
Solder

Reference Guide

by Pete Muir, Stuart Douglas, Dan Allen, John Ament, Shane Bryzak,

Jason Porter, Lincoln Baxter III, Nicklas Karlsson, and Christian Kaltepoth

iii

Introduction .. vii

1. Getting Started .. 1

1.1. Maven dependency configuration ... 1

1.2. Transitive dependencies .. 2

1.3. Pre-Servlet 3.0 configuration ... 2

I. Extensions and Utilities for Developers .. 5

2. Enhancements to the CDI Programming Model ... 7

2.1. Preventing a class from being processed ... 7

2.1.1. @Veto ... 7

2.1.2. @Requires .. 8

2.2. @Exact .. 8

2.3. @Client .. 9

2.4. Named packages .. 9

2.5. @FullyQualified bean names ... 10

3. Annotation Literals .. 13

4. Evaluating Unified EL .. 15

4.1. @Resolver .. 15

5. Injecting Resources and System Properties .. 17

5.1. Resource Loading ... 17

5.1.1. Extending the Resource Loader .. 18

5.2. System Properties ... 18

6. Logging, redesigned .. 21

6.1. JBoss Logging: The foundation .. 21

6.2. Solder Logging: Feature set .. 23

6.3. Typed loggers ... 23

6.4. Native logger API .. 25

6.5. Typed message bundles ... 26

6.6. Implementation classes ... 27

6.6.1. Generating the implementation classes .. 27

6.6.2. Including the implementation classes in Arquillian tests 29

II. Utilities for Framework Authors ... 31

7. Annotation and AnnotatedType Utilities .. 33

7.1. Annotated Type Builder ... 33

7.2. Annotation Instance Provider ... 34

7.3. Annotation Inspector ... 35

7.4. Synthetic Qualifiers ... 36

7.5. Reflection Utilities ... 37

8. Obtaining a reference to the BeanManager ... 39

9. Bean Utilities ... 41

10. Property Utilities .. 43

10.1. Working with properties ... 43

10.2. Querying for properties .. 44

10.3. Property Criteria .. 45

10.3.1. AnnotatedPropertyCriteria ... 45

Solder

iv

10.3.2. NamedPropertyCriteria .. 45

10.3.3. TypedPropertyCriteria ... 46

10.3.4. Creating a custom property criteria .. 46

10.4. Fetching the results ... 46

III. Configuration Extensions for Framework Authors .. 49

11. Unwrapping Producer Methods ... 51

12. Default Beans .. 53

13. Generic Beans ... 55

13.1. Using generic beans ... 55

13.2. Defining Generic Beans ... 58

14. Service Handler .. 61

IV. XML Configuration .. 63

15. XML Configuration Introduction ... 65

15.1. Getting Started .. 65

15.2. The Princess Rescue Example .. 67

16. Solder Config XML provider .. 69

16.1. XML Namespaces ... 69

16.2. Adding, replacing and modifying beans .. 70

16.3. Applying annotations using XML .. 71

16.4. Configuring Fields ... 72

16.4.1. Initial Field Values .. 72

16.4.2. Inline Bean Declarations ... 74

16.5. Configuring methods ... 75

16.6. Configuring the bean constructor .. 77

16.7. Overriding the type of an injection point .. 78

16.8. Configuring Meta Annotations .. 78

16.9. Virtual Producer Fields .. 79

16.10. More Information ... 80

V. Exception Handling Framework .. 81

17. Exception Handling - Introduction ... 83

17.1. How Solder's Exception Handling Works .. 83

18. Exception Handling - Usage .. 85

18.1. Eventing into the exception handling framework .. 85

18.1.1. Manual firing of the event ... 85

18.1.2. Using the @ExceptionHandled Interceptor 86

18.2. Exception handlers .. 86

18.3. Exception handler annotations ... 87

18.3.1. @HandlesExceptions .. 87

18.3.2. @Handles .. 87

18.4. Exception chain processing ... 89

18.5. Exception handler ordering .. 90

18.5.1. Traversal of exception type hierarchy ... 90

18.5.2. Handler precedence ... 92

18.6. APIs for exception information and flow control ... 93

v

18.6.1. CaughtException .. 93

18.6.2. ExceptionStack ... 93

19. Exception handling - Advanced Features .. 95

19.1. Exception Modification ... 95

19.1.1. Introduction .. 95

19.1.2. Usage .. 95

19.2. Filtering Stack Traces .. 95

19.2.1. Introduction .. 95

19.2.2. ExceptionStackOutput ... 96

19.2.3. StackFrameFilter .. 96

19.2.4. StackFrameFilterResult ... 96

19.2.5. StackFrame .. 96

20. Exception Handling - Framework Integration ... 99

20.1. Creating and Firing an ExceptionToCatch event .. 99

20.2. Default Handlers and Qualifiers .. 99

20.2.1. Default Handlers .. 99

20.2.2. Qualifiers .. 100

20.3. Supporting ServiceHandlers ... 100

20.4. Programmatic Handler Registration .. 101

Exception Handling - Glossary .. 103

VI. Servlet API Integration .. 105

Introduction .. cvii

21. Installation .. 109

21.1. Pre-Servlet 3.0 configuration .. 109

22. Servlet event propagation .. 111

22.1. Servlet context lifecycle events .. 111

22.2. Application initialization .. 112

22.3. Servlet request lifecycle events .. 113

22.4. Servlet response lifecycle events .. 115

22.5. Servlet request context lifecycle events ... 116

22.6. Session lifecycle events ... 118

22.7. Session activation events ... 118

23. Injectable Servlet objects and request state .. 121

23.1. @Inject @RequestParam .. 121

23.2. @Inject @HeaderParam .. 122

23.3. @Inject ServletContext .. 123

23.4. @Inject ServletRequest / HttpServletRequest .. 123

23.5. @Inject ServletResponse / HttpServletResponse 123

23.6. @Inject HttpSession .. 124

23.7. @Inject HttpSessionStatus ... 124

23.8. @Inject @ContextPath .. 125

23.9. @Inject List<Cookie> ... 125

23.10. @Inject @CookieParam ... 125

23.11. @Inject @ServerInfo ... 126

Solder

vi

23.12. @Inject @Principal .. 126

24. Servlet Exception Handling Integration .. 127

24.1. Background ... 127

24.2. Defining a exception handler for a web request 127

25. Retrieving the BeanManager from the servlet context 129

26. Loading web resources without ServletContext ... 131

vii

Introduction

Solder is a library of Generally Useful Stuff (TM), particularly if you are developing an application

based on CDI (JSR-299 Java Contexts and Dependency Injection), or a CDI based library or

framework.

This guide is split into three parts. Part I, “Extensions and Utilities for Developers” details

extensions and utilities which are likely to be of use to any developer using CDI; Part II, “Utilities for

Framework Authors” describes utilities which are likely to be of use to developers writing libraries

and frameworks that work with CDI; Part III, “Configuration Extensions for Framework Authors”

discusses extensions which can be used to implement configuration for a framework

viii

Chapter 1.

1

Getting Started
Getting started with Solder is easy. All you need to do is put the API and implementation

JARs on the classpath of your CDI application. The features provided by Solder will be enabled

automatically.

Some additional configuration, covered at the end of this chapter, is required if you are using a

pre-Servlet 3.0 environment.

1.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, first make sure you have

configured your build to use the JBoss Community repository [http://community.jboss.org/wiki/

MavenGettingStarted-Users], where you can find all the Seam artifacts. Then, add the following

dependencies to your pom.xml file to get started using Solder:

<dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>solder-api</artifactId>

 <version>${solder.version}</version>

 <scope>compile</scope>

</dependency>

<dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>solder-impl</artifactId>

 <version>${solder.version}</version>

 <scope>runtime</scope>

</dependency>

Tip

Substitute the expression ${solder.version} with the most recent or

appropriate version of Solder. Alternatively, you can create a Maven

user-defined property [http://www.sonatype.com/books/mvnref-book/reference/

resource-filtering-sect-properties.html#resource-filtering-sect-user-defined] to

satisfy this substitution so you can centrally manage the version.

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

http://maven.apache.org/
http://maven.apache.org/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined
http://www.sonatype.com/books/mvnref-book/reference/resource-filtering-sect-properties.html#resource-filtering-sect-user-defined

Chapter 1. Getting Started

2

1.2. Transitive dependencies

Most of Solder has very few dependencies, only one of which is not provided by Java EE 6:

• javax.enterprise:cdi-api (provided by Java EE 6)

• javax.inject:javax:inject (provided by Java EE 6)

• javax.annotation:jsr250-api (provided by Java EE 6)

• javax.interceptor:interceptor-api (provided by Java EE 6)

• javax.el:el-api (provided by Java EE 6)

Tip

The POM for Solder specifies the versions required. If you are using Maven 3,

you can easily import the dependencyManagement into your POM by declaring the

following in your depdendencyManagement section:

<dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>seam-solder-impl</artifactId>

 <version>${solder.version}</version>

 <type>pom</type>

 <scope>import</scope>

</dependency>

Some features of Solder require additional dependencies (which are declared optional, so will not

be added as transitive dependencies):

org.javassist:javassist

Service Handlers, Unwrapping Producer Methods

javax.servlet:servlet-api

Accessing resources from the Servlet Context

In addition, a logger implementation (SLF4J, Log4J, JBoss Log Manager or the JDK core logging

facility) is required. Refer to Chapter 6, Logging, redesigned for more information about how

logging is handled in Solder.

1.3. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

a Servlet component in your application's web.xml to access resources from the Servlet Context.

Pre-Servlet 3.0 configuration

3

<listener>

 <listener-class>org.jboss.solder.resourceLoader.servlet.ResourceListener</listener-class>

</listener>

This registration happens automatically in a Servlet 3.0 environment through the use of a /META-

INF/web-fragment.xml included in the Solder implementation.

You're all setup. It's time to dive into all the useful stuff that Solder provides!

4

Part I. Extensions and

Utilities for Developers

Chapter 2.

7

Enhancements to the CDI

Programming Model
Solder provides a number enhancements to the CDI programming model which are under trial

and may be included in later releases of Contexts and Dependency Injection.

2.1. Preventing a class from being processed

2.1.1. @Veto

Annotating a class @Veto will cause the type to be ignored, such that any definitions on the type

will not be processed, including:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

For example:

@Veto

class Utilities {

 ...

}

Besides, a package can be annotated with @Veto, causing all beans in the package to be

prevented from registration.

Example 2.1. package-info.java

@Veto

package com.example;

import org.jboss.solder.core.Veto;

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed

types.

Chapter 2. Enhancements to th...

8

2.1.2. @Requires

Annotating a class with @Requires will cause the type to be ignored if the class dependencies

cannot be satisfied. Any definitions on the type will not be processed:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

Tip

Solder will use the Thread Context ClassLoader, as well as the classloader of the

type annotated @Requires to attempt to satisfy the class dependency.

For example:

@Requires("javax.persistence.EntityManager")

class EntityManagerProducer {

 @Produces

 EntityManager getEntityManager() {

 ...

 }

}

Annotating a package with @Requires causes all beans in the package to be ignored if the class

dependencies cannot be satisfied. If both a class and it's package are annotated with @Requires,

both package-level and class-level dependencies have to be satisfied for the bean to be installed.

Note

The ProcessAnnotatedType container lifecycle event will be called for required

types.

2.2. @Exact

Annotating an injection point with @Exact allows you to select an exact implementation of the

injection point type to inject. For example:

@Client

9

interface PaymentService {

 ...

}

class ChequePaymentService implements PaymentService {

 ...

}

class CardPaymentService implements PaymentService {

 ...

}

class PaymentProcessor {

 @Inject @Exact(CardPaymentService.class)

 PaymentService paymentService;

 ...

}

2.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want to

differentiate the default system locale from the current client's locale). Solder provides a built in

qualifier, @Client for this purpose.

2.4. Named packages

Solder allows you to annotate the package @Named, which causes every bean defined in the

package to be given its default name. Package annotations are defined in the file package-

info.java. For example, to cause any beans defined in com.acme to be given their default name:

@Named

package com.acme

Chapter 2. Enhancements to th...

10

2.5. @FullyQualified bean names

According to the CDI standard, the @Named annotation assigns a name to a bean equal to the

value specified in the @Named annotation or, if a value is not provided, the simple name of the bean

class. This behavior aligns with the needs of most application developers. However, framework

writers should avoid trampling on the "root" bean namespace. Instead, frameworks should specify

qualified names for built-in components. The motivation is the same as qualifying Java types. The

@FullyQualified provides this facility without sacrificing type-safety.

Solder allows you to customize the bean name using the complementary @FullyQualified

annotation. When the @FullyQualified annotation is added to a @Named bean type, producer

method or producer field, the standard bean name is prefixed with the name of the Java package

in which the bean resides, the segments separated by a period. The resulting fully-qualified bean

name (FQBN) replaces the standard bean name.

package com.acme;

@FullyQualified @Named

public class NamedBean {

 public int getAge()

 {

 return 5;

 }

}

The bean in the previous code listing is assigned the name com.acme.namedBean. The value of its

property age would be referenced in an EL expression (perhaps in a JSF view template) as follows:

#{com.acme.namedBean.age}

The @FullyQualified annotation is permitted on a bean type, producer method or producer field.

It can also be used on a Java package, in which case all @Named beans in that package get a

bean name which is fully-qualified.

@FullyQualified

package com.acme;

If you want to use a different Java package as the namespace of the bean, rather than the Java

package of the bean, you specify any class in that alternative package in the annotation value.

@FullyQualified bean names

11

package com.acme;

@FullyQualified(ClassInOtherPackage.class) @Named

public class CustomNamespacedNamedBean {

 ...

}

12

Chapter 3.

13

Annotation Literals
Solder provides a complete set of AnnotationLiteral classes corresponding to the annotation

types defined in the CDI (JSR-299) and Injection (JSR-330) specifications. These literals are

located in the org.jboss.solder.literal package.

For any annotation that does not define an attribute, its corresponding AnnotationLiteral

contains a static INSTANCE member. You should use this static member whenever you need a

reference to an annotation instance rather than creating a new instance explicitly.

new AnnotatedTypeBuilder<X>().readFromType(type).addToClass(NamedLiteral.INSTANCE);

Literals are provided for the following annotations from Context and Dependency Injection

(including annotations from Dependency Injection for Java):

• @Alternative

• @Any

• @ApplicationScoped

• @ConversationScoped

• @Decorator

• @Default

• @Delegate

• @Dependent

• @Disposes

• @Inject

• @Model

• @Named

• @New

• @Nonbinding

• @NormalScope

• @Observes

• @Produces

Chapter 3. Annotation Literals

14

• @RequestScoped

• @SessionScoped

• @Specializes

• @Stereotype

• @Typed

Literals are also provided for the following annotations from Solder:

• @Client

• @DefaultBean

• @Exact

• @Generic

• @GenericType

• @Mapper

• @MessageBundle

• @Requires

• @Resolver

• @Resource

• @Unwraps

• @Veto

For more information about these annotations, consult the corresponding API documentation.

Chapter 4.

15

Evaluating Unified EL
Solder provides a method to evaluate EL that is not dependent on JSF or JSP, a facility sadly

missing in Java EE. To use it inject Expressions into your bean. You can evaluate value

expressions, or method expressions. The Solder API provides type inference for you. For example:

class FruitBowl {

 @Inject Expressions expressions;

 public void run() {

 String fruitName = expressions.evaluateValueExpression("#{fruitBowl.fruitName}");

 Apple fruit = expressions.evaluateMethodExpression("#{fruitBown.getFruit}");

 }

}

4.1. @Resolver

Solder also contains a qualifier to ease registration of javax.el.ELResolver instances. The

@Resolver will register any javax.el.ELResolver annotated with @Resolver with the application

wide javax.el.ELResolver.

16

Chapter 5.

17

Injecting Resources and System

Properties

5.1. Resource Loading

Solder provides an extensible, injectable resource loader. The resource loader can provide URLs

or managed input streams. By default the resource loader will look at the classpath, and the servlet

context if available.

If the resource name is known at development time, the resource can be injected, either as a URL

or an InputStream:

 @Inject

 @Resource("WEB-INF/beans.xml")

 URL beansXml;

 @Inject

 @Resource("WEB-INF/web.xml")

 InputStream webXml;

If the resource name is not known, the ResourceProvider can be injected, and the resource

looked up dynamically:

 @Inject

 void readXml(ResourceProvider provider, String fileName) {

 InputStream is = provider.loadResourceStream(fileName);

 }

If you need access to all resources under a given name known to the resource loader (as opposed

to first resource loaded), you can inject a collection of resources:

 @Inject

 @Resource("WEB-INF/beans.xml")

 Collection<URL> beansXmls;

 @Inject

 @Resource("WEB-INF/web.xml")

 Collection<InputStream> webXmls;

Chapter 5. Injecting Resource...

18

Tip

Any input stream injected, or created directly by the ResourceProvider is

managed, and will be automatically closed when the bean declaring the injection

point of the resource or provider is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Properties:

 @Inject

 @Resource("META-INF/aws.properties")

 Properties awsProperties;

5.1.1. Extending the Resource Loader

If you want to load resources from another location, you can provide an additional resource loader.

First, create the resource loader implementation:

class MyResourceLoader implements ResourceLoader {

 ...

 }

And then register it as a service by placing the fully qualified class name of the implementation in

a file called META-INF/services/org.jboss.solder.resourceLoader.ResourceLoader.

5.2. System Properties

Solder allows system properties to be easily injected using the @System qualifier. The following

code snippet shows how you can inject system properties directly into your own bean:

import java.util.Properties;

import org.jboss.solder.core.System;

import javax.inject.Inject;

public class Foo {

 @Inject @System Properties properties;

 //..

}

System Properties

19

Solder also exposes the system properties as a named bean called sysProp, allowing them to

be referenced directly via EL (Expression Language), for example from a JSF page definition.

Please refer to the org.jboss.solder.system.SystemProperties class in the Solder API

documentation for a list of the available methods.

20

Chapter 6.

21

Logging, redesigned
Solder brings a fresh perspective to the ancient art of logging. Rather than just giving you an

injectable version of the same old logging APIs, Solder goes the extra mile by embracing the type-

safety of CDI and eliminating brittle, boilerplate logging statements. The best part is, no matter

how you decide to roll it out, you still get to keep your logging engine of choice (for the logging

wars will never end!).

6.1. JBoss Logging: The foundation

Before talking about Solder Logging, you need to first be introduced to JBoss Logging 3. The

reason is, JBoss Logging provides the foundation on which Solder's declarative programming

model for logging is built. Plus, we have to convince you that you aren't tied to JBoss AS by using it.

JBoss Logging acts as a logging bridge. If you don't add any other logging libraries to your

project, it will delegate all logging calls it handles to the logging facility built into the Java platform

(commonly referred to as JDK logging). That's nice, because it means your deployment headaches

caused by missing logging jars are gone. And you accomplish it all through the use of the

Logger [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html] type. It has

the usual level-based log methods and complimentary ones that provide formatting.

Here's an example of how you obtain a logger and log a basic message:

Logger log = Logger.getLogger(Bean.class);

// log a plain text method

log.debug("I'm using JBoss Logging.");

If you want to use another logging engine, such as SLF4J or Log4J, you just have to add the

native library to the deployment. Keep in mind, though, if your application server provides one of

these frameworks, it will get chosen instead. On JBoss AS, JBoss Logging will prefer the JBoss

LogManager because it's the built-in logging engine. (We are looking into more sophisticated

runtime selection of the logging engine).

Here are the providers JBoss Logging supports (and the order in which it looks for them):

• JBoss LogManager

• Log4J

• SLF4J

• JDK logging

So you get that JBoss Logging is an abstraction. What else is it good for?

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/logging/Logger.html

Chapter 6. Logging, redesigned

22

JBoss Logging has a facility for formatting log messages, using either the printf syntax or

MessageFormat. This makes it possible to use positional parameters to build dynamic log

messages based on contextual information.

Logger log = Logger.getLogger(Bean.class);

// log a message formatted using printf-style substitutions

log.infof("My name is %s.", "David");

// log a message formatted using MessageFormat-style substitutions

log.errorv("The license for Solder is the {0}", "APL");

The most significant and distinguishing feature of JBoss Logging is support for typed loggers.

A typed logger is an interface that defines methods which serve as logging operations. When

a method is invoked on one of these interfaces, the message defined in an annotation on the

method is interpolated and written to the underlying logging engine.

Here's an example of a typed logger:

import org.jboss.logging.Message;

import org.jboss.logging.LogMessage;

import org.jboss.logging.MessageLogger;

@MessageLogger

public interface CelebritySightingLog {

 @LogMessage @Message("Spotted celebrity %s!")

 void spottedCelebrity(String name);

}

JBoss Logging has parallel support for typed message bundles, whose methods return a formatted

message rather than log it. Combined, these features form the centerpiece of Solder's logging

and message bundle programming model (and a foundation for additional support provided by the

Seam international module). After looking at the samples provided so far, don't pull out your IDE

just yet. We'll get into the details of typed loggers and how to use them in Solder in a later section.

There you have it! JBoss Logging is a low-level API that provides logging abstraction, message

formatting and internationalization, and typed loggers. But it doesn't tie you to JBoss AS!

With that understanding, we'll now move on to what Solder does to turn this foundation into a

programming model and how to use it in your CDI-based application.

Solder Logging: Feature set

23

6.2. Solder Logging: Feature set

Solder builds on JBoss Logging 3 to provide the following feature set:

• An abstraction over common logging backends and frameworks (such as JDK Logging, log4j

and slf4j)

• Injectable loggers and message bundles

• Innovative, typed message loggers and message bundles defined using interfaces

• Build time tooling to generate typed loggers for production

• Full support for internationalization and localization:

• Developers work with interfaces and annotations only

• Translators work with message bundles in properties files

• Access to the "Mapped Diagnostic Context" (MDC) and/or the "Nested Diagnostic

Context" (NDC) (if the underlying logger supports it)

• Serializable loggers for use in contextual components

Note

Seam's international module builds on this programming model to provide even

more features for producing localized message strings.

Without further discussion, let's get into it.

6.3. Typed loggers

To define a typed logger, first create an interface, annotate it, then add methods that will act as

log operations and configure the message it will print using another annotation:

import org.jboss.solder.messages.Message;

import org.jboss.solder.logging.Log;

import org.jboss.solder.logging.MessageLogger;

@MessageLogger

public interface TrainSpotterLog {

 @Log @Message("Spotted %s diesel trains")

 void dieselTrainsSpotted(int number);

Chapter 6. Logging, redesigned

24

}

We have configured the log messages to use printf-style interpolations of parameters (%s).

Note

Make sure you are using the annotations from Solder

(org.jboss.solder.messages and org.jboss.solder.logging packages

only).

You can then inject the typed logger with no further configuration necessary. We use another

optional annotation to set the category of the logger to "trains" at the injection point, overriding the

default category of the fully-qualified class name of the component receiving the injection:

 @Inject @Category("trains")

 private TrainSpotterLog log;

We log a message by simply invoking a method of the typed logger interface:

 log.dieselTrainsSpotted(7);

The default locale will be used unless overridden. Here we configure the logger to use the UK

locale:

 @Inject @Category("trains") @Locale("en_GB")

 private TrainSpotterLog log;

You can also log exceptions.

import org.jboss.solder.messages.Message;

import org.jboss.solder.messages.Cause;

import org.jboss.solder.logging.Log;

import org.jboss.solder.logging.MessageLogger;

@MessageLogger

public interface TrainSpotterLog {

Native logger API

25

 @Log @Message("Failed to spot train %s")

 void missedTrain(String trainNumber, @Cause Exception exception);

}

You can then log a message with an exception as follows:

try {

 ...

} catch (Exception e) {

 log.missedTrain("RH1", e);

}

The stacktrace of the exception parameter will be written to the log along with the message.

Typed loggers also provide internationalization support. Simply add the @MessageBundle

annotation to the logger interface.

If injecting a typed logger seems too "enterprisy" to you, or you need to get a reference to it from

outside of CDI, you can use a static accessor method on Logger:

TrainSpotterLog log = Logger.getMessageLogger(TrainSpotterLog.class, "trains");

log.dieselTrainsSpotted(7);

The injected version is a convenience for those who prefer the declarative style of programming.

If you are looking for a simpler starting point, you can simply use the Logger directly.

6.4. Native logger API

You can also inject a "plain old" Logger (from the JBoss Logging API):

import javax.inject.Inject;

import org.jboss.solder.logging.Logger;

public class LogService {

 @Inject

 private Logger log;

 public void logMessage() {

 log.info("Hey sysadmins!");

 }

Chapter 6. Logging, redesigned

26

}

Log messages created from this Logger will have a category (logger name) equal to the fully-

qualified class name of the bean implementation class. You can specify a category explicitly using

an annotation.

 @Inject @Category("billing")

 private Logger log;

You can also specify a category using a reference to a type:

 @Inject @TypedCategory(BillingService.class)

 private Logger log;

6.5. Typed message bundles

Often times you need to access a localized message. For example, you need to localize an

exception message. Solder let's you retrieve this message from a typed message logger to avoid

having to use hard-coded string messages.

To define a typed message bundle, first create an interface, annotate it, then add methods that

will act as message retrievers and configure the message to produce using another annotation:

import org.jboss.solder.messages.Message;

import org.jboss.solder.messages.MessageBundle;

@MessageBundle

public interface TrainMessages {

 @Message("No trains spotted due to %s")

 String noTrainsSpotted(String cause);

}

Inject it:

 @Inject @MessageBundle

 private TrainMessages messages;

Implementation classes

27

And use it:

 throw new BadDayException(messages.noTrainsSpotted("leaves on the line"));

6.6. Implementation classes

You may have noticed that throughout this chapter, we've only defined interfaces. Yet, we are

injecting and invoking them as though they are concrete classes. So where's the implementation?

Good news. The typed logger and message bundle implementations are generated automatically!

You'll see this strategy used often in Seam 3. It's declarative programming at its finest (or to an

extreme, depending on how you look at it). Either way, it saves you from a whole bunch of typing.

So how are they generated? Let's find out!

6.6.1. Generating the implementation classes

The first time you need logging in your application, you'll likely start with the more casual approach

of using the Logger API directly. There's no harm in that, but it's certainly cleaner to use the

typed loggers, and at the same time leverage the parallel benefits of the typed bundles. So we

recommend that as your long term strategy.

Once you are ready to move to the the typed loggers and message bundles, you'll need to generate

the concrete implementation classes as part of the build. These classes are generated by using

an annotation processor that is provided by Solder and based on the JBoss Logging tools project

[https://github.com/jamezp/jboss-logging-tools]. Don't worry, setting it up is a lot simpler than it

sounds. You just need to do these two simple steps:

• Set the Java compliance to 1.6 (or better)

• Add the Solder tooling library to the build classpath

Warning

If you forget to add the annotation processor to your build, you'll get an error when

you deploy the application that reports: "Invalid bundle interface (implementation

not found)". This error occurs because the concrete implementation classes are

missing.

Setting the Java compliance to 1.6 enables any annotation processors on the classpath to be

activated during compilation.

If you're using Maven, here's how the configuration in your POM file looks:

<dependencies>

https://github.com/jamezp/jboss-logging-tools
https://github.com/jamezp/jboss-logging-tools

Chapter 6. Logging, redesigned

28

 <!-- Annotation processor for generating typed logger and message bundle classes -->

 <dependency>

 <groupId>org.jboss.solder</groupId>

 <artifactId>solder-tooling</artifactId>

 <scope>provided</scope>

 <optional>true</optional>

 </dependency>

 ...

</dependencies>

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

 </plugin>

 </plugins>

</build>

Note

In the future, you can expect IDE plugins like JBoss Tools to setup this configuration

automatically.

Here are the classes that will be generated for the examples above:

TrainSpotterLog_$logger.java

TrainSpotterLog_$logger_en_GB.java

TrainMessages_$bundle.java

Classes are generated for each language referenced by an annotation or if there is

a .i18n.properties language file in the same package as the interface and has the same root name.

For instance, if we wanted to generate a French version of TrainMessages, we would have to

create the following properties file in the same package as the interface:

TrainMessages.i18n_fr.properties

Including the implementation classes in Arquillian tests

29

Then populate it with the translations (Note the property key is the method name):

noTrainsSpotted=pas de trains repéré en raison de %s

Now the annotation processor will generate the following class:

TrainMessages_$bundle_fr.java

Now you can add typed loggers and message bundles at will (and you won't have to worry about

unsatisfied dependencies).

6.6.2. Including the implementation classes in Arquillian tests

If you are writing an Arquillian test, be sure to include the concrete classes in the ShrinkWrap

archive. Otherwise, you may receive an exception like:

Invalid bundle interface org.example.log.AppLog (implementation not found)

The best approach is to put your typed message loggers and bundles in their own package. Then,

you include the package in the ShrinkWrap archive:

ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addPackage(AppLog.class.getPackage());

This strategy will effectively package the interface and the generated implementation class(es)

(even though you can't see the generated implementation classes in your source tree).

30

Part II. Utilities for

Framework Authors

Chapter 7.

33

Annotation and AnnotatedType

Utilities
Solder provides a number of utility classes that make working with annotations and

AnnotatedTypes easier. This chapter walks you through each utility, and gives you some ideas

about how to use it. For more detail, take a look at the JavaDoc on each class.

7.1. Annotated Type Builder

Solder provides an AnnotatedType implementation that should be suitable for the needs of most

portable extensions. The AnnotatedType is created from AnnotatedTypeBuilder, typically in an

extension's observer method, as follows:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(type, true) /* readFromType can read from an AnnotatedType or a class */

 .addToClass(ModelLiteral.INSTANCE); /* add the @Model annotation */

 .create()

Here we create a new builder, and initialize it using an existing AnnotatedType. We can then add

or remove annotations from the class, and its members. When we have finished modifying the

type, we call create() to spit out a new, immutable, AnnotatedType.

AnnotatedType redefinedType = builder.create();

One place this is immensely useful is for replacing the AnnotatedType in an extension that

observes the ProcessAnnotatedType event:

public <X> void processAnnotatedType(@Observes ProcessAnnotatedType<X> evt) {

 AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(evt.getAnnotatedType(), true)

 .addToClass(ModelLiteral.INSTANCE);

 evt.setAnnotatedType(builder.create());

}

This type is now effectively annotated with @Model, even if the annotation is not present on the

class definition in the Java source file.

Chapter 7. Annotation and Ann...

34

AnnotatedTypeBuilder also allows you to specify a "redefinition", which can be applied to the

type, a type of member, or all members. The redefiner will receive a callback for any annotations

present which match the annotation type for which the redefinition is applied.

For example, to remove the qualifier @Unique from the type and any of its members, use this:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(type, true)

 .redefine(Unique.class, new AnnotationRedefiner<Unique>() {

 public void redefine(RedefinitionContext<Unqiue> ctx) {

 ctx.getAnnotationBuilder().remove(Unique.class);

 }

 });

AnnotatedType redefinedType = builder.create();

No doubt, this is a key blade in Solder's army knife arsenal of tools. You can quite effectively

change the picture of the type metadata CDI discovers when it scans and processes the classpath

of a bean archive.

7.2. Annotation Instance Provider

Sometimes you may need an annotation instance for an annotation whose type is not known at

development time. Solder provides a AnnotationInstanceProvider class that can create an

AnnotationLiteral instance for any annotation at runtime. Annotation attributes are passed in

via a Map<String,Object>. For example given the follow annotation:

@Retention(RetentionPolicy.RUNTIME)

public @interface MultipleMembers {

 int intMember();

 long longMember();

 short shortMember();

 float floatMember();

 double doubleMember();

 byte byteMember();

 char charMember();

Annotation Inspector

35

 boolean booleanMember();

 int[] intArrayMember();

}

We can create an annotation instance as follows:

/* Create a new provider */

AnnotationInstanceProvider provider = new AnnotationInstanceProvider();

/* Set the value for each of attributes */

Map<String, Object> values = new HashMap<String, Object>();

values.put("intMember", 1);

values.put("longMember", 1);

values.put("shortMember", 1);

values.put("floatMember", 0);

values.put("doubleMember", 0);

values.put("byteMember", ((byte) 1));

values.put("charMember", 'c');

values.put("booleanMember", true);

values.put("intArrayMember", new int[] { 0, 1 });

/* Generate the instance */

MultipleMembers an = provider.get(MultipleMembers.class, values);

7.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated.

For example:

/* Discover all annotations on type which are meta-annotated @Constraint */

Set<Annotation> constraints = AnnotationInspector.getAnnotations(type, Constraint.class);

/* Load the annotation instance for @FacesValidator the annotation may declared on the type, */

/* or, if the type has any stereotypes, on the stereotypes */

FacesValidator validator = AnnotationInspector.getAnnotation(

 type, FacesValidator.class, true, beanManager);

The utility methods work correctly on Stereotypes as well. Let's say you're working with a bean

that was decorated @Model, running the following example will still show you the underlying @Named

Chapter 7. Annotation and Ann...

36

// assuming you have a class..

@Model

public class User {

 ...

}

// Assume type represents the User class

assert AnnotationInspector.isAnnotationPresent(type, Named.class, beanManager);

// Retrieves the underlying @Named instance on the stereotype

Named name = AnnotationInspector.getAnnotation(type, Named.class, true, beanManager);

The search algorithm will first check to see if the annotation is present directly on the annotated

element first, then searches within the stereotype annotations on the element. If you only

want to search for Annotations on Stereotypes, then you can use either of the methods

AnnotationInspector.getAnnotationFromStereotype.

There is an overloaded form of isAnnotationPresent and getAnnotation to control whether it

will search on Stereotypes or not. For both of these methods, a search is performed first directly

on the element before searching in stereotypes.

7.4. Synthetic Qualifiers

When developing an extension to CDI, it can be useful to detect certain injection points, or bean

definitions and based on annotations or other metadata, add qualifiers to further disambiguate the

injection point or bean definition for the CDI bean resolver. Solder's synthetic qualifiers can be

used to easily generate and track such qualifiers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The

provider will track the qualifier, and if a qualifier is requested again for the same original annotation,

the same instance will be returned.

/* Create a provider, giving it a unique namespace */

Synthetic.Provider provider = new Synthetic.Provider("com.acme");

/* Get the a synthetic qualifier for the original annotation instance */

Synthetic synthetic = provider.get(originalAnnotation);

/* Later calls with the same original annotation instance will return the same instance */

/* Alternatively, we can "get and forget" */

Synthetic synthetic2 = provider.get();

Reflection Utilities

37

7.5. Reflection Utilities

Solder comes with a number miscellaneous reflection utilities; these extend JDK reflection, and

some also work on CDI's Annotated metadata. See the javadoc on Reflections for more.

Solder also includes a simple utility, PrimitiveTypes for converting between primitive and their

respective wrapper types, which may be useful when performing data type conversion. Sadly, this

is functionality which is missing from the JDK.

InjectableMethod allows an AnnotatedMethod to be injected with parameter values obtained

by following the CDI type safe resolution rules, as well as allowing the default parameter values

to be overridden.

38

Chapter 8.

39

Obtaining a reference to the

BeanManager
When developing a framework that builds on CDI, you may need to obtain the BeanManager for

the application, you can't simply inject it as you are not working in an object managed by the

container. The CDI specification allows lookup of java:comp/BeanManager in JNDI, however,

some environments don't support binding to this location (e.g. servlet containers such as Tomcat

and Jetty) and some environments don't support JNDI (e.g. the Weld SE container). For this

reason, most framework developers will prefer to avoid a direct JNDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for

example via a context object. For example, you might be able to place the BeanManager in the

ServletContext, and retrieve it at a later date.

On some occasions however there is no suitable context to use, and in this case, you

can take advantage of the abstraction over BeanManager lookup provided by Solder. To

lookup up a BeanManager, you can extend the abstract BeanManagerAware class, and call

getBeanManager():

public class WicketIntegration extends BeanManagerAware {

 public WicketManager getWicketManager() {

 Bean<?> bean = getBeanManager().getBeans(IRequestListener.class);

 ... // and so on to lookup the bean

 }

}

The benefit here is that BeanManagerAware class will first look to see if its BeanManager injection

point was satisfied before consulting the providers. Thus, if injection becomes available to the

class in the future, it will automatically start the more efficient approach.

Occasionally you will be working in an existing class hierarchy, in which case you can use the

accessor on BeanManagerLocator. For example:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManager beanManager = new BeanManagerLocator().getBeanManager();

 ...

Chapter 8. Obtaining a refere...

40

 }

}

If this lookup fails to resolve a BeanManager, the BeanManagerUnavailableException, a runtime

exception, will be thrown. If you want to perform conditional logic based on whether the

BeanManager is available, you can use this check:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManagerLocator locator = new BeanManagerLocator();

 if (locator.isBeanManagerAvailable()) {

 BeanManager beanManager = locator.getBeanManager();

 ... // work with the BeanManager

 }

 else {

 ... // work without the BeanManager

 }

 }

}

However, keep in mind that you can inject into Servlets in Java EE 6!! So it's very likely the lookup

isn't necessary, and you can just do this:

public class ResourceServlet extends HttpServlet {

 @Inject

 private BeanManager beanManager;

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 ... // work with the BeanManager

 }

}

Chapter 9.

41

Bean Utilities
Solder provides a number of base classes which can be extended to create custom beans. Solder

also provides bean builders which can be used to dynamically create beans using a fluent API.

AbstractImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute specification

defaults if null is passed for a particular attribute. Subclasses must implement the create()

and destroy() methods.

AbstractImmutableProducer

An immutable (and hence thread-safe) abstract class for creating producers. Subclasses must

implement produce() and dispose().

BeanBuilder

A builder for creating immutable beans which can read the type and annotations from an

AnnotatedType.

Beans

A set of utilities for working with beans.

ForwardingBean

A base class for implementing Bean which forwards all calls to delegate().

ForwardingInjectionTarget

A base class for implementing InjectionTarget which forwards all calls to delegate().

ForwardingObserverMethod

A base class for implementing ObserverMethod which forwards all calls to delegate().

ImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

ContextualLifecycle may be registered to receive lifecycle callbacks.

ImmutableInjectionPoint

An immutable (and hence thread-safe) injection point.

ImmutableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers).

ImmutablePassivationCapableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

Chapter 9. Bean Utilities

42

ContextualLifecycle may be registered to receive lifecycle callbacks. The bean implements

PassivationCapable, and an id must be provided.

ImmutablePassivationCapableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers). The bean implements PassivationCapable, and an id must be provided.

NarrowingBeanBuilder

A builder for creating immutable narrowing beans which can read the type and annotations

from an AnnotatedType.

The use of these classes is in general trivially understood with an understanding of basic

programming patterns and the CDI specification, so no in depth explanation is provided here. The

JavaDoc for each class and method provides more detail.

Chapter 10.

43

Property Utilities
Solder provides a number of convenient features for querying and working with JavaBean [http://

en.wikipedia.org/wiki/JavaBean] properties. They can be used with properties exposed via a

getter/setter method, or directly via the field of a bean, providing a uniform interface that allows

you to work with all properties in the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

10.1. Working with properties

The Property<V> interface declares a number of methods for interacting with bean properties.

You can use these methods to read or set the property value, and read the property type

information. Properties may be readonly.

Table 10.1. Property methods

Method Description

String getName(); Returns the name of the

property.

Type getBaseType(); Returns the property type.

Class<V> getJavaClass(); Returns the property class.

AnnotatedElement

getAnnotatedElement();

Returns the annotated

element -either the Field or

Method that the property is

based on.

V getValue(); Returns the value of the

property.

void setValue(V value); Sets the value of the property.

Class<?>

getDeclaringClass();

Gets the class declaring the

property.

boolean isReadOnly(); Check if the property can be

written as well as read.

Member getMember(); Get the class member which

retrieves the property (i.e. field

or getter).

void setAccessible Sets the Member to be

accessible to changes.

Should be performed within

a PriviledgedAction to

work correctly with Security

Managers.

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 10. Property Utilities

44

Given a class with two properties, personName and postcode:'

class Person {

 PersonName personName;

 Address address;

 void setPostcode(String postcode) {

 address.setPostcode(postcode);

 }

 String getPostcode() {

 return address.getPostcode();

 }

}

You can create two properties:

 Property<PersonName> personNameProperty = Properties.createProperty(Person.class.getField("personName"));

 Property<String> postcodeProperty = Properties.createProperty(Person.class.getMethod("getPostcode"));

10.2. Querying for properties

To create a property query, use the PropertyQueries class to create a new PropertyQuery

instance:

 PropertyQuery<?> query = PropertyQueries.createQuery(Foo.class);

If you know the type of the property that you are querying for, you can specify it via a type

parameter:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityClass);

Property Criteria

45

10.3. Property Criteria

Once you have created the PropertyQuery instance, you can add search criteria. Solder provides

three built-in criteria types, and it is very easy to add your own. A criteria is added to a query via

the addCriteria() method. This method returns an instance of the PropertyQuery, so multiple

addCriteria() invocations can be stacked.

10.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type.

For example, take the following class:

 public class Foo {

 private String accountNumber;

 private @Scrambled String accountPassword;

 private String accountName;

 }

To query for properties of this bean annotated with @Scrambled, you can use an

AnnotatedPropertyCriteria, like so:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new AnnotatedPropertyCriteria(Scrambled.class));

This query matches the accountPassword property of the Foo bean.

10.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

public class Foo {

 public String getBar() {

 return "foobar";

 }

}

The following query will locate properties with a name of "bar":

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

Chapter 10. Property Utilities

46

 .addCriteria(new NamedPropertyCriteria("bar"));

10.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {

 private Bar bar;

}

The following query will locate properties with a type of Bar:

PropertyQuery<Bar> query = PropertyQueries.<Bar>createQuery(Foo.class)

 .addCriteria(new TypedPropertyCriteria(Bar.class));

10.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the

org.jboss.solder.properties.query.PropertyCriteria interface, which declares the two

methods fieldMatches() and methodMatches. In the following example, our custom criteria

implementation can be used to locate whole number properties:

public class WholeNumberPropertyCriteria implements PropertyCriteria {

 public boolean fieldMatches(Field f) {

 return f.getType() == Integer.class || f.getType() == Integer.TYPE.getClass() ||

 f.getType() == Long.class || f.getType() == Long.TYPE.getClass() ||

 f.getType() == BigInteger.class;

 }

 public boolean methodMatches(Method m) {

 return m.getReturnType() == Integer.class || m.getReturnType() == Integer.TYPE.getClass() ||

 m.getReturnType() == Long.class || m.getReturnType() == Long.TYPE.getClass() ||

 m.getReturnType() == BigInteger.class;

 }

}

10.4. Fetching the results

After creating the PropertyQuery and setting the criteria, the query can be executed by invoking

either the getResultList() or getFirstResult() methods. The getResultList() method

Fetching the results

47

returns a List of Property objects, one for each matching property found that matches all the

specified criteria:

 List<Property<String>> results = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new TypedPropertyCriteria(String.class))

 .getResultList();

If no matching properties are found, getResultList() will return an empty List. If you know that

the query will return exactly one result, you can use the getFirstResult() method instead:

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new NamedPropertyCriteria("bar"))

 .getFirstResult();

If no properties are found, then getFirstResult() will return null. Alternatively, if more than one

result is found, then getFirstResult() will return the first property found.

Alternatively, if you know that the query will return exactly one result, and you want to assert that

assumption is true, you can use the getSingleResult() method instead:

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new NamedPropertyCriteria("bar"))

 .getSingleResult();

If no properties are found, or more than one property is found, then getSingleResult() will throw

an exception. Otherwise, getSingleResult() will return the sole property found.

Sometimes you may not be interested in read only properties, so

getResultList(),getFirstResult() and getSingleResult() have corresponding

getWritableResultList(),getWritableFirstResult() and getWritableSingleResult()

methods, that will only return properties that are not read-only. This means that if there is a field and

a getter method that resolve to the same property, instead of getting a read-only MethodProperty

you will get a writable FieldProperty.

48

Part III. Configuration Extensions

for Framework Authors

Chapter 11.

51

Unwrapping Producer Methods
Unwrapping producer methods allow you to create injectable objects that have "self-managed"

lifecycles. An unwrapped injectable object is useful if you need a bean whose lifecycle does not

exactly match one of the lifecycles of the existing scopes. The lifecycle of the bean is managed by

the bean that defines the producer method, and changes to the unwrapped object are immediately

visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it

@Unwraps. The return type of the managed producer must be proxyable (see Section 5.4.1

of the CDI specification, "Unproxyable bean types" [http://docs.jboss.org/cdi/spec/1.0/html/

injectionelresolution.html#unproxyable]). Every time a method is called on unwrapped object the

invocation is forwarded to the result of calling the unwrapping producer method - the unwrapped

object.

Important

Solder implements this by injecting a proxy rather than the original object. Every

invocation on the injected proxy will cause the unwrapping producer method to be

invoked to obtain the instance on which to invoke the method called. Solder will

then invoke the method on unwrapped instance.

Because of this, it is very important the producer method is lightweight.

For example consider a permission manager (that manages the current permission), and a

security manager (that checks the current permission level). Any changes to permission in the

permission manager are immediately visible to the security manager.

@SessionScoped

class PermissionManager {

 Permission permission;

 void setPermission(Permission permission) {

 this.permission=permission;

 }

 @Unwraps @Current

 Permission getPermission() {

 return this.permission;

 }

}

http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable
http://docs.jboss.org/cdi/spec/1.0/html/injectionelresolution.html#unproxyable

Chapter 11. Unwrapping Produc...

52

@SessionScoped

class SecurityManager {

 @Inject @Current

 Permission permission;

 boolean checkAdminPermission() {

 return permission.getName().equals("admin");

 }

}

When permission.getName() is called, the unwrapped Permission forwards the invocation of

getName() to the result of calling PermissionManager.getPermission().

For example you could raise the permission level before performing a sensitive operation, and

then lower it again afterwards:

public class SomeSensitiveOperation {

 @Inject

 PermissionManager permissionManager;

 public void perform() {

 try {

 permissionManager.setPermission(Permissions.ADMIN);

 // Do some sensitive operation

 } finally {

 permissionManager.setPermission(Permissions.USER);

 }

 }

}

Unwrapping producer methods can have parameters injected, including InjectionPoint (which

represents) the calling method.

Chapter 12.

53

Default Beans
Suppose you have a situation where you want to provide a default implementation of a particular

service and allow the user to override it as needed. Although this may sound like a job for an

alternative, they have some restrictions that may make them undesirable in this situation. If you

were to use an alternative it would require an entry in every beans.xml file in an application.

Developers consuming the extension will have to open up the any jar file which references the

default bean, and edit the beans.xml file within, in order to override the service. This is where

default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no

other bean is installed that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that

Solder provides!). If JSF is available we want to use the FunctionMapper provided by the JSF

implementation to resolve functions, otherwise we just want to use a a default FunctionMapper

implementation that does nothing. We can achieve this as follows:

@DefaultBean(FunctionMapper.class)

@Mapper

class FunctionMapperImpl extends FunctionMapper {

 @Override

 public Method resolveFunction(String prefix, String localName) {

 return null;

 }

}

And in the JSF module:

class FunctionMapperProvider {

 @Produces

 @Mapper

 FunctionMapper produceFunctionMapper() {

 return FacesContext.getCurrentInstance().getELContext().getFunctionMapper();

 }

}

Chapter 12. Default Beans

54

If FunctionMapperProvider is present then it will be used by default, otherwise the default

FunctionMapperImpl is used.

A producer method or producer field may be defined to be a default producer by placing the

@DefaultBean annotation on the producer. For example:

class CacheManager {

 @DefaultBean(Cache.class)

 Cache getCache() {

 ...

 }

}

Any producer methods or producer fields declared on a default managed bean are

automatically registered as default producers, with Method.getGenericReturnType() or

Field.getGenericType() determining the type of the default producer. The default producer

type can be overridden by specifying @DefaultBean on the producer method or field.

Chapter 13.

55

Generic Beans
Many common services and API's require the use of more than just one class. When exposing

these services via CDI, it would be time consuming and error prone to force the end developer to

provide producers for all the different classes required. Generic beans provide a solution, allowing

a framework author to provide a set of related beans, one for each single configuration point

defined by the end developer. The configuration points specifies the qualifiers which are inherited

by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an

extension to integrate our custom messaging solution "ACME Messaging" with CDI. The ACME

Messaging API for sending messages consists of several interfaces:

MessageQueue

The message queue, onto which messages can be placed, and acted upon by ACME

Messaging

MessageDispatcher

The dispatcher, responsible for placing messages created by the user onto the queue

DispatcherPolicy

The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSystemConfiguration

The messaging system configuration

We want to be able to create as many MessageQueue configurations as they need, however we do

not want to have to declare each producer and the associated plumbing for every queue. Generic

beans are an ideal solution to this problem.

13.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues

to interact with ACME Messaging, a default queue that is installed with qualifier @Default and a

durable queue that has qualifier @Durable:

class MyMessageQueues {

 @Produces

 @ACMEQueue("defaultQueue")

 MessageSystemConfiguration defaultQueue = new MessageSystemConfiguration();

 @Produces @Durable @ConversationScoped

Chapter 13. Generic Beans

56

 @ACMEQueue("durableQueue")

 MessageSystemConfiguration producerDefaultQueue() {

 MessageSystemConfiguration config = new MessageSystemConfiguration();

 config.setDurable(true);

 return config;

 }

}

Looking first at the default queue, in addition to the @Produces annotation, the generic

configuration annotation ACMEQueue, is used, which defines this to be a generic configuration point

for ACME messaging (and cause a whole set of beans to be created, exposing for example the

dispatcher). The generic configuration annotation specifies the queue name, and the value of the

producer field defines the messaging system's configuration (in this case we use all the defaults).

As no qualifier is placed on the definition, @Default qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of

the queue before having Solder use it). Additionally, it specifies that the generic beans created

(that allow for their scope to be overridden) should be placed in the conversation scope. Finally,

it specifies that the generic beans created should inherit the qualifier @Durable.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration

point:

class MessageLogger {

 @Inject

 MessageDispatcher dispatcher;

 void logMessage(Payload payload) {

 /* Add metaddata to the message */

 Collection<Header> headers = new ArrayList<Header>();

 ...

 Message message = new Message(headers, payload);

 dispatcher.send(message);

 }

}

class DurableMessageLogger {

 @Inject @Durable

 MessageDispatcher dispatcher;

Using generic beans

57

 @Inject @Durable

 DispatcherPolicy policy;

 /* Tweak the dispatch policy to enable duplicate removal */

 @Inject

 void tweakPolicy(@Durable DispatcherPolicy policy) {

 policy.removeDuplicates();

 }

 void logMessage(Payload payload) {

 ...

 }

}

It is also possible to configure generic beans using beans by sub-classing the configuration type,

or installing another bean of the configuration type through the SPI (e.g. using Solder Config). For

example to configure a durable queue via sub-classing:

@Durable @ConversationScoped

@ACMEQueue("durableQueue")

class DurableQueueConfiguration extends MessageSystemConfiguration {

 public DurableQueueConfiguration()

 {

 this.durable = true;

 }

}

And the same thing via Solder Config:

<my:MessageSystemConfiguration>

 <my:Durable/>

 <s:ConversationScoped/>

 <my:ACMEQueue>durableQueue</my:ACMEQueue>

 <my:durable>true</my:durable>

</my:MessageSystemConfiguration>

Chapter 13. Generic Beans

58

13.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating

the generic configuration annotation:

@Retention(RUNTIME)

@GenericType(MessageSystemConfiguration.class)

@interface ACMEQueue {

 String value();

}

The generic configuration annotation a defines the generic configuration type (in this case

MessageSystemConfiguration); the type produced by the generic configuration point must be of

this type. Additionally it defines the member name, used to provide the queue name.

Next, we define the queue manager bean. The manager has one producer method, which creates

the queue from the configuration:

@GenericConfiguration(ACMEQueue.class) @ApplyScope

class QueueManager {

 @Inject @Generic

 MessageSystemConfiguration systemConfig;

 @Inject

 ACMEQueue config;

 MessageQueueFactory factory;

 @PostConstruct

 void init() {

 factory = systemConfig.createMessageQueueFactory();

 }

 @Produces @ApplyScope

 public MessageQueue messageQueueProducer() {

 return factory.createMessageQueue(config.name());

 }

}

Defining Generic Beans

59

The bean is declared to be a generic bean for the @ACMEQueue generic configuration type

annotation by placing the @GenericConfiguration annotation on the class. We can inject the

generic configuration type using the @Generic qualifier, as well the annotation used to define the

queue.

Placing the @ApplyScope annotation on the bean causes it to inherit the scope from the generic

configuration point. As creating the queue factory is a heavy operation we don't want to do it more

than necessary.

Having created the MessageQueueFactory, we can then expose the queue, obtaining its name

from the generic configuration annotation. Additionally, we define the scope of the producer

method to be inherited from the generic configuration point by placing the annotation @ApplyScope

on the producer method. The producer method automatically inherits the qualifiers specified by

the generic configuration point.

Finally we define the message manager, which exposes the message dispatcher, as well as

allowing the client to inject an object which exposes the policy the dispatcher will use when queuing

messages. The client can then tweak the policy should they wish.

@Generic

class MessageManager {

 @Inject @Generic

 MessageQueue queue;

 @Produces @ApplyScope

 MessageDispatcher messageDispatcherProducer() {

 return queue.createMessageDispatcher();

 }

 @Produces

 DispatcherPolicy getPolicy() {

 return queue.getDispatcherPolicy();

 }

}

60

Chapter 14.

61

Service Handler
The service handler facility allow you to declare interfaces and abstract classes as automatically

implemented beans. Any call to an abstract method on the interface or abstract class will be

forwarded to the invocation handler for processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers

may be useful for you, as they allow the end user to map a lookup to a method using domain

specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA

queries upon abstract method calls. First we define the annotation used to mark interfaces as

automatically implemented beans. We meta-annotate it, defining the invocation handler to use:

@ServiceHandlerType(QueryHandler.class)

@Retention(RUNTIME)

@Target({TYPE})

@interface QueryService {}

We now define an annotation which provides the query to execute:

@Retention(RUNTIME)

@Target({METHOD})

@interface Query {

 String value();

}

And finally, the invocation handler, which simply takes the query, and executes it using JPA,

returning the result:

class QueryHandler {

 @Inject EntityManager em;

 @AroundInvoke

 Object handle(InvocationContext ctx) {

 return em.createQuery(ctx.getMethod().getAnnotation(Query.class).value()).getResultList();

 }

Chapter 14. Service Handler

62

}

Note

• The invocation handler is similar to an interceptor. It must have

an @AroundInvoke method that returns an object and takes an

InvocationContext as an argument.

• Do not call InvocationContext.proceed() as there is no method to proceed to.

• Injection is available into the handler class, however the handler is not a bean

definition, so observer methods, producer fields and producer methods defined

on the handler will not be registered.

Finally, we can define (any number of) interfaces which define our queries:

@QueryService

interface UserQuery {

 @Query("select u from User u")

 public List<User> getAllUsers();

}

Finally, we can inject the query interface, and call methods, automatically executing the JPA query.

class UserListManager {

 @Inject

 UserQuery userQuery;

 List<User> users;

 @PostConstruct

 void create() {

 users=userQuery.getAllUsers();

 }

}

Part IV. XML Configuration

Chapter 15.

65

XML Configuration Introduction
Solder provides a method for configuring CDI beans using alternate metadata sources, such

as XML configuration. Currently, the XML provider is the only alternative available. Using a

"type-safe" XML syntax, it is possible to add new beans, override existing beans, and add extra

configuration to existing beans.

15.1. Getting Started

To take advantage of XML Configuration, you need metadata sources in the form of XML files. By

default these are discovered from the classpath in the following locations:

• /META-INF/beans.xml

• /META-INF/seam-beans.xml

The beans.xml file is the preferred way of configuring beans via XML; however some CDI

implementations will not allow this, so seam-beans.xml is provided as an alternative.

Here is a simple example. The following class represents a report:

class Report {

 String filename;

 @Inject

 Datasource datasource;

 //getters and setters

}

And the following support classes:

interface Datasource {

 public Data getData();

}

@SalesQualifier

class SalesDatasource implements Datasource {

 public Data getData()

 {

 //return sales data

 }

}

Chapter 15. XML Configuration...

66

class BillingDatasource implements Datasource {

 public Data getData()

 {

 //return billing data

 }

}

The Report bean is fairly simple. It has a filename that tells the report engine where to load the

report definition from, and a datasource that provides the data used to fill the report. We are going

to configure up multiple Report beans via xml.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:r="urn:java:org.example.reports">

 <r:Report>

 <s:modifies/>

 <r:filename>sales.jrxml<r:filename>

 <r:datasource>

 <r:SalesQualifier/>

 </r:datasource>

 </r:Report>

 <r:Report filename="billing.jrxml">

 <s:replaces/>

 <r:datasource>

 <s:Inject/>

 <s:Exact>org.example.reports.BillingDatasource</s:Exact>

 </r:datasource>

 </r:Report>

</beans>

The namespace urn:java:ee is the XML Config's root namespace. This is where the built-

in elements and CDI annotations live.

There are now multiple namespaces in the beans.xml file. These namespaces correspond

to java package names.

The Princess Rescue Example

67

The namespace urn:java:org.example.reports corresponds to the package

org.example.reports, where the reporting classes live. Multiple java packages can be

aggregated into a single namespace declaration by separating the package names with

colons, e.g. urn:java:org.example.reports:org.example.model. The namespaces are

searched in the order they are specified in the xml document, so if two packages in the

namespace have a class with the same name, the first one listed will be resolved. For more

information see Namespaces.

The <Report> declaration configures an instance of the Report class as a bean.

Beans installed using <s:modifies> read annotations from the existing class, and merge

them with the annotations defined via xml. In addition, if a bean is installed with

<s:modifies>, it prevents the original class being installed as a bean. It is also possible to

add new beans and replace beans altogether. For more information see Adding, modifying

and replacing beans.

The <r:filename> element sets the initial value of the filename field. For more information

on how methods and fields are resolved see Configuring Methods, and Configuring Fields.

The <r:SalesQualifier> element applies the @SalesQualifier to the datasource

field. As the field already has an @Inject on the class definition this will cause the

SalesDatasource bean to be injected.

This is the shorthand syntax for setting a field value.

Beans installed using <s:replaces> do not read annotations from the existing class. In

addition, if a bean is installed with <s:replaces> it prevents the original class being installed

as a bean.

The <s:Inject> element is needed as this bean was installed with <s:replaces>, so

annotations are not read from the class definition.

The <s:Exact> annotation restricts the type of bean that is available for injection without

using qualifiers. In this case BillingDatasource will be injected. This is provided as part

of weld-extensions.

15.2. The Princess Rescue Example

The princess rescue example is a sample web app that uses XML Config. Run it with the following

command:

mvn -Pjetty jetty:run

And then navigate to http://localhost:9090/princess-rescue. The XML configuration for the

example is in src/main/resources/META-INF/seam-beans.xml.

68

Chapter 16.

69

Solder Config XML provider

16.1. XML Namespaces

The main namespace is urn:java:ee. This namespace contains built-in tags and types from core

packages. The built-in tags are:

• Beans

• modifies

• replaces

• parameters

• value

• key

• entry

• e (alias for entry)

• v (alias for value)

• k (alias for key)

• array

• int

• short

• long

• byte

• char

• double

• float

• boolean

as well as classes from the following packages:

• java.lang

Chapter 16. Solder Config XML...

70

• java.util

• javax.annotation

• javax.inject

• javax.enterprise.inject

• javax.enterprise.context

• javax.enterprise.event

• javax.decorator

• javax.interceptor

• org.jboss.solder.core

• org.jboss.solder.unwraps

• org.jboss.solder.resourceLoader

Other namespaces are specified using the following syntax:

 xmlns:my="urn:java:com.mydomain.package1:com.mydomain.package2"

This maps the namespace my to the packages com.mydomain.package1 and

com.mydomain.package2. These packages are searched in order to resolve elements in this

namespace.

For example, you have a class com.mydomain.package2.Report. To configure a Report bean

you would use <my:Report>. Methods and fields on the bean are resolved from the same

namespace as the bean itself. It is possible to distinguish between overloaded methods by

specifying the parameter types, for more information see Configuring Methods.

16.2. Adding, replacing and modifying beans

By default configuring a bean via XML creates a new bean; however there may be cases where

you want to modify an existing bean rather than adding a new one. The <s:replaces> and

<s:modifies> tags allow you to do this.

The <s:replaces> tag prevents the existing bean from being installed, and registers a new one

with the given configuration. The <s:modifies> tag does the same, except that it merges the

annotations on the bean with the annotations defined in XML. Where the same annotation is

specified on both the class and in XML the annotation in XML takes precedence. This has almost

Applying annotations using XML

71

the same effect as modifying an existing bean, except it is possible to install multiple beans that

modify the same class.

Note

Config ignores beans that have the @Veto annotation when using <replaces> and

<modifies>.

<my:Report>

 <s:modifies>

 <my:NewQualifier/>

</my:Report>

<my:ReportDatasource>

 <s:replaces>

 <my:NewQualifier/>

</my:ReportDatasource>

The first entry above adds a new bean with an extra qualifier, in addition to the qualifiers already

present, and prevents the existing Report bean from being installed.

The second prevents the existing bean from being installed, and registers a new bean with a

single qualifier.

16.3. Applying annotations using XML

Annotations are resolved in the same way as normal classes. Conceptually, annotations are

applied to the object their parent element resolves to. It is possible to set the value of annotation

members using the xml attribute that corresponds to the member name. For example:

public @interface OtherQualifier {

 String value1();

 int value2();

 QualifierEnum value();

}

<test:QualifiedBean1>

 <test:OtherQualifier value1="AA" value2="1">A</my:OtherQualifier>

</my:QualifiedBean1>

Chapter 16. Solder Config XML...

72

<test:QualifiedBean2>

 <test:OtherQualifier value1="BB" value2="2" value="B" />

</my:QualifiedBean2>

The value member can be set using the inner text of the node, as seen in the first example. Type

conversion is performed automatically.

Note

It is currently not possible set array annotation members.

16.4. Configuring Fields

It is possible to both apply qualifiers to and set the initial value of a field. Fields reside in the same

namespace as the declaring bean, and the element name must exactly match the field name. For

example if we have the following class:

class RobotFactory {

 Robot robot;

}

The following xml will add the @Produces annotation to the robot field:

<my:RobotFactory>

 <my:robot>

 <s:Produces/>

 </my:robot>

</my:RobotFactory/>

16.4.1. Initial Field Values

Initial field values can be set three different ways as shown below:

<r:MyBean company="Red Hat Inc" />

<r:MyBean>

 <r:company>Red Hat Inc</r:company>

</r:MyBean>

Initial Field Values

73

<r:MyBean>

 <r:company>

 <s:value>Red Hat Inc<s:value>

 <r:SomeQualifier/>

 </r:company>

</r:MyBean>

The third form is the only one that also allows you to add annotations such as qualifiers to the field.

It is possible to set Map,Array and Collection field values. Some examples:

<my:ArrayFieldValue>

 <my:intArrayField>

 <s:value>1</s:value>

 <s:value>2</s:value>

 </my:intArrayField>

 <my:classArrayField>

 <s:value>java.lang.Integer</s:value>

 <s:value>java.lang.Long</s:value>

 </my:classArrayField>

 <my:stringArrayField>

 <s:value>hello</s:value>

 <s:value>world</s:value>

 </my:stringArrayField>

</my:ArrayFieldValue>

<my:MapFieldValue>

 <my:map1>

 <s:entry><s:key>1</s:key><s:value>hello</s:value></s:entry>

 <s:entry><s:key>2</s:key><s:value>world</s:value></s:entry>

 </my:map1>

 <my:map2>

 <s:e><s:k>1</s:k><s:v>java.lang.Integer</s:v></s:e>

 <s:e><s:k>2</s:k><s:v>java.lang.Long</s:v></s:e>

 </my:map2>

</my:MapFieldValue>

Chapter 16. Solder Config XML...

74

Type conversion is done automatically for all primitives and primitive wrappers, Date,

Calendar,Enum and Class fields.

The use of EL to set field values is also supported:

<m:Report>

 <m:name>#{reportName}</m:name>

 <m:parameters>

 <s:key>#{paramName}</s:key>

 <s:value>#{paramValue}</s:key>

 </m:parameters>

</m:Report>

Internally, field values are set by wrapping the InjectionTarget for a bean. This means that the

expressions are evaluated once, at bean creation time.

16.4.2. Inline Bean Declarations

Inline beans allow you to set field values to another bean that is declared inline inside the

field declaration. This allows for the configuration of complex types with nestled classes. Inline

beans can be declared inside both <s:value> and <s:key> elements, and may be used in both

collections and simple field values. Inline beans must not have any qualifier annotations declared

on the bean; instead Solder Config assigns them an artificial qualifier. Inline beans may have any

scope, however the default Dependent scope is recommended.

<my:Knight>

 <my:sword>

 <value>

 <my:Sword type="sharp"/>

 </value>

 </my:sword>

 <my:horse>

 <value>

 <my:Horse>

 <my:name>

 <value>billy</value>

 </my:name>

 <my:shoe>

 <Inject/>

 </my:shoe>

 </my:Horse>

 </value>

 </my:horse>

Configuring methods

75

</my:Knight>

16.5. Configuring methods

It is also possible to configure methods in a similar way to configuring fields:

class MethodBean {

 public int doStuff() {

 return 1;

 }

 public int doStuff(MethodValueBean bean) {

 return bean.value + 1;

 }

 public void doStuff(MethodValueBean[][] beans) {

 /*do stuff */

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:java:ee"

 xmlns:my="urn:java:org.jboss.solder.config.xml.test.method">

 <my:MethodBean>

 <my:doStuff>

 <s:Produces/>

 </my:doStuff>

 <my:doStuff>

 <s:Produces/>

 <my:Qualifier1/>

 <s:parameters>

 <my:MethodValueBean>

 <my:Qualifier2/>

 </my:MethodValueBean>

 </s:parameters>

Chapter 16. Solder Config XML...

76

 </my:doStuff>

 <my:doStuff>

 <s:Produces/>

 <my:Qualifier1/>

 <s:parameters>

 <s:array dimensions="2">

 <my:Qualifier2/>

 <my:MethodValueBean/>

 </s:array>

 </s:parameters>

 </my:doStuff>

 </my:MethodBean>

</beans>

In this example, MethodBean has three methods. They are all named doStuff.

The first <test:doStuff> entry in the XML file configures the method that takes no arguments.

The <s:Produces> element makes it into a producer method.

The next entry in the file configures the method that takes a MethodValueBean as a parameter

and the final entry configures a method that takes a two dimensional array ofMethodValueBeans

as a parameter. For both of these methods, a qualifier was added to the method parameter and

they were made into producer methods.

Method parameters are specified inside the <s:parameters> element. If these parameters have

annotation children they are taken to be annotations on the parameter.

The corresponding Java declaration for the XML above would be:

class MethodBean {

 @Produces

 public int doStuff() {/*method body */}

 @Produces

 @Qualifier1

 public int doStuff(@Qualifier2 MethodValueBean param) {/*method body */}

 @Produces

 @Qualifier1

 public int doStuff(@Qualifier2 MethodValueBean[][] param) {/*method body */}

}

Configuring the bean constructor

77

Array parameters can be represented using the <s:array> element, with a child element to

represent the type of the array. E.g. int method(MethodValueBean[] param); could be

configured via xml using the following:

<my:method>

 <s:array>

 <my:MethodValueBean/>

 </s:array>

</my:method>

Note

If a class has a field and a method of the same name then by default the field will

be resolved. The exception is if the element has a child <parameters> element,

in which case it is resolved as a method.

16.6. Configuring the bean constructor

It is also possible to configure the bean constructor in a similar manner. This is done with a

<s:parameters> element directly on the bean element. The constructor is resolved in the same

way methods are resolved. This constructor will automatically have the @Inject annotation

applied to it. Annotations can be applied to the constructor parameters in the same manner as

method parameters.

<my:MyBean>

 <s:parameters>

 <s:Integer>

 <my:MyQualifier/>

 </s:Integer>

 </s:parameters>

</my:MyBean>

The example above is equivalent to the following java:

class MyBean {

 @Inject

 MyBean(@MyQualifier Integer count)

 {

 ...

Chapter 16. Solder Config XML...

78

 }

}

16.7. Overriding the type of an injection point

It is possible to limit which bean types are available to inject into a given injection point:

class SomeBean

{

 public Object someField;

}

<my:SomeBean>

 <my:someField>

 <s:Inject/>

 <s:Exact>com.mydomain.InjectedBean</s:Exact>

 </my:someField>

</my:SomeBean>

In the example above, only beans that are assignable to InjectedBean will be eligible for injection

into the field. This also works for parameter injection points. This functionality is part of Solder,

and the @Exact annotation can be used directly in java.

16.8. Configuring Meta Annotations

It is possible to make existing annotations into qualifiers, stereotypes or interceptor bindings.

This configures a stereotype annotation SomeStereotype that has a single interceptor binding

and is named:

<my:SomeStereotype>

 <s:Stereotype/>

 <my:InterceptorBinding/>

 <s:Named/>

</my:SomeStereotype>

This configures a qualifier annotation:

<my:SomeQualifier>

Virtual Producer Fields

79

 <s:Qualifier/>

</my:SomeQualifier>

This configures an interceptor binding:

<my:SomeInterceptorBinding>

 <s:InterceptorBinding/>

</my:SomeInterceptorBinding>

16.9. Virtual Producer Fields

Solder XML Config supports configuration of virtual producer fields. These allow for configuration

of resource producer fields, Solder generic bean and constant values directly via XML. For

example:

<s:EntityManager>

 <s:Produces/>

 <s:PersistenceContext unitName="customerPu" />

</s:EntityManager>

<s:String>

 <s:Produces/>

 <my:VersionQualifier />

 <value>Version 1.23</value>

</s:String>

The first example configures a resource producer field. The second configures a bean of type

String, with the qualifier @VersionQualifier and the value 'Version 1.23'. The corresponding

java for the above XML is:

class SomeClass

{

 @Produces

 @PersistenceContext(unitName="customerPu")

 EntityManager field1;

 @Produces

 @VersionQualifier

 String field2 = "Version 1.23";

Chapter 16. Solder Config XML...

80

}

Although these look superficially like normal bean declarations, the <Produces> declaration

means it is treated as a producer field instead of a normal bean.

16.10. More Information

For further information, look at the units tests in the Solder XML Config distribution. Also see

the XML-based metadata chapter in the JSR-299 Public Review Draft [http://jcp.org/aboutJava/

communityprocess/pr/jsr299/index.html], which is where this feature was originally proposed.

http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr299/index.html

Part V. Exception

Handling Framework

Chapter 17.

83

Exception Handling - Introduction
Exceptions are a fact of life. As developers, we need to be prepared to deal with them in the most

graceful manner possible. Solder's exception handling framework provides a simple, yet robust

foundation for modules and/or applications to establish a customized exception handling process.

By employing a delegation model, Solder allows exceptions to be addressed in a centralized,

extensible and uniform manner.

In this guide, we'll explore the various options you have for handling exceptions using Solder, as

well as how framework authors can offer Solder exception handling integration.

17.1. How Solder's Exception Handling Works

Exception handling in Solder is based around the CDI eventing model. While the implementation

of exception handlers may not be the same as a CDI event, and the programming model is not

exactly the same as specifying a CDI event / observer, the concepts are very similar. Solder makes

use of events for many of its features. Eventing is actually the only way to start using Solder's

exception handling.

This event is fired either by the application or a Solder exception handling integration. Solder

then hands the exception off to a chain of registered handlers, which deal with the exception

appropriately. The use of CDI events to connect exceptions to handlers makes this strategy of

exception handling non-invasive and minimally coupled to the exception handling infrastructure.

The exception handling process remains mostly transparent to the developer. In most cases,

you register an exception handler simply by annotating a handler method. Alternatively, you can

handle an exception programmatically, just as you would observe an event in CDI.

There are other events that are fired during the exception handling process that will allow great

customization of the exception, stack trace, and status. This allows the application developer to

have the most control possible while still following a defined workflow. These events and other

advanced usages will be covered in the next chapter.

84

Chapter 18.

85

Exception Handling - Usage

18.1. Eventing into the exception handling framework

The entire exception handling process starts with an event. This helps keep your application

minimally coupled to Solder, but also allows for further extension. Exception handling in Solder

is all about letting you take care of exceptions the way that makes the most sense for your

application. Events provide this delicate balance.

There are three means of firing the event to start the exception handling process:

• manual firing of the event

• using an interceptor

• module integration - no code needs to be changed

18.1.1. Manual firing of the event

Manually firing an event to use Solder's exception handling is primarily used in your own try/catch

blocks. It's very painless and also easy. Let's examine an sample that might exist inside of a simple

business logic lookup into an inventory database:

@Stateless

public class InventoryActions {

 @PersistenceContext private EntityManager em;

 @Inject private Event<ExceptionToCatch> catchEvent;

 public Integer queryForItem(Item item) {

 try {

 Query q = em.createQuery("SELECT i from Item i where i.id = :id");

 q.setParameter("id", item.getId());

 return q.getSingleResult();

 } catch (PersistenceException e) {

 catchEvent.fire(new ExceptionToCatch(e));

 }

 }

}

The Event of generic type ExceptionToCatch is injected into your class for use later within

a try/catch block.

Chapter 18. Exception Handlin...

86

The event is fired with a new instance of ExceptionToCatch constructed with the exception

to be handled.

18.1.2. Using the @ExceptionHandled Interceptor

A CDI Interceptor has been added to help with integration of Solder exception handling into your

application. It's used just like any interceptor, and must be enabled in the beans.xml file for your

bean archive. This interceptor can be used at the class or method level.

This interceptor is a typical AroundInvoke interceptor and is invoked before the method (which in

this case merely wraps the call to the intercepted method in a try / catch block). The intercepted

method is called then, if an exception (actually a Throwable) occurs during execution of the

intercepted method the exception is passed to Solder (without any qualifiers). Normal flow

continues from there, however, take not of the following warning:

Warning

Using the interceptor may cause unexpected behavior to methods that call

intercepted methods in which an exception occurs, please see the API

docs [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/

control/ExceptionHandledInterceptor.html] for more information about returns if an

exception occurs.

18.2. Exception handlers

As an application developer (i.e., an end user of Solder's exception handling), you'll be focused

on writing exception handlers. An exception handler is a method on a CDI bean that is invoked to

handle a specific type of exception. Within that method, you can implement any logic necessary

to handle or respond to the exception.

Note

If there are no exception handlers for an exception, the exception is rethrown.

Given that exception handler beans are CDI beans, they can make use of dependency injection,

be scoped, have interceptors or decorators and any other functionality available to CDI beans.

Exception handler methods are designed to follow the syntax and semantics of CDI observers,

with some special purpose exceptions explained in this guide. The advantage of this design is that

exception handlers will be immediately familiar to you if you are studying or well-versed in CDI.

In this and subsequent chapters, you'll learn how to define an exception handler, explore how and

when it gets invoked, modify an exception and a stack trace, and even extend exception handling

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionHandledInterceptor.html

Exception handler annotations

87

further through events that are fired during the handling workflow. We'll begin by covering the two

annotations that are used to declare an exception handler, @HandlesExceptions and @Handles.

18.3. Exception handler annotations

Exception handlers are contained within exception handler beans, which are CDI beans annotated

with @HandlesExceptions. Exception handlers are methods which have a parameter which is an

instance of CaughtException<T extends Throwable> annotated with the @Handles annotation.

18.3.1. @HandlesExceptions

The @HandlesException annotation is simply a marker annotation that instructs the Solder

exception handling CDI extension to scan the bean for handler methods.

Let's designate a CDI bean as an exception handler by annotating it with @HandlesException.

@HandlesExceptions

public class MyHandlers {}

That's all there is to it. Now we can begin defining exception handling methods on this bean.

Note

The @HandlesExceptions annotation may be deprecated in favor of annotation

indexing at a later date.

18.3.2. @Handles

@Handles is a method parameter annotation that designates a method as an exception handler.

Exception handler methods are registered on beans annotated with @HandlesExceptions. Solder

will discover all such methods at deployment time.

Let's look at an example. The following method is invoked for every exception that Solder

processes and prints the exception message to stdout. (Throwable is the base exception type in

Java and thus represents all exceptions).

@HandlesExceptions

public class MyHandlers

{

 void printExceptions(@Handles CaughtException<Throwable> evt)

 {

 System.out.println("Something bad happened: " +

Chapter 18. Exception Handlin...

88

 evt.getException().getMessage());

 evt.markHandled();

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

The @Handles annotation on the first parameter designates this method as an exception

handler (though it is not required to be the first parameter). This parameter must be of type

CaughtException<T extends Throwable>, otherwise it's detected as a definition error.

The type parameter designates which exception the method should handle. This method is

notified of all exceptions (requested by the base exception type Throwable).

The CaughtException instance provides access to information about the exception and can

be used to control exception handling flow. In this case, it's used to read the current exception

being handled in the exception chain, as returned by getException().

This handler does not modify the invocation of subsequent handlers, as designated by

invoking markHandled() on CaughtException. As this is the default behavior, this line could

be omitted.

The @Handles annotation must be placed on a parameter of the method, which must be of type

CaughtException<T extends Throwable>. Handler methods are similar to CDI observers and,

as such, follow the same principles and guidelines as observers (such as invocation, injection of

parameters, qualifiers, etc) with the following exceptions:

• a parameter of a handler method must be a CaughtException

• handlers are ordered before they are invoked (invocation order of observers is non-

deterministic)

• any handler can prevent subsequent handlers from being invoked

In addition to designating a method as exception handler, the @Handles annotation specifies two

pieces of information about when the method should be invoked relative to other handler methods:

• a precedence relative to other handlers for the same exception type. Handlers with higher

precedence are invoked before handlers with lower precedence that handle the same exception

type. The default precedence (if not specified) is 0.

• the type of the traversal mode (i.e., phase) during which the handler is invoked. The default

traversal mode (if not specified) is TraversalMode.DEPTH_FIRST.

Let's take a look at more sophisticated example that uses all the features of handlers to log all

exceptions.

@HandlesExceptions

Exception chain processing

89

public class MyHandlers

{

 void logExceptions(@Handles(during = TraversalMode.BREADTH_FIRST)

 @WebRequest CaughtException<Throwable> evt,

 Logger log)

 {

 log.warn("Something bad happened: " + evt.getException().getMessage());

 }

}

The @HandlesExceptions annotation signals that this bean contains exception handler

methods.

This handler has a default precedence of 0 (the default value of the precedence attribute

on @Handles). It's invoked during the breadth first traversal mode. For more information on

traversal, see the section Section 18.5.1, “Traversal of exception type hierarchy”.

This handler is qualified with @WebRequest. When Solder calculates the handler chain, it filters

handlers based on the exception type and qualifiers. This handler will only be invoked for

exceptions passed to Solder that carry the @WebRequest qualifier. We'll assume this qualifier

distinguishes a web page request from a REST request.

Any additional parameters of a handler method are treated as injection points. These

parameters are injected into the handler when it is invoked by Solder. In this case, we are

injecting a Logger bean that must be defined within the application (or by an extension).

A handler is guaranteed to only be invoked once per exception (automatically muted), unless it

re-enables itself by invoking the unmute() method on the CaughtException instance.

Handlers must not throw checked exceptions, and should avoid throwing unchecked exceptions.

Should a handler throw an unchecked exception it will propagate up the stack and all handling

done via Solder will cease. Any exception that was being handled will be lost.

18.4. Exception chain processing

When an exception is thrown, chances are it's nested (wrapped) inside other exceptions. (If you've

ever examined a server log, you'll appreciate this fact). The collection of exceptions in its entirety

is termed an exception chain.

The outermost exception of an exception chain (e.g., EJBException, ServletException, etc) is

probably of little use to exception handlers. That's why Solder doesn't simply pass the exception

chain directly to the exception handlers. Instead, it intelligently unwraps the chain and treats the

root exception cause as the primary exception.

The first exception handlers to be invoked by Solder are those that match the type of root

cause. Thus, instead of seeing a vague EJBException, your handlers will instead see an

Chapter 18. Exception Handlin...

90

meaningful exception such as ConstraintViolationException. This feature, alone, makes

Solder's exception handling a worthwhile tool.

Solder continues to work through the exception chain, notifying handlers of each exception in the

stack, until a handler flags the exception as handled. Once an exception is marked as handled,

Solder stops processing the exception. If a handler instructed Solder to rethrow the exception

(by invoking CaughtException#rethrow(), Solder will rethrow the exception outside the Solder

exception handling infrastructure. Otherwise, it simply returns flow control to the caller.

Consider a exception chain containing the following nested causes (from outer cause to root

cause):

• EJBException

• PersistenceException

• SQLGrammarException

Solder will unwrap this exception and notify handlers in the following order:

1. SQLGrammarException

2. PersistenceException

3. EJBException

If there's a handler for PersistenceException, it will likely prevent the handlers for EJBException

from being invoked, which is a good thing since what useful information can really be obtained

from EJBException?

18.5. Exception handler ordering

While processing one of the causes in the exception chain, Solder has a specific order it uses to

invoke the handlers, operating on two axes:

• traversal of exception type hierarchy

• relative handler precedence

We'll first address the traversal of the exception type hierarchy, then cover relative handler

precedence.

18.5.1. Traversal of exception type hierarchy

Solder doesn't simply invoke handlers that match the exact type of the exception. Instead, it walks

up and down the type hierarchy of the exception. It first notifies least specific handler in breadth

first traversal mode, then gradually works down the type hierarchy toward handlers for the actual

exception type, still in breadth first traversal. Once all breadth first traversal handlers have been

Traversal of exception type hierarchy

91

invoked, the process is reversed for depth first traversal, meaning the most specific handlers are

notified first and Solder continues walking up the hierarchy tree.

There are two modes of this traversal:

• BREADTH_FIRST

• DEPTH_FIRST

By default, handlers are registered into the DEPTH_FIRST traversal path. That means in most

cases, Solder starts with handlers of the actual exception type and works up toward the handler

for the least specific type.

However, when a handler is registered to be notified during the BREADTH_FIRST traversal, as

in the example above, Solder will notify that exception handler before the exception handler for

the actual type is notified.

Let's consider an example. Assume that Solder is handling the SocketException. It will notify

handlers in the following order:

1. Throwable (BREADTH_FIRST)

2. Exception (BREADTH_FIRST)

3. IOException (BREADTH_FIRST)

4. SocketException (BREADTH_FIRST)

5. SocketException (DEPTH_FIRST)

6. IOException (DEPTH_FIRST)

7. Exception (DEPTH_FIRST)

8. Throwable (DEPTH_FIRST)

The same type traversal occurs for each exception processed in the chain.

In order for a handler to be notified of the IOException before the SocketException, it would

have to specify the BREADTH_FIRST traversal path explicitly:

void handleIOException(@Handles(during = TraversalMode.BREADTH_FIRST)

 CaughtException<IOException> evt)

{

 System.out.println("An I/O exception occurred, but not sure what type yet");

}

Chapter 18. Exception Handlin...

92

BREADTH_FIRST handlers are typically used for logging exceptions because they are not likely to

be short-circuited (and thus always get invoked).

18.5.2. Handler precedence

When Solder finds more than one handler for the same exception type, it orders the handlers

by precedence. Handlers with higher precedence are executed before handlers with a lower

precedence. If Solder detects two handlers for the same type with the same precedence, it detects

it as an error and throws an exception at deployment time.

Let's define two handlers with different precedence:

void handleIOExceptionFirst(@Handles(precedence = 100) CaughtException<IOException> evt)

{

 System.out.println("Invoked first");

}

void handleIOExceptionSecond(@Handles CaughtException<IOException> evt)

{

 System.out.println("Invoked second");

}

The first method is invoked first since it has a higher precedence (100) than the second method,

which has the default precedence (0).

To make specifying precedence values more convenient, Solder provides several built-in

constants, available on the Precedence class:

• BUILT_IN = -100

• FRAMEWORK = -50

• DEFAULT = 0

• LOW = 50

• HIGH = 100

To summarize, here's how Solder determines the order of handlers to invoke (until a handler

marks exception as handled):

1. Unwrap exception stack

2. Begin processing root cause

APIs for exception information and flow control

93

3. Find handler for least specific handler marked for BREADTH_FIRST traversal

4. If multiple handlers for same type, invoke handlers with higher precedence first

5. Find handler for most specific handler marked for DEPTH_FIRST traversal

6. If multiple handlers for same type, invoke handlers with higher precedence first

7. Continue above steps for each exception in stack

18.6. APIs for exception information and flow control

There are two APIs provided by Solder that should be familiar to application developers:

• CaughtException

• ExceptionStack

18.6.1. CaughtException

In addition to providing information about the exception being handled, the CaughtException

object contains methods to control the exception handling process, such as rethrowing the

exception, aborting the handler chain or unmuting the current handler.

Five methods exist on the CaughtException object to give flow control to the handler

• abort() - terminate all handling immediately after this handler, does not mark the exception as

handled, does not re-throw the exception.

• rethrow() - continues through all handlers, but once all handlers have been called (assuming

another handler does not call abort() or handled()) the initial exception passed to Solder is

rethrown. Does not mark the exception as handled.

• handled() - marks the exception as handled and terminates further handling.

• markHandled() - default. Marks the exception as handled and proceeds with the rest of the

handlers.

• dropCause() - marks the exception as handled, but proceeds to the next cause in the cause

container, without calling other handlers for the current cause.

Once a handler is invoked it is muted, meaning it will not be run again for that exception chain,

unless it's explicitly marked as unmuted via the unmute() method on CaughtException.

18.6.2. ExceptionStack

ExceptionStack contains information about the exception causes relative to the current

exception cause. It is also the source of the exception types the invoked handlers are

Chapter 18. Exception Handlin...

94

matched against. It is accessed in handlers by calling the method getExceptionStack() on

the CaughtException object. Please see API docs [http://docs.jboss.org/seam/3/solder/latest/

api/org/jboss/solder/exception/control/ExceptionStack.html] for more information, all methods are

fairly self-explanatory.

Tip

This object is mutable and can be modified before any handlers are invoked by

an observer:

public void modifyStack(@Observes ExceptionStack stack) {

 ...

}

Modifying the ExceptionStack may be useful to remove exception types that

are effectively meaningless such as EJBException, changing the exception type

to something more meaningful such as cases like SQLException, or wrapping

exceptions as custom application exception types.

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/control/ExceptionStack.html

Chapter 19.

95

Exception handling - Advanced

Features

19.1. Exception Modification

19.1.1. Introduction

At times it may be useful to change the exception to something a little more specific or meaningful

before it is sent to handlers. Solder provides the means to make this happen. A prime use case

for this behavior is a persistence-related exception coming from the database. Many times what

we get from the database is an error number inside of a SQLException, which isn't very helpful.

19.1.2. Usage

Before any handlers are notified of an exception, Solder will raise an event of type

ExceptionStack. This type contains all the exceptions in the chain, and will allow

you to change the exception elements that will be used to notify handlers using the

setCauseElements(Collection) method. Do not use any of the other methods as they only

return copies of the chain.

Tip

When changing the exception, it is strongly recommended you keep the same stack

trace for the exceptions you are changing. If the stack trace is not set then the new

exception will not contain any stack information save from the time it was created,

which is likely to be of little use to any handler.

19.2. Filtering Stack Traces

19.2.1. Introduction

Stack traces are an everyday occurrence for the Java developer, unfortunately the base stack

trace isn't very helpful and can be difficult to understand and see the root problem. Solder helps

make this easier by:

• turning the stack upside down and showing the root cause first, and

• allowing the stack trace to be filtered

The great part about all of this: it's done without a need for CDI! You can use it in a basic Java

project, just include the Solder jar. There are four classes to be aware of when using filtering

Chapter 19. Exception handlin...

96

• ExceptionStackOutput

• StackFrameFilter

• StackFrameFilterResult

• StackFrame

19.2.2. ExceptionStackOutput

There's not much to this, pass it the exception to print and the filter to use in the constructor and

call printTrace() which returns a string -- the stack trace (filtered or not). If no filter is passed to

the constructor, calling printTrace() will still unwrap the stack and print the root cause first. This

can be used in place ofThrowable#printStackTrace(), provided the returned string is actually

printed to standard out or standard error.

19.2.3. StackFrameFilter

This is the workhorse interface that will need to be implemented to do any filtering for a stack

trace. It only has one method:public StackFrameFilterResult process(StackFrame frame).

Further below are methods on StackFrame andStackFrameFilterResult. Some examples are

included below to get an idea what can be done and how to do it.

19.2.4. StackFrameFilterResult

This is a simple enumeration of valid return values for the process method. Please

see the API docs [http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/

StackFrameFilterResult.html] for definitions of each value.

19.2.5. StackFrame

This contains methods to help aid in determining what to do in the filter, it also allows you to

completely replace the StackTraceElement if desired. The four "mark" methods deal with marking

a stack trace and are used if "folding" a stack trace is desired, instead of dropping the frame. The

StackFrame will allow for multiple marks to be set. The last method,getIndex(), will return the

index of the StackTraceElement from the exception.

Example 19.1. Terminate

 @Override

 public StackFrameFilterResult process(StackFrame frame) {

 return StackFrameFilterResult.TERMINATE;

 }

This example will simply show the exception, no stack trace.

http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html
http://docs.jboss.org/seam/3/solder/latest/api/org/jboss/solder/exception/filter/StackFrameFilterResult.html

StackFrame

97

Example 19.2. Terminate After

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 return StackFrameFilterResult.TERMINATE_AFTER;

 }

This is similar to the previous example, save the first line of the stack is shown.

Example 19.3. Drop Remaining

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 if (frame.getIndex() >= 5) {

 return StackFrameFilterResult.DROP_REMAINING;

 }

 return StackFrameFilterResult.INCLUDE;

 }

This filter drops all stack elements after the fifth element.

Example 19.4. Folding

@Override

 public StackFrameFilterResult process(StackFrame frame) {

 if (frame.isMarkSet("reflections.invoke")) {

 if (frame.getStackTraceElement().getClassName().contains("java.lang.reflect")) {

 frame.clearMark("reflections.invoke");

 return StackFrameFilterResult.INCLUDE;

 }

 else if (frame.getStackTraceElement().getMethodName().startsWith("invoke")) {

 return StackFrameFilterResult.DROP;

 }

 }

 if (frame.getStackTraceElement().getMethodName().startsWith("invoke")) {

 frame.mark("reflections.invoke");

 return StackFrameFilterResult.DROP;

 }

 return StackFrameFilterResult.INCLUDE;

Chapter 19. Exception handlin...

98

 }

Certainly the most complicated example, however, this shows a possible way of "folding" a

stack trace. In the example any internal reflection invocation methods are folded into a single

java.lang.reflect.Method.invoke() call, no more internal com.sun calls in the trace.

Chapter 20.

99

Exception Handling - Framework

Integration
Integration of Solder's exception handling with other frameworks consists of one main step, and

two other optional (but highly encouraged) steps:

• creating and firing an ExceptionToCatch

• adding any default handlers and qualifiers with annotation literals (optional)

• supporting ServiceHandlers for creating exception handlers

20.1. Creating and Firing an ExceptionToCatch event

An ExceptionToCatch is constructed by passing a Throwable and optionally qualifiers for

handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting

a Event<ExceptionToCatch> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception

handling mechanism of the integrating framework, if any exist. By tying into the framework's

exception handling, any uncaught exceptions should be routed through Solder's exception

handling system and allow handlers to be invoked. This is the typical way of using Solder to

handle exceptions. Of course, it doesn't stop the application developer from firing their own

ExceptionToCatch within a catch block.

Tip

The integration should check to see if the exception was handled and rethrow the

exception if it was not handled. It should also wrap the firing of the event in a

try catch, and unwrap any exceptions that are thrown. This exception should be

javax.enterprise.event.ObserverException and should wrap the exception

that should be rethrown.

20.2. Default Handlers and Qualifiers

20.2.1. Default Handlers

An integration with Solder can define it's own handlers to always be used. It's recommended

that any built-in handler from an integration have a very low precedence, be a handler for as

generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for

Chapter 20. Exception Handlin...

100

PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the

integration. This helps limit any collisions with handlers the application developer may create.

20.2.2. Qualifiers

Solder supports qualifiers for the CaughtException. To add qualifiers to be used when notifying

handlers, the qualifiers must be added to the ExceptionToCatch instance via the constructor

(please see API docs for more info). Qualifiers for integrations should be used to avoid collisions

in the application error handling both when defining handlers and when firing events from the

integration.

20.3. Supporting ServiceHandlers

ServiceHandlers make for a very easy and concise way to define exception handlers. The following

example is a possible usage of ServiceHandlers within a JAX-RS application:

@HandlesExceptions

@ExceptionResponseService

public interface DeclarativeRestExceptionHandlers

{

 @SendHttpResponse(status = 403, message = "Access to resource denied (Annotation-

configured response)")

 void onNoAccess(@Handles @RestRequest CaughtException<AccessControlException> e);

 @SendHttpResponse(status = 400, message = "Invalid identifier (Annotation-configured

 response)")

 void onInvalidIdentifier(@Handles @RestRequest CaughtException<IllegalArgumentException> e);

}

All the vital information that would normally be done in the handler method is actually contained

in the @SendHttpResponse annotation. The only thing left is some boiler plate code to setup the

Response. In a jax-rs application (or even in any web application) this approach helps developers

cut down on the amount of boiler plate code they have to write in their own handlers and should be

implemented in any Solder integration, however, there may be situations where ServiceHandlers

simply do not make sense.

Note

If ServiceHandlers are implemented make sure to document if any of the methods

are called from CaughtException, specifically abort(), handled() or rethrow().

Programmatic Handler Registration

101

These methods affect invocation of other handlers (or rethrowing the exception in

the case of rethrow()).

20.4. Programmatic Handler Registration

Handlers can be registered programatically at runtime instead of solely at deploy

time. This done very simply by injecting HandlerMethodContainer and calling

registerHandlerMethod(HandlerMethod).

HandlerMethod has been relaxed in this version as well, and is not tied directly to Java. It is

therefore feasible handlers written using other JVM based languages could be easily registered

and participate in exception handling.

102

103

Exception Handling - Glossary

E
Exception Chain An exception chain is made up of many different exceptions or

causes until the root exception is found at the bottom of the

chain. When all of the causes are removed or looked at this forms

the causing container. The container may be traversed either

ascending (root cause first) or descending (outer most first).

H
Handler Bean A CDI enabled Bean which contains handler methods. Annotated

with the @HandlesExceptions annotation.

See Also Handler Method.

Handler Method A method within a handler bean which is marked as a handler

using the @Handlers on an argument, which must be an instance

of CaughtException. Handler methods typically are public with

a void return. Other parameters of the method will be treated as

injection points and will be resolved via CDI and injected upon

invocation.

See Also Handler Bean.

104

Part VI. Servlet API Integration

cvii

Introduction

The goal of Solder's Servlet integration features is to provide portable enhancements to the

Servlet API. Features include producers for implicit Servlet objects and HTTP request state,

propagating Servlet events to the CDI event bus, forwarding uncaught exceptions to Solder's

exception handling chain and binding the BeanManager to a Servlet context attribute for convenient

access.

cviii

Chapter 21.

109

Installation

21.1. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

several Servlet components in your application's web.xml to activate the features provided by this

module:

<listener>

 <listener-class>org.jboss.solder.servlet.event.ServletEventBridgeListener</listener-class>

</listener>

<servlet>

 <servlet-name>Servlet Event Bridge Servlet</servlet-name>

 <servlet-class>org.jboss.solder.servlet.event.ServletEventBridgeServlet</servlet-class>

 <!-- Make load-on-startup large enough to be initialized last (thus destroyed first) -->

 <load-on-startup>99999</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Servlet Event Bridge Servlet</servlet-name>

 <url-pattern>/*</url-pattern>

</servlet-mapping>

<filter>

 <filter-name>Exception Filter</filter-name>

 <filter-class>org.jboss.solder.servlet.exception.CatchExceptionFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Exception Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <filter-class>org.jboss.solder.servlet.event.ServletEventBridgeFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <url-pattern>/*</url-pattern>

Chapter 21. Installation

110

</filter-mapping>

Warning

In order for the Servlet event bridge to properly fire the ServletContext initialized

event, the CDI runtime must be started at the time the Servlet listener is invoked.

This ordering is guaranteed in a compliant Java EE 6 environment. If you are using

a CDI implementation in a Servlet environment (e.g., Weld Servlet), and it relies on

a Servlet listener to bootstrap, that listener must be registered before any Servlet

listener in web.xml.

You're now ready to dive into the Servlet enhancements provided for you by Solder!

Chapter 22.

111

Servlet event propagation
By including the Solder module in your web application (and performing the necessary listener

configuration for pre-Servlet 3.0 environments), the servlet lifecycle events will be propagated

to the CDI event bus so you can observe them using observer methods on CDI beans. Solder

also fires additional lifecycle events not offered by the Servlet API, such as when the response

is initialized and destroyed.

22.1. Servlet context lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletContextListener interface. The event propagated is a

javax.servlet.ServletContext (not a javax.servlet.ServletContextEvent, since the

ServletContext is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet context.

The servlet context lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletContextThe servlet context is initialized or destroyed

@Initialized javax.servlet.ServletContextThe servlet context is initialized

@Destroyed javax.servlet.ServletContextThe servlet context is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers on the observer method:

public void observeServletContext(@Observes ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized or destroyed");

}

If you are interested in only a particular lifecycle phase, use one of the provided qualifiers:

public void observeServletContextInitialized(@Observes @Initialized ServletContext ctx) {

 System.out.println(ctx.getServletContextName() + " initialized");

}

As with all CDI observers, the name of the method is insignificant.

These events are fired using a built-in servlet context listener. The CDI environment will be active

when these events are fired (including when Weld is used in a Servlet container). The listener is

Chapter 22. Servlet event pro...

112

configured to come before listeners in other extensions, so the initialized event is fired before other

servlet context listeners are notified and the destroyed event is fired after other servlet context

listeners are notified. However, this order cannot be not guaranteed if another extension library

is also configured to be ordered before others.

22.2. Application initialization

The servlet context initialized event described in the previous section provides an ideal opportunity

to perform startup logic as an alternative to using an EJB 3.1 startup singleton. Even better, you

can configure the bean to be destroyed immediately following the initialization routine by leaving

it as dependent scoped (dependent-scoped observers only live for the duration of the observe

method invocation).

Here's an example of entering seed data into the database in a development environment (as

indicated by a stereotype annotation named @Development).

@Stateless

@Development

public class SeedDataImporter {

 @PersistenceContext

 private EntityManager em;

 public void loadData(@Observes @Initialized ServletContext ctx) {

 em.persist(new Product(1, "Black Hole", 100.0));

 }

}

If you'd rather not tie yourself to the Servlet API, you can observe

the org.jboss.solder.servlet.WebApplication rather than the ServletContext.

WebApplication is a informational object provided by Solder that holds select information about

the ServletContext such as the application name, context path, server info and start time.

The web application lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) WebApplication The web application is initialized, started or

destroyed

@Initialized WebApplication The web application is initialized

@Started WebApplication The web application is started (ready)

@Destroyed WebApplication The web application is destroyed

Here's the equivalent of receiving the servlet context initialized event without coupling to the

Servlet API:

Servlet request lifecycle events

113

public void loadData(@Observes @Initialized WebApplication webapp) {

 System.out.println(webapp.getName() + " initialized at " + new Date(webapp.getStartTime()));

}

If you want to perform initialization as late as possible, after all other initialization of the application

is complete, you can observe the WebApplication event qualified with @Started.

public void onStartup(@Observes @Started WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " ready to handle requests");

}

The @Started event is fired in the init method of a built-in Servlet with a load-on-startup value

of 99999.

You can also use WebApplication with the @Destroyed qualifier to be notified when the web

application is stopped. This event is fired by the aforementioned built-in Servlet during it's destroy

method, so likely it should fire when the application is first released.

public void onShutdown(@Observes @Destroyed WebApplication webapp) {

 System.out.println("Application at " + webapp.getContextPath() + " no longer handling

 requests");

}

22.3. Servlet request lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.ServletRequestListener interface. The event propagated is a

javax.servlet.ServletRequest (not a javax.servlet.ServletRequestEvent, since the

ServletRequest is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request and a secondary qualifier to filter events by servlet path (@Path).

The servlet request lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletRequestA servlet request is initialized or destroyed

@Initialized javax.servlet.ServletRequestA servlet request is initialized

@Destroyed javax.servlet.ServletRequestA servlet request is destroyed

Chapter 22. Servlet event pro...

114

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletRequestAn HTTP servlet request is initialized

@Destroyed javax.servlet.http.HttpServletRequestAn HTTP servlet request is destroyed

@Path(PATH) javax.servlet.http.HttpServletRequestSelects HTTP request with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers on the observer:

public void observeRequest(@Observes ServletRequest request) {

 // Do something with the servlet "request" object

}

If you are interested in only a particular lifecycle phase, use a qualifier:

public void observeRequestInitialized(@Observes @Initialized ServletRequest request) {

 // Do something with the servlet "request" object upon initialization

}

You can also listen specifically for a javax.servlet.http.HttpServletRequest simply by

changing the expected event type.

public void observeRequestInitialized(@Observes @Initialized HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

}

You can associate an observer with a particular servlet request path (exact match, no leading

slash).

public void observeRequestInitialized(@Observes @Initialized @Path("offer") HttpServletRequest request) {

 // Do something with the HTTP servlet "request" object upon initialization

 // only when servlet path /offer is requested

}

As with all CDI observers, the name of the method is insignificant.

Servlet response lifecycle events

115

These events are fired using a built-in servlet request listener. The listener is configured to

come before listeners in other extensions, so the initialized event is fired before other servlet

request listeners are notified and the destroyed event is fired after other servlet request listeners

are notified. However, this order cannot be not guaranteed if another extension library is also

configured to be ordered before others.

22.4. Servlet response lifecycle events

The Servlet API does not provide a listener for accessing the lifecycle of a response. Therefore,

Solder simulates a response lifecycle listener using CDI events. The event object fired is a

javax.servlet.ServletResponse.

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet response and a secondary qualifier to filter events by servlet path (@Path).

The servlet response lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.ServletResponseA servlet response is initialized or destroyed

@Initialized javax.servlet.ServletResponseA servlet response is initialized

@Destroyed javax.servlet.ServletResponseA servlet response is destroyed

@Default (optional) javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized or

destroyed

@Initialized javax.servlet.http.HttpServletResponseAn HTTP servlet response is initialized

@Destroyed javax.servlet.http.HttpServletResponseAn HTTP servlet response is destroyed

@Path(PATH) javax.servlet.http.HttpServletResponseSelects HTTP response with servlet path

matching PATH (drop leading slash)

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeResponse(@Observes ServletResponse response) {

 // Do something with the servlet "response" object

}

If you are interested in only a particular one, use a qualifier

public void observeResponseInitialized(@Observes @Initialized ServletResponse response) {

 // Do something with the servlet "response" object upon initialization

}

Chapter 22. Servlet event pro...

116

You can also listen specifically for a javax.servlet.http.HttpServletResponse simply by

changing the expected event type.

public void observeResponseInitialized(@Observes @Initialized HttpServletResponse response) {

 // Do something with the HTTP servlet "response" object upon initialization

}

If you need access to the ServletRequest and/or the ServletContext objects at the same time,

you can simply add them as parameters to the observer methods. For instance, let's assume you

want to manually set the character encoding of the request and response.

public void setupEncoding(@Observes @Initialized ServletResponse res, ServletRequest req) throws Exception {

 if (this.override || req.getCharacterEncoding() == null) {

 req.setCharacterEncoding(encoding);

 if (override) {

 res.setCharacterEncoding(encoding);

 }

 }

}

As with all CDI observers, the name of the method is insignificant.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

22.5. Servlet request context lifecycle events

Rather than having to observe the request and response as separate events, or include the

request object as an parameter on a response observer, it would be convenient to be able to

observe them as a pair. That's why Solder fires an synthetic lifecycle event for the wrapper

type ServletRequestContext. The ServletRequestContext holds the ServletRequest and the

ServletResponse objects, and also provides access to the ServletContext.

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

servlet request context and a secondary qualifier to filter events by servlet path (@Path).

The servlet request context lifecycle events are documented in the table below.

Servlet request context lifecycle events

117

Qualifier Type Description

@Default (optional) ServletRequestContext A request is initialized or destroyed

@Initialized ServletRequestContext A request is initialized

@Destroyed ServletRequestContext A request is destroyed

@Default (optional) HttpServletRequestContextAn HTTP request is initialized or destroyed

@Initialized HttpServletRequestContextAn HTTP request is initialized

@Destroyed HttpServletRequestContextAn HTTP request is destroyed

@Path(PATH) HttpServletRequestContextSelects HTTP request with servlet path

matching PATH (drop leading slash)

Let's revisit the character encoding observer and examine how it can be simplified by this event:

public void setupEncoding(@Observes @Initialized ServletRequestContext ctx) throws Exception {

 if (this.override || ctx.getRequest().getCharacterEncoding() == null) {

 ctx.getRequest().setCharacterEncoding(encoding);

 if (override) {

 ctx.getResponse().setCharacterEncoding(encoding);

 }

 }

}

You can also observe the HttpServletRequestContext to be notified only on HTTP requests.

Tip

If the response is committed by one of the observers, the request will not be sent

to the target Servlet and the filter chain is skipped.

Since observers that have access to the response can commit it, an

HttpServletRequestContext observer that receives the initialized event can effectively work as

a filter or even a Servlet. Let's consider a primitive welcome page filter that redirects visitors to

the start page:

public void redirectToStartPage(@Observes @Path("") @Initialized HttpServletRequestContext ctx)

 throws Exception {

 String startPage = ctx.getResponse().encodeRedirectURL(ctx.getContextPath() + "/start.jsf");

 ctx.getResponse().sendRedirect(startPage);

}

Chapter 22. Servlet event pro...

118

Now you never have to write a Servlet listener, Servlet or Filter again!

22.6. Session lifecycle events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@Initialized and @Destroyed) that can be used to observe a specific lifecycle phase of the

session.

The session lifecycle events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@Initialized javax.servlet.http.HttpSessionThe session is initialized

@Destroyed javax.servlet.http.HttpSessionThe session is destroyed

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifier

public void observeSessionInitialized(@Observes @Initialized HttpSession session) {

 // Do something with the "session" object upon being initialized

}

As with all CDI observers, the name of the method is insignificant.

22.7. Session activation events

This category of events corresponds to the event receivers on the

javax.servlet.http.HttpSessionActivationListener interface. The event propagated is a

javax.servlet.http.HttpSession (not a javax.servlet.http.HttpSessionEvent, since the

HttpSession is the only relevant information this event provides).

Session activation events

119

There are two qualifiers provided in the org.jboss.solder.servlet.event package

(@DidActivate and @WillPassivate) that can be used to observe a specific lifecycle phase of

the session.

The session activation events are documented in the table below.

Qualifier Type Description

@Default (optional) javax.servlet.http.HttpSessionThe session is initialized or destroyed

@DidActivate javax.servlet.http.HttpSessionThe session is activated

@WillPassivate javax.servlet.http.HttpSessionThe session will passivate

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session) {

 // Do something with the "session" object

}

If you are interested in only one particular event, use a qualifier:

public void observeSessionCreated(@Observes @WillPassivate HttpSession session) {

 // Do something with the "session" object when it's being passivated

}

As with all CDI observers, the name of the method is insignificant.

120

Chapter 23.

121

Injectable Servlet objects and

request state
Solder provides producers that expose a wide-range of information available in a Servlet

environment (e.g., implicit objects such as ServletContext and HttpSession and state such as

HTTP request parameters) as beans. You access this information by injecting the beans produced.

This chapter documents the Servlet objects and request state that Solder exposes and how to

inject them.

23.1. @Inject @RequestParam

The @RequestParam qualifier allows you to inject an HTTP request parameter (i.e., URI query

string or URL form encoded parameter).

Assume a request URL of /book.jsp?id=1.

@Inject @RequestParam("id")

private String bookId;

The value of the specified request parameter is retrieved using the method

ServletRequest.getParameter(String). It is then produced as a dependent-scoped bean of

type String qualified @RequestParam.

The name of the request parameter to lookup is either the value of the @RequestParam annotation

or, if the annotation value is empty, the name of the injection point (e.g., the field name).

Here's the example from above modified so that the request parameter name is implied from the

field name:

@Inject @RequestParam

private String id;

If the request parameter is not present, and the injection point is annotated with @DefaultValue,

the value of the @DefaultValue annotation is returned instead.

Here's an example that provides a fall-back value:

@Inject @RequestParam @DefaultValue("25")

private String pageSize;

Chapter 23. Injectable Servle...

122

If the request parameter is not present, and the @DefaultValue annotation is not present, a null

value is injected.

Warning

Since the bean produced is dependent-scoped, use of the @RequestParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @RequestParam("id")

private Instance<String> bookIdResolver;

...

String bookId = bookIdResolver.get();

23.2. @Inject @HeaderParam

Similar to the @RequestParam, you can use the @HeaderParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the user agent string of the client that issued

the request:

@Inject @HeaderParam("User-Agent")

private String userAgent;

The @HeaderParam also supports a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @HeaderParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @HeaderParam("User-Agent")

private Instance<String> userAgentResolver;

...

String userAgent = userAgentResolver.get();

@Inject ServletContext

123

23.3. @Inject ServletContext

The ServletContext is made available as an application-scoped bean. It can be injected safely

into any CDI bean as follows:

@Inject

private ServletContext context;

The producer obtains a reference to the ServletContext by observing the @Initialized

ServletContext event raised by this module's Servlet-to-CDI event bridge.

23.4. @Inject ServletRequest / HttpServletRequest

The ServletRequest is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletRequest. It can be injected safely into any

CDI bean as follows:

@Inject

private ServletRequest request;

or, for HTTP requests

@Inject

private HttpServletRequest httpRequest;

The producer obtains a reference to the ServletRequest by observing the @Initialized

ServletRequest event raised by this module's Servlet-to-CDI event bridge.

23.5. @Inject ServletResponse / HttpServletResponse

The ServletResponse is made available as a request-scoped bean. If the current request is an

HTTP request, the produced bean is an HttpServletResponse. It can be injected safely into any

CDI bean as follows:

@Inject

private ServletResponse reponse;

or, for HTTP requests

Chapter 23. Injectable Servle...

124

@Inject

private HttpServletResponse httpResponse;

The producer obtains a reference to the ServletResponse by observing the @Initialized

ServletResponse event raised by this module's Servlet-to-CDI event bridge.

23.6. @Inject HttpSession

The HttpSession is made available as a request-scoped bean. It can be injected safely into any

CDI bean as follows:

@Inject

private HttpSession session;

Injecting the HttpSession will force the session to be created. The producer obtains a reference

to the HttpSession by calling the getSession() on the HttpServletRequest. The reference

to the HttpServletRequest is obtained by observing the @Initialized HttpServletRequest

event raised by this module's Servlet-to-CDI event bridge.

If you merely want to know whether the HttpSession exists, you can instead inject the

HttpSessionStatus bean that Solder provides.

23.7. @Inject HttpSessionStatus

The HttpSessionStatus is a request-scoped bean that provides access to the status of the

HttpSession. It can be injected safely into any CDI bean as follows:

@Inject

private HttpSessionStatus sessionStatus;

You can invoke the isActive() method to check if the session has been created, and the

getSession() method to retrieve the HttpSession, which will be created if necessary.

if (!sessionStatus.isActive()) {

 System.out.println("Session does not exist. Creating it now.");

 HttpSession session = sessionStatus.get();

 assert session.isNew();

}

@Inject @ContextPath

125

23.8. @Inject @ContextPath

The context path is made available as a dependent-scoped bean. It can be injected safely into

any request-scoped CDI bean as follows:

@Inject @ContextPath

private String contextPath;

You can safely inject the context path into a bean with a wider scope using an instance provider:

@Inject @ContextPath

private Instance<String> contextPathProvider;

...

String contextPath = contextPathProvider.get();

The context path is retrieved from the HttpServletRequest.

23.9. @Inject List<Cookie>

The list of Cookie objects is made available as a request-scoped bean. It can be injected safely

into any CDI bean as follows:

@Inject

private List<Cookie> cookies;

The producer uses a reference to the request-scoped HttpServletRequest bean to retrieve the

Cookie instances by calling getCookie().

23.10. @Inject @CookieParam

Similar to the @RequestParam, you can use the @CookieParam qualifier to inject an HTTP header

parameter. Here's an example of how you inject the username of the last logged in user (assuming

you have previously stored it in a cookie):

@Inject @CookieParam

private String username;

If the type at the injection point is Cookie, the Cookie object will be injected instead of the value.

Chapter 23. Injectable Servle...

126

@Inject @CookieParam

private Cookie username;

The @CookieParam also support a default value using the @DefaultValue annotation.

Warning

Since the bean produced is dependent-scoped, use of the @CookieParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @CookieParam("username")

private Instance<String> usernameResolver;

...

String username = usernameResolver.get();

23.11. @Inject @ServerInfo

The server info string is made available as a dependent-scoped bean. It can be injected safely

into any CDI bean as follows:

@Inject @ServerInfo

private String serverInfo;

The context path is retrieved from the ServletContext.

23.12. @Inject @Principal

The security Principal for the current user is made available by CDI as an injectable resource

(not provided by Solder). It can be injected safely into any CDI bean as follows:

@Inject

private Principal principal;

Chapter 24.

127

Servlet Exception Handling

Integration
Solder provides a simple, yet robust foundation for modules and/or applications to establish

a customized exception handling process. Solder's Servlet integration ties into the exception

handling model by forwarding all unhandled Servlet exceptions to the exception handling

framework so that they can be handled in a centralized, extensible and uniform manner.

24.1. Background

The Servlet API is extremely weak when it comes to handling exceptions. You are limited to

handling exceptions using the built-in, declarative controls provided in web.xml. Those controls

give you two options:

• send an HTTP status code

• forward to an error page (servlet path)

To make matters more painful, you are required to configure these exception mappings in

web.xml. It's really a dinosaur left over from the past. In general, the Servlet specification seems

to be pretty non-chalant about exceptions, telling you to "handle them appropriately." But how?

That's where the exception handling integration in comes in. Solder's exception handling

framework traps all unhandled exceptions (those that bubble outside of the Servlet and any filters)

and forwards them on to Solder. Exception handlers are free to handle the exception anyway they

like, either programmatically or via a declarative mechanism.

If a exception handler registered with Solder handles the exception, then the integration closes

the response without raising any additional exceptions. If the exception is still unhandled after

Solder finishes processing it, then the integration allows it to pass through to the normal Servlet

exception handler.

24.2. Defining a exception handler for a web request

You can define an exception handler for a web request using the normal syntax of a Solder

exception handler. Let's catch any exception that bubbles to the top and respond with a 500 error.

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Catch!");

 }

Chapter 24. Servlet Exception...

128

}

That's all there is to it! If you only want this handler to be used for exceptions raised by a web

request (excluding web service requests like JAX-RS), then you can add the @WebRequest qualifier

to the handler:

@HandlesExceptions

public class ExceptionHandlers {

 void handleAll(@Handles @WebRequest

 CaughtException<Throwable> caught, HttpServletResponse response) {

 response.sendError(500, "You've been caught by Solder!");

 }

}

Note

@WebRequest may be added to limit handlers to only catch exceptions initiated by

the Servlet integration.

Let's consider another example. When the custom AccountNotFound exception is thrown, we'll

send a 404 response using this handler.

void handleAccountNotFound(@Handles @WebRequest

 CaughtException<AccountNotFound> caught, HttpServletResponse response) {

 response.sendError(404, "Account not found: " + caught.getException().getAccountId());

}

Chapter 25.

129

Retrieving the BeanManager from

the servlet context
Typically, the BeanManager is obtained using some form of injection. However, there are scenarios

where the code being executed is outside of a managed bean environment and you need a way

in. In these cases, it's necessary to lookup the BeanManager from a well-known location.

Warning

In general, you should isolate external BeanManager lookups to integration code.

The standard mechanism for locating the BeanManager from outside a managed bean

environment, as defined by the JSR-299 specification, is to look it up in JNDI. However, JNDI

isn't the most convenient technology to depend on when you consider all popular deployment

environments (think Tomcat and Jetty).

As a simpler alternative, Solder binds the BeanManager to the following servlet context attribute

(whose name is equivalent to the fully-qualified class name of the BeanManager interface:

javax.enterprise.inject.spi.BeanManager

Solder also includes a provider that retrieves the BeanManager from this location. Anytime

the Solder module needs a reference to the BeanManager, it uses this lookup mechanism to

ensure that the module works consistently across deployment environments, especially in Servlet

containers.

You can retrieve the BeanManager in the same way. If you want to hide the lookup, you

can extend the BeanManagerAware class and retrieve the BeanManager from the the method

getBeanManager(), as shown here:

public class NonManagedClass extends BeanManagerAware {

 public void fireEvent() {

 getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Alternatively, you can retrieve the BeanManager from the method getBeanManager() on the

BeanManagerLocator class, as shown here:

Chapter 25. Retrieving the Be...

130

public class NonManagedClass {

 public void fireEvent() {

 new BeanManagerLocator().getBeanManager().fireEvent("Send me to a managed bean");

 }

}

Tip

The best way to transfer execution of the current context to the managed bean

environment is to send an event to an observer bean, as this example above

suggests.

Under the covers, these classes look for the BeanManager in the servlet context attribute covered

in this section, among other available strategies. Refer to Chapter 8, Obtaining a reference to the

BeanManager for information on how to leverage the servlet context attribute provider to access

the BeanManager from outside the CDI environment.

Chapter 26.

131

Loading web resources without

ServletContext
Sometimes developers need to access web application resources from application code. Typically

the ServletContext is used to load resources by calling getResource(). Unfortunately the

ServletContext cannot be accessed in all situations. Especially CDI extensions can be

problematic in this regard as they are executed during a stage in the application startup in which

the ServletContext may not have been created yet.

Solder offers some help in this situation. The class WebResourceLocator provides a simple

way to obtain resources from the web application. Under the covers this class uses the

WebResourceLocationProvider SPI to retrieve the location of the resources.

The following example shows how to use the class:

WebResourceLocator locator = new WebResourceLocator();

InputStream stream = locator.getWebResource("/WEB-INF/web.xml");

if (stream != null) {

 // parse the input stream

}

As you can see using the WebResourceLocator is very easy. Just create an instance of the class

and then use getWebResource() to retrieve an InputStream.

Warning

Please note that you should always prefer to use the standard Servlet API to load

resources from the web application if possible. This Solder API is only intended to

be used if it is not possible to use the ServletContext (like for example in CDI

extensions).

132

	Solder
	Table of Contents
	Introduction
	Chapter 1. Getting Started
	1.1. Maven dependency configuration
	1.2. Transitive dependencies
	1.3. Pre-Servlet 3.0 configuration

	Part I. Extensions and Utilities for Developers
	Chapter 2. Enhancements to the CDI Programming Model
	2.1. Preventing a class from being processed
	2.1.1. @Veto
	2.1.2. @Requires

	2.2. @Exact
	2.3. @Client
	2.4. Named packages
	2.5. @FullyQualified bean names

	Chapter 3. Annotation Literals
	Chapter 4. Evaluating Unified EL
	4.1. @Resolver

	Chapter 5. Injecting Resources and System Properties
	5.1. Resource Loading
	5.1.1. Extending the Resource Loader

	5.2. System Properties

	Chapter 6. Logging, redesigned
	6.1. JBoss Logging: The foundation
	6.2. Solder Logging: Feature set
	6.3. Typed loggers
	6.4. Native logger API
	6.5. Typed message bundles
	6.6. Implementation classes
	6.6.1. Generating the implementation classes
	6.6.2. Including the implementation classes in Arquillian tests

	Part II. Utilities for Framework Authors
	Chapter 7. Annotation and AnnotatedType Utilities
	7.1. Annotated Type Builder
	7.2. Annotation Instance Provider
	7.3. Annotation Inspector
	7.4. Synthetic Qualifiers
	7.5. Reflection Utilities

	Chapter 8. Obtaining a reference to the BeanManager
	Chapter 9. Bean Utilities
	Chapter 10. Property Utilities
	10.1. Working with properties
	10.2. Querying for properties
	10.3. Property Criteria
	10.3.1. AnnotatedPropertyCriteria
	10.3.2. NamedPropertyCriteria
	10.3.3. TypedPropertyCriteria
	10.3.4. Creating a custom property criteria

	10.4. Fetching the results

	Part III. Configuration Extensions for Framework Authors
	Chapter 11. Unwrapping Producer Methods
	Chapter 12. Default Beans
	Chapter 13. Generic Beans
	13.1. Using generic beans
	13.2. Defining Generic Beans

	Chapter 14. Service Handler

	Part IV. XML Configuration
	Chapter 15. XML Configuration Introduction
	15.1. Getting Started
	15.2. The Princess Rescue Example

	Chapter 16. Solder Config XML provider
	16.1. XML Namespaces
	16.2. Adding, replacing and modifying beans
	16.3. Applying annotations using XML
	16.4. Configuring Fields
	16.4.1. Initial Field Values
	16.4.2. Inline Bean Declarations

	16.5. Configuring methods
	16.6. Configuring the bean constructor
	16.7. Overriding the type of an injection point
	16.8. Configuring Meta Annotations
	16.9. Virtual Producer Fields
	16.10. More Information

	Part V. Exception Handling Framework
	Chapter 17. Exception Handling - Introduction
	17.1. How Solder's Exception Handling Works

	Chapter 18. Exception Handling - Usage
	18.1. Eventing into the exception handling framework
	18.1.1. Manual firing of the event
	18.1.2. Using the @ExceptionHandled Interceptor

	18.2. Exception handlers
	18.3. Exception handler annotations
	18.3.1. @HandlesExceptions
	18.3.2. @Handles

	18.4. Exception chain processing
	18.5. Exception handler ordering
	18.5.1. Traversal of exception type hierarchy
	18.5.2. Handler precedence

	18.6. APIs for exception information and flow control
	18.6.1. CaughtException
	18.6.2. ExceptionStack

	Chapter 19. Exception handling - Advanced Features
	19.1. Exception Modification
	19.1.1. Introduction
	19.1.2. Usage

	19.2. Filtering Stack Traces
	19.2.1. Introduction
	19.2.2. ExceptionStackOutput
	19.2.3. StackFrameFilter
	19.2.4. StackFrameFilterResult
	19.2.5. StackFrame

	Chapter 20. Exception Handling - Framework Integration
	20.1. Creating and Firing an ExceptionToCatch event
	20.2. Default Handlers and Qualifiers
	20.2.1. Default Handlers
	20.2.2. Qualifiers

	20.3. Supporting ServiceHandlers
	20.4. Programmatic Handler Registration

	Exception Handling - Glossary

	Part VI. Servlet API Integration
	Introduction
	Chapter 21. Installation
	21.1. Pre-Servlet 3.0 configuration

	Chapter 22. Servlet event propagation
	22.1. Servlet context lifecycle events
	22.2. Application initialization
	22.3. Servlet request lifecycle events
	22.4. Servlet response lifecycle events
	22.5. Servlet request context lifecycle events
	22.6. Session lifecycle events
	22.7. Session activation events

	Chapter 23. Injectable Servlet objects and request state
	23.1. @Inject @RequestParam
	23.2. @Inject @HeaderParam
	23.3. @Inject ServletContext
	23.4. @Inject ServletRequest / HttpServletRequest
	23.5. @Inject ServletResponse / HttpServletResponse
	23.6. @Inject HttpSession
	23.7. @Inject HttpSessionStatus
	23.8. @Inject @ContextPath
	23.9. @Inject List<Cookie>
	23.10. @Inject @CookieParam
	23.11. @Inject @ServerInfo
	23.12. @Inject @Principal

	Chapter 24. Servlet Exception Handling Integration
	24.1. Background
	24.2. Defining a exception handler for a web request

	Chapter 25. Retrieving the BeanManager from the servlet context
	Chapter 26. Loading web resources without ServletContext

