
Seam Faces Module

Reference Guide

Lincoln Baxter III

Dan Allen

Nicklas Karlsson

iii

Introduction ... v

1. Installation ... 1

2. Faces Scoping Support ... 3

2.1. @RenderScoped .. 3

2.2. @Inject javax.faces.contet.Flash flash .. 4

2.3. @ViewScoped .. 4

3. Messages API .. 7

3.1. Adding Messages ... 7

3.2. Displaying pending messages ... 8

4. Seam Faces Components .. 9

4.1. Introduction .. 9

4.2. <s:validateForm> .. 9

4.3. <s:viewAction> .. 12

4.3.1. Motivation .. 12

4.3.2. Usage .. 12

4.3.3. View actions vs the PreRenderViewEvent .. 15

4.4. UI Input Container .. 15

5. Faces Artifact Injection .. 17

5.1. @*Scoped and @Inject in Validators and Converters .. 17

5.2. @Inject'able Faces Artifacts ... 19

6. Faces Events Propagation ... 21

6.1. JSF Phase events .. 21

6.1.1. Seam Faces Phase events ... 21

6.1.2. Phase events listing ... 22

6.2. JSF system events ... 23

6.2.1. Seam Faces System events ... 23

6.2.2. System events listing .. 23

6.2.3. Component system events .. 24

iv

v

Introduction

The goal of Seam Faces is to provide a fully integrated CDI programming model to the JavaServer

Faces (JSF) 2.0 web-framework. With features such as observing Events, providing injection

support for life-cycle artifacts (FacesContext, NavigationHandler,) and more.

vi

Chapter 1.

1

Installation
Most features of Seam Faces are installed automatically by including the seam-faces.jar

and seam-faces-api.jar in the web application library folder. If you are using Maven [http://

maven.apache.org/] as your build tool, you can add the following dependency to your pom.xml file:

<dependency>

 <groupId>org.jboss.seam.faces</groupId>

 <artifactId>seam-faces</artifactId>

 <version>${seam-faces-version}</version>

</dependency>

Tip

Replace ${seam-faces-version} with the most recent or appropriate version of

Seam Faces.

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete; however, if you are

still using Servlet 2.5 or Java EE 5, then you need to add the following code to your application's

web.xml file:

<web-app>

 <listener>

 <listener-class>org.jboss.seam.faces.beanManager.BeanManagerServletContextListener</

listener-class>

 </listener>

</web-app>

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

2

Chapter 2.

3

Faces Scoping Support
JSF 2.0 introduced the concept of the Flash object and the @ViewScope; however, JSF 2.0 did not

provide annotations accessing the Flash, and CDI does not support the non-standard ViewScope

by default. The Seam Faces module does both, in addition to adding a new @RenderScoped

context. Beans stored in the Render Scope will survive until the next page is rendered. For the

most part, beans stored in the ViewScope will survive as long as a user remains on the same

page, and data in the JSF 2 Flash will survive as long as the flash survives).

2.1. @RenderScoped

Beans placed in the @RenderScoped context are effectively scoped to, and live through but not

after, "the next Render Response phase".

You should think about using the Render scope if you want to store information that will be relevant

to the user even after an action sends them to another view. For instance, when a user submits

a form, you may want to invoke JSF navigation and redirect the user to another page in the site;

if you needed to store a message to be displayed when the next page is rendered -but no longer-

you would store that message in the RenderContext. Fortunately, Seam provides RenderScoped

messages by default, via the Seam Messages API.

To place a bean in the Render scope, use the @javax.faces.bean.RenderScoped annotation.

This means that your bean will be stored in the org.jboss.seam.context.RenderContext object

until the next page is rendered, at which point the RenderScope will be cleared.

@RenderScoped

public class Bean {

 // ...

}

@RenderScoped beans are destroyed when the next JSF RENDER_RESPONSE phase ends,

however, if a user has multiple browser windows open for the same user-session, multiple

RenderContexts will be created, one for each incoming request. Seam Faces keeps track of which

RenderContext belongs to each request, and will restore/destroy them appropriately. If there is

more than one active RenderContext at the time when you issue a redirect, you will see a URL

parameter "?fid=..." appended to the end of the outbound URL, this is to ensure the correct context

is restored when the request is received by the server, and will not be present if only one context

is active.

Caution

If you want to use the Render Scope with custom navigation in your application, be

sure to call ExternalContext.encodeRedirectURL(String url, Map<String,

Chapter 2. Faces Scoping Support

4

List<String>> queryParams) on any URL before using it to issue a redirect.

This will ensure that the RenderContext ID is properly appended to the URL,

enabling the RenderContext to be restored on the subsequent request. This is

only necessary if issuing a Servlet Redirect; for the cases where Faces non-

redirecting navigation is used, no URL parameter is necessary, and the context

will be destroyed at the end of the current request.

2.2. @Inject javax.faces.contet.Flash flash

JSF 2 does not provide proper system events to create a functional @FlashScoped

context annotation integrated with CDI, so until a workaround can be found, or JSF 2 is

enhanced, you can access the Flash via the @Inject annotation. For more information on

the JSF Flash [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/

Flash.html], read this API doc [https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/

javax/faces/context/Flash.html].

public class Bean {

 @Inject private Flash flash;

 // ...

}

2.3. @ViewScoped

To scope a bean to the View, use the @javax.faces.bean.ViewScoped annotation. This means

that your bean will be stored in the javax.faces.component.UIViewRoot object associated with

the view in which it was accessed. Each JSF view (faces-page) will store its own instance of the

bean, just like each HttpServletRequest has its own instance of a @RequestScoped bean.

@ViewScoped

public class Bean {

 // ...

}

Caution

@ViewScoped beans are destroyed when the JSF UIViewRoot object is destroyed.

This means that the life-span of @ViewScoped beans is dependent on the

javax.faces.STATE_SAVING_METHOD employed by the application itself, but in

https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html
https://javaserverfaces.dev.java.net/nonav/docs/2.0/javadocs/javax/faces/context/Flash.html

@ViewScoped

5

general one can assume that the bean will live as long as the user remains on the

same page.

6

Chapter 3.

7

Messages API
While JSF already has the concept of adding FacesMessage objects to the FacesContext in order

for those messages to be displayed to the user when the view is rendered, Seam Faces takes

this concept one step farther with the Messages API provided by the Seam International module.

Messages are template-based, and can be added directly via the code, or templates can be loaded

from resource bundles using a BundleKey.

3.1. Adding Messages

Consistent with the CDI programming model, the Messages API is provided via

bean injection. To add a new message to be displayed to the user, inject

org.jboss.seam.international.display.Messages and call one of the Message factory

methods. As mentioned earlier, factory methods accept either a plain-text template, or a

BundleKey, specifying the name of the resource bundle to use, and the name of the key to use

as a message template.

@Named

public class Example

{

 @Inject

 Messages messages;

 public String action()

 {

 messages.info("This is an {0} message, and will be displayed to {1}.", "INFO", "the user");

 return null;

 }

}

Adds the message: "This is an INFO message, and will be displayed to the user."

Notice how {0}, {1} ... {N} are replaced with the given parameters, and may be used more than

once in a given template. In the case where a BundleKey is used to look up a message template,

default text may be provided in case the resource cannot be loaded; default text uses the same

parameters supplied for the bundle template. If no default text is supplied, a String representation

of the BundleKey and its parameters will be displayed instead.

 public String action()

 {

Chapter 3. Messages API

8

 messages.warn(new BundleKey("org.jboss.seam.faces.exampleBundle", "messageKey"),

 "unique");

 return null;

 }

classpath:/org/jboss/seam/faces/exampleBundle.properties

messageKey=This {0} parameter is not so {0}, see?

Adds the message: "This unique parameter is not so unique, see?"

3.2. Displaying pending messages

It's great when messages are added to the internal buffer, but it doesn't do much good unless the

user actually sees them. In order to display messages, simply use the <h:messages /> tag from

JSF. Any pending messages will be displayed on the page just like normal FacesMessages.

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:s="http://jboss.org/seam/faces"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h1>Welcome to Seam Faces!</h1>

 <p>All Messages and FacesMessages will be displayed below:</p>

 <h:messages />

</html>

Messages added to the internal buffer via the Messages API are stored in a central location during

each request, and may be displayed by any view-technology that supports the Messages API.

Seam Faces provides an integration that makes all of this automatic for you as a developer, and in

addition, messages will automatically survive JSF navigation and redirects, as long as the redirect

URL was encoded using ExternalContext.encodeRedirectURL(...). If you are using JSF-

compliant navigation, all of this is handled for you.

Chapter 4.

9

Seam Faces Components
While Seam Faces does not provide layout components or other UI-design related features, it

does provide functional components designed to make developing JSF applications easier, more

functional, more scalable, and more practical.

For layout and design components, take a look at RichFaces [http://jboss.org/richfaces], a UI

component library specifically tailored for easy, rich web-interfaces.

4.1. Introduction

In order to use the Seam Faces components, you must first add the namespace to your view file,

just like the standard JSF component libraries.

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:s="http://jboss.org/seam/faces"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h1>Welcome to Seam Faces!</h1>

 <p>

 This view imports the Seam Faces component library.

 Read on to discover what components it provides.

 </p>

</html>

Tip

All Seam Faces components use the following namespace: http://jboss.org/

seam/faces

4.2. <s:validateForm>

On many occasions you might find yourself needing to compare the values of multiple input fields

on a given page submit: confirming a password; re-enter password; address lookups; and so on.

Performing cross-field form validation is simple - just place the <s:validateForm> component in

the form you wish to validate, then attach your custom Validator.

<h:form id="locationForm">

http://jboss.org/richfaces
http://jboss.org/richfaces

Chapter 4. Seam Faces Components

10

 <h:inputText id="city" value="#{bean.city}" />

 <h:inputText id="state" value="#{bean.state}" />

 <h:inputText id="zip" value="#{bean.zip}" />

 <h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

 <s:validateForm validatorId="locationValidator" />

</h:form>

The corresponding Validator for the example above would look something like this:

@FacesValidator("locationValidator")

public class LocationValidator implements Validator

{

 @Inject

 Directory directory;

 @Inject

 @InputField

 private Object city;

 @Inject

 @InputField

 private Object state;

 @Inject

 @InputField

 private ZipCode zip;

 @Override

 public void validate(final FacesContext context, final UIComponent comp, final Object values)

 throws ValidatorException

 {

 if(!directory.exists(city, state, zip))

 {

 throw new ValidatorException(

 new FacesMessage("Sorry, that location is not in our database. Please try again."));

 }

 }

}

<s:validateForm>

11

Tip

You may inject the correct type directly.

@Inject

@InputField

private ZipCode zip;

Notice that the IDs of the inputText components match the IDs of your Validator @InputFields;

each @Inject @InputField member will be injected with the value of the form input field who's ID

matches the name of the variable.

In other words - the name of the @InputField annotated member variable will automatically be

matched to the ID of the input component, unless overridden by using a field ID alias (see below.)

<h:form id="locationForm">

 <h:inputText id="cityId" value="#{bean.city}" />

 <h:inputText id="stateId" value="#{bean.state}" />

 <h:inputText id="zip" value="#{bean.zip}" />

 <h:commandButton id="submit" value="Submit" action="#{bean.submitPost}" />

 <s:validateForm fields="city=cityId state=stateId" validatorId="locationValidator" />

</h:form>

Notice that "zip" will still be referenced normally; you need only specify aliases for fields that differ

in name from the Validator @InputFields.

Tip

Using @InputField("customID") with an ID override can also be used to specify

a custom ID, instead of using the default: the name of the field. This gives you the

ability to change the name of the private field, without worrying about changing the

name of input fields in the View itself.

@Inject

@InputField("state")

private String sectorTwo;

Chapter 4. Seam Faces Components

12

4.3. <s:viewAction>

The view action component (UIViewAction) is an ActionSource2 UIComponent that specifies an

application-specific command (or action), using using an EL method expression, to be invoked

during one of the JSF lifecycle phases proceeding Render Response (i.e., view rendering).

View actions provide a lightweight front-controller for JSF, allowing the application to

accommodate scenarios such as registration confirmation links, security and sanity checking a

request (e.g., ensuring the resource can be loaded). They also allow JSF to work alongside action-

oriented frameworks, and existing applications that use them.

4.3.1. Motivation

JSF employs an event-oriented architecture. Listeners are invoked in response to user-interface

events, such as the user clicking on a button or changing the value of a form input. Unfortunately,

the most important event on the web, a URL request (initiated by the user clicking on a link,

entering a URL into the browser's location bar or selecting a bookmark), has long been overlooked

in JSF. Historically, listeners have exclusively been activated on postback, which has led to the

common complaint that in JSF, "everything is a POST."

We want to change that perception.

Processing a URL request event is commonly referred to as bookmarkable or GET support. Some

GET support was added to JSF 2.0 with the introduction of view parameters and the pre-render

view event. View parameters are used to bind query string parameters to model properties. The

pre-render view event gives the developer a window to invoke a listener immediately prior to the

view being rendered.

That's a start.

Seam brings the GET support full circle by introducing the view action component. A view action is

the compliment of a UICommand for an initial (non-faces) request. Like its cohort, it gets executed

by default during the Invoke Application phase (now used on both faces and non-faces requests).

A view action can optionally be invoked on postback as well.

View actions (UIViewAction) are closely tied to view parameters (UIViewParameter). Most of

the time, the view parameter is used to populate the model with data that is consumed by the

method being invoked by a UIViewAction component, much like form inputs populate the model

with data to support the method being invoked by a UICommand component.

4.3.2. Usage

Let's consider a typical scenario in web applications. You want to display the contents of a blog

entry that matches the identifier specified in the URL. We'll assume the URL is:

http://localhost:8080/blog/entry.jsf?id=10

Usage

13

We'll use a view parameter to capture the identifier of the entry from the query string and a view

action to fetch the entry from the database.

<f:metadata>

 <f:viewParam name="id" value="#{blogManager.entryId}"/>

 <s:viewAction action="#{blogManager.loadEntry}"/>

</f:metadata>

Tip

The view action component must be declared as a child of the view metadata facet

(i.e., <f:metadata>) so that it gets incorporated into the JSF lifecycle on both non-

faces (initial) requests and faces (postback) requests. If you put it anywhere else

in the page, the behavior is undefined.

Warning

In JSF 2.0, there must be at least one view parameter for the view metadata

facet to be processed. This requirement was introduced into the JSF specification

accidentally, but it's not so unfortunate since view parameters are typically needed

to capture input needed by the view action.

What do we do if the entry can't be found? View actions support declarative navigation just like

UICommand components. So you can write a navigation rule that will be consulted before the page

is rendered. If the rule matches, navigation occurs just as though this were a postback.

<navigation-rule>

 <from-view-id>/entry.xhtml</from-view-id>

 <navigation-case>

 <from-action>#{blogManager.loadEntry}</from-action>

 <if>#{empty entry}</if>

 <to-view-id>/home.xhtml</to-view-id>

 <redirect/>

 </navigation-case>

 </navigation-rule>

After each view action is invoked, the navigation handler looks for a navigation case that matches

the action's EL method signature and outcome. If a navigation case is matched, or the response

Chapter 4. Seam Faces Components

14

is marked complete by the action, subsequent view actions are short-circuited. The lifecycle then

advances appropriately.

By default, a view action is not executed on postback, since the primary intention of a view action

is to support a non-faces request. If your application (or use case) is decidedly stateless, you

may need the view action to execute on any type of request. You can enable the view action on

postback using the onPostback attribute:

<s:viewAction action="#{blogManager.loadEntry}" onPostback="true"/>

You may only want the view action to be invoked under certain conditions. For instance, you may

only need it to be invoked if the conversation is transient. For that, you can use the if attribute,

which accepts an EL value expression:

<s:viewAction action="#{blogEditor.loadEntry}" if="#{conversation.transient}"/>

There are two ways to control the phase in which the view action is invoked. You can set the

immediate attribute to true, which moves the invocation to the Apply Request Values phase

instead of the default, the Invoke Application phase.

<s:viewAction action="#{sessionManager.validateSession}" immediate="true"/>

You can also just specify the phase directly, using the name of the phase constant in the PhaseId

class (the case does not matter).

<s:viewAction action="#{sessionManager.validateSession}" phase="APPLY_REQUEST_VALUES"/

>

Tip

The valid phases for a view action are:

• APPLY_REQUEST_VALUES (default if immediate="true")

• UPDATE_MODEL_VALUES

• PROCESS_VALIDATIONS

• INVOKE_APPLICATION (default)

View actions vs the PreRenderViewEvent

15

If the phase is set, it takes precedence over the immediate flag.

4.3.3. View actions vs the PreRenderViewEvent

The purpose of the view action is similar to use of the PreRenderViewEvent. In fact, the code to

load a blog entry before the page is rendered could be written as:

<f:metadata>

 <f:viewParam name="id" value="#{blogManager.entryId}"/>

 <f:event type="preRenderView" listener="#{blogManager.loadEntry}"/>

</f:metadata>

However, the view action has several important advantages:

• It's lightweight

• It's timing can be controlled

• It's contextual

• It can trigger navigation

View actions are lightweight because they get processed on a non-faces (initial) request before the

full component tree is built. When the view actions are invoked, the component tree only contains

view metadata.

As demonstrated above, you can specify a prerequisite condition for invoking the view action,

control whether it's invoked on postback, specify the phase in which it's invoked and tie the

invocation into the declarative navigation system. The PreRenderViewEvent is quite basic in

comparison.

4.4. UI Input Container

UIInputContainer is a supplemental component for a JSF 2.0 composite component encapsulating

one or more input components (EditableValueHolder), their corresponding message components

(UIMessage) and a label (HtmlOutputLabel).

This component takes care of wiring the label to the first input and the messages to each input

in sequence. It also assigns two implicit attribute values, "required" and "invalid" to indicate that

a required input field is present and whether there are any validation errors, respectively. To

determine if a input field is required, both the required attribute is consulted and whether the

property has Bean Validation constraints.

Finally, if the "label" attribute is not provided on the composite component, the label value will be

derived from the id of the composite component, for convenience.

Chapter 4. Seam Faces Components

16

Composite component definition example (minus layout):

<cc:interface componentType="org.jboss.seam.faces.InputContainer"/>

 <cc:implementation>

 <h:outputLabel id="label" value="#{cc.attrs.label}:" styleClass="#{cc.attrs.invalid ? 'invalid' :

 ''}">

 <h:outputText styleClass="required" rendered="#{cc.attrs.required}" value="*"/>

 </h:outputLabel>

 <cc:insertChildren/>

 <h:message id="message" errorClass="invalid message" rendered="#{cc.attrs.invalid}"/>

 </cc:implementation>

Composite component usage example:

<example:inputContainer id="name">

 <h:inputText id="input" value="#{person.name}"/>

 </example:inputContainer>

Tip

NOTE: Firefox does not properly associate a label with the target input if the

input id contains a colon (:), the default separator character in JSF. JSF 2

allows developers to set the value via an initialization parameter (context-param

in web.xml) keyed to javax.faces.SEPARATOR_CHAR. We recommend that you

override this setting to make the separator an underscore (_).

Chapter 5.

17

Faces Artifact Injection
One of the goals of the Seam Faces Module is to make support for CDI a more ubiquitous

experience, by allowing injection of JSF Lifecycle Artifacts into managed beans, and also by

providing support for @Inject where it would not normally be available. This section describes the

additional CDI integration for faces artifact injection

5.1. @*Scoped and @Inject in Validators and

Converters

Frequently when performing complex validation, it is necessary to access data stored in a

database or in other contextual objects within the application itself. JSF does not, by default,

provide support for @Inject in Converters and Validators, but Seam Faces makes this available.

In addition to injection, it is sometimes convenient to be able to scope a validator just as we would

scope a managed bean; this feature is also added by Seam Faces.

Notice how the Validator below is actually @RequestScoped, in addition to using injection to obtain

an instance of the UserService with which to perform an email database lookup.

@RequestScoped

@FacesValidator("emailAvailabilityValidator")

public class EmailAvailabilityValidator implements Validator

{

 @Inject

 UserService us;

 @Override

 public void validate(final FacesContext context, final UIComponent component, final Object value)

 throws ValidatorException

 {

 String field = value.toString();

 try

 {

 us.getUserByEmail(field);

 FacesMessage msg = new FacesMessage("That email address is unavailable");

 throw new ValidatorException(msg);

 }

 catch (NoSuchObjectException e)

 {

 }

 }

}

Chapter 5. Faces Artifact Inj...

18

Warning

We recommend to always use @RequestScoped converters/validators unless a

longer scope is required, in which case you should use the appropriate scope

annotation, but it should not be omitted.

Because of the way JSF persists Validators between requests, particularly when

using @Inject inside a validator or converter, forgetting to use a @*Scoped

annotation could in fact cause @Inject'ed objects to become null.

An example Converter using @Inject

@SessionScoped

@FacesConverter("authorConverter")

public class UserConverter implements Converter

{

 @Inject

 private UserService service;

 @PostConstruct

 public void setup()

 {

 System.out.println("UserConverter started up");

 }

 @PreDestroy

 public void shutdown()

 {

 System.out.println("UserConverter shutting down");

 }

 @Override

 public Object getAsObject(final FacesContext arg0, final UIComponent arg1, final String userName)

 {

 // ...

 return service.getUserByName(userName);

 }

 @Override

 public String getAsString(final FacesContext context, final UIComponent comp, final Object user)

 {

 // ...

 return ((User)user).getUsername();

@Inject'able Faces Artifacts

19

 }

}

5.2. @Inject'able Faces Artifacts

This is the list of inject-able artifacts provided through Seam Faces. These objects would normally

require static method-calls in order to obtain handles, but Seam Faces attempts to break that

coupling by providing @Inject'able artifacts. This means it will be possible to more easily provide

mocked objects during unit and integration testing, and also simplify bean code in the application

itself.

Artifact Class Example

javax.faces.context.FacesContext
public class Bean {

 @Inject FacesContext context;

 }

javax.faces.context.ExternalContext
public class Bean {

 @Inject ExternalContext context;

 }

javax.faces.application.NavigationHandler
public class Bean {

 @Inject NavigationHandler handler;

 }

javax.faces.context.Flash
public class Bean {

 @Inject Flash flash;

 }

20

Chapter 6.

21

Faces Events Propagation
When the seam-faces module is installed in a web application, JSF events will automatically be

propagated via the CDI event-bridge, enabling managed beans to easily observe all Faces events.

There are two categories of events: JSF phase events, and JSF system events. Phase events are

triggered as JSF processes each lifecycle phase, while system events are raised at more specific,

fine-grained events during request processing.

6.1. JSF Phase events

A JSF phase listener is a class that implements javax.faces.event.PhaseListener and is

registered in the web application's faces-config.xml file. By implementing the methods of the

interfaces, the user can observe events fired before or after any of the six lifecycle phases of a

JSF request: restore view, apply request values, process validations, update model

values, invoke application or render view.

6.1.1. Seam Faces Phase events

What Seam provides is propagation of these Phase events to the CDI event bus; therefore, you

can observe events using normal CDI @Observes methods. Bringing the events to CDI beans

removes the need to register phase listener classes via XML, and gives the added benefit of

injection, alternatives, interceptors and access to all other features of CDI.

Creating an observer method in CDI is simple; just provide a method in a managed bean that is

annotated with @Observes. Each observer method must accept one method parameter: the event

object; the type of this object determines the type of event being observed.

In this case, the event object passed along from the phase listener is a

javax.faces.event.PhaseEvent. The following example observes all Phase events.

public void observeAll(@Observes PhaseEvent e)

{

 // Do something with the event object

}

Events can be further filtered by adding Qualifiers. The name of the method itself is not significant.

(See the CDI Reference Guide for more information on events and observing.)

Since the example above simply processes all events, however, it might be appropriate to filter

out some events that we aren't interested in. As stated earlier, there are six phases in the JSF

lifecycle, and an event is fired before and after each, for a total of 12 events. The @Before and

@After "temporal" qualifiers can be used to observe events occurring only before or only after a

Phase event. For example:

Chapter 6. Faces Events Propa...

22

public void observeBefore(@Observes @Before PhaseEvent e)

{

 // Do something with the "before" event object

}

public void observeAfter(@Observes @After PhaseEvent e)

{

 // Do something with the "after" event object

}

If we are interested in both the "before" and "after" event of a particular phase, we can limit them

by adding a "lifecycle" qualifier that corresponds to the phase:

public void observeRenderResponse(@Observes @RenderResponse PhaseEvent e)

{

 // Do something with the "render response" event object

}

By combining a temporal and lifecycle qualifier, we can achieve the most specific qualification:

public void observeBeforeRenderResponse(@Observes @Before @RenderResponse PhaseEvent e)

{

 // Do something with the "before render response" event object

}

6.1.2. Phase events listing

This is the full list of temporal and lifecycle qualifiers

Qualifier Type Description

@Before temporal Qualifies events before lifecycle phases

@After temporal Qualifies events after lifecycle phases

@RestoreView lifecycle Qualifies events from the "restore view" phase

@ApplyRequestValueslifecycle Qualifies events from the "apply request values" phase

@ProcessValidationslifecycle Qualifies events from the "process validations" phase

@UpdateModelValueslifecycle Qualifies events from the "update model values" phase

JSF system events

23

Qualifier Type Description

@InvokeApplicationlifecycle Qualifies events from the "invoke application" phase

@RenderResponselifecycle Qualifies events from the "render response" phase

The event object is always a javax.faces.event.PhaseEvent and according to the general CDI

principle, filtering is tightened by adding qualifiers and loosened by omitting them.

6.2. JSF system events

Similar to JSF Phase Events, System Events take place when specific events occur within the

JSF life-cycle. Seam Faces provides a bridge for all JSF System Events, and propagates these

events to CDI.

6.2.1. Seam Faces System events

This is an example of observing a Faces system event:

public void observesThisEvent(@Observes ExceptionQueuedEvent e)

{

 // Do something with the event object

}

6.2.2. System events listing

Since all JSF system event objects are distinct, no qualifiers are needed to observe them. The

following events may be observed:

Event object Context Description

SystemEvent all All events

ComponentSystemEvent component All component events

PostAddToViewEvent component After a component was added to the view

PostConstructViewMapEvent component After a view map was created

PostRestoreStateEvent component After a component has its state restored

PostValidateEvent component After a component has been validated

PreDestroyViewMapEvent component Before a view map has been restored

PreRemoveFromViewEvent component Before a component has been removed from

the view

PreRenderComponentEvent component After a component has been rendered

PreRenderViewEvent component Before a view has been rendered

Chapter 6. Faces Events Propa...

24

Event object Context Description

PreValidateEvent component Before a component has been validated

ExceptionQueuedEvent system When an exception has been queued

PostConstructApplicationEvent system After the application has been constructed

PostConstructCustomScopeEvent system After a custom scope has been constructed

PreDestroyApplicationEvent system Before the application is destroyed

PreDestroyCustomScopeEvent system Before a custom scope is destroyed

6.2.3. Component system events

There is one qualifier, @Component that can be used with component events by

specifying the component ID. Note that view-centric component events PreRenderViewEvent,

PostConstructViewMapEvent and PreDestroyViewMapEvent do not fire with the @Component

qualifier.

public void observePrePasswordValidation(@Observes @Component("form:password") PreValidateEvent e)

{

// Do something with the "before password is validated" event object

}

Global system events are observer without the component qualifier

public void observeApplicationConstructed(@Observes PostConstructApplicationEvent e)

{

// Do something with the "after application is constructed" event object

}

The name of the observing method is not relevant; observers are defined solely via annotations.

	Seam Faces Module
	Table of Contents
	Introduction
	Chapter 1. Installation
	Chapter 2. Faces Scoping Support
	2.1. @RenderScoped
	2.2. @Inject javax.faces.contet.Flash flash
	2.3. @ViewScoped

	Chapter 3. Messages API
	3.1. Adding Messages
	3.2. Displaying pending messages

	Chapter 4. Seam Faces Components
	4.1. Introduction
	4.2. <s:validateForm>
	4.3. <s:viewAction>
	4.3.1. Motivation
	4.3.2. Usage
	4.3.3. View actions vs the PreRenderViewEvent

	4.4. UI Input Container

	Chapter 5. Faces Artifact Injection
	5.1. @*Scoped and @Inject in Validators and Converters
	5.2. @Inject'able Faces Artifacts

	Chapter 6. Faces Events Propagation
	6.1. JSF Phase events
	6.1.1. Seam Faces Phase events
	6.1.2. Phase events listing

	6.2. JSF system events
	6.2.1. Seam Faces System events
	6.2.2. System events listing
	6.2.3. Component system events

