
Seam Catch

by Jason Porter and Dan Allen

iii

1. Seam Catch - Introduction .. 1

1.1. How Seam Catch Works ... 1

2. Seam Catch - Installation .. 3

2.1. Maven dependency configuration ... 3

3. Seam Catch - Usage .. 5

3.1. Eventing into Catch .. 5

3.1.1. Manual firing of the event ... 5

3.1.2. Using the @ExceptionHandled Interceptor ... 6

3.2. Exception handlers ... 6

3.3. Exception handler annotations ... 6

3.3.1. @HandlesExceptions ... 7

3.3.2. @Handles .. 7

3.4. Exception chain processing ... 9

3.5. Exception handler ordering .. 10

3.5.1. Traversal of exception type hierarchy .. 10

3.5.2. Handler precedence ... 11

3.6. APIs for exception information and flow control ... 13

3.6.1. CaughtException .. 13

3.6.2. ExceptionStack .. 13

3.7. Troubleshooting .. 14

4. Seam Catch - Advanced Features ... 15

4.1. Exception Modification ... 15

4.1.1. Introduction .. 15

4.1.2. Usage .. 15

4.2. Filtering Stack Traces ... 15

4.2.1. Introduction .. 15

4.2.2. ExceptionStackOutput ... 16

4.2.3. StackFrameFilter .. 16

4.2.4. StackFrameFilterResult ... 16

4.2.5. StackFrame ... 16

5. Seam Catch - Framework Integration .. 19

5.1. Creating and Firing an ExceptionToCatch event .. 19

5.2. Default Handlers and Qualifiers ... 19

5.2.1. Default Handlers .. 19

5.2.2. Qualifiers ... 19

5.3. Supporting ServiceHandlers ... 20

5.4. Programmatic Handler Registration .. 20

Seam Catch - Glossary .. 23

iv

Chapter 1.

1

Seam Catch - Introduction
Exceptions are a fact of life. As developers, we need to be prepared to deal with them in the most

graceful manner possible. Seam Catch provides a simple, yet robust foundation for modules and/

or applications to establish a customized exception handling process. By employing a delegation

model, Catch allows exceptions to be addressed in a centralized, extensible and uniform manner.

In this guide, we'll explore the various options you have for handling exceptions using Catch, as

well as how framework authors can offer Catch integration.

1.1. How Seam Catch Works

Seam Catch is based around the CDI eventing model. While the implementation of exception

handlers may not be the same as a CDI event, and the programming model is not exactly the

same as specifying a CDI event / observer, the concepts are very similar. Seam Catch makes use

of events for many of it's features. Eventing in is actually the only way to start using Catch.

This event is fired either by the application or a Catch integration. Catch then hands the exception

off to a chain of registered handlers, which deal with the exception appropriately. The use of CDI

events to connect exceptions to handlers makes this strategy of exception handling non-invasive

and minimally coupled to Catch's infrastructure.

The exception handling process remains mostly transparent to the developer. In most cases,

you register an exception handler simply by annotating a handler method. Alternatively, you can

handle an exception programmatically, just as you would observe an event in CDI.

There are other events that are fired during the exception handling process that will allow great

customization of the exception, stack trace, and status. This allows the application developer to

have the most control possible while still following a defined workflow. These events and other

advanced usages will be covered in the next chapter.

2

Chapter 2.

3

Seam Catch - Installation
To use the Seam Catch module, you need to add the Seam Catch API to your project as a compile-

time dependency. At runtime, you'll also need the Seam Catch implementation, which you either

specify explicitly or through a transitive dependency of another module that depends on it (as part

of exposing its own Catch integration).

First, check your application's library dependencies to see whether Seam Catch is already being

included by another module (such as Seam Servlet). If not, you'll need to setup the dependencies

as described below.

2.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam Catch:

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch</artifactId>

 <version>${seam.catch.version}</version>

</dependency>

Tip

Substitute the expression ${seam.catch.version} with the most recent or

appropriate version of Seam Catch. Alternatively, you can create a Maven

user-defined property [http://www.sonatype.com/books/mvnref-book/reference/

resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to

satisfy this substitution so you can centrally manage the version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertently depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-api</artifactId>

 <version>${seam.catch.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

http://maven.apache.org/
http://maven.apache.org/
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 2. Seam Catch - Insta...

4

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-impl</artifactId>

 <version>${seam.catch.version}</version>

 <scope>runtime</scope>

</dependency>

Now you're ready to start catching exceptions!

Chapter 3.

5

Seam Catch - Usage

3.1. Eventing into Catch

The entire Seam Catch process starts with an event. This helps keep your application minimally

coupled to Catch, but also allows for further extension! Catch is all about letting you take care of

exceptions the way that makes the most sense for your application. Events provide this delicate

balance.

There are three means of firing the event to start the Catch process:

• manual firing of the event

• using an interceptor

• module integration - no code needs to be changed

3.1.1. Manual firing of the event

Manually firing an event to use Catch is primarily used in your own try/catch blocks. It's very

painless and also easy. Let's examine an sample that might exist inside of a simple business logic

lookup into an inventory database:

@Stateless

public class InventoryActions {

 @PersistenceContext private EntityManager em;

 @Inject private Event<ExceptionToCatch> catchEvent;

 public Integer queryForItem(Item item) {

 try {

 Query q = em.createQuery("SELECT i from Item i where i.id = :id");

 q.setParameter("id", item.getId());

 return q.getSingleResult();

 } catch (PersistenceException e) {

 catchEvent.fire(new ExceptionToCatch(e));

 }

 }

}

The Event of generic type ExceptionToCatch is injected into your class for use later within

a try/catch block.

The event is fired with a new instance of ExceptionToCatch constructed with the exception

to be handled.

Chapter 3. Seam Catch - Usage

6

3.1.2. Using the @ExceptionHandled Interceptor

A CDI Interceptor has been added to help with integration of Catch into your application. It's used

just like any interceptor, and must be enabled in the beans.xml file for your bean archive. This

interceptor can be used at the class or method level.

This interceptor is a typical AroundInvoke interceptor and is invoked before the method (which in

this case merely wraps the call to the intercepted method in a try / catch block). The intercepted

method is called then, if an exception (actually a Throwable) occurs during execution of the

intercepted method the exception is passed to Catch (without any qualifiers). Normal flow

continues from there, however, take not of the following warning:

Warning

Using the interceptor may cause unexpected behavior to methods that

call intercepted methods in which an exception occurs, please see the

API docs [http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/

control/ExceptionHandledInterceptor.html] for more information about returns if an

exception occurs.

3.2. Exception handlers

As an application developer (i.e., an end user of Catch), you'll be focused on writing exception

handlers. An exception handler is a method on a CDI bean that is invoked to handle a specific type

of exception. Within that method, you can implement any logic necessary to handle or respond

to the exception.

Given that exception handler beans are CDI beans, they can make use of dependency injection,

be scoped, have interceptors or decorators and any other functionality available to CDI beans.

Exception handler methods are designed to follow the syntax and semantics of CDI observers,

with some special purpose exceptions explained in this guide. The advantage of this design is that

exception handlers will be immediately familiar to you if you are studying or well-versed in CDI.

In this and subsequent chapters, you'll learn how to define an exception handler, explore how

and when it gets invoked, modify an exception and a stack trace, and even extend Catch further

through events that are fired during the handling workflow. We'll begin by covering the two

annotations that are used to declare an exception handler, @HandlesExceptions and @Handles.

3.3. Exception handler annotations

Exception handlers are contained within exception handler beans, which are CDI beans annotated

with @HandlesExceptions. Exception handlers are methods which have a parameter which is an

instance of CaughtException<T extends Throwable> annotated with the @Handles annotation.

http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/control/ExceptionHandledInterceptor.html

@HandlesExceptions

7

3.3.1. @HandlesExceptions

The @HandlesException annotation is simply a marker annotation that instructs the Seam Catch

CDI extension to scan the bean for handler methods.

Let's designate a CDI bean as an exception handler by annotating it with @HandlesException.

@HandlesExceptions

public class MyHandlers {}

That's all there is to it. Now we can begin defining exception handling methods on this bean.

Note

The @HandlesExceptions annotation may be deprecated in favor of annotation

indexing done by Seam Solder [http://seamframework.org/Seam3/Solder].

3.3.2. @Handles

@Handles is a method parameter annotation that designates a method as an exception handler.

Exception handler methods are registered on beans annotated with @HandlesExceptions. Catch

will discover all such methods at deployment time.

Let's look at an example. The following method is invoked for every exception that Catch

processes and prints the exception message to stout. (Throwable is the base exception type in

Java and thus represents all exceptions).

@HandlesExceptions

public class MyHandlers

{

 void printExceptions(@Handles CaughtException<Throwable> evt)

 {

 System.out.println("Something bad happened: " +

 evt.getException().getMessage());

 evt.markHandled();

 }

}

http://seamframework.org/Seam3/Solder
http://seamframework.org/Seam3/Solder

Chapter 3. Seam Catch - Usage

8

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

The @Handles annotation on the first parameter designates this method as an exception

handler (though it is not required to be the first parameter). This parameter must be of type

CaughtException<T extends Throwable>, otherwise it's detected as a definition error.

The type parameter designates which exception the method should handle. This method is

notified of all exceptions (requested by the base exception type Throwable).

The CaughtException instance provides access to information about the exception and can

be used to control exception handling flow. In this case, it's used to read the current exception

being handled in the exception chain, as returned by getException().

This handler does not modify the invocation of subsequent handlers, as designated by

invoking markHandled() on CaughtException. As this is the default behavior, this line could

be omitted.

The @Handles annotation must be placed on a parameter of the method, which must be of type

CaughtException<T extends Throwable>. Handler methods are similar to CDI observers and,

as such, follow the same principles and guidelines as observers (such as invocation, injection of

parameters, qualifiers, etc) with the following exceptions:

• a parameter of a handler method must be a CaughtException

• handlers are ordered before they are invoked (invocation order of observers is non-

deterministic)

• any handler can prevent subsequent handlers from being invoked

In addition to designating a method as exception handler, the @Handles annotation specifies two

pieces of information about when the method should be invoked relative to other handler methods:

• a precedence relative to other handlers for the same exception type. Handlers with higher

precedence are invoked before handlers with lower precedence that handle the same exception

type. The default precedence (if not specified) is 0.

• the type of the traversal mode (i.e., phase) during which the handler is invoked. The default

traversal mode (if not specified) is TraversalMode.DEPTH_FIRST.

Let's take a look at more sophisticated example that uses all the features of handlers to log all

exceptions.

@HandlesExceptions

public class MyHandlers

{

 void logExceptions(@Handles(during = TraversalMode.BREADTH_FIRST)

 @WebRequest CaughtException<Throwable> evt,

Exception chain processing

9

 Logger log)

 {

 log.warn("Something bad happened: " + evt.getException().getMessage());

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

This handler has a default precedence of 0 (the default value of the precedence attribute

on @Handles). It's invoked during the breadth first traversal mode. For more information on

traversal, see the section Section 3.5.1, “Traversal of exception type hierarchy”.

This handler is qualified with @WebRequest. When Catch calculates the handler chain, it filters

handlers based on the exception type and qualifiers. This handler will only be invoked for

exceptions passed to Catch that carry the @WebRequest qualifier. We'll assume this qualifier

distinguishes a web page request from a REST request.

Any additional parameters of a handler method are treated as injection points. These

parameters are injected into the handler when it is invoked by Catch. In this case, we are

injecting a Logger bean that must be defined within the application (or by an extension).

A handler is guaranteed to only be invoked once per exception (automatically muted), unless it

re-enables itself by invoking the unmute() method on the CaughtException instance.

Handlers must not throw checked exceptions, and should avoid throwing unchecked exceptions.

Should a handler throw an unchecked exception it will propagate up the stack and all handling

done via Catch will cease. Any exception that was being handled will be lost.

3.4. Exception chain processing

When an exception is thrown, chances are it's nested (wrapped) inside other exceptions. (If you've

ever examined a server log, you'll appreciate this fact). The collection of exceptions in its entirety

is termed an exception chain.

The outermost exception of an exception chain (e.g., EJBException, ServletException, etc) is

probably of little use to exception handlers. That's why Catch doesn't simply pass the exception

chain directly to the exception handlers. Instead, it intelligently unwraps the chain and treats the

root exception cause as the primary exception.

The first exception handlers to be invoked by Catch are those that match the type of root

cause. Thus, instead of seeing a vague EJBException, your handlers will instead see an

meaningful exception such as ConstraintViolationException. This feature, alone, makes

Catch a worthwhile tool.

Catch continues to work through the exception chain, notifying handlers of each exception in the

stack, until a handler flags the exception as handled. Once an exception is marked as handled,

Catch stops processing the exception. If a handler instructed Catch to rethrow the exception

Chapter 3. Seam Catch - Usage

10

(by invoking CaughtException#rethrow(), Catch will rethrow the exception outside the Catch

infrastructure. Otherwise, it simply returns flow control to the caller.

Consider a exception chain containing the following nested causes (from outer cause to root

cause):

• EJBException

• PersistenceException

• SQLGrammarException

Catch will unwrap this exception and notify handlers in the following order:

1. SQLGrammarException

2. PersistenceException

3. EJBException

If there's a handler for PersistenceException, it will likely prevent the handlers for EJBException

from being invoked, which is a good thing since what useful information can really be obtained

from EJBException?

3.5. Exception handler ordering

While processing one of the causes in the exception chain, Catch has a specific order it uses to

invoke the handlers, operating on two axes:

• traversal of exception type hierarchy

• relative handler precedence

We'll first address the traversal of the exception type hierarchy, then cover relative handler

precedence.

3.5.1. Traversal of exception type hierarchy

Catch doesn't simply invoke handlers that match the exact type of the exception. Instead, it walks

up and down the type hierarchy of the exception. It first notifies least specific handler in breadth

first traversal mode, then gradually works down the type hierarchy towards handlers for the actual

exception type, still in breadth first traversal. Once all breadth first traversal handlers have been

invoked, the process is reversed for depth first traversal, meaning the most specific handlers are

notified first and Catch continues walking up the hierarchy tree.

There are two modes of this traversal:

• BREADTH_FIRST

• DEPTH_FIRST

Handler precedence

11

By default, handlers are registered into the DEPTH_FIRST traversal path. That means in most

cases, Catch starts with handlers of the actual exception type and works up towards the handler

for the least specific type.

However, when a handler is registered to be notified during the BREADTH_FIRST traversal, as

in the example above, Catch will notify that exception handler before the exception handler for

the actual type is notified.

Let's consider an example. Assume that Catch is handling the SocketException. It will notify

handlers in the following order:

1. Throwable (BREADTH_FIRST)

2. Exception (BREADTH_FIRST)

3. IOException (BREADTH_FIRST)

4. SocketException (BREADTH_FIRST)

5. SocketException (DEPTH_FIRST)

6. IOException (DEPTH_FIRST)

7. Exception (DEPTH_FIRST)

8. Throwable (DEPTH_FIRST)

The same type traversal occurs for each exception processed in the chain.

In order for a handler to be notified of the IOException before the SocketException, it would

have to specify the BREADTH_FIRST traversal path explicitly:

void handleIOException(@Handles(during = TraversalMode.BREADTH_FIRST)

 CaughtException<IOException> evt)

{

 System.out.println("An I/O exception occurred, but not sure what type yet");

}

BREADTH_FIRST handlers are typically used for logging exceptions because they are not likely

to be short-circuited (and thus always get invoked).

3.5.2. Handler precedence

When Catch finds more than one handler for the same exception type, it orders the handlers

by precedence. Handlers with higher precedence are executed before handlers with a lower

Chapter 3. Seam Catch - Usage

12

precedence. If Catch detects two handlers for the same type with the same precedence, it detects

it as an error and throws an exception at deployment time.

Let's define two handlers with different precedence:

void handleIOExceptionFirst(@Handles(precedence = 100) CaughtException<IOException> evt)

{

 System.out.println("Invoked first");

}

void handleIOExceptionSecond(@Handles CaughtException<IOException> evt)

{

 System.out.println("Invoked second");

}

The first method is invoked first since it has a higher precedence (100) than the second method,

which has the default precedence (0).

To make specifying precedence values more convenient, Catch provides several built-in

constants, available on the Precedence class:

• BUILT_IN = -100

• FRAMEWORK = -50

• DEFAULT = 0

• LOW = 50

• HIGH = 100

To summarize, here's how Catch determines the order of handlers to invoke (until a handler marks

exception as handled):

1. Unwrap exception stack

2. Begin processing root cause

3. Find handler for least specific handler marked for BREADTH_FIRST traversal

4. If multiple handlers for same type, invoke handlers with higher precedence first

5. Find handler for most specific handler marked for DEPTH_FIRST traversal

APIs for exception information and flow control

13

6. If multiple handlers for same type, invoke handlers with higher precedence first

7. Continue above steps for each exception in stack

3.6. APIs for exception information and flow control

There are two APIs provided by Catch that should be familiar to application developers:

• CaughtException

• ExceptionStack

3.6.1. CaughtException

In addition to providing information about the exception being handled, the CaughtException

object contains methods to control the exception handling process, such as rethrowing the

exception, aborting the handler chain or unmuting the current handler.

Five methods exist on the CaughtException object to give flow control to the handler

• abort() - terminate all handling immediately after this handler, does not mark the exception as

handled, does not re-throw the exception.

• rethrow() - continues through all handlers, but once all handlers have been called (assuming

another handler does not call abort() or handled()) the initial exception passed to Catch is

rethrown. Does not mark the exception as handled.

• handled() - marks the exception as handled and terminates further handling.

• markHandled() - default. Marks the exception as handled and proceeds with the rest of the

handlers.

• dropCause() - marks the exception as handled, but proceeds to the next cause in the cause

container, without calling other handlers for the current cause.

Once a handler is invoked it is muted, meaning it will not be run again for that exception chain,

unless it's explicitly marked as unmuted via the unmute() method on CaughtException.

3.6.2. ExceptionStack

ExceptionStack contains information about the exception causes relative to the current

exception cause. It is also the source of the exception types the invoked handlers are

matched against. It is accessed in handlers by calling the method getExceptionStack() on

the CaughtException object. Please see API docs [http://docs.jboss.org/seam/3/catch/latest/

api/org/jboss/seam/exception/control/ExceptionStack.html] for more information, all methods are

fairly self-explanatory.

http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/control/ExceptionStack.html

Chapter 3. Seam Catch - Usage

14

Tip

This object is mutable and can be modified before any handlers are invoked by

an observer:

public void modifyStack(@Observes ExceptionStack stack) {

 ...

}

Modifying the ExceptionStack may be useful to remove exception types that

are effectively meaningless such as EJBException, changing the exception type

to something more meaningful such as cases like SQLException, or wrapping

exceptions as custom application exception types.

3.7. Troubleshooting

The issues to date with Seam Catch have all be around eventing into Catch. The information at

the top of this chapter should give details how to correctly use into Seam Catch and allow your

handlers to be notified of exceptions.

For questions involving integrations such as JSF or REST for navigation cases, or exceptions

not being passed correctly to Seam Catch, please see documentation for that module as an

exhaustive review of each integration and hazards pertaining to those integrations is beyond the

scope of this guide.

Chapter 4.

15

Seam Catch - Advanced Features

4.1. Exception Modification

4.1.1. Introduction

At times it may be useful to change the exception to something a little more specific or meaningful

before it sent to handlers. Seam Catch provides means to make this happen. A prime use case

for this behavior is a persistence related exception coming from the database. Many times what

we get from the database is an error number inside of a SQLException, which isn't very helpful.

4.1.2. Usage

Before any handlers are notified of an exception, Catch will raise an event of type

ExceptionStack. This type contains all the exceptions in the chain, and will allow

you to change the exception elements that will be used to notify handlers using the

setCauseElements(Collection) method. Do not use any of the other methods as they only

return copies of the chain.

Tip

When changing the exception, it is strongly recommended you keep the same stack

trace for the exceptions you are changing. If the stack trace is not set then the new

exception will not contain any stack information save from the time it was created,

which is likely to be of little use to any handler.

4.2. Filtering Stack Traces

4.2.1. Introduction

Stack traces are an everyday occurence for the Java developer, unfortunately the base stack

trace isn't very helpful and can be difficult to understand and see the root problem. Catch helps

make this easier by

• turning the stack upside down and showing the root cause first, and

• allowing the stack trace to be filtered

The great part about all of this: it's done without a need for CDI! You can use it in a basic Java

project, just include the Seam Catch jar. There are four classes to be aware of when using filtering

• ExceptionStackOutput

• StackFrameFilter

• StackFrameFilterResult

Chapter 4. Seam Catch - Advan...

16

• StackFrame

4.2.2. ExceptionStackOutput

There's not much to this, pass it the exception to print and the filter to use in the constructor and

call printTrace() which returns a string -- the stack trace (filtered or not). If no filter is passed to

the constructor, calling printTrace() will still unwrap the stack and print the root cause first. This

can be used in place ofThrowable#printStackTrace(), provided the returned string is actually

printed to standard out or standard error.

4.2.3. StackFrameFilter

This is the workhorse interface that will need to be implemented to do any filtering for a stack

trace. It only has one method:public StackFrameFilterResult process(StackFrame frame).

Further below are methods on StackFrame andStackFrameFilterResult. Some examples are

included below to get an idea what can be done and how to do it.

4.2.4. StackFrameFilterResult

This is a simple enumeration of valid return values for the process method. Please see

the API docs [http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/filter/

StackFrameFilterResult.html] for definitions of each value.

4.2.5. StackFrame

This contains methods to help aid in determining what to do in the filter, it also allows you to

completely replace the StackTraceElement if desired. The four "mark" methods deal with marking

a stack trace and are used if "folding" a stack trace is desired, instead of dropping the frame. The

StackFrame will allow for multiple marks to be set. The last method,getIndex(), will return the

index of the StackTraceElement from the exception.

Example 4.1. Terminate

 @Override

 public StackFrameFilterResult process(StackFrame frame) {

 return StackFrameFilterResult.TERMINATE;

 }

This example will simply show the exception, no stack trace.

Example 4.2. Terminate After

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 return StackFrameFilterResult.TERMINATE_AFTER;

http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/catch/latest/api/org/jboss/seam/exception/filter/StackFrameFilterResult.html

StackFrame

17

 }

This is similar to the previous example, save the first line of the stack is shown.

Example 4.3. Drop Remaining

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 if (frame.getIndex() >= 5) {

 return StackFrameFilterResult.DROP_REMAINING;

 }

 return StackFrameFilterResult.INCLUDE;

 }

This filter drops all stack elements after the fifth element.

Example 4.4. Folding

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 if (frame.isMarkSet("reflections.invoke")) {

 if (frame.getStackTraceElement().getClassName().contains("java.lang.reflect")) {

 frame.clearMark("reflections.invoke");

 return StackFrameFilterResult.INCLUDE;

 }

 else if (frame.getStackTraceElement().getMethodName().startsWith("invoke")) {

 return StackFrameFilterResult.DROP;

 }

 }

 if (frame.getStackTraceElement().getMethodName().startsWith("invoke")) {

 frame.mark("reflections.invoke");

 return StackFrameFilterResult.DROP;

 }

 return StackFrameFilterResult.INCLUDE;

 }

Certainly the most complicated example, however, this shows a possible way of "folding" a

stack trace. In the example any internal reflection invocation methods are folded into a single

java.lang.reflect.Method.invoke() call, no more internal com.sun calls in the trace.

18

Chapter 5.

19

Seam Catch - Framework Integration
Integration of Seam Catch with other frameworks consists of one main step, and two other optional

(but highly encouraged) steps:

• creating and firing an ExceptionToCatch

• adding any default handlers and qualifiers with annotation literals (optional)

• supporting ServiceHandlers for creating exception handlers

5.1. Creating and Firing an ExceptionToCatch event

An ExceptionToCatch is constructed by passing a Throwable and optionally qualifiers for

handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting

a Event<ExceptionToCatch> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception

handling mechanism of the integrating framework, if any exist. By tying into the framework's

exception handling, any uncaught exceptions should be routed through the Seam Catch system

and allow handlers to be invoked. This is the typical way of using the Seam Catch framework. Of

course, it doesn't stop the application developer from firing their own ExceptionToCatch within

a catch block.

5.2. Default Handlers and Qualifiers

5.2.1. Default Handlers

An integration with Catch can define it's own handlers to always be used. It's recommended

that any built-in handler from an integration have a very low precedence, be a handler for as

generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for

PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the

integration. This helps limit any collisions with handlers the application developer may create.

Note

Hopefully at some point there will be a way to conditionally enable handlers so

the application developer will be able to selectively enable any default handlers.

Currently this does not exist, but is something that will be explored.

5.2.2. Qualifiers

Catch supports qualifiers for the CaughtException. To add qualifiers to be used when notifying

handlers, the qualifiers must be added to the ExceptionToCatch instance via the constructor

(please see API docs for more info). Qualifiers for integrations should be used to avoid collisions

Chapter 5. Seam Catch - Frame...

20

in the application error handling both when defining handlers and when firing events from the

integration.

5.3. Supporting ServiceHandlers

ServiceHandlers [http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/

#servicehandler] make for a very easy and concise way to define exception handlers. The following

example comes from the jaxrs example in the distribution:

@HandlesExceptions

@ExceptionResponseService

public interface DeclarativeRestExceptionHandlers

{

 @SendHttpResponse(status = 403, message = "Access to resource denied (Annotation-

configured response)")

 void onNoAccess(@Handles @RestRequest CaughtException<AccessControlException> e);

 @SendHttpResponse(status = 400, message = "Invalid identifier (Annotation-configured

 response)")

 void onInvalidIdentifier(@Handles @RestRequest CaughtException<IllegalArgumentException> e);

}

All the vital information that would normally be done in the handler method is actually contained

in the @SendHttpResponse annotation. The only thing left is some boiler plate code to setup the

Response. In a jax-rs application (or even in any web application) this approach helps developers

cut down on the amount of boiler plate code they have to write in their own handlers and should be

implemented in any Catch integration, however, there may be situations where ServiceHandlers

simply do not make sense.

Note

If ServiceHandlers are implemented make sure to document if any of the methods

are called from CaughtException, specifically abort(), handled() or rethrow().

These methods affect invocation of other handlers (or rethrowing the exception in

the case of rethrow()).

5.4. Programmatic Handler Registration

Handlers can be registered programatically at runtime instead of solely at deploy

time. This done very simply by injecting HandlerMethodContainer and calling

registerHandlerMethod(HandlerMethod).

http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler
http://docs.jboss.org/seam/3/solder/latest/reference/en-US/html_single/#servicehandler

Programmatic Handler Registration

21

HandlerMethod has been relaxed in this version as well, and is not tied directly to Java. It is

therefore feasible handlers written using other JVM based languages could be easily registered

and participate in exception handling.

22

23

Seam Catch - Glossary

E
Exception Chain An exception chain is made up of many different exceptions or

causes until the root exception is found at the bottom of the

chain. When all of the causes are removed or looked at this forms

the causing container. The container may be traversed either

ascending (root cause first) or descending (outer most first).

H
Handler Bean A CDI enabled Bean which contains handler methods. Annotated

with the @HandlesExceptions annotation.

See Also Handler Method.

Handler Method A method within a handler bean which is marked as a handler

using the @Handlers on an argument, which must be an instance

of CaughtException. Handler methods typically are public with a

void return. Other parameters of the method will be treated as

injection points and will be resolved via CDI and injected upon

invocation.

See Also Handler Bean.

24

	Seam Catch
	Table of Contents
	Chapter 1. Seam Catch - Introduction
	1.1. How Seam Catch Works

	Chapter 2. Seam Catch - Installation
	2.1. Maven dependency configuration

	Chapter 3. Seam Catch - Usage
	3.1. Eventing into Catch
	3.1.1. Manual firing of the event
	3.1.2. Using the @ExceptionHandled Interceptor

	3.2. Exception handlers
	3.3. Exception handler annotations
	3.3.1. @HandlesExceptions
	3.3.2. @Handles

	3.4. Exception chain processing
	3.5. Exception handler ordering
	3.5.1. Traversal of exception type hierarchy
	3.5.2. Handler precedence

	3.6. APIs for exception information and flow control
	3.6.1. CaughtException
	3.6.2. ExceptionStack

	3.7. Troubleshooting

	Chapter 4. Seam Catch - Advanced Features
	4.1. Exception Modification
	4.1.1. Introduction
	4.1.2. Usage

	4.2. Filtering Stack Traces
	4.2.1. Introduction
	4.2.2. ExceptionStackOutput
	4.2.3. StackFrameFilter
	4.2.4. StackFrameFilterResult
	4.2.5. StackFrame

	Chapter 5. Seam Catch - Framework Integration
	5.1. Creating and Firing an ExceptionToCatch event
	5.2. Default Handlers and Qualifiers
	5.2.1. Default Handlers
	5.2.2. Qualifiers

	5.3. Supporting ServiceHandlers
	5.4. Programmatic Handler Registration

	Seam Catch - Glossary

