
Teiid - Scalable Information Integration

1

Teiid Developer's Guide
7.3

iii

1. Developing For Teiid ... 1

1.1. Introduction to the Teiid Connector Architecture .. 1

1.2. Do You Need a New Translator? ... 1

1.2.1. Custom Translators .. 2

1.3. Do You Need a New Resource Adapter? ... 3

1.3.1. Custom Resource Adapters .. 3

1.4. Other Teiid Development .. 4

2. Developing JEE Connectors .. 5

2.1. Using the Teiid Framework ... 5

2.1.1. Define Managed Connection Factory ... 5

2.1.2. Define the Connection Factory class ... 6

2.1.3. Define the Connection class ... 7

2.1.4. XA Transactions .. 7

2.1.5. Define the configuration properties in a "ra.xml" file 8

2.2. Packaging the Adapter .. 9

2.3. Deploying the Adapter ... 10

3. Translator Development ... 11

3.1. Extending the ExecutionFactory Class ... 11

3.1.1. ConnectionFactory ... 11

3.1.2. Connection .. 11

3.1.3. Configuration Properties ... 11

3.1.4. Initializing the Translator ... 12

3.1.5. TranslatorCapabilities ... 12

3.1.6. Execution (and sub-interfaces) .. 12

3.1.7. Metadata ... 13

3.1.8. Logging ... 13

3.1.9. Exceptions ... 13

3.1.10. Default Name ... 13

3.2. Connections to Source .. 13

3.2.1. Obtaining connections .. 13

3.2.2. Releasing Connections ... 13

3.3. Executing Commands ... 14

3.3.1. Execution Modes .. 14

3.3.2. ResultSetExecution .. 14

3.3.3. Update Execution ... 14

3.3.4. Procedure Execution .. 14

3.3.5. Asynchronous Executions ... 15

3.3.6. Bulk Execution ... 15

3.3.7. Command Completion .. 15

3.3.8. Command Cancellation ... 15

3.4. Command Language ... 16

3.4.1. Language ... 16

3.4.2. Language Utilities ... 19

3.4.3. Runtime Metadata .. 20

Teiid - Scalable Information ...

iv

3.4.4. Language Visitors .. 21

3.4.5. Translator Capabilities .. 22

3.5. Large Objects ... 26

3.5.1. Data Types .. 26

3.5.2. Why Use Large Object Support? ... 26

3.5.3. Handling Large Objects .. 27

3.5.4. Inserting or Updating Large Objects .. 27

3.6. Packaging .. 27

3.7. Deployment .. 28

4. Extending The JDBC Translator .. 29

4.1. Capabilities Extension ... 29

4.2. SQL Translation Extension .. 29

4.3. Results Translation Extension .. 30

4.4. Adding Function Support ... 30

4.4.1. Using FunctionModifiers .. 31

4.5. Installing Extensions ... 32

5. User Defined Functions ... 35

5.1. UDF Definition .. 35

5.2. Source Supported UDF ... 36

5.3. Non-pushdown Support for User-Defined Functions .. 36

5.3.1. Java Code ... 36

5.3.2. Post Code Activities ... 37

5.4. Installing user-defined functions ... 37

6. AdminAPI ... 39

6.1. Connecting ... 39

6.2. Admin Methods ... 39

7. Logging .. 41

7.1. Customized Logging ... 41

7.1.1. Command Logging API .. 41

7.1.2. Audit Logging API .. 41

8. Login Modules ... 43

8.1. Built-in LoginModules .. 43

8.2. Custom LoginModules ... 43

A. ra.xml file Template ... 45

B. Advanced Topics ... 47

B.1. Security Migration From Previous Versions .. 47

Chapter 1.

1

Developing For Teiid

1.1. Introduction to the Teiid Connector Architecture

Integrating data from a Enterprise Information System (EIS) into Teiid, is separated into two parts.

1. A Translator, which is required.

2. An optional Resource Adapter, which will typically be a JCA Resource Adapter (also called a

JEE Connector)

A Translator is used to:

1. Translate a Teiid-specific command into a native command,

2. Execute the command,

3. Return batches of results translated to expected Teiid types.

A Resource Adapter:

• Handles all communications with individual enterprise information system (EIS), which can

include databases, data feeds, flat files, etc.

• Can be a JCA Connector or any other custom connection provider. The reason Teiid

recommends and uses JCA is this specification defines how one can write, package, and

configure access to EIS system in consistent manner. There are also various commercial/open

source software vendors already providing JCA Connectors to access a variety of back-end

systems.

Refer to http://java.sun.com/j2ee/connector/.

• Abstracts Translators from many common concerns, such as connection information, resource

pooling, or authentication.

Given a combination of a Translator + Resource Adapter, one can connect any EIS system to

Teiid for their data integration needs.

1.2. Do You Need a New Translator?

Teiid provides several translators for common enterprise information system types. If you can use

one of these enterprise information systems, you do not need to develop a custom one.

Teiid offers the following translators:

http://java.sun.com/j2ee/connector/

Chapter 1. Developing For Teiid

2

JDBC Translator

Works with many relational databases. The JDBC translator is validated against the following

database systems: Oracle, Microsoft SQL Server, IBM DB2, MySQL, Postgres, Derby,

Sybase, H2, and HSQL. In addition, the JDBC Translator can often be used with other 3rd-

party drivers and provides a wide range of extensibility options to specialize behavior against

those drivers.

File Translator

Provides a procedural way to access the file system to handle text files.

WS Translator

Provides procedural access to XML content using Web Services.

LDAP Translator

Accesses to LDAP directory services.

Salesforce Translator

Works with Salesforce interfaces.

1.2.1. Custom Translators

Below are the high-level steps for creating custom Translators. This guide covers how to do each of

these steps in detail. It also provides additional information for advanced topics, such as streaming

large objects.

For sample Translator code, refer to the Teiid source code at http://anonsvn.jboss.org/repos/teiid/

trunk/connectors/.

1. Create a new or reuse an existing Resource Adapater for the EIS system, to be used with this

Translator.

Refer to Section 1.3.1, “Custom Resource Adapters”.

2. Implement the required classes defined by the Translator API.

• Create an ExecutionFactory – Extend the org.teiid.translator.ExecutionFactory

class

• Create relevant Executions (and sub-interfaces) – specifies how to execute each type of

command

Refer to Chapter 3, Translator Development.

3. Define the template for exposing configuration properties. Refer to Section 3.6, “Packaging”.

4. Deploy your Translator. Refer to Section 3.7, “Deployment”.

5. Deploy a Virtual Database (VDB) that uses your Translator.

6. Execute queries via Teiid.

http://anonsvn.jboss.org/repos/teiid/trunk/connectors/
http://anonsvn.jboss.org/repos/teiid/trunk/connectors/

Do You Need a New Resource Adapter?

3

1.3. Do You Need a New Resource Adapter?

As mentioned above, for every Translator that needs to gather data from external source systems,

it requires a resource adapter.

The following resource adapters are available to Teiid.

• DataSource: This is provided by the JBoss AS container. This is used by the JDBC Translator.

• File: Provides a JEE JCA based Connector to access defined directory on the file system. This

is used by the File Translator

• WS: Provides JEE JCA Connector to invoke Web Services using JBoss Web services stack.

This is used by the WS Translator

• LDAP: Provides JEE JCA connector to access LDAP; Used by the LDAP Translator.

• Salesforce: Provides JEE JCA connector to access Salesforce by invoking their Web Service

interface. Used by the SalesForce Translator.

1.3.1. Custom Resource Adapters

High-level Resource Adapter development procedure:

1. Understand the JEE Connector specification to have basic idea about what JCA connectors

are how they are developed and packaged.

Refer to http://java.sun.com/j2ee/connector/.

2. Gather all necessary information about your Enterprise Information System (EIS). You will need

to know:

• API for accessing the system

• Configuration and connection information for the system

• Expectation for incoming queries/metadata

• The processing constructs, or capabilities, supported by information system.

• Required properties for the connection, such as URL, user name, etc.

3. Base classes for all of the required supporting JCA SPI classes are provided by the Teiid API.

The JCA CCI support is not provided from Teiid, since Teiid uses the Translator API as it's

common client interface. You will want to extend:

• BasicConnectionFactory – Defines the Connection Factory

• BasicConnection – represents a connection to the source.

http://java.sun.com/j2ee/connector/

Chapter 1. Developing For Teiid

4

• BasicResourceAdapter – Specifies the resource adapter class

4. Package your resource adapter. Refer to Section 2.2, “Packaging the Adapter”.

5. Deploy your resource adapter. Refer to Section 2.2, “Packaging the Adapter”.

This guide covers how to do each of these steps in detail. It also provides additional information

for advanced topics, such as transactions. For sample resource adapter code refer to the Teiid

Source code at http://anonsvn.jboss.org/repos/teiid/trunk/connectors/.

1.4. Other Teiid Development

Teiid is highly extensible in other ways:

• You may add User Defined Functions. Refer to Chapter 5, User Defined Functions.

• You may adapt logging to your needs, which is especially useful for custom audit or command

logging. Refer to Chapter 7, Logging.

• You may change the subsystem for custom authentication and authorization. Refer to Chapter 8,

Login Modules.

http://anonsvn.jboss.org/repos/teiid/trunk/connectors/

Chapter 2.

5

Developing JEE Connectors
This chapter examines how to use facilities provided by the Teiid API to develop a JEE JCA

Connector. Please note that these are standard JEE JCA connectors, nothing special needs to

be done for Teiid. As an aid to our Translator developers, we provided a base implementation

framework. If you already have a JCA Connector or some other mechanism to get data from your

source system, you can skip this chapter.

If you are not familiar with JCA API, please read the JCA 1.5 Specification at http://java.sun.com/

j2ee/connector/. There are lot of online tutorials on how to design and build a JCA Connector.

The below we show you to build very simple connector, however building actual connector that

supports transactions, security can get much more complex.

Refer to the JBoss Application Server Connectors documentation at http://docs.jboss.org/jbossas/

jboss4guide/r4/html/ch7.chapt.html.

2.1. Using the Teiid Framework

If you are going to use the Teiid framework for developing a JCA connector, follow these steps.

The required classes are in org.teiid.resource.api package. Please note that Teiid framework

does not make use JCA's CCI framework, only the JCA's SPI interfaces.

• Define Managed Connection Factory

• Define the Connection Factory class

• Define the Connection class

• Define the configuration properties in a "ra.xml" file

2.1.1. Define Managed Connection Factory

Extend the BasicManagedConnectionFactory, and provide a implementation for the

"createConnectionFactory()" method. This method defines a factory method that can create

connections.

This class also defines configuration variables, like user, password, URL etc to connect to the

EIS system. Define an attribute for each configuration variable, and then provide both "getter" and

"setter" methods for them. Note to use only "java.lang" objects as the attributes, DO NOT use

Java primitives for defining and accessing the properties. See the following code for an example.

public class MyManagedConnectionFactory extends BasicManagedConnectionFactory

{

 @Override

 public Object createConnectionFactory() throws ResourceException

http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html

Chapter 2. Developing JEE Con...

6

 {

 return new MyConnectionFactory();

 }

 // config property name (metadata for these are defined inside the ra.xml)

 String userName;

 public String getUserName() { return this.userName; }

 public void setUserName(String name){ this.userName = name; }

 // config property count (metadata for these are defined inside the ra.xml)

 Integer count;

 public Integer getCount() { return this.count; }

 public void setCount(Integer value) { this.count = value; }

}

2.1.2. Define the Connection Factory class

Extend the BasicConnectionFactory class, and provide a implementation for the

"getConnection()" method.

public class MyConnectionFactory extends BasicConnectionFactory

{

 @Override

 public MyConnection getConnection() throws ResourceException

 {

 return new MyConnection();

 }

}

Since the Managed connection object created the "ConnectionFactory" class it has access to all

the configuration parameters, if "getConnection" method needs to do pass any of credentials to

the underlying EIS system. The Connection Factory class can also get reference to the calling

user's javax.security.auth.Subject during "getConnection" method by calling

Subject subject = ConnectionContext.getSubject();

This "Subject" object can give access to logged-in user's credentials and roles that are defined.

Note that this may be null.

Note that you can define "security-domain" for this resource adapter, that is separate from the Teiid

defined "security-domain" for validating the JDBC end user. However, it is users responsibility to

Define the Connection class

7

make the necessary logins before the Container's thread accesses this resource adapter, and this

can get overly complex.

2.1.3. Define the Connection class

Extend the BasicConnection class, and provide a implementation based on your access of

the Connection object in the Translator. If your connection is stateful, then override "isAlive()"

and "cleanup()" methods and provide proper implementations. These are called to check if a

Connection is stale or need to flush them from the connection pool etc. by the Container.

public class MyConnection extends BasicConnection

{

 public void doSomeOperation(command)

 {

 // do some operation with EIS system..

 // This is method you use in the Translator, you should know

 // what need to be done here for your source..

 }

 @Override

 public boolean isAlive()

 {

 return true;

 }

 @Override

 public void cleanUp()

 {

 }

}

2.1.4. XA Transactions

If your EIS source can participate in XA transactions, then on your Connection object,

override the "getXAResource()" method and provide the "XAResource" object for the EIS

system. Refer to Section 2.1.3, “Define the Connection class”. Also, You need to extend the

"BasicResourceAdapter" class and provide implementation for method "public XAResource[]

getXAResources(ActivationSpec[] specs)" to participate in crash recovery.

Note that, only when the resource adapters are XA capable, then Teiid can make them participate

in a distributed transactions. If they are not XA capable, then source can participate in distributed

query but will not participate in the transaction. Transaction semantics at that time defined by how

you defined "-ds.xml" file. i.e. with local-tx or no-tx

Chapter 2. Developing JEE Con...

8

2.1.5. Define the configuration properties in a "ra.xml" file

Define a "ra.xml" file in "META-INF" directory of your RAR file. An example file is provided in

Appendix A, ra.xml file Template.

For every configuration property defined inside the ManagedConnectionFactory class, define the

following XML configuration fragment inside the "ra.xml" file. These properties are used by user

to configure instance of this Connector inside a Container. Also, during the startup the Container

reads these properties from this file and knows how to inject provided values in the "-ds.xml" file

into a instance of "ManagedConnectionFactory" to create the Connection. Refer to Section 2.1.1,

“Define Managed Connection Factory”.

<config-property>

 <description>

 {$display:"${display-name}",$description:"${description}", $allowed="${allowed}",

 $required="${true|false}", $defaultValue="${default-value}"}

 </description>

 <config-property-name>${property-name}</config-property-name>

 <config-property-type>${property-type}</config-property-type>

 <config-property-value>${optioal-property-value}</config-property-value>

</config-property>

The format and contents of "<description>" element may be used as extended metadata for

tooling. The special format must begin and end with curly braces e.g. {...}. This use of the special

format and all properties is optional. Property names begin with '$' and are separated from the

value with ':'. Double quotes identifies a single value. A pair of square brackets, e.g. [...], containing

comma separated double quoted entries denotes a list value.

Extended metadata properties

• $display: Display name of the property

• $description: Description about the property

• $required: The property is a required property; or optional and a default is supplied

• $allowed: If property value must be in certain set of legal values, this defines all the allowed

values

• $masked: The tools need to mask the property; Do not show in plain text; used for passwords

• $advanced: Notes this as Advanced property

• $editable: Property can be modified; or read-only

Note that all these are optional properties; however in the absence of this metadata, Teiid tooling

may not work as expected.

Packaging the Adapter

9

2.2. Packaging the Adapter

Once all the required code is developed, it is time to package them into a RAR artifact, that can

be deployed into a Conainer. A RAR artifact is lot more similar to a WAR. To put together a RAR

file it really depends upon build system you are using.

• Eclipse: You can start out with building Java Connector project, it will produce the RAR file

• Ant: If you are using "ant" build tool, there is "rar" build task available

• Maven: If you are using maven, use <packaging> element value as "rar". Teiid uses maven, you

can look at any of the "connector" projects for sample "pom.xml" file. Here is sample pom.xml

file.

<?xml version="1.0" encoding="UTF-8"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/

maven-v4_0_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <modelVersion>4.0.0</modelVersion>

 <artifactId>connector-{name}</artifactId>

 <groupId>org.company.project</groupId>

 <name>Name Connector</name>

 <packaging>rar</packaging>

 <description>This connector is a sample</description>

 <dependencies>

 <dependency>

 <groupId>org.jboss.teiid</groupId>

 <artifactId>teiid-api</artifactId>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.teiid</groupId>

 <artifactId>teiid-common-core</artifactId>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax.resource</groupId>

 <artifactId>connector-api</artifactId>

 <scope>provided</scope>

 </dependency>

 </dependencies>

</project>

Chapter 2. Developing JEE Con...

10

Make sure that the RAR file, under its "META-INF" directory has the "ra.xml" file. If you are using

maven refer to http://maven.apache.org/plugins/maven-rar-plugin/. In the root of the RAR file, you

can embed the JAR file containing your connector code and any dependent library JAR files.

2.3. Deploying the Adapter

Once the RAR file is built, deploy it by copying the RAR file into "deploy" directory of JBoss AS's

choosen profile. Typically the server does not need to be restarted when a new RAR file is being

added. Alternatively, you can also use "admin-console" a web based monitoring and configuration

tool to deploy this file into the container.

Once the Connector's RAR file is deployed into the JBoss container, now you can start creating a

instance of this connector to be used with your Translator. Creating a instance of this Connector

is no different than creating a "Connection Factory" in JBoss AS. Again, you have have two ways

you can create a "ConnectionFactory".

• Create "${name}-ds.xml" file, and copy it into "deploy" directory of JBoss AS.

<!DOCTYPE connection-factories PUBLIC

 "-//JBoss//DTD JBOSS JCA Config 1.5//EN" "http://www.jboss.org/j2ee/dtd/jboss-

ds_1_5.dtd">

<connection-factories>

 <no-tx-connection-factory>

 <jndi-name>${jndi-name}</jndi-name>

 <rar-name>${name}.rar</rar-name>

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <!--

 define all the properties defined in the "ra.xml" that required or needs to be

 modified from defaults each property is defined in single element

 -->

 <config-property name="prop-name" type="java.lang.String">prop-value</config-

property>

</no-tx-connection-factory>

</connection-factories>

There are lot more properties that you can define for pooling, transactions, security etc in this

file. Check JBoss AS documentation for all the avaialble properties.

• Alternatively you can use the web based "admin-console" configration and monitoring program,

to create a new Connection Factory. Just have your RAR file name and needed configuration

properties handly and fill out web form and create the ConnectionFactory.

http://maven.apache.org/plugins/maven-rar-plugin/

Chapter 3.

11

Translator Development

3.1. Extending the ExecutionFactory Class

A component called the Connector Manager is controlling access to your translator. This chapter

reviews the basics of how the Connector Manager interacts with your translator while leaving

reference details and advanced topics to be covered in later chapters.

A custom translator must extend org.teiid.translator.ExecutionFactory to connect and

query an enterprise data source. This extended class must provide a no-arg constructor that

can be constructed using Java reflection libraries. This Execution Factory need define/override

following elements.

3.1.1. ConnectionFactory

Defines the "ConnectionFactory" interface that is expected from resource adapter. This defined

as part of class definition using generics while extending the "ExecutionFactory" class

3.1.2. Connection

Defines the "Connection" interface that is expected from resource adapter. This defined as part

of class definition using generics while extending the "ExecutionFactory" class

3.1.3. Configuration Properties

Every software program requires some external configuration, that defines ways user can alter

the behavior of a program. If this translator needs configurable properties define a variable for

every property as an attribute in the extended "ExecutionFactory" class. Then define a "get" and

"set" methods for each of them. Also, annotate each "get" method with @TranslatorProperty

annotation and provide the metadata about the property.

For example, if you need a property called "foo", by providing the annotation on these properties,

the Teiid tooling will automatically interrogate and provide graphical way to configure your

Translator.

private String foo = "blah";

@TranslatorProperty(display="Foo property", description="description about Foo")

public String getFoo()

{

 return foo;

}

public void setFoo(String value)

{

Chapter 3. Translator Development

12

 return this.foo = value;

}

Only java primitive (int), primitive object wrapper (java.lang.Integer), or Enum types are supported

as Translator properties. The default value will be derived from calling the getter, if available, on

a newly constructed instance. All properties should have a default value. If there is no applicable

default, then the property should be marked in the annotation as required. Initialization will fail if

a required property value is not provided.

The @TranslatorProperty defines the following metadata that you can define about your

property

• display: Display name of the property

• description: Description about the property

• required: The property is a required property

• advanced: This is advanced property; A default should be provided. A property can not be

"advanced" and "required" at same time.

• masked: The tools need to mask the property; Do not show in plain text; used for passwords

3.1.4. Initializing the Translator

Override and implement the start method (be sure to call "super.start()") if your translator needs

to do any initializing before it is used by the Teiid engine. This method will be called by Teiid, once

after all the configuration properties set above are injected into the class.

3.1.5. TranslatorCapabilities

These are various methods that typically begin with method signature "supports" on the

"ExecutionFactory" class. These methods need to be overridden to describe the execution

capabilities of the Translator. Refer to Section 3.4.5, “Translator Capabilities” for more on these

methods.

3.1.6. Execution (and sub-interfaces)

Based on types of executions you are supporting, the following methods need to be overridden

and need to provide implementations for these methods by extending respective interfaces.

• createResultSetExecution - Define if you are doing read based operation that is returning

a rows of results.

• createUpdateExecution - Define if you are doing write based operations.

Metadata

13

• createProcedureExecution - Define if you are doing procedure based operations.

You can choose to implement all the execution modes or just what you need. See more details

on this below.

3.1.7. Metadata

Override and implement the method getMetadata(), if you want to expose the metadata about the

source for use in Dynamic VDBs. This defines the tables, column names, procedures, parameters,

etc. for use in the query engine. This method is not yet used by Designer tooling.

3.1.8. Logging

Teiid provides org.teiid.logging.LogManager class for logging purposes. Create a logging

context and use the LogManager to log your messages. These will be automatically sent to the

main Teiid logs. You can edit the "jboss-log4j.xml" inside "conf" directory of the JBoss AS's profile

to add the custom context. Teiid uses Log4J as its underlying logging system.

3.1.9. Exceptions

If you need to bubble up any exception use org.teiid.translator.TranslatorException

class.

3.1.10. Default Name

Finally, you can define a default instance of your Translator by defining the annotation

@Translator on the "ExecutionFactory". When you define this, and after deployment a default

instance of this Translator is available any VDB that would like to use by just mentioning its name

in its "vdb.xml" configuration file. VDB can also override the default properties and define another

instance of this Translator too. The name you give here is the short name used every where else

in the Teiid configuration to refer to this translator.

3.2. Connections to Source

3.2.1. Obtaining connections

The extended "ExecutionFactory" must implement the getConnection() method to allow the

Connector Manager to obtain a connection.

3.2.2. Releasing Connections

Once the Connector Manager has obtained a connection, it will use that connection only for the

lifetime of the request. When the request has completed, the closeConnection() method called

on the "ExecutionFactory". You must also override this method to properly close the connection.

In cases (such as when a connection is stateful and expensive to create), connections should

be pooled. If the resource adapter is JEE JCA connector based, then pooling is automatically

Chapter 3. Translator Development

14

provided by the JBoss AS container. If your resource adapter does not implement the JEE JCA,

then connection pooling semantics are left to the user to define on their own.

3.3. Executing Commands

3.3.1. Execution Modes

The Teiid query engine uses the "ExecutionFactory" class to obtain the "Execution" interface for

the command it is executing. The actual queries themselves are sent to translators in the form

of a set of objects, which are further described in Command Language. Refer to Section 3.4,

“Command Language”. Translators are allowed to support any subset of the available execution

modes.

Table 3.1. Types of Execution Modes

Execution Interface Command

interface(s)

Description

ResultSetExecution QueryExpression A query corresponding to a SQL SELECT or

set query statement.

UpdateExecution Insert,

Update, Delete,

BatchedUpdates

An insert, update, or delete, corresponding

to a SQL INSERT, UPDATE, or DELETE

command

ProcedureExecution Call A procedure execution that may return a

result set and/or output values.

All of the execution interfaces extend the base Execution interface that defines how

executions are cancelled and closed. ProcedureExecution also extends ResultSetExecution,

since procedures may also return resultsets.

3.3.2. ResultSetExecution

Typically most commands executed against translators are QueryExpression. While the command

is being executed, the translator provides results via the ResultSetExecution's "next" method. The

"next" method should return null to indicate the end of results. Note: the expected batch size can

be obtained from the ExecutionContext and used as a hint in fetching results from the EIS.

3.3.3. Update Execution

Each execution returns the update count(s) expected by the update command. If possible

BatchedUpdates should be executed atomically. The ExecutionContext can be used to determine

if the execution is already under a transaction.

3.3.4. Procedure Execution

Procedure commands correspond to the execution of a stored procedure or some other functional

construct. A procedure takes zero or more input values and can return a result set and zero or

Asynchronous Executions

15

more output values. Examples of procedure execution would be a stored procedure in a relational

database or a call to a web service.

If a result set is expected when a procedure is executed, all rows from it will be retrieved via the

ResultSetExecution interface first. Then, if any output values are expected, they will be retrieved

via the getOutputParameterValues() method.

3.3.5. Asynchronous Executions

In some scenarios, a translator needs to execute asynchronously and allow the executing thread to

perform other work. To allow this, you should Throw a DataNotAvailableExecption during a retrival

method, rather than explicitly waiting or sleeping for the results. The DataNotAvailableException

may take a delay parameter in its constructor to indicate how long the system should wait befor

polling for results. Any non-negative value is allowed.

Since the exection and the associated connection are not closed until the work has completed,

care should be taken if using asynchronous executions that hold a lot of state.

3.3.6. Bulk Execution

Non batched Insert, Update, Delete commands may have Literal values marked as

multiValued if the capabilities shows support for BulkUpdate. Commands with multiValued

Literals represent multiple executions of the same command with different values. As with

BatchedUpdates, bulk operations should be executed atomically if possible.

3.3.7. Command Completion

All normal command executions end with the calling of close() on the Execution object. Your

implementation of this method should do the appropriate clean-up work for all state created in

the Execution object.

3.3.8. Command Cancellation

Commands submitted to Teiid may be aborted in several scenarios:

• Client cancellation via the JDBC API (or other client APIs)

• Administrative cancellation

• Clean-up during session termination

• Clean-up if a query fails during processing

Unlike the other execution methods, which are handled in a single-threaded manner, calls to

cancel happen asynchronously with respect to the execution thread.

Your connector implementation may choose to do nothing in response to this cancellation

message. In this instance, Teiid will call close() on the execution object after current processing

Chapter 3. Translator Development

16

has completed. Implementing the cancel() method allows for faster termination of queries being

processed and may allow the underlying data source to terminate its operations faster as well.

3.4. Command Language

3.4.1. Language

Teiid sends commands to your Translator in object form. These classes are all defined in the

"org.teiid.language" package. These objects can be combined to represent any possible command

that Teiid may send to the Translator. However, it is possible to notify Teiid that your Translator

can only accept certain kinds of constructs via the capabilities defined on the "ExecutionFactory"

class. Refer to Section 3.4.5, “Translator Capabilities” for more information.

The language objects all extend from the LanguageObject interface. Language objects should be

thought of as a tree where each node is a language object that has zero or more child language

objects of types that are dependent on the current node.

All commands sent to your Translator are in the form of these language trees, where the root of

the tree is a subclass of Command. Command has several sub-interfaces, namely:

• QueryExpression

• Insert

• Update

• Delete

• BatchedUpdates

• Call

Important components of these commands are expressions, criteria, and joins, which are

examined in closer detail below. For more on the classes and interfaces described here, refer to

the Teiid JavaDocs http://docs.jboss.org/teiid/7.3/apidocs.

3.4.1.1. Expressions

An expression represents a single value in context, although in some cases that value may change

as the query is evaluated. For example, a literal value, such as 5 represents an integer value. An

column reference such as "table.EmployeeName" represents a column in a data source and may

take on many values while the command is being evaluated.

• Expression – base expression interface

• ColumnReference – represents an column in the data source

http://docs.jboss.org/teiid/7.3/apidocs

Language

17

• Literal – represents a literal scalar value, but may also be multi-valued in the case of bulk

updates.

• Function – represents a scalar function with parameters that are also Expressions

• Aggregate – represents an aggregate function which holds a single expression

• ScalarSubquery – represents a subquery that returns a single value

• SearchedCase, SearchedWhenClause – represents a searched CASE expression. The

searched CASE expression evaluates the criteria in WHEN clauses till one evaluates to TRUE,

then evaluates the associated THEN clause.

3.4.1.2. Condition

A criteria is a combination of expressions and operators that evaluates to true, false, or unknown.

 Criteria are most commonly used in the WHERE or HAVING clauses.

• Condition – the base criteria interface

• Not – used to NOT another criteria

• AndOr – used to combine other criteria via AND or OR

• SubuqeryComparison – represents a comparison criteria with a subquery including a quantifier

such as SOME or ALL

• Comparison – represents a comparison criteria with =, >, <, etc.

• BaseInCondition – base class for an IN criteria

• In – represents an IN criteria that has a set of expressions for values

• SubqueryIn – represents an IN criteria that uses a subquery to produce the value set

• IsNull – represents an IS NULL criteria

• Exists – represents an EXISTS criteria that determines whether a subquery will return any

values

• Like – represents a LIKE criteria that compares string values

3.4.1.3. The FROM Clause

The FROM clause contains a list of TableReference's.

• NamedTable – represents a single Table

Chapter 3. Translator Development

18

• Join – has a left and right TableReference and information on the join between the items

• DerivedTable – represents a table defined by an inline QueryExpression

A list of TableReference are used by default, in the pushdown query when no outer joins are used.

If an outer join is used anywhere in the join tree, there will be a tree of Join s with a single root.

This latter form is the ANSI perfered style. If you wish all pushdown queries containing joins to be

in ANSI style have the capability "useAnsiJoin" return true. Refer to Section 3.4.5.3, “Command

Form” for more information.

3.4.1.4. QueryExpression Structure

QueryExpression is the base for both SELECT queries and set queries. It may optionally take

an OrderBy (representing a SQL ORDER BY clause), a Limit (represent a SQL LIMIT clause),

or a With (represents a SQL WITH clause).

3.4.1.5. Select Structure

Each QueryExpression can be a Select describing the expressions (typically elements) being

selected and an TableReference specifying the table or tables being selected from, along with

any join information. The Select may optionally also supply an Condition (representing a

SQL WHERE clause), a GroupBy (representing a SQL GROUP BY clause), an an Condition

(representing a SQL HAVING clause).

3.4.1.6. SetQuery Structure

A QueryExpression can also be a SetQuery that represents on of the SQL set operations

(UNION, INTERSECT, EXCEPT) on two QueryExpression. The all flag may be set to indicate

UNION ALL (currently INTERSECT and EXCEPT ALL are not allowed in Teiid)

3.4.1.7. With Structure

A With clause contains named QueryExpressions held by WithItems that can be referenced as

tables in the main QueryExpression.

3.4.1.8. Insert Structure

Each Insert will have a single NamedTable specifying the table being inserted into. It will also has

a list of ColumnReference specifying the columns of the NamedTable that are being inserted into.

It also has InsertValueSource, which will be a list of Expressions (ExpressionValueSource),

or a QueryExpression, or an Iterator (IteratorValueSource)

3.4.1.9. Update Structure

Each Update will have a single NamedTable specifying the table being updated and list of

SetClause entries that specify ColumnReference and Expression pairs for the update. The

Update may optionally provide a criteria Condition specifying which rows should be updated.

Language Utilities

19

3.4.1.10. Delete Structure

Each Delete will have a single NamedTable specifying the table being deleted from. It may also

optionally have a criteria specifying which rows should be deleted.

3.4.1.11. Call Structure

Each Call has zero or more Argument objects. The Argument objects describe the input

parameters, the output result set, and the output parameters.

3.4.1.12. BatchedUpdates Structure

Each BatchedUpdates has a list of Command objects (which must be either Insert, Update or

Delete) that compose the batch.

3.4.2. Language Utilities

This section covers utilities available when using, creating, and manipulating the language

interfaces.

3.4.2.1. Data Types

The Translator API contains an interface TypeFacility that defines data types and provides

value translation facilities. This interface can be obtained from calling "getTypeFacility()" method

on the "ExecutionFactory" class.

The TypeFacitlity interface has methods that support data type transformation and

detection of appropriate runtime or JDBC types. The TypeFacility.RUNTIME_TYPES and

TypeFacility.RUNTIME_NAMES interfaces defines constants for all Teiid runtime data types. All

Expression instances define a data type based on this set of types. These constants are often

needed in understanding or creating language interfaces.

3.4.2.2. Language Manipulation

In Translators that support a fuller set of capabilities (those that generally are translating to a

language of comparable to SQL), there is often a need to manipulate or create language interfaces

to move closer to the syntax of choice. Some utilities are provided for this purpose:

Similar to the TypeFacility, you can call "getLanguageFactory()" method on the "ExecutionFactory"

to get a reference to the LanguageFactory instance for your translator. This interface is a factory

that can be used to create new instances of all the concrete language interface objects.

Some helpful utilities for working with Condition objects are provided in the LanguageUtil class.

 This class has methods to combine Condition with AND or to break an Condition apart based

on AND operators. These utilities are helpful for breaking apart a criteria into individual filters that

your translator can implement.

Chapter 3. Translator Development

20

3.4.3. Runtime Metadata

Teiid uses a library of metadata, known as "runtime metadata" for each virtual database that is

deployed in Teiid. The runtime metadata is a subset of metadata as defined by models in the

Teiid models that compose the virtual database. While builing your VDB in the Designer, you can

define what called "Extension Model", that defines any number of arbitary properties on a model

and its objects. At runtime, using this runtime metadata interface, you get access to those set

properties defined during the design time, to define/hint any execution behavior.

Translator gets access to the RuntimeMetadata interface at the time of Excecution creation.

Translators can access runtime metadata by using the interfaces defined in org.teiid.metadata

package. This package defines API representing a Schema, Table, Columns and Procedures,

and ways to navigate these objects.

3.4.3.1. Metadata Objects

All the language objects extend AbstractMetadataRecord class

• Column - returns Column metadata record

• Table - returns a Table metadata record

• Procedure - returns a Procedure metadata record

• ProcedureParameter - returns a Procedure Parameter metadata record

Once a metadata record has been obtained, it is possible to use its metadata about that object

or to find other related metadata.

3.4.3.2. Access to Runtime Metadata

The RuntimeMetadata interface is passed in for the creation of an "Execution". See

"createExecution" method on the "ExecutionFactory" class. It provides the ability to look up

metadata records based on their fully qualified names in the VDB.

Example 3.1. Obtaining Metadata Properties

The process of getting a Table's properties is sometimes needed for translator development. For

example to get the "NameInSource" property or all extension properties:

//getting the Table metadata from an Table is straight-forward

Table table = runtimeMetadata.getTable("table-name");

String contextName = table.getNameInSource();

//The props will contain extension properties

Language Visitors

21

Map<String, String> props = table.getProperties();

3.4.4. Language Visitors

3.4.4.1. Framework

The API provides a language visitor framework in the org.teiid.language.visitor package.

 The framework provides utilities useful in navigating and extracting information from trees of

language objects.

The visitor framework is a variant of the Visitor design pattern, which is documented in several

popular design pattern references. The visitor pattern encompasses two primary operations:

traversing the nodes of a graph (also known as iteration) and performing some action at each node

of the graph. In this case, the nodes are language interface objects and the graph is really a tree

rooted at some node. The provided framework allows for customization of both aspects of visiting.

The base AbstractLanguageVisitor class defines the visit methods for all leaf language

interfaces that can exist in the tree. The LanguageObject interface defines an acceptVisitor()

method – this method will call back on the visit method of the visitor to complete the

contract. A base class with empty visit methods is provided as AbstractLanguageVisitor. The

AbstractLanguageVisitor is just a visitor shell – it performs no actions when visiting nodes and

does not provide any iteration.

The HierarchyVisitor provides the basic code for walking a language object tree. The

HierarchyVisitor performs no action as it walks the tree – it just encapsulates the knowledge

of how to walk it. If your translator wants to provide a custom iteration that walks the objects in

a special order (to exclude nodes, include nodes multiple times, conditionally include nodes, etc)

then you must either extend HierarchyVisitor or build your own iteration visitor. In general, that

is not necessary.

The DelegatingHierarchyVisitor is a special subclass of the HierarchyVisitor that provides the

ability to perform a different visitor’s processing before and after iteration. This allows users of this

class to implement either pre- or post-order processing based on the HierarchyVisitor. Two helper

methods are provided on DelegatingHierarchyVisitor to aid in executing pre- and post-order

visitors.

3.4.4.2. Provided Visitors

The SQLStringVisitor is a special visitor that can traverse a tree of language interfaces and

output the equivalent Teiid SQL. This visitor can be used to print language objects for debugging

and logging. The SQLStringVisitor does not use the HierarchyVisitor described in the last

section; it provides both iteration and processing type functionality in a single custom visitor.

The CollectorVisitor is a handy utility to collect all language objects of a certain type in a tree.

Some additional helper methods exist to do common tasks such as retrieving all elements in a

tree, retrieving all groups in a tree, and so on.

Chapter 3. Translator Development

22

3.4.4.3. Writing a Visitor

Writing your own visitor can be quite easy if you use the provided facilities. If the normal method

of iterating the language tree is sufficient, then just follow these steps:

Create a subclass of AbstractLanguageVisitor. Override any visit methods needed for your

processing. For instance, if you wanted to count the number of elements in the tree, you need only

override the visit(ColumnReference) method. Collect any state in local variables and provide

accessor methods for that state.

Decide whether to use pre-order or post-order iteration. Note that visitation order is based upon

syntax ordering of SQL clauses - not processing order.

Write code to execute your visitor using the utility methods on DelegatingHierarchyVisitor:

// Get object tree

LanguageObject objectTree = &

// Create your visitor initialize as necessary

MyVisitor visitor = new MyVisitor();

// Call the visitor using pre-order visitation

DelegatingHierarchyVisitor.preOrderVisit(visitor, objectTree);

// Retrieve state collected while visiting

int count = visitor.getCount();

3.4.5. Translator Capabilities

The ExecutionFactory class defines all the methods that describe the capabilities of a

Translator. These are used by the Connector Manager to determine what kinds of commands

the translator is capable of executing. A base ExecutionFactory class implements all the basic

capabilities methods, which says your translator does not support any capabilities. Your extended

ExecutionFactory class must override the the necessary methods to specify which capabilities

your translator supports. You should consult the debug log of query planning (set showplan

debug) to see if desired pushdown requires additional capabilities.

3.4.5.1. Capability Scope

Note that if your capabilities will remain unchanged for the lifetime of the translator, since

the engine will cache them for reuse by all instances of that translator. Capabilities based on

connection/user are not supported.

3.4.5.2. Capabilities

The following table lists the capabilities that can be specified in the ExecutionFactory class.

Translator Capabilities

23

Table 3.2. Available Capabilities

Capability Requires Description

SelectDistinct Translator can support SELECT DISTINCT in queries.

SelectExpression Translator can support SELECT of more than just

column references.

AliasedTable Translator can support Tables in the FROM clause that

have an alias.

InnerJoins Translator can support inner and cross joins

SelfJoins AliasedGroups

and at least on

of the join type

supports.

Translator can support a self join between two aliased

versions of the same Table.

OuterJoins Translator can support LEFT and RIGHT OUTER JOIN.

FullOuterJoins Translator can support FULL OUTER JOIN.

InlineViews AliasedTable Translator can support a named subquery in the FROM

clause.

BetweenCriteria Not currently used - between criteria is rewriten as

compound comparisions.

CompareCriteriaEquals Translator can support comparison criteria with the

operator "=".

CompareCriteriaOrdered Translator can support comparison criteria with the

operator ">" or "<".

LikeCriteria Translator can support LIKE criteria.

LikeCriteriaEscapeCharacterLikeCriteria Translator can support LIKE criteria with an ESCAPE

character clause.

InCriteria MaxInCriteria Translator can support IN predicate criteria.

InCriteriaSubquery Translator can support IN predicate criteria where

values are supplied by a subquery.

IsNullCriteria Translator can support IS NULL predicate criteria.

OrCriteria Translator can support the OR logical criteria.

NotCriteria Translator can support the NOT logical criteria.

IMPORTANT: This capability also applies to negation of

predicates, such as specifying IS NOT NULL, "<=" (not

">"), ">=" (not "<"), etc.

ExistsCriteria Translator can support EXISTS predicate criteria.

QuantifiedCompareCriteriaAll Translator can support a quantified comparison criteria

using the ALL quantifier.

QuantifiedCompareCriteriaSome

Chapter 3. Translator Development

24

Capability Requires Description

Translator can support a quantified comparison criteria

using the SOME or ANY quantifier.

OrderBy Translator can support the ORDER BY clause in

queries.

OrderByUnrelated OrderBy Translator can support ORDER BY items that are not

directly specified in the select clause.

OrderByNullOrderingOrderBy Translator can support ORDER BY items with NULLS

FIRST/LAST.

GroupBy Translator can support an explict GROUP BY clause.

Having GroupBy Translator can support the HAVING clause.

AggregatesAvg Translator can support the AVG aggregate function.

AggregatesCount Translator can support the COUNT aggregate function.

AggregatesCountStar Translator can support the COUNT(*) aggregate

function.

AggregatesDistinctAt least one of

the aggregate

functions.

Translator can support the keyword DISTINCT inside

an aggregate function. This keyword indicates that

duplicate values within a group of rows will be ignored.

AggregatesMax Translator can support the MAX aggregate function.

AggregatesMin Translator can support the MIN aggregate function.

AggregatesSum Translator can support the SUM aggregate function.

AggregatesEnhancedNumeric Translator can support the VAR_SAMP, VAR_POP,

STDDEV_SAMP, STDDEV_POP aggregate functions.

ScalarSubqueries Translator can support the use of a subquery in a

scalar context (wherever an expression is valid).

CorrelatedSubqueriesAt least one of

the subquery

pushdown

capabilities.

Translator can support a correlated subquery that

refers to an element in the outer query.

CaseExpressions Not currently used - simple case is rewriten as

searched case.

SearchedCaseExpressions Translator can support "searched" CASE expressions

anywhere that expressions are accepted.

Unions Translator support UNION and UNION ALL

Intersect Translator supports INTERSECT

Except Translator supports Except

Translator Capabilities

25

Capability Requires Description

SetQueryOrderBy Unions,

Intersect, or

Except

Translator supports set queries with an ORDER BY

RowLimit Translator can support the limit portion of the limit

clause

RowOffset Translator can support the offset portion of the limit

clause

FunctionsInGroupByGroupBy Not currently used - non-element expressions in the

group by create an inline view.

InsertWithQueryExpression Translator supports INSERT statements with values

specified by an QueryExpression.

supportsBatchedUpdates Translator supports a batch of INSERT, UPDATE and

DELETE commands to be executed together.

BulkUpdate Translator supports updates with multiple value sets

InsertWithIterator Translator supports inserts with an iterator of values.

The values would typically be from an evaluated

QueryExpression.

CommonTableExpressions Translator supports the WITH clause.

Note that any pushdown subquery must itself be compliant with the Translator capabilities.

3.4.5.3. Command Form

The method ExecutionFactory.useAnsiJoin() should return true if the Translator prefers the

use of ANSI style join structure for join trees that contain only INNER and CROSS joins.

The method ExecutionFactory.requiresCriteria() should return true if the Translator

requires criteria for any Query, Update, or Delete. This is a replacement for the model support

property "Where All".

3.4.5.4. Scalar Functions

The method ExecutionFactory.getSupportedFunctions() can be used to specify which scalar

functions the Translator supports. The set of possible functions is based on the set of functions

supported by Teiid. This set can be found in the Reference documentation at http://www.jboss.org/

teiid//docs.html. If the Translator states that it supports a function, it must support all type

combinations and overloaded forms of that function.

There are also five standard operators that can also be specified in the supported function list:

+, -, *, /, and ||.

The constants interface SourceSystemFunctions contains the string names of all possible built-in

pushdown functions. Note that not all system functions appear in this list. This is because some

http://www.jboss.org/teiid//docs.html
http://www.jboss.org/teiid//docs.html

Chapter 3. Translator Development

26

system functions will always be evaluted in Teiid, are simple aliases to other functions, or are

rewriten to a more standard expression.

3.4.5.5. Physical Limits

The method ExecutionFactory.getMaxInCriteriaSize() can be used to specify the maximum

number of values that can be passed in an IN criteria. This is an important constraint as an IN

criteria is frequently used to pass criteria between one source and another using a dependent join.

The method ExecutionFactory.getMaxFromGroups() can be used to specify the maximum

number of FROM Clause groups that can used in a join. -1 indicates there is no limit.

3.4.5.6. Update Execution Modes

The method ExecutionFactory.supportsBatchedUpdates() can be used to indicate that the

Translator supports executing the BatchedUpdates command.

The method ExecutionFactory.supportsBulkUpdate() can be used to indicate that the

Translator accepts update commands containg multi valued Literals.

Note that if the translator does not support either of these update modes, the query engine will

compensate by issuing the updates individually.

3.4.5.7. Default Behavior

The method ExecutionFactory.getDefaultNullOrder() specifies the default null order. Can

be one of UNKNOWN, LOW, HIGH, FIRST, LAST. This is only used if ORDER BY is supported,

but null ordering is not.

3.5. Large Objects

This section examines how to use facilities provided by the Teiid API to use large objects such

as blobs, clobs, and xml in your Translator.

3.5.1. Data Types

Teiid supports three large object runtime data types: blob, clob, and xml. A blob is a "binary large

object", a clob is a "character large object", and "xml" is a "xml document". Columns modeled

as a blob, clob, or xml are treated similarly by the translator framework to support memory-safe

streaming.

3.5.2. Why Use Large Object Support?

Teiid allows a Translator to return a large object through the Teiid translator API by just returning

a reference to the actual large object. Access to that LOB will be streamed as appropriate rather

than retrieved all at once. This is useful for several reasons:

1. Reduces memory usage when returning the result set to the user.

Handling Large Objects

27

2. Improves performance by passing less data in the result set.

3. Allows access to large objects when needed rather than assuming that users will always use

the large object data.

4. Allows the passing of arbitrarily large data values.

However, these benefits can only truly be gained if the Translator itself does not materialize an

entire large object all at once. For example, the Java JDBC API supports a streaming interface

for blob and clob data.

3.5.3. Handling Large Objects

The Translator API automatically handles large objects (Blob/Clob/SQLXML) through the creation

of special purpose wrapper objects when it retrieves results.

Once the wrapped object is returned, the streaming of LOB is automatically supported. These

LOB objects then can for example appear in client results, in user defined functions, or sent to

other translators.

A Execution is usually closed and the underlying connection is either closed/released as soon as

all rows for that execution have been retrieved. However, LOB objects may need to be read after

their initial retrieval of results. When LOBs are detected the default closing behavior is prevented

by setting a flag on the ExecutionContext. See ExecutionContext.keepAlive() method.

When the "keepAlive" alive flag is set, then the execution object is only closed when user's

Statement is closed.

executionContext.keepExecutionAlive(true);

3.5.4. Inserting or Updating Large Objects

LOBs will be passed to the Translator in the language objects as Literal containing a java.sql.Blob,

java.sql.Clob, or java.sql.SQLXML. You can use these interfaces to retrieve the data in the large

object and use it for insert or update.

3.6. Packaging

Once the "ExecutionFactory" class is implemented, package it in a JAR file. The only additional

requirement is provide a file called "jboss-beans.xml" in the "META-INF" directory of the JAR file,

with following contents. Replace ${name} with name of your translator, and replace ${execution-

factory-class} with your overridden ExecutionFactory class name. This will register the Translator

for use with tooling and Admin API.

<?xml version="1.0" encoding="UTF-8"?>

Chapter 3. Translator Development

28

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <bean name="translator-${name}-template"

 class="org.teiid.templates.TranslatorDeploymentTemplate">

 <property name="info"><inject bean="translator-${name}"/></property>

 <property name="managedObjectFactory"><inject bean="ManagedObjectFactory"/></

property>

 </bean>

 <bean name="translator-${name}" class="org.teiid.templates.TranslatorTemplateInfo">

 <constructor factoryMethod="createTemplateInfo">

 <factory bean="TranslatorDeploymentTemplateInfoFactory"/>

 <parameter class="java.lang.Class">org.teiid.templates.TranslatorTemplateInfo</

parameter>

 <parameter class="java.lang.Class">${execution-factory-class}</parameter>

 <parameter class="java.lang.String">translator-${name}</parameter>

 <parameter class="java.lang.String">${name}</parameter>

 </constructor>

 </bean>

</deployment>

3.7. Deployment

Copy the JAR file that defines the Translator into "deploy" directory of the JBoss AS's chosen

profile, and the Translator will be deployed automatically. There is no restriction that, JBoss AS

need to be restarted. However, if your Translator has external dependencies to other JAR libraries,

they need to be placed inside the "lib" directory of the JBoss AS's profile. This will require a restart

of the JBoss Server. Another option to avoid the restart is to bundle all the required JAR files into

the same JAR file as the Translator. It is user's responsibility to make sure they are not running

into any conflicts with their dependent libraries with those already exist in the JBoss environment.

Chapter 4.

29

Extending The JDBC Translator
The JDBC Translator can be extended to handle new JDBC drivers and database versions. This

is one of the most common needs of custom Translator development. This chapter outlines the

process by which a user can modify the behavior of the JDBC Translator for a new source, rather

than starting from scratch.

To design a JDBC Translator for any RDMS that is not already provided by the Teiid, extend

the org.teiid.translator.jdbc.JDBCExecutionFactory class in the "translator-jdbc" module.

There are three types of methods that you can override from the base class to define the behavior

of the Translator.

Table 4.1. Extensions

Extension Purpose

Capabilities Specify the SQL syntax and functions the source supports.

SQL Translation Customize what SQL syntax is used, how source-specific

functions are supported, how procedures are executed.

Results Translation Customize how results are retrieved from JDBC and

translated.

4.1. Capabilities Extension

This extension must override the methods that begin with "supports" that describe translator

capabilities. Refer to Section 3.4.5, “Translator Capabilities” for all the available translator

capabilities.

The most common example is adding support for a scalar function – this requires both declaring

that the translator has the capability to execute the function and often modifying the SQL Translator

to translate the function appropriately for the source.

Another common example is turning off unsupported SQL capabilities (such as outer joins or

subqueries) for less sophisticated JDBC sources.

4.2. SQL Translation Extension

The JDBCExcecutionFactory provides several methods to modify the command and the string

form of the resulting syntax before it is sent to the JDBC driver, including:

• Change basic SQL syntax options. See the useXXX methods, e.g. useSelectLimit returns true

for SQLServer to indicate that limits are applied in the SELECT clause.

• Register one or more FunctionModifiers that define how a scalar function should be modified

or transformed.

Chapter 4. Extending The JDBC...

30

• Modify a LanguageObject. - see the translate, translateXXX, and FunctionModifiers.translate

methods. Modify the passed in object and return null to indicate that the standard syntax output

should be used.

• Change the way SQL strings are formed for a LanguageObject. - - see the translate,

translateXXX, and FunctionModifiers.translate methods. Return a list of parts, which can contain

strings and LanguageObjects, that will be appended in order to the SQL string. If the in coming

LanguageObject appears in the returned list it will not be translated again.

Refer to Section 4.4.1, “Using FunctionModifiers”.

4.3. Results Translation Extension

The JDBCExecutionFactory provides several methods to modify the java.sql.Statement and

java.sql.ResultSet interactions, including:

1. Overriding the createXXXExecution to subclass the corresponding JDBCXXXExecution. The

JDBCBaseExecution has protected methods to get the appropriate statement (getStatement,

getPreparedStatement, getCallableStatement) and to bind prepared statement values

bindPreparedStatementValues.

2. Retrieve values from the JDBC ResultSet or CallableStatement - see the retrieveValue

methods.

4.4. Adding Function Support

Refer to Chapter 5, User Defined Functions for adding new functions to Teiid. This example will

show you how to declare support for the function and modify how the function is passed to the

data source.

Following is a summary of all coding steps in supporting a new scalar function:

1. Override the capabilities method to declare support for the function (REQUIRED)

2. Implement a FunctionModifier to change how a function is translated and register it for use

(OPTIONAL)

There is a capabilities method getSupportedFunctions() that declares all supported scalar

functions.

An example of an extended capabilities class to add support for the "abs" absolute value function:

package my.connector;

import java.util.ArrayList;

import java.util.List;

Using FunctionModifiers

31

public class ExtendedJDBCExecutionFactory extends JDBCExecutionFactory

{

 @Override

 public List getSupportedFunctions()

 {

 List supportedFunctions = new ArrayList();

 supportedFunctions.addAll(super.getSupportedFunctions());

 supportedFunctions.add("ABS");

 return supportedFunctions;

 }

}

In general, it is a good idea to call super.getSupportedFunctions() to ensure that you retain any

function support provided by the translator you are extending.

This may be all that is needed to support a Teiid function if the JDBC data source supports the

same syntax as Teiid. The built-in SQL translation will translate most functions as: "function(arg1,

arg2, …)".

4.4.1. Using FunctionModifiers

In some cases you may need to translate the function differently or even insert additional function

calls above or below the function being translated. The JDBC translator provides an abstract class

FunctionModifier for this purpose.

During the start method a modifier instance can be registered against a given function name via

a call to JDBCExecutionFactory.registerFunctionModifier.

The FunctionModifier has a method called translate. Use the translate method to change the

way the function is represented.

An example of overriding the translate method to change the MOD(a, b) function into an infix

operator for Sybase (a % b). The translate method returns a list of strings and language objects

that will be assembled by the translator into a final string. The strings will be used as is and the

language objects will be further processed by the translator.

public class ModFunctionModifier implements FunctionModifier

{

 public List translate(Function function)

 {

 List parts = new ArrayList();

 parts.add("(");

 Expression[] args = function.getParameters();

 parts.add(args[0]);

Chapter 4. Extending The JDBC...

32

 parts.add(" % ");

 parts.add(args[1]);

 parts.add(")");

 return parts;

 }

}

In addition to building your own FunctionModifiers, there are a number of pre-built generic function

modifiers that are provided with the translator.

Table 4.2. Common Modifiers

Modifier Description

AliasModifier Handles simply renaming a function ("ucase" to "upper" for

example)

EscapeSyntaxModifier Wraps a function in the standard JDBC escape syntax for

functions: {fn xxxx()}

To register the function modifiers for your supported functions, you must call

the ExecutionFactory.registerFunctionModifier(String name, FunctionModifier

modifier) method.

public class ExtendedJDBCExecutionFactory extends JDBCExecutionFactory

{

 @Override

 public void start()

 {

 super.start();

 // register functions.

 registerFunctionModifier("abs", new MyAbsModifier());

 registerFunctionModifier("concat", new AliasModifier("concat2"));

 }

}

Support for the two functions being registered ("abs" and "concat") must be declared in the

capabilities as well. Functions that do not have modifiers registered will be translated as usual.

4.5. Installing Extensions

Once you have developed an extension to the JDBC translator, you must install it into the Teiid

Server. The process of packaging or deploying the extended JDBC translators is exactly as any

other other translator. Since the RDMS is accessible already through its JDBC driver, there is

Installing Extensions

33

no need to develop a resource adapter for this source as JBoss AS provides a wrapper JCA

connector (DataSource) for any JDBC driver.

Refer to Section 3.6, “Packaging” and Section 3.7, “Deployment” for more details.

34

Chapter 5.

35

User Defined Functions
If you need to extends Teiid's scalar function library, then Teiid provides a means to define custom

scalar functions or User Defined Functions(UDF). The following steps need to be taken in creating

a UDF.

5.1. UDF Definition

The FunctionDefinition.xmi file provides metadata to the query engine on User Defined Functions.

See the Designer Documentation for more on creating a Function Definition Model.

The following are used to define a UDF.

• Function Name When you create the function name, keep these requirements in mind:

• You cannot use a reserved word, which includes existing Teiid System function names. You

cannot overload existing Teiid System functions.

• The function name must be unique among user-defined functions for the number of

arguments. You can use the same function name for different numbers of types of arguments.

 Hence, you can overload your user-defined functions.

• The function name can only contain letters, numbers, and the underscore (_). Your function

name must start with a letter.

• The function name cannot exceed 128 characters.

• Input Parameters - defines a type specific signature list. All arguments are considered required.

• Return Type - the expected type of the returned scalar value.

• Pushdown - can be one of REQUIRED, NEVER, ALLOWED. Indicates the expected pushdown

behavior. If NEVER or ALLOWED are specified then a Java implementation of the function

should be supplied.

• invocationClass/invocationMethod - optional properties indicating the static method to invoke

when the UDF is not pushed down.

• Deterministic - if the method will always return the same result for the same input parameters.

Even pushdown required functions need to be added as a UDF to allow Teiid to properly parse

and resolve the function. Pushdown scalar functions differ from normal user-defined functions in

that no code is provided for evaluation in the engine. An exception will be raised if a pushdown

required function cannot be evaluated by the appropriate source.

Chapter 5. User Defined Functions

36

5.2. Source Supported UDF

While Teiid provides an extensive scalar function library, it contains only those functions that can

be evaluated within the query engine. In many circumstances, especially for performance, a user

defined function allows for calling a source specific function.

For example, suppose you want to use the Oracle-specific functions score and contains:

SELECT score(1), ID, FREEDATA FROM Docs WHERE contains(freedata, 'nick', 1) > 0

The score and contains functions are not part of built-in scalar function library. While you could

write your own custom scalar function to mimic their behavior, it's more likely that you would want

to use the actual Oracle functions that are provided by Oracle when using the Oracle Free Text

functionality.

In addition to the normal steps outlined in the section to create and install a function model

(FunctionDefinitions.xmi), you will need to extend the appropriate connector(s).

For example, to extend the Oracle Connector

• Required - extend the OracleExecutionFactory and add SCORE and CONTAINS as

supported functions. For this example, we'll call the class MyOracleExecutionFactory.

Add the org.teiid.translator.Translator annotation to the class, e.g.

@Translator(name="myoracle")

• Optionally register new FunctionModifiers on the start of the ExecutionFactory to handle

translation of these functions. Given that the syntax of these functions is same as other typical

functions, this probably isn't needed - the default translation should work.

• Create a new translator jar containing your custom ExecutionFactory. Refer to Section 3.6,

“Packaging” and Section 3.7, “Deployment” for instructions on using the JAR file.

5.3. Non-pushdown Support for User-Defined Functions

Non-pushdown support requires a Java function that matches the metadata supplied in the

FunctionDefinitions.xmi file. You must create a Java method that contains the function’s logic.

This Java method should accept the necessary arguments, which the Teiid System will pass to it

at runtime, and function should return the calculated or altered value.

5.3.1. Java Code

Code Requirements

• The java class containing the function method must be defined public.

• The function method must be public and static.

Post Code Activities

37

• Number of input arguments and types must match the function metadata defined in Section 5.1,

“UDF Definition”.

• Any exception can be thrown, but Teiid will rethrow the exception as a

FunctionExecutionException .

You may optionally add an additional org.teiid.CommandContext argument as the first

parameter. The CommandContext interface provides access to information about the current

command, such as the executing user, the vdb, the session id, etc. This CommandContext

parameter does not need to be delared in the function metadata.

Example 5.1. Sample code

package org.something;

public class TempConv

{

 /**

 * Converts the given Celsius temperature to Fahrenheit, and returns the

 * value.

 * @param doubleCelsiusTemp

 * @return Fahrenheit

 */

 public static Double celsiusToFahrenheit(Double doubleCelsiusTemp)

 {

 if (doubleCelsiusTemp == null)

 {

 return null;

 }

 return (doubleCelsiusTemp)*9/5 + 32;

 }

}

5.3.2. Post Code Activities

1. After coding the functions you should compile the Java code into a Java Archive (JAR) file.

2. The JAR should be available in the classpath of Teiid - this could be the server profile lib, or

the deployers/teiid.deployer directory depending upon your preference.

5.4. Installing user-defined functions

Once a user-defined function model (FunctionDefinitions.xmi) has been created in in the Designer

Tool, it can be added to the VDB for use by Teiid.

38

Chapter 6.

39

AdminAPI
In most circumstances the admin operations will be performed through the admin console or

AdminShell tooling, but it is also possible to invoke admin functionality directly in Java through

the AdminAPI.

All classes for the AdminAPI are in the client jar under the org.teiid.adminapi package.

6.1. Connecting

An AdminAPI connection, which is represented by the org.teiid.adminapi.Admin

interface, is obtained through the org.teiid.adminapi.AdminFactory.createAdmin methods.

AdminFactory is a singleton, see AdminFactory.getInstance(). The Admin instance

automatically tests its connection and reconnects to a server in the event of a failure. The close

method should be called to terminate the connection.

See your Teiid installation for the appropriate admin port - the default is 31443.

6.2. Admin Methods

Admin methods exist for monitoring, server administration, and configuration purposes. Note that

the objects returned by the monitoring methods, such as getRequests, are read-only and cannot

be used to change server state. See the JavaDocs for all of the details.

40

Chapter 7.

41

Logging

7.1. Customized Logging

The Teiid system provides a wealth of information using logging. To control logging level,

contexts, and log locations, you should be familiar with log4j and the container's jboss-log4j.xml

configuration file. Teiid also provides a PROFILE/conf/jboss-teiid-log4j.xml containing much

of information from this chapter. Refer to the Administrator Guide for more details about different

Teiid contexts available. Refer to http://logging.apache.org/log4j/ for more information about log4j.

If the default log4j logging mechanisms are not sufficient for your logging needs you may need

a different appender, refer to the log4j javadocs at http://logging.apache.org/log4j/1.2/apidocs/

index.html. Note that log4j already provides quite a few appenders including JMS, RDBMS, and

SMTP.

If you want a custom appender, follow the Log4J directions to write a custom appender. Refer

to the instructions at http://logging.apache.org/log4net/release/faq.html. If you develop a custom

logging solution, the implementation jar should be placed in the "lib" directory of the JBoss AS

server profile Teiid is installed in.

7.1.1. Command Logging API

If you want to build a custom appender for command logging that will have access to log4j

"LoggingEvents" to the "COMMAND_LOG" context, it will have a message that is an instance of

org.teiid.logging.CommandLogMessage defined in the teiid-api-7.3.jar use these class in

your development. The CommmdLogMessage include information about vdb, session, command-

sql etc.

7.1.2. Audit Logging API

If you want to build a custom appender for command logging that will have access to log4j

"LoggingEvents" to the "AUDIT_LOG" context, it will have a message that is an instance of

org.teiid.logging.AuditMessage defined in the teiid-api-7.3.jar use this class in your

development. AuditMessage include information about user, the action, and the target(s) of the

action.

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/1.2/apidocs/index.html
http://logging.apache.org/log4j/1.2/apidocs/index.html
http://logging.apache.org/log4net/release/faq.html

42

Chapter 8.

43

Login Modules
The Teiid system provides a range of built-in and extensible security features to enable the secure

access of data. For details about how to configure the available security features check out Admin

Guide.

LoginModules are an essential part of the JAAS security framework and provide Teiid

customizable user authentication and the ability to reuse existing LoginModules defined for

JBossAS. Refer to the JBoss Application Server security documentation for information about

configuring security in JBoss Application Server, http://docs.jboss.org/jbossas/admindevel326/

html/ch8.chapter.html.

8.1. Built-in LoginModules

JBoss Application Server provides several LoginModules for common authentication needs, such

as authenticating from text files or LDAP.

Below are are some of those available in JBoss Application Server:

UserRoles LoginModule

Login module that uses simple file based authentication.

Refer to http://community.jboss.org/docs/DOC-12510.

LDAP LoginModule

Login module that uses LDAP based authentication.

Refer to http://community.jboss.org/docs/DOC-11253.

Database LoginModule

Login module that uses Database-based authentication.

Refer to http://community.jboss.org/docs/DOC-9511.

Cert LoginModule

Login module that uses X509 certificate based authentication.

See http://community.jboss.org/docs/DOC-9160.

For all the available login modules refer to http://community.jboss.org/docs/DOC-11287.

8.2. Custom LoginModules

If your authentication needs go beyond the provided LoginModules, please refer

to the JAAS development guide at http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/

JAASLMDevGuide.html. There are also numerous guides available.

http://docs.jboss.org/jbossas/admindevel326/html/ch8.chapter.html
http://docs.jboss.org/jbossas/admindevel326/html/ch8.chapter.html
http://community.jboss.org/docs/DOC-12510
http://community.jboss.org/docs/DOC-11253
http://community.jboss.org/docs/DOC-9511
http://community.jboss.org/docs/DOC-9160
http://community.jboss.org/docs/DOC-11287
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html

Chapter 8. Login Modules

44

If you are extending one of the built-in LoginModules, refer to http://community.jboss.org/docs/

DOC-9466.

http://community.jboss.org/docs/DOC-9466
http://community.jboss.org/docs/DOC-9466

45

Appendix A. ra.xml file Template
This appendix contains an example of the ra.xml file that can be used as a template when creating

a new Connector.

<?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd" version="1.5">

 <vendor-name>${comapany-name}</vendor-name>

 <eis-type>${type-of-connector}</eis-type>

 <resourceadapter-version>1.0</resourceadapter-version>

 <license>

 <description>${license text}</description>

 <license-required>true</license-required>

 </license>

 <resourceadapter>

 <resourceadapter-class>org.teiid.resource.spi.BasicResourceAdapter</resourceadapter-

class>

 <outbound-resourceadapter>

 <connection-definition>

 <managedconnectionfactory-class>${connection-factory}</managedconnectionfactory-

class>

 <!-- repeat for every configuration property -->

 <config-property>

 <description>

 {$display:"${short-name}",$description:"${description}",$allowed:[${value-list}],

 $required:"${required-boolean}", $defaultValue:"${default-value}"}

 </description>

 <config-property-name>${property-name}</config-property-name>

 <config-property-type>${property-type}</config-property-type>

 <config-property-value>${optional-property-value}</config-property-value>

 </config-property>

 <!-- use the below as is if you used the Connection Factory interface -->

 <connectionfactory-interface>

 javax.resource.cci.ConnectionFactory

 </connectionfactory-interface>

Appendix A. ra.xml file Template

46

 <connectionfactory-impl-class>

 org.teiid.resource.spi.WrappedConnectionFactory

 </connectionfactory-impl-class>

 <connection-interface>

 javax.resource.cci.Connection

 </connection-interface>

 <connection-impl-class>

 org.teiid.resource.spi.WrappedConnection

 </connection-impl-class>

 </connection-definition>

 <transaction-support>NoTransaction</transaction-support>

 <authentication-mechanism>

 <authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

 <credential-interface>

 javax.resource.spi.security.PasswordCredential

 </credential-interface>

 </authentication-mechanism>

 <reauthentication-support>false</reauthentication-support>

 </outbound-resourceadapter>

 </resourceadapter>

</connector>

${...} indicates a value to be supplied by the developer.

47

Appendix B. Advanced Topics

B.1. Security Migration From Previous Versions

It is recommended that customers who have utilized the internal JDBC membership domain from

releases prior to MetaMatrix 5.5 migrate those users and groups to an LDAP compliant directory

server.

Refer to the JBoss Application Server security documentation for using an LDAP directory server.

If there are additional questions or the need for guidance in the migration process, please contact

technical support.

Several free and open source directory servers include:

• The Fedora Directory Server - http://directory.fedoraproject.org/

• Open LDAP - http://www.openldap.org/

• Apache Directory Server - http://directory.apache.org/

http://directory.fedoraproject.org/
http://www.openldap.org/
http://directory.apache.org/

48

	Teiid - Scalable Information Integration
	Table of Contents
	Chapter 1. Developing For Teiid
	1.1. Introduction to the Teiid Connector Architecture
	1.2. Do You Need a New Translator?
	1.2.1. Custom Translators

	1.3. Do You Need a New Resource Adapter?
	1.3.1. Custom Resource Adapters

	1.4. Other Teiid Development

	Chapter 2. Developing JEE Connectors
	2.1. Using the Teiid Framework
	2.1.1. Define Managed Connection Factory
	2.1.2. Define the Connection Factory class
	2.1.3. Define the Connection class
	2.1.4. XA Transactions
	2.1.5. Define the configuration properties in a "ra.xml" file

	2.2. Packaging the Adapter
	2.3. Deploying the Adapter

	Chapter 3. Translator Development
	3.1. Extending the ExecutionFactory Class
	3.1.1. ConnectionFactory
	3.1.2. Connection
	3.1.3. Configuration Properties
	3.1.4. Initializing the Translator
	3.1.5. TranslatorCapabilities
	3.1.6. Execution (and sub-interfaces)
	3.1.7. Metadata
	3.1.8. Logging
	3.1.9. Exceptions
	3.1.10. Default Name

	3.2. Connections to Source
	3.2.1. Obtaining connections
	3.2.2. Releasing Connections

	3.3. Executing Commands
	3.3.1. Execution Modes
	3.3.2. ResultSetExecution
	3.3.3. Update Execution
	3.3.4. Procedure Execution
	3.3.5. Asynchronous Executions
	3.3.6. Bulk Execution
	3.3.7. Command Completion
	3.3.8. Command Cancellation

	3.4. Command Language
	3.4.1. Language
	3.4.1.1. Expressions
	3.4.1.2. Condition
	3.4.1.3. The FROM Clause
	3.4.1.4. QueryExpression Structure
	3.4.1.5. Select Structure
	3.4.1.6. SetQuery Structure
	3.4.1.7. With Structure
	3.4.1.8. Insert Structure
	3.4.1.9. Update Structure
	3.4.1.10. Delete Structure
	3.4.1.11. Call Structure
	3.4.1.12. BatchedUpdates Structure

	3.4.2. Language Utilities
	3.4.2.1. Data Types
	3.4.2.2. Language Manipulation

	3.4.3. Runtime Metadata
	3.4.3.1. Metadata Objects
	3.4.3.2. Access to Runtime Metadata

	3.4.4. Language Visitors
	3.4.4.1. Framework
	3.4.4.2. Provided Visitors
	3.4.4.3. Writing a Visitor

	3.4.5. Translator Capabilities
	3.4.5.1. Capability Scope
	3.4.5.2. Capabilities
	3.4.5.3. Command Form
	3.4.5.4. Scalar Functions
	3.4.5.5. Physical Limits
	3.4.5.6. Update Execution Modes
	3.4.5.7. Default Behavior

	3.5. Large Objects
	3.5.1. Data Types
	3.5.2. Why Use Large Object Support?
	3.5.3. Handling Large Objects
	3.5.4. Inserting or Updating Large Objects

	3.6. Packaging
	3.7. Deployment

	Chapter 4. Extending The JDBC Translator
	4.1. Capabilities Extension
	4.2. SQL Translation Extension
	4.3. Results Translation Extension
	4.4. Adding Function Support
	4.4.1. Using FunctionModifiers

	4.5. Installing Extensions

	Chapter 5. User Defined Functions
	5.1. UDF Definition
	5.2. Source Supported UDF
	5.3. Non-pushdown Support for User-Defined Functions
	5.3.1. Java Code
	5.3.2. Post Code Activities

	5.4. Installing user-defined functions

	Chapter 6. AdminAPI
	6.1. Connecting
	6.2. Admin Methods

	Chapter 7. Logging
	7.1. Customized Logging
	7.1.1. Command Logging API
	7.1.2. Audit Logging API

	Chapter 8. Login Modules
	8.1. Built-in LoginModules
	8.2. Custom LoginModules

	Appendix A. ra.xml file Template
	Appendix B. Advanced Topics
	B.1. Security Migration From Previous Versions

