This will change the
JNDI location Seam JMS looks to j ms/ Connect i onFact ory

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlIns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:s="urn:java:ee"
xmlns:jmsi="urn:java:org.jboss.seam.jms.inject"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://docs.jboss.org/
cdi/beans_1 0.xsd">

<jmsi:JmsConnectionFactoryProducer>
<s:modifies />
<jmsi:connectionFactoryJNDILocation>jms/ConnectionFactory</
jmsi:connectionFactoryJNDILocation>
</jmsi:JmsConnectionFactoryProducer>
</beans>

342

Chapter 73.

Resource Injection

In this chapter we'll look at how to inject some of the common JMS resource types.

73.1. IMS Resource Injection

The following JMS resources are available for injection:

 javax.jms.Connection
* javax.jms.Session

Destination-based resources:
* javax.jms.Topic
e javax.jms.Queue

73.1.1. Destination Based Injection

The qualifier @nsDesti nati on is available to decorate JNDI oriented objects. This includes
instances of j avax. j ms. Dest i nati on as well as MessageConsumers and MessageProducers.

@Inject @JmsDestination(jndiName="jms/MyTopic") Topic t;
@Inject @JmsDestination(jndiName="jms/MyQueue") Queue q;

73.1.2. Resource Configuration

You can use the @nsSession annotation when injecting j avax.jns. Session to specify
transacted and acknowledgement mode:

@Inject @JmsSession(transacted=false, acknowledgementMode=Session.CLIENT _ACKNOWLEDGE) Session s;

73.2. Module Extensions

The Seam JMS module has certain points of extension, where the application developer can
customize the behavior to match their needs. This is done by extending any of three base classes:

 org.jboss.seam.jms.inject.JmsConnectionFactoryProducer

343

Chapter 73. Resource Injection

* org.jpboss.seam.jms.inject.JmsConnectionProducer
* org.jpboss.seam.jms.inject.JmsSessionProducer

This can be done using CDI specializations and extending the base class to change the
produced object. This allows the application developer to customize the produced behavior. For
example, the base implementation assumes a Java EE container, however an extension to the
JmsConnectionFactoryProducer could bootstrap a JMS container for you or change the default
JNDI location of the Connecti onFact ory

Each producer in these classes generates an instance based on The @nsDef aul t annotation.
This object is used within other places of the API, so you can control the Session generated that
is injected into a MessageManager this way.

344

Chapter 74.

Messaging API

The Seam JMS Messaging APl is a higher level abstraction of the JMS API to provide a number
of convenient methods for creating consumers, producers, etc.

74.1. QueueBuilder and TopicBuilder

The QueueBui | der and Topi cBui | der interfaces are meant to ease the integration of JMS while
still sticking close to the base APIs. Within the single class you can work with both listeners and
send messages. References to these classes can be injected.

Some example usages.

@RequestScoped

@Named

public class FormBean {
private String formData;
@Inject QueueBuilder queueBuilder;
@Inject TopicBuilder topicBuilder;
@Resource(mappedName="jms/SomeQueue") Queue someQueue;
@Resource(mappedName="jms/SomeTopic") Topic someTopic;
@Resource(mappedName="jms/ConnectionFactory") ConnectionFactory cf;

public void sendFormDataToQueue() {
queueBuilder.connectionFactory(cf).destination(someQueue).sendString(formData);

public void sendFormDataToTopic() {
topicBuilder.connectionFactory(cf).destination(someTopic).sendString(formData);

It is strongly recommended that you proxy the injection of the builders to avoid repeating your
configuration. If you are often times connecting to the same queues/topics, you can provide your
own producer method.

public class OrderTopicProducer {
@Inject BuilderFactory factory;
@Resource(mappedName="jms/OrderTopic") Topic orderTopic;
@Resource(mappedName="jms/ConnectionFactory") ConnectionFactory cf;
@Produces @OrderTopic

345

Chapter 74. Messaging API

public TopicBuilder sendFormDataToQueue() {
return factory.newTopicBuilder().connectionFactory(cf).destination(orderTopic);

74.2. Message Manager

The MessageManager interface (org.jboss.seam jns. MessageManager) is the main
consolidated API for Seam JMS. It provides almost all of the background functionality for Seam
JMS's features (Observer Interfaces, Routing API). The default implementation works against
j avax. nami ng. Cont ext assuming running within the same local application server.

public interface MessageManager {
public ObjectMessage createObjectMessage(Object object);
public TextMessage createTextMessage(String string);
public MapMessage createMapMessage(Map<Object,Object> map);
public BytesMessage createBytesMessage(byte[] bytes);
public void sendMessage(Message message, String... destinations);
public void sendObjectToDestinations(Object object, String... destinations);
public void sendTextToDestinations(String string, String... destinations);
public void sendMapToDestinations(Map map, String... destinations);
public void sendBytesToDestinations(byte[] bytes, String... destinations);
public void sendMessage(Message message, Destination... destinations);
public void sendObjectToDestinations(Object object, Destination... destinations);
public void sendTextToDestinations(String string, Destination... destinations);
public void sendMapToDestinations(Map map, Destination... destinations);
public void sendBytesToDestinations(byte[] bytes, Destination... destinations);
public Session getSession();
public MessageProducer createMessageProducer(String destination);
public TopicPublisher createTopicPublisher(String destination);
public QueueSender createQueueSender(String destination);
public MessageConsumer createMessageConsumer(String destination, MessageL.istener... listeners);
public MessageConsumer createMessageConsumer(Destination destination, MessageL.istener... listeners);
public TopicSubscriber createTopicSubscriber(String destination, MessageListener... listeners);
public QueueReceiver createQueueReceiver(String destination, MessageListener... listeners);

The interface above defines a full set of capabilities for creating and sending messages. In
addition, we expose methods for creating producers (and A destination specific publisher and
sender) as well as consumers (and A destination specific subscriber and receiver). In addition,

346

Durable Messaging Capabilities

if injected within a session scoped object, or similar, you can define a durable subscriber and
unsubscriber for that subscriber. Below is an example.

The durable subscriber pattern works very well for session based message management. If you
want to define a durable subscriber per user session, this is the easiest way to do it.

@SessionScoped
public class UserSession {

@Inject MessageManager messageManager;

@Inject MySessionJMSListener listener;

private String clientld;

@PostConstruct

public void registerListener() {
clientld = UUID.randomUUID().toString();
messageManager.createDurableSubscriber("jms/UserTopic",clientld,listener);

}

@PreDestroy

public void shutdownListener() {
messageManager.unsubscribe(clientld);

74.3. Durable Messaging Capabilities

Seam JMS provides a Messaging API around the JMS Durable Topic Subscriber concept. In order
to use it within your code, you need to inject a DurableMessageManager.

@Inject @Durable DurableMessageManager durableMsgManager;

This implementation of MessageManager provides additional methods to first login to the
connection with a C i ent | D, additional methods to create subscribers and an unsubscribe that
can be called to unsubscribe a listener.

public void login(String clientld);

public TopicSubscriber createDurableSubscriber(String topic, String id, MessageListener... listeners);
public TopicSubscriber createDurableSubscriber(Topic topic, String id, MessageListener... listeners);
public void unsubscribe(String id);

347

Chapter 74. Messaging API

Tip

From a design pattern standpoint, it makes sense to create an Appl i cat i onScoped
object that all subscribers are created from, injecting a Dur abl eMessageManager
for use across the application, producing Sessi onScoped sessions for use by
clients.

74.4. Messagelisteners versus Message Driven Beans

One of the difficult choices we had to make was support for Message-Driven Beans. MDBs
are a little complicated in CDI as they are not managed within the CDI life cycle. This makes
integration with them a bit cumbersome. We wouldn't be able to work with a JMS Session
in these cases, as an example. As a result, Seam JMS only supports defining instances of
j avax.j ms. MessagelLi st ener. To support this, we have created a partial implementation -
org.j boss. seam j ns. Abst r act MessageLi st ener. This special MessageL.istener is designed
for bridging the external context of a JMS Message into the application you are working with. We
do this by tweaking classloaders.

The best way to work with MessageListeners is to simply instantiate your own based on our base
implementation.

/lwhere cl is the class loader, and beanManager is the BeanManager
MessageListener ml = new SessionListener(beanManager,cl,this);
messageManager.createTopicSubscriber("/jms/myTopic", ml);

Or you may define your own subclass that makes specific invocations to the parent. Here is an
example of that:

@SessionScoped
public class SessionListener extends AbstractMessageListener {
private MySessionObject mso;
public SessionListener(BeanManager beanManager, ClassLoader classLoader,
MySessionObject mso){
super(beanManager,classLoader);
this.mso = mso;

348

MessagelListeners versus Message Driven Beans

@Override
protected void handiMessage(Message msg) throws JMSException {
/lyour business logic goes here

349

350

Chapter 75.

Bridging the Gap

This chapter is designed to detail how to configure the CDI to JMS event bridge. Routing has
two sides, sending of events to JMS destinations and translating received messages from JMS
destinations back into CDI events. The sections of this chapter describe how to achieve both.

75.1. Event Routing

Simply sending or receiving a message over JMS involves a few players: Connection, Session,
Destination, and the message itself. Surely you can inject all required resources and perform the
routing yourself but that takes away from the whole reason you're using a tool in the first place!

75.1.1. Routes

Routing CDI events to and from JMS can be configured by defining a Route. As you would
normally create an observer method for an event you can define a route to control which events
get forwarded to what destination. Or conversely, what message types sent to which destinations
generate CDI events.

public interface Route {
public <D extends Destination> Route connectTo(Class<D> d, D destination);
public Route addQualifiers(Annotation... qualifiers);

Routes allows for simple mapping of event types, complete with qualifiers, to a set of destinations.
They can be configured by adding qualifiers and providing destinations they should interact with
and are created from a Rout eManager . Here's a simple route that forwards CDI events on to a
gueue:

@EventRouting public Route registerMyRoute(RouteManager routeManager)

{
Queue myQueue = lookupQueue("/jms/MyQueue");
return routeManager.createRoute(RouteType.EGRESS, MyEvent.class).connectTo(Queue.class, myQueue);

}

351

Chapter 75. Bridging the Gap

A Rout eManager is a factory object for creating new Routes. An instance of it is injected into every
@vent Rout i ng method. Classes with methods that are decorated with Event Rout i ng must meet
a few criteria items:

« A default, no arg constructor.
« Be a non bean (no dependencies on injection)

* Return either Rout e instances or Col | ect i on<Rout e> instances.

These requirements exist because of when the generation of Rout es must happen. There are
no CDI beans active within the context. A class identified for routing will automatically be veto'd
from the context.

Routes are registered by returning them from a non-bean method annotated with @vent Rout i ng:

@EventRouting public Route myConfig()

{
return bridge.createRoute(RouteType.INGRESS, MyEvent.class).addDestinationIndiName("/

jms/MyTopic");
}

75.2. Routing CDI Events to JMS

Forwarding CDI events to JMS is configured by creating an egress route. Let's say you wanted
to forward all MyEvent events with @ri dged qualifier to the queue j ns/ Event Queue. Simple,
register a route:

AnnotationLiteral<Bridged> BRIDGED = new AnnotationLiteral<Bridged>() {};
@EventRouting public Route registerMyEventRoute(RouteManager routeManager)

{
netuteManager.createRoute(Route Type. EGREEYent.class).addQualifiers(BRIDGED).addDestinationdndiName("/
jms/EventQueue");

}

75.2.1. Usage

With your routing defined you can simply fire events that match the route's payload type and
qualifiers and these events will be forwarded over JMS as object messages. A special note,

352

CDI Events from JMS Messages

we have added the qualifier @Rout i ng(Rout eType. EGRESS) . This is necessary to avoid circular
routings.

@Inject @Bridged @Routing(RouteType.EGRESS) Event<MyEvent> event;

event.fire(myEvent);

75.3. CDI Events from JMS Messages

Similar to egress routes, ingress routes are defined the same way. In this case, they listen for
messages on the specified destination(s) and fire events. All of the data will be type safe, assuming
you have defined your routes correctly.

Similar to the above example, this creates ingress routes from the Queue jms/EventQueue and
fires events based on the MyEvent objects that are carried over the wire.

AnnotationLiteral<Bridged> BRIDGED = new AnnotationLiteral<Bridged>() {};
@EventRouting public Route registerMyEventRoute(RouteManager routeManager)

{
mewteManager.createRoute(Route Type. INGREBEYent.class).addQualifiers(BRIDGED).addDestinationJndiName("/

jms/EventQueue");

}

75.3.1. Usage

Once you define an ingress route, you handle it using an observer method. We use the
same payload type and qualifiers, however we need to add the same qualifier, but for ingress
@Rout i ng(Rout eType. | NGRESS)

public void handleinboundMyEvent(@Observes @Routing(RouteType.INGRESS) MyEvent e) {

353

354

Chapter 76.

Annotation Routing APIs

This chapter is meant to describe the behavior of mapping interfaces, where event mapping to
data flowing through JMS Queues and Topics are handled via events. These APIs are an alternate
way to define routes as mentioned earlier in the document.

76.1. Observer Method Interfaces

Observer Method Interfaces are simple Plain Old Java Interfaces (POJIs) that define either a
route. These interfaces exist within your code and are read at deployment time. This is a sample
interface:

public interface Mappinglinterface {
@Inbound
public void routeStringsFromTopic(@Observes String s, @JmsDestination(jndiName="jms/
MyTopic") Topic t);

@Outbound
public void routeLongsToQueue(@Observes Long |, @JmsDestination(jndiName="jms/
MyQueue") Queue q);

publicvoidbidirectionRouteDoublesToQueue(@ObservesDoubled,@JmsDestination(jndiName="jms/
DblQueue") Queue q);

}

This interface defines three routes. The first one being an ingress route - messages coming
in to the topic jms/MyTopic will be fired as events with the type String. We indicate this
by using the @Inbound annotation or @Routing(RouteType.INGRESS). The second being an
egress route - events fired of type Long will be turned into ObjectMessages and using a
MessageProducer sent to the queue jms/MyQueue. We indicate this by using the @Outbound
annotation or @Routing(RouteType.EGRESS). The last is a bidirectional route, it defines
messages that get fired in both directions. You can leave the method unannotated or use the
@Routing(RouteType.BOTH) annotation.

The object being observed can have qualifiers. These qualifiers will be carried over in the fired
event and follow the CDI rules for observer method selection. In all cases, the return type of the
method is ignored.

The destinations can have any qualifier. In addition, there is basic support for @Resource on the
method level to define the destination. This in general not 100% portable from the application
developer perspective, we recommend heavy testing of the behavior on your application server.

355

Chapter 76. Annotation Routin...

In order to work with these routes, you raise events in CDI. In order to fire an event, first inject the
Event object into your code with necessary annotations, for any egress route. For ingress routes,
you need to define an observer method. Taking the third route as an example, here is how you
would raise events to it

@Inject @Outbound Event<Double> doubleEvent

doubleEvent.fire(d);

and this is the appropriate observer method to handle the incoming messages.

public class MyEventObserverBean {
public void sendMessage(@Observes @Inbound Double d) {
System.out.printin(d);

356

Part Xlll. Seam Validation

Chapter 77.

Introduction

The Seam Validation module aims at integrating Hibernate Validator [http://
validator.hibernate.org/], the reference implementation for the Bean Validation APl (JSR 303
[http://jcp.org/en/jsr/detail?id=303]), with CDI (JSR 299 [http://jcp.org/en/jsr/detail?id=299]).

This integration falls into two main areas:
« Enhanced dependency injection services for validators, validator factories and constraint
validators

» Automatic validation of method parameters and return values based on Hibernate Validator's
method validation feature

module home page

The remainder of this reference guide covers the following topics:

* Installation of Seam Validation
» Dependency injection services for Hibernate Validator

» Automatic method validation

359

http://validator.hibernate.org/
http://validator.hibernate.org/
http://validator.hibernate.org/
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://seamframework.org/Seam3/ValidationModule
http://seamframework.org/Seam3/ValidationModule

360

Chapter 78.

Installation

This chapter describes the steps required to getting started with the Seam Validation Module.

78.1. Prerequisites

Not very much is needed in order to use the Seam Validation Module. Just be sure to run on
JDK 5 or later, as the Bean Validation APl and therefore this Seam module are heavily based
on Java annotations.

78.2. Maven setup

The recommended way for setting up Seam Validation is using Apache Maven [http://
maven.apache.org/]. The Seam Validation Module artifacts are deployed to the JBoss Maven
repository. If not yet the case, therefore add this repository to your set ti ngs. xni file (typically in
~/ . m2/ settings. xn) in order to download the dependencies from there:

Example 78.1. Setting up the JBoss Maven repository in settings.xml

<profiles>
<profile>
<repositories>
<repository>
<id>jboss-public</id>
<url>http://repository.jboss.org/nexus/content/groups/public-jboss/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</profile>
</profiles>

<activeProfiles>
<activeProfile>jboss-public</activeProfile>
</activeProfiles>

361

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Chapter 78. Installation

General information on the JBoss Maven repository is available in the JBoss community
wiki [http://community.jboss.org/wiki/MavenGettingStarted-Users], more information on Maven's
settings. xn file can be found in the settings reference [??7].

Having set up the repository you can add the Seam Validation Module as dependency to the
pom xm of your project. As most Seam modules the validation module is split into two parts,
API and implementation. Generally you should be using only the types from the API within your
application code. In order to avoid unintended imports from the implementation it is recommended
to add the API as compile-time dependency, while the implementation should be added as runtime
dependency only:

Example 78.2. Specifying the Seam Validation Module dependencies in
pom.xml

<properties>
<seam.validation.version>x.y.z</weld.version>
</properties>

<dependencies>

<dependency>
<groupld>${project.groupld}</groupld>
<artifactld>seam-validation-api</artifactld>
<version>${seam.validation.version}</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>${project.groupld}</groupld>
<artifactld>seam-validation</artifactld>
<version>${seam.validation.version}</version>
<scope>runtime</scope>

</dependency>

</dependencies>

362

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
???
???

Manual setup

78.3. Manual setup

In case you are not working with Maven or a comparable build management tool you can also
add Seam Validation manually to you project.

Just download the latest distribution file from SourceForge [http://sourceforge.net/projects/jboss/
files/Seam/Validation/], un-zip it and add seam-validation.jar api as well as all JARs contained in
the lib folder of the distribution to the classpath of your project.

363

http://sourceforge.net/projects/jboss/files/Seam/Validation/
http://sourceforge.net/projects/jboss/files/Seam/Validation/
http://sourceforge.net/projects/jboss/files/Seam/Validation/

364

Chapter 79.

Dependency Injection

The Seam Validation module provides enhanced support for dependency injection services
related to bean validation. This support falls into two areas:

» Retrieval of j avax. val i dati on. Val i dat or Fact ory and j avax. val i dati on. Val i dat or via
dependency injection in non-Java EE environments

» Dependency injection for constraint validators
79.1. Retrieving of validator factory and validators via
dependency injection

As the Bean Validation API is part of Java EE 6 there is an out-of-the-box support for retrieving
validator factories and validators instances via dependency injection in any Java EE 6 container.

The Seam Validation module provides the same service for non-Java EE environments
such as for instance stand-alone web containers. Just annotate any field of type
javax. val i dation. Val i dat or Factory with @nj ect to have the default validator factory
injected:

Example 79.1. Injection of default validator factory

package com.mycompany;

import javax.inject.Inject;

import javax.validation.Validator;

import javax.validation.ValidatorFactory;

public class MyBean {

@Inject
private ValidatorFactory validatorFactory;

public void doSomething() {

Validator validator = validatorFactory.getValidator();
...

365

Chapter 79. Dependency Injection

describes in detail

It is also possible to directly inject a validator created by the default validator factory:

Example 79.2. Injection of a validator from the default validator factory

package com.mycompany;

import java.util.Set;

import javax.inject.Inject;

import javax.validation.ConstraintViolation;
import javax.validation.Validator;

public class MyBean {

@Inject
private Validator validator;

public void doSomething(Foo bar) {

Set<ConstraintViolation<Foo>> constraintViolations = validator.validate(bar);
/l...

79.2. Dependency injection for constraint validators

The Seam Validation module provides support for dependency injection within
javax. val i dati on. Constrai nt Val i dat or implementations. This is very useful if you need to
access other CDI beans within you constraint validator such as business services etc. In order to
make use of dependency injection within a constraint validator implementation it must be a valid
bean type as described by the CDI specification, in particular it must be defined within a bean
deployment archive.

366

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html

Dependency injection for constraint validators

Warning

Relying on dependency injection reduces portability of a validator implementation,
i.e. it won't function properly without the Seam Validation module or a similar
solution.

To make use of dependency injection in constraint validators you have to configure
org. j boss.seam val i dation. | njectingConstraintValidatorFactory as the constraint
validator factory to be used by the bean validation provider. To do so create the file META- | NF/
val i dati on. xn with the following contents:

Example 79.3. Configuration of InjectingConstraintValidatorFactory in
META-INF/validation.xml

<?xml version="1.0" encoding="UTF-8"?>
<validation-config
xmlns="http://jboss.org/xml/ns/javax/validation/configuration" xmlIns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.org/xml/ns/javax/validation/configuration validation-
configuration-1.0.xsd">

<constraint-validator-factory>
org.jboss.seam.validation.InjectingConstraintValidatorFactory

</constraint-validator-factory>

</validation-config>

Having configured the constraint validator factory you can inject arbitrary CDI beans into you
validator implementations. Listing Example 79.4, “Dependency injection within ConstraintValidator
implementation” shows a Const r ai nt Val i dat or implementation for the @ast constraint which
uses an injected time service instead of relying on the JVM's current time to determine whether
a given date is in the past or not.

Example 79.4. Dependency injection within ConstraintValidator
implementation

package com.mycompany;
import java.util.Date;

import javax.inject.Inject;

367

Chapter 79. Dependency Injection

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
import javax.validation.constraints.Past;

import com.mycompany.services.TimeService;

public class CustomPastValidator implements ConstraintValidator<Past, Date>

{

@Inject
private TimeService timeService;

@Override
public void initialize(Past constraintAnnotation)
{
}
@Override
public boolean isValid(Date value, ConstraintValidatorContext context)
{

if (value == null)

{

return true;

}

return value.before(timeService.getCurrentTime());
}

}

Hibernate Validator

Reference Guide

368

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024

Chapter 80.

Method Validation

Hibernate Validator provides several advanced validation features and related functionality which
go beyond what is defined by JSR 303 ("Bean Validation API"). One of these additional features
is a facility for the validation of method parameters and return values. With that API a style of
program design known as "Programming by Contract” can be implemented using the concepts
defined by the Bean Validation API.

This means that any Bean Validation constraints can be used to describe

e any preconditions that must be met before a method may legally be invoked (by annotating
method parameters with constraints) and

e any postconditions that are guaranteed after a method invocation returns (by annotating
methods)

To give an example listing Example 80.1, “Exemplary repository with constraint annotations”
shows a fictional repository class which retrieves customer objects for a given name. Constraint
annotations are used here to express the following pre-/postconditions:

« The value for the name parameter may not be null and must be at least three characters long

» The method may never return null and each Customer object contained in the returned set is
valid with respect to all constraints it hosts

Example 80.1. Exemplary repository with constraint annotations

@AutoValidating
public class CustomerRepository {

@NotNull @Valid Set<Customer> findCustomersByName(@NotNull @Size(min=3) String name);

Hibernate Validator itself provides only an API for validating method parameters and return values,
but it does not trigger this validation itself.

This is where Seam Validation comes into play. Seam Validation provides a so called business
method interceptor which intercepts client invocations of a method and performs a validation of
the method arguments before as well as a validation of the return value after the actual method
invocation.

To control for which types such a validation shall be performed, Seam Validation provides an
interceptor binding, @wut oVal i dat i ng. If this annotation is declared on a given type an automatic
validation of each invocation of any this type's methods will be performed.

369

Chapter 80. Method Validation

If either during the parameter or the return value validation at least one constraint violation
is detected (e.g. because findCustomersByName() from listing Example 80.1, “Exemplary
repository with constraint annotations” was invoked with a String only two characters long), a
Met hodConst r ai nt Vi ol ati onExcepti on is thrown. That way it is ensured that all parameter
constraints are fulfilled when the call flow comes to the method implementation (so it is not
necessary to perform any parameter null checks manually for instance) and all return value
constraints are fulfilled when the call flow returns to the caller of the method.

The exception thrown by Seam Validation (which would typically be written to a log file) gives a
clear overview what went wrong during method invocation:

Example 80.2. Output of MethodConstraintViolationException

org.hibernate.validator.MethodConstraintViolationException: 1 constraint violation(s) occurred
during method invocation.
Method: public java.lang.Set
com.mycompany.service.CustomerRepository.findCustomersByName(java.lang.String)
Argument values: [B]
Constraint violations:
(1) Kind: PARAMETER
parameter index: 0
message: size must be between 3 and 2147483647
root bean: com.mycompany.service.org$jboss$weld$bean-flat-ManagedBean-class_com
$mycompany$service$$CustomerRepository $$ WeldSubclass@3f72c47b
property path: CustomerRepository#findCustomersByName(arg0)
constraint:

min=3, max=2147483647, payload=[], groups=[])

To make use of Seam Validation's validation interceptor it has to be registered in your component's
beans.xml descriptor as shown in listing Example 80.3, “Registering the validation interceptor in
beans.xml™:

Example 80.3. Registering the validation interceptor in beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/
beans 1 0.xsd">

<interceptors>
<class>org.jboss.seam.validation.ValidationInterceptor</class>

370

</interceptors>
</beans>

It is recommended that you consult the Hibernate Validator reference guide [http://docs.jboss.org/
hibernate/stable/validator/reference/en-US/html/] to learn more about the method validation
feature in general or for instance the rules that apply for constraining methods in inheritance
hierarchies in particular.

371

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/

372

Part XIV. Seam Social

Introduction

Seam Social Provides CDI Beans and extensions for interacting with a number of major social
networks. Currently it provides these services and eases mixing them:

* A generic portable REST client API

» A generic API to deal with OAuth 1.0a and 2.0 services

« A generic API to work with JSON serialization and de-serialization

« A generic identification API to retrieve basic user information from a Social Service

Specific APIs for interacting with Twitter, Facebook and LinkedIn Services

» A multiservices manager API allowing to deal with multiple OAuth applications and sessions
in the same application

« An easy way to extend it by creating a new module for a new services

Seam Social is independent of CDI implementation and fully portable between Java EE 6 and
Servlet environments enhanced with CDI. It can be also used with CDI in Java SE (desktop
application).

ccelxxv

ccelxxvi

Chapter 81.

Getting Started

If you are using Maven, you need to add the Seam Social core libraries to your pom xmni :

<dependency>
<groupld>org.jboss.seam.social</groupld>
<artifactld>seam-social-api</artifactld>
<version> ${seam.social.version}</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.social</groupld>
<artifactld>seam-social</artifactld>
<version> ${seam.social.version}</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.social</groupld>
<artifactld>seam-social-twitter</artifactld>
<version> ${seam.social.version}</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.social</groupld>
<artifactld>seam-social-facebook</artifactld>
<version> ${seam.social.version}</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>org.jboss.seam.social</groupld>
<artifactld>seam-social-linkedin</artifactld>
<version> ${seam.social.version}</version>
<scope>runtime</scope>

</dependency>

377

378

Chapter 82.

Seam Social In 5 minutes

The Web example app is quite simple and gives a good idea of the possibilities with Seam Social.
The main steps you need to take to use Seam Social are:

» Declare an OAuth configuration

* Inject an QAut hSer vi ce bean

Request the Authorization URL for the service and get a request token
» Store the verifier in the OAut hSer vi ce bean and initialize the access token
» Use the service

Should you need to fully understand each step, the complete OAuth lifecycle can be found
here [https://dev.twitter.com/docs/auth/oauth] or here [https://developer.linkedin.com/documents/
authentication].

82.1. Declaring an OAuth Configuration

To consume an OAuth service you need to declare an application on the service platform (i.e. for
Twitter you can do this at https://dev.twitter.com/apps/new. The declaration of an application is
done with the @Aut hAppl i cat i on annotation which must contain at least:

« An OAuth API public key
e An OAuth API private/secret key

If you don't know what this is about, please refer to the OAuth concepts in your service
documentation.

To use an OAuth Service Bean in Seam Social you need to provide the following configuration
information by producing the right QAut hSer vi ce bean:

 Via a producer method or subclassing

« Via an XML configuration (Using Solder's bean configuration feature).
82.2. Configuration with a producer method or a bean
definition

The simplest way to configure your service is to create a producer method like so:

@OAuthApplication(apiKey = "FQzIQC49UhvbMZoxUIVHTQ", apiSecret =
"VQ5CZHG4qUoAkUUmMckPn4iN4yyjBKcORTWOwnok4r1k™)
@Twitter
@Produces

379

https://dev.twitter.com/docs/auth/oauth
https://dev.twitter.com/docs/auth/oauth
https://developer.linkedin.com/documents/authentication
https://developer.linkedin.com/documents/authentication
https://developer.linkedin.com/documents/authentication
https://dev.twitter.com/apps/new

Chapter 82. Seam Social in 5 ...

TwitterService twitterServiceProducer(TwitterService ts) {
return ts;

You can also create a bean by subclassing the implementation of the service like this:

@OAuthApplication(apiKey = "FQzIQC49UhvbMZoxUIVHTQ", apiSecret =
"VQ5CZHG4qUoAkUUmckPn4iN4yyjBKcORTWOwnok4r1k")
@Twitter

public class MyTwitterBean extends TwitterServiceJackson {

The API key and API secret are provided by the service you want to consume (here Twitter). You
can use the values above since they're coming from the "Seam Social" Twitter application. The
callback depends on your application - it's the URL that will collect the OAuth verifier.

82.3. Injecting the Service Bean into your code

You can now inject the bean with the right service qualifier:

@Named
@SessionScoped
public class mySessionBean implements Serializable {

@Inject
@Twitter
TwitterService service;

82.4. Request the OAuth authorization URL

You can now ask for the authorization URL for your service:
String authURL = service.getAuthorizationUrl();

Calling this URL will bring the user on the service connection page and right delegation for the
application. If the user gives rights to the application to use the service on their behalf the service

380

Set the verifier and initiate connection

will send you back a special code (verifier) that you must inject into the service to initiate the
connection.

82.5. Set the verifier and initiate connection

As the verifier comes back to the application after an action of the final user, you have to set up a
servlet or a JSF page (the URL of which is the callback URL you configured when you set up the
service) to catch it and add it to the current session. Here is an example with JSF:

<f:metadata>
<f.viewParam name="#{mySessionBean.twitterService.verifierParamName}"
value="#{mySessionBean.twitterService.verifier}"
required="true"
requiredMessage="Error with Twitter. Retry later"/>
<f:event type="preRenderView"
listener="#{mySessionBean.twitterService.initAccessToken()}"/>
</f:metadata>

The service is now connected - you have an access token.

82.6. Send request to the service

You can now use the service with your rights:

TwitterProfile user = twitter.getMyProfile();
String fullName = user.getFullName();

381

382

Chapter 83.

Seam Social Qualifiers and Beans

83.1. Service Qualifiers

Each OAuth Application needs a specific qualifier bearing the @ser vi ceRel at ed Meta annotation.
Out of the box Seam Social provides one default OAuth application qualifier for each social
services provides (@wi tter, @i nkedl n, @acebook). Should you need to support more than
one application for a given service, you'd have to create a new service related qualifier
(@rwi t t er MyApp for instance). Please refer to the "Extending Seam Social" section to learn more
about this. Those qualifiers will be used on all the bean attached to a given OAuth application.
They are useful to avoid ambiguous injection in the generic part of the API :

@Inject
@Twitter
OAuthService twiterService;

and

@Inject
@Facebook
OAuthService fbService;

Inject two different beans implementing the same interface (OAuthService).

83.2. Basic JSON Beans

JSON exchanges are managed by two beans:

« JsonMapper which deals with the implementation of JSON parser (Right now Jackson)

» JsonServi ce which has a higher function and uses JsonMapper to provide decoupling from
the Json parser.

83.3. Beans created by @OAuthApplication

Seam social uses the Generic bean functionality provided by Solder. Thus when you write :

@OAuthApplication(apiKey = "FQzIQC49UhvbMZoxUIVHTQ",
apiSecret = "VQ5CZHG4qUoAkUUmckPn4iN4yyjBKcORTWOwnok4r1k™)
@Twitter

383

Chapter 83. Seam Social Quali...

@Produces
TwitterService twitterServiceProducer(TwitterService ts) {
return ts;

The Generic extension creates the followings CDI beans with the same qualifier as the produced
services (@wi tt er in the example above) for you :

» OAuthService : the producer creates this first bean. It's the center of all OAuth exchange. Calling
basic function in OAuthProvider it uses Settings to initiate connection and then uses Session
information and JSon Mapper bean to transform exchange to and from object.

« OAuthServiceSettings : this bean has the same scope than the service and contains all the
configuration of the OAuth Application plus the Service Related Qualifier of the service.

« OAuthProvider : this bean has the same scope than the service. It contains all the basic function
to deal with OAuth exchange like the creation of tokens and request signatures. Its main purpose
is to deal with implementation of OAuth management library (right now Scribe).

» OAuthSession : this session scoped bean contains all the OAuth Information needed to interact
with remote service. Mainly the AccessToken.

384

Chapter 84.

Seam Social Advanced Usage

84.1. Working with Multi Service Manager

Seam Social provides a Ml ti Servi cesManager bean that can help you to manage multiple
services and sessions for one user. Without this bean you'll be able to have multiple services but
only one session for each service. The web app example application is a good starting point to
learn how to use Mul ti Ser vi cesManager bean.

84.2. Provided Modules

Right now Seam Social comes with 3 basic service modules : Twitter, Facebook and LinkedIn. For
this first Seam Social release (3.1.0), our main goal was to create a good core API for identification
so provided modules have very basic functionalities. Check the JavaDoc to learn about them.
We'll provide more functionalities and modules for the next release.

84.3. Extending Seam Social

To extend Seam Social by supporting a new service you'll have to provide the following class or
ressources :

« A Qualifier for your service bearing the @oci al Rel at ed meta annotation and the corresponding
literal. You'll also need to create a properties file having the same name than your Qualifier. All
of these should reside in the or g. j boss. seam soci al package.

« An implementation of the Qaut hService interface. Extending the QAut hServi ceBase is
probably the easiest way to get it. It's good practice to create an interface for this bean to have
an easy way to switch implementations if needed.

* A configuration bean implementing Servi ceConfi gurati on having the service qualifier.
Implements the get Ser vi ced ass() method by returning the class you created in step 2.

A model class extending UserProfile abstract class.

The Facebook module is a good example of such an extension.

385

386

Part XV. Seam Spring

Chapter 85.

Seam Spring - Introduction

The Seam Spring module aims to provide a mechanism for integrating the Spring [http://
www.springframework.org] development model with CDI [http://jcp.org/en/jsr/detail ?id=299].

85.1. Features

The current version of the module provides support for:

» bootstrapping a Spring application context and making it accessible as a CDI bean;
* registering an independently bootstrapped application context as a CDI bean;
« making Spring beans accessible via CDI (i.e. as managed beans) - for injection and lookup;

 accessing CDI beans from within a Spring application context;

389

http://www.springframework.org
http://www.springframework.org
http://www.springframework.org
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299

390

Chapter 86.

Seam Spring - Installation

86.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following
single dependency to your pom.xml file to include the Seam Spring module.

<dependency>
<groupld>org.jboss.seam.spring</groupld>
<artifactld>seam-spring-core</artifactld>
<version>${seam.spring.version}</version>
</dependency>

Tip

Substitute the expression ${seam.spring.version} with the most recent or
appropriate version of Seam Spring.

391

http://maven.apache.org/
http://maven.apache.org/

392

Chapter 87.

Seam Spring - Architecture and
Usage

The functionality of the Seam Spring module is provided by two sets of components:

« ACDI portable extension for accessing Spring application contexts and managing Spring beans;

« A FactoryBean and corresponding namespace for accessing BeanManagers and importing CDI
beans into Spring.

87.1. Accessing Spring artifacts from CDI

The Seam Spring module uses the resource producer pattern for accessing Spring contexts and
beans from within CDI. The Spring extension is responsible for producing the actual instances.
This mechanism allows the Spring beans to participate in regular CDI injection and the injection
targets to be agnostic of the provenience of the injected references, enforcing true separation
of concerns. Through this mechanisms Spring contexts can be injected as Spring beans too, if
necessary.

The resource producer pattern is used for:

 producing Spring application context instances;
* producing Spring beans;

The registration of Spring application contexts as CDI beans is a prerequisite for accessing the
Spring beans that are created by them.

87.1.1. Accessing Spring application contexts
The Seam Spring module can access two types of contexts:

» contexts created by the application (e.g. bootstrapped by Spring's Cont ext Loader Li st ener);
and

 contexts bootstrapped by the extension itself.
87.1.1.1. The @pr i ngCont ext qualifier

As a general rule, Spring Appl i cat i onCont ext instances that the extension is interacting with
are installed as CDI beans with a @pr i ngCont ext qualifier, with the following structure:

@Qualifier

@Inherited

@Documented
@Retention(RetentionPolicy.RUNTIME)

393

Chapter 87. Seam Spring - Arc...

@Target({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETERY})
public @interface SpringContext {
String name() default "default";

}

The name attribute of the context helps identifying between different ApplicationContexts, if the
extension needs to deal with multiple such instances.

Table 87.1. Attributes of @org.jboss.seam.spring.context.SpringContext

Attribute Type Significance

nane String Unique identifier for a Spring
application context bean

87.1.1.2. Producing Spring contexts

CDI applications can install Spring contexts as CDI beans by defining producer fields with the
following general pattern:

@Produces
@SpringContext
@<Context-Type>
ApplicationContext context;

This will create a CDI bean of the ApplicationContext type. The nature of the context (bootstrapped
by the extension, or looked up elsewhere) is controlled by a specific annotation. The supported
annotations are detailed in the following subsections.

Tip
& As a reminder, if the nanme attribute of the @pri ngCont ext qualifier is not set, it
will be set to 'default'.

87.1.1.2.1. Installing a web application context as a CDI bean

The Seam Spring extension can install a web application context (the application context created
by a ContextLoaderListener) by defining a producer field, as follows:

package org.jboss.seam.spring.test.bootstrap;

import javax.enterprise.context.ApplicationScoped,;
import javax.enterprise.inject.Produces;

394

Accessing Spring application contexts

import org.jboss.seam.spring.context.SpringContext;
import org.jboss.seam.spring.context.Web;
import org.springframework.context.ApplicationContext;

public class WebContextProducer {

@Produces
@SpringContext

@Web

ApplicationContext context;

° Note

The example above will work only in a web application with a Spring application
context boostrapped by a ContextLoaderListener.

The @rg.j boss. seam spri ng. cont ext. Wb annotation must be placed only on the producer
field for the Appl i cati onCont ext, and it will register a producer that looks up the parent web
Appl i cati onCont ext .

87.1.1.2.2. Installing a custom-configured Spring application context

The Seam Spring extension can create a Spring application ad-hoc and install it as a Spring
context as follows:

package org.jboss.seam.spring.test.bootstrap;
import javax.enterprise.inject.Produces;

import org.jpboss.seam.spring.context.Configuration;
import org.jpboss.seam.spring.bocontextpringContext;
import org.springframework.context.ApplicationContext;

public class ConfigurationContextProducer {

@Produces
@SpringContext
@Configuration(locations = "classpath*:org/jboss/seam/spring/test/bootstrap/
applicationContext.xml")
ApplicationContext context;

395

Chapter 87. Seam Spring - Arc...

The @rg.j boss. seam spring. cont ext. Confi gurati on annotation must be placed only on
the producer field of the Appl i cati onCont ext, and it will register a producer that creates an
Appl i cati onCont ext from the files in the locations attribute of the annotation.

The attributes supported by @org.jboss.seam.spring.bootstrap.Configuration are listed in the
following table:

Table 87.2. Attributes of the @org.jboss.seam.spring.context.Configuration

Attribute Type Significance

| ocations String Comma-separated list of
file locations. Observes the
conventions regarding the
‘classpath:’, 'classpath*:' and
'file:' prefixes of Spring

87.1.1.3. Implicit Spring context bootstrapping

The producer fields provide a convenient and accesible way of registering a Spring
ApplicationContext, especially for looking up contexts created externally (although direct bootstrap
is supported as well). A number of Spring ApplicationContexts can also be created by the
extension itself.

This can be done by creating a file nhamed /META-INF/org.jboss.seam.spring.contexts which
contains a number of key-value pairs, with the keys representing context names and values
representing context locations, as follows:

default=classpath*:org/jboss/seam/spring/test/bootstrap/applicationContext.xml

° Note

The extension supports the registration of multiple application contexts.

An important feature of Spring context bootstrapping is that Spring beans will be automatically
vetoed as CDI beans.

The main difference between implicit bootstrapping and producer-field based bootstrapping is that
implicit bootstrapping creates the Spring context during CDI deployment and explicit bootstrapping
creates a Spring context after deployment. As such, implicit deployment can do various tasks such
as auto-vetoing Spring beans and preventing them to be deployed as CDI beans.

396

Exposing Spring beans as CDI beans

87.1.2. Exposing Spring beans as CDI beans

Spring beans can be added as CDI beans explicitly, using a producer field. In order to do so, a
Spring ApplicationContext must be registered if they are created by one of the CDI-accessible
Spring contexts, as shown in the previous section. This can be done by producer fields and the
@SpringBean annotation, as in the following example:

public class SimpleBeanProducer {
@Produces @SpringBean(fromContext = "context2") SimpleBean simpleBean;

@Produces @SpringBean ComplicatedBean complicatedBean;

The result is that two CDI beans are available for injection and lookup: one based on the
SimpleBean Spring bean defined in the Spring context registered as 'context2' and the other,
based on the ComplicatedBean defined in the Spring context registered as ‘default'.

87.2. Importing CDI beans into Spring applications

The Seam Spring module also supports the registration of CDI beans as Spring beans as well.
Once CDI beans are imported into a Spring ApplicationContext, they can be injected as regular
Spring beans, either via XML or by annotations.

This can be done by using the dedicated CDI namespace, which can be defined as in the following
example:

<beans xmlIns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cdi="http://www.jboss.org/schema/seam/spring"
xsi:schemalocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
http://www.jboss.org/schema/seam/spring http://www.jboss.org/schema/seam/spring/seam-
spring.xsd">

<l-- bean definitions -->

</beans>

87.2.1. Registering a BeanManager

Spring applications can get access to a BeanManager through the following bean definition.

397

Chapter 87. Seam Spring - Arc...

<cdi:bean-manager/>

The bean has the id 'beanManager' by default.

87.2.2. Importing a CDI bean as a Spring bean

A CDI bean can be imported as a Spring bean by using a namespace element as follows:

<cdi:bean-reference id="cdiBean" type="org.jboss.seam.spring.test.injection.CdiBean"/>

A CDI bean with qualfiers can be imported as follows:

<cdi:bean-

reference id="secondCdiBean" type="org.jboss.seam.spring.test.injection.SecondCdiBean">
<cdi:qualifier type="org.jboss.seam.spring.test.injection.CdiQualifier"/>

</cdi:bean-reference>

If the qualifiers have attributes, the bean can be imported as follows:

<cdi:bean-
reference id="thirdCdiBean" type="org.jboss.seam.spring.test.injection.ThirdCdiBean">
<cdi:qualifier type="org.jboss.seam.spring.test.injection.CdiQualifierWithAttributes">
<cdi:attribute name="name" value="myBean'"/>
</cdi:qualifier>
</cdi:bean-reference>

The conversion from String to the actual type of the attribute is handled by Spring's
ConversionService.

CDI beans are imported as prototype-scoped Spring beans, which means that a new reference
is acquired every time the bean is injected into a Spring bean. This is done in order to preserve
the original scope of the CDI bean.

398

Part XVI. Seam Wicket

Introduction

The goal of Seam for Apache Wicket is to provide a fully integrated CDI programming model
to the Apache Wicket web framework. Although Apache components (pages, panels, buttons,
etc.) are created by direct construction using "new", and therefore are not themselves CDI
contextual instances, with seam-wicket they can receive injections of scoped contextual instances
via @ nj ect . In addition, conversation propagation is supported to allow a conversation scope to
be tied to a wicket page and propagated across pages.

cdi

cdii

Chapter 88.

Installation

The seam wi cket . j ar should be placed in the web application library folder. If you are using
Maven [http://maven.apache.org/] as your build tool, you can add the following dependency to
your pom xni file:

<dependency>
<groupld>org.jboss.seam.wicket</groupld>
<artifactld>seam-wicket</artifactld>
<version>${seam-wicket-version}</version>
</dependency>

Tip

Replace ${ seam wi cket - ver si on} with the most recent or appropriate version of
Seam for Apache Wicket.

As Wicket is normally used in a servlet (non-JavaEE) environment, you most likely will need to
bootstrap the CDI container yourself. This is most easily accomplished using the Weld Servlet
integration, described in the Weld Reference Guide [http://docs.jboss.org/weld/reference/latest/
en-US/html/environments.html].

You must extend org. j boss. seam wi cket. SeamAppl i cati on rather than
or g. apache. wi cket . prot ocol . ht t p. WebAppl i cat i on. In addition:

« if you override newRequest Cycl eProcessor () to return your own | Request Cycl ePr ocessor
subclass, you must instead override get WebRequest Cycl eProcessor O ass() and return the
class of your processor, and your processor must extend SeamibRequest Cycl ePr ocessor .

« if you override newRequest Cycl e to return your own Request Cycl e subclass, you must make
that subclass extend SeanRequest Cycl e.

If you can't extend SeamPpplication, for example if you use an alternate Application
superclass for which you do not control the source, you can duplicate the
three steps SeamApplication takes, i.e. return a Seam/ebRequest Cycl eProcessor
NonContextual instance in newRequest Cycl eProcessor (), return a SeanRequestCycle
instance in newRequest Cycl e(), and add a SeanConponent | nstanti ati onLi stener with

addConponent I nstanti ati onLi st ener ().

403

http://maven.apache.org/
http://maven.apache.org/
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html

404

Chapter 89.

Seam for Apache Wicket Features

Seam's integration with Wicket is focused on two tasks: conversation propagation through Wicket
page metadata and contextual injection of Wicket components.

89.1. Injection

Any object that extends or g. apache. wi cket . Conponent or one of its subclasses is eligible for
injection with CDI beans. This is accomplished by annotating fields of the component with the
@ avax. i nj ect. | nj ect annotation:

public class MyPage extends WebPage {
@Inject SomeDependency dependency;

public MyPage()
{
depedency.doSomeWork();

}

Note that since Wicket components must be serializable, any non-transient field of a Wicket
component must be serializable. In the case of injected dependencies, the injected object itself
will be serializable if the scope of the dependency is hot @ependent , because the object injected
will be a serializable proxy, as required by the CDI specification. For injections of non-serializable
@ependent objects, the field should be marked transient and the injection should be looked up
again in a component-specific attach() override, using the BeanManager API.

Upon startup, the CDI container will examine your component classes to ensure that the injections
you use are resolvable and unambiguous, as per the CDI specification. If any injections fail this
check, your application will fail to bootstrap.

The scopes available are similar to those in a JSF application, and are described by the CDI
specification. The container, in a Java EE environment, or the Servlet listeners, in a Servlet
environment, will set up the application, session, and request scopes. The conversation scope is
set up by the SeambRequest Cycl e as outlined in the next two sections.

89.2. Conversation Control

Application conversation control is accomplished as per the CDI specification. By default, like
JSF/CDI, each Wicket HTTP request (whether AJAX or not) has a transient conversation, which
is destroyed at the end of the request. A conversation is marked long-running by injecting the
j avax. ent erpri se. cont ext . Conver sat i on bean and calling its begi n() method.

public class MyPage extends WebPage {

405

Chapter 89. Seam for Apache W...

@Inject Conversation conversation;

public MyPage()

{
conversation.begin();
/Iset up components here

}

Similarly, a conversation is ended with the Conver sati on bean's end() method.

89.3. Conversation Propagation

A transient conversation is created when the first Wicket | Request Tar get is set during a request.
If the request target is an | PageRequest Target for a page which has previously marked a
conversation as non-transient, or if the cid parameter is present in the request, the specified
conversation will be activated. If the conversation is missing (i.e. has timed out and been
destroyed), SeanRequest Cycl e. handl eM ssi ngConver sati on() will be invoked. By default this
does nothing, and your conversation will be new and transient. You can however override this, for
example to throw a PageExpi r edExcept i on or something similar. Upon the end of a response,
SeanRequest Cycl ePr ocessor will store the cid of a long running conversation, if one exists, to the
current page's metadata map, if there is a current page. The key for the cid in the metadata map is
the singleton Seam\et abDat a. Cl D. Finally, upon det ach() , the SeanRequest Cycl e will invalidate
and deactive the conversation context.

Note that the above process indicates that after a conversation is marked long-running
by a page, requests made back to that page (whether AJAX or not) will activate that
conversation. It also means that new Page objects assigned as a Request Tar get , whether directly
via set ResponsePage(sonePagel nstance) or with setResponsePage(SonePage. cl ass,
pagePar aret er s) , will have the conversation propagated to them. This can be avoided by:

1. ending the conversation before the call to setResponsePage,

2. using a BookmarkablePageLink rather than directly instantiating the response page, or

3. specifying an empty cid parameter in PagePar anet er s when using set ResponsePage() .

Note

j=do

The final case also provides a mechanism for switching conversations: if a cid is
specified in PagePar anet er s, it will be used by bookmarkable pages, rather than
the current conversation.

406

	Seam Documentation
	Table of Contents
	Chapter 1. Credits
	1.1. List of contributors
	1.2. Would you like to contribute?

	Chapter 2. Seam
	2.1. Overview
	2.2. Seam Bill of Materials

	Part I. Solder
	Introduction
	Chapter 3. Getting Started
	3.1. Maven dependency configuration
	3.2. Transitive dependencies
	3.3. Pre-Servlet 3.0 configuration

	Chapter 4. Enhancements to the CDI Programming Model
	4.1. Preventing a class from being processed
	4.1.1. @Veto
	4.1.2. @Requires

	4.2. @Exact
	4.3. @Client
	4.4. Named packages
	4.5. @FullyQualified bean names

	Chapter 5. Annotation Literals
	Chapter 6. Evaluating Unified EL
	6.1. @Resolver

	Chapter 7. Injecting Resources and System Properties
	7.1. Resource Loading
	7.1.1. Extending the Resource Loader

	7.2. System Properties

	Chapter 8. Logging, redesigned
	8.1. JBoss Logging: The foundation
	8.2. Solder Logging: Feature set
	8.3. Typed loggers
	8.4. Native logger API
	8.5. Typed message bundles
	8.6. Implementation classes
	8.6.1. Generating the implementation classes
	8.6.2. Including the implementation classes in Arquillian tests

	Chapter 9. Annotation and AnnotatedType Utilities
	9.1. Annotated Type Builder
	9.2. Annotation Instance Provider
	9.3. Annotation Inspector
	9.4. Synthetic Qualifiers
	9.5. Reflection Utilities

	Chapter 10. Obtaining a reference to the BeanManager
	Chapter 11. Bean Utilities
	Chapter 12. Property Utilities
	12.1. Working with properties
	12.2. Querying for properties
	12.3. Property Criteria
	12.3.1. AnnotatedPropertyCriteria
	12.3.2. NamedPropertyCriteria
	12.3.3. TypedPropertyCriteria
	12.3.4. Creating a custom property criteria

	12.4. Fetching the results

	Chapter 13. Unwrapping Producer Methods
	Chapter 14. Default Beans
	Chapter 15. Generic Beans
	15.1. Using generic beans
	15.2. Defining Generic Beans

	Chapter 16. Service Handler
	Chapter 17. XML Configuration Introduction
	17.1. Getting Started
	17.2. The Princess Rescue Example

	Chapter 18. Solder Config XML provider
	18.1. XML Namespaces
	18.2. Adding, replacing and modifying beans
	18.3. Applying annotations using XML
	18.4. Configuring Fields
	18.4.1. Initial Field Values
	18.4.2. Inline Bean Declarations

	18.5. Configuring methods
	18.6. Configuring the bean constructor
	18.7. Overriding the type of an injection point
	18.8. Configuring Meta Annotations
	18.9. Virtual Producer Fields
	18.10. More Information

	Introduction
	Chapter 19. Installation
	19.1. Pre-Servlet 3.0 configuration

	Chapter 20. Servlet event propagation
	20.1. Servlet context lifecycle events
	20.2. Application initialization
	20.3. Servlet request lifecycle events
	20.4. Servlet response lifecycle events
	20.5. Servlet request context lifecycle events
	20.6. Session lifecycle events
	20.7. Session activation events

	Chapter 21. Injectable Servlet objects and request state
	21.1. @Inject @RequestParam
	21.2. @Inject @HeaderParam
	21.3. @Inject ServletContext
	21.4. @Inject ServletRequest / HttpServletRequest
	21.5. @Inject ServletResponse / HttpServletResponse
	21.6. @Inject HttpSession
	21.7. @Inject HttpSessionStatus
	21.8. @Inject @ContextPath
	21.9. @Inject List<Cookie>
	21.10. @Inject @CookieParam
	21.11. @Inject @ServerInfo
	21.12. @Inject @Principal

	Chapter 22. Servlet Exception Handling Integration
	22.1. Background
	22.2. Defining a exception handler for a web request

	Chapter 23. Retrieving the BeanManager from the servlet context
	Chapter 24. Loading web resources without ServletContext
	Chapter 25. Exception Handling - Introduction
	25.1. How Solder's Exception Handling Works

	Chapter 26. Exception Handling - Usage
	26.1. Eventing into the exception handling framework
	26.1.1. Manual firing of the event
	26.1.2. Using the @ExceptionHandled Interceptor

	26.2. Exception handlers
	26.3. Exception handler annotations
	26.3.1. @HandlesExceptions
	26.3.2. @Handles

	26.4. Exception chain processing
	26.5. Exception handler ordering
	26.5.1. Traversal of exception type hierarchy
	26.5.2. Handler precedence

	26.6. APIs for exception information and flow control
	26.6.1. CaughtException
	26.6.2. ExceptionStack

	Chapter 27. Exception handling - Advanced Features
	27.1. Exception Modification
	27.1.1. Introduction
	27.1.2. Usage

	27.2. Filtering Stack Traces
	27.2.1. Introduction
	27.2.2. ExceptionStackOutput
	27.2.3. StackFrameFilter
	27.2.4. StackFrameFilterResult
	27.2.5. StackFrame

	Chapter 28. Exception Handling - Framework Integration
	28.1. Creating and Firing an ExceptionToCatch event
	28.2. Default Handlers and Qualifiers
	28.2.1. Default Handlers
	28.2.2. Qualifiers

	28.3. Supporting ServiceHandlers
	28.4. Programmatic Handler Registration

	Exception Handling - Glossary

	Part II. Seam Persistence
	Chapter 29. Seam Persistence Reference
	29.1. Introduction
	29.2. Getting Started
	29.3. Seam-managed persistence contexts
	29.3.1. Using a Seam-managed persistence context with JPA
	29.3.2. Seam-managed persistence contexts and atomic conversations
	29.3.3. Using EL in EJB-QL/HQL
	29.3.4. Setting up the EntityManager

	Part III. Seam Transaction
	Chapter 30. Seam Transaction Reference
	30.1. Introduction
	30.2. Transaction Management
	30.2.1. Configuration
	30.2.2. Declarative Transaction Management
	30.2.3. ServletRequestListener

	Part IV. Seam Security
	Chapter 31. Security - Introduction
	31.1. Overview
	31.1.1. Authentication
	31.1.2. Identity Management
	31.1.3. External Authentication
	31.1.4. Authorization

	31.2. Configuration
	31.2.1. Maven Dependencies
	31.2.2. Enabling the Security Interceptor

	Chapter 32. Security - Authentication
	32.1. Basic Concepts
	32.2. Built-in Authenticators
	32.3. Which Authenticator will Seam use?
	32.4. Writing a custom Authenticator

	Chapter 33. Security - Identity Management
	33.1. Overview
	33.2. Configuring Seam to use Identity Management with JPA
	33.2.1. Recommended database schema
	33.2.2. The @IdentityEntity and @IdentityProperty annotations
	33.2.3. Identity Object
	33.2.4. Credential
	33.2.5. Identity Object Relationship
	33.2.6. Attributes

	33.3. Managing Users, Groups and Roles
	33.3.1. Managing Users and Groups
	33.3.2. Managing Relationships
	33.3.3. Managing Roles

	Chapter 34. Security - External Authentication
	34.1. Introduction
	34.1.1. Configuration

	34.2. OpenID
	34.2.1. Overview
	34.2.2. Enabling OpenID for your application
	34.2.2.1. Using OpenID as your only authentication method
	34.2.2.2. Using OpenID as one of many possible authentication methods

	34.2.3. Choosing which OpenID provider to use
	34.2.3.1. Using a custom OpenID provider

	34.2.4. Managing the OpenID authentication process

	Chapter 35. Security - Authorization
	35.1. Configuration
	35.2. Basic Concepts
	35.2.1. IdentityType
	35.2.2. User
	35.2.3. Group
	35.2.4. Role
	35.2.5. RoleType

	35.3. Role and Group-based authorization
	35.4. Typesafe authorization
	35.4.1. Creating a typesafe security binding
	35.4.2. Creating an authorizer method
	35.4.3. Applying the binding to your business methods
	35.4.4. Built-in security binding annotations

	Chapter 36. Security - Events
	36.1. Introduction
	36.2. Event list
	36.3. Usage Example

	Part V. Seam International
	Introduction
	Chapter 37. Installation
	Chapter 38. Locales
	38.1. Application Locale
	38.2. User Locale
	38.3. Available Locales

	Chapter 39. Timezones
	39.1. Joda Time
	39.2. Application TimeZone
	39.3. User TimeZone
	39.4. Available TimeZones

	Chapter 40. Messages
	40.1. Message Creation
	40.2. Properties Files

	Part VI. Seam Faces
	Introduction
	Chapter 41. Installation
	41.1. Maven dependency configuration
	41.2. Pre-Servlet 3.0 configuration
	41.3. How to setup JSF in a Java EE 6 webapp

	Chapter 42. Faces Scoping Support
	42.1. @RenderScoped
	42.2. @Inject javax.faces.context.Flash flash
	42.3. @ViewScoped

	Chapter 43. Messages API
	43.1. Adding Messages
	43.2. Displaying pending messages

	Chapter 44. Locale
	Chapter 45. Seam Faces Components
	45.1. Introduction
	45.2. <s:validateForm>
	45.3. <s:viewAction>
	45.3.1. Motivation
	45.3.2. Usage
	45.3.3. View actions vs the PreRenderViewEvent

	45.4. ObjectConverter
	45.5. UI Input Container

	Chapter 46. Faces Artifact Injection
	46.1. @*Scoped and @Inject in Validators and Converters
	46.2. @Inject'able Faces Artifacts

	Chapter 47. Faces Events Propagation
	47.1. JSF Phase events
	47.1.1. Seam Faces Phase events
	47.1.2. Phase events listing

	47.2. JSF system events
	47.2.1. Seam Faces System events
	47.2.2. System events listing
	47.2.3. Component system events

	Chapter 48. Project Stage Support
	48.1. Project Stage Injection
	48.2. Restricting Bean Activation

	Chapter 49. Faces View Configuration
	49.1. Configuration With Annotated Enums
	49.2. Configuring View Restrictions
	49.2.1. Writing Seam security Annotations
	49.2.2. Applying the Security Restrictions
	49.2.3. Changing the Restriction Phases

	49.3. Configuring URL Rewriting
	49.4. Configuring "faces-redirect"

	Part VII. Seam Reports
	Introduction
	Chapter 50. Installation
	50.1. Installation using Seam Forge
	50.1.1. Plugin Installation
	50.1.2. Plugin Configuration

	Chapter 51. Usage
	51.1. Quick Start
	51.2. Annotations
	51.3. Troubleshooting

	Part VIII. Seam Mail
	Chapter 52. Seam Mail Introduction
	52.1. Getting Started

	Chapter 53. Configuration
	53.1. Minimal Configuration

	Chapter 54. Core Usage
	54.1. Intro
	54.2. Contacts
	54.2.1. String Based
	54.2.2. InternetAddress
	54.2.3. EmailContact
	54.2.4. Content
	54.2.5. Attachments

	Chapter 55. Templating
	55.1. Velocity
	55.2. Freemarker

	Chapter 56. Advanced Features
	56.1. MailTransporter
	56.2. MailConfig

	Part IX. Seam Remoting
	Chapter 57. Seam Remoting - Basic Features
	57.1. Configuration
	57.1.1. Dynamic type loading

	57.2. The "Seam" object
	57.2.1. A Hello World example
	57.2.2. Seam.createBean

	57.3. The Context
	57.3.1. Setting and reading the Conversation ID
	57.3.2. Remote calls within the current conversation scope

	57.4. Working with Data types
	57.4.1. Primitives / Basic Types
	57.4.1.1. String
	57.4.1.2. Number
	57.4.1.3. Boolean

	57.4.2. JavaBeans
	57.4.3. Dates and Times
	57.4.4. Enums
	57.4.5. Collections
	57.4.5.1. Bags
	57.4.5.2. Maps

	57.5. Debugging
	57.6. Messages
	57.7. Handling Exceptions
	57.8. The Loading Message
	57.8.1. Changing the message
	57.8.2. Hiding the loading message
	57.8.3. A Custom Loading Indicator

	57.9. Controlling what data is returned
	57.9.1. Constraining normal fields
	57.9.2. Constraining Maps and Collections
	57.9.3. Constraining objects of a specific type
	57.9.4. Combining Constraints

	Chapter 58. Seam Remoting - Model API
	58.1. Introduction
	58.2. Model Operations
	58.3. Fetching a model
	58.3.1. Fetching a bean value

	58.4. Modifying model values
	58.5. Expanding a model
	58.6. Applying Changes

	Chapter 59. Seam Remoting - Bean Validation
	59.1. Validating a single object
	59.2. Validating a single property
	59.3. Validating multiple objects and/or properties
	59.4. Validation groups
	59.5. Handling validation failures

	Part X. Seam REST
	Introduction
	Chapter 60. Installation
	60.1. Basics
	60.2. Transitive dependencies
	60.3. Registering JAX-RS components explicitly
	60.4. Servlet container support

	Chapter 61. Exception Handling
	61.1. Solder Exception Handling Integration
	61.2. Declarative Exception Mapping
	61.2.1. Annotation-based configuration
	61.2.2. XML configuration
	61.2.3. Declarative exception mapping processing

	Chapter 62. Bean Validation Integration
	62.1. Validating HTTP requests
	62.1.1. Validating entity body
	62.1.2. Validating resource fields
	62.1.3. Validating other method parameters

	62.2. Validation configuration
	62.3. Using validation groups

	Chapter 63. Templating support
	63.1. Creating JAX-RS responses using templates
	63.1.1. Accessing the model

	63.2. Built-in support for templating engines
	63.2.1. FreeMarker
	63.2.2. Apache Velocity
	63.2.3. Pluggable support for templating engines
	63.2.4. Selecting preferred templating engine

	Chapter 64. RESTEasy Client Framework Integration
	64.1. Using RESTEasy Client Framework with Seam REST
	64.2. Manual ClientRequest API
	64.3. Client Executor Configuration

	Chapter 65. Seam REST Dependencies
	65.1. Transitive Dependencies
	65.2. Optional dependencies
	65.2.1. FreeMarker
	65.2.2. Apache Velocity
	65.2.3. RESTEasy

	Part XI. Seam JCR
	Chapter 66. Seam JCR - Introduction
	66.1. Introduction
	66.2. Maven dependency configuration

	Chapter 67. Seam JCR - JBoss ModeShape Integration
	67.1. ModeShape Integration Installation
	67.2. Usage

	Chapter 68. Seam JCR - JackRabbit Integration
	68.1. JackRabbit Integration Installation
	68.2. Usage

	Chapter 69. Seam JCR - Event Mapping
	69.1. Introduction to Event Mapping
	69.2. Observing JMS events

	Chapter 70. Seam JCR - Object Content Mapping
	70.1. What is Object Content Mapping?
	70.2. Mapping and Conversion Capabilities
	70.3. JCR Data Access Objects

	Part XII. Seam JMS
	Chapter 71. Introduction
	71.1. Mission statement
	71.2. Seam 3 JMS Module Overview

	Chapter 72. Installation
	Chapter 73. Resource Injection
	73.1. JMS Resource Injection
	73.1.1. Destination Based Injection
	73.1.2. Resource Configuration

	73.2. Module Extensions

	Chapter 74. Messaging API
	74.1. QueueBuilder and TopicBuilder
	74.2. Message Manager
	74.3. Durable Messaging Capabilities
	74.4. MessageListeners versus Message Driven Beans

	Chapter 75. Bridging the Gap
	75.1. Event Routing
	75.1.1. Routes

	75.2. Routing CDI Events to JMS
	75.2.1. Usage

	75.3. CDI Events from JMS Messages
	75.3.1. Usage

	Chapter 76. Annotation Routing APIs
	76.1. Observer Method Interfaces

	Part XIII. Seam Validation
	Chapter 77. Introduction
	Chapter 78. Installation
	78.1. Prerequisites
	78.2. Maven setup
	78.3. Manual setup

	Chapter 79. Dependency Injection
	79.1. Retrieving of validator factory and validators via dependency injection
	79.2. Dependency injection for constraint validators

	Chapter 80. Method Validation

	Part XIV. Seam Social
	Introduction
	Chapter 81. Getting Started
	Chapter 82. Seam Social in 5 minutes
	82.1. Declaring an OAuth Configuration
	82.2. Configuration with a producer method or a bean definition
	82.3. Injecting the Service Bean into your code
	82.4. Request the OAuth authorization URL
	82.5. Set the verifier and initiate connection
	82.6. Send request to the service

	Chapter 83. Seam Social Qualifiers and Beans
	83.1. Service Qualifiers
	83.2. Basic JSON Beans
	83.3. Beans created by @OAuthApplication

	Chapter 84. Seam Social Advanced Usage
	84.1. Working with Multi Service Manager
	84.2. Provided Modules
	84.3. Extending Seam Social

	Part XV. Seam Spring
	Chapter 85. Seam Spring - Introduction
	85.1. Features

	Chapter 86. Seam Spring - Installation
	86.1. Maven dependency configuration

	Chapter 87. Seam Spring - Architecture and Usage
	87.1. Accessing Spring artifacts from CDI
	87.1.1. Accessing Spring application contexts
	87.1.1.1. The @SpringContext qualifier
	87.1.1.2. Producing Spring contexts
	87.1.1.2.1. Installing a web application context as a CDI bean
	87.1.1.2.2. Installing a custom-configured Spring application context

	87.1.1.3. Implicit Spring context bootstrapping

	87.1.2. Exposing Spring beans as CDI beans

	87.2. Importing CDI beans into Spring applications
	87.2.1. Registering a BeanManager
	87.2.2. Importing a CDI bean as a Spring bean

	Part XVI. Seam Wicket
	Introduction
	Chapter 88. Installation
	Chapter 89. Seam for Apache Wicket Features
	89.1. Injection
	89.2. Conversation Control
	89.3. Conversation Propagation

