
Seam for Apache Wicket Module

Reference Guide

Clint Popetz

Pete Muir

Igor Vaynberg

iii

Introduction ... v

1. Installation ... 1

2. Seam for Apache Wicket Features .. 3

2.1. Injection ... 3

2.2. Conversation Control .. 3

2.3. Conversation Propagation ... 4

iv

v

Introduction

The goal of Seam for Apache Wicket is to provide a fully integrated CDI programming model

to the Apache Wicket web framework. Although Apache components (pages, panels, buttons,

etc.) are created by direct construction using "new", and therefore are not themselves CDI

contextual instances, with seam-wicket they can receive injections of scoped contextual instances

via @Inject. In addition, conversation propagation is supported to allow a conversation scope to

be tied to a wicket page and propagated across pages.

vi

Chapter 1.

1

Installation
The seam-wicket.jar should be placed in the web application library folder. If you are using

Maven [http://maven.apache.org/] as your build tool, you can add the following dependency to

your pom.xml file:

<dependency>

 <groupId>org.jboss.seam.wicket</groupId>

 <artifactId>seam-wicket</artifactId>

 <version>${seam-wicket-version}</version>

</dependency>

Tip

Replace ${seam-wicket-version} with the most recent or appropriate version of

Seam for Apache Wicket.

As Wicket is normally used in a servlet (non-JavaEE) environment, you most likely will need to

bootstrap the CDI container yourself. This is most easily accomplished using the Weld Servlet

integration, described in the Weld Reference Guide [http://docs.jboss.org/weld/reference/latest/

en-US/html/environments.html].

You must extend org.jboss.seam.wicket.SeamApplication rather than

org.apache.wicket.protocol.http.WebApplication. In addition:

• if you override newRequestCycleProcessor() to return your own IRequestCycleProcessor

subclass, you must instead override getWebRequestCycleProcessorClass() and return the

class of your processor, and your processor must extend SeamWebRequestCycleProcessor.

• if you override newRequestCycle to return your own RequestCycle subclass, you must make

that subclass extend SeamRequestCycle.

If you can't extend SeamApplication, for example if you use an alternate Application

superclass for which you do not control the source, you can duplicate the

three steps SeamApplication takes, i.e. return a SeamWebRequestCycleProcessor

NonContextual instance in newRequestCycleProcessor(), return a SeamRequestCycle

instance in newRequestCycle(), and add a SeamComponentInstantiationListener with

addComponentInstantiationListener().

http://maven.apache.org/
http://maven.apache.org/
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html

2

Chapter 2.

3

Seam for Apache Wicket Features
Seam's integration with Wicket is focused on two tasks: conversation propagation through Wicket

page metadata and contextual injection of Wicket components.

2.1. Injection

Any object that extends org.apache.wicket.Component or one of its subclasses is eligible for

injection with CDI beans. This is accomplished by annotating fields of the component with the

@javax.inject.Inject annotation:

public class MyPage extends WebPage {

 @Inject SomeDependency dependency;

 public MyPage()

 {

 depedency.doSomeWork();

 }

Note that since Wicket components must be serializable, any non-transient field of a Wicket

component must be serializable. In the case of injected dependencies, the injected object itself

will be serializable if the scope of the dependency is not @Dependent, because the object injected

will be a serializable proxy, as required by the CDI specification. For injections of non-serializable

@Dependent objects, the field should be marked transient and the injection should be looked up

again in a component-specific attach() override, using the BeanManager API.

Upon startup, the CDI container will examine your component classes to ensure that the injections

you use are resolvable and unambiguous, as per the CDI specification. If any injections fail this

check, your application will fail to bootstrap.

The scopes available are similar to those in a JSF application, as descibed in the CDI reference.

The container, in an JavaEE environment, or the servlet listeners, in a servlet environment, will

set up the application, session, and request scopes. The conversation scope is set up by the

SeamWebRequestCycle as outlined in the next two sections.

2.2. Conversation Control

Application conversation control is accomplished as per the CDI specification. By default, like

JSF/CDI, each Wicket HTTP request (whether AJAX or not) has a transient conversation, which

is destroyed at the end of the request. A conversation is marked long-running by injecting the

javax.enterprise.context.Conversation bean and calling its begin() method.

public class MyPage extends WebPage {

Chapter 2. Seam for Apache Wi...

4

 @Inject Conversation conversation;

 public MyPage()

 {

 conversation.begin();

 //set up components here

 }

Similarly, a conversation is ended with the Conversation bean's end() method.

2.3. Conversation Propagation

A transient conversation is created when the first Wicket IRequestTarget is set during a request.

If the request target is an IPageRequestTarget for a page which has previously marked a

conversation as non-transient, or if the cid parameter is present in the request, the specified

conversation will be activated. If the conversation is missing (i.e. has timed out and been

destroyed), SeamRequestCycle.handleMissingConversation() will be invoked. By default this

does nothing, and your conversation will be new and transient. You can however override this, for

example to throw a PageExpiredException or something similar. Upon the end of a response,

SeamRequestCycleProcessor will store the cid of a long running conversation, if one exists, to the

current page's metadata map, if there is a current page. The key for the cid in the metadata map is

the singleton SeamMetaData.CID. Finally, upon detach(), the SeamRequestCycle will invalidate

and deactive the conversation context.

Note that the above process indicates that after a conversation is marked

long-running by a page, requests back to that page (whether ajax or

not) will activate that conversation. It also means that new Pages set as

RequestTargets, if created directly with setResponsePage(somePageInstance) or with

setResponsePage(SomePage.class,pageParameters), will have the conversation propagated

to them. This can be avoided by (a) ending the conversation before the call to setResponsePage,

(b) using a BookmarkablePageLink rather than directly instantiating the response page, or (c)

specifying an empty cid parameter in PageParameters when using setResponsePage(). (Note

that the final case also provides a mechanism for switching conversations: if a cid is specified in

PageParameters, it will be used by bookmarkable pages, rather than the current conversation.)

	Seam for Apache Wicket Module
	Table of Contents
	Introduction
	Chapter 1. Installation
	Chapter 2. Seam for Apache Wicket Features
	2.1. Injection
	2.2. Conversation Control
	2.3. Conversation Propagation

