
Seam Catch

Jason Porter

Dan Allen

iii

1. Introduction ... 1

2. Installation ... 3

2.1. Maven dependency configuration ... 3

3. Usage ... 5

3.1. Exception handlers ... 5

3.2. Exception handler annotations ... 5

3.2.1. @HandlesExceptions ... 5

3.2.2. @Handles .. 6

3.3. Exception stack trace processing ... 8

3.4. Exception handler ordering .. 8

3.4.1. Traversal of exception type hierarchy .. 9

3.4.2. Handler precendence ... 10

3.5. APIs for exception information and flow control ... 11

3.5.1. CaughtException .. 11

3.5.2. ExceptionStack .. 12

4. Framework Integration ... 13

4.1. Creating and Firing an ExceptionToCatch event .. 13

4.2. Default Handlers and Qualifiers ... 13

4.2.1. Default Handlers .. 13

4.2.2. Qualifiers ... 13

4.3. Supporting ServiceHandlers ... 14

iv

Chapter 1.

1

Introduction
Exceptions are a fact of life. As developers, we need to be prepared to deal with them in the most

graceful manner possible. Seam Catch provides a simple, yet robust foundation for modules and/

or applications to establish a customized exception handling process. By employing a delegation

model, Catchs allow exceptions to be addressed in a centralized, extensible and uniform manner.

Catch is first notified of an exception to be handled via a CDI event. This event is fired either

by the application or a Catch integration. Catch then hands the exception off to a chain of

registered handlers, which deal with the exception appropriately. The use of CDI events to connect

exceptions to handlers makes this strategy of exception handling non-invasive and minimally

coupled to Catch's infrastructure.

The exception handling process remains mostly transparent to the developer. In some cases,

you register an exception handler simply by annotating a handler method. Alternatively, you can

handle an exception programmatically, just as you would observe an event in CDI.

In this guide, we'll explore the various options you have for handling exceptions using Catch, as

well as how framework authors can offer Catch integration.

2

Chapter 2.

3

Installation
To use the Seam Catch module, you need to add the Seam Catch API to your project as a compile-

time dependency. At runtime, you'll also need the Seam Catch implementation, which you either

specify explicitly or through a transitive dependency of another module that depends on it (as part

of exposing its own Catch integration).

First, check your application's library dependencies to see whether Seam Catch is already being

included by another module (such as Seam Servlet). If not, you'll need to setup the dependencies

as described below.

2.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam Catch:

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch</artifactId>

 <version>${seam.catch.version}</version>

</dependency>

Tip

Substitute the expression ${seam.catch.version} with the most recent or

appropriate version of Seam Catch. Alternatively, you can create a Maven user-

defined property to satisfy this substitution so you can centrally manage the

version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-api</artifactId>

 <version>${seam.catch.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

http://maven.apache.org/
http://maven.apache.org/

Chapter 2. Installation

4

 <artifactId>seam-catch-impl</artifactId>

 <version>${seam.catch.version}</version>

 <scope>runtime</scope>

</dependency>

Now you're ready to start catching exceptions!

Chapter 3.

5

Usage

3.1. Exception handlers

As an application developer (i.e., an end user of Catch), you'll be focused on writing exception

handlers. An exception handler is a method on a CDI bean that is invoked to handle a specific type

of exception. Within that method, you can implement any logic necessary to handle or respond

to the exception.

Given that exception handler beans are CDI beans, they can make use of dependency injection,

be scoped, have interceptors or decorators and any other functionality available to CDI beans.

Exception handler methods are designed to follow the syntax and semantics of CDI observers,

with some special purpose exceptions explained in this guide. The advantage of this design is that

exception handlers will be immediately familiar to you if you are studying or well-versed in CDI.

In this chapter, you'll learn how to define an exception handler and explore how and when it gets

invoked. We'll begin by covering the two annotations that are used to declare an exception handler,

@HandlesExceptions and@Handles.

3.2. Exception handler annotations

Exception handlers are contained within exception handler beans, which are CDI beans annotated

with @HandlesExceptions. Exception handlers are methods which have a parameter which is an

instance of CaughtException<T extends Throwable> annotated with the @Handles annotation.

3.2.1. @HandlesExceptions

The @HandlesException annotation is simply a marker annotation that instructs the Seam Catch

CDI extension to scan the bean for handler methods.

Let's designate a CDI bean as an exception handler by annotating it with @HandlesException.

@HandlesExceptions

public class MyHandlers {}

That's all there is to it. Now we can begin defining exception handling methods on this bean.

Note
The @HandlesExceptions annotation may be deprecated in favor of annotation

indexing done bySeam Solder.

Chapter 3. Usage

6

3.2.2. @Handles

@Handles is a method parameter annotation that designates a method as an exception handler.

Exception handler methods are registered on beans annotated with @HandlesExceptions. Catch

will discover all such methods at deployment time.

Let's look at an example. The following method is invoked for every exception that Catch

processes and prints the exception message to stout. (Throwable is the base exception type in

Java and thus represents all exceptions).

@HandlesExceptions

public class MyHandlers

{

 void printExceptions(@Handles CaughtException<Throwable> evt)

 {

 System.out.println("Something bad happened: " +

 evt.getException().getMessage());

 evt.proceed();

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

The @Handles annotation on the first parameter designates this method as an exception

handler (though it is not required to be the first parameter). This parameter must be of

typeCaughtException<T extends Throwable>, otherwise it's detected as a definition error.

The type parameter designates which exception the method should handle. This method is

notified of all exceptions (requested by the base exception type Throwable).

The CaughtException instance provides access to information about the exception and can

be used to control exception handling flow. In this case, it's used to read the current exception

being handled in the exception stack trace, as returned by getException().

This handler does not modify the invocation of subsequent handlers, as designated by

invoking proceed() on CaughtException. As this is the default behavior, this line could be

omitted.

The @Handles annotation must be placed on a parameter of the method, which must be of

typeCaughtException<T extends Throwable>. Handler methods are similar to CDI observers

and, as such, follow the same principals and guidelines as observers (such as invocation, injection

of parameters, qualifiers, etc) with the following exceptions:

• a parameter of a handler method must be a CaughtException

@Handles

7

• handlers are ordered before they are invoked (invocation order of observers is non-

deterministic)

• any handler can prevent subsequent handlers from being invoked

In addition to designating a method as exception handler, the @Handles annotation specifies two

pieces of information about when the method should be invoked relative to other handler methods:

• a precedence relative to other handlers for the same exception type. Handlers with higher

precendence are invoked before handlers with lower precendence that handle the same

exception type. The default precendence (if not specified) is 0.

• the type of the traversal mode (i.e., phase) during which the handler is invoked. The default

traversal mode (if not specified) isTraversalMode.DEPTH_FIRST.

Let's take a look at more sophisticated example that uses all the features of handlers to log all

exceptions.

@HandlesExceptions

public class MyHandlers

{

 void logExceptions(@Handles(during = TraversalMode.BREADTH_FIRST)

 @WebRequest CaughtException<Throwable> evt,

 Logger log)

 {

 log.warn("Something bad happened: " + evt.getException().getMessage());

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

This handler has a default precedence of 0 (the default value of the precedence attribute

on @Handles). It's invoked during the breadth first traversal mode. For more information on

traversal, see the sectionSection 3.4.1, “Traversal of exception type hierarchy”.

This handler is qualified with@WebRequest. When Catch calculates the handler chain, it filters

handlers based on the exception type and qualifiers. This handler will only be invoked for

exceptions passed to Catch that carry the @WebRequest qualifier. We'll assume this qualifier

distinguishes a web page request from a REST request.

Any additional parameters of a handler method are treated as injection points. These

parameters are injected into the handler when it is invoked by Catch. In this case, we are

injecting a Logger bean that must be defined within the application (or by an extension).

A handler is guaranteed to only be invoked once per exception (automatically muted), unless it

reenables itself by invoking the unMute() method on the CaughtException instance.

Chapter 3. Usage

8

Handlers must not throw checked exceptions, and should avoid throwing unchecked exceptions.

Should a handler throw an unchecked exception it will propegate up the stack and all handling

done via Catch will cease. Any exception that was being handled will be lost.

3.3. Exception stack trace processing

When an exception is thrown, chances are it's nested (wrapped) inside other exceptions. (If you've

ever examined a server log, you'll appreciate this fact). The collection of exceptions in its entirety

is termed an exception stack trace.

The outermost exception of an exception stack trace (e.g., EJBException, ServletException, etc)

is probably of little use to exception handlers. That's why Catch doesn't simply pass the exception

stack trace directly to the exception handlers. Instead, it intelligently unwraps the stack trace and

treats the root exception cause as the primary exception.

The first exception handlers to be invoked by Catch are those that match the type of root

cause. Thus, instead of seeing a vagueEJBException, your handlers will instead see an

meaningful exception such asConstraintViolationException. This feature, alone, makes

Catch a worthwhile tool.

Catch continues to work through the exception stack trace, notifying handlers of each exception in

the stack, until a handler flags the exception as handled. Once an exception is marked as handled,

Catch stops processing the exception. If a handler instructed Catch to rethrow the exception

(by invoking CaughtException#rethrow(), Catch will rethrow the exception outside the Catch

infrastructure. Otherwise, it simply returns flow control to the caller.

Consider a stack trace containing the following nested causes (from outer cause to root cause):

• EJBException

• PersistenceException

• SQLGrammarException

Catch will unwrap this exception and notify handlers in the following order:

1. SQLGrammarException

2. PersistenceException

3. EJBException

If there's a handler forPersistenceException, it will likely prevent the handlers for EJBException

from being invoked, which is a good thing since what useful information can really be obtained

fromEJBException?

3.4. Exception handler ordering

While processing one of the causes in the exception stack trace, Catch has a specific order it uses

to invoke the handlers, operating on two axes:

Traversal of exception type hierarchy

9

• traversal of exception type hierarchy

• relative handler precedence

We'll first address the traversal of the exception type hierarchy, then cover relative handler

precedence.

3.4.1. Traversal of exception type hierarchy

Catch doesn't simply invoke handlers that match the exact type of the exception. Instead, it walks

up and down the type hierarchy of the exception. It first notifies least specific handler in breadth

first traversal mode, then gradually works down the type hiearchy towards handlers for the actual

exception type, still in breadth first traversal. Once all breadth first traversal handlers have been

invoked, the process is reversed for depth first traversal, meaning the most specific handlers are

notified first and Catch continues walking up the hierarchy tree.

There are two modes of this traversal:

• BREADTH_FIRST

• DEPTH_FIRST

By default, handlers are registered into the DEPTH_FIRST traversal path. That means in most

cases, Catch starts with handlers of the actual exception type and works up towards the handler

for the least specific type.

However, when a handler is registered to be notified during the BREADTH_FIRST traversal, as

in the example above, Catch will notify that exception handler before the exception handler for

the actual type is notified.

Let's consider an example. Assume that Catch is handling theSocketException. It will notify

handlers in the following order:

1. Throwable (BREADTH_FIRST)

2. Exception (BREADTH_FIRST)

3. IOException (BREADTH_FIRST)

4. SocketException (BREADTH_FIRST)

5. SocketException (DEPTH_FIRST)

6. IOException (DEPTH_FIRST)

7. Exception (DEPTH_FIRST)

8. Throwable (DEPTH_FIRST)

The same type traversal occurs for each exception processed in the stack trace.

Chapter 3. Usage

10

In order for a handler to be notified of the IOException before the SocketException, it would

have to specify the BREADTH_FIRST traversal path explicitly:

void handleIOException(@Handles(during = TraversalMode.BREADTH_FIRST)

 CaughtException<IOException> evt)

{

 System.out.println("An I/O exception occurred, but not sure what type yet");

}

BREADTH_FIRST handlers are typically used for logging exceptions because they are not likely

to be short-circuited (and thus always get invoked).

3.4.2. Handler precendence

When Catch finds more than one handler for the same exception type, it orders the handlers

by precendence. Handlers with higher precendence are executed before handlers with a lower

precedence. If Catch detects two handlers for the same type with the same precedence, it detects

it as an error and throws an exception at deployment time.

Let's define two handlers with different precendence:

void handleIOExceptionFirst(@Handles(precendence = 100) CaughtException<IOException> evt)

{

 System.out.println("Invoked first");

}

void handleIOExceptionSecond(@Handles CaughtException<IOException> evt)

{

 System.out.println("Invoked second");

}

The first method is invoked first since it has a higher precendence (100) than the second method,

which has the default precedence (0).

To make specifying precendence values more convenience, Catch provides several built-in

constants, available on the Precedence class:

• BUILT_IN = -100

APIs for exception information and flow control

11

• FRAMEWORK = -50

• DEFAULT = 0

• LOW = 50

• HIGH = 100

To summarize, here's how Catch determines the order of handlers to invoke (until a handler marks

exception as handled):

1. Unwrap exception stack

2. Begin processing root cause

3. Find handler for least specific handler marked for BREADTH_FIRST traversal

4. If multiple handlers for same type, invoke handlers with higher precendence first

5. Find handler for most specific handler marked for DEPTH_FIRST traversal

6. If multiple handlers for same type, invoke handlers with higher precendence first

7. Continue above steps for each exception in stack

3.5. APIs for exception information and flow control

There are two APIs provided by Catch that should be familiar to application developers:

• CaughtException

• ExceptionStack

3.5.1. CaughtException

In addition to providing information about the exception being handled, the CaughtException

object contains methods to control the exception handling process, such as rethrowing the

exception, aborting the handler chain or unmuting the current handler.

Five methods exist on the CaughtException object to give flow control to the handler

• abort() - terminate all handling immediately after this handler, does not mark the exception as

handled, does not re-throw the exception.

• rethrow() - continues through all handlers, but once all handlers have been called (assuming

another handler does not call abort() or handled()) the initial exception passed to Catch is

rethrown. Does not mark the exception as handled.

• handled() - marks the exception as handled and terminates further handling.

Chapter 3. Usage

12

• proceed() - default. Marks the exception as handled and proceeds with the rest of the handlers.

• proceedToCause() - marks the exception as handled, but proceeds to the next cause in the

cause container, without calling other handlers for the current cause.

Once a handler is invoked it is muted, meaning it will not be run again for that exception stack

trace, unless it's explicitly marked as unmuted via the unmute() method on CaughtException.

3.5.2. ExceptionStack

ExceptionStack contains information about the exception causes relative to the current exception

cause. It is also the source of the exception types the invoked handlers are matched against. It

is accessed in handlers by calling the method getExceptionStack() on the CaughtException

object. Please see API docs for more information, all methods are fairly self-explanatory.

Tip

This object is mutable and can be modified before any handlers are invoked by

an observer:

public void modifyStack(@Observes ExceptionStack stack) {

 ...

}

Modifying the ExceptionStack may be useful to remove exception types that

are effectively meaningless sucsh asEJBException, changing the exception type

to something more meaningful such as cases likeSQLException, or wrapping

exceptions as custom application exception types.

Chapter 4.

13

Framework Integration
Integration of Seam Catch with other frameworks consists of one main step, and two other optional

(but highly encouraged) steps:

• creating and firing an ExceptionToCatch

• adding any default handlers and qualifiers with annotation literals (optional)

• supporting ServiceHandlers for creating exception handlers

4.1. Creating and Firing an ExceptionToCatch event

An ExceptionToCatch is constructed by passing a Throwable and optionally qualifiers for

handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting

a Event<ExceptionToCatch> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception

handling mechanism of the integrating framework, if any exist. By tying into the framework's

exception handling, any uncaught exceptions should be routed through the Seam Catch system

and allow handlers to be invoked. This is the typical way of using the Seam Catch framework. Of

course, it doesn't stop the application developer from firing their own ExceptionToCatch within

a catch block.

4.2. Default Handlers and Qualifiers

4.2.1. Default Handlers

An integration with Catch can define it's own handlers to always be used. It's recommended

that any built-in handler from an integration have a very low precedence, be a handler for as

generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for

PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the

integration. This helps limit any collisions with handlers the application developer may create.

Note
Hopefully at some point there will be a way to conditionally enable handlers so

the application developer will be able to selectively enable any default handlers.

Currently this does not exist, but is something that will be explored.

4.2.2. Qualifiers

Catch supports qualifiers for theCaughtException. To add a qualifier to be used when firing

handlers they must be add to the ExceptionToCatch via the constructor (please see API docs

Chapter 4. Framework Integration

14

for more info). Qualifiers for integrations should be used to avoid collisions in the application error

handling both when defining handlers and when firing events from the integration.

4.3. Supporting ServiceHandlers

ServiceHandlers [http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/

#servicehandler] make for a very easy and concise way to define exception handlers take the

following example comes from the jaxrs example in the distribution:

@HandlesExceptions

@ExceptionResponseService

public interface DeclarativeRestExceptionHandlers

{

 @SendHttpResponse(status = 403, message = "Access to resource denied (Annotation-

configured response)")

 void onNoAccess(@Handles @RestRequest CaughtException<AccessControlException> e);

 @SendHttpResponse(status = 400, message = "Invalid identifier (Annotation-configured

 response)")

 void onInvalidIdentifier(@Handles @RestRequest CaughtException<IllegalArgumentException> e);

}

All the vital information that would normally be done in the handler method is actually contained

in the @SendHttpResponse annotation. The only thing left is some boiler plate code to setup the

Response. In a jax-rs application (or even in any web application) this approach helps developers

cut down on the amount of boiler plate code they have to write in their own handlers and should be

implemented in any Catch integration, however, there may be situtations where ServiceHandlers

simply do not make sense.

Note
If ServiceHandlers are implemented make sure to document if any of the methods

are called from CaughtException, specifically abort(), handled() or rethrow().

These methods affect invocation of other handlers (or rethrowing the exception in

the case of rethrow()).

http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler

	Seam Catch
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Maven dependency configuration

	Chapter 3. Usage
	3.1. Exception handlers
	3.2. Exception handler annotations
	3.2.1. @HandlesExceptions
	3.2.2. @Handles

	3.3. Exception stack trace processing
	3.4. Exception handler ordering
	3.4.1. Traversal of exception type hierarchy
	3.4.2. Handler precendence

	3.5. APIs for exception information and flow control
	3.5.1. CaughtException
	3.5.2. ExceptionStack

	Chapter 4. Framework Integration
	4.1. Creating and Firing an ExceptionToCatch event
	4.2. Default Handlers and Qualifiers
	4.2.1. Default Handlers
	4.2.2. Qualifiers

	4.3. Supporting ServiceHandlers

