
Seam Validation Module

(TECHNOLOGY PREVIEW)

Reference Guide
3.2.0-SNAPSHOT

by Gunnar Morling

iii

1. Introduction ... 1

2. Installation ... 3

2.1. Prerequisites .. 3

2.2. Maven setup .. 3

2.3. Manual setup .. 5

3. Dependency Injection .. 7

3.1. Retrieving of validator factory and validators via dependency injection 7

3.2. Dependency injection for constraint validators .. 8

4. Method Validation .. 11

iv

Chapter 1.

1

Introduction
The Seam Validation module aims at integrating Hibernate Validator [http://

validator.hibernate.org/], the reference implementation for the Bean Validation API (JSR 303

[http://jcp.org/en/jsr/detail?id=303]), with CDI (JSR 299 [http://jcp.org/en/jsr/detail?id=299]).

This integration falls into two main areas:

• Enhanced dependency injection services for validators, validator factories and constraint

validators

• Automatic validation of method parameters and return values based on Hibernate Validator's

method validation feature

Note

The Seam Validation module is based on version 4.2 or later of Hibernate Validator.

As of March 2011 Hibernate Validator 4.2 is still in the works and no final release

exists yet.

This means that - though unlikely - also changes to the API of the Seam Validation

module might become necessary.

The Seam Validation module is therefore released as a technology preview with

the Seam 3 release train, with a final version following soon. Nevertheless you

should give it a try already today and see what the Seam Validation module and

especially the automatic method validation feature can do for you. Please refer

to the module home page [http://seamframework.org/Seam3/ValidationModule] for

any news on Seam Validation.

The remainder of this reference guide covers the following topics:

• Installation of Seam Validation

• Dependency injection services for Hibernate Validator

• Automatic method validation

http://validator.hibernate.org/
http://validator.hibernate.org/
http://validator.hibernate.org/
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://seamframework.org/Seam3/ValidationModule
http://seamframework.org/Seam3/ValidationModule

2

Chapter 2.

3

Installation
This chapter describes the steps required to getting started with the Seam Validation Module.

2.1. Prerequisites

Not very much is needed in order to use the Seam Validation Module. Just be sure to run on

JDK 5 or later, as the Bean Validation API and therefore this Seam module are heavily based

on Java annotations.

2.2. Maven setup

The recommended way for setting up Seam Validation is using Apache Maven [http://

maven.apache.org/]. The Seam Validation Module artifacts are deployed to the JBoss Maven

repository. If not yet the case, therefore add this repository to your settings.xml file (typically in

~/.m2/settings.xml) in order to download the dependencies from there:

Example 2.1. Setting up the JBoss Maven repository in settings.xml

...

<profiles>

 <profile>

 <repositories>

 <repository>

 <id>jboss-public</id>

 <url>http://repository.jboss.org/nexus/content/groups/public-jboss/</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

</profiles>

<activeProfiles>

 <activeProfile>jboss-public</activeProfile>

</activeProfiles>

...

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Chapter 2. Installation

4

General information on the JBoss Maven repository is available in the JBoss community

wiki [http://community.jboss.org/wiki/MavenGettingStarted-Users], more information on Maven's

settings.xml file can be found in the settings reference [???].

Having set up the repository you can add the Seam Validation Module as dependency to the

pom.xml of your project. As most Seam modules the validation module is split into two parts,

API and implementation. Generally you should be using only the types from the API within your

application code. In order to avoid unintended imports from the implementation it is recommended

to add the API as compile-time dependency, while the implementation should be added as runtime

dependency only:

Example 2.2. Specifying the Seam Validation Module dependencies in

pom.xml

...

<properties>

 <seam.validation.version>x.y.z</weld.version>

</properties>

...

<dependencies>

 ...

 <dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>seam-validation-api</artifactId>

 <version>${seam.validation.version}</version>

 <scope>compile</scope>

 </dependency>

 <dependency>

 <groupId>${project.groupId}</groupId>

 <artifactId>seam-validation</artifactId>

 <version>${seam.validation.version}</version>

 <scope>runtime</scope>

 </dependency>

 ...

</dependencies>

...

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
???
???

Manual setup

5

Note

Replace "x.y.z" in the properties block with the Seam Validation version you want

to use.

2.3. Manual setup

In case you are not working with Maven or a comparable build management tool you can also

add Seam Validation manually to you project.

Just download the latest distribution file from SourceForge [http://sourceforge.net/projects/jboss/

files/Seam/Validation/], un-zip it and add seam-validation.jar api as well as all JARs contained in

the lib folder of the distribution to the classpath of your project.

http://sourceforge.net/projects/jboss/files/Seam/Validation/
http://sourceforge.net/projects/jboss/files/Seam/Validation/
http://sourceforge.net/projects/jboss/files/Seam/Validation/

6

Chapter 3.

7

Dependency Injection
The Seam Validation module provides enhanced support for dependency injection services

related to bean validation. This support falls into two areas:

• Retrieval of javax.validation.ValidatorFactory and javax.validation.Validator via

dependency injection in non-Java EE environments

• Dependency injection for constraint validators

3.1. Retrieving of validator factory and validators via

dependency injection

As the Bean Validation API is part of Java EE 6 there is an out-of-the-box support for retrieving

validator factories and validators instances via dependency injection in any Java EE 6 container.

The Seam Validation module provides the same service for non-Java EE environments

such as for instance stand-alone web containers. Just annotate any field of type

javax.validation.ValidatorFactory with @Inject to have the default validator factory

injected:

Example 3.1. Injection of default validator factory

package com.mycompany;

import javax.inject.Inject;

import javax.validation.Validator;

import javax.validation.ValidatorFactory;

public class MyBean {

 @Inject

 private ValidatorFactory validatorFactory;

 public void doSomething() {

 Validator validator = validatorFactory.getValidator();

 //...

 }

}

Chapter 3. Dependency Injection

8

Note

The injected factory is the default validator factory returned by the Bean

Validation bootstrapping mechanism. This factory can customized with help of the

configuration file META-INF/validation.xml. The Hibernate Validator Reference

Guide describes in detail [http://docs.jboss.org/hibernate/stable/validator/

reference/en-US/html/validator-xmlconfiguration.html] the available configuration

options.

It is also possible to directly inject a validator created by the default validator factory:

Example 3.2. Injection of a validator from the default validator factory

package com.mycompany;

import java.util.Set;

import javax.inject.Inject;

import javax.validation.ConstraintViolation;

import javax.validation.Validator;

public class MyBean {

 @Inject

 private Validator validator;

 public void doSomething(Foo bar) {

 Set<ConstraintViolation<Foo>> constraintViolations = validator.validate(bar);

 //...

 }

}

3.2. Dependency injection for constraint validators

The Seam Validation module provides support for dependency injection within

javax.validation.ConstraintValidator implementations. This is very useful if you need to

access other CDI beans within you constraint validator such as business services etc. In order to

make use of dependency injection within a constraint validator implementation it must be a valid

bean type as described by the CDI specification, in particular it must be defined within a bean

deployment archive.

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html

Dependency injection for constraint validators

9

Warning

Relying on dependency injection reduces portability of a validator implementation,

i.e. it won't function properly without the Seam Validation module or a similar

solution.

To make use of dependency injection in constraint validators you have to configure

org.jboss.seam.validation.InjectingConstraintValidatorFactory as the constraint

validator factory to be used by the bean validation provider. To do so create the file META-INF/

validation.xml with the following contents:

Example 3.3. Configuration of InjectingConstraintValidatorFactory in

META-INF/validation.xml

<?xml version="1.0" encoding="UTF-8"?>

<validation-config

 xmlns="http://jboss.org/xml/ns/javax/validation/configuration" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration validation-

configuration-1.0.xsd">

 <constraint-validator-factory>

 org.jboss.seam.validation.InjectingConstraintValidatorFactory

 </constraint-validator-factory>

</validation-config>

Having configured the constraint validator factory you can inject arbitrary CDI beans into you

validator implementations. Listing Example 3.4, “Dependency injection within ConstraintValidator

implementation” shows a ConstraintValidator implementation for the @Past constraint which

uses an injected time service instead of relying on the JVM's current time to determine whether

a given date is in the past or not.

Example 3.4. Dependency injection within ConstraintValidator

implementation

package com.mycompany;

import java.util.Date;

import javax.inject.Inject;

Chapter 3. Dependency Injection

10

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

import javax.validation.constraints.Past;

import com.mycompany.services.TimeService;

public class CustomPastValidator implements ConstraintValidator<Past, Date>

{

 @Inject

 private TimeService timeService;

 @Override

 public void initialize(Past constraintAnnotation)

 {

 }

 @Override

 public boolean isValid(Date value, ConstraintValidatorContext context)

 {

 if (value == null)

 {

 return true;

 }

 return value.before(timeService.getCurrentTime());

 }

}

Note

If you want to redefine the constraint validators for built-in constraints such

as @Past these validator implementations have to be registered with a custom

constraint mapping. More information can be found in the Hibernate Validator

Reference Guide [http://docs.jboss.org/hibernate/stable/validator/reference/en-

US/html/validator-xmlconfiguration.html#d0e2024].

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/validator-xmlconfiguration.html#d0e2024

Chapter 4.

11

Method Validation
Hibernate Validator provides several advanced validation features and related functionality which

go beyond what is defined by JSR 303 ("Bean Validation API"). One of these additional features

is a facility for the validation of method parameters and return values. With that API a style of

program design known as "Programming by Contract" can be implemented using the concepts

defined by the Bean Validation API.

This means that any Bean Validation constraints can be used to describe

• any preconditions that must be met before a method may legally be invoked (by annotating

method parameters with constraints) and

• any postconditions that are guaranteed after a method invocation returns (by annotating

methods)

To give an example listing Example 4.1, “Exemplary repository with constraint annotations”

shows a fictional repository class which retrieves customer objects for a given name. Constraint

annotations are used here to express the following pre-/postconditions:

• The value for the name parameter may not be null and must be at least three characters long

• The method may never return null and each Customer object contained in the returned set is

valid with respect to all constraints it hosts

Example 4.1. Exemplary repository with constraint annotations

@AutoValidating

public class CustomerRepository {

 @NotNull @Valid Set<Customer> findCustomersByName(@NotNull @Size(min=3) String name);

}

Hibernate Validator itself provides only an API for validating method parameters and return values,

but it does not trigger this validation itself.

This is where Seam Validation comes into play. Seam Validation provides a so called business

method interceptor which intercepts client invocations of a method and performs a validation of

the method arguments before as well as a validation of the return value after the actual method

invocation.

To control for which types such a validation shall be performed, Seam Validation provides an

interceptor binding, @AutoValidating. If this annotation is declared on a given type an automatic

validation of each invocation of any this type's methods will be performed.

Chapter 4. Method Validation

12

If either during the parameter or the return value validation at least one constraint violation

is detected (e.g. because findCustomersByName() from listing Example 4.1, “Exemplary

repository with constraint annotations” was invoked with a String only two characters long), a

MethodConstraintViolationException is thrown. That way it is ensured that all parameter

constraints are fulfilled when the call flow comes to the method implementation (so it is not

necessary to perform any parameter null checks manually for instance) and all return value

constraints are fulfilled when the call flow returns to the caller of the method.

The exception thrown by Seam Validation (which would typically be written to a log file) gives a

clear overview what went wrong during method invocation:

Example 4.2. Output of MethodConstraintViolationException

org.hibernate.validator.MethodConstraintViolationException: 1 constraint violation(s) occurred

 during method invocation.

Method: public java.lang.Set

 com.mycompany.service.CustomerRepository.findCustomersByName(java.lang.String)

Argument values: [B]

Constraint violations:

 (1) Kind: PARAMETER

 parameter index: 0

 message: size must be between 3 and 2147483647

 root bean: com.mycompany.service.org$jboss$weld$bean-flat-ManagedBean-class_com

$mycompany$service$$CustomerRepository_$$_WeldSubclass@3f72c47b

 property path: CustomerRepository#findCustomersByName(arg0)

 constraint:

 @javax.validation.constraints.Size(message={javax.validation.constraints.Size.message},

 min=3, max=2147483647, payload=[], groups=[])

To make use of Seam Validation's validation interceptor it has to be registered in your component's

beans.xml descriptor as shown in listing Example 4.3, “Registering the validation interceptor in

beans.xml”:

Example 4.3. Registering the validation interceptor in beans.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/

beans_1_0.xsd">

 <interceptors>

 <class>org.jboss.seam.validation.ValidationInterceptor</class>

13

 </interceptors>

</beans>

It is recommended that you consult the Hibernate Validator reference guide [http://docs.jboss.org/

hibernate/stable/validator/reference/en-US/html/] to learn more about the method validation

feature in general or for instance the rules that apply for constraining methods in inheritance

hierarchies in particular.

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/

14

	Seam Validation Module (TECHNOLOGY PREVIEW)
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Maven setup
	2.3. Manual setup

	Chapter 3. Dependency Injection
	3.1. Retrieving of validator factory and validators via dependency injection
	3.2. Dependency injection for constraint validators

	Chapter 4. Method Validation

