
Seam Servlet Module

Reference Guide
${project.version}

by Dan Allen, Lincoln Baxter III, and Nicklas Karlsson

iii

Introduction ... v

1. Installation ... 1

1.1. Maven dependency configuration ... 1

1.2. Pre-Servlet 3.0 configuration ... 2

2. Servlet event propagation ... 5

2.1. Servlet context lifecycle events .. 5

2.2. Application initialization ... 6

2.3. Servlet request lifecycle events ... 7

2.4. Servlet response lifecycle events ... 9

2.5. Servlet request context lifecycle events .. 10

2.6. Session lifecycle events .. 12

2.7. Session activation events .. 12

3. Injectable Servlet objects and request state .. 15

3.1. @Inject @RequestParam .. 15

3.2. @Inject @HeaderParam .. 16

3.3. @Inject ServletContext .. 17

3.4. @Inject ServletRequest / HttpServletRequest ... 17

3.5. @Inject ServletResponse / HttpServletResponse .. 17

3.6. @Inject HttpSession .. 18

3.7. @Inject HttpSessionStatus .. 18

3.8. @Inject @ContextPath .. 19

3.9. @Inject List<Cookie> .. 19

3.10. @Inject @CookieParam .. 19

3.11. @Inject @ServerInfo ... 20

3.12. @Inject @Principal .. 20

4. Exception handling: Seam Catch integration ... 21

4.1. Background .. 21

4.2. Defining a exception handler for a web request .. 21

5. Retrieving the BeanManager from the servlet context ... 23

iv

v

Introduction

The goal of the Seam Servlet module is to provide portable enhancements to the Servlet API.

Features include producers for implicit Servlet objects and HTTP request state, propagating

Servlet events to the CDI event bus, forwarding uncaught exceptions to the Seam Catch handler

chain and binding the BeanManager to a Servlet context attribute for convenient access.

vi

Chapter 1.

1

Installation
To use the Seam Servlet module, you need to put the API and implementation JARs on the

classpath of your web application. Most of the features of Seam Servlet are enabled automatically

when it's added to the classpath. Some extra configuration, covered below, is required if you are

not using a Servlet 3-compliant container.

1.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, you can add the following

single dependency to your pom.xml file to include Seam Servlet:

<dependency>

 <groupId>org.jboss.seam.servlet</groupId>

 <artifactId>seam-servlet</artifactId>

 <version>${seam.servlet.version}</version>

</dependency>

Tip

Substitute the expression ${seam.servlet.version} with the most recent or

appropriate version of Seam Servlet. Alternatively, you can create a Maven user-

defined property to satisfy this substitution so you can centrally manage the

version.

Alternatively, you can use the API at compile time and only include the implementation at runtime.

This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.servlet</groupId>

 <artifactId>seam-servlet-api</artifactId>

 <version>${seam.servlet.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.seam.servlet</groupId>

 <artifactId>seam-servlet-impl</artifactId>

 <version>${seam.servlet.version}</version>

 <scope>runtime</scope>

http://maven.apache.org/
http://maven.apache.org/

Chapter 1. Installation

2

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

1.2. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

several Servlet components in your application's web.xml to activate the features provided by this

module:

<listener>

 <listener-class>org.jboss.seam.servlet.event.ServletEventBridgeListener</listener-class>

</listener>

<servlet>

 <servlet-name>Servlet Event Bridge Servlet</servlet-name>

 <servlet-class>org.jboss.seam.servlet.event.ServletEventBridgeServlet</servlet-class>

 <!-- Make load-on-startup large enough to be initialized last (thus destroyed first) -->

 <load-on-startup>99999</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Servlet Event Bridge Servlet</servlet-name>

 <url-pattern>/*</url-pattern>

</servlet-mapping>

<filter>

 <filter-name>Catch Exception Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.exception.CatchExceptionFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Catch Exception Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.event.ServletEventBridgeFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Servlet Event Bridge Filter</filter-name>

Pre-Servlet 3.0 configuration

3

 <url-pattern>/*</url-pattern>

</filter-mapping>

Warning

In order for the Seam Servlet event bridge to properly fire the ServletContext

initialized event, the CDI runtime must be started at the time the Seam Servlet

listener is invoked. This ordering is guaranteed in a compliant Java EE 6

environment. If you are using a CDI implementation in a Servlet environment (e.g.,

Weld Servlet), and it relies on a Servlet listener to bootstrap, that listener must be

registered before any Seam Servlet listener in web.xml.

You're now ready to dive into the Servlet enhancements provided for you by the Seam Servlet

module!

4

Chapter 2.

5

Servlet event propagation
By including the Seam Servlet module in your web application (and performing the necessary

listener configuration for pre-Servlet 3.0 environments), the servlet lifecycle events will be

propagated to the CDI event bus so you can observe them using observer methods on CDI beans.

Seam Servlet also fires additional lifecycle events not offered by the Servlet API, such as when

the response is initialized and destroyed.

2.1. Servlet context lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletContextListener interface. The event propagated is a

javax.servlet.ServletContext (not a javax.servlet.ServletContextEvent, since the

ServletContext is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet context.

The servlet context lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletContextThe servlet context is initialized or destroyed

@Initialized javax.servlet.ServletContextThe servlet context is initialized

@Destroyed javax.servlet.ServletContextThe servlet context is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers on the observer method:

public void observeServletContext(@Observes ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized or destroyed");

}

If you are interested in only a particular lifecycle phase, use one of the provided qualifers:

public void observeServletContextInitialized(@Observes @Initialized ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized");

}

As with all CDI observers, the name of the method is insignificant.

These events are fired using a built-in servlet context listener. The CDI environment will be active

when these events are fired (including when Weld is used in a Servlet container). The listener is

Chapter 2. Servlet event prop...

6

configured to come before listeners in other extensions, so the initialized event is fired before other

servlet context listeners are notified and the destroyed event is fired after other servlet context

listeners are notified. However, this order cannot be not guaranteed if another extension library

is also configured to be ordered before others.

2.2. Application initialization

The servlet context initialized event described in the previous section provides an ideal opportunity

to perform startup logic as an alterative to using an EJB 3.1 startup singleton. Even better, you

can configure the bean to be destroyed immediately following the initialization routine by leaving

it as dependent scoped (dependent-scoped observers only live for the duration of the observe

method invocation).

Here's an example of entering seed data into the database in a development environment (as

indicated by a stereotype annotation named @Development).

@Stateless

@Development

public class SeedDataImporter {

 @PersistenceContext

 private EntityManager em;

 public void loadData(@Observes @Initialized ServletContext ctx) {

 em.persist(new Product(1, "Black Hole", 100.0));

 }

}

If you'd rather not tie yourself to the Servlet API, you can observe the

org.jboss.seam.servlet.WebApplication rather than the ServletContext. WebApplication

is a informational object provided by Seam Servlet that holds select information about the

ServletContext such as the application name, context path, server info and start time.

The web application lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) WebApplication The web application is initialized, started or

destroyed

@Initialized WebApplication The web application is initialized

@Started WebApplication The web application is started (ready)

@Destroyed WebApplication The web application is destroyed

Here's the equivalent of receiving the servlet context initialized event without coupling to the

Servlet API:

Servlet request lifecycle events

7

public void loadData(@Observes @Initialized WebApplication webapp) {

 System.out.println(webapp.getName() + " initialized at " + new Date(webapp.getStartTime()));

}

If you want to perform initialization as late as possible, after all other initialization of the application

is complete, you can observe the WebApplication event qualified with @Started.

public void onStartup(@Observes @Started WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " ready to handle requests");

}

The @Started event is fired in the init method of a built-in Servlet with a load-on-startup value

of 99999.

You can also use WebApplication with the @Destroyed qualifier to be notified when the web

application is stopped. This event is fired by the aforementioned built-in Servlet during it's destroy

method, so likely it should fire when the application is first released.

public void onShutdown(@Observes @Destroyed WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " no longer handling

 requests");

}

2.3. Servlet request lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletRequestListener interface. The event propagated is a

javax.servlet.ServletRequest (not a javax.servlet.ServletRequestEvent, since the

ServletRequest is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request and a secondary qualifier to filter events by servlet path (@Path).

The servlet request lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletRequestA servlet request is initialized or destroyed

@Initialized javax.servlet.ServletRequestA servlet request is initialized

@Destroyed javax.servlet.ServletRequestA servlet request is destroyed

Chapter 2. Servlet event prop...

8

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized

@Destroyed javax.servlet.http.HttpServletRequestAn HTTP servlet request is destroyed

@Path(PATH) javax.servlet.http.HttpServletRequestSelects HTTP request with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers on the observer:

public void observeRequest(@Observes ServletRequest request) {

 // Do something with the servlet "request" object

}

If you are interested in only a particular lifecycle phase, use a qualifer:

public void observeRequestInitialized(@Observes @Initialized ServletRequest request) {

 // Do something with the servlet "request" object upon initialization

}

You can also listen specifically for a javax.servlet.http.HttpServletRequest simply by

changing the expected event type.

public void observeRequestInitialized(@Observes @Initialized HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

}

You can associate an observer with a particular servlet request path (exact match, no leading

slash).

public void observeRequestInitialized(@Observes @Initialized @Path("offer") HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

 // only when servlet path /offer is requested

}

As with all CDI observers, the name of the method is insignificant.

Servlet response lifecycle events

9

These events are fired using a built-in servlet request listener. The listener is configured to

come before listeners in other extensions, so the initialized event is fired before other servlet

request listeners are notified and the destroyed event is fired after other servlet request listeners

are notified. However, this order cannot be not guaranteed if another extension library is also

configured to be ordered before others.

2.4. Servlet response lifecycle events

The Servlet API does not provide a listener for accessing the lifecycle of a response. Therefore,

Seam Servlet simulates a response lifecycle listener using CDI events. The event object fired is

a javax.servlet.ServletResponse.

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet response and a secondary qualifier to filter events by servlet path (@Path).

The servlet response lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletResponseA servlet response is initialized or destroyed

@Initialized javax.servlet.ServletResponseA servlet response is initialized

@Destroyed javax.servlet.ServletResponseA servlet response is destroyed

@Default (optional) javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized

@Destroyed javax.servlet.http.HttpServletResponseAn HTTP servlet response is destroyed

@Path(PATH) javax.servlet.http.HttpServletResponseSelects HTTP response with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeResponse(@Observes ServletResponse response) {

 // Do something with the servlet "response" object

}

If you are interested in only a particular one, use a qualifer

public void observeResponseInitialized(@Observes @Initialized ServletResponse response) {

 // Do something with the servlet "response" object upon initialization

}

Chapter 2. Servlet event prop...

10

You can also listen specifically for a javax.servlet.http.HttpServletResponse simply by

changing the expected event type.

public void observeResponseInitialized(@Observes @Initialized HttpServletResponse response) {

 // Do something with the HTTP servlet "response" object upon initialization

}

If you need access to the ServletRequest and/or the ServletContext objects at the same time,

you can simply add them as parameters to the observer methods. For instance, let's assume you

want to manually set the character encoding of the request and response.

public void setupEncoding(@Observes @Initialized ServletResponse res, ServletRequest req) throws Exception {

 if (this.override || req.getCharacterEncoding() == null) {

 req.setCharacterEncoding(encoding);

 if (override) {

 res.setCharacterEncoding(encoding);

 }

 }

}

As with all CDI observers, the name of the method is insignificant.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

2.5. Servlet request context lifecycle events

Rather than having to observe the request and response as separate events, or include the

request object as an parameter on a response observer, it would be convenient to be able to

observe them as a pair. That's why Seam Servlet fires an synthetic lifecycle event for the wrapper

type ServletRequestContext. The ServletRequestContext holds the ServletRequest and the

ServletResponse objects, and also provides access to the ServletContext.

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request context and a secondary qualifier to filter events by servlet path (@Path).

The servlet request context lifecycle events are documented in the table below.

Servlet request context lifecycle events

11

Qualifier Type Description

@Default (optional) ServletRequestContext A request is initialized or destroyed

@Initialized ServletRequestContext A request is initialized

@Destroyed ServletRequestContext A request is destroyed

@Default (optional) HttpServletRequestContextAn HTTP request is initialized or destroyed

@Initialized HttpServletRequestContextAn HTTP request is initialized

@Destroyed HttpServletRequestContextAn HTTP request is destroyed

@Path(PATH) HttpServletRequestContextSelects HTTP request with servlet path

matching PATH (drop leading slash)

Let's revisit the character encoding observer and examine how it can be simplified by this event:

public void setupEncoding(@Observes @Initialized ServletRequestContext ctx) throws Exception {

 if (this.override || ctx.getRequest().getCharacterEncoding() == null) {

 ctx.getRequest().setCharacterEncoding(encoding);

 if (override) {

 ctx.getResponse().setCharacterEncoding(encoding);

 }

 }

}

You can also observe the HttpServletRequestContext to be notified only on HTTP requests.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

Since observers that have access to the response can commit it, an

HttpServletRequestContext observer that receives the initialized event can effectively work as

a filter or even a Servlet. Let's consider a primitive welcome page filter that redirects visitors to

the start page:

public void redirectToStartPage(@Observes @Path("") @Initialized HttpServletRequestContext ctx)

 throws Exception {

 String startPage = ctx.getResponse().encodeRedirectURL(ctx.getContextPath() + "/start.jsf");

 ctx.getResponse().sendRedirect(startPage);

}

Chapter 2. Servlet event prop...

12

Now you never have to write a Servlet listener, Servlet or Filter again!

2.6. Session lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

session.

The session lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@Initialized javax.servlet.http.HttpSessionThe session is initialized

@Destroyed javax.servlet.http.HttpSessionThe session is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionInitialized(@Observes @Initialized HttpSession session) {

 // Do something with the "session" object upon being initialized

}

As with all CDI observers, the name of the method is insignificant.

2.7. Session activation events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionActivationListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

Session activation events

13

There are two qualifiers provided in the org.jboss.seam.servlet.event package

(@DidActivate and @WillPassivate) that can be used to observe a specific lifecycle phase of

the session.

The session activation events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@DidActivate javax.servlet.http.HttpSessionThe session is activated

@WillPassivate javax.servlet.http.HttpSessionThe session will passivate

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionCreated(@Observes @WillPassivate HttpSession session) {

 // Do something with the "session" object when it's being passivated

}

As with all CDI observers, the name of the method is insignificant.

14

Chapter 3.

15

Injectable Servlet objects and

request state
Seam Servlet provides producers that expose a wide-range of information available in a Servlet

environment (e.g., implicit objects such as ServletContext and HttpSession and state such as

HTTP request parameters) as beans. You access this information by injecting the beans produced.

This chapter documents the Servlet objects and request state that Seam Servlet exposes and

how to inject them.

3.1. @Inject @RequestParam

The @RequestParam qualifier allows you to inject an HTTP request parameter (i.e., URI query

string or URL form encoded parameter).

Assume a request URL of /book.jsp?id=1.

@Inject @RequestParam("id")

private String bookId;

The value of the specified request parameter is retrieved using the method

ServletRequest.getParameter(String). It is then produced as a dependent-scoped bean of

type String qualified @RequestParam.

The name of the request parameter to lookup is either the value of the @RequestParam annotation

or, if the annotation value is empty, the name of the injection point (e.g., the field name).

Here's the example from above modified so that the request parameter name is implied from the

field name:

@Inject @RequestParam

private String id;

If the request parameter is not present, and the injection point is annotated with @DefaultValue,

the value of the @DefaultValue annotation is returned instead.

Here's an example that provides a fall-back value:

@Inject @RequestParam @DefaultValue("25")

private String pageSize;

Chapter 3. Injectable Servlet...

16

If the request parameter is not present, and the @DefaultValue annotation is not present, a null

value is injected.

Warning

Since the bean produced is dependent-scoped, use of the @RequestParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @RequestParam("id")

private Instance<String> bookIdResolver;

...

String bookId = bookIdResolver.get();

3.2. @Inject @HeaderParam

Similar to the @RequestParam, you can use the @HeaderParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the user agent string of the client that issued

the request:

@Inject @HeaderParam("User-Agent")

private String userAgent;

The @HeaderParam also supports a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @HeaderParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @HeaderParam("User-Agent")

private Instance<String> userAgentResolver;

...

String userAgent = userAgentResolver.get();

@Inject ServletContext

17

3.3. @Inject ServletContext

The ServletContext is made available as an application-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject

private ServletContext context;

The producer obtains a reference to the ServletContext by observing the @Initialized

ServletContext event raised by this module's Servlet-to-CDI event bridge.

3.4. @Inject ServletRequest / HttpServletRequest

The ServletRequest is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletRequest. It can be injected safetly into any

CDI bean as follows:

@Inject

private ServletRequest request;

or, for HTTP requests

@Inject

private HttpServletRequest httpRequest;

The producer obtains a reference to the ServletRequest by observing the @Initialized

ServletRequest event raised by this module's Servlet-to-CDI event bridge.

3.5. @Inject ServletResponse / HttpServletResponse

The ServletResponse is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletResponse. It can be injected safetly into any

CDI bean as follows:

@Inject

private ServletResponse reponse;

or, for HTTP requests

Chapter 3. Injectable Servlet...

18

@Inject

private HttpServletResponse httpResponse;

The producer obtains a reference to the ServletResponse by observing the @Initialized

ServletResponse event raised by this module's Servlet-to-CDI event bridge.

3.6. @Inject HttpSession

The HttpSession is made available as a request-scoped bean. It can be injected safetly into any

CDI bean as follows:

@Inject

private HttpSession session;

Injecting the HttpSession will force the session to be created. The producer obtains a reference

to the HttpSession by calling the getSession() on the HttpServletRequest. The reference

to the HttpServletRequest is obtained by observing the @Initialized HttpServletRequest

event raised by this module's Servlet-to-CDI event bridge.

If you merely want to know whether the HttpSession exists, you can instead inject the

HttpSessionStatus bean that Seam Servlet provides.

3.7. @Inject HttpSessionStatus

The HttpSessionStatus is a request-scoped bean that provides access to the status of the

HttpSession. It can be injected safetly into any CDI bean as follows:

@Inject

private HttpSessionStatus sessionStatus;

You can invoke the isActive() method to check if the session has been created, and the

getSession() method to retrieve the HttpSession, which will be created if necessary.

if (!sessionStatus.isActive()) {

 System.out.println("Session does not exist. Creating it now.");

 HttpSession session = sessionStatus.get();

 assert session.isNew();

}

@Inject @ContextPath

19

3.8. @Inject @ContextPath

The context path is made available as a dependent-scoped bean. It can be injected safetly into

any request-scoped CDI bean as follows:

@Inject @ContextPath

private String contextPath;

You can safetly inject the context path into a bean with a wider scope using an instance provider:

@Inject @ContextPath

private Instance<String> contextPathProvider;

...

String contextPath = contextPathProvider.get();

The context path is retrieved from the HttpServletRequest.

3.9. @Inject List<Cookie>

The list of Cookie objects is made available as a request-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject

private List<Cookie> cookies;

The producer uses a reference to the request-scoped HttpServletRequest bean to retrieve the

Cookie intances by calling getCookie().

3.10. @Inject @CookieParam

Similar to the @RequestParam, you can use the @CookieParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the username of the last logged in user (assuming

you have previously stored it in a cookie):

@Inject @CookieParam

private String username;

If the type at the injection point is Cookie, the Cookie object will be injected instead of the value.

Chapter 3. Injectable Servlet...

20

@Inject @CookieParam

private Cookie username;

The @CookieParam also support a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @CookieParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @CookieParam("username")

private Instance<String> usernameResolver;

...

String username = usernameResolver.get();

3.11. @Inject @ServerInfo

The server info string is made available as a dependent-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject @ServerInfo

private String serverInfo;

The context path is retrieved from the ServletContext.

3.12. @Inject @Principal

The security Principal for the current user is made available by CDI as an injectable resource

(not provided by Seam Servlet). It can be injected safetly into any CDI bean as follows:

@Inject

private Principal principal;

Chapter 4.

21

Exception handling: Seam Catch

integration
Seam Catch provides a simple, yet robust foundation for modules and/or applications to establish

a customized exception handling process. Seam Servlet ties into the exception handling model by

forwarding all unhandled Servlet exceptions to Catch so that they can be handled in a centralized,

extensible and uniform manner.

4.1. Background

The Servlet API is extremely weak when it comes to handling exceptions. You are limited to

handling exceptions using the built-in, declarative controls provided in web.xml. Those controls

give you two options:

• send an HTTP status code

• forward to an error page (servlet path)

To make matters more painful, you are required to configure these exception mappings in web.xml.

It's really a dinosaur left over from the past. In general, the Servlet specification seems to be pretty

non-chalant about exceptions, telling you to "handle them appropriately." But how?

That's where the Catch integration in Seam Servlet comes in. The Catch integration traps all

unhandled exceptions (those that bubble outside of the Servlet and any filters) and forwards

them on to Catch. Exception handlers are free to handle the exception anyway they like, either

programmatically or via a declarative mechanism.

If a exception handler registered with Catch handles the exception, then the integration closes

the response without raising any additional exceptions. If the exception is still unhandled after

Catch finishes processing it, then the integration allows it to pass through to the normal Servlet

exception handler.

4.2. Defining a exception handler for a web request

You can define an exception handler for a web request using the normal syntax of a Catch

exception handler. Let's catch any exception that bubbles to the top and respond with a 500 error.

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Catch!");

 }

Chapter 4. Exception handling...

22

}

That's all there is to it! If you only want this handler to be used for exceptions raised by a web

request (excluding web service requests like JAX-RS), then you can add the @WebRequest qualifier

to the handler:

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles @WebRequest

 CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Catch!");

 }

}

Note

Currently, @WebRequest is required to catch exceptions initiated by the Servlet

integration because of a bug in Catch.

Let's consider another example. When the custom AccountNotFound exception is thrown, we'll

send a 404 response using this handler.

void handleAccountNotFound(@Handles @WebRequest

 CaughtException<AccountNotFound> caught, HttpServletResponse response) {

 response.sendError(404, "Account not found: " + caught.getException().getAccountId());

}

In a future release, Seam Servlet will include annotations that can be used to configure these

responses declaratively.

Chapter 5.

23

Retrieving the BeanManager from

the servlet context
Typically, the BeanManager is obtained using some form of injection. However, there are scenarios

where the code being executed is outside of a managed bean environment and you need a way

in. In these cases, it's necessary to lookup the BeanManager from a well-known location.

Warning

In general, you should isolate external BeanManager lookups to integration code.

The standard mechanism for locating the BeanManager from outside a managed bean

environment, as defined by the JSR-299 specification, is to look it up in JNDI. However, JNDI

isn't the most convenient technology to depend on when you consider all popular deployment

environments (think Tomcat and Jetty).

As a simpler alternative, Seam Servlet binds the BeanManager to the following servlet context

attribute (whose name is equivalent to the fully-qualified class name of the BeanManager interface:

javax.enterprise.inject.spi.BeanManager

Seam Servlet also includes a provider that retrieves the BeanManager from this location. Anytime

the Seam Servlet module needs a reference to the BeanManager, it uses this lookup mechanism to

ensure that the module works consistently across deployment environments, especially in Servlet

containers.

You can retrieve the BeanManager in the same way. If you want to hide the lookup, you

can extend the BeanManagerAware class and retrieve the BeanManager from the the method

getBeanManager(), as shown here:

public class NonManagedClass extends BeanManagerAware {

 public void fireEvent() {

 getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Alternatively, you can retrieve the BeanManager from the method getBeanManager() on the

BeanManagerLocator class, as shown here:

Chapter 5. Retrieving the Bea...

24

public class NonManagedClass {

 public void fireEvent() {

 new BeanManagerLocator().getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Tip

The best way to transfer execution of the current context to the managed bean

environment is to send an event to an observer bean, as this example above

suggests.

Under the covers, these classes look for the BeanManager in the servlet context attribute covered

in this section, amongst other available strategies. Refer to the BeanManager provider chapter of

the Seam Solder reference guide for information on how to leverage the servlet context attribute

provider to access the BeanManager from outside the CDI environment.

	Seam Servlet Module
	Table of Contents
	Introduction
	Chapter 1. Installation
	1.1. Maven dependency configuration
	1.2. Pre-Servlet 3.0 configuration

	Chapter 2. Servlet event propagation
	2.1. Servlet context lifecycle events
	2.2. Application initialization
	2.3. Servlet request lifecycle events
	2.4. Servlet response lifecycle events
	2.5. Servlet request context lifecycle events
	2.6. Session lifecycle events
	2.7. Session activation events

	Chapter 3. Injectable Servlet objects and request state
	3.1. @Inject @RequestParam
	3.2. @Inject @HeaderParam
	3.3. @Inject ServletContext
	3.4. @Inject ServletRequest / HttpServletRequest
	3.5. @Inject ServletResponse / HttpServletResponse
	3.6. @Inject HttpSession
	3.7. @Inject HttpSessionStatus
	3.8. @Inject @ContextPath
	3.9. @Inject List<Cookie>
	3.10. @Inject @CookieParam
	3.11. @Inject @ServerInfo
	3.12. @Inject @Principal

	Chapter 4. Exception handling: Seam Catch integration
	4.1. Background
	4.2. Defining a exception handler for a web request

	Chapter 5. Retrieving the BeanManager from the servlet context

