
Teiid - Scalable Information Integration

1

Teiid Administrator's

Guide
7.4

iii

1. Installation Guide .. 1

1.1. Installation .. 1

1.2. CXF Installation .. 2

1.3. Directory Structure Explained .. 3

1.3.1. /deploy/teiid/teiid-jboss-beans.xml .. 3

1.3.2. /deploy/teiid/connectors .. 3

1.3.3. /conf/props ... 3

1.3.4. /conf/jboss-teiid-log4j.xml .. 4

1.3.5. admin-console.war ... 4

1.3.6. /deployers/teiid.deployer ... 4

1.3.7. lib .. 4

1.3.8. teiid-examples .. 4

1.3.9. teiid-docs ... 4

2. Deploying VDBs in Teiid 7 .. 5

2.1. Deploying a VDB .. 5

2.1.1. Direct File Deployment ... 5

2.1.2. Admin Console Deployment (Web) .. 5

2.1.3. AdminShell Deployment .. 6

2.1.4. Admin API Deployment .. 6

2.2. Deploying VDB Dependencies ... 6

2.2.1. JDBC Data Sources ... 6

2.2.2. File Data Sources .. 8

2.2.3. Web Service Data Sources ... 8

2.2.4. Salesforce Data Sources .. 12

2.2.5. LDAP Data Sources ... 13

2.3. VDB Versioning .. 13

2.3.1. Deployment Scenarios .. 14

2.4. Migrating VDBs from 6.x ... 14

3. Teiid Security ... 15

3.1. Authentication ... 15

3.1.1. Pass-through Authentication ... 15

3.2. Authorization ... 15

3.3. Encryption .. 16

3.4. LoginModules ... 16

3.4.1. Built-in LoginModules ... 16

3.4.2. Security at Data Source level .. 17

3.5. Configuring SSL .. 20

3.5.1. SSL Authentication Modes .. 21

3.5.2. Encryption Strength .. 22

4. Logging .. 23

4.1. General Logging ... 23

4.1.1. Logging Contexts ... 23

4.2. Command Logging .. 24

4.3. Audit Logging ... 24

Teiid - Scalable Information ...

iv

5. Clustering in Teiid ... 27

6. Performance Tuning .. 29

6.1. Memory Management ... 29

6.2. Threading ... 30

6.3. Cache Tuning ... 30

6.4. Socket Transports ... 31

6.5. LOBs .. 31

6.6. Other Considerations .. 32

7. Teiid Admin Console ... 33

7.1. What can be monitored and/or configured? .. 33

7.1.1. Configuration .. 34

7.1.2. Metrics ... 34

7.1.3. Control (Operations) ... 34

7.1.4. Deploying the VDB ... 34

8. AdminShell .. 37

8.1. Introduction ... 37

8.1.1. Download .. 37

8.2. Getting Started ... 37

8.2.1. Essential Rules .. 38

8.2.2. Help .. 39

8.2.3. Basic Commands ... 40

8.3. Executing a script file .. 40

8.4. Log File and Recorded Script file ... 41

8.5. Default Connection Properties ... 41

8.6. Handling Multiple Connections ... 42

8.7. Interactive Shell Nuances .. 43

A. AdminShell Frequently Asked Questions ... 45

B. Other Scripting Environments ... 47

C. System Properties ... 49

Chapter 1.

1

Installation Guide
Starting with the 7.0 release Teiid needs to be installed into an existing JBoss AS installation,

which is entirely different from previous versions.

Note

Teiid does not support the "embedded" mode in 7.4 version. ("embedded" will be

coming in a future release).

1.1. Installation

Steps to install Teiid

1. Download the JBoss AS 5.1.0 [http://www.jboss.org/jbossas/downloads.html] application

server. Install the server by unzipping into a known location. Ex: /apps/jboss-5.1.0

Note

You may also choose to use an existing AS installation. However if a previous

version of Teiid was already installed, you must remove the old teiid distribution

artifacts before installing the new version.

2. Download Teiid 7.4 [http://www.jboss.org/teiid/downloads.html]. Unzip the downloaded artifact

inside any "profile" in the JBoss AS installation. Teiid 7.4 uses a JBoss AS service called the

"profile service" that is only installed in "default" and "all" profiles, so installing into one of these

profiles is required. The default profile is the typical installation location, for example "<jboss-

install>/server/default". The Teiid runtime directory structure matches JBoss profiles directly - it

is just an overlay.

The all profile is recommended in a clustered environment to take advantage of clustered

caching and cluster safe distribution of events.

3. Start the JBoss AS server by executing "<jboss-install>/bin/run.sh" if you installed in the

"default" profile. Otherwise use "<jboss-install>/bin/run.sh -c <profilename>"

4. That it!. JBoss AS and Teiid are now installed and running. See below instructions to customize

various settings.

5. Once VDBs have been deployed, users can now connect their JDBC applications to Teiid. If

you need help on connecting your application to the Teiid using JDBC check out the "Client

Developer's Guide".

http://www.jboss.org/jbossas/downloads.html
http://www.jboss.org/jbossas/downloads.html
http://www.jboss.org/teiid/downloads.html
http://www.jboss.org/teiid/downloads.html

Chapter 1. Installation Guide

2

1.2. CXF Installation

The usage of CXF is expected for utilizing Salesforce and Web Services connectivity through

Teiid. If you do not plan on integrating either of these features, then you may leave JBoss AS with

the default "native" web services stack.

1. Download JBossWS-CXF 3.1.2 [http://www.jboss.org/jbossws/downloads/] and unzip to a

temporary location.

2. From the jbossws-cxf-bin-dist directory, save the ant.properties.example file as ant.properties

and change the values for jboss510.home, jbossws.integration.target, jboss.server.instance,

jboss.bind.address accordingly:

...

jboss510.home=<jboss-install>

The JBoss server under test. This can be [jboss500|jboss501|jboss510|jboss600]

jbossws.integration.target=jboss510

The JBoss settings

jboss.server.instance=<profile>

jboss.bind.address=<bind address>

The jboss-install location should be the root directory of your AS installation, profile (typically

default) should indicate the profile selected for your Teiid installation, and the bind address

should be the bind address used when launching JBoss AS (use the value localhost if you do

not set the bind address when launching JBoss AS).

3. From the jbossws-cxf-bin-dist directory, install JBossWS-CXF by running the ANT build script:

$ant deploy-jboss510

4. Optionally run tests to verify that there are no errors with the installation:

$ant tests

http://www.jboss.org/jbossws/downloads/
http://www.jboss.org/jbossws/downloads/

Directory Structure Explained

3

1.3. Directory Structure Explained

Example 1.1. Directory Structure

This shows the contents of the Teiid 7.4 deployment. The directory structure is exactly the same

under any JBoss profile.

teiid

 /conf

 /props

 teiid-security-roles.properties

 teiid-security-users.properties

 jboss-teiid-log4j.xml

 /deploy

 /teiid

 /connectors

 teiid-jboss-beans.xml

 teiid-connector-templates-jboss-beans.xml

 admin-console.war

 /deployers

 /teiid.deployer

 /lib

 /teiid-examples

1.3.1. /deploy/teiid/teiid-jboss-beans.xml

Master configuration file for Teiid system. This file contains its own documentation, so refer to the

file for all the available properties to configure.

1.3.2. /deploy/teiid/connectors

This directory contains all the translator JAR and connector RAR files that are supplied as part

of the Teiid installation.

1.3.3. /conf/props

Relevant Files

• /teiid-security-users.properties

• /teiid-security-roles.properties

These files define the allowed users and their defined roles in Teiid using the default security

domain. Edit these files to add uses. If you want to use a different security domain look for details

in main configuration file.

Chapter 1. Installation Guide

4

1.3.4. /conf/jboss-teiid-log4j.xml

This file contains the Teiid specific logging contexts to be included in the "jboss-log4j.xml" file.

If you need to turn ON or OFF specific logging in Teiid, then copy the contents of this file into

"jboss-log4j.xml" in the installation directory. See the Developers Guide for more on customizing

logging.

1.3.5. admin-console.war

This file has the required files for Teiid JOPR plugin. To see the Teiid's "admin-console", go to

http://<host>:<port>/admin-console

1.3.6. /deployers/teiid.deployer

This directory contains Teiid runtime specific configuration files and its libraries. These

configuration files define VDB deployers, connector binding deployers etc. Typically user never

need to edit any files in this directory.

1.3.7. lib

This directory contains Teiid client libraries. It has the Teiid JDBC driver jar, "teiid-7.4-client.jar",

and also contains "teiid-hibernate-dialect-7.4.jar" that contains Teiid's Hibernate dialect.

1.3.8. teiid-examples

This directory contains some examples of how Teiid can be used. Contains artifacts need by the

Quick Start Example. Also contains some sample XML files to define the connectors.

1.3.9. teiid-docs

This directory contains the PDF documents related Teiid and Teiid development.

Chapter 2.

5

Deploying VDBs in Teiid 7
A VDB [http://www.jboss.org/teiid/basics/virtualdatabases.html]is the primary means to define a

Virtual Database in Teiid. A user can create a VDB using Teiid Designer [http://www.jboss.org/

teiiddesigner.html] or follow the instructions in the Reference Guide to create a "Dynamic VDB"

without Teiid Designer.

2.1. Deploying a VDB

Once you have a "VDB" built it can be deployed/removed in Teiid runtime in different ways.

Warning

If VDB versioning is not used to give distinct version numbers, overwriting a VDB

of the same name will terminate all connections to the old VDB. It is recommended

that VDB versioning be used for production systems.

Note

Removing an existing VDB will immediately clean up VDB file resources, but will

not automatically terminate existing sessions.

2.1.1. Direct File Deployment

Copy the VDB file into the "<jboss-install>/server/<profile>/deploy" directory. Make sure that there

are no other VDB files with the same name. If a VDB already exists with the same name, then this

VDB will be replaced with the new VDB. This is the simplest way to deploy a VDB. This is mostly

designed for quick deployment during development, when the Teiid server is available locally on

the developer machine.

2.1.2. Admin Console Deployment (Web)

Use the JOPR-based web console configuration system. Check out the JOPR plugin at:

http://<host>:<port>/admin-console

More details for this can be found in the Admin Console VDB deployment section.This is the

easiest way to deploy a VDB to a remote server.

http://www.jboss.org/teiid/basics/virtualdatabases.html
http://www.jboss.org/teiid/basics/virtualdatabases.html
http://www.jboss.org/teiiddesigner.html
http://www.jboss.org/teiiddesigner.html
http://www.jboss.org/teiiddesigner.html

Chapter 2. Deploying VDBs in ...

6

2.1.3. AdminShell Deployment

Teiid provides a groovy based AdminShell scripting tool, which can be used to deploy a VDB.

Check out the "deployVDB" method. Consult the AdminShell documentation for more information.

Note that using the AdminShell scripting, you can automate the deployment of artifacts in your

environment.

2.1.4. Admin API Deployment

The Admin API (look in org.teiid.adminpi.*) provides Java API methods that lets a user connect to

a Teiid runtime and deploy a VDB. If you need to programmatically deploy a VDB use this method.

This method is preferable for OEM users, who are trying to extend the Teiid's capabilities through

their applications.

2.2. Deploying VDB Dependencies

Apart from deploying the VDB, the user is also responsible for providing all the necessary

dependent libraries, configuration for creating the data sources that are needed by the models

(schemas) defined in "META-INF/vdb.xml" file inside your VDB. For example, if you are trying to

integrate Oracle and File sources in your VDB, then you are responsible for providing the JDBC

driver for the Oracle source and any necessary documents and configuration that are needed by

the File Translator.

Data source instances may be used by only one VDB, or may be shared with as many VDBs or

other applications as makes since for your deployments. Consider sharing connections to sources

that have heavy-weight and resource constrained connections.

With the exception of JDBC, each of the data sources supported by has a corresponding .rar

(zip format) file in <jboss-install>/server/<profile>/deploy/teiid/connectors. If not using JOPR or

other tooling to create your -ds.xml files, you can consult the .rar files META-INF/ra.xml for a full

description of how the source can be configured.

Some -ds.xml files may contain passwords or other sensitive information.

See the WIKI article EncryptingDataSourcePasswords [http://community.jboss.org/wiki/

EncryptingDataSourcePasswords] to not store passwords in plain text.

Once the VDB and its dependencies are deployed, then client applications can connect using the

JDBC API. If there are any errors in the deployment, a connection attempt will not be successful

and a message will be logged. You can use the admin-console tool or check the log files for errors

and correct them before proceeding.

2.2.1. JDBC Data Sources

The following is an example highlighting configuring an Oracle data source. The process is nearly

identical regardless of the vendor. Typically only the client jar and the setting in the -ds.xml file

change.

http://community.jboss.org/wiki/EncryptingDataSourcePasswords
http://community.jboss.org/wiki/EncryptingDataSourcePasswords
http://community.jboss.org/wiki/EncryptingDataSourcePasswords

JDBC Data Sources

7

There are templates for all the data sources in the "<jboss-install>/docs/examples/jca" directory.

1. Copy the Oracle JDBC JAR file into "<jboss-install>/server/<profile>/lib" directory

2. Create a "data source" to the Oracle instance in the JBoss container. This typically done by

creating "xxx-ds.xml" file and copying this file to the "<jboss-install>/server/<profile>/deploy"

directory. The following shows a "-ds.xml" file template for Oracle. You can also use admin-

console to create this data source.

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <xa-datasource>

 <jndi-name>OracleDS</jndi-name>

 <!-- uncomment to enable interleaving <interleaving/> -->

 <isSameRM-override-value>false</isSameRM-override-value>

 <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>

 <xa-datasource-property name="URL">jdbc:oracle:oci8:@tc</xa-datasource-property>

 <xa-datasource-property name="User">scott</xa-datasource-property>

 <xa-datasource-property name="Password">tiger</xa-datasource-property>

 <!-- Uses the pingDatabase method to check a connection is still valid before handing it out

 from the pool -->

 <!--valid-connection-checker-class-name>

 org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker

 </valid-connection-checker-class-name-->

 <!-- Checks the Oracle error codes and messages for fatal errors -->

 <exception-sorter-class-name>

 org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter

 </exception-sorter-class-name>

 <!-- Oracles XA datasource cannot reuse a connection outside a transaction once enlisted

 in a global transaction and vice-versa -->

 <no-tx-separate-pools/>

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->

 <metadata>

 <type-mapping>Oracle9i</type-mapping>

 </metadata>

 </xa-datasource>

</datasources>

Template files [xxx-ds.xml] for different databases can found at {jboss-as}/docs/examples/jca, and

also additional sources like ingres, mondrian, intersystems-cache etc that Teiid suports can be

found at {jboss-as}/server/{profile}/teiid-examples/jca directory.

Chapter 2. Deploying VDBs in ...

8

2.2.2. File Data Sources

File data sources use a Teiid specific JCA connector. You need to create "-ds.xml" file and copy

it to the "<jboss-install>/server/<profile>/deploy" directory.

Example 2.1. Template for creating a File based data source

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <no-tx-connection-factory>

 <jndi-name>text-source</jndi-name>

 <rar-name>teiid-connector-file.rar</rar-name>

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <config-property name="ParentDirectory">path-to-the-directory-of-data-file</config-property>

 </no-tx-connection-factory>

</connection-factories>

2.2.3. Web Service Data Sources

Web service data sources use a Teiid specific JCA connector. You need to create "-ds.xml" file

and copy it to the "<jboss-install>/server/<profile>/deploy" directory.

Example 2.2. Template for creating a web service based data source

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <no-tx-connection-factory>

 <jndi-name>somewhere-ws-source</jndi-name>

 <rar-name>teiid-connector-ws.rar</rar-name>

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <config-property name="EndPoint">http://somewhere.com</config-property>

 </no-tx-connection-factory>

</connection-factories>

2.2.3.1. CXF Configuration

Each web service data source may choose a particular CXF config file and port configuration.

The ConfigFile config property specifies the Spring XML configuration file for the CXF Bus and

port configuration to be used by connections. If no config file is specified then the system default

configuration will be used.

Only 1 port configuration can be used by this data source. You may explicitly set the local name of

the port QName to use via the ConfigName property. The namespace URI for the QName in your

Web Service Data Sources

9

config file should be http://teiid.org. See the sections on WS-Security, Logging, etc. for examples

of using the CXF configuration file.

See the CXF documentation [http://cxf.apache.org/docs/] for all possible configuration options.

Note

The CXF configuration is currently only applicable to non-binary web service calls.

2.2.3.2. WS-Security

To enable the use of WS-Security, the SecurityType should be set to WSSecurity. At this

time Teiid does not expect a WSDL to describe the service being used. Thus a Spring XML

configuration file is not only required, it must instead contain all of the relevant policy configuration.

And just as with the general configuration, each data source is limited to specifing only a single

port configration to use.

Example 2.3. Example WS-Security enabled data source

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <no-tx-connection-factory>

 <jndi-name>somewhere-ws-source</jndi-name>

 <rar-name>teiid-connector-ws.rar</rar-name>

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <config-property name="EndPoint">http://somewhere.com</config-property>

 <config-property name="ConfigFile">${jboss.server.home.dir}/server/default/conf/xxx-

jbossws-cxf.xml</config-property>

 <config-property name="ConfigName">port_x</config-property>

 <config-property name="SecurityType">WSSecurity</config-property>

 </no-tx-connection-factory>

</connection-factories>

Corresponding xxx-jbossws-cxf.xml file that adds a timestamp to the SOAP header

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd">

http://cxf.apache.org/docs/
http://cxf.apache.org/docs/

Chapter 2. Deploying VDBs in ...

10

 <jaxws:client name="{http://teiid.org}port_x"

 createdFromAPI="true">

 <jaxws:outInterceptors>

 <bean class="org.apache.cxf.binding.soap.saaj.SAAJOutInterceptor"/>

 <ref bean="Timestamp_Request"/>

 </jaxws:outInterceptors>

 </jaxws:client>

 <bean

 class="org.apache.cxf.ws.security.wss4j.WSS4JOutInterceptor"

 id="Timestamp_Request">

 <constructor-arg>

 <map>

 <entry key="action" value="Timestamp"/>

 <map>

 </constructor-arg>

 </bean>

</beans>

Note that the client port configuration is matched to the data source instance by the QName

{http://teiid.org}port_x. The configuration may contain other port confiruations with different local

names.

For more information on configuring CXF interceptors, please consult the CXF documentation

[https://cwiki.apache.org/CXF20DOC/ws-security.html] or the JBossWS-CXF documentation

[http://community.jboss.org/wiki/JBossWS-StackCXFUserGuide#WSSecurity].

2.2.3.3. Logging

The CXF config property may also be used to control the logging of requests and responses

for specific or all ports. Logging, when enabled, will be performed at an INFO level to the

org.apache.cxf.interceptor context.

Example 2.4. Example logging data source

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <no-tx-connection-factory>

 <jndi-name>somewhere-ws-source</jndi-name>

 <rar-name>teiid-connector-ws.rar</rar-name>

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <config-property name="EndPoint">http://somewhere.com</config-property>

https://cwiki.apache.org/CXF20DOC/ws-security.html
https://cwiki.apache.org/CXF20DOC/ws-security.html
http://community.jboss.org/wiki/JBossWS-StackCXFUserGuide#WSSecurity
http://community.jboss.org/wiki/JBossWS-StackCXFUserGuide#WSSecurity

Web Service Data Sources

11

 <config-property name="ConfigFile">${jboss.server.home.dir}/server/default/conf/xxx-

jbossws-cxf.xml</config-property>

 <config-property name="ConfigName">port_y</config-property>

 </no-tx-connection-factory>

</connection-factories>

Corresponding xxx-jbossws-cxf.xml

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:client name="{http://teiid.org}port_y"

 createdFromAPI="true">

 <jaxws:features>

 <bean class="org.apache.cxf.feature.LoggingFeature"/>

 </jaxws:features>

 </jaxws:client>

</beans>

2.2.3.4. Transport Settings

The CXF config property may also be used to control low level aspects of the HTTP

transport. See the CXF documentation [http://cxf.apache.org/docs/client-http-transport-including-

ssl-support.html] for all possible options.

Example 2.5. Example Disabling Hostname Verification

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

 http://cxf.apache.org/schemas/configuration/http-conf.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:conduit name="{http://teiid.org}port_z.http-conduit">

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html

Chapter 2. Deploying VDBs in ...

12

 <!-- WARNING ! disableCNcheck=true should NOT be used in production -->

 <http-conf:tlsClientParameters disableCNcheck="true" />

 </http-conf:conduit>

</beans>

2.2.4. Salesforce Data Sources

Salesforce data sources use a Teiid specific JCA connector. You need to create "-ds.xml" file and

copy it to the "<jboss-install>/server/<profile>/deploy" directory.

Example 2.6. Template for creating a Salesforce based data source

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <no-tx-connection-factory>

 <jndi-name>sf-source</jndi-name>

 <rar-name>teiid-connector-salesforce.rar</rar-name>

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <config-property name="URL">https://test.salesforce.com/services/Soap/u/10.0</config-

property>

 <config-property name="username">username</config-property>

 <config-property name="password">password</config-property>

 </no-tx-connection-factory>

</connection-factories>

2.2.4.1. CXF Configuration

Salesforce service data source may choose a particular CXF config file and port configuration.

The ConfigFile config property specifies the Spring XML configuration file for the CXF Bus and

port configuration to be used by connections. If no config file is specified then the system default

configuration will be used.

Only 1 port configuration can be used by this data source. The namespace URI for the QName in

your config file should be "urn:partner.soap.sforce.com", with configuration name "SforceService".

For sample cxf configuration file and details on configuration see Web Service Data Sources

See the CXF documentation [http://cxf.apache.org/docs/] for all possible configuration options.

http://cxf.apache.org/docs/
http://cxf.apache.org/docs/

LDAP Data Sources

13

Note

The CXF configuration in Salesforce data source is only used for http bus

configuration not for purposes of ws-security, Salesforce has its own security

authentication.

2.2.5. LDAP Data Sources

LDAP data sources use a Teiid specific JCA connector. You need to create "-ds.xml" file and copy

it to the "<jboss-install>/server/<profile>/deploy" directory.

Example 2.7. Template for creating an LDAP based data source

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <no-tx-connection-factory>

 <jndi-name>ldap-source</jndi-name>

 <rar-name>teiid-connector-ldap.rar</rar-name>

 <connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

 <config-property name="LdapAdminUserDN">cn=x,ou=y,dc=z</config-property>

 <config-property name="LdapAdminUserPassword">password</config-property>

 <config-property name="LdapUrl">ldap://ldapServer:389</config-property>

 </no-tx-connection-factory>

</connection-factories>

2.3. VDB Versioning

VDB Versioning is a feature that allows multiple versions of a VDB to be deployed at the same

time with additional support to determine which version will be used. When a user connects to

Teiid the desired VDB version can be set as a connection property (See the Client Developers

Guide). If a specific version is set, then only that VDB may be connected to. If no version is set,

then the deployed VDBs are searched for the appropriate version. This feature helps support more

fluid migration scenarios.

Setting the version can either be done in the vdb.xml, which is useful for dynamic vdbs, or through

a naming convention of the deployment file - vdbname.version.vdb, e.g. marketdata.2.vdb. The

deployer is responsible for choosing an appropriate version number. If there is alreay a VDB

name/version that matches the current deployment, then connections to the previous VDB will

be terminated and its cache entries will be flushed. Any new connections will then be made to

the new VDB.

Once deployed a VDB has an updatable property called connection type, which is used to

determine what connections can be made to the VDB. The connection type can be one of:

Chapter 2. Deploying VDBs in ...

14

• NONE - disallow new connections.

• BY_VERSION - the default setting. Allow connections only if the version is specified or if this is

the earliest BY_VERSION vdb and there are no vdbs marked as ANY.

• ANY - allow connections with or without a version specified.

The connection type may be changed either through the AdminConsole or the AdminAPI.

2.3.1. Deployment Scenarios

If only a select few applications are to migrate to the new VDB version, then a freshly deployed

VDB would be left as BY_VERSION. This ensures that only applications that know the new version

may use it.

If only a select few applications are to remain on the current VDB version, then their connection

settings would need to be updated to reference the current VDB by its version. Then the newly

deployed vdb would have its connection type set to ANY, which allows all new connections to be

made against the newer version. If a rollback is needed in this scenario, then the newly deployed

vdb would have its connection type set to NONE or BY_VERSION accordingly.

2.4. Migrating VDBs from 6.x

VDBs from prior release contain an older configuration file version that is no longer supported.

You can use the migration utility (bin/migrate.sh or bin/migrate.bat) supplied with the AdminShell

download to update these VDBs for use with Teiid 7. Note - XML and File based sources from

previous releases have changed, and require manual changes to the VDB.

Chapter 3.

15

Teiid Security
The Teiid system provides a range of built-in and extensible security features to enable the secure

access of data.

3.1. Authentication

JDBC clients may use simple passwords to authenticate a user.

Typically a user name is required, however user names may be considered optional if the identity

of the user can be discerned by the password credential alone. In any case it is up to the configured

security domain to determine whether a user can be authenticated. If you need authentication, the

administrator must configure a LoginModule to be used with Teiid. See below for more information

on how configure the Login module in JBoss AS.

Note

By default, access to Teiid is NOT secure. The default login modules are only

backed by file based authentication, which has a well known user name and

password. The same is true for making connections to the Admin Console

application. We DO NOT recommend leaving the default security profile as defined

when you are exposing sensitive data.

3.1.1. Pass-through Authentication

If your client application (web application or Web service) resides in the same JBoss AS instance

as Teiid and client application uses a security-domain to handle the security concerns, then you

can configure Teiid to use the same security-domain and not force the user to re-authenticate

for using Teiid. In this case Teiid looks for a authenticated subject in the calling thread context

and uses for its session and authorization purposes. To configure Teiid for this pass-through

authentication mechanism, you need change the Teiid's security-domain name to same name as

your application's security domain name in the "teiid-jboss-beans.xml" file in the SessionService

section. Please note that for this to work, the security-domain must be a JAAS based Login

Module and your client application MUST obtain Teiid connection using Local Connection, with

PassthroughAuthentication=true flag set.

3.2. Authorization

Authorization covers both administrative activities and data roles. A data role is a collection of

permissions (also referred to as entitlements) and a collection of entitled principals or groups.

With the deployment of a VDB the deployer can choose which principals and groups have which

data roles.

Chapter 3. Teiid Security

16

3.3. Encryption

At a transport level Teiid provides built-in support for JDBC over SSL or just sensitive message

encryption when SSL is not in use.

Passwords in configuration files however are by default stored in plain text. If you need

these values to be encrypted, please see encrypting passwords [http://community.jboss.org/wiki/

maskingpasswordsinjbossasxmlconfiguration] for instructions on encryption facilities provided by

the container.

3.4. LoginModules

LoginModules are an essential part of the JAAS security framework and provide

Teiid customizable user authentication and the ability to reuse existing LoginModules

defined for JBossAS. See JBossAS Security [http://docs.jboss.org/jbossas/admindevel326/html/

ch8.chapter.html] for general information on configuring security in JBossAS.

Teiid can be configured with multiple named application policies that group together relevant

LoginModules. Each of these application policy (or domains) names can be used to fully qualify

user names to authenticate only against that domain. The format for a qualified name is

username@domainname.

If a user name is not fully qualified, then the installed domains will be consulted in order until a

domain successfully or unsuccessfully authenticates the user.

If no domain can authenticate the user, the login attempt will fail. Details of the failed attempt

including invalid users, which domains were consulted, etc. will be in the server log with

appropriate levels of severity.

Note

The security-domain defined for the JDBC connection and Admin connections

are separate. The default name of JDBC connection's security-domain is "teiid-

security". The default name for Admin connection is "jmx-console". For the Admin

connection's security domain, the user is allowed to change which LoginModule

that "jmx-console" pointing to, however should not change the name of the domain,

as this name is shared between the "admin-console" application.

3.4.1. Built-in LoginModules

JBossAS provides several LoginModules for common authentication needs, such as

authenticating from text files or LDAP.

The UsersRolesLoginModule, which utilizes simple text files to authenticate users and to define

their groups. The teiid-jboss-beans.xml configuration file contains an example of how to

use UsersRolesLoginModule. Note that this is typically not for production use and is strongly

http://community.jboss.org/wiki/maskingpasswordsinjbossasxmlconfiguration
http://community.jboss.org/wiki/maskingpasswordsinjbossasxmlconfiguration
http://community.jboss.org/wiki/maskingpasswordsinjbossasxmlconfiguration
http://docs.jboss.org/jbossas/admindevel326/html/ch8.chapter.html
http://docs.jboss.org/jbossas/admindevel326/html/ch8.chapter.html
http://docs.jboss.org/jbossas/admindevel326/html/ch8.chapter.html

Security at Data Source level

17

recommended that you replace this login module. Please also note that, you can install multiple

login modules as part of single security domain configuration and configure them to part of login

process. For example, for "teiid-security" domain, you can configure a file based and also LDAP

based login modules, and have your user authenticated with either both or single login module.

See LDAP LoginModule configuration [http://community.jboss.org/docs/DOC-11253] for utilizing

LDAP based authentication. If you want write your own Custom Login module, check out the

Developer's Guide for instructions.

3.4.2. Security at Data Source level

In some use cases, user might need to pass-in different credentials to their data sources based

on the logged in user than using the shared credentials for all the logged users. To support this

feature, JBoss AS and Teiid provide multiple different login modules to be used in conjunction with

Teiid's main security domain. See this document [http://community.jboss.org/docs/DOC-9350] for

details on configuration. Note that the below directions need to be used in conjunction with this

document.

3.4.2.1. CallerIdentity and Trusted Payload

If client wants to pass in simple text password or a certificate or a custom serialized object as token

credential to the data source, user can configure "CallerIdentity" login module. Using this login

module, user can pass-in same credential that user logged into Teiid security domain to the data

source. Here is a sample configuration, this needs to be configured in "teiid-jboss-beans.xml" file.

 <application-policy xmlns="urn:jboss:security-beans:1.0" name="teiid-security">

 <authentication>

 <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">

 <module-option name = "password-stacking">useFirstPass</module-option>

 <module-option name="usersProperties">props/teiid-security-users.properties</module-

option>

 <module-option name="rolesProperties">props/teiid-security-roles.properties</module-

option>

 </login-module>

 <login-module code="org.jboss.resource.security.CallerIdentityLoginModule"

 flag="required">

 <module-option name = "password-stacking">useFirstPass</module-option>

 <module-option

 name = "managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name=DefaultDS</

module-option>

 </login-module>

http://community.jboss.org/docs/DOC-11253
http://community.jboss.org/docs/DOC-11253
http://community.jboss.org/docs/DOC-9350
http://community.jboss.org/docs/DOC-9350

Chapter 3. Teiid Security

18

 </authentication>

 </application-policy>

In the -ds.xml file that is defined as the "managedConnectionFactoryName" in the above

configuration, you need to add the following element

 <security-domain>teiid-security</security-domain>

In the above configuration example, in the primary login module "UsersRolesLoginModule" is

setup to hold the passwords in the file, and when user logs in with password, the same password

will be also set on the logged in Subject after authentication. This credentials can be extracted by

the data source by asking for Subject's private credentials.

To use a certificate or serialized object instead of plain password as the token, simply replace the

simple text password with Base64 encoded contents of the serialized object. Please note that,

encoding and decoding of this object is strictly up to the user as JBoss AS and Teiid will only act

like carrier of the information from login module to connection factory. Using this CallerIdentity

module, the connection pool for data source is segmented by Subject.

3.4.2.2. Role Based Credential Map

In some use cases, the users are divided by their functionality and they have varied level of

security access to data sources. These types of users are identified by their roles as to what

they have access to. In the above "CallerIdentity" login scenario, that may be too fine-grained

security at data sources, that can lead resource exhaustion as every user has their own separate

connection. Using Role based security gives a balance, where the users with same role are

treated equally for authentication purposes at the data source. Teiid provides a login module

called "RoleBasedCredentialMap" for this purposes, where administrator can define a role based

authentication module, where given the role of the user from the primary login module, this module

will hold credentail to that role. So, it is container of credentials that map to different roles. If a

user has multiple roles, the first role that has the credential will be chosen. Below find the sample

configuration.

 <application-policy xmlns="urn:jboss:security-beans:1.0" name="teiid-security">

 <authentication>

 <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">

 <module-option name = "password-stacking">useFirstPass</module-option>

Security at Data Source level

19

 <module-option name="usersProperties">props/teiid-security-users.properties</module-

option>

 <module-option name="rolesProperties">props/teiid-security-roles.properties</module-

option>

 </login-module>

 <login-module code="org.teiid.jboss.RoleBasedCredentialMapIdentityLoginModule"

 flag="required">

 <module-option name = "password-stacking">useFirstPass</module-option>

 <module-option name="credentialMap">props/teiid-credentialmap.properties</module-

option>

 <module-option

 name = "managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name=DefaultDS</

module-option>

 </login-module>

 </authentication>

 </application-policy>

In the -ds.xml file that is defined as the "managedConnectionFactoryName" in the above

configuration, you need to add the following element

 <security-domain>teiid-security</security-domain>

In the above configuration example, in the primary login module "UsersRolesLoginModule" is

setup for logging in the primary user and assign some roles. The "RoleBasedCredentialMap" login

module is configured to hold role to password information in the file defined by "credentialMap"

property. When user logs in, the role information from the primary login module is taken, and

extracts the role's passsword and attaches as a private credential to the Subject. If you want use

this for role based trusted token, you can configure the Base64 based endcoding/decoded object

as defined above.

You can also encrypt the password instead of plain text password using this module. Just include

the encrypted password in the file defined by the "credentialMap" property, and define following

properties in the "RoleBasedCredentialMap" login module.

 <login-module code="org.teiid.jboss.RoleBasedCredentialMapIdentityLoginModule"

 flag="required">

Chapter 3. Teiid Security

20

 <module-option name = "password-stacking">useFirstPass</module-option>

 <module-option name="credentialMap">props/teiid-credentialmap.properties</module-

option>

 <module-option

 name = "managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name=DefaultDS</

module-option>

 <!-- below properties are only required when passwords are encrypted -->

 <module-option name = "pbealgo">PBEWithMD5AndDES</module-option>

 <module-option name = "pbepass">testPBEIdentityLoginModule</module-option>

 <module-option name = "salt">abcdefgh</module-option>

 <module-option name = "iterationCount">19</module-option>

 </login-module>

For full details about encryption of the password, please follow this document [http://

community.jboss.org/docs/DOC-9703]'s "A KeyStore based login module for encrypting a

datasource password" section. Be sure to give the same configuration elements in the above

configuration, as they are used to encrypt the password.

3.5. Configuring SSL

The Teiid's configuration file <jboss-install>/server/<profile>/deploy/teiid/teiid-

jboss-beans.xml, contains the properties to configure SSL per socket transport.

There are three socket transports, each with it's own SSL configuration:

• JDBC Connections - uses the JdbcSslConfiguration bean configuration. Defaults to only

encrypt login traffic, none of the other properties are used.

• Admin Connections - uses the AdminSslConfiguration bean configuration. Defaults to

encrypting all traffic with anonymous SSL, none of the other properties are used.

• ODBC Connections - uses the OdbcSslConfiguration bean configuration. Defaults to no SSL.

Example 3.1. Example Configuration

<bean name="JdbcSslConfiguration" class="org.teiid.transport.SSLConfiguration">

 <property name="mode">login</property>

 <property name="keystoreFilename">cert.keystore</property>

 <property name="keystorePassword">passwd</property>

 <property name="keystoreType">JKS</property>

 <property name="sslProtocol">SSLv3</property>

 <property name="keymanagementAlgorithm">false</property>

http://community.jboss.org/docs/DOC-9703
http://community.jboss.org/docs/DOC-9703
http://community.jboss.org/docs/DOC-9703

SSL Authentication Modes

21

 <property name="truststoreFilename">cert.truststore</property>

 <property name="truststorePassword">passwd</property>

 <!-- 1-way, 2-way, anonymous -->

 <property name="authenticationMode">1-way</property>

</bean>

Properties

• mode - diabled|login|enabled, disabled = no transport or message level security will be used.

login = only the login traffic will be encrypted at a message level using 128 bit AES with an

ephemerial DH key exchange. No other config values are needed in this mode. enabled = traffic

will be secured using the other configuration properties.

• sslProtocol- Type of SSL protocol to be used. Default is TLSv1

• keystoreType - Keystore type created by the keytool. Default "JKS" is used.

• authenticationMode - anonymous|1-way|2-way, Type of SSL Authentication Mode.

• keymanagementAlgorithm - Type of key algorithm used. Default is based upon the VM, e.g.

"SunX509"

• keystoreFilename - The file name of the keystore, which contains the private key of the Server.

This must be available in the classpath of Teiid Server.

• keystorePassword - password for the keystore.

• truststoreFilename - if "authenticationMode" is chosen as "2-way", then this property must

be provided. This is the truststore that contains the public key for the client. Depending

upon how you created the keystore and truststores, this may be same file as defined under

"keystoreFilename" property.

• truststorePassword - password for the truststore.

3.5.1. SSL Authentication Modes

SSL supports multiple authentication modes. In most secure intranet environments, anonymous

is suitable to just bulk encrypt traffic without the need to setup SSL certificates.

• anonymous - no certificates are exchanged, settings are not needed for the keystore and

truststore properties. Client must have org.teiid.ssl.allowAnon set to true (the default) to

connect to an anonymous server.

• 1-way - the server will present a certificate, which is obtained from the keystore related

properties. The client should have a truststore configured to accept the server certificate.

• 2-way - the server will present a certificate, which is obtained from the keystore related

properties. The client should have a truststore configured to accept the server certificate. The

Chapter 3. Teiid Security

22

client is also expected to present a certificate, which is obtained from its keystore. The client

certificate should be accepted by the trust store configured by the truststore related properties.

3.5.2. Encryption Strength

Both anonymous SSL and login only encryption are configured to use 128 bit AES encryption.

1-way and 2-way SSL allow for cipher suite negotiation based upon the default cipher suites

supported by the respective Java platforms of the client and server.

Chapter 4.

23

Logging

4.1. General Logging

The Teiid system provides a wealth of information via logging. To control logging level, contexts,

and log locations, you should be familiar with log4j [http://logging.apache.org/log4j/] and the

container's jboss-log4j.xml configuration file. Teiid also provides a <profile>/conf/jboss-teiid-

log4j.xml containing much of information from chapter.

All the logs produced by Teiid are prefixed by "org.teiid". This makes it extremely easy to control

of of Teiid logging from a single context. Note however that changes to the log configuration file

require a restart to take affect

4.1.1. Logging Contexts

While all of Teiid's logs are prefixed with "org.teiid", there are more specific contexts depending

on the functional area of the system. Note that logs originating from third-party code, including

integrated org.jboss components, will be logged through their respective contexts and not through

org.teiid. See the table below for information on contexts relevant to Teiid. See the container's

jboss-log4j.xml for a more complete listing of logging contexts used in the container.

Context Description

com.arjuna Third-party transaction manager. This will

include information about all transactions, not

just those for Teiid.

org.teiid Root context for all Teiid logs. Note: there are

potentially other contexts used under org.teiid

than are shown in this table.

org.teiid.PROCESSOR Query processing logs. See also

org.teiid.PLANNER for query planning logs.

org.teiid.PLANNER Query planning logs.

org.teiid.SECURITY Session/Authentication events - see also

AUDIT logging

org.teiid.TRANSPORT Events related to the socket transport.

org.teiid.RUNTIME Events related to work management and

system start/stop.

org.teiid.CONNECTOR Connector logs.

org.teiid.BUFFER_MGR Buffer and storage management logs.

org.teiid.TXN_LOG Detail log of all transaction operations.

org.teiid.COMMAND_LOG See command logging

org.teiid.AUDIT_LOG See audit logging

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/

Chapter 4. Logging

24

Context Description

org.teiid.ADMIN_API Admin API logs.

org.teiid.ODBC ODBC logs.

4.2. Command Logging

Command logging captures executing commands in the Teiid System. Both user commands

(that have been submitted to Teiid) and data source commands (that are being executed by the

connectors) are tracked through command logging.

To enable command logging to the default log location, simply enable the DETAIL level of logging

for the org.teiid.COMMAND_LOG context.

To enable command logging to an alternative file location, configure a separate file appender for

the DETAIL logging of the org.teiid.COMMAND_LOG context. An example of this is shown below

and can also be found in the jboss-log4j.xml distributed with Teiid.

<appender name="COMMAND" class="org.apache.log4j.RollingFileAppender">

 <param name="File" value="log/command.log"/>

 <param name="MaxFileSize" value="1000KB"/>

 <param name="MaxBackupIndex" value="25"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %p [%t] %c - %m%n"/>

 </layout>

 </appender>

 <category name="org.teiid.COMMAND_LOG">

 <priority value="INFO"/>

 <appender-ref ref="COMMAND"/>

 </category>

See the Developer's Guide to develop a custom logging solution if file based, or any other built-in

Log4j, logging is not sufficient.

4.3. Audit Logging

Audit logging captures important security events. This includes the enforcement of permissions,

authentication success/failures, etc.

To enable audit logging to the default log location, simply enable the DETAIL level of logging for

the org.teiid.AUDIT_LOG context.

To enable audit logging to an alternative file location, configure a separate file appender for the

DETAIL logging of the org.teiid.AUDIT_LOG context. An example of this is already in the log4j.xml

Audit Logging

25

distributed with Teiid. See the Developer's Guide to develop a custom logging solution if file based,

or any other built-in Log4j, logging is not sufficient.

26

Chapter 5.

27

Clustering in Teiid
Since Teiid is installed in JBoss AS, there is no separate configuration needed on the part of

the user to cluster the Teiid instances. To cluster JBoss AS instances use these instructions

[http://www.jboss.org/jbossas/docs/5-x.html] then Teiid instances are clustered as well. Just make

sure that you installed Teiid in every JBoss AS node before starting the cluster. There is one

specific configuration that needs to be done for enabling the replicated (distributed) cache

in Teiid. To enable distributed caching, rename the "<jboss-as>/server/<profile>/deploy/teiid/

teiid-cache-manager-jboss-beans-rename-me.xml" file to "<jboss-as>/server/<profile>/deploy/

teiid/teiid-cache-manager-jboss-beans.xml".

Typically users create clusters to improve the performance of the system through:

1. Load Balancing: Take look at the Client developers guide on how to use load balancing between

multiple nodes.

2. Fail Over: Take look at the Client developers guide on how to use fail over between multiple

nodes.

3. Distributed Caching: This is automatically done for you once you configure it as specified above.

4. Event distribution: metadata and data modifications will be distributed to all cluster members.

If would like a clustered deployment of the VDB and data-source artifacts, i.e. deploy artifacts

to a central location and let the system propagate deployments every where, then look into

JBoss Farm Deployment [http://community.jboss.org/wiki/JBossFarmDeployment]. Note that this

only supports hot deployments. Take look at some commonly asked questions here [http:/

/community.jboss.org/wiki/JoinTheClusterBeforeUpdatingTheFarmDirectory]. If you need more

fine grained control, you can use script based deployment, where you control the deployment of

artifacts into each node, or JBoss AS "deploy" folder can be configured as a shared folder among

all the clustered JBoss AS nodes to achieve farming.

http://www.jboss.org/jbossas/docs/5-x.html
http://www.jboss.org/jbossas/docs/5-x.html
http://community.jboss.org/wiki/JBossFarmDeployment
http://community.jboss.org/wiki/JBossFarmDeployment
http://community.jboss.org/wiki/JoinTheClusterBeforeUpdatingTheFarmDirectory
http://community.jboss.org/wiki/JoinTheClusterBeforeUpdatingTheFarmDirectory
http://community.jboss.org/wiki/JoinTheClusterBeforeUpdatingTheFarmDirectory

28

Chapter 6.

29

Performance Tuning

6.1. Memory Management

The BufferManager is responsible for tracking both memory and disk usage by Teiid. Configuring

the BufferManager properly is one of the most important parts of ensuring high performance. See

the <jboss-install>/server/<profile>/deploy/teiid/teiid-jboss-beans.xml file for all

BufferManager settings.

The Teiid engine uses batching to reduce the number of memory rows processed at a given time.

The batch sizes may be adjusted to larger values if few clients will be accessing the Teiid server

simultaneously.

The maxReserveBatchColumns setting determines the total size of batches that can be held by

the BufferManager in memory. This number does not include persistent batches held by soft (such

as index pages) or weak references. The value is treated internally as an approximation of bytes

using the conversion maxReserveBatchColumns * processorBatchSize * (64bytes per column

value). The default value of -1 will auto-calculate a typical max based upon the max heap available

to the VM. The auto-calculated value assumes a 64bit architecture and will limit buffer usage to

50% of the first gigabyte of memory beyond the first 300 megabytes (which are assumed for use

by the AS and other Teiid purposes) and 75% of the memory beyond that.

The BufferManager automatically triggers the use of a canonical value cache if enabled when

more than 25% of the reserve is in use. This can dramatically cut the memory usage in situations

where similar value sets are being read through Teiid, but does introduce a lookup cost. If you

are processing small or highly similar datasets through Teiid, and wish to conserve memory, you

should consider enabling value caching.

Note

Memory consumption can be significantly more or less than the nominal target

depending upon actual column values and whether value caching is enabled.

Large strings, bigintegers, bigdecimals, or values typed as object can exceed

their default size estimate. If an out of memory errors occur, then set a lower the

maxReserveBatchColumns value.

The maxProcessingBatchesColumns setting determines the total size of batches that can be

used by active plans regardless of the memory held based on maxReserveBatchColumns.

The value is treated internally as an approximation of bytes using the conversion

maxProcessingBatchesColumns * processorBatchSize * (64bytes per column value). The

default value of -1 will auto-calculate a typical max based upon the max heap available to the

VM and max active plans. The auto-calculated value assumes a 64bit architecture and will limit

processing batch usage to 10% of memory beyond the first 300 megabytes (which are assumed

for use by the AS and other Teiid purposes).

Chapter 6. Performance Tuning

30

In systems where large intermediate results are normal (scrolling cursors or sorting over millions

of rows) you can consider increasing the maxProcessingBatchColumns and decreasing the

maxReserveBatchColumns so that each request has access to an effectively smaller buffer space.

Each intermediate result buffer, temporary LOB, and temporary table is stored in its own set of

buffer files, where an individual file is limited to maxFileSize megabytes. Consider increasing the

storage space available to all such files maxBufferSpace if your installation makes use of internal

materialization, makes heavy use of SQL/XML, or processes large row counts.

6.2. Threading

Socket threads are configured for each transport. They handle NIO non-blocking IO operations

as well as directly servicing any operation that can run without blocking. For longer running

operations, the socket threads queue with work the query engine.

The query engine has several settings that determine its thread utilization. maxThreads sets the

total number of threads available for query engine work (processing plans, transaction control

operations, processing source queries, etc.). You should consider increasing the maximum

threads on systems with a large number of available processors and/or when it's common to

issue non-transactional queries with that issue a large number of concurrent source requests.

maxActivePlans, which should always be smaller than maxThreads, sets the number of the

maxThreads that should be used for user query processing. Increasing the maxActivePlans should

be considered for workloads with a high number of long running queries and/or systems with a

large number of available processors. If memory issues arise from increasing the max threads

and the max active plans, then consider decreasing the processor/connector batch sizes to limit

the base number of memory rows consumed by each plan. userRequestSourceConcurrency,

which should always be smaller than maxThreads, sets the number of concurrently executing

source queries per user request. Setting this value to 1 forces serial execution of all source

queries by the processing thread. The default value is computed based upon 2*maxThreads/

maxActivePlans. Using the respective default values, this means that each user request would be

allowed 6 concurrently executing source queries. If the default calculated value is not applicable

to your workload, for example if you have queries that generate more concurrent long running

source queries, you should adjust this value.

6.3. Cache Tuning

Caching can be tuned for cached result (including user query results and procedure results) and

prepared plans (including user and stored procedure plans). Even though it is possible to disable

or otherwise severely constrain these caches, this would probably never be done in practice as

it would lead to poor performance.

Cache statistics can be obtained through the Admin Console or Adminshell. The statistics can be

used to help tune cache parameters and ensure a hit ratio.

Plans are currently fully held in memory and may have a significant memory footprint. When

making extensive use of prepared statements and/or virtual procedures, the size of the plan cache

may be increased proportionally to number of gigabytes intended for use by Teiid.

Socket Transports

31

While the result cache parameters control the cache result entries (max number, eviction, etc.),

the result batches themselves are accessed through the BufferManager. If the size of the result

cache is increased, you may need to tune the BufferManager configuration to ensure there is

enough buffer space.

Result set and prepared plan caches have their entries invalidated by data and metadata events.

By default these events are captured by running commands through Teiid. See the Developers

Guide for further customization. Teiid stores compiled forms of update plans or trigger actions with

the prepared plan, so it is recommended to leave the maxStaleness of the prepared plan cache set

to 0 so that metadata changes, for example disabling a trigger, may take effect immediately. The

default staleness for result set caching is 60 seconds to improve efficiency with rapidly changing

sources. Consider decreasing this value to make the result set cache more consistent with the

underlying data. Even with a setting of 0 full transactional consistency is not guaranteed.

6.4. Socket Transports

Teiid separates the configuration of its socket transports for JDBC, ODBC, and Admin access.

Typical installations will not need to adjust the default thread and buffer size settings. The default

input output buffer sizes are set to 0, which will use the system default. Before adjusting this value

keep in mind that each JDBC, ODBC, and Admin client will create a new socket connection. Setting

these values to a large buffer size should only be done if the number of client is constrained. All

JDBC/ODBC socket operations are non-blocking, so setting the number of maxThreads higher

than the maximum effective parallelism of the machine should not result in greater performance.

The default value 0 for JDBC socket threads will set the max to the number of available processors.

6.5. LOBs

LOBs and XML documents are streamed from the Teiid Server to the Teiid JDBC API. Normally,

these values are not materialized in the server memory - avoiding potential out-of-memory issues.

When using style sheets, or XQuery, whole XML documents must be materialized on the server.

Even when using the XMLQuery or XMLTable functions and document projection is applied,

memory issues may occur for large documents.

LOBs are broken into pieces when being created and streamed. The maximum size of each

piece when fetched by the client can be configured with the "lobChunkSizeInKB" property

in the <jboss-install>/server/<profile>/deploy/teiid/teiid-jboss-beans.xml file. The

default value is 100 KB. When dealing with extremely large LOBs, you may consider increasing

this value to decrease the amount of round-trips to stream the result. Setting the value too high

may cause the server or client to have memory issues.

Source LOB values are typically accessed by reference, rather than having the value copied to

a temporary location. Thus care must be taken to ensure that source LOBs are returned in a

memory-safe manner.

Chapter 6. Performance Tuning

32

6.6. Other Considerations

When using Teiid in a development environment, you may consider setting the

maxSourceRows property in the <jboss-install>/server/<profile>/deploy/teiid/teiid-

jboss-beans.xml file to reasonably small level value (e.g. 10000) to prevent large amounts of

data from being pulled from sources. Leaving the exceptionOnMaxSourceRows set to true will

alert the developer through an exception that an attempt was made to retrieve more than the

specified number of rows.

Chapter 7.

33

Teiid Admin Console
The Teiid Admin Console is a web based administrative and monitoring tool for Teiid. Teiid's

Admin Console is built using the Embedded JOPR [http://www.jboss.org/embjopr] library and adds

a additional plugin into the Embeeded JOPR program already available in the JBoss AS [http://

www.jboss.org/jbossas].

7.1. What can be monitored and/or configured?

Here are the steps to follow to install Teiid

1. The Teiid Runtime Engine (Data Services node in the tree)

2. VDBs - Virtual databases

a. Models

i. Source- these are physical sources

ii. Multi-source - these are multiple sourced models

iii. Logical - these are virtual sources

b. Translator instances- any Translator instances defined for use by this VDB

3. Translators - These are the extensions to supported datasources that come with Teiid out-of-

the-box.

Note

The creation/modification of the datasource is managed by the JBossAS plugin.

http://www.jboss.org/embjopr
http://www.jboss.org/embjopr
http://www.jboss.org/jbossas
http://www.jboss.org/jbossas
http://www.jboss.org/jbossas

Chapter 7. Teiid Admin Console

34

7.1.1. Configuration

1. Runtime Engine properties

2. Buffer Service

3. Jdbc Socket configuration

4. Session Service

7.1.2. Metrics

1. Long Running Query count

2. Active Query count

3. Active Session count

7.1.3. Control (Operations)

1. View Long Running Queries

2. View Current Sessions

3. Terminate Session

4. View Current Requests

5. Terminate requests

6. View Current Transactions

7. Terminate Transaction

7.1.4. Deploying the VDB

VDB archive files created it the Designer Tool or Dynamic VDBs can be deployed into Teiid server

using the Admin Console.

1. Select the Virtual Database node in the Admin Console tree and click the Add New Resource

button.

2. Select the VDB archive file from the file system and click continue.

3. The VDB will deploy if no fatal errors are found in the archive. The status of the VDB will be

UP if no errors are found with the models in the VDB.

Deploying the VDB

35

4. If there are model errors, the VDB will be deployed with a status of DOWN and the errors will

be listed on the configuration tab of the VDB. VDBs that are not UP will be marked with a red

X in the tree.

Only Model's "connection-jndi-name" can be modified using this tool by clicking on the

"configuration" tab, all other proeprties are read-only.

36

Chapter 8.

37

AdminShell

8.1. Introduction

The AdminShell tooling provides scripting based programming environments that enable user to

access, monitor and control a Teiid Server. Both the command line and graphical console tools are

built on functionality provide by the Groovy (http://groovy.codehaus.org/) project. The AdminShell

tools can be used in ad-hoc scripting mode or to run pre-defined scripts.

AdminShell features:

1. fully functional programming environment with resource flow control and exception

management. See Groovy [http://groovy.codehaus.org/] docs for the full power of the language.

2. quick administrative tool. The user can connect to a running Teiid Server and invoke any of

the AdminAPI methods, such as "deployVDB" or "stopConnectionFactory", to control the Teiid

System. Since this can be script driven, these tasks can be automated and re-run at a later time.

3. simplified data access tool. The user can connect to a VDB, issue any SQL commands, and

view the results of the query via Groovy Sql [http://groovy.codehaus.org/Database+features]

extensions.

4. migration tool. This can be used to develop scripts like moving the Virtual Databases (VDB),

Connection Factories, and Configuration from one development environment to another. This

will enable users to test and automate their migration scripts before production deployments.

5. testing tool. The JUnit (http://junit.org [http://junit.org/]) test framework is built in, see

Groovy Unit Tests [http://groovy.codehaus.org/Unit+Testing]. User can write regression tests

for checking system health, or data integrity that can be used to validate a system functionality

automatically instead of manual verification by QA personnel.

8.1.1. Download

AdminShell is distributed along with other Teiid downloads under "teiid-7.4-adminshell-dist.zip"

name. Download and unzip this file to any directory. Once you have unzipped the file, in root

directory you will find "adminshell" and "adminshell-console" executable scripts to launch the

command line and graphical tools respectively.

Windows: Double click or execute "adminshell.cmd"

*nix: Execute the "adminshell.sh" script

8.2. Getting Started

To learn the basics of Groovy [http://groovy.codehaus.org/] take a look at their documents and

tutorials on their website.

http://groovy.codehaus.org/
http://groovy.codehaus.org/
http://groovy.codehaus.org/
http://groovy.codehaus.org/Database+features
http://groovy.codehaus.org/Database+features
http://junit.org/
http://junit.org/
http://groovy.codehaus.org/Unit+Testing
http://groovy.codehaus.org/Unit+Testing
http://groovy.codehaus.org/
http://groovy.codehaus.org/

Chapter 8. AdminShell

38

Basic knowledge of the Java programming language and types is required in order to effectively

design and develop scripts using the AdminShell. To learn Java language find learning resources

at http://java.sun.com [http://java.sun.com/].

You can learn about the Teiid AdminAPI either using “adminHelp()” function or by using the

JavaDocs.

AdminShell is a specialized version of Groovy which works in several different modes: interactive

shell, graphical console, or script run mode. In interactive shell mode (launched via adminshell),

the user can invoke connect to a live Teiid system and issue any ad-hoc commands to control the

system. The interactive buffer can be used to develop a script and the interactive session input

and output can be captured into a log file, more on this later in the document.

In graphical mode (lanched via adminshell-console), the user can develop and run scripts using

a text editor that supports syntax highlighting.

In the script run mode, the user can execute/play back previously developed scripts. This mode

especially useful to automate any testing or to perform any repeated configurations/migrations

changes to a Teiid system.

8.2.1. Essential Rules

To use AdminShell successfully, there are some basic syntactical rules to keep in mind.

1. In interactive shell mode, most commands (as seen by the help command) are used to control

shell behavior and are not general Groovy scripting constructs. Admin methods will typically

be called using functional notation:

connectAsAdmin()

2. All commands and functions are case sensitive.

3. An ending semicolon is optional for Groovy statements.

4. If a function requires input parameter(s), they should be declared inside "(" and ")". A function

may have more than one parameter. String parameters can be wrapped in double or single

quotes. Example:

 connectAsAdmin("mm://localhost:34413", "user", "password")

5. Other Java methods and classes can be used from your scripts, if the required Java class

libraries are already in class path. You may place additional jars in the lib directory to have be

automatically part of the class path. An example showing an import:

http://java.sun.com/
http://java.sun.com/

Help

39

import my.package.*;

myObject = new MyClass();

myObject.doSomething();

To execute the commands and arbitrary script in interactive mode you enter them first and press

enter to execute, then enter the next line, so on.

To exit the tool in the interactive mode, first disconnect if you are connected to the Teiid system by

executing “disconnect();” then type "exit". In the script mode, when execution of the script finishes

the tool will exit automatically, however you still have to disconnect from Teiid system in the script.

Note: If SSL is turned on the Teiid server, you would need to adjust the connection URL and the

client SSL settings as necessary (typically this will only be needed for 2-way SSL).

8.2.2. Help

The adminHelp() methods lists all the available administrative API methods in the AdminShell.

Please note that none of the Groovy Shell commands or other available function calls will be

shown in this list

adminHelp();

To get a specific definition about a method and it's required input parameters, use

adminHelp("method")

adminHelp("deployVDB");

/*

 *Deploy a VDB from file

 */

void deployVDB(

 String /* file name */)

 throws AdminException

 throws FileNotFoundException

The sqlHelp() methods lists all Sql extension methods.

sqlHelp();

Chapter 8. AdminShell

40

To get a specific definition about a method and it's required input parameters, use

sqlHelp("method")

8.2.3. Basic Commands

The list below contains some common commands used in AdminShell.

println "xxx"; // print something to console

adminHelp(); // shows all the available admin commands;

sql = connect(); // get an extended Groovy Sql connection using connection.properties file

sql.execute(<SQL>); // run any SQL command.

connectAsAdmin(); // connect as admin; no need have the vdb name. SQL commands will not

 work under this connection

println getConnectionName(); // returns the current connection name

useConnection(<connection name>); // switches to using the given connection settings

disconnect(); // disconnects the current connection in the context

8.3. Executing a script file

To execute a script file "foo.groovy" in a directory "some/directory" in the interactive comamnd

line tool, execute as following

. some/directory/foo.groovy

"foo.groovy" is read into current context of the shell as if you typed in the whole document. If your

script only contained method calls, you can explicitly invoke the call to execute.

Full execute syntax may also be used, and is required outside of the interactive command line tool:

evaluate("some/directory/foo.groovy" as File)

To execute the same file without entering interactive mode, run

Log File and Recorded Script file

41

./adminshell.sh . some/directory/foo.groovy

Parameters can be passed in as Java System properties. For example

./adminshell.sh -Dparam=value . some/directory/foo.groovy

Inside the script file, you can access these properties using System.getProperty

value = System.getProperty(“param”); // will return "value"

8.4. Log File and Recorded Script file

During the interactive mode, input is recorded in a history file. This file can be accessed via the

up arrow in the interactive shell.

User can also capture the commands entered during a interactive session to their own script file

by using “startRecording” and “stopRecording” commands. For example,

record start directory/filename.txt

<commands and script ..>

record stop

All input and output between the start and stop are captured in the “directory/filename.txt” file.

This gives the user an option to capture only certain portions of the interactive session and to later

refine a script out of recorded file.

8.5. Default Connection Properties

The file "connection.properties" in the installation directory of the AdminShell defines the default

connection properties with which user can connect to Teiid system. The following properties can

be defined using this file

admin.url = <server host name or ip address>

admin.name = <user name>

admin.password = <password>

jdbc.url = <server host name or ip address>

Chapter 8. AdminShell

42

jdbc.user = <user name>

jdbc.password = <password>

A call to "connect()" or "connectionAsAdmin()" without any input parameters, will connect to the

Teiid system using the properties defined in properties file. However, a user can always pass in

parameters in the connect method to connect to a same or different server than one mentioned in

the “connection.properties”. Look all the all the different connect methods using the “adminHelp()”

method.

Note that it is not secure to leave the passwords in clear text, as defined above. Please take

necessary measures to secure the properties file, or do not use this feature and always pass in

password interactively or some other secure way.

Note: At any given time user can be actively connected to more than one system or have more

than one connection to same system. To manage the connections correctly each connection

is created given a unique connection name. To learn more about this look at Handling Multiple

Connections.

8.6. Handling Multiple Connections

Using AdminShell, a user can actively manage more than one connection to a single or multiple

Teiid systems. For example, two separate connections can be maintained, one to the development

server and one to the integration server at the same time. This is possible because AdminShell

supports a feature called named connections.

Every time a connection is made, the connection has an explicit or an implicitly assigned name.

 If another connect command is executed then a new connection is made with a unique name

and execution will be switched to use the new connection. The previous connection will be held

as it is in its current state, and will not be closed.

You can use the following command to find out the current connection's name

name = getConnectionName();

Knowing the names of the connection that user is working with is important to switch the active

connection to a previous connection. To switch the active connection, use the following command

and supply the name of the connection to be used

Interactive Shell Nuances

43

useConnection("name");

If user supplies the same name as the active connection as they are currently participating in,

then this operation will simply return with out any modifications. There is no limitation the number

of simultaneous connections.

The following shows an example of using and switching between two connections.

// creates a connection

connectAsAdmin();

//capture the connection name

conn1 = getConnectionName();

deployVDB("file.vdb")

// creates a second connection

connectAsAdmin();

conn2 = getConnectionName();

deployVDB("file.vdb")

// switch the connection to "conn1"

useConnection(conn1);

// close the connection in the "conn1"

disconnectAll();

8.7. Interactive Shell Nuances

The interactive shell uses a special shell interpretter and therefore has different behavior than

just writting a script in Groovy. See the Groovy Shell Documentation [http://groovy.codehaus.org/

Groovy+Shell] for more on its usage. Notable differences:

• Def statements do not define a variable in the context of the Shell, e.g. do not use def x =

1, use x = 1

• Shell commands (as seen through help) using the non-functional shell syntax are only available

in the shell.

• Groovy classes using annotations cannot be parsed in the Shell.

http://groovy.codehaus.org/Groovy+Shell
http://groovy.codehaus.org/Groovy+Shell
http://groovy.codehaus.org/Groovy+Shell

44

45

Appendix A. AdminShell Frequently

Asked Questions

A.1. Why won't the adminhelp command work in the Console tool?

The Console environment does not understand Shell commands (load, help, adminhelp,

etc.), since they are not directly supported by Groovy. In the Console you should use the

equivalent functional form / Groovy, e.g. instead of adminhelp, adminHelp()

A.2. Are there any pre-built scripts available?

Currently no, but we will provide samples in subsequent releases.

A.3. I have written a very useful script to do XYZ, I would like this to be part of the distribution?

Yes, we would love to hear from users. Please submit the script through the Teiid JIRA

[https://jira.jboss.org/jira/browse/TEIID], and if this script popular, we will include the script

in the scripts library in the following releases.

A.4. What is different between "connectAsAdmin()" and "connect()"?

The connectAsAdmin methods create a contextual connection to the AdminAPI of the Teiid

Server. The connect methods return an extension of the Groovy Sql object to be used for

Sql calls to the Teiid Server.

A.5. What does "getAdmin()" call do? Why do I need it?

"getAdmin()" returns this contextual connection object created when you

executed "connectAsAdmin()" method. This object implements the interface

"org.teiid.adminapi.Admin" and AdminShell commands provided are wrappers around this

API. Advanced users can use this API directly if the provided wrapper commands do not

meet their needs.

A.6. Is IDE support available for writing the scripts?

The Admin Console tool is a light-weight IDE. Full IDE support is available for Groovy, but

requires manual manipulation of the class path and script imports. See using AdminShell

methods in other environments.

A.7. Is debugging support available?

The interactive shell and console do have built-in support for inspection of the current state.

Performing line based debugging is beyond the scope of this document.

https://jira.jboss.org/jira/browse/TEIID
https://jira.jboss.org/jira/browse/TEIID

46

47

Appendix B. Other Scripting

Environments
The AdminShell methods (named contextual connections, AdminAPI wrapper, and help system)

have no direct dependencies on Groovy and can be used in other scripting languages.

To use the AdminShell methods in another language, simply import the static methods and

Admin classes into your script. You will also need to ensure that the <adminshell dist>/lib/teiid-

7.4-client.jar and <adminshell dist>/lib/teiid-adminshell-7.4.jar are in your class path. The snippet

below show import statements that would work in Java, BeanShell, Groovy, etc.

import static org.teiid.adminshell.AdminShell.*;

import static org.teiid.adminshell.GroovySqlExtensions.*;

import org.teiid.adminapi.*;

Note that the provided shell and console executables automatically have the proper class path

set and inject the proper imports into running scripts. If you wish to use scripts in a non-Teiid

Groovy environment, you will need to manually add these imports and add the admin/client jars

to the class path.

48

49

Appendix C. System Properties
Some of Teiid's low-level behavior can be configured via system properties, rather than through

configuration files. A typical place to set system properties for JBoss AS launches is in the <jboss-

install>/bin/run.conf. A property setting has the format -Dproperty=value

• org.teiid.allowNanInfinity - defaults to false. Set to true to allow numeric functions to return NaN

(Not A Number) and +-Infinity. Note that these values are not covered by the SQL specification.

• org.teiid.useValueCache - defaults to false. Set to true to enable the canonical value cache.

Value caching is used dynamically when buffer memory is consumed to reuse identical values

and thus reduce the memory consumed by Teiid. There is a computation cost associated with

the cache lookup, so enabling this setting is not appropriate for installations handling large

volumes of dissimilar data.

• org.teiid.ansiQuotedIdentifiers - defaults to true. Set to false to emulate Teiid 6.x and prior

behavior of treating double quoted values without leading identifier parts as string literals, which

is not expected by the SQL specification.

• org.teiid.subqueryUnnestDefault - defaults to false. Set to true to aggressively unnest subquery

IN and EXISTS predicates. If possible the predicate will be unnested to a traditional join and

will be eligible for dependent join planning. If a traditional join is not possible (such as with

NOT IN) a merge join version of the semijoin or antijoin will be considered by upon the costing

information available.

50

	Teiid - Scalable Information Integration
	Table of Contents
	Chapter 1. Installation Guide
	1.1. Installation
	1.2. CXF Installation
	1.3. Directory Structure Explained
	1.3.1. /deploy/teiid/teiid-jboss-beans.xml
	1.3.2. /deploy/teiid/connectors
	1.3.3. /conf/props
	1.3.4. /conf/jboss-teiid-log4j.xml
	1.3.5. admin-console.war
	1.3.6. /deployers/teiid.deployer
	1.3.7. lib
	1.3.8. teiid-examples
	1.3.9. teiid-docs

	Chapter 2. Deploying VDBs in Teiid 7
	2.1. Deploying a VDB
	2.1.1. Direct File Deployment
	2.1.2. Admin Console Deployment (Web)
	2.1.3. AdminShell Deployment
	2.1.4. Admin API Deployment

	2.2. Deploying VDB Dependencies
	2.2.1. JDBC Data Sources
	2.2.2. File Data Sources
	2.2.3. Web Service Data Sources
	2.2.3.1. CXF Configuration
	2.2.3.2. WS-Security
	2.2.3.3. Logging
	2.2.3.4. Transport Settings

	2.2.4. Salesforce Data Sources
	2.2.4.1. CXF Configuration

	2.2.5. LDAP Data Sources

	2.3. VDB Versioning
	2.3.1. Deployment Scenarios

	2.4. Migrating VDBs from 6.x

	Chapter 3. Teiid Security
	3.1. Authentication
	3.1.1. Pass-through Authentication

	3.2. Authorization
	3.3. Encryption
	3.4. LoginModules
	3.4.1. Built-in LoginModules
	3.4.2. Security at Data Source level
	3.4.2.1. CallerIdentity and Trusted Payload
	3.4.2.2. Role Based Credential Map

	3.5. Configuring SSL
	3.5.1. SSL Authentication Modes
	3.5.2. Encryption Strength

	Chapter 4. Logging
	4.1. General Logging
	4.1.1. Logging Contexts

	4.2. Command Logging
	4.3. Audit Logging

	Chapter 5. Clustering in Teiid
	Chapter 6. Performance Tuning
	6.1. Memory Management
	6.2. Threading
	6.3. Cache Tuning
	6.4. Socket Transports
	6.5. LOBs
	6.6. Other Considerations

	Chapter 7. Teiid Admin Console
	7.1. What can be monitored and/or configured?
	7.1.1. Configuration
	7.1.2. Metrics
	7.1.3. Control (Operations)
	7.1.4. Deploying the VDB

	Chapter 8. AdminShell
	8.1. Introduction
	8.1.1. Download

	8.2. Getting Started
	8.2.1. Essential Rules
	8.2.2. Help
	8.2.3. Basic Commands

	8.3. Executing a script file
	8.4. Log File and Recorded Script file
	8.5. Default Connection Properties
	8.6. Handling Multiple Connections
	8.7. Interactive Shell Nuances

	Appendix A. AdminShell Frequently Asked Questions
	Appendix B. Other Scripting Environments
	Appendix C. System Properties

