
Seam Remoting

iii

1. Seam Remoting - Basic Features .. 1

1.1. Configuration .. 1

1.1.1. Dynamic type loading ... 2

1.2. The "Seam" object .. 2

1.2.1. A Hello World example ... 2

1.2.2. Seam.createBean ... 4

1.3. The Context ... 5

1.3.1. Setting and reading the Conversation ID ... 5

1.3.2. Remote calls within the current conversation scope 5

1.4. Working with Data types ... 5

1.4.1. Primitives / Basic Types ... 5

1.4.2. JavaBeans ... 6

1.4.3. Dates and Times ... 6

1.4.4. Enums ... 6

1.4.5. Collections ... 6

1.5. Debugging .. 7

1.6. Handling Exceptions ... 7

1.7. The Loading Message .. 8

1.7.1. Changing the message .. 8

1.7.2. Hiding the loading message .. 9

1.7.3. A Custom Loading Indicator .. 9

1.8. Controlling what data is returned ... 9

1.8.1. Constraining normal fields ... 10

1.8.2. Constraining Maps and Collections .. 10

1.8.3. Constraining objects of a specific type ... 11

1.8.4. Combining Constraints .. 11

2. Seam Remoting - Bean Validation ... 13

2.1. Validating a single object ... 13

2.2. Validating a single property ... 14

2.3. Validating multiple objects and/or properties ... 15

2.4. Validation groups .. 16

2.5. Handling validation failures .. 16

3. Seam Remoting - Model API .. 19

3.1. Introduction ... 19

3.2. Model Operations .. 19

3.3. Fetching a model .. 23

3.3.1. Fetching a bean value .. 26

3.4. Modifying model values ... 26

3.5. Expanding a model ... 27

3.6. Applying Changes ... 28

iv

Chapter 1.

1

Seam Remoting - Basic Features
Seam provides a convenient method of remotely accessing CDI beans from a web page, using

AJAX (Asynchronous Javascript and XML). The framework for this functionality is provided with

almost no up-front development effort - your beans only require simple annotating to become

accessible via AJAX. This chapter describes the steps required to build an AJAX-enabled web

page, then goes on to explain the features of the Seam Remoting framework in more detail.

1.1. Configuration

To use remoting, the Seam Remoting servlet must first be configured in your web.xml file:

<servlet>

 <servlet-name>Remoting Servlet</servlet-name>

 <servlet-class>org.jboss.seam.remoting.Remoting</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Remoting Servlet</servlet-name>

 <url-pattern>/seam/resource/remoting/*</url-pattern>

</servlet-mapping>

Note
If your application is running within a Servlet 3.0 (or greater) environment, then

the servlet configuration listed above is not necessary as the Seam Remoting

JAR library bundles a web-fragment.xml that configures the Remoting servlet

automatically.

The next step is to import the necessary Javascript into your web page. There are a minimum of

two scripts that must be imported. The first one contains all the client-side framework code that

enables remoting functionality:

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js"></script>

By default, the client-side JavaScript is served in compressed form, with white space compacted

and JavaScript comments removed. For a development environment, you may wish to use the

uncompressed version of remote.js for debugging and testing purposes. To do this, simply add

the compress=false parameter to the end of the url:

Chapter 1. Seam Remoting - Ba...

2

<script type="text/javascript" src="seam/resource/remoting/resource/remote.js?

compress=false"></script>

The second script that you need contains the stubs and type definitions for the beans you wish

to call. It is generated dynamically based on the method signatures of your beans, and includes

type definitions for all of the classes that can be used to call its remotable methods. The name of

the script reflects the name of your bean. For example, if you have a named bean annotated with

@Named, then your script tag should look like this (for a bean class called CustomerAction):

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction"></script>

Otherwise, you can simply specify the fully qualified class name of the bean:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?com.acme.myapp.CustomerAction"></script>

If you wish to access more than one bean from the same page, then include them all as parameters

of your script tag:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?customerAction&accountAction"></script>

1.1.1. Dynamic type loading

If you forget to import a bean or other class that is required by your bean, don't worry. Seam

Remoting has a dynamic type loading feature that automatically loads any JavaScript stubs for

bean types that it doesn't recognize.

1.2. The "Seam" object

Client-side interaction with your beans is all performed via the Seam Javascript object. This object

is defined in remote.js, and you'll be using it to make asynchronous calls against your bean.

It contains methods for creating client-side bean objects and also methods for executing remote

requests. The easiest way to become familiar with this object is to start with a simple example.

1.2.1. A Hello World example

Let's step through a simple example to see how the Seam object works. First of all, let's create a

new bean called helloAction:

A Hello World example

3

@Named

public class HelloAction implements HelloLocal {

 @WebRemote public String sayHello(String name) {

 return "Hello, " + name;

 }

}

Take note of the @WebRemote annotation on the sayHello() method in the above listing. This

annotation makes the method accessible via the Remoting API. Besides this annotation, there's

nothing else required on your bean to enable it for remoting.

Note

If you are performing a persistence operation in the method marked @WebRemote

you will also need to add a @Transactional annotation to the method. Otherwise,

your method would execute outside of a transaction without this extra hint.That's

because unlike a JSF request, Seam does not wrap the remoting request in a

transaction automatically.

Now for our web page - create a new JSF page and import the helloAction bean:

<script type="text/javascript"

 src="seam/resource/remoting/interface.js?helloAction

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">

 //<![CDATA[

 function sayHello() {

 var name = prompt("What is your name?");

 Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

 }

 function sayHelloCallback(result) {

Chapter 1. Seam Remoting - Ba...

4

 alert(result);

 }

 //]]>

</script>

We're done! Deploy your application and open the page in a web browser. Click the button, and

enter a name when prompted. A message box will display the hello message confirming that the

call was successful. If you want to save some time, you'll find the full source code for this Hello

World example in the /examples/helloworld directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start

with, you can see from the Javascript code listing that we have implemented two methods - the first

method is responsible for prompting the user for their name and then making a remote request.

Take a look at the following line:

Seam.createBean("helloAction").sayHello(name, sayHelloCallback);

The first section of this line, Seam.createBean("helloAction") returns a proxy, or "stub" for our

helloAction bean. We can invoke the methods of our bean against this stub, which is exactly

what happens with the remainder of the line: sayHello(name, sayHelloCallback);.

What this line of code in its completeness does, is invoke the sayHello method of our bean,

passing in name as a parameter. The second parameter, sayHelloCallback isn't a parameter of

our bean's sayHello method, instead it tells the Seam Remoting framework that once it receives

the response to our request, it should pass it to the sayHelloCallback Javascript method. This

callback parameter is entirely optional, so feel free to leave it out if you're calling a method with

a void return type or if you don't care about the result.

The sayHelloCallback method, once receiving the response to our remote request then pops

up an alert message displaying the result of our method call.

1.2.2. Seam.createBean

The Seam.createBean JavaScript method is used to create client-side instances of both action

and "state" beans. For action beans (which are those that contain one or more methods annotated

with @WebRemote), the stub object provides all of the remotable methods exposed by the bean.

For "state" beans (i.e. beans that simply carry state, for example Entity beans) the stub object

provides all the same accessible properties as its server-side equivalent. Each property also has

a corresponding getter/setter method so you can work with the object in JavaScript in much the

same way as you would in Java.

The Context

5

1.3. The Context

The Seam Remoting Context contains additional information which is sent and received as part

of a remoting request/response cycle. It currently contains the conversation ID and Call ID, and

may be expanded to include other properties in the future.

1.3.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to

read or set the conversation ID in the Seam Remoting Context. To read the conversation ID after

making a remote request call Seam.context.getConversationId(). To set the conversation ID

before making a request, call Seam.context.setConversationId().

If the conversation ID hasn't been explicitly set with Seam.context.setConversationId(), then

it will be automatically assigned the first valid conversation ID that is returned by any remoting call.

If you are working with multiple conversations within your page, then you may need to explicitly

set the conversation ID before each call. If you are working with just a single conversation, then

you don't need to do anything special.

1.3.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current

view's conversation. To do this, you must explicitly set the conversation ID to that of the view

before making the remote call. This small snippet of JavaScript will set the conversation ID that

is used for remoting calls to the current view's conversation ID:

Seam.context.setConversationId(#{conversation.id});

1.4. Working with Data types

1.4.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values as a rule

are compatible with either their primitive type or their corresponding wrapper class.

1.4.1.1. String

Simply use Javascript String objects when setting String parameter values.

1.4.1.2. Number

There is support for all number types supported by Java. On the client side, number values are

always serialized as their String representation and then on the server side they are converted

to the correct destination type. Conversion into either a primitive or wrapper type is supported for

Byte, Double, Float, Integer, Long and Short types.

Chapter 1. Seam Remoting - Ba...

6

1.4.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java

boolean.

1.4.2. JavaBeans

In general these will be either entity beans or JavaBean classes, or some other non-bean class.

Use Seam.createBean() to create a new instance of the object.

1.4.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the

client side, use a JavaScript Date object to work with date values. On the server side, use any

java.util.Date (or descendent, such as java.sql.Date or java.sql.Timestamp class.

1.4.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum

parameter, simply use the String representation of the enum. Take the following bean as an

example:

@Named

public class paintAction {

 public enum Color {red, green, blue, yellow, orange, purple};

 public void paint(Color color) {

 // code

 }

}

To call the paint() method with the color red, pass the parameter value as a String literal:

Seam.createBean("paintAction").paint("red");

The inverse is also true - that is, if a bean method returns an enum parameter (or contains an enum

field anywhere in the returned object graph) then on the client-side it will be converted to a String.

1.4.5. Collections

1.4.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see

the next section for those), and are implemented client-side as a JavaScript array. When calling

Debugging

7

a bean method that accepts one of these types as a parameter, your parameter should be a

JavaScript array. If a bean method returns one of these types, then the return value will also be a

JavaScript array. The remoting framework is clever enough on the server side to convert the bag

to an appropriate type (including sophisticated support for generics) for the bean method call.

1.4.5.2. Maps

As there is no native support for Maps within JavaScript, a simple Map implementation is provided

with the Seam Remoting framework. To create a Map which can be used as a parameter to a

remote call, create a new Seam.Map object:

var map = new Seam.Map();

This JavaScript implementation provides basic methods for working with Maps: size(),

isEmpty(), keySet(), values(), get(key), put(key, value), remove(key) and

contains(key). Each of these methods are equivalent to their Java counterpart. Where the

method returns a collection, such as keySet() and values(), a JavaScript Array object will be

returned that contains the key or value objects (respectively).

1.5. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents

of all the packets send back and forth between the client and server in a popup window. To enable

debug mode, set the Seam.debug property to true in Javascript:

Seam.debug = true;

If you want to write your own messages to the debug log, call Seam.log(message).

1.6. Handling Exceptions

When invoking a remote bean method, it is possible to specify an exception handler which will

process the response in the event of an exception during bean invocation. To specify an exception

handler function, include a reference to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.createBean("helloAction").sayHello(name, callback, exceptionHandler);

If you do not have a callback handler defined, you must specify null in its place:

Chapter 1. Seam Remoting - Ba...

8

var exceptionHandler = function(ex) { alert("An exception occurred: " + ex.getMessage()); };

Seam.createBean("helloAction").sayHello(name, null, exceptionHandler);

The exception object that is passed to the exception handler exposes two methods,

getExceptionClass() which returns the name of the exception class that was thrown, and

getMessage(), which returns the exception message which is produced by the exception thrown

by the @WebRemote method.

It is also possible to register a global exception handler, which will be invoked if there is no

exception handler defined for an individual invocation. By default, the global exception handler will

display an alert message notifying the user that there was an exception - here's what the default

exception handler looks like:

Seam.defaultExceptionHandler = function(exception) {

 alert("An exception has occurred while executing a remote request: " +

 exception.getExceptionClass() + ":" + exception.getMessage());

};

If you would like to provide your own global exception handler, then simply override the value of

Seam.exceptionHandler with your own custom exception handler, as in the following example:

 function customExceptionHandler(exception) {

 alert("Uh oh, something bad has happened! [" + exception.getExceptionClass() + ":" +

 exception.getMessage() + "]");

 }

 Seam.exceptionHandler = customExceptionHandler;

1.7. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,

its rendering customised or even turned off completely.

1.7.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of

Seam.loadingMessage:

Hiding the loading message

9

Seam.loadingMessage = "Loading...";

1.7.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of

displayLoadingMessage() and hideLoadingMessage() with functions that instead do nothing:

// don't display the loading indicator

Seam.displayLoadingMessage = function() {};

Seam.hideLoadingMessage = function() {};

1.7.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else

that you want. To do this override the displayLoadingMessage() and hideLoadingMessage()

messages with your own implementation:

 Seam.displayLoadingMessage = function() {

 // Write code here to display the indicator

 };

 Seam.hideLoadingMessage = function() {

 // Write code here to hide the indicator

 };

1.8. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned

to the client. This response is then unmarshaled by the client into a JavaScript object. For

complex types (i.e. Javabeans) that include references to other objects, all of these referenced

objects are also serialized as part of the response. These objects may reference other objects,

which may reference other objects, and so forth. If left unchecked, this object "graph" could

potentially be enormous, depending on what relationships exist between your objects. And as

a side issue (besides the potential verbosity of the response), you might also wish to prevent

sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain" the object graph, by specifying the

exclude field of the remote method's @WebRemote annotation. This field accepts a String array

containing one or more paths specified using dot notation. When invoking a remote method, the

objects in the result's object graph that match these paths are excluded from the serialized result

packet.

Chapter 1. Seam Remoting - Ba...

10

For all our examples, we'll use the following Widget class:

public class Widget

{

 private String value;

 private String secret;

 private Widget child;

 private Map<String,Widget> widgetMap;

 private List<Widget> widgetList;

 // getters and setters for all fields

}

1.8.1. Constraining normal fields

If your remote method returns an instance of Widget, but you don't want to expose the secret

field because it contains sensitive information, you would constrain it like this:

@WebRemote(exclude = {"secret"})

public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't

care about exposing this particular field to the client. Instead, notice that the Widget value that

is returned has a field child that is also a Widget. What if we want to hide the child's secret

value instead? We can do this by using dot notation to specify this field's path within the result's

object graph:

@WebRemote(exclude = {"child.secret"})

public Widget getWidget();

1.8.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of

collection (List, Set, Array, etc). Collections are easy, and are treated like any other field. For

example, if our Widget contained a list of other Widgets in its widgetList field, to constrain the

secret field of the Widgets in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})

public Widget getWidget();

Constraining objects of a specific type

11

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's

field name will constrain the Map's key object values, while [value] will constrain the value object

values. The following example demonstrates how the values of the widgetMap field have their

secret field constrained:

@WebRemote(exclude = {"widgetMap[value].secret"})

public Widget getWidget();

1.8.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter

where in the result's object graph it appears. This notation uses either the name of the bean (if

the object is a named bean) or the fully qualified class name (only if the object is not a named

bean) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})

public Widget getWidget();

1.8.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})

public Widget getWidget();

12

Chapter 2.

13

Seam Remoting - Bean Validation
Seam Remoting provides integrated support for JSR-303 Bean Validation, which defines a

standard approach for validating Java Beans no matter where they are used; web tier or

persistence tier, server or client. Bean validation for remoting delivers JSR-303's vision by making

all of the validation constraints declared by the server-side beans available on the client side, and

allows developers to perform client-side bean validation in an easy to use, consistent fashion.

Client-side validation by its very nature is an asynchronous operation, as it is possible that

the client may encounter a custom validation constraint for which it has no knowledge of the

corresponding validation logic. Under these circumstances, the client will make a request to the

server for the validation to be performed server-side, after which it receives the result will forward it

to the client-side callback method. All built-in validation types defined by the JSR-303 specification

are executed client-side without requiring a round-trip to the server. It is also possible to provide

the client-side validation API with custom JavaScript to allow client-side execution of custom

validations.

2.1. Validating a single object

The Seam.validateBean() method may be used to validate a single object. It accepts the

following parameter values:

 Seam.validateBean(bean, callback, groups);

The bean parameter is the object to validate.

The callback parameter should contain a reference to the callback method to invoke once

validation is complete.

The groups parameter is optional, however may be specified if only certain validation groups

should be validated. The groups parameter may be a String or an array of String values for

when multiple groups are to be validated.

Here's an example showing how a bean called customer is validated:

 function test() {

 var customer = Seam.createBean("com.acme.model.Customer");

 customer.setFirstName("John");

 customer.setLastName("Smith");

 Seam.validateBean(customer, validationCallback);

 }

 function validationCallback(violations) {

Chapter 2. Seam Remoting - Be...

14

 if (violations.length == 0) alert("All validations passed!");

 }

Tip

By default, when Seam Remoting performs validation for a single bean it will

traverse the entire object graph for that bean and validate each unique object that

it finds. If you don't wish to validate the entire object graph, then please refer to the

section on validating multiple objects later in this chapter for an alternative.

2.2. Validating a single property

Sometimes it might not be desirable to perform validation for all properties of a bean. For example,

you might have a dynamic form which displays validation errors as the user tabs between fields.

In this situation, you may use the Seam.validateProperty() method to validate a single bean

property.

Seam.validateProperty(bean, property, callback, groups)

The bean parameter is the object containing the property that is to be validated.

The property parameter is the name of the property to validate.

The callback parameter is a reference to the callback function to invoke once the property has

been validated.

The groups parameter is optional, however may be specified if validating the property against a

certain validation group. The groups parameter may be a String or an array of String values

for multiple groups.

Here's an example showing how to validate the firstName property of a bean called customer:

 function test() {

 var customer = Seam.createBean("com.acme.model.Customer");

 customer.setFirstName("John");

 Seam.validateProperty(customer, "firstName", validationCallback);

 }

 function validationCallback(violations) {

 if (violations.length == 0) alert("All validations passed!");

 }

Validating multiple objects and/or properties

15

2.3. Validating multiple objects and/or properties

It is also possible to perform multiple validations for beans and bean properties in one go. This

might be useful for example to perform validation of forms that present data from more than one

bean. The Seam.validate() method takes the following parameters:

 Seam.validate(validations, callback, groups);

The validations parameter should contain a list of the validations to perform. It may either be an

associative array (for a single validation), or an array of associative arrays (for multiple validations)

which define the validations that should be performed. We'll look at this parameter more closely

in just a moment.

The callback parameter should contain a reference to the callback function to invoke once

validation is complete. The optional groups parameter should contain the group name/s for which

to perform validation.

The groups parameter allows one or more validation groups (specified by providing a String or

array of String values) to be validated. The validation groups specified here will be applied to all

bean values contained in the validations parameter.

The simplest example, in which we wish to validate a single object would look like this:

 Seam.validate({bean:customer}, callback);

In the above example, validation will be performed for the customer object, after which the function

named validationCallback will be invoked.

Validate multiple beans is done by passing in an array of validations:

 Seam.validate([{bean:customer}, {bean:order}], callback);

Single properties can be validated by specifying a property name:

 Seam.validate({bean:customer, property: "firstName"}, callback);

To prevent the entire object graph from being validated, the traverse property may be set to

false:

Chapter 2. Seam Remoting - Be...

16

 Seam.validate({bean:customer, traverse: false}, callback);

Validation groups may also be set for each individual validation, by setting the groups property

to a String or array of Strings value:

 Seam.validate({bean:customer, groups: "default"}, callback);

2.4. Validation groups

Validation group names should be the unqualified class name of the group class. For example,

for the class com.acme.InternalRegistration, the client-side group name should be specified

as InternalRegistration:

 Seam.validateBean(user, callback, "InternalRegistration"

It is also possible to set the default validation groups against which all validations will be performed,

by setting the Seam.ValidationGroups property:

 Seam.ValidationGroups = ["Default", "ExternalRegistration"];

If no explicit group is set for the default, and no group is specified when performing validation,

then the validation process will be executed against the 'Default' group.

2.5. Handling validation failures

If any validations fail during the validation process, then the callback method specified in the

validation function will be invoked with an array of constraint violations. If all validations pass, this

array will be empty. Each object in the array represents a single constraint violation, and contains

the following property values:

bean - the bean object for which the validation failed.

property - the name of the property that failed validation

value - the value of the property that failed validation

message - a message string describing the nature of the validation failure

The callback method should contain business logic that will process the constraint violations and

update the user interface accordingly to inform the user that validation has failed. The following

Handling validation failures

17

minimalistic example demonstrates how the validation errors can be displayed to the user as

popup alerts:

 function validationCallback(violations) {

 for (var i = 0; i < violations.length; i++) {

 alert(violations[i].property + "=" + violations[i].value + " [violation] -> " + violations[i].message);

18

Chapter 3.

19

Seam Remoting - Model API

3.1. Introduction

The Model API builds on top of Seam Remoting's object serialization features to provide a

component-based approach to working with a server-side object model, as opposed to the RPC-

based approach provided by the standard Remoting API. This allows a client-side representation

of a server-side object graph to be modified ad hoc by the client, after which the changes made to

the objects in the graph can be applied to the corresponding server-side objects. When applying

the changes the client determines exactly which objects have been modified by recursively walking

the client-side object tree and generating a delta by comparing the original property values of the

objects with their new property values.

This approach, when used in conjunction with the extended persistence context provided by

Seam elegantly solves a number of problems faced by AJAX developers when working remotely

with persistent objects. A persistent, managed object graph can be loaded at the start of a

new conversation, and then across multiple requests the client can fetch the objects, make

incremental changes to them and apply those changes to the same managed objects after which

the transaction can be committed, thereby persisting the changes made.

One other useful feature of the Model API is its ability to expand a model. For example, if you

are working with entities with lazy-loaded associations it is usually not a good idea to blindly fetch

the associated objects (which may in turn themselves contain associations to other entities, ad

nauseum), as you may inadvertently end up fetching the bulk of your database. Seam Remoting

already knows how to deal with lazy-loaded associations by automatically excluding them when

marshalling instances of entity beans, and assigning them a client-side value of undefined (which

is a special JavaScript value, distinct from null). The Model API goes one step further by giving

the client the option of manipulating the associated objects also. By providing an expand operation,

it allows for the initialization of a previously-uninitialized object property (such as a lazy-loaded

collection), by dynamically "grafting" the initialized value onto the object graph. By expanding the

model in this way, we have at our disposal a powerful tool for building dynamic client interfaces.

3.2. Model Operations

For the methods of the Model API that accept action parameters, an instance of Seam.Action

should be used. The constructor for Seam.Action takes no parameters:

 var action = new Seam.Action();

The following table lists the methods used to define the action. Each of the following methods

return a reference to the Seam.Action object, so methods can be chained.

Chapter 3. Seam Remoting - Mo...

20

Table 3.1. Seam.Action method reference

Method Description

setBeanType(beanType) Sets the class name of the bean to be invoked.

• beanType - the fully qualified class name of the bean

type to be invoked.

setQualifiers(qualifiers) Sets the qualifiers for the bean to be invoked.

• qualifiers - a comma-separated list of bean qualifier

names. The names may either be the simple or fully

qualified names of the qualifier classes.

setMethod(method) Sets the name of the bean method.

• method - the name of the bean method to invoke.

addParam(param) Adds a parameter value for the action method. This

method should be called once for each parameter value

to be added, in the correct parameter order.

• param - the parameter value to add.

The following table describes the methods provided by the Seam.Model object. To work with the

Model API in JavaScript you must first create a new Model object:

 var model = new Seam.Model();

Table 3.2. Seam.Model method reference

Method Description

addBean(alias, bean,

qualifiers)

Adds a bean value to the model. When the model is

fetched, the value of the specified bean will be read and

placed into the model, where it may be accessed by

using the getValue() method with the specified alias.

Can only be used before the model is fetched.

• alias - the local alias for the bean value.

• bean - the name of the bean, either specified by the

@Named annotation or the fully qualified class name.

• qualifiers (optional) - a list of bean qualifiers.

Model Operations

21

Method Description

addBeanProperty(alias, bean,

property, qualifiers)

Adds a bean property value to the model. When the

model is fetched, the value of the specified property on

the specified bean will be read and placed into the model,

where it may be accessed by using the getValue()

method with the specified alias.

Can only be used before the model is fetched.

Example:

 addBeanProperty("account", "AccountAction",

 "account", "@Qualifier1", "@Qualifier2");

• alias - the local alias for the bean value.

• bean - the name of the bean, either specified by the

@Named annotation or the fully qualified class name.

• property - the name of the bean property.

• qualifiers (optional) - a list of bean qualifiers. This

parameter (and any after it) are treated as bean

qualifiers.

fetch(action, callback) Fetches the model - this operation causes an

asynchronous request to be sent to the server. The

request contains a list of the beans and bean properties

(set by calling the addBean() and addBeanProperty()

methods) for which values will be returned. Once the

response is received, the callback method (if specified)

will be invoked, passing in a reference to the model as

a parameter.

A model should only be fetched once.

• action (optional) - a Seam.Action instance

representing the bean action to invoke before the

model values are read and stored in the model.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the model has been

fetched. A reference to the model instance is passed

to the callback method as a parameter.

Chapter 3. Seam Remoting - Mo...

22

Method Description

getValue(alias) This method returns the value of the object with the

specified alias.

• alias - the alias of the value to return.

expand(value, property,

callback)

Expands the model by initializing a property value that

was previously uninitialized. This operation causes an

asynchronous request to be sent to the server, where

the uninitialized property value (such as a lazy-loaded

collection within an entity bean association) is initialized

and the resulting value is returned to the client. Once the

response is received, the callback method (if specified)

will be invoked, passing in a reference to the model as

a parameter.

• value - a reference to the value containing the

uninitialized property to fetch. This can be any value

within the model, and does not need to be a "root"

value (i.e. it doesn't need to be a value specified

by addBean() or addBeanProperty(), it can exist

anywhere within the object graph.

• property - the name of the uninitialized property to be

initialized.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the model has

been expanded. A reference to the model instance is

passed to the callback method as a parameter.

applyUpdates(action, callback) Applies the changes made to the objects contained in the

model. This method causes an asynchronous request to

be sent to the server containing a delta consisting of a

list of the changes made to the client-side objects.

• action (optional) - a Seam.Action instance

representing a bean method to be invoked after the

client-side model changes have been applied to their

corresponding server-side objects.

• callback (optional) - a reference to a JavaScript

function that will be invoked after the updates have

been applied. A reference to the model instance is

passed to the callback method as a parameter.

Fetching a model

23

3.3. Fetching a model

To fetch a model, one or more values must first be specified using addBean() or

addBeanProperty() before invoking the fetch() operation. Let's work through an example - here

we have an entity bean called Customer:

@Entity Customer implements Serializable {

 private Integer customerId;

 private String firstName;

 private String lastName;

 @Id @GeneratedValue public Integer getCustomerId() { return customerId; }

 public void setCustomerId(Integer customerId) { this.customerId = customerId; }

 public String getFirstName() { return firstName; }

 public void setFirstName(String firstName) { this.firstName = firstName; }

 public String getLastName() { return lastName; }

 public void setLastName(String lastName) { this.lastName = lastName; }

}

We also have a bean called CustomerAction, which is responsible for creating and editing

Customer instances. Since we're only interested in editing a customer right now, the following

code only shows the editCustomer() method:

@ConversationScoped @Named

public class CustomerAction {

 @Inject Conversation conversation;

 @PersistenceContext EntityManager entityManager;

 public Customer customer;

 public void editCustomer(Integer customerId) {

 conversation.begin();

 customer = entityManager.find(Customer.class, customerId);

 }

 public void saveCustomer() {

 entityManager.merge(customer);

 conversation.end();

 }

}

Chapter 3. Seam Remoting - Mo...

24

In the client section of this example, we wish to make changes to an existing Customer instance, so

we need to use the editCustomer() method of CustomerAction to first load the customer entity,

after which we can access it via the public customer field. Our model object must therefore be

configured to fetch the CustomerAction.customer property, and to invoke the editCustomer()

method when the model is fetched. We start by using the addBeanProperty() method to add a

bean property to the model:

 var model = new Seam.Model();

 model.addBeanProperty("customer", "CustomerAction", "customer");

The first parameter of addBeanProperty() is the alias (in this case customer), which is used to

access the value via the getValue() method. The addBeanProperty() and addBean() methods

can be called multiple times to bind multiple values to the model. An important thing to note is

that the values may come from multiple server-side beans, they aren't all required to come from

the same bean.

Fetching a model

25

We also specify the action that we wish to invoke (i.e. the editCustomer() method). In this

example we know the value of the customerId that we wish to edit, so we can specify this value

as an action method parameter:

 var action = new Seam.Action()

 .setBeanType("CustomerAction")

 .setMethod("editCustomer")

 .addParam(123);

Once we've specified the bean properties we wish to fetch and the action to invoke, we can then

fetch the model. We pass in a reference to the action object as the first parameter of the fetch()

method. Also, since this is an asynchronous request we need to provide a callback method to deal

with the response. The callback method is passed a reference to the model object as a parameter.

Chapter 3. Seam Remoting - Mo...

26

 var callback = function(model) { alert("Fetched customer: "

 model.getValue("customer").firstName +

 " " + model.getValue("customer").lastName); };

 model.fetch(action, callback);

When the server receives a model fetch request, it first invokes the action (if one is specified)

before reading the requested property values and returning them to the client.

3.3.1. Fetching a bean value

Alternatively, if you don't wish to fetch a bean property but rather a bean itself (such as a value

created by a producer method) then the addBean() method is used instead. Let's say we have a

producer method that returns a qualified UserSettings value:

 @Produces @ConversationScoped @Settings UserSettings getUserSettings() {

 /* snip code */

 }

We would add this value to our model with the following code:

 model.addBean("settings", "UserSettings", "@Settings");

The first parameter is the local alias for the value, the second parameter is the fully qualified class

of the bean, and the third (and subsequent) parameter/s are optional bean qualifiers.

3.4. Modifying model values

Once a model has been fetched its values may be read using the getValue() method. Continuing

on with the previous example, we would retrieve the Customer object via it's local alias (customer)

like this:

 var customer = model.getValue("customer");

We are then free to read or modify the properties of the value (or any of the other values within

its object graph).

 alert("Customer name is: " + customer.firstName + " " + customer.lastName);

 customer.setLastName("Jones"); // was Smith, but Peggy got married on the weekend

Expanding a model

27

3.5. Expanding a model

We can use the Model API's ability to expand a model to load uninitialized branches of the objects

in the model's object graph. To understand how this works exactly, let's flesh out our example a

little more by adding an Address entity class, and creating a one-to-many relationship between

Customer and Address.

@Entity Address implements Serializable {

 private Integer addressId;

 private Customer customer;

 private String unitNumber;

 private String streetNumber;

 private String streetName;

 private String suburb;

 private String zip;

 private String state;

 private String country;

 @Id @GeneratedValue public Integer getAddressId() { return addressId; }

 public void setAddressId(Integer addressId) { this.addressId = addressId; }

 @ManyToOne public Customer getCustomer() { return customer; }

 public void setCustomer(Customer customer) { this.customer = customer; }

 /* Snipped other getter/setter methods */

}

Here's the new field and methods that we also need to add to the Customer class:

Chapter 3. Seam Remoting - Mo...

28

 private Collection<Address> addresses;

 @OneToMany(fetch = FetchType.LAZY, mappedBy = "customer", cascade = CascadeType.ALL)

 public Collection<Address> getAddresses() { return addresses; }

 public void setAddresses(Collection<Address> addresses) { this.addresses = addresses; }

As we can see, the @OneToMany annotation on the getAddresses() method specifies a fetch

attribute of LAZY, meaning that by default the customer's addresses won't be loaded automatically

when the customer is. When reading the uninitialized addresses property value from a newly-

fetched Customer object in JavaScript, a value of undefined will be returned.

 getValue("customer").addresses == undefined; // returns true

We can expand the model by making a special request to initialize this uninitialized property

value. The expand() operation takes three parameters - the value containing the property to

be initialized, the name of the property and an optional callback method. The following example

shows us how the customer's addresses property can be initialized:

 model.expand(model.getValue("customer"), "addresses");

The expand() operation makes an asynchronous request to the server, where the property value

is initialized and the value returned to the client. When the client receives the response, it reads

the initialized value and appends it to the model.

 // The addresses property now contains an array of address objects

 alert(model.getValue("customer").addresses.length + " addresses loaded");

3.6. Applying Changes

Once you have finished making changes to the values in the model, you can apply them with the

applyUpdates() method. This method scans all of the objects in the model, compares them with

their original values and generates a delta which may contain one or more changesets to send to

the server. A changeset is simply a list of property value changes for a single object.

Like the fetch() command you can also specify an action to invoke when applying updates,

although the action is invoked after the model updates have been applied. In a typical situation the

invoked action would do things like commit a database transaction, end the current conversation,

etc.

Applying Changes

29

Since the applyUpdates() method sends an asynchronous request like the fetch() and

expand() methods, we also need to specify a callback function if we wish to do something when

the operation completes.

 var action = new Seam.Action();

 .setBeanType("CustomerAction")

 .setMethod("saveCustomer");

 var callback = function() { alert("Customer saved."); };

 model.applyUpdates(action, callback);

The applyUpdates() method performs a refresh of the model, retrieving the latest state of the

objects contained in the model after all updates have been applied and the action method (if

specified) invoked.

30

	Seam Remoting
	Table of Contents
	Chapter 1. Seam Remoting - Basic Features
	1.1. Configuration
	1.1.1. Dynamic type loading

	1.2. The "Seam" object
	1.2.1. A Hello World example
	1.2.2. Seam.createBean

	1.3. The Context
	1.3.1. Setting and reading the Conversation ID
	1.3.2. Remote calls within the current conversation scope

	1.4. Working with Data types
	1.4.1. Primitives / Basic Types
	1.4.1.1. String
	1.4.1.2. Number
	1.4.1.3. Boolean

	1.4.2. JavaBeans
	1.4.3. Dates and Times
	1.4.4. Enums
	1.4.5. Collections
	1.4.5.1. Bags
	1.4.5.2. Maps

	1.5. Debugging
	1.6. Handling Exceptions
	1.7. The Loading Message
	1.7.1. Changing the message
	1.7.2. Hiding the loading message
	1.7.3. A Custom Loading Indicator

	1.8. Controlling what data is returned
	1.8.1. Constraining normal fields
	1.8.2. Constraining Maps and Collections
	1.8.3. Constraining objects of a specific type
	1.8.4. Combining Constraints

	Chapter 2. Seam Remoting - Bean Validation
	2.1. Validating a single object
	2.2. Validating a single property
	2.3. Validating multiple objects and/or properties
	2.4. Validation groups
	2.5. Handling validation failures

	Chapter 3. Seam Remoting - Model API
	3.1. Introduction
	3.2. Model Operations
	3.3. Fetching a model
	3.3.1. Fetching a bean value

	3.4. Modifying model values
	3.5. Expanding a model
	3.6. Applying Changes

