Teild - Salesforce Connector Guide

1

6.2.0

g (=Y 7= o < v

1. IMPOTtiNG MELAGALA .. .ceeeeiieeiii ettt e e e e e e 1
R O 1Y 1= PP 1
1.2. RUNNING the TMPOITEEoiii e e 1
b O £Y g To I =T @] o s 1=] o PN 7
2.1, SOQL PrOCESSING ..eeetiniiiiiii ettt et ettt et 7
2.2. Selecting from Multi-Select PIiCKISTScovviiiiiiiii e 8
2.3. Selecting All ODJECES .. .ooueiiei e 9
2.4, Selecting Updated ODJECLSccviiiiiii e 10
2.5. Selecting Deleted ODJECESc.uuniiiiiiiieee e 10
2.6. Relationship QUETIESc.uuiiiiiiii et e e e e e e e 11
T o] o 1=T0 Vo [b PP UPPPT 13
3.1. Supported CapabilitieSuveiuiiiiiie i 13

Preface

This document shows how to model the metadata of an hosted Salesforce application with Teiid
Designer, and details the SQL semantics supported by the connector in Teiid Embedded. This
document contains an overview of the process, including:

« Using the Salesforce Importer to create relational models representing your Salesforce
application.

* Querying the Salesforce application.

Commercial development support, production support, and training for Teiid is available through
JBoss. Teiid is a Professional Open Source project and a critical component of the JBoss
Enterprise Data Services Platform.

Federation Basics

http://www.jboss.org/teiid/basics.html
http://www.jboss.org/teiid/basics.html

vi

Chapter 1.

Importing Metadata

1.1. Overview

Salesforce metadata is structured relationally. Salesforce Objects and the fields on those objects
are analogous to relational tables and columns. Because of this similarity, the modeling of
Salesforce metadata and interaction with the data through standard SQL is easily accomplished
within Teiid. However, the properties of the objects in a Salesforce application are not an exact
match to the properties that are available on the standard Teiid Relational Table and Column. In
order to bridge the gap between these metadata properties, integration with Salesforce requires
extensions to the standard Teiid Relational Base Table and Column. The extensions required are
created within the Model Project by the Salesforce Importer and appropriate values are set into
these properties by the importer.

The Salesforce Importer will model the unique metadata that is exposed to it by the Salesforce
API as determined by the credentials used in the importer. Users with different profiles within the
same Salesforce instance may be authorized to see different subsets of the applications metadata
and data. Keep this in mind when binding a connector to the model. You must ensure that the
credentials used in the binding have access to all of the data that is exposed in the model, or
exceptions will occur. The importer also understands customizations that have been made to
applications and will model them as well.

1.2. Running the Importer

Select File->Import to display the Wizard Selection Dialog.

Chapter 1. Importing Metadata

2 i
Select N

d
Create Relational Model from Salesforce Objects, [f‘:ﬂ

Select an import source:

I = General ,,;
b= CVS
= (= Metadata Modeling
& Metadata from IEM Rational Rose (c) Model
[1, Metadata from |DBC Database
g Metadata from Text Ales on file system

Salesforce as Relational Source Model

% UDF Model
eF Web Service as Relational Source Maodsl
P WSDL File into Web Service Model

LT A— - -

@ = Bach Fnish | Cancel |

Select Salesforce as Relational Source Model from in the list displayed and click Next. The
Salesforce Importer is displayed.

Running the Importer

o

Create Relational Model from Salesforce Data Model

Salesforce Cradantials

Ener Salestorce Cradentials

Username |

Password |

: Owerride Cannection LIRL

=3

< Back

Cancel

¥ |

Enter a valid Username and Password into the text fields and click Validate Credentials. If you
are connecting to a sandbox instance of a Salesforce application, enable the Override Connection
URL textbox and enter the URL to the sandbox instance. The default value will probably be correct
in most instances. After the Username and Password are supplied, the Validate Credentials button
will be come active and you click this button to validate the connection parameters and enable the

Next Button. After clicking Next the Salesforce Objects page is displayed.

Chapter 1. Importing Metadata

=
Select the Salesforce objects to Model
Press e "Next =" button to cortinue,

Salesforce Objects. Column Details
EEEEE | vsible Heme Hame i Sour Type Seachable | Updataole Audt Field
B Arcaunt Fartner Account 1D 1d i CTrug Falc Falso
& arcauns Share neleted IsDaleted honlean CTrue Fake False
B Artivity Hisbary Master Hocon MasterRerons reference True Falic False
b addtional Qirectory § Acrount Mami Mame strimg Clrue Inie False
I Apen Class scrount Iype ype picklizt lrue Inae Halse
S e Trigger Harent Accowr Rarentd referance ¢ e Inie Halne
£ Appraval gillng Streel BlingStreet © Lextoea True Ine Flse
L Appraval Reguest Billing Ciky Billng ity sLrireg True Trae Fulse
4 Asget Bllry SLatedF BlingStale - sirimg : True True False
4 Assganrent Aule Billrg Zip/Poe Qullng PestalCe strimg : True True Talue
Shbssbosset - = Billing Country MlingCouatrg: sthing Tiue Trae False I
Sriect Al
Deselect &l
L} < Back Hent o= Cancel

In the left column the Salesforce objects in the system are listed and can be selected for modeling.
Each object selected will be modeled as a Table. In the Column Details table metadata from the
fields on the currently selected object are displayed, and these will be modeled as columns on
the tables.

When you have selected all of the Salesforce objects that you wish to model, click Next. The
Target Model Selection page will be displayed.

Running the Importer

Target Model Selection
@ Please specify the terget refabanal medel n whick the new entizies wil be placed.

Select Tanget Aelational Model
Model Mame Browse...
Lncatinn: praject Browse...
Select Import Ophons
Muclel aurit fedds.
Selecting this aptien wil cause the moerter to model the A fed By, Last Modified Qabe, System Modfication Tmestamp)
0 nat gather Cardinalitics
Salecting this aptien stop the macctar from cakculating and 5, csforce aaplicatons this can become a larg nunring eoaration
Gather Colimn Disbnct valee Sounk
Selecting this aptien wil cause the maerter to calculate and 5..ach field individually and can be & very lrd nanning eoeration.
Set name to Salesforoe laoel,
Selecting this optien wil Cause the mgporter to set the name use Salestorce labek are often myald for modsing purposes.
Create a procedune tor the Getlodated operation.
Selecting ths optien wil cause the mmperter to creabe a pracedure far the getUpdated cperation in the generated madel.
Create a procedure Tor the GetDeleted soeraticn.

Salecting ths aptien wil cause Che rpoorter (o creabe s proceduse far Che gelDelsled aparation in he genarsbed madel

i < Back Cancel

Select the model name, location, and options.

Model Name: type the name of the new model to be created, or browse to select an preexisting
model to update.

Location: type or browse to the location of the model project to create the model in.

Model audit fields: each Salesforce object has fields that track changes to the object, such as
LastModifiedDate and CreateByld. These fields are know as audit fields. Because each object
in the application has these fields, and some of these fields have relations to other Salesforce
objects, modeling these fields can cause a model to be congested with relations. If you do not
plan to use a model to query audit data, you probably want to suppress modeling of these fields.
Checking this box will override the default behavior and will model the audit fields.

Do not gather Cardinalities: by default the importer will calculate the table cardinalites.
Cardinality metadata can greatly improve query performance, but it may take the importer some
time calculate this information. Checking this box will suppress the calculation of cardinalities.

Gather Column Distinct Value Count: by default the importer does not calculate column
distinct value counts. Checking this box will cause the importer to calculate these values. This
can be an extremely long running operation.

Set name to Salesforce Label: each Salesforce object has a label (user visible name) that
can be modified, and names (the fixed internal name). By default the importer will use the name
when modeling objects. Checking this box will cause the importer to use the label as the table
name.

Chapter 1. Importing Metadata

« Create a procedure for the GetUpdated operation: checking this box will cause the importer
to create a procedure for the getUpdated operation in the generated model.

» Create a procedure for the GetDeleted operation: checking this box will cause the importer
to create a procedure for the getDeleted operation in the generated model.

Click Finish.

After the Salesforce Importer has finished, you will find two new models created in your model
project. One will have the name you supplied in the last page of the importer, and the other will
be named SalesforceExtensions.xmi.

The SalesforceExtensions.xmi model contains the extensions to the standard relational model.
These extensions enable the model to provided enhanced data to the Salesforce Connector at
query time. For example, some objects in Salesforce do not support the query operation. In order to
enforce this limitation the extension model defined a Supports Query property, and the Salesforce
Importer enters the correct value into this property for each Table. The Salesforce Connector
validates that each table included in a query operation has the value true for this property before
executing a query and will throw and exception in the event that the table is not querable.

The other model created by the importer contains the model of the data in the Salesforce instance
that you selected in the importer. This is the model you will execute your SQL statements against.

Chapter 2.

Using the Connector
The Salesforce Connector supports the SELECT, DELETE, INSERT and UPDATE operations.

2.1. SQL Processing

Salesforce does not provide the same set of functionality as a relational database. For example,
Salesforce does not support arbitrary joins between tables. However, working in combination with
the Teiid Query Planner, the Salesforce connector supports nearly all of the SQL syntax supported
by the Teiid.

The Salesforce Connector executes SQL commands by “pushing down” the command to
Salesforce whenever possible, based on the supported capabilities. Teiid will automatically
provide additional database functionality when the Salesforce Connector does not explicitly
provide support for a given SQL construct. In these cases, the SQL construct cannot be “pushed
down” to the data source, so it will be evaluated in Teiid, in order to ensure that the operation
is performed.

In cases where certain SQL capabilities cannot be pushed down to Salesforce, Teiid will push
down the capabilities that are supported, and fetch a set of data from Salesforce. Then, Teiid will
evaluate the additional capabilities, creating a subset of the original data set. Finally, Teiid will
pass the result to the client.

SELECT sum(Reports) FROM Supervisor where Division = 'customer support’;

Neither Salesforce nor the Salesforce Connector support the sum() scalar function, but they do
support CompareCriteriaEquals, so the query that is passed to Salesforce by the connector will
be transformed to this query.

SELECT Reports FROM Supervisor where Division = ‘customer support’;

The sum() scalar function will be applied by the Teiid Query Engine to the result set returned by
the connector.

In some cases multiple calls to the Salesforce application will be made to support the SQL passed
to the connector.

Chapter 2. Using the Connector

DELETE From Case WHERE Status = 'Closed’;

The API in Salesforce to delete objects only supports deleting by ID. In order to accomplish this
the Salesforce connector will first execute a query to get the IDs of the correct objects, and then
delete those objects. So the above DELETE command will result in the following two commands.

SELECT ID From Case WHERE Status = 'Closed’;
DELETE From Case where ID IN (<result of query>);*

*The Salesforce APl DELETE call is not expressed in SQL, but the above is an SQL equivalent
expression.

It's useful to be aware of unsupported capabilities, in order to avoid fetching large data sets from
Salesforce and making you queries as performant as possible. See the Supported Capabilities
section in the appendix.

2.2. Selecting from Multi-Select Picklists

A multi-select picklist is a field type in Salesforce
that can contain multiple values in a single field.
Query criteria operators for fields of this type in
SOQL are limited to EQ, NE, includes and excludes.
The full Salesforce documentation for selecting from mullti-
select picklists can be found at the following link. Querying
Mulit-select Picklists [http://wvww.salesforce.com/us/developer/docs/api/

index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webh

Teiid SQL does not support the includes or excludes operators, but the Salesforce connector
provides user defined function definitions for these operators that provided equivalent functionality
for fields of type multi-select. The definition for the functions is:

boolean includes(Column column, String param)
boolean excludes(Column column, String param)

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp

Selecting All Objects

For example, take a single multi-select picklist column called Status that contains all of these
values.

* current
» working
« critical

For that column, all of the below are valid queries:

SELECT * FROM Issue WHERE true = includes (Status, ‘current, working');
SELECT * FROM Issue WHERE true = excludes (Status, ‘current, working');
SELECT * FROM Issue WHERE true = includes (Status, 'current;working, critical');

EQ and NE criteria will pass to Salesforce as supplied. For example, these queries will not be
modified by the connector.

SELECT * FROM Issue WHERE Status = 'current’;
SELECT * FROM Issue WHERE Status = 'current;critical’;
SELECT * FROM Issue WHERE Status != 'current;working';

2.3. Selecting All Objects

The Salesforce connector supports the calling the queryAll operation from the Salesforce API.
The queryAll operation is equivalent to the query operation with the exception that it returns data
about all current and deleted objects in the system.

The connector determines if it will call the query or queryAll operation via reference to the isDeleted
property present on each Salesforce object, and modeled as a column on each table generated
by the importer. By default this value is set to False when the model is generated and thus the
connector calls query. Users are free to change the value in the model to True, changing the
default behavior of the connector to be queryAll.

The behavior is different if isDeleted is used as a parameter in the query. If the isDeleted column
is used as a parameter in the query, and the value is 'true' the connector will call queryAll.

Chapter 2. Using the Connector

select * from Contact where isDeleted = true;

If the isDeleted column is used as a parameter in the query, and the value is 'false' the connector
perform the default behavior will call query.

select * from Contact where isDeleted = false;

2.4. Selecting Updated Objects

If the option is selected when importing metadata from Salesforce, a GetUpdated procedure is
generated in the model with the following sturcture:

GetUpdated (ObjectName IN string,
StartDate IN datetime,
EndDate IN datetime,
LatestDateCovered OUT datetime)

returns

ID string

See the description of the GetUpdated [http://www.salesforce.com/us/developer/docs/api/
Content/sforce_api_calls_getupdated.htm] operation in the Salesforce documentation for usage
details.

2.5. Selecting Deleted Objects

If the option is selected when importing metadata from Salesforce, a GetDeleted procedure is
generated in the model with the following sturcture:

GetDeleted (ObjectName IN string,
StartDate IN datetime,

10

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm

Relationship Queries

EndDate IN datetime,
EarliestDateAvailable OUT datetime,
LatestDateCovered OUT datetime)

returns

ID string,

DeletedDate datetime

See the description of the GetDeleted [http://www.salesforce.com/us/developer/docs/api/
Content/sforce_api_calls_getdeleted.htm] operation in the Salesforce documentation for usage
details.

2.6. Relationship Queries

Salesforce does not support joins like a relational database, but it does have support for queries
that include parent-to-child or child-to-parent relationships between objects. These are termed
Relationship Queries. The SalesForce connector supports Relationship Queries through Outer
Join syntax.

SELECT Account.name, Contact.Name from Contact LEFT OUTER JOIN Account
on Contact.Accountid = Account.id

This query shows the correct syntax to query a SalesForce model with to produce a relationship
query from child to parent. It resolves to the following query to SalesForce.

SELECT Contact.Account.Name, Contact.Name FROM Contact

select Contact.Name, Account.Name from Account Left outer Join Contact
on Contact.Accountid = Account.id

11

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm

Chapter 2. Using the Connector

This query shows the correct syntax to query a SalesForce model with to produce a relationship
query from parent to child. It resolves to the following query to SalesForce.

SELECT Account.Name, (SELECT Contact.Name FROM
Account.Contacts) FROM Account

See the description of the Relationship Queries [http://www.salesforce.com/us/developer/docs/
api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm] operation in the
SalesForce documentation for limitations.

12

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm

Chapter 3.

Appendix

3.1. Supported Capabilities

The following are the the connector capabilities supported by the Salesforce Connector. These

SQL constructs will be pushed down to Salesforce.

SELECT command
INSERT Command
UPDATE Command
DELETE Command
CompareCriteriaEquals

InCriteria

LikeCriteria - Supported for String fields only.

RowLimit
AggregatesCountStar
NotCriteria

OrCriteria
CompareCriteriaOrdered

OuterJoins with join criteria KEY

13

14

	Teiid - Salesforce Connector Guide
	Table of Contents
	Preface
	Chapter 1. Importing Metadata
	1.1. Overview
	1.2. Running the Importer

	Chapter 2. Using the Connector
	2.1. SQL Processing
	2.2. Selecting from Multi-Select Picklists
	2.3. Selecting All Objects
	2.4. Selecting Updated Objects
	2.5. Selecting Deleted Objects
	2.6. Relationship Queries

	Chapter 3. Appendix
	3.1. Supported Capabilities

