
Seam Persistence

iii

1. Seam Persistence Reference ... 1

1.1. Introduction .. 1

1.2. Getting Started ... 2

1.3. Seam-managed persistence contexts ... 3

1.3.1. Using a Seam-managed persistence context with JPA 3

1.3.2. Seam-managed persistence contexts and atomic conversations 4

1.3.3. Using EL in EJB-QL/HQL ... 4

1.3.4. Setting up the EntityManager .. 5

iv

Chapter 1.

1

Seam Persistence Reference
Seam provides extensive support for the two most popular persistence architectures for Java:

Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique state-

management architecture allows the most sophisticated ORM integration of any web application

framework.

Note

Previously the Seam Persistence module provided transactional-related features

also, however as transactions are not an exclusive feature of the persistence

domain, these features have been moved into a separate module called Seam

Transactions.

1.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of

the previous generation of Java application architectures. The state management architecture

of Seam was originally designed to solve problems relating to persistence — in particular

problems associated withoptimistic transaction processing. Scalable online applications always

use optimistic transactions. An atomic (database/JTA) level transaction should not span a user

interaction unless the application is designed to support only a very small number of concurrent

clients. But almost all interesting work involves first displaying data to a user, and then, slightly

later, updating the same data. So Hibernate was designed to support the idea of a persistence

context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no

construct for representing an optimistic transaction. So, instead, these architectures provided

persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems

for users, and is the cause of the number one user complaint about Hibernate: the dreaded

LazyInitializationException. What we need is a construct for representing an optimistic

transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful

session bean) with an extended persistence context scoped to the lifetime of the component. This

is a partial solution to the problem (and is a useful construct in and of itself) however there are

two problems:

• The lifecycle of the stateful session bean must be managed manually via code in the web tier

(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

• Propagation of the persistence context between stateful components in the same optimistic

transaction is possible, but tricky.

Chapter 1. Seam Persistence R...

2

Seam solves the first problem by providing conversations, and stateful session bean components

scoped to the conversation. (Most conversations actually represent optimistic transactions in the

data layer.) This is sufficient for many simple applications (such as the Seam booking demo) where

persistence context propagation is not needed. For more complex applications, with many loosely-

interacting components in each conversation, propagation of the persistence context across

components becomes an important issue. So Seam extends the persistence context management

model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

1.2. Getting Started

To get started with Seam Persistence you need to add seam-persistence.jar and solder-

impl.jar to your deployment. The relevant Maven configuration is as follows:

<dependency>

 <groupId>org.jboss.seam.persistence</groupId>

 <artifactId>seam-persistence-api</artifactId>

 <version>${seam.persistence.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.seam.persistence</groupId>

 <artifactId>seam-persistence</artifactId>

 <version>${seam.persistence.version}</version>

</dependency>

<dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>solder-impl</artifactId>

 <version>${solder.version}</version>

</dependency>

You will also need to have a JPA provider on the classpath. If you are using java EE this is taken

care of for you. If not, we recommend hibernate.

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-core</artifactId>

 <version>3.5.1-Final</version>

</dependency>

Seam-managed persistence contexts

3

1.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to

manage the persistence context lifecycle for you. Even if you are in an EE environment, you might

have a complex application with many loosely coupled components that collaborate together in the

scope of a single conversation, and in this case you might find that propagation of the persistence

context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session

(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam

component that manages an instance of EntityManager or Session in the conversation (or any

other) context. You can inject it with@Inject.

1.3.1. Using a Seam-managed persistence context with JPA

@ExtensionManaged

@Produces

@PersistenceUnit

@ConversationScoped

EntityManagerFactory producerField;

This is just an ordinary resource producer field as defined by the CDI specification, however

the presence of the @ExtensionManaged annotation tells seam to create a seam managed

persistence context from thisEntityManagerFactory. This managed persistence context can be

injected normally, and has the same scope and qualifiers that are specified on the resource

producer field.

This will work even in a SE environment where @PersistenceUnit injection is not

normally supported. This is because the seam persistence extensions will bootstrap the

EntityManagerFactory for you.

Now we can have our EntityManager injected using:

@Inject EntityManager entityManager;

Note

The more eagle eyed among you may have noticed that the resource producer field

appears to be conversation scoped, which the CDI specification does not require

containers to support. This is actually not the case, as the @ConversationScoped

Chapter 1. Seam Persistence R...

4

annotation is removed by the Seam Persistence portable extension. It only

specifies the scope of the created SMPC, not the EntityManagerFactory.

Warning

If you are using EJB3 and mark your class or method

@TransactionAttribute(REQUIRES_NEW) then the transaction and persistence

context shouldn't be propagated to method calls on this object. However as the

Seam-managed persistence context is propagated to any component within the

conversation, it will be propagated to methods marked REQUIRES_NEW. Therefore,

if you mark a method REQUIRES_NEW then you should access the entity manager

using @PersistenceContext.

1.3.2. Seam-managed persistence contexts and atomic

conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions

that span multiple requests to the server without the need to use the merge() operation , without

the need to re-load data at the beginning of each request, and without the need to wrestle with

the LazyInitializationException or NonUniqueObjectException.

As with any optimistic transaction management, transaction isolation and consistency can be

achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.1 make it very easy

to use optimistic locking, by providing the @Version annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of

each transaction. This is sometimes the desired behavior. But very often, we would prefer that

all changes are held in memory and only written to the database when the conversation ends

successfully. This allows for truly atomic conversations. Unfortunately there is currently no simple,

usable and portable way to implement atomic conversations using EJB 3.1 persistence. However,

Hibernate provides this feature as a vendor extension to the FlushModeTypes defined by the

specification, and it is our expectation that other vendors will soon provide a similar extension.

1.3.3. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-managed

persistence context. This lets you use EL expressions in your query strings, safely and efficiently.

For example, this:

User user = em.createQuery("from User where username=#{user.username}")

 .getSingleResult();

is equivalent to:

Setting up the EntityManager

5

User user = em.createQuery("from User where username=:username")

 .setParameter("username", user.getUsername())

 .getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!

 .getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

Warning

This only works with Seam managed persistence contexts, not persistence

contexts that are injected with @PersistenceContext.

1.3.4. Setting up the EntityManager

Sometimes you may want to perform some additional setup on the EntityManager after it has

been created. For example, if you are using Hibernate you may want to set a filter. Seam

persistence fires a SeamManagedPersistenceContextCreated event when a Seam managed

persistence context is created. You can observe this event and perform any setup you require in

an observer method. For example:

public void setupEntityManager(@Observes SeamManagedPersistenceContextCreated

 event) {

 Session session = (Session) event.getEntityManager().getDelegate();

 session.enableFilter("myfilter");

 }

6

	Seam Persistence
	Table of Contents
	Chapter 1. Seam Persistence Reference
	1.1. Introduction
	1.2. Getting Started
	1.3. Seam-managed persistence contexts
	1.3.1. Using a Seam-managed persistence context with JPA
	1.3.2. Seam-managed persistence contexts and atomic conversations
	1.3.3. Using EL in EJB-QL/HQL
	1.3.4. Setting up the EntityManager

