
Teiid - Scalable Information Integration

1

Teiid Reference

Documentation
7.4

iii

Preface ... ix

1. DML Support ... 1

1.1. Identifiers ... 1

1.2. Expressions .. 2

1.2.1. Column Identifiers .. 2

1.2.2. Literals .. 3

1.2.3. Aggregate Functions .. 3

1.2.4. Case and searched case .. 4

1.2.5. Scalar subqueries .. 5

1.2.6. Parameter references ... 5

1.3. Criteria ... 5

1.4. SQL Commands ... 6

1.4.1. SELECT Command .. 6

1.4.2. INSERT Command .. 8

1.4.3. UPDATE Command ... 8

1.4.4. DELETE Command .. 8

1.4.5. EXECUTE Command ... 8

1.4.6. Procedural Relational Command ... 9

1.5. SQL Clauses .. 10

1.5.1. WITH Clause ... 10

1.5.2. SELECT Clause ... 10

1.5.3. FROM Clause .. 11

1.5.4. ARRAYTABLE ... 15

1.5.5. WHERE Clause ... 16

1.5.6. GROUP BY Clause .. 16

1.5.7. HAVING Clause ... 16

1.5.8. ORDER BY Clause .. 16

1.5.9. LIMIT Clause ... 17

1.5.10. INTO Clause .. 18

1.5.11. OPTION Clause ... 18

1.6. Set Operations .. 19

1.7. Subqueries ... 19

1.7.1. Inline views .. 20

1.7.2. Subqueries can appear anywhere where an expression or criteria is

expected. .. 20

2. DDL Support .. 21

2.1. Temp Tables .. 21

2.2. Alter View ... 22

2.3. Alter Procedure ... 23

2.4. Create Trigger .. 23

2.5. Alter Trigger ... 23

3. XML SELECT Command .. 25

3.1. Overview .. 25

3.2. Query Structure .. 25

Teiid - Scalable Information ...

iv

3.2.1. FROM Clause .. 25

3.2.2. SELECT Clause ... 25

3.2.3. WHERE Clause ... 26

3.2.4. ORDER BY Clause .. 28

3.3. Document Generation ... 28

3.3.1. Document Validation .. 29

4. Datatypes ... 31

4.1. Supported Types .. 31

4.2. Type Conversions ... 33

4.3. Special Conversion Cases ... 34

4.3.1. Conversion of String Literals ... 34

4.3.2. Converting to Boolean .. 35

4.3.3. Date/Time/Timestamp Type Conversions .. 35

4.4. Escaped Literal Syntax .. 35

5. Scalar Functions .. 37

5.1. Numeric Functions .. 37

5.1.1. Parsing Numeric Datatypes from Strings .. 39

5.1.2. Formatting Numeric Datatypes as Strings .. 40

5.2. String Functions .. 40

5.3. Date/Time Functions ... 43

5.3.1. Parsing Date Datatypes from Strings ... 46

5.3.2. Specifying Time Zones ... 47

5.4. Type Conversion Functions ... 47

5.5. Choice Functions .. 47

5.6. Decode Functions ... 48

5.7. Lookup Function ... 49

5.8. System Functions ... 50

5.9. XML Functions .. 51

5.9.1. JSONTOXML ... 51

5.9.2. XMLCOMMENT ... 52

5.9.3. XMLCONCAT .. 52

5.9.4. XMLELEMENT ... 53

5.9.5. XMLFOREST ... 53

5.9.6. XMLPARSE ... 54

5.9.7. XMLPI ... 54

5.9.8. XMLQUERY ... 54

5.9.9. XMLSERIALIZE .. 55

5.9.10. XSLTRANSFORM .. 55

5.9.11. XPATHVALUE .. 55

5.10. Security Functions ... 56

5.10.1. HASROLE .. 56

5.11. Miscellaneous Functions .. 56

5.11.1. array_get ... 56

5.11.2. array_length ... 56

v

5.11.3. uuid ... 57

5.12. Nondeterministic Function Handling .. 57

6. Updatable Views .. 59

6.1. Key-preserved Table ... 59

7. Procedures .. 61

7.1. Procedure Language ... 61

7.1.1. Command Statement .. 61

7.1.2. Dynamic SQL Command .. 61

7.1.3. Declaration Statement .. 64

7.1.4. Assignment Statement .. 65

7.1.5. If Statement ... 65

7.1.6. Loop Statement .. 66

7.1.7. While Statement ... 66

7.1.8. Continue Statement .. 66

7.1.9. Break Statement .. 67

7.1.10. Error Statement .. 67

7.2. Virtual Procedures .. 67

7.2.1. Virtual Procedure Definition ... 67

7.2.2. Procedure Parameters .. 67

7.2.3. Example Virtual Procedures .. 68

7.2.4. Executing Virtual Procedures .. 69

7.2.5. Limitations ... 70

7.3. Update Procedures ... 70

7.3.1. Update Procedure Processing ... 70

7.3.2. For Each Row .. 70

7.3.3. Create Procedure ... 73

8. Transaction Support .. 77

8.1. AutoCommitTxn Execution Property ... 77

8.2. Updating Model Count .. 78

8.3. JDBC and Transactions .. 78

8.3.1. JDBC API Functionality .. 78

8.3.2. J2EE Usage Models ... 78

8.4. Transactional Behavior with JBoss Data Source Types .. 79

8.5. Limitations and Workarounds ... 81

9. Data Roles ... 83

9.1. Permissions .. 83

9.2. Role Mapping ... 85

9.3. XML Definition .. 85

9.4. System Functions ... 87

10. System Schema ... 89

10.1. System Tables .. 89

10.1.1. VDB, Schema, and Properties ... 89

10.1.2. Table Metadata .. 90

10.1.3. Procedure Metadata ... 93

Teiid - Scalable Information ...

vi

10.1.4. Datatype Metadata .. 94

10.2. System Procedures ... 95

10.2.1. SYS.getXMLSchemas ... 95

10.2.2. SYSADMIN.refreshMatView .. 95

10.2.3. SYSADMIN.refreshMatViewRow .. 95

10.2.4. Metadata Procedures .. 95

11. Multi-source models .. 97

11.1. Multi-source SELECTs .. 97

11.2. Multi-source INSERTs ... 97

11.3. Multi-source UPDATEs .. 97

11.4. Multi-source DELETEs .. 98

11.5. Multi-source Stored Procedures ... 98

11.6. Additional Concerns .. 98

12. Translators ... 99

12.1. Introduction to the Teiid Connector Architecture .. 99

12.2. Translators .. 99

12.2.1. File Translator .. 100

12.2.2. JDBC Translator ... 101

12.2.3. LDAP Translator ... 105

12.2.4. Loopback Translator ... 106

12.2.5. Salesforce Translator .. 106

12.2.6. Web Services Translator ... 111

12.2.7. OLAP Translator ... 113

12.2.8. Delegating Translators .. 114

12.3. Dynamic VDBs .. 115

12.3.1. VDB Element ... 116

12.3.2. Model Element ... 116

12.3.3. Translator Element ... 117

12.4. Multi-Source Models and VDB ... 117

13. Federated Planning .. 121

13.1. Overview .. 121

13.2. Federated Optimizations .. 123

13.2.1. Access Patterns ... 123

13.2.2. Pushdown .. 123

13.2.3. Dependent Joins .. 123

13.2.4. Copy Criteria .. 124

13.2.5. Projection Minimization ... 124

13.2.6. Partial Aggregate Pushdown ... 124

13.2.7. Optional Join .. 124

13.2.8. Partitioned Union .. 126

13.2.9. Standard Relational Techniques .. 126

13.3. Subquery optimization ... 127

13.4. Federated Failure Modes ... 128

13.4.1. Partial Results .. 128

vii

13.5. Query Plans .. 128

13.5.1. Getting a Query Plan .. 128

13.5.2. Analyzing a Query Plan .. 129

13.5.3. Relational Plans ... 129

13.6. Query Planner ... 131

13.6.1. Relational Planner .. 131

13.6.2. Procedure Planner .. 136

13.6.3. XML Planner .. 136

14. Architecture .. 139

14.1. Terminology .. 139

14.2. Data Management ... 139

14.2.1. Cursoring and Batching ... 139

14.2.2. Buffer Management .. 139

14.2.3. Cleanup ... 140

14.3. Query Termination ... 140

14.3.1. Canceling Queries .. 140

14.3.2. Timeouts .. 140

14.4. Processing .. 141

14.4.1. Join Algorithms ... 141

14.4.2. Sort Based Algorithms .. 141

A. BNF for SQL Grammar .. 143

A.1. TOKENS .. 143

A.2. NON-TERMINALS .. 145

viii

ix

Preface

Teiid offers a highly scalable and high performance solution to information integration. By allowing

integrated and enriched data to be consumed relationally or as XML over multiple protocols, Teiid

simplifies data access for developers and consuming applications.

Commercial development support, production support, and training for Teiid is available through

JBoss Inc. Teiid is a Professional Open Source project and a critical component of the JBoss

Enterprise Data Services Platform.

x

Chapter 1.

1

DML Support
Teiid supports SQL for issuing queries and for defining view transformations; see also Procedure

Language for how SQL is used in virtual procedures and update procedures.

Teiid provides nearly all of the functionality of SQL-92 DML. SQL-99 and later features are

constantly being added based upon community need. The following does not attempt to cover

SQL exhaustively, but rather highlights SQL's usage within Teiid. See the grammar for the exact

form of SQL accepted by Teiid.

1.1. Identifiers

SQL commands contain references to tables and columns. These references are in the form of

identifiers, which uniquely identify the tables and columns in the context of the command. All

queries are processed in the context of a virtual database, or VDB. Because information can be

federated across multiple sources, tables and columns must be scoped in some manner to avoid

conflicts. This scoping is provided by schemas, which contain the information for each data source

or set of views.

Fully-qualified table and column names are of the following form, where the separate 'parts' of the

identifier are delimited by periods.

• TABLE: <schema_name>.<table_spec>

• COLUMN: <schema_name>.<table_spec>.<column_name>

Syntax Rules:

• Identifiers can consist of alphanumeric characters, or the underscore (_) character, and must

begin with an alphabetic character. Any Unicode character may be used in an identifier.

• Identifiers in double quotes can have any contents. The double quote character can it's be

escaped with an additional double quote. e.g. "some "" id"

• Because different data sources organize tables in different ways, some prepending catalog or

schema or user information, Teiid allows table specification to be a dot-delimited construct.

Note

When a table specification contains a dot resolving will allow for the match of a

partial name against any number of the end segments in the name. e.g. a table

with the fully-qualified name vdbname."sourcescema.sourcetable" would match

the partial name sourcetable.

• Columns, schemas, and aliases identifiers cannot contain a dot.

Chapter 1. DML Support

2

• Identifiers, even when quoted, are not case-sensitive in Teiid.

Some examples of valid fully-qualified table identifiers are:

• MySchema.Portfolios

• "MySchema.Portfolios"

• MySchema.MyCatalog.dbo.Authors

Some examples of valid fully-qualified column identifiers are:

• MySchema.Portfolios.portfolioID

• "MySchema.Portfolios"."portfolioID"

• MySchema.MyCatalog.dbo.Authors.lastName

Fully-qualified identifiers can always be used in SQL commands. Partially- or unqualified forms

can also be used, as long as the resulting names are unambiguous in the context of the command.

Different forms of qualification can be mixed in the same query.

1.2. Expressions

Identifiers, literals, and functions can be combined into expressions. Expressions can be used

almost anywhere in a query -- SELECT, FROM (if specifying join criteria), WHERE, GROUP BY,

HAVING, or ORDER BY.

Teiid supports the following types of expressions:

• Column identifiers

• Literals

• Scalar functions

• Aggregate functions

• Case and searched case

• Scalar subqueries

• Parameter references

1.2.1. Column Identifiers

Column identifiers are used to specify the output columns in SELECT statements, the columns

and their values for INSERT and UPDATE statements, and criteria used in WHERE and FROM

Literals

3

clauses. They are also used in GROUP BY, HAVING, and ORDER BY clauses. The syntax for

column identifiers was defined in the Identifiers section above.

1.2.2. Literals

Literal values represent fixed values. These can any of the 'standard' data types.

Syntax Rules:

• Integer values will be assigned an integral data type big enough to hold the value (integer, long,

or biginteger).

• Floating point values will always be parsed as a double.

• The keyword 'null' is used to represent an absent or unknown value and is inherently untyped. In

many cases, a null literal value will be assigned an implied type based on context. For example,

in the function '5 + null', the null value will be assigned the type 'integer' to match the type of

the value '5'. A null literal used in the SELECT clause of a query with no implied context will

be assigned to type 'string'.

Some examples of simple literal values are:

• ‘abc’

• ‘isn’’t true’ - use an extra single tick to escape a tick in a string with single ticks

• 5

• -37.75e01 - scientific notation

• 100.0 - parsed as double

• true

• false

• '\u0027' - unicode character

1.2.3. Aggregate Functions

Aggregate functions take sets of values from a group produced by an explicit or implicit GROUP

BY and return a single scalar value computed from the group.

Teiid supports the following aggregate functions:

• COUNT(*) – count the number of values (including nulls and duplicates) in a group

• COUNT(x) – count the number of values (excluding nulls) in a group

• SUM(x) – sum of the values (excluding nulls) in a group

Chapter 1. DML Support

4

• AVG(x) – average of the values (excluding nulls) in a group

• MIN(x) – minimum value in a group (excluding null)

• MAX(x) – maximum value in a group (excluding null)

• ANY(x)/SOME(x) – returns TRUE if any value in the group is TRUE (excluding null)

• EVERY(x) – returns TRUE if every value in the group is TRUE (excluding null)

• VAR_POP(x) – biased variance (excluding null) logically equals (sum(x^2) - sum(x)^2/count(x))/

count(x); returns a double; null if count = 0

• VAR_SAMP(x) – sample variance (excluding null) logically equals (sum(x^2) - sum(x)^2/

count(x))/(count(x) - 1); returns a double; null if count < 2

• STDDEV_POP(x) – standard deviation (excluding null) logically equals SQRT(VAR_POP(x))

• STDDEV_SAMP(x) – sample standar deviation (excluding null) logically equals

SQRT(VAR_SAMP(x))

• TEXTAGG(FOR (expression [as name], ... [DELIMITER char] [QUOTE char] [HEADER]

[ENCODING id] [ORDER BY ...]) – CSV text aggregation of all expressions in each row of a

group. When DELIMITER is not specified, by default comma(,) is used as delimiter. Double

quotes(") is the default quote character. Use QUOTE to specify a differnt value. All non-null

values will be quoted. If HEADER is specified, the result contains the header row as the first

line - the header line will be present even if there are no rows in a group. This aggregation

returns a blob.

• XMLAGG(xml_expr [ORDER BY ...]) – xml concatination of all xml expressions in a group

(excluding null)

Syntax Rules:

• Some aggregate functions may contain a keyword 'DISTINCT' before the expression, indicating

that duplicate expression values should be ignored. DISTINCT is not allowed in COUNT(*) and

is not meaningful in MIN or MAX (result would be unchanged), so it can be used in COUNT,

SUM, and AVG.

• Aggregate functions may only be used in the HAVING or SELECT clauses and may not be

nested within another aggregate function.

• Aggregate functions may be nested inside other functions.

For more information on aggregates, see the sections on GROUP BY or HAVING.

1.2.4. Case and searched case

Teiid supports two forms of the CASE expression which allows conditional logic in a scalar

expression.

Scalar subqueries

5

Supported forms:

• CASE <expr> (WHEN <expr> THEN <expr>)+ [ELSE expr] END

• CASE (WHEN <criteria> THEN <expr>)+ [ELSE expr] END

Each form allows for an output based on conditional logic. The first form starts with an initial

expression and evaluates WHEN expressions until the values match, and outputs the THEN

expression. If no WHEN is matched, the ELSE expression is output. If no WHEN is matched

and no ELSE is specified, a null literal value is output. The second form (the searched case

expression) searches the WHEN clauses, which specify an arbitrary criteria to evaluate. If any

criteria evaluates to true, the THEN expression is evaluated and output. If no WHEN is true, the

ELSE is evaluated or NULL is output if none exists.

1.2.5. Scalar subqueries

Subqueries can be used to produce a single scalar value in the SELECT, WHERE, or HAVING

clauses only. A scalar subquery must have a single column in the SELECT clause and should

return either 0 or 1 row. If no rows are returned, null will be returned as the scalar subquery value.

For other types of subqueries, see the Subqueries section below.

1.2.6. Parameter references

Parameters are specified using a '?' symbol. Parameters may only be used with

PreparedStatement or CallableStatements in JDBC. Each parameter is linked to a value specified

by 1-based index in the JDBC API.

1.3. Criteria

Criteria may be:

• Predicates that evaluate to true or false

• Logical criteria that combines criteria (AND, OR, NOT)

• A value expression with type boolean

Syntax Rules:

• expression (=|<>|!=|<|>|<=|>=) (expression|((ANY|ALL|SOME) subquery))

• expression [NOT] IS NULL

• expression [NOT] IN (expression[,expression]*)|subquery

• expression [NOT] LIKE expression [ESCAPE char]

Chapter 1. DML Support

6

• EXISTS(subquery)

• expression BETWEEN minExpression AND maxExpression

• criteria AND|OR criteria

• NOT criteria

• expression

• Criteria may be nested using parenthesis.

Some examples of valid criteria are:

• (balance > 2500.0)

• 100*(50 - x)/(25 - y) > z

• concat(areaCode,concat('-',phone)) LIKE '314%1'

Comparing null Values

Null values represent an unknown value. Comparison with a null value will evaluate

to 'unknown', which can never be true even if 'not' is used.

1.4. SQL Commands

There are 4 basic commands for manipulating data in SQL, corresponding to the CRUD create,

read, update, and delete operations: INSERT, SELECT, UPDATE, and DELETE. In addition,

procedures can be executed using the EXECUTE command or through a procedural relational

command.

1.4.1. SELECT Command

The SELECT command is used to retrieve records any number of relations.

A SELECT command has a number of clauses:

• WITH ...

• SELECT ...

• [FROM ...]

• [WHERE ...]

• [GROUP BY ...]

SELECT Command

7

• [HAVING ...]

• [ORDER BY ...]

• [LIMIT [offset,] limit]

• [OPTION ...]

All of these clauses other than OPTION are defined by the SQL specification. The specification

also specifies the order that these clauses will be logically processed. Below is the processing

order where each stage passes a set of rows to the following stage. Note that this processing

model is logical and does not represent the way any actual database engine performs the

processing, although it is a useful model for understanding questions about SQL.

• WITH stage - gathers all rows from all with items in the order listed. Subsequent with items and

the main query can reference the a with item as if it is a table.

• FROM stage - gathers all rows from all tables involved in the query and logically joins them with

a Cartesian product, producing a single large table with all columns from all tables. Joins and

join criteria are then applied to filter rows that do not match the join structure.

• WHERE stage - applies a criteria to every output row from the FROM stage, further reducing

the number of rows.

• GROUP BY stage - groups sets of rows with matching values in the group by columns.

• HAVING stage - applies criteria to each group of rows. Criteria can only be applied to columns

that will have constant values within a group (those in the grouping columns or aggregate

functions applied across the group).

• SELECT stage - specifies the column expressions that should be returned from the query.

Expressions are evaluated, including aggregate functions based on the groups of rows, which

will no longer exist after this point. The output columns are named using either column aliases

or an implicit name determined by the engine. If SELECT DISTINCT is specified, duplicate

removal will be performed on the rows being returned from the SELECT stage.

• ORDER BY stage - sorts the rows returned from the SELECT stage as desired. Supports sorting

on multiple columns in specified order, ascending or descending. The output columns will be

identical to those columns returned from the SELECT stage and will have the same name.

• LIMIT stage - returns only the specified rows (with skip and limit values).

This model can be used to understand many questions about SQL. For example, columns

aliased in the SELECT clause can only be referenced by alias in the ORDER BY clause. Without

knowledge of the processing model, this can be somewhat confusing. Seen in light of the model,

it is clear that the ORDER BY stage is the only stage occurring after the SELECT stage, which is

where the columns are named. Because the WHERE clause is processed before the SELECT,

the columns have not yet been named and the aliases are not yet known.

Chapter 1. DML Support

8

Note

The explicit table syntax TABLE x may be used as a shortcut for SELECT * FROM x.

1.4.2. INSERT Command

The INSERT command is used to add a record to a table.

Example Syntax

• INSERT INTO table (column,...) VALUES (value,...)

• INSERT INTO table (column,...) query

1.4.3. UPDATE Command

The UPDATE command is used to modify records in a table. The operation may result in 1 or

more records being updated, or in no records being updated if none match the criteria.

Example Syntax

• UPDATE table SET (column=value,...) [WHERE criteria]

1.4.4. DELETE Command

The DELETE command is used to remove records from a table. The operation may result in 1 or

more records being deleted, or in no records being deleted if none match the criteria.

Example Syntax

• DELETE FROM table [WHERE criteria]

1.4.5. EXECUTE Command

The EXECUTE command is used to execute a procedure, such as a virtual procedure or a stored

procedure. Procedures may have zero or more scalar input parameters. The return value from a

procedure is a result set, the same as is returned from a SELECT. Note that EXEC or CALL can

be used as a short form of this command.

Example Syntax

• EXECUTE proc()

• EXECUTE proc(value, ...)

Procedural Relational Command

9

• EXECUTE proc(name1=>value1,name4=>param4, ...) - named parameter syntax

Syntax Rules:

• The default order of parameter specification is the same as how they are defined in the

procedure definition.

• You can specify the parameters in any order by name. Parameters that are have default values

and/or are nullable in the metadata, can be omitted from the named parameter call and will

have the appropriate value passed at runtime.

• If the procedure does not return a result set, the values from the RETURN, OUT, and IN_OUT

parameters will be returned as a single row when used as an inline view query.

1.4.6. Procedural Relational Command

Procedural relational commands use the syntax of a SELECT to emulate an EXEC. In a procedural

relational command a procedure group names is used in a FROM clause in place of a table. That

procedure will be executed in place of a normal table access if all of the necessary input values

can be found in criteria against the procedure. Each combination of input values found in the

criteria results in an execution of the procedure.

Example Syntax

• select * from proc

• select output_param1, output_param2 from proc where input_param1 = 'x'

• select output_param1, output_param2 from proc, table where input_param1 = table.col1 and

input_param2 = table.col2

Syntax Rules:

• The procedure as a table projects the same columns as an exec with the addition of the input

parameters. For procedures that do not return a result set, IN_OUT columns will be projected

as two columns, one that represents the output value and one named {column name}_IN that

represents the input of the parameter.

• Input values are passed via criteria. Values can be passed by '=','is null', or 'in' predicates.

Disjuncts are not allowed. It is also not possible to pass the value of a non-comparable column

through an equality predicate.

• The procedure view automatically has an access pattern on its IN and IN_OUT parameters

which allows it to be planned correctly as a dependent join when necessary or fail when sufficient

criteria cannot be found.

• Procedures containing duplicate names between the parameters (IN, IN_OUT, OUT, RETURN)

and result set columns cannot be used in a procedural relational command.

Chapter 1. DML Support

10

• Default values for IN, IN_OUT parameters are not used if there is no criteria present for a given

input. Default values are only valid for named procedure syntax.

Multiple Execution

The usage of 'in' or join criteria can result in the procedure being executed multiple

times.

Alternative Syntax

None of issues listed in the syntax rules above exist if a nested table reference

is used.

1.5. SQL Clauses

This section describes the clauses that are used in the various SQL commands described in the

previous section. Nearly all these features follow standard SQL syntax and functionality, so any

SQL reference can be used for more information.

1.5.1. WITH Clause

Teiid supports non-recursive common table expressions via the WITH clause. With clause items

may be referenced as tables in subsequent with clause items and in the main query. The WITH

clause can be thought of as providing query scoped temporary tables.

Usage:

WITH name [(column, ...)] AS (query expression) ...

Syntax Rules:

• All of the projected column names must be unique. If they are not unique, then the column name

list must be provided.

• If the columns of the WITH clause item are declared, then they must match the number of

columns projected by the query expression.

• Each with clause item must have a unique name.

1.5.2. SELECT Clause

SQL queries that start with the SELECT keyword and are often referred to as "SELECT

statements". Teiid supports most of the standard SQL query constructs.

FROM Clause

11

Usage:

SELECT [DISTINCT|ALL] ((expression [[AS] name])|(group

 identifier.STAR))*|STAR ...

Syntax Rules:

• Aliased expressions are only used as the output column names and in the ORDER BY clause.

They cannot be used in other clauses of the query.

• DISTINCT may only be specified if the SELECT symbols are comparable.

1.5.3. FROM Clause

The FROM clause specifies the target table(s) for SELECT, UPDATE, and DELETE statements.

Example Syntax:

• FROM table [[AS] alias]

• FROM table1 [INNER|LEFT OUTER|RIGHT OUTER|FULL OUTER] JOIN table2 ON join-

criteria

• FROM table1 CROSS JOIN table2

• FROM (subquery) [AS] alias

• FROM TABLE(subquery) [AS] alias

• FROM table1 JOIN table2 MAKEDEP ON join-criteria

• FROM table1 JOIN table2 MAKENOTDEP ON join-criteria

• FROM table1 left outer join /*+ optional */ table2 ON join-criteria

• FROM TEXTTABLE...

• FROM XMLTABLE...

• FROM ARRAYTABLE...

• FROM (SELECT ...

DEP Hints

MAKEDEP and MAKENOTDEP are hints used to control dependent join behavior.

They should only be used in situations where the optimizer does not choose the

most optimal plan based upon query structure, metadata, and costing information.

Chapter 1. DML Support

12

1.5.3.1. Nested Table Reference

Nested tables may appear in the FROM clause with the TABLE keyword. They are an alternative

to using a view with normal join semantics. The columns projected from the command contained

in the nested table may be used just as any of the other FROM clause projected columns in join

criteria, the where clause, etc.

A nested table may have correlated references to preceeding FROM clause column references

as long as INNER and LEFT OUTER joins are used. This is especially useful in cases where then

nested expression is a procedure or function call.

Valid example:

select * from t1, TABLE(call proc(t1.x)) t2

Invalid example, since t1 appears after the nested table in the from clause:

select * from TABLE(call proc(t1.x)) t2, t1

Multiple Execution

The usage of a correlated nested table may result in multiple executions of the

table expression - once for each correlated row.

1.5.3.2. TEXTTABLE

The TEXTTABLE funciton processes character input to produce tabular ouptut. It supports both

fixed and delimited file format parsing. The function itself defines what columns it projects. The

TEXTTABLE function is implicitly a nested table and may be correlated to preceeding FROM

clause entries.

Usage:

TEXTTABLE(expression COLUMNS <COLUMN>, ... [DELIMITER char] [(QUOTE|ESCAPE)

 char] [HEADER [integer]] [SKIP integer]) AS name

COLUMN := name datatype [WIDTH integer]

Parameters

• expression - the text content to process, which should be convertable to CLOB.

FROM Clause

13

• DELIMITER sets the field delimiter character to use. Defaults to ','.

• QUOTE sets the quote, or qualifier, character used to wrap field values. Defaults to '"'.

• ESCAPE sets the escape character to use if no quoting character is in use. This is used in

situations where the delimiter or new line characters are escaped with a preceding character,

e.g. \,

• HEADER specifies the text line number (counting every new line) on which the column names

occur. All lines prior to the header will be skipped. If HEADER is specified, then the header line

will be used to determine the TEXTTABLE column position by case-insensitive name matching.

This is especially useful in situations where only a subset of the columns are needed. If the

HEADER value is not specified, it defaults to 1. If HEADER is not specified, then columns are

expected to match positionally with the text contents.

• SKIP specifies the number of text lines (counting every new line) to skip before parsing the

contents. HEADER may still be specified with SKP.

Syntax Rules:

• If width is specified for one column it must be specified for all columns.

• If width is specified, then fixed width parsing is used and ESCAPE, QUOTE, and HEADER

should not be specified.

• The columns names must be not contain duplicates.

Examples

• Use of the HEADER parameter, returns 1 row ['b']:

select * from texttable('col1,col2,col3\na,b,c' COLUMNS col2 string HEADER) x

• Use of fixed width, returns 1 row ['a', 'b', 'c']:

select * from texttable('abc' COLUMNS col1 string width 1, col2 string width 1, col3 string width

 1) x

• Use of ESCAPE parameter, returns 1 row ['a,', 'b']:

select * from texttable('a:,,b' COLUMNS col1 string, col2 string ESCAPE ':') x

• As a nested table:

Chapter 1. DML Support

14

select x.* from t, texttable(t.clobcolumn COLUMNS first string, second date SKIP 1) x

1.5.3.3. XMLTABLE

The XMLTABLE funciton uses XQuery to produce tabular ouptut. The XMLTABLE function is

implicitly a nested table and may be correlated to preceeding FROM clause entries. XMLTABLE

is part of the SQL/XML 2006 specification.

Usage:

XMLTABLE([<NSP>,] xquery-expression [<PASSING>] [COLUMNS <COLUMN>, ...)] AS

 name

COLUMN := name (FOR ORDINALITY | (datatype [DEFAULT expression] [PATH

 string]))

See XMLELEMENT for the definition of NSP - XMLNAMESPACES [53].

See XMLQUERY for the definition of PASSING [54].

See also XMLQUERY

Parameters

• The optional XMLNAMESPACES clause specifies the namepaces for use in the XQuery and

COLUMN path expressions.

• The xquery-expression should be a valid XQuery. Each sequence item returned by the xquery

will be used to create a row of values as defined by the COLUMNS clause.

• If COLUMNS is not specified, then that is the same as having the COLUMNS clause:

"COLUMNS OBJECT_VALUE XML PATH '.'", which returns the entire item as an XML value.

Each non-ordinality column specifies a type and optionally a PATH and a DEFAULT expression.

If PATH is not specified, then the path will be the same as the column name. A FOR

ORDINALITY column is typed as integer and will return the 1-based item number as its value.

Syntax Rules:

• Only 1 FOR ORDINALITY column may be specified.

• The columns names must be not contain duplicates.

Examples

• Use of passing, returns 1 row [1]:

ARRAYTABLE

15

select * from xmltable('/a' PASSING xmlparse(document '') COLUMNS id integer

 PATH '@id') x

• As a nested table:

select x.* from t, xmltable('/x/y' PASSING t.doc COLUMNS first string, second FOR

 ORDINALITY) x

1.5.4. ARRAYTABLE

The ARRAYTABLE funciton processes an array input to produce tabular ouptut. The function itself

defines what columns it projects. The ARRAYTABLE function is implicitly a nested table and may

be correlated to preceeding FROM clause entries.

Usage:

ARRAYTABLE(expression COLUMNS <COLUMN>, ...) AS name

COLUMN := name datatype

Parameters

• expression - the array to process, which should be a java.sql.Array or java array value.

Syntax Rules:

• The columns names must be not contain duplicates.

Examples

• As a nested table:

select x.* from (call source.invokeMDX('some query')) r, arraytable(r.tuple COLUMNS first

 string, second bigdecimal) x

ARRAYTABLE is effectively a shortcut for using the Section 5.11.1, “array_get” function in a

nested table. For example "ARRAYGET(val COLUMNS col1 string, col2 integer) AS X" is the

same as "TABLE(SELECT cast(array_get(val, 1) AS string) AS col1, cast(array_get(val, 2) AS

integer) AS col2) AS X".

Chapter 1. DML Support

16

1.5.5. WHERE Clause

The WHERE clause defines the criteria to limit the records affected by SELECT, UPDATE, and

DELETE statements.

The general form of the WHERE is:

• WHERE criteria

1.5.6. GROUP BY Clause

The GROUP BY clause denotes that rows should be grouped according to the specified

expression values. One row will be returned for each group, after optionally filtering those

aggregate rows based on a HAVING clause.

The general form of the GROUP BY is:

• GROUP BY expression (,expression)*

Syntax Rules:

• Column references in the group by clause must by to unaliased output columns.

• Expressions used in the group by must appear in the select clause.

• Column references and expessions in the select clause that are not used in the group by clause

must appear in aggregate functions.

• If an aggregate function is used in the SELECT clause and no GROUP BY is specified, an

implicit GROUP BY will be performed with the entire result set as a single group. In this case,

every column in the SELECT must be an aggregate function as no other column value will be

fixed across the entire group.

• The group by columns must be of a comparable type.

1.5.7. HAVING Clause

The HAVING clause operates exactly as a WHERE clause although it operates on the output of

a GROUP BY. It supports the same syntax as the WHERE clause.

Syntax Rules:

• Expressions used in the group by clause must either contain an aggregate function: COUNT,

AVG, SUM, MIN, MAX. or be one of the grouping expressions.

1.5.8. ORDER BY Clause

The ORDER BY clause specifies how records should be sorted. The options are ASC (ascending)

and DESC (descending).

LIMIT Clause

17

Usage:

ORDER BY expression [ASC|DESC] [NULLS (FIRST|LAST)], ...

Syntax Rules:

• Sort columns may be specified positionally by a 1-based positional integer, by SELECT clause

alias name, by SELECT clause expression, or by an unrelated expression.

• Column references may appear in the SELECT clause as the expression for an aliased column

or may reference columns from tables in the FROM clause. If the column reference is not in the

SELECT clause the query must not be a set operation, specify SELECT DISTINCT, or contain

a GROUP BY clause.

• Unrelated expressions, expressions not appearing as an aliased expression in the select clause,

are allowed in the order by clause of a non-set QUERY. The columns referenced in the

expression must come from the from clause table references. The column references cannot

be to alias names or positional.

• The ORDER BY columns must be of a comparable type.

• If an ORDER BY is used in an inline view or view definition without a limit clause, it will be

removed by the Teiid optimizer.

• If NULLS FIRST/LAST is specified, then nulls are guaranteed to be sorted either first or last. If

the null ordering is not specified, then results will typically be sorted with nulls as low values,

which is Teiid's internal default sorting behavior. However not all sources return results with

nulss sorted as low values by default, and Teiid may return results with different null orderings.

Warning

The use of positional ordering is no longer supported by the ANSI SQL standard

and is a deprecated feature in Teiid. It is preferable to use alias names in the order

by clause.

1.5.9. LIMIT Clause

The LIMIT clause specifies a limit on the number of records returned from the SELECT command.

An optional offset (the number of rows to skip) can be specified.

Usage:

LIMIT [offset,] limit

Examples:

Chapter 1. DML Support

18

• LIMIT 100 - returns the first 100 records (rows 1-100)

• LIMIT 500, 100 - skips 500 records and returns the next 100 records (rows 501-600)

1.5.10. INTO Clause

Warning

Usage of the INTO Clause for inserting into a table has been been deprecated. An

INSERT with a query command should be used instead.

When the into clause is specified with a SELECT, the results of the query are inserted into the

specified table. This is often used to insert records into a temporary table. The INTO clause

immediately precedes the FROM clause.

Usage:

INTO table FROM ...

Syntax Rules:

• The INTO clause is logically applied last in processing, after the ORDER BY and LIMIT clauses.

• Teiid's support for SELECT INTO is similar to MS SQL Server. The target of the INTO clause

is a table where the result of the rest select command will be inserted. SELECT INTO should

not be used UNION query.

1.5.11. OPTION Clause

The OPTION keyword denotes options the user can pass in with the command. These options

are Teiid-specific and not covered by any SQL specification.

Usage:

OPTION option, (option)*

Supported options:

• MAKEDEP table [(,table)*] - specifies source tables that should be made dependent in the join

• MAKENOTDEP table [(,table)*] - prevents a dependent join from being used

• NOCACHE [table (,table)*] - prevents cache from being used for all tables or for the given tables

Examples:

Set Operations

19

• OPTION MAKEDEP table1

• OPTION NOCACHE

All tables specified in the OPTION clause should be fully qualified.

Note

Previous versions of Teiid accepted the PLANONLY, DEBUG, and SHOWPLAN

option arguments. These are no longer accepted in the OPTION clause. Please

see the Client Developers Guide for replacements to those options.

1.6. Set Operations

Teiid supports the UNION, UNION ALL, INTERSECT, EXCEPT set operation as a way of

combining the results of query expressions.

Usage:

queryExpression (UNION|INTERSECT|EXCEPT) [ALL] queryExpression [ORDER BY...]

Syntax Rules:

• The output columns will be named by the output columns of the first set operation branch.

• Each SELECT must have the same number of output columns and compatible data types for

each relative column. Data type conversion will be performed if data types are inconsistent and

implicit conversions exist.

• If UNION, INTERSECT, or EXCEPT is specified without all, then the output columns must be

comparable types.

• INTERSECT ALL, and EXCEPT ALL are currently not supported.

1.7. Subqueries

A subquery is a SQL query embedded within another SQL query. The query containing the

subquery is the outer query.

Supported subquery types:

• Scalar subquery - a subquery that returns only a single column with a single value. Scalar

subqueries are a type of expression and can be used where single valued expressions are

expected.

• Correlated subquery - a subquery that contains a column reference to from the outer query.

Chapter 1. DML Support

20

• Uncorrelated subquery - a subquery that contains no references to the outer sub-query.

1.7.1. Inline views

Subqueries in the FROM clause of the outer query (also known as "inline views") can return any

number of rows and columns. This type of subquery must always be given an alias. An inline view

is nearly identical to a traditional view. See also Section 1.5.1, “WITH Clause”.

Example 1.1. Example Subquery in FROM Clause (Inline View)

SELECT a FROM (SELECT Y.b, Y.c FROM Y WHERE Y.d = ‘3’) AS X WHERE a = X.c AND

 b = X.b

1.7.2. Subqueries can appear anywhere where an expression or

criteria is expected.

Subqueries are supported in quantified criteria, the EXISTS predicate, the IN predicate, and as

Section 1.2.5, “Scalar subqueries”.

Example 1.2. Example Subquery in WHERE Using EXISTS

SELECT a FROM X WHERE EXISTS (SELECT 1 FROM Y WHERE c=X.a)

Example 1.3. Example Quantified Comparison Subqueries

SELECT a FROM X WHERE a >= ANY (SELECT b FROM Y WHERE c=3)

SELECT a FROM X WHERE a < SOME (SELECT b FROM Y WHERE c=4)

SELECT a FROM X WHERE a = ALL (SELECT b FROM Y WHERE c=2)

Example 1.4. Example IN Subquery

SELECT a FROM X WHERE a IN (SELECT b FROM Y WHERE c=3)

See also Section 13.3, “Subquery optimization”.

Chapter 2.

21

DDL Support
Teiid supports a subset of DDL to, create/drop temporary tables and to manipulate procedure

and view definitions at runtime. It is not currently possible to arbitrarily drop/create non-temporary

metadata entries.

Note

A MetadataRepository must be configured to make a non-temporary metadata

update persistent. See the Developers Guide Runtime Metadata Updates section

for more.

2.1. Temp Tables

Teiid supports creating temporary,or "temp", tables. Temp tables are dynamically created, but are

treated as any other physical table.

Temp tables can be defined implicitly by referencing them in a INSERT statement or explicitly with

a CREATE TABLE statement. Implicitly created temp tables must have a name that starts with '#'.

Creation syntax:

• Explicit: CREATE LOCAL TEMPORARY TABLE x (column type [NOT NULL], ... [PRIMARY

KEY (column, ...)])

• Implicit: INSERT INTO #x (column, ...) VALUES (value, ...)

If #x doen't exist, it will be defined using the given column names and types from the value

expressions.

• Implicit: INSERT INTO #x [(column, ...)] select c1, c2 from t

If #x doesn't exist, it will be defined using the target column names (in not supplied, the column

names will match the derived column names from the query), and the types from the query

derived columns.

• Use the SERIAL data type to specify a NOT NULL and auto-incrementing INTEGER column.

The starting value of a SERIAL column is 1.

Drop syntax:

• DROP TABLE x

Primary Key Support

Chapter 2. DDL Support

22

• All key columns must be comparable.

• Use of a primary key creates a clustered index that supports search improvements for

comparison, in, like, and order by.

• Null is an allowable primary key value, but there must be only 1 row that has an all null key.

Limitations:

• With the CREATE TABLE syntax only basic table definition (column name and type information)

and an optional primary key are supported.

• The "ON COMMIT" clause is not supported in the CREATE TABLE statement.

• "drop behavior" option is not supported in the drop statement.

• Only local temporary tables are supported. This implies that the scope of temp table will be

either to the sesssion or the block of a virtual procedure that creates it.

• Session level temp tables are not fail-over safe.

• Temp tables are non-transactional.

• Lob values (xml, clob, blob) are tracked by reference rather than by value in a temporary table.

Lob values from external sources that are inserted in a temporary table may become unreadable

when the associated statement or connection is closed.

The following example is a series of statements that loads a temporary table with data from 2

sources, and with a manually inserted record, and then uses that temp table in a subsequent query.

...

CREATE LOCAL TEMPORARY TABLE TEMP (a integer, b integer, c integer);

SELECT * INTO temp FROM Src1; SELECT * INTO temp FROM Src2;

INSERT INTO temp VALUES (1,2,3);

SELECT a,b,c FROM Src3, temp WHERE Src3.a = temp.b;

...

See virtual procedures for more on temp table usage.

2.2. Alter View

Usage:

ALTER VIEW name AS queryExpression

Syntax Rules:

Alter Procedure

23

• The alter query expression may be prefixed with a cache hint for materialized view definitions.

The hint will take effect the next time the materialized view table is loaded.

2.3. Alter Procedure

Usage:

ALTER PROCEDURE name AS block

Syntax Rules:

• The alter block should not include 'CREATE VIRTUAL PROCEDURE'

• The alter block may be prefixed with a cache hint for cached procedures.

2.4. Create Trigger

Usage:

CREATE TRIGGER ON name INSTEAD OF INSERT|UPDATE|DELETE AS FOR EACH ROW block

Syntax Rules:

• The target, name, must be an updatable view.

• An INSTEAD OF TRIGGER must not yet exist for the given event.

• Triggers are not yet true schema objects. They are scoped only to their view and have no name.

Limitations:

• There is no corresponding drop operation. See Section 2.5, “Alter Trigger” for enabling/disabling

an existing trigger.

2.5. Alter Trigger

Usage:

ALTER TRIGGER ON name INSTEAD OF INSERT|UPDATE|DELETE (AS FOR EACH ROW

 block) | (ENABLED|DISABLED)

Syntax Rules:

• The target, name, must be an updatable view.

• Triggers are not yet true schema objects. They are scoped only to their view and have no name.

Chapter 2. DDL Support

24

• An Section 7.3, “Update Procedures” must already exist for the given trigger event.

Note

If the default inherent update is choosen in Teiid Designer, any SQL associated

with update (shown in a greyed out text box) is not part of the VDB and cannot be

enabled with an alter trigger statement.

Chapter 3.

25

XML SELECT Command

3.1. Overview

Complex XML documents can be dynamically constructed by Teiid using XML Document Models.

A document model is generally created from a schema. The document model is bound to relevant

SQL statements through mapping classes. See the Designer guide for more on creating document

models.

XML documents may also created via XQuery with the XMLQuery function or with various other

SQL/XML functions.

Querying XML documents is similar to querying relational tables. An idiomatic SQL variant with

special scalar functions gives control over which parts of a given document to return.

3.2. Query Structure

A valid XML SELECT Command against a document model is of the form SELECT ... FROM ...

[WHERE ...] [ORDER BY ...] . The use of any other SELECT command clause is not allowed.

The fully qualified name for an XML element is: "model"."document name".[path to

element]."element name" .

The fully qualified name for an attribute is: "model"."document name".[path to

element]."element name".[@]"attribute name"

Partially qualified names for elements and attributes can be used as long as the partial name is

unique.

3.2.1. FROM Clause

Specifies the document to generate. Document names resemble other virtual groups -

"model"."document name".

Syntax Rules:

• The from may only contain one unary clause specifying the desired document.

3.2.2. SELECT Clause

The select clause determines which parts of the XML document are generated for output.

Example Syntax:

• select * from model.doc

• select model.doc.root.parent.element.* from model.doc

Chapter 3. XML SELECT Command

26

• select element, element1.@attribute from model.doc

Syntax Rules:

• SELECT * and SELECT "xml" are equivalent and specify that every element and attribute of

the document should be output.

• The SELECT clause of an XML Query may only contain *, "xml", or element and attribute

references from the specified document. Any other expressions are not allowed.

• If the SELECT clause contains an element or attribute reference (other than * or "xml") then

only the specified elements, attributes, and their ancestor elements will be in the generated

document.

• element.* specifies that the element, it's attribute, and all child content should be output.

3.2.3. WHERE Clause

The where clause specifies how to filter content from the generated document based upon values

contained in the underlying mapping classes. Most predicates are valid in an XML SELECT

Command, however combining value references from different parts of the document may not

always be allowed.

Criteria is logically applied to a context which is directly related to a mapping class. Starting with

the root mapping class, there is a root context that describes all of the top level repeated elements

that will be in the output document. Criteria applied to the root or any other context will change

the related mapping class query to apply the affects of the criteria, which can include checking

values from any of the descendant mapping classes.

Example Syntax:

• select element, element1.@attribute from model.doc where element1.@attribute = 1

• select element, element1.@attribute from model.doc where context(element1,

element1.@attribute) = 1

Syntax Rules:

• Each criteria conjunct must refer to a single context and can be criteria that applies to a mapping

class, contain a rowlimit function, or contain rowlimitexception function.

• Criteria that applies to a mapping class is associated to that mapping class via the context

function. The absence of a context function implies the criteria applies to the root context.

• At a given context the criteria can span multiple mapping classes provided that all mapping

classes involved are either parents of the context, the context itself, or a descendant of the

context.

WHERE Clause

27

Sibling Root Mapping Classes

Implied root context user criteria against a document model with sibling root

mapping classes is not generally semantically correct. It is applied as if each of the

conjuncts is applied to only a single root mapping class. This behavior is the same

as prior releases but may be fixed in a future release.

3.2.3.1. XML SELECT Command Specific Functions

XML SELECT Command functions are resemble scalar functions, but act as hints in the WHERE

clause. These functions are only valid in an XML SELECT Command.

3.2.3.1.1. Context Function

CONTEXT(arg1, arg2)

Select the context for the containing conjunct.

Syntax Rules:

• Context functions apply to the whole conjunct.

• The first argument must be an element or attribute reference from the mapping class whose

context the criteria conjunct will apply to.

• The second parameter is the return value for the function.

3.2.3.1.2. Rowlimit Function

ROWLIMIT(arg)

Limits the rows processed for the given context.

Syntax Rules:

• The first argument must be an element or attribute reference from the mapping class whose

context the row limit applies.

• The rowlimit function must be used in equality comparison criteria with the right hand expression

equal to an positive integer number or rows to limit.

• Only one row limit or row limit exception may apply to a given context.

3.2.3.1.3. Rowlimitexception Function

Limits the rows processed for the given context and throws an exception if the given number of

rows is exceeded.

Chapter 3. XML SELECT Command

28

ROWLIMITEXCEPTION(arg)

Syntax Rules:

• The first argument must be an element or attribute reference from the mapping class whose

context the row limit exception applies.

• The rowlimitexception function must be used in equality comparison criteria with the right hand

expression equal to an positive integer number or rows to limit.

• Only one row limit or row limit exception may apply to a given context.

3.2.4. ORDER BY Clause

The XML SELECT Command ORDER BY Clause specifies ordering for the referenced mapping

class queries.

Syntax Rules:

• Each order by item must be an element or attribute reference tied a output value from a mapping

class.

• The order or the order by items is the relative order they will be applied to their respective

mapping classes.

3.3. Document Generation

Document generation starts with the root mapping class and proceeds iteratively and hierarchically

over all of the child mapping classes. This can result in a large number of query executions. For

example if a document has a root mapping class with 3 child mapping classes. Then for each row

selected by the root mapping class after the application of the root context criteria, each of the

child mapping classes queries will also be executed.

Document Correctness

By default XML generated by XML documents are not checked for correctness

vs. the relevant schema. It is possible that the mapping class queries, the usage

of specific SELECT or WHERE clause values will generated a document that is

not valid with respect to the schema. See document validation on how to ensure

correctness.

Sibling or cousin elements defined by the same mapping class that do not have a common

parent in that mapping class will be treated as independent mapping classes during planning and

execution. This allows for a more document centric approach to applying criteria and order bys

to mapping classes.

Document Validation

29

3.3.1. Document Validation

The execution property XMLValidation should be set to 'true' to indicate that generated documents

should be checked for correctness. Correctness checking will not prevent invalid documents from

being generated, since correctness is checked after generation and not during.

30

Chapter 4.

31

Datatypes

4.1. Supported Types

Teiid supports a core set of runtime types. Runtime types can be different than semantic types

defined in type fields at design time. The runtime type can also be specified at design time or it

will be automatically chosen as the closest base type to the semantic type.

Table 4.1. Teiid Runtime Types

Type Description Java Runtime Class JDBC Type ODBC

Type

string or

varchar

variable length character

string with a maximum

length of 4000. Note that

the length cannot be

explicitly set with the type

literal, e.g. varchar(100).

java.lang.String VARCHAR VARCHAR

char a single Unicode

character

java.lang.Character CHAR CHAR

boolean a single bit, or Boolean,

that can be true, false, or

null (unknown)

java.lang.Boolean BIT SMALLINT

byte or

tinyint

numeric, integral type,

signed 8-bit

java.lang.Byte TINYINT SMALLINT

short or

smallint

numeric, integral type,

signed 16-bit

java.lang.Short SMALLINT SMALLINT

integer or

serial

numeric, integral type,

signed 32-bit. The serial

type also implies not

null and has an auto-

incrementing value that

starts at 1. serial types

are not automatically

UNIQUE.

java.lang.Integer INTEGER INTEGER

long or

bigint

numeric, integral type,

signed 64-bit

java.lang.Long BIGINT NUMERIC

biginteger numeric, integral type,

arbitrary precision of up to

1000 digits

java.lang.BigInteger NUMERIC NUMERIC

float or real java.lang.Float REAL FLOAT

Chapter 4. Datatypes

32

Type Description Java Runtime Class JDBC Type ODBC

Type

numeric, floating point

type, 32-bit IEEE 754

floating-point numbers

double numeric, floating point

type, 64-bit IEEE 754

floating-point numbers

java.lang.String DOUBLE DOUBLE

bigdecimal

or decimal

numeric, floating point

type, arbitrary precision of

up to 1000 digits. Note

that the precision and

scale cannot be explicitly

set with the type literal,

e.g. decimal(38, 2).

java.math.BigDecimal NUMERIC NUMERIC

date datetime, representing a

single day (year, month,

day)

java.sql.Date DATE DATE

time datetime, representing

a single time (hours,

minutes, seconds,

milliseconds)

java.sql.Time TIME TIME

timestamp datetime, representing

a single date and

time (year, month,

day, hours, minutes,

seconds, milliseconds,

nanoseconds)

java.sql.Timestamp TIMESTAMP TIMESTAMP

object any arbitrary Java

object, must implement

java.lang.Serializable

Any JAVA_OBJECT VARCHAR

blob binary large object,

representing a stream of

bytes

java.sql.Blob a BLOB VARCHAR

clob character large object,

representing a stream of

characters

java.sql.Clob b CLOB VARCHAR

xml XML document java.sql.SQLXML c JAVA_OBJECT VARCHAR

aThe concrete type is expected to be org.teiid.core.types.BlobType

bThe concrete type is expected to be org.teiid.core.types.ClobType

cThe concrete type is expected to be org.teiid.core.types.XMLType

Type Conversions

33

4.2. Type Conversions

Data types may be converted from one form to another either explicitly or implicitly. Implicit

conversions automatically occur in criteria and expressions to ease development. Explicit datatype

conversions require the use of the CONVERT function or CAST keyword.

Type Conversion Considerations

• Any type may be implicitly converted to the OBJECT type.

• The OBJECT type may be explicitly converted to any other type.

• The NULL value may be converted to any type.

• Any valid implicit conversion is also a valid explicit conversion.

• Situations involving literal values that would normally require explicit conversions may have the

explicit conversion applied implicitly if no loss of information occurs.

• When Teiid detects that an explicit conversion can not be applied implicitly in criteria, the criteria

will be treated as false. For example:

SELECT * FROM my.table WHERE created_by = ‘not a date’

Given that created_by is typed as date, rather than converting 'not a date' to a date value,

the criteria will remain as a string comparison and therefore be false.

• Explicit conversions that are not allowed between two types will result in an exception before

execution. Allowed explicit conversions may still fail during processing if the runtime values are

not actually convertable.

•

Warning

The Teiid conversions of float/double/bigdecimal/timestamp to string rely on the

JDBC/Java defined output formats. Pushdown behavior attempts to mimic these

results, but may vary depending upon the actual source type and conversion

logic. Care should be taken to not assume the string form in criteria or other

places where a variation may cause different results.

Table 4.2. Type Conversions

Source Type Valid Implicit Target Types Valid Explicit Target Types

string clob

Chapter 4. Datatypes

34

Source Type Valid Implicit Target Types Valid Explicit Target Types

char, boolean, byte, short, integer,

long, biginteger, float, double,

bigdecimal, xmla

char string

boolean string, byte, short, integer, long,

biginteger, float, double, bigdecimal

byte string, short, integer, long, biginteger,

float, double, bigdecimal

boolean

short string, integer, long, biginteger, float,

double, bigdecimal

boolean, byte

integer string, long, biginteger, double,

bigdecimal

boolean, byte, short, float

long string, biginteger, bigdecimal boolean, byte, short, integer, float,

double

biginteger string, bigdecimal boolean, byte, short, integer, long,

float, double

bigdecimal string boolean, byte, short, integer, long,

biginteger, float, double

date string, timestamp

time string, timestamp

timestamp string date, time

clob string

xml stringb

astring to xml is equivlant to XMLPARSE(DOCUMENT exp) - See also XMLPARSE

bxml to string is equivalent to XMLSERIALIZE(exp AS STRING) - see also XMLSERIALIZE

4.3. Special Conversion Cases

4.3.1. Conversion of String Literals

Teiid automatically converts string literals within a SQL statement to their implied types. This

typically occurs in a criteria comparison where an expression with a different datatype is compared

to a literal string:

SELECT * FROM my.table WHERE created_by = ‘2003-01-02’

Here if the created_by column has the datatype of date, Teiid automatically converts the string

literal to a date datatype as well.

Converting to Boolean

35

4.3.2. Converting to Boolean

Teiid can automatically convert literal strings and numeric type values to Boolean values as

follows:

Type Literal Value Boolean Value

'false' false

'unknown' null

String

other true

0 falseNumeric

other true

4.3.3. Date/Time/Timestamp Type Conversions

Teiid can implicitly convert properly formatted literal strings to their associated date-related

datatypes as follows:

String Literal Format Possible Implicit Conversion Type

yyyy-mm-dd DATE

hh:mm:ss TIME

yyyy-mm-dd hh:mm:ss.[fff...] TIMESTAMP

The formats above are those expected by the JDBC date types. To use other formats see the

functions PARSEDATE , PARSETIME , PARSETIMESTAMP .

4.4. Escaped Literal Syntax

Rather than relying on implicit conversion, datatype values may be expressed directly in SQL using

escape syntax to define the type. Note that the supplied string value must match the expected

format exactly or an exception will occur.

Table 4.3. Escaped Literal Syntax

Datatype Escaped Syntax

DATE {d 'yyyy-mm-dd'}

TIME {t 'hh-mm-ss'}

TIMESTAMP {ts 'yyyy-mm-dd hh:mm:ss.[fff...]'}

36

Chapter 5.

37

Scalar Functions
Teiid provides an extensive set of built-in scalar functions. See also SQL Support and Datatypes

. In addition, Teiid provides the capability for user defined functions or UDFs. See the Developers

Guide for adding UDFs. Once added UDFs may be called just like any other function.

5.1. Numeric Functions

Numeric functions return numeric values (integer, long, float, double, biginteger, bigdecimal). They

generally take numeric values as inputs, though some take strings.

Function Definition Datatype Constraint

+ - * / Standard numeric operators x in {integer, long,

float, double, biginteger,

bigdecimal}, return type is

same as x a

ABS(x) Absolute value of x See standard numeric

operators above

ACOS(x) Arc cosine of x x in {double, bigdecimal},

return type is double

ASIN(x) Arc sine of x x in {double, bigdecimal},

return type is double

ATAN(x) Arc tangent of x x in {double, bigdecimal},

return type is double

ATAN2(x,y) Arc tangent of x and y x, y in {double, bigdecimal},

return type is double

CEILING(x) Ceiling of x x in {double, float}, return type

is double

COS(x) Cosine of x x in {double, bigdecimal},

return type is double

COT(x) Cotangent of x x in {double, bigdecimal},

return type is double

DEGREES(x) Convert x degrees to radians x in {double, bigdecimal},

return type is double

EXP(x) e^x x in {double, float}, return type

is double

FLOOR(x) Floor of x x in {double, float}, return type

is double

FORMATBIGDECIMAL(x, y) Formats x using format y x is bigdecimal, y is string,

returns string

Chapter 5. Scalar Functions

38

Function Definition Datatype Constraint

FORMATBIGINTEGER(x, y) Formats x using format y x is biginteger, y is string,

returns string

FORMATDOUBLE(x, y) Formats x using format y x is double, y is string, returns

string

FORMATFLOAT(x, y) Formats x using format y x is float, y is string, returns

string

FORMATINTEGER(x, y) Formats x using format y x is integer, y is string, returns

string

FORMATLONG(x, y) Formats x using format y x is long, y is string, returns

string

LOG(x) Natural log of x (base e) x in {double, float}, return type

is double

LOG10(x) Log of x (base 10) x in {double, float}, return type

is double

MOD(x, y) Modulus (remainder of x / y) x in {integer, long,

float, double, biginteger,

bigdecimal}, return type is

same as x

PARSEBIGDECIMAL(x, y) Parses x using format y x, y are strings, returns

bigdecimal

PARSEBIGINTEGER(x, y) Parses x using format y x, y are strings, returns

biginteger

PARSEDOUBLE(x, y) Parses x using format y x, y are strings, returns double

PARSEFLOAT(x, y) Parses x using format y x, y are strings, returns float

PARSEINTEGER(x, y) Parses x using format y x, y are strings, returns integer

PARSELONG(x, y) Parses x using format y x, y are strings, returns long

PI() Value of Pi return is double

POWER(x,y) x to the y power x in {double, bigdecimal,

biginteger}, return is the same

type as x

RADIANS(x) Convert x radians to degrees x in {double, bigdecimal},

return type is double

RAND() Returns a random number,

using generator established so

far in the query or initializing

with system clock if necessary.

Returns double.

Parsing Numeric Datatypes from Strings

39

Function Definition Datatype Constraint

RAND(x) Returns a random number,

using new generator seeded

with x.

x is integer, returns double.

ROUND(x,y) Round x to y places; negative

values of y indicate places to

the left of the decimal point

x in {integer, float, double,

bigdecimal} y is integer, return

is same type as x

SIGN(x) 1 if x > 0, 0 if x = 0, -1 if x < 0 x in {integer, long,

float, double, biginteger,

bigdecimal}, return type is

integer

SIN(x) Sine value of x x in {double, bigdecimal},

return type is double

SQRT(x) Square root of x x in {long, double, bigdecimal},

return type is double

TAN(x) Tangent of x x in {double, bigdecimal},

return type is double

BITAND(x, y) Bitwise AND of x and y x, y in {integer}, return type is

integer

BITOR(x, y) Bitwise OR of x and y x, y in {integer}, return type is

integer

BITXOR(x, y) Bitwise XOR of x and y x, y in {integer}, return type is

integer

BITNOT(x) Bitwise NOT of x x in {integer}, return type is

integer

aThe precision and scale of non-bigdecimal arithmetic function functions results matches that of Java. The results

of bigdecimal operations match Java, except for division, which uses a preferred scale of max(16, dividend.scale +

divisor.precision + 1), which then has trailing zeros removed by setting the scale to max(dividend.scale, normalized scale)

5.1.1. Parsing Numeric Datatypes from Strings

Teiid offers a set of functions you can use to parse numbers from strings. For each string, you

need to provide the formatting of the string. These functions use the convention established

by the java.text.DecimalFormat class to define the formats you can use with these functions.

You can learn more about how this class defines numeric string formats by visiting the Sun

Java Web site at the following URL for Sun Java [http://java.sun.com/javase/6/docs/api/java/text/

DecimalFormat.html].

For example, you could use these function calls, with the formatting string that adheres to the

java.text.DecimalFormat convention, to parse strings and return the datatype you need:

http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

Chapter 5. Scalar Functions

40

Input String Function Call to

Format String

Output Value Output Datatype

'$25.30' parseDouble(cost,

'$#,##0.00;($#,##0.00)')

25.3 double

'25%' parseFloat(percent,

'#,##0%')

25 float

'2,534.1' parseFloat(total,

'#,##0.###;-

#,##0.###')

2534.1 float

'1.234E3' parseLong(amt,

'0.###E0')

1234 long

'1,234,567' parseInteger(total,

'#,##0;-#,##0')

1234567 integer

5.1.2. Formatting Numeric Datatypes as Strings

Teiid offers a set of functions you can use to convert numeric datatypes into strings. For each

string, you need to provide the formatting. These functions use the convention established

within the java.text.DecimalFormat class to define the formats you can use with these functions.

You can learn more about how this class defines numeric string formats by visiting the Sun

Java Web site at the following URL for Sun Java [http://java.sun.com/javase/6/docs/api/java/text/

DecimalFormat.html] .

For example, you could use these function calls, with the formatting string that adheres to the

java.text.DecimalFormat convention, to format the numeric datatypes into strings:

Input Value Input Datatype Function Call to

Format String

Output String

25.3 double formatDouble(cost,

'$#,##0.00;($#,##0.00)')

'$25.30'

25 float formatFloat(percent,

'#,##0%')

'25%'

2534.1 float formatFloat(total,

'#,##0.###;-

#,##0.###')

'2,534.1'

1234 long formatLong(amt,

'0.###E0')

'1.234E3'

1234567 integer formatInteger(total,

'#,##0;-#,##0')

'1,234,567'

5.2. String Functions

String functions generally take strings as inputs and return strings as outputs.

http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

String Functions

41

Unless specified, all of the arguments and return types in the following table are strings and all

indexes are 1-based. The 0 index is considered to be before the start of the string.

Function Definition Datatype Constraint

x || y Concatenation operator x,y in {string}, return type is

string

ASCII(x) Provide ASCII value of the left

most character in x. The empty

string will as input will return

null. a

return type is integer

CHR(x) CHAR(x) Provide the character for

ASCII value x a
x in {integer}

CONCAT(x, y) Concatenates x and y with

ANSI semantics. If x and/or y

is null, returns null.

x, y in {string}

CONCAT2(x, y) Concatenates x and y with

non-ANSI null semantics. If x

and y is null, returns null. If only

x or y is null, returns the other

value.

x, y in {string}

INITCAP(x) Make first letter of each word

in string x capital and all others

lowercase

x in {string}

INSERT(str1, start, length,

str2)

Insert string2 into string1 str1 in {string}, start in

{integer}, length in {integer},

str2 in {string}

LCASE(x) Lowercase of x x in {string}

LEFT(x, y) Get left y characters of x x in {string}, y in {integer},

return string

LENGTH(x) Length of x return type is integer

LOCATE(x, y) Find position of x in y starting

at beginning of y

x in {string}, y in {string}, return

integer

LOCATE(x, y, z) Find position of x in y starting

at z

x in {string}, y in {string}, z in

{integer}, return integer

LPAD(x, y) Pad input string x with spaces

on the left to the length of y

x in {string}, y in {integer},

return string

LPAD(x, y, z) Pad input string x on the left to

the length of y using character

z

x in {string}, y in {string}, z in

{character}, return string

LTRIM(x) Left trim x of blank chars x in {string}, return string

Chapter 5. Scalar Functions

42

Function Definition Datatype Constraint

QUERYSTRING(path [, expr

[AS name] ...])

Returns a properly encoded

query string appended to

the given path. Null valued

expressions are omitted, and a

null path is treated as ''.

Names are optional for column

reference expressions.

e.g. QUERYSTRING('path',

'value' as "&x", ' & ' as y, null

as z) returns

'path?%26x=value&y=%20%26%20'

path, expr in {string}. name is

an identifier

REPEAT(str1,instances) Repeat string1 a specified

number of times

str1 in {string}, instances in

{integer} return string

REPLACE(x, y, z) Replace all y in x with z x,y,z in {string}, return string

RIGHT(x, y) Get right y characters of x x in {string}, y in {integer},

return string

RPAD(input string x, pad

length y)

Pad input string x with spaces

on the right to the length of y

x in {string}, y in {integer},

return string

RPAD(x, y, z) Pad input string x on the

right to the length of y using

character z

x in {string}, y in {string}, z in

{character}, return string

RTRIM(x) Right trim x of blank chars x is string, return string

SUBSTRING(x, y) Get substring from x, from

position y to the end of x

y in {integer}

SUBSTRING(x, y, z) Get substring from x from

position y with length z

y, z in {integer}

TO_CHARS(x, encoding) Return a clob from the

blob with the given encoding.

BASE64, HEX, and the builtin

Java Charset names are valid

values for the encoding.b

x is a blob, encoding is a string,

and returns a clob

TO_BYTES(x, encoding) Return a blob from the

clob with the given encoding.

BASE64, HEX, and the builtin

Java Charset names are valid

values for the encoding.b

x in a clob, encoding is a string,

and returns a blob

TRANSLATE(x, y, z) Translate string x by replacing

each character in y with the

x in {string}

Date/Time Functions

43

Function Definition Datatype Constraint

character in z at the same

position

UCASE(x) Uppercase of x x in {string}

UNESCAPE(x) Unescaped version of x.

Possible escape sequences

are \b - backspace, \t - tab,

\n - line feed, \f - form feed,

\r - carriage return. \uXXXX,

where X is a hex value, can

be used to specify any unicode

character. \XXX, where X is

an octal digit, can be used to

specify an octal byte value. If

any other character appears

after an escape character,

that character will appear in

the output and the escape

character will be ignored.

x in {string}

aNon-ASCII range characters or integers used in these functions may produce different results or exceptions depending

on where the function is evalutated (Teiid vs. source). Teiid's uses Java default int to char and char to int conversions,

which operates over UTF16 values.

bSee the Charset JavaDoc [http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html] for more on supported

Charset names. For charsets, unmappable chars will be replaced with the charset default character. binary formats, such

as BASE64, will error in their conversion to bytes is a unrecognizable character is encountered.

5.3. Date/Time Functions

Date and time functions return or operate on dates, times, or timestamps.

Parse and format Date/Time functions use the convention established within the

java.text.SimpleDateFormat class to define the formats you can use with these functions. You can

learn more about how this class defines formats by visiting the Sun Java Web site at the following

URL for Sun Java [http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html].

Function Definition Datatype Constraint

CURDATE() Return current date returns date

CURTIME() Return current time returns time

NOW() Return current timestamp

(date and time)

returns timestamp

DAYNAME(x) Return name of day x in {date, timestamp}, returns

string

DAYOFMONTH(x) Return day of month x in {date, timestamp}, returns

integer

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Chapter 5. Scalar Functions

44

Function Definition Datatype Constraint

DAYOFWEEK(x) Return day of week

(Sunday=1)

x in {date, timestamp}, returns

integer

DAYOFYEAR(x) Return Julian day number x in {date, timestamp}, returns

integer

FORMATDATE(x, y) Format date x using format y x is date, y is string, returns

string

FORMATTIME(x, y) Format time x using format y x is time, y is string, returns

string

FORMATTIMESTAMP(x, y) Format timestamp x using

format y

x is timestamp, y is string,

returns string

FROM_UNIXTIME

(unix_timestamp)

Return the Unix timestamp

(in seconds) as a Timestamp

value

Unix timestamp (in seconds)

HOUR(x) Return hour (in military 24-

hour format)

x in {time, timestamp}, returns

integer

MINUTE(x) Return minute x in {time, timestamp}, returns

integer

MODIFYTIMEZONE

(timestamp, startTimeZone,

endTimeZone)

Returns a timestamp based

upon the incoming timestamp

adjusted for the differential

between the start and end

time zones. i.e. if the

server is in GMT-6, then

modifytimezone({ts '2006-

01-10 04:00:00.0'},'GMT-7',

'GMT-8') will return the

timestamp {ts '2006-01-10

05:00:00.0'} as read in GMT-

6. The value has been

adjusted 1 hour ahead to

compensate for the difference

between GMT-7 and GMT-8.

startTimeZone and

endTimeZone are strings,

returns a timestamp

MODIFYTIMEZONE

(timestamp, endTimeZone)

Return a timestamp in the

same manner as

modifytimezone(timestamp,

startTimeZone,

endTimeZone), but will

assume that the

startTimeZone is the same as

the server process.

Timestamp is a timestamp;

endTimeZone is a string,

returns a timestamp

Date/Time Functions

45

Function Definition Datatype Constraint

MONTH(x) Return month x in {date, timestamp}, returns

integer

MONTHNAME(x) Return name of month x in {date, timestamp}, returns

string

PARSEDATE(x, y) Parse date from x using format

y

x, y in {string}, returns date

PARSETIME(x, y) Parse time from x using format

y

x, y in {string}, returns time

PARSETIMESTAMP(x,y) Parse timestamp from x using

format y

x, y in {string}, returns

timestamp

QUARTER(x) Return quarter x in {date, timestamp}, returns

integer

SECOND(x) Return seconds x in {time, timestamp}, returns

integer

TIMESTAMPCREATE(date,

time)

Create a timestamp from a

date and time

date in {date}, time in {time},

returns timestamp

TIMESTAMPADD(interval,

count, timestamp)

Add a specified interval (hour,

day of week, month) to the

timestamp, where intervals

can have the following

definition:

1. SQL_TSI_FRAC_SECOND

- fractional seconds

(billionths of a second)

2. SQL_TSI_SECOND -

seconds

3. SQL_TSI_MINUTE -

minutes

4. SQL_TSI_HOUR - hours

5. SQL_TSI_DAY - days

6. SQL_TSI_WEEK - weeks

7. SQL_TSI_MONTH -

months

8. SQL_TSI_QUARTER -

quarters (3 months)

The interval constant may be

specified either as a string

literal or a constant value.

Interval in {string}, count in

{integer}, timestamp in {date,

time, timestamp}

Chapter 5. Scalar Functions

46

Function Definition Datatype Constraint

9. SQL_TSI_YEAR - years

TIMESTAMPDIFF(interval,

startTime, endTime)

Calculate the approximate

number of whole intervals in

(endTime - startTime) using

a specific interval type (as

defined by the constants

in TIMESTAMPADD). If

(endTime > startTime), a

positive number will be

returned. If (endTime <

startTime), a negative number

will be returned. Calculations

are approximate and may be

less accurate over longer time

spans.

Interval in {string}; startTime,

endTime in {timestamp},

returns a long.

WEEK(x) Return week in year x in {date, timestamp}, returns

integer

YEAR(x) Return four-digit year x in {date, timestamp}, returns

integer

5.3.1. Parsing Date Datatypes from Strings

Teiid does not implicitly convert strings that contain dates presented in different formats, such

as ‘19970101’ and ‘31/1/1996’ to date-related datatypes. You can, however, use the parseDate,

parseTime, and parseTimestamp functions, described in the next section, to explicitly convert

strings with a different format to the appropriate datatype. These functions use the convention

established within the java.text.SimpleDateFormat class to define the formats you can use

with these functions. You can learn more about how this class defines date and time string

formats by visiting the Sun Java Web site [http://java.sun.com/j2se/1.4.2/docs/api/java/text/

SimpleDateFormat.html] .

For example, you could use these function calls, with the formatting string that adheres to the

java.text.SimpleDateFormat convention, to parse strings and return the datatype you need:

String Function Call To Parse String

'1997010' parseDate(myDateString, 'yyyyMMdd')

'31/1/1996' parseDate(myDateString, 'dd''/''MM''/''yyyy')

'22:08:56 CST' parseTime (myTime, 'HH:mm:ss z')

'03.24.2003 at 06:14:32' parseTimestamp(myTimestamp, 'MM.dd.yyyy

''at'' hh:mm:ss')

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Specifying Time Zones

47

5.3.2. Specifying Time Zones

Time zones can be specified in several formats. Common abbreviations such as EST for "Eastern

Standard Time" are allowed but discouraged, as they can be ambiguous. Unambiguous time

zones are defined in the form continent or ocean/largest city. For example, America/New_York,

America/Buenos_Aires, or Europe/London. Additionally, you can specify a custom time zone by

GMT offset: GMT[+/-]HH:MM.

For example: GMT-05:00

5.4. Type Conversion Functions

Within your queries, you can convert between datatypes using the CONVERT or CAST keyword.

See also Data Type Conversions .

Function Definition

CONVERT(x, type) Convert x to type, where type is a Teiid Base

Type

CAST(x AS type) Convert x to type, where type is a Teiid Base

Type

These functions are identical other than syntax; CAST is the standard SQL syntax, CONVERT is

the standard JDBC/ODBC syntax.

5.5. Choice Functions

Choice functions provide a way to select from two values based on some characteristic of one

of the values.

Function Definition Datatype Constraint

COALESCE(x,y+) Returns the first non-null

parameter

x and all y's can be any

compatible types

IFNULL(x,y) If x is null, return y; else return

x

x, y, and the return type must

be the same type but can be

any type

NVL(x,y) If x is null, return y; else return

x

x, y, and the return type must

be the same type but can be

any type

NULLIF(param1, param2) Equivalent to case when

(param1 = param2) then null

else param1

param1 and param2 must be

compatable comparable types

IFNULL and NVL are aliases of each other. They are the same function.

Chapter 5. Scalar Functions

48

5.6. Decode Functions

Decode functions allow you to have the Teiid Server examine the contents of a column in a result

set and alter, or decode, the value so that your application can better use the results.

Function Definition Datatype Constraint

DECODESTRING(x, y) Decode column x using string

of value pairs y and return the

decoded column as a string

all string

DECODESTRING(x, y, z) Decode column x using string

of value pairs y with delimiter

z and return the decoded

column as a string

all string

DECODEINTEGER(x, y) Decode column x using string

of value pairs y and return the

decoded column as an integer

all string parameters, return

integer

DECODEINTEGER(x,y,z) Decode column x using string

of value pairs y with delimiter

z and return the decoded

column as an integer

all string parameters, return

integer

Within each function call, you include the following arguments:

1. x is the input value for the decode operation. This will generally be a column name.

2. y is the literal string that contains a delimited set of input values and output values.

3. z is an optional parameter on these methods that allows you to specify what delimiter the string

specified in y uses.

For example, your application might query a table called PARTS that contains a column called

IS_IN_STOCK which contains a Boolean value that you need to change into an integer for your

application to process. In this case, you can use the DECODEINTEGER function to change the

Boolean values to integers:

SELECT DECODEINTEGER(IS_IN_STOCK, 'false, 0, true, 1') FROM PartsSupplier.PARTS;

When the Teiid System encounters the value false in the result set, it replaces the value with 0.

If, instead of using integers, your application requires string values, you can use the

DECODESTRING function to return the string values you need:

Lookup Function

49

SELECT DECODESTRING(IS_IN_STOCK, 'false, no, true, yes, null') FROM

 PartsSupplier.PARTS;

In addition to two input/output value pairs, this sample query provides a value to use if the column

does not contain any of the preceding input values. If the row in the IS_IN_STOCK column does

not contain true or false, the Teiid Server inserts a null into the result set.

When you use these DECODE functions, you can provide as many input/output value pairs if you

want within the string. By default, the Teiid System expects a comma delimiter, but you can add

a third parameter to the function call to specify a different delimiter:

SELECT DECODESTRING(IS_IN_STOCK, 'false:no:true:yes:null',’:’) FROM

 PartsSupplier.PARTS;

You can use keyword null in the DECODE string as either an input value or an output value to

represent a null value. However, if you need to use the literal string null as an input or output

value (which means the word null appears in the column and not a null value) you can put the

word in quotes: "null".

SELECT DECODESTRING(IS_IN_STOCK, 'null,no,"null",no,nil,no,false,no,true,yes') FROM

 PartsSupplier.PARTS;

If the DECODE function does not find a matching output value in the column and you have not

specified a default value, the DECODE function will return the original value the Teiid Server found

in that column.

5.7. Lookup Function

The Lookup function allows you to cache a key value pair table and access it through a scalar

function. This caching accelerates response time to queries that use the lookup tables, known in

business terminology as lookup tables or code tables.

LOOKUP(codeTable, returnColumn, keyColumn, keyValue)

In the lookup table codeTable, find the row where keyColumn has the value keyValue and return

the associated returnColumn. codeTable must be a fully-qualified string literal containing metadata

identifiers, keyValue datatype must match datatype of the keyColumn, return datatype matches

that of returnColumn. returnColumn and keyColumn parameters should use their shortened

names.

For example, a StatePostalCodes table used to translate postal codes to complete state names

might represent an example of this type of lookup table. One column, PostalCode, represents a

Chapter 5. Scalar Functions

50

key column. Other tables refer to this two-letter code. A second column, StateDisplayName, would

represent the complete name of the state. Hence, a query to this lookup table would typically

provide the PostalCode and expect the StateDisplayName in response.

When you call this function for any combination of codeTable, returnColumn, and keyColumn for

the first time, the Teiid System caches the result. The Teiid System uses this cache for all queries,

in all sessions, that later access this lookup table.

The Teiid System unloads these cached lookup tables when you stop and restart the Teiid System.

Thus, you should not use this function for data that is subject to updates. Instead, you can use it

against static data that does not change over time.

Note

• The keyColumn is expected to contain unique values. If the column contains

duplicate values, an exception will be thrown.

5.8. System Functions

System functions provide access to information in the Teiid system from within a query.

Function Definition Datatype Constraint

COMMANDPAYLOAD() Retrieve the string form of

the command payload or

null if no command payload

was specified. The command

payload is set by a method on

the Teiid JDBC API extensions

on a per-query basis.

Returns a string

COMMANDPAYLOAD(key) Cast the command payload

object to a java.util.Properties

object and look up the

specified key in the object

key in {string}, return is string

ENV(key) Retrieve a system

environment property. The

only key specific to

the current session is

‘sessionid’. However the

preferred mechanism for

getting the session id

is with the session_id()

function. To prevent

untrusted access to system

key in {string}, return is string

XML Functions

51

Function Definition Datatype Constraint

properties, the use of

this function must be

specifically enabled in

the <jboss-install>/

server/<profile>/deploy/

teiid/teiid-jboss-

beans.xml file.

SESSION_ID() Retrieve the string form of the

current session id.

return is string

USER() Retrieve the name of the user

executing the query

return is string

CURRENT_DATABASE() Retrieve the catalog name of

the database. Currently VDB's

name is also the catalog

name.

return is string

5.9. XML Functions

XML functions provide functionality for working with XML data.

5.9.1. JSONTOXML

Returns an xml document from JSON.

JSONTOXML(rootElementName, json)

rootElementName is a string, json is in {clob, blob}. Return value is xml.

The appropriate UTF encoding (8, 16LE. 16BE, 32LE, 32BE) will be detected for JSON blobs. If

another encoding is used, see the to_chars function.

The result is always a well-formed XML document.

The mapping to XML uses the following rules:

• The current element name is initially the rootElementName, and becomes the object value name

as the JSON structure is traversed.

• All element names must be valid xml 1.1 names. Invalid names are fully escaped according to

the SQLXML specification.

• Each object or primitive value will be enclosed in an element with the current name.

• Unless an array value is the root, it will not be enclosed in an additional element.

Chapter 5. Scalar Functions

52

• Null values will be represented by an empty element with the attribute xsi:nil="true"

Example 5.1. Sample JSON to XML for jsonToXml('person', x)

JSON:

{ "firstName" : "John" , "children" : ["Randy", "Judy"] }

XML:

<?xml version="1.0" ?><person><firstName>John</firstName><children>Randy</

children><children>Judy<children></person>

Example 5.2. Sample JSON to XML for jsonToXml('person', x) with a root

array.

JSON:

[{ "firstName" : "George" }, { "firstName" : "Jerry" }]

XML (Notice there is an extra "person" wrapping element to keep the XML well-formed):

<?xml version="1.0" ?><person><person><firstName>George</firstName></

person><person><firstName>Jerry</firstName></person></person>

5.9.2. XMLCOMMENT

Returns an xml comment.

XMLCOMMENT(comment)

Comment is a string. Return value is xml.

5.9.3. XMLCONCAT

Returns an XML with the concatination of the given xml types.

XMLCONCAT(content [, content]*)

Content is xml. Return value is xml.

XMLELEMENT

53

If a value is null, it will be ignored. If all values are null, null is returned.

5.9.4. XMLELEMENT

Returns an XML element with the given name and content.

XMLELEMENT([NAME] name [, <NSP>] [, <ATTR>][, content]*)

ATTR:=XMLATTRIBUTES(exp [AS name] [, exp [AS name]]*)

NSP:=XMLNAMESPACES((uri AS prefix | DEFAULT uri | NO DEFAULT))+

If the content value is of a type other than xml, it will be escaped when added to the parent

element. Null content values are ignored. Whitespace in XML or the string values of the content

is preserved, but no whitespace is added between content values.

XMLNAMESPACES is used provide namespace information. NO DEFAULT is equivalent to

defining the default namespace to the null uri - xmlns="". Only one DEFAULT or NO DEFAULT

namespace item may be specified. The namespace prefixes xmlns and xml are reserved.

If a attribute name is not supplied, the expression must be a column reference, in which case the

attribute name will be the column name. Null attribute values are ignored.

Name, prefix are identifiers. uri is a string literal. content can be any type. Return value is xml.

The return value is valid for use in places where a document is expected.

Example: with an xml_value of <doc/>,

xmlelement('elem', 1, '<2/>', xml_value)

Returns: <elem>1<2/><doc/><elem/>

5.9.5. XMLFOREST

Returns an concatination of XML elements for each content item.

XMLFOREST(content [AS name] [, <NSP>] [, content [AS name]]*)

See XMLELEMENT for the definition of NSP - XMLNAMESPACES [53].

Name is an identifier. Content can be any type. Return value is xml.

If a name is not supplied for a content item, the expression must be a column reference, in which

case the element name will be a partially escaped version of the column name.

Chapter 5. Scalar Functions

54

5.9.6. XMLPARSE

Returns an XML type representation of the string value expression.

XMLPARSE((DOCUMENT|CONTENT) expr [WELLFORMED])

expr in {string, clob, blob}. Return value is xml.

If DOCIMENT is specfied then the expression must have a single root element and may or may

not contain an XML declaration.

If WELLFORMED is specified then validation is skipped; this is especially useful for CLOB and

BLOB known to already be valid.

5.9.7. XMLPI

Returns an xml processing instruction.

XMLPI([NAME] name [, content])

Name is an identifier. Content is a string. Return value is xml.

5.9.8. XMLQUERY

Returns the XML result from evaluating the given xquery.

XMLQUERY([<NSP>] xquery [<PASSING>] [(NULL|EMPTY) ON EMPTY]]

PASSING:=PASSING exp [AS name] [, exp [AS name]]*

See XMLELEMENT for the definition of NSP - XMLNAMESPACES [53].

Namespaces may also be directly declared in the xquery prolog.

The optional PASSING clause is used to provide the context item, which does not have a name,

and named global variable values. If the xquery uses a context item and none is provided, then

an exception will be raised. Only one context item may be specified and should be an XML type.

All non-context non-XML passing values will be converted to an appropriate XML type.

The ON EMPTY clause is used to specify the result when the evaluted sequence is empty. EMPTY

ON EMPTY, the default, returns an empty XML result. NULL ON EMPTY returns a null result.

xquery in string. Return value is xml.

XMLQUERY is part of the SQL/XML 2006 specification.

See also XMLTABLE

XMLSERIALIZE

55

Note

A technique known as document projection is used to reduce the memory

footprint of the context item document. Only the parts of the document needed

by the XQuery path expressions will be loaded into memory. Since document

projection analysis uses all relevant path expressions, even 1 expression that could

potentially use many nodes, e.g. //x rather than /a/b/x will cause a larger memory

footprint.

5.9.9. XMLSERIALIZE

Returns a character type representation of the xml expression.

XMLSERIALIZE([(DOCUMENT|CONTENT)] xml [AS datatype])

Return value mathces datatype.

Only a character type (string, varchar, clob) may be specified as the datatype. CONTENT is the

default. If DOCUMENT is specified and the xml is not a valid document or fragment, then an

exception is raised.

5.9.10. XSLTRANSFORM

Applies an XSL stylesheet to the given document.

XSLTRANSFORM(doc, xsl)

Doc, xsl in {string, clob, xml}. Return value is a clob.

If either argument is null, the result is null.

5.9.11. XPATHVALUE

Applies the XPATH expression to the document and returns a string value for the first matching

result.

XPATHVALUE(doc, xpath)

Doc and xpath in {string, clob, xml}. Return value is a string.

Matching a non-text node will still produce a string result, which includes all descendent text nodes.

Example 5.3. Sample xpathValue Ignoring Namespaces

XML value:

Chapter 5. Scalar Functions

56

<?xml version="1.0" ?><ns1:return xmlns:ns1="http://com.test.ws/

exampleWebService">Hello<x> World</x></return>

Function:

xpathValue(value, '/*[local-name()="return"])

Results in 'Hello World'

See also Section 5.9.8, “XMLQUERY”

5.10. Security Functions

Security functions provide the ability to interact with the security system.

5.10.1. HASROLE

Whether the current caller has the role roleName.

hasRole([roleType,] roleName)

roleName must be a string, the return type is boolean.

The two argument form is provided for backwards compatibility. roleType is a string and must

be 'data'

5.11. Miscellaneous Functions

Other functions.

5.11.1. array_get

Retuns the object value at a given array index.

array_get(array, index)

array is the object type, index must be an integer, and the return type is object.

1-based indexing is used. The actual array value should be a java.sql.Array or java array type. An

exception will be thrown if the array value is the wrong type of the index is out of bounds.

5.11.2. array_length

Returns the length for a given array

uuid

57

array_length(array)

array is the object type, and the return type is integer.

The actual array value should be a java.sql.Array or java array type. An exception will be thrown

if the array value is the wrong type.

5.11.3. uuid

Retuns a universally unique identifier.

uuid()

the return type is string.

Generates a type 4 (pseudo randomly generated) UUID using a cryptographically strong random

number generator. The format is XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX where each

X is a hex digit.

5.12. Nondeterministic Function Handling

Teiid categorizes functions by varying degrees of determinism. When a function is evaluated and

to what extent the result can be cached are based upon its determinism level.

1. Deterministic - the function will always return the same result for the given inputs. Deterministic

functions are evaluated by the engine as soon as all input values are known, which may

occur as soon as the rewrite phase. Some functions, such as the lookup function, are not truly

deterministic, but is treated as such for performance. All functions not categorized below are

considered deterministic.

2. User Deterministic - the function will return the same result for the given inputs for the same

user. This includes the hasRole and user functions. User deterministic functions are evaluated

by the engine as soon as all input values are known, which may occur as soon as the rewrite

phase. If a user deterministic function is evaluated during the creation of a prepared processing

plan, then the resulting plan will be cached only for the user.

3. Session Deterministic - the function will return the same result for the given inputs under the

same user session. This category includes the env function. Session deterministic functions

are evaluated by the engine as soon as all input values are known, which may occur as soon

as the rewrite phase. If a session deterministic function is evaluated during the creation of a

prepared processing plan, then the resulting plan will be cached only for the user's session.

4. Command Deterministic - the result of function evaluation is only deterministic within the scope

of the user command. This category include the curdate, curtime, now, and commandpayload

functions. Command deterministic functions are delayed in evaluation until processing to

ensure that even prepared plans utilizing these functions will be executed with relevant values.

Chapter 5. Scalar Functions

58

Command deterministic function evaulation will occur prior to pushdown - however multiple

occurances of the same command deterministic time function are not guarenteed to evaluate

to the same value.

5. Nondeterministic - the result of function evaluation is fully nondeterministic. This category

includes the rand function and UDFs marked as nondeterministic. Nondeterministic functions

are delayed in evaluation until processing with a preference for pushdown. If the function is not

pushed down, then it may be evaluated for every row in it's execution context (for example if

the function is used in the select clause).

Chapter 6.

59

Updatable Views
Any view may be marked as updatable. In many circumstances the view definition may allow the

view to be inherently updatable without the need to manually define handing of INSERT/UPDATE/

DELETE operations.

An inherently updatable view cannot be defined with a query that has:

• A set operation (INTERSECT, EXCEPT, UNION).

• SELECT DISTINCT

• Aggregation (aggregate functions, GROUP BY, HAVING)

• A LIMIT clause

A UNION ALL can define an inherently updatable view only if each of the UNION branches is

itself inherently updatable. A view defined by a UNION ALL can support inherent INSERTs if it

is a Section 13.2.8, “Partitioned Union” and the INSERT specifies values that belong to a single

partition.

Any view column that is not mapped directly to a column is not updatable and cannot be targeted

by an UPDATE set clause or be an INSERT column.

If a view is defined by a join query or has a WITH clause it may still be inherently updatable.

However in these situations there are further restrictions and the resulting query plan may execute

multiple statements. For a non-simple query to be updatable, it is required:

• An INSERT/UPDATE can only modify a single Section 6.1, “Key-preserved Table”.

• To allow DELETE operations there must be only a single Section 6.1, “Key-preserved Table”.

If the default handling is not available or you wish to have an alternative implementation of

an INSERT/UPDATE/DELETE, then you may use Section 7.3, “Update Procedures” to define

procedures to handle the respective operations.

6.1. Key-preserved Table

A key-preserved table has a primary or unique key that would remain unique if it were projected

into the result of the query. Note that it is not actually required for a view to reference the key

columns in the SELECT clause. The query engine can detect a key preserved table by analyzing

the join structure. The engine will ensure that a join of a key-preserved table must be against one

of its foreign keys.

60

Chapter 7.

61

Procedures

7.1. Procedure Language

Teiid supports a procedural language for defining virtual procedures . These are similar to stored

procedures in relational database management systems. You can use this language to define the

transformation logic for decomposing INSERT, UPDATE, and DELETE commands against views;

these are known as update procedures .

7.1.1. Command Statement

A command statement executes a SQL command , such as SELECT, INSERT, UPDATE,

DELETE, or EXECUTE, against one or more data sources.

Example 7.1. Example Command Statements

SELECT * FROM MySchema.MyTable WHERE ColA > 100;

INSERT INTO MySchema.MyTable (ColA,ColB) VALUES (50, 'hi');

EXECUTE command statements may access IN/OUT, OUT, and RETURN parameters. To

access the return value the statement will have the form var = EXEC proc.... To

access OUT or IN/OUT values named parameter syntax must be used. For example, EXEC

proc(in_param=>'1', out_param=>var) will assign the value of the out parameter to the

variable var. It is expected that the datatype of parameter will be implicitly convertable to the

datatype of the variable.

7.1.2. Dynamic SQL Command

Dynamic SQL allows for the execution of an arbitrary SQL command in a virtual procedure.

Dynamic SQL is useful in situations where the exact command form is not known prior to

execution.

Usage:

EXECUTE STRING <expression> [AS <variable> <type> [, <variable> <type>]*

 [INTO <variable>]]

[USING <variable>=<expression> [,<variable>=<expression>]*] [UPDATE

 <literal>]

Syntax Rules:

• The "AS" clause is used to define the projected symbols names and types returned by the

executed SQL string. The "AS" clause symbols will be matched positionally with the symbols

Chapter 7. Procedures

62

returned by the executed SQL string. Non-convertible types or too few columns returned by the

executed SQL string will result in an error.

• The "INTO" clause will project the dynamic SQL into the specified temp table. With the "INTO"

clause specified, the dynamic command will actually execute a statement that behaves like an

INSERT with a QUERY EXPRESSION. If the dynamic SQL command creates a temporary table

with the "INTO" clause, then the "AS" clause is required to define the table’s metadata.

• The "USING" clause allows the dynamic SQL string to contain variable references that are

bound at runtime to specified values. This allows for some independence of the SQL string

from the surrounding procedure variable names and input names. In the dynamic command

"USING" clause, each variable is specified by short name only. However in the dynamic SQL

the "USING" variable must be fully qualified to "UVAR.". The "USING" clause is only for values

that will be used in the dynamic SQL as legal expressions. It is not possible to use the "USING"

clause to replace table names, keywords, etc. This makes using symbols equivalent in power

to normal bind (?) expressions in prepared statements. The "USING" clause helps reduce the

amount of string manipulation needed. If a reference is made to a USING symbol in the SQL

string that is not bound to a value in the "USING" clause, an exception will occur.

• The "UPDATE" clause is used to specify the updating model count. Accepted values are (0,1,*).

0 is the default value if the clause is not specified.

Example 7.2. Example Dynamic SQL

...

/* Typically complex criteria would be formed based upon inputs to the procedure.

 In this simple example the criteria is references the using clause to isolate

 the SQL string from referencing a value from the procedure directly */

DECLARE string criteria = 'Customer.Accounts.Last = DVARS.LastName';

/* Now we create the desired SQL string */

DECLARE string sql_string = 'SELECT ID, First || ‘‘ ‘‘ || Last AS Name, Birthdate FROM

 Customer.Accounts WHERE ' || criteria;

/* The execution of the SQL string will create the #temp table with the columns (ID, Name,

 Birthdate).

 Note that we also have the USING clause to bind a value to LastName, which is referenced in

 the criteria. */

EXECUTE STRING sql_string AS ID integer, Name string, Birthdate date INTO #temp USING

 LastName='some name';

/* The temp table can now be used with the values from the Dynamic SQL */

loop on (SELCT ID from #temp) as myCursor

...

Here is an example showing a more complex approach to building criteria for the dynamic SQL

string. In short, the virtual procedure AccountAccess.GetAccounts has inputs ID, LastName, and

Dynamic SQL Command

63

bday. If a value is specified for ID it will be the only value used in the dynamic SQL criteria.

Otherwise if a value is specified for LastName the procedure will detect if the value is a search

string. If bday is specified in addition to LastName, it will be used to form compound criteria with

LastName.

Example 7.3. Example Dynamic SQL with USING clause and dynamically

built criteria string

...

DECLARE string crit = null;

IF (AccountAccess.GetAccounts.ID IS NOT NULL)

 crit = ‘(Customer.Accounts.ID = DVARS.ID)’;

ELSE IF (AccountAccess.GetAccounts.LastName IS NOT NULL)

BEGIN

 IF (AccountAccess.GetAccounts.LastName == ‘%’)

 ERROR "Last name cannot be %";

 ELSE IF (LOCATE(‘%’, AccountAccess.GetAccounts.LastName) < 0)

 crit = ‘(Customer.Accounts.Last = DVARS.LastName)’;

 ELSE

 crit = ‘(Customer.Accounts.Last LIKE DVARS.LastName)’;

 IF (AccountAccess.GetAccounts.bday IS NOT NULL)

 crit = ‘(‘ || crit || ‘ and (Customer.Accounts.Birthdate = DVARS.BirthDay))’;

END

ELSE

 ERROR "ID or LastName must be specified.";

EXECUTE STRING ‘SELECT ID, First || ‘‘ ‘‘ || Last AS

 Name, Birthdate FROM Customer.Accounts WHERE ’ || crit USING

 ID=AccountAccess.GetAccounts.ID, LastName=AccountAccess.GetAccounts.LastName,

 BirthDay=AccountAccess.GetAccounts.Bday;

...

Known Limitations and Work-Arounds

• The use of dynamic SQL command results in an assignment statement requires the use of a

temp table.

Example 7.4. Example Assignment

EXECUTE STRING <expression> AS x string INTO #temp;

DECLARE string VARIABLES.RESULT = (SELECT x FROM #temp);

Chapter 7. Procedures

64

• The construction of appropriate criteria will be cumbersome if parts of the criteria are not present.

For example if "criteria" were already NULL, then the following example results in "criteria"

remaining NULL.

Example 7.5. Example Dangerous NULL handling

...

criteria = ‘(‘ || criteria || ‘ and (Customer.Accounts.Birthdate = DVARS.BirthDay))’;

The preferred approach is for the user to ensure the criteria is not NULL prior its usage. If this

is not possible, a good approach is to specify a default as shown in the following example.

Example 7.6. Example NULL handling

...

criteria = ‘(‘ || nvl(criteria, ‘(1 = 1)’) || ‘ and (Customer.Accounts.Birthdate = DVARS.BirthDay))’;

• If the dynamic SQL is an UPDATE, DELETE, or INSERT command, and the user needs to

specify the "AS" clause (which would be the case if the number of rows effected needs to be

retrieved). The user will still need to provide a name and type for the return column if the into

clause is specified.

Example 7.7. Example with AS and INTO clauses

/* This name does not need to match the expected update command symbol "count". */

EXECUTE STRING <expression> AS x integer INTO #temp;

• Unless used in other parts of the procedure, tables in the dynamic command will not be seen

as sources in the Designer.

• When using the "AS" clause only the type information will be available to the Designer. ResultSet

columns generated from the "AS" clause then will have a default set of properties for length,

precision, etc.

7.1.3. Declaration Statement

A declaration statement declares a variable and its type. After you declare a variable, you can use

it in that block within the procedure and any sub-blocks. A variable is initialized to null by default,

but can also be assigned the value of an expression as part of the declaration statement.

Usage:

Assignment Statement

65

DECLARE <type> [VARIABLES.]<name> [= <expression>];

Example Syntax

• declare integer x;

• declare string VARIABLES.myvar = 'value';

Syntax Rules:

• You cannot redeclare a variable with a duplicate name in a sub-block

• The VARIABLES group is always implied even if it is not specified.

• The assignment value follows the same rules as for an Assignment Statement.

7.1.4. Assignment Statement

An assignment statement assigns a value to a variable by either evaluating an expression.

Usage:

<variable reference> = <expression>;

Example Syntax

• myString = 'Thank you';

• VARIABLES.x = (SELECT Column1 FROM MySchema.MyTable);

7.1.4.1. Special Variables

VARIABLES.ROWCOUNT integer variable will contain the numbers of rows affected by the last insert/

update/delete command statement executed. Inserts that are processed by dynamic sql with an

into clause will also update the ROWCOUNT.

Example 7.8. Sample Usage

...

UPDATE FOO SET X = 1 WHERE Y = 2;

DECLARE INTEGER UPDATED = VARIABLES.ROWCOUNT;

...

7.1.5. If Statement

An IF statement evaluates a condition and executes either one of two blocks depending on

the result. You can nest IF statements to create complex branching logic. A dependent ELSE

statement will execute its block of code only if the IF statement evaluates to false.

Chapter 7. Procedures

66

Example 7.9. Example If Statement

IF (var1 = 'North America')

BEGIN

 ...statement...

END ELSE

BEGIN

 ...statement...

END

Note

NULL values should be considered in the criteria of an IF statement. IS NULL

criteria can be used to detect the presense of a NULL value.

7.1.6. Loop Statement

A LOOP statement is an iterative control construct that is used to cursor through a result set.

Usage:

LOOP ON <select statement> AS <cursorname>

BEGIN

 ...

END

7.1.7. While Statement

A WHILE statement is an iterative control construct that is used to execute a set of statements

repeatedly whenever a specified condition is met.

Usage:

WHILE <criteria>

BEGIN

 ...

END

7.1.8. Continue Statement

A CONTINUE statement is used inside a LOOP or WHILE construct to continue with the next

loop by skipping over the rest of the statements in the loop. It must be used inside a LOOP or

WHILE statement.

Break Statement

67

7.1.9. Break Statement

A BREAK statement is used inside a LOOP or WHILE construct to break from the loop. It must

be used inside a LOOP or WHILE statement.

7.1.10. Error Statement

An ERROR statement declares that the procedure has entered an error state and should abort.

This statement will also roll back the current transaction, if one exists. Any valid expression can

be specified after the ERROR keyword.

Example 7.10. Example Error Statement

ERROR 'Invalid input value: ' || nvl(Acct.GetBalance.AcctID, 'null');

7.2. Virtual Procedures

Virtual procedures are defined using the Teiid procedural language. A virtual procedure has zero

or more input parameters, and a result set return type. Virtual procedures support the ability to

execute queries and other SQL commands, define temporary tables, add data to temporary tables,

walk through result sets, use loops, and use conditional logic.

7.2.1. Virtual Procedure Definition

Usage:

CREATE VIRTUAL PROCEDURE

BEGIN

 ...

END

The CREATE VIRTUAL PROCEDURE line demarcates the beginning of the procedure. The

BEGIN and END keywords are used to denote block boundaries. Within the body of the procedure,

any valid statement may be used.

There is no explict cursoring or return statement, rather the last command statement executed in

the procedure that returns a result set will be returned as the result. The output of that statement

must match the expected result set and parameters of the procedure.

7.2.2. Procedure Parameters

Virtual procedures can take zero or more IN/INOUT parameters and may also have any number

of OUT parameters and an optional RETURN parameter. Each input has the following information

that is used during runtime processing:

Chapter 7. Procedures

68

• Name - The name of the input parameter

• Datatype - The design-time type of the input parameter

• Default value - The default value if the input parameter is not specified

• Nullable - NO_NULLS, NULLABLE, NULLABLE_UNKNOWN; parameter is optional if nullable,

and is not required to be listed when using named parameter syntax

You reference a parameter in a virtual procedure by using the fully-qualified name of the param

(or less if unambiguous). For example, MySchema.MyProc.Param1.

Example 7.11. Example of Referencing an Input Parameter and Assigning

an Out Parameter for 'GetBalance' Procedure

CREATE VIRTUAL PROCEDURE

BEGIN

 MySchema.GetBalance.RetVal = UPPER(MySchema.GetBalance.AcctID);

 SELECT Balance FROM MySchema.Accts WHERE MySchema.Accts.AccountID =

 MySchema.GetBalance.AcctID;

END

If an INOUT parameter is not assigned any value in a procedure it will remain the value it was

assigned for input. Any OUT/RETURN parameter not assigned a value will remain the as the

default NULL value. The INOUT/OUT/RETURN output values are validated against the NOT NULL

metadata of the parameter.

7.2.3. Example Virtual Procedures

This example is a LOOP that walks through a cursored table and uses CONTINUE and BREAK.

Example 7.12. Virtual Procedure Using LOOP, CONTINUE, BREAK

CREATE VIRTUAL PROCEDURE

BEGIN

 DECLARE double total;

 DECLARE integer transactions;

 LOOP ON (SELECT amt, type FROM CashTxnTable) AS txncursor

 BEGIN

 IF(txncursor.type <> 'Sale')

 BEGIN

 CONTINUE;

 END ELSE

Executing Virtual Procedures

69

 BEGIN

 total = (total + txncursor.amt);

 transactions = (transactions + 1);

 IF(transactions = 100)

 BEGIN

 BREAK;

 END

 END

 END

 SELECT total, (total / transactions) AS avg_transaction;

END

This example is uses conditional logic to determine which of two SELECT statements to execute.

Example 7.13. Virtual Procedure with Conditional SELECT

CREATE VIRTUAL PROCEDURE

BEGIN

 DECLARE string VARIABLES.SORTDIRECTION;

 VARIABLES.SORTDIRECTION = PartsVirtual.OrderedQtyProc.SORTMODE;

 IF (ucase(VARIABLES.SORTDIRECTION) = 'ASC')

 BEGIN

 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >

 PartsVirtual.OrderedQtyProc.QTYIN ORDER BY PartsVirtual.SupplierInfo.PART_ID;

 END ELSE

 BEGIN

 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >

 PartsVirtual.OrderedQtyProc.QTYIN ORDER BY PartsVirtual.SupplierInfo.PART_ID DESC;

 END

END

7.2.4. Executing Virtual Procedures

You execute procedures using the SQL EXECUTE command. If the procedure has defined inputs,

you specify those in a sequential list, or using "name=value" syntax. You must use the name of

the input parameter, scoped by the full procedure name if the parameter name is ambiguous in

the context of other columns or variables in the procedure.

A virtual procedure call will return a result set just like any SELECT, so you can use this in many

places you can use a SELECT. Typically you'll use the following syntax:

Chapter 7. Procedures

70

SELECT * FROM (EXEC ...) AS x

7.2.5. Limitations

Teiid virtual procedures can only be defined in Teiid Designer. They also cannot use IN/OUT,

OUT, or RETURN paramters and may only return 1 result set.

7.3. Update Procedures

Views are abstractions above physical sources. They typically union or join information from

multiple tables, often from multiple data sources or other views. Teiid can perform update

operations against views. Update commands - INSERT, UPDATE, or DELETE - against a view

require logic to define how the tables and views integrated by the view are affected by each type

of command. This transformation logic is invoked when an update command is issued against a

view. Update procedures define the logic for how a user's update command against a view should

be decomposed into the individual commands to be executed against the underlying physical

sources. Similar to virtual procedures , update procedures have the ability to execute queries or

other commands, define temporary tables, add data to temporary tables, walk through result sets,

use loops, and use conditional logic.

7.3.1. Update Procedure Processing

1. The user application submits the SQL command through one of SOAP, JDBC, or ODBC.

2. The view this SQL command is executed against is detected.

3. The correct procedure is chosen depending upon whether the command is an INSERT,

UPDATE, or DELETE.

4. The procedure is executed. The procedure itself can contain SQL commands of its own which

can be of different types than the command submitted by the user application that invoked the

procedure.

5. Commands, as described in the procedure, are issued to the individual physical data sources

or other views.

6. A value representing the number of rows changed is returned to the calling application.

7.3.2. For Each Row

A FOR EACH ROW procedure will evaluate its block for each row of the view affected by the

update statement. For UPDATE and DELETE statements this will be every row that passes the

WHERE condition. For INSERT statements there will be 1 new row for each set of values from

the VALUES or query expression. The rows updated is reported as this number regardless of the

affect of the underlying procedure logic.

For Each Row

71

Teiid FOR EACH ROW update procedures function like INSTEAD OF triggers in traditional

databases. There may only be 1 FOR EACH ROW procedure for each INSERT, UPDATE, or

DELETE operation against a view. FOR EACH ROW update procedures can also be used to

emulate BEFORE/AFTER each row triggers while still retaining the ability to perform an inherent

update. This BEFORE/AFTER trigger behavior with an inherent update can be achieved by

creating an additional updatable view over the target view with update proceudres of the form:

FOR EACH ROW

 BEGIN

 --before row logic

 --default insert/update/delete against the target view

 INSERT INTO VW (c1, c2, c3) VALUES (NEW.c1, NEW.c2, NEW.c3);

 --after row logic

 END

7.3.2.1. Definition

Usage:

FOR EACH ROW

 BEGIN

 ...

 END

The BEGIN and END keywords are used to denote block boundaries. Within the body of the

procedure, any valid statement may be used.

7.3.2.2. Special Variables

You can use a number of special variables when defining your update procedure.

7.3.2.2.1. NEW Variables

Every attribute in the view whose UPDATE and INSERT transformations you are defining has an

equivalent variable named NEW.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are

initialized to the values in the INSERT VALUES clause or the UPDATE SET clause respectively.

In an UPDATE procedure, the default value of these variables, if they are not set by the command,

is the old value. In an INSERT procedure, the default value of these variables is the default value

of the virtual table attributes. See CHANGING Variables for distinguishing defaults from passed

values.

Chapter 7. Procedures

72

7.3.2.2.2. OLD Variables

Every attribute in the view whose UPDATE and DELETE transformations you are defining has an

equivalent variable named OLD.<column_name>

When a DELETE or UPDATE command is executed against the view, these variables are

initialized to the current values of the row being deleted or updated respectively.

7.3.2.2.3. CHANGING Variables

Every attribute in the view whose UPDATE and INSERT transformations you are defining has an

equivalent variable named CHANGING.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are

initialized to true or false depending on whether the INPUT variable was set by the command.

A CHANGING variable is commonly used to differentiate between a default insert value and one

specified in the user query.

For example, for a view with columns A, B, C:

If User Executes... Then...

INSERT INTO VT (A, B) VALUES (0, 1) CHANGING.A = true, CHANGING.B = true,

CHANGING.C = false

UPDATE VT SET C = 2 CHANGING.A = false, CHANGING.B = false,

CHANGING.C = true

7.3.2.3. Examples

For example, for a view with columns A, B, C:

Example 7.14. Sample DELETE Procedure

FOR EACH ROW

BEGIN

 DELETE FROM X WHERE Y = OLD.A;

 DELETE FROM Z WHERE Y = OLD.A; // cascade the delete

END

Example 7.15. Sample UPDATE Procedure

FOR EACH ROW

BEGIN

 IF (CHANGING.B)

 BEGIN

Create Procedure

73

 UPDATE Z SET Y = NEW.B WHERE Y = OLD.B;

 END

END

7.3.3. Create Procedure

Update procedures defined by "CREATE PROCEDURE ..." have been deprecated. The

TRANSLATE CRITERIA mechanism and associated logic is typically not adequite to correctly

define an updatable view.

7.3.3.1. Definition

Usage:

CREATE PROCEDURE

 BEGIN

 ...

 END

The CREATE PROCEDURE line demarcates the beginning of the procedure. The BEGIN and

END keywords are used to denote block boundaries. Within the body of the procedure, any valid

statement may be used.

7.3.3.2. Special Variables

You can use a number of special variables when defining your update procedure.

7.3.3.2.1. INPUT Variables

Every attribute in the view whose UPDATE and INSERT transformations you are defining has an

equivalent variable named INPUTS.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are

initialized to the values in the INSERT VALUES clause or the UPDATE SET clause respectively.

In an UPDATE procedure, the default value of these variables, if they are not set by the command,

is null. In an INSERT procedure, the default value of these variables is the default value of the

virtual table attributes, based on their defined types. See CHANGING Variables for distinguishing

defaults from passed values.

Warning

In prior release of Teiid INPUT was also accepted as the quailifer for an input

variable. As of Teidd 7, INPUT is a reserved word, so INPUTS is the preferred

qualifier.

Chapter 7. Procedures

74

7.3.3.2.2. CHANGING Variables

Similar to INPUT Variables, every attribute in the view whose UPDATE and INSERT

transformations you are defining has an equivalent variable named CHANGING.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are

initialized to true or false depending on whether the INPUT variable was set by the command.

For example, for a view with columns A, B, C:

If User Executes... Then...

INSERT INTO VT (A, B) VALUES (0, 1) CHANGING.A = true, CHANGING.B = true,

CHANGING.C = false

UPDATE VT SET C = 2 CHANGING.A = false, CHANGING.B = false,

CHANGING.C = true

7.3.3.2.3. ROWS_UPDATED Variable

Teiid returns the value of the integer VARIABLES.ROWS_UPDATED variable as a response to

an update command executed against the view. Your procedure must set the value that returns

when an application executes an update command against the view, which triggers invocation

of the update procedure. For example, if an UPDATE command is issued that affects 5 records,

the ROWS_UPDATED should be set appropriately so that the user will receive '5' for the count

of records affected.

Example 7.16. Sample Usage

...

 UPDATE FOO SET X = 1 WHERE TRANSLATE CRITERIA;

 VARIABLES.ROWS_UPDATED = VARIABLES.ROWCOUNT;

 ...

7.3.3.3. Update Procedure Command Criteria

You can use a number of special SQL clauses when defining UPDATE or DELETE procedures.

These make it easier to do variable substitutions in WHERE clauses or to check on the change

state of variables without using a lot of conditional logic.

7.3.3.3.1. HAS CRITERIA

Warning

HAS CRITERIA has been deprecated. An alternative approach to update

procedures will be introduced in a subsequent version.

Create Procedure

75

You can use the HAS CRITERIA clause to check whether the user’s command has a particular

kind of criteria on a particular set of attributes. This clause evaluates to either true or false. You

can use it anywhere you can use a criteria within a procedure.

Usage:

HAS [criteria operator] CRITERIA [ON (column list)]

Syntax Rules

• The criteria operator, can be one of =, <, >, <=, >=, <>, LIKE, IS NULL, or IN.

• If the ON clause is present, HAS CRITERIA will return true only if criteria was present on all

of the specified columns.

• The columns in a HAS CRITERIA ON clause always refer to view columns.

Each unoptimized conjunct of the user criteria is evaluated against the criteria selector. If any

conjunct matches then HAS CRITERIA evaluates to TRUE. The use of OR or NOT will prevent

contained predicates from matching the criteria selector.

Some samples of the HAS CRITERIA clause:

SQL Result

HAS CRITERIA Checks simply whether there was any criteria

at all.

HAS CRITERIA ON (column1, column2) Checks whether the criteria uses column1 and

column2.

HAS = CRITERIA ON (column1) Checks whether the criteria has a comparison

criteria with = operator.

HAS LIKE CRITERIA Checks whether the criteria has a match

criteria using LIKE.

The HAS CRITERIA predicate is most commonly used in an IF clause, to determine if the user

issued a particular form of command and to respond appropriately.

7.3.3.3.2. TRANSLATE CRITERIA

Warning

TRANSLATE CRITERIA has been deprecated. An alternative approach to update

procedures will be introduced in a subsequent version.

You can use the TRANSLATE CRITERIA clause to convert the criteria from the user application’s

SQL command into the form required to interact with the target source or view tables. The

Chapter 7. Procedures

76

TRANSLATE CRITERIA statement uses the SELECT transformation to infer the column mapping.

This clause evaluates to a translated criteria that is evaluated in the context of a command. You

can use these mappings either to replace the default mappings generated from the SELECT

transformation or to specify a reverse expression when a virtual column is defined by an

expression.

Usage:

TRANSLATE [criteria operator] CRITERIA [ON (column list)] [WITH (mapping

 list)]

If there is no user criteria, then the translated criteria is always treated as TRUE.

Syntax Rules

• The criteria operator, can be one of =, <, >, <=, >=, <>, LIKE, IS NULL, or IN.

• If the ON clause is present, TRANSLATE CRITERIA will only form criteria using the specified

columns.

• The columns in a TRANSLATE CRITERIA ON clause always refer to view columns.

• The WITH clause always has items with form <elem> = <expression> where the left hand side

must refer to a view column.

• If the WITH clause or a specific mapping is not specified, then a mapping is created based on

the SELECT clause of the SELECT transformation (the view column gets mapped to expression

in SELECT clause at same position).

Each unoptimized conjunct of the user criteria is translated using the criteria selector. If a conjunct

does not match the selector, it will not be translated - which effectively treats the conjunct as TRUE.

The use of OR or NOT will prevent contained predicates from matching the criteria selector.

Some samples of TRANSLATE CRITERIA:

SQL Result

TRANSLATE CRITERIA Translates any user criteria using the default

mappings.

TRANSLATE CRITERIA WITH (column1 = 'A',

column2 = INPUTS.column2 + 2)

Translates any criteria with some additional

mappings: column1 is always mapped to 'A'

and column2 is mapped to the incoming

column2 value + 2.

TRANSLATE = CRITERIA ON (column1) Translates only criteria that have = comparison

operator and involve column1.

Chapter 8.

77

Transaction Support
Teiid utilizes XA transactions for participating in global transactions and for demarcating its local

and command scoped transactions. JBoss Transactions [http://www.jboss.org/jbosstm/] is used

by Teiid as its transaction manager. See this documentation [http://www.jboss.org/jbosstm/docs/

index.html] for the advanced features provided by JBoss Transactions.

Table 8.1. Teiid Transaction Scopes

Scope Description

Command Treats the user command as if all source

commands are executed within the scope of

the same transaction. The AutoCommitTxn

execution property controls the behavior of

command level transactions.

Local The transaction boundary is local defined by a

single client session.

Global Teiid participates in a global transaction as an

XA Resource.

The default transaction isolation level for Teiid is READ_COMMITTED.

8.1. AutoCommitTxn Execution Property

Since user level commands may execute multiple source commands, users can specify the

AutoCommitTxn execution property to control the transactional behavior of a user command when

not in a local or global transaction.

Table 8.2. AutoCommitTxn Settings

Setting Description

OFF Do not wrap each command in a transaction. Individual source

commands may commit or rollback regardless of the success or failure

of the overall command.

ON Wrap each command in a transaction. This mode is the safest, but may

introduce performance overhead.

DETECT This is the default setting. Will automatically wrap commands in a

transaction, but only if the command seems to be transactionally unsafe.

The concept of command safety with respect to a transaction is determined by Teiid based upon

command type, the transaction isolation level, and available metadata. A wrapping transaction

is not needed if:

• If a user command is fully pushed to the source.

http://www.jboss.org/jbosstm/
http://www.jboss.org/jbosstm/
http://www.jboss.org/jbosstm/docs/index.html
http://www.jboss.org/jbosstm/docs/index.html
http://www.jboss.org/jbosstm/docs/index.html

Chapter 8. Transaction Support

78

• If the user command is a SELECT (including XML) and the transaction isolation is not

REPEATABLE_READ nor SERIALIABLE.

• If the user command is a stored procedure and the transaction isolation is not

REPEATABLE_READ nor SERIALIABLE and the updating model count is zero.

The update count may be set on all procedures as part of the procedure metadata in the model.

8.2. Updating Model Count

The term "updating model count" refers to the number of times any model is updated during the

execution of a command. It is used to determine whether a transaction, of any scope, is required

to safely execute the command.

Table 8.3. Updating Model Count Settings

Count Description

0 No updates are performed by this command.

1 Indicates that only one model is updated by this command (and its

subcommands). Also the success or failure of that update corresponds to

the success of failure of the command. It should not be possible for the

update to succeed while the command fails. Execution is not considered

transactionally unsafe.

* Any number greater than 1 indicates that execution is transactionally unsafe

and an XA transaction will be required.

8.3. JDBC and Transactions

8.3.1. JDBC API Functionality

The transaction scopes above map to these JDBC modes:

• Command - Connection autoCommit property set to true.

• Local - Connection autoCommit property set to false. The transaction is committed by setting

autoCommit to true or calling java.sql.Connection.commit . The transaction can be rolled

back by a call to java.sql.Connection.rollback

• Global - the XAResource interface provided by an XAConnection is used to control the

transaction. Note that XAConnections are available only if Teiid is consumed through its

XADataSource, org.teiid.jdbc.TeiidDataSource. JEE containers or data access APIs

typically control XA transactions on behalf of application code.

8.3.2. J2EE Usage Models

J2EE provides three ways to manage transactions for beans:

Transactional Behavior with JBoss Data Source

Types

79

• Client-controlled – the client of a bean begins and ends a transaction explicitly.

• Bean-managed – the bean itself begins and ends a transaction explicitly.

• Container-managed – the app server container begins and ends a transaction automatically.

In any of these cases, transactions may be either local or XA transactions, depending on how the

code and descriptors are written. Some kinds of beans (stateful session beans and entity beans)

are not required by the spec to support non-transactional sources, although the spec does allow

an app server to optionally support this with the caution that this is not portable or predictable.

Generally speaking, to support most typical EJB activities in a portable fashion requires some

kind of transaction support.

8.4. Transactional Behavior with JBoss Data Source

Types

JBoss AS allows creation of different types of data sources, based on their transactional

capabilities. The type of data source you create for your VDB's sources also dictates if that data

source will be participating the distributed transaction or not, irrespective of the transaction scope

you selected from above. Here are different types of data sources

• xa-datasource: Capable of participating in the distributed transaction using XA. This is

recommended type be used with any Teiid sources.

• local-datasource: Does not participate in XA, unless this is the only source that is local-

datasource that is participating among other xa-datasources in the current distributed

transaction. This technique is called last commit optimization. However, if you have more then

one local-datasources participating in a transaction, then the transaction manager will end up

with "Could not enlist in transaction on entering meta-aware object!;" exception.

• no-tx-datasource: Does not participate in distributed transaction at all. In the scope of Teiid

command over multiple sources, you can include this type of datasource in the same distributed

transaction context, however this source will be it will not be subject to any transactional

participation. Any changes done on this source as part of the transaction scope, can not be

rolled back.

If you have three different sources A, B, C and they are being used in Teiid. Here are some

variations on how they behave with different types of data sources. The suffixes "xa", "local",

"no-tx" define different type of sources used.

• A-xa B-xa, C-xa : Can participate in all transactional scopes. No restrictions.

• A-xa, B-xa, c-local: Can participate in all transactional scopes. Note that there is only one single

source is "local". It is assumed that in the Global scope, the third party datasource, other than

Teiid Datasource is also XA.

Chapter 8. Transaction Support

80

• A-xa, B-xa, C-no-tx : Can participate in all transactional scopes. Note "C" is not a really bound

by any transactional contract. A and B are the only participents in XA transaction.

• A-xa, B-local, C-no-tx : Can participate in all transactional scopes. Note "C" is not a really bound

by any transactional contract, and there is only single "local" source.

• If any two or more sources are "local" : They can only participate in Command mode with

"autoCommitTxn=OFF". Otherwise will end with exception as "Could not enlist in transaction

on entering meta-aware object!;" exception, as it is not possible to do a XA transaction with

"local" datasources.

• A-no-tx, B-no-tx, C-no-tx : Can participate in all transaction scopes, but none of the sources

will be bound by transactional terms. This is equivalent to not using transactions or setting

Command mode with "autoCommitTxn=OFF".

Note

Teiid Designer creates "local" data source by default which is not optimal for the

XA transactions. Teiid would like this to be creating a XA data sources, however

with current limitations with DTP that feature is currently not available. To create

XA data source, look in JBoss AS "doc" directory for example templates, or use

the "admin-console" to create the XA data sources.

If your datasource is not XA, and not the only local source and can not use "no-tx", then you

can look into extending the source to implement the compensating XA implementation. i.e. define

your own resource manager for your source and manage the transaction the way you want it to

behave. Note that this could be complicated if not impossible if your source natively does not

support distributed XA protocol. In summay

• Use XA datasource if possible

• Use no-tx datasource if applicable

• Use autoCommitTxn = OFF, and let go distributed transactions, though not recommended

• Write a compensating XA based implementation.

Table 8.4. Teiid Transaction Participation

Teiid-Tx-Scope XA source Local Source No-Tx SOurce

Local always Only If Single Source never

Global always Only If Single Source never

Auto-commit=true,

AutoCommitTxn=ON

always Only If Single Source never

Limitations and Workarounds

81

Teiid-Tx-Scope XA source Local Source No-Tx SOurce

Auto-commit=true,

AutoCommitTxn=OFF

never never never

Auto-commit=true,

AutoCommitTxn=DETECT

always Only If Single Source never

8.5. Limitations and Workarounds

• The client setting of transaction isolation level is not propogated to the connectors. The

transaction isolation level can be set on each XA connector, however this isolation level is fixed

and cannot be changed at runtime for specific connections/commands.

• Temporary tables are not transactional. For example, a global temporary table will retain all

inserts performed during a local transaction that was rolled back.

82

Chapter 9.

83

Data Roles
Data roles, also called entitlements, are sets of permissions defined per VDB that dictate data

access (create, read, update, delete). Data roles use a fine-grained permission system that Teiid

will enforce at runtime and provide audit log entries for access violations (see that Admin and

Developers Guide for more on Audit Logging).

Prior to applying data roles, you should consider restricting source system access through

the fundamental design of your VDB. Foremost, Teiid can only access source entries that

are represented in imported metadata. You should narrow imported metadata to only what is

necessary for use by your VDB. When using Teiid Designer, you may then go further and modify

the imported metadata at a granular level to remove specific columns, mark tables as non-

updatable, etc.

If data roles is enabled and data roles are defined in a VDB, then access permissions will

be enforced by the Teiid Server. The use of data roles may be disabled system wide via the

<jboss-install>/server/<profile>/deploy/teiid/teiid-jboss-beans.xml file, by setting

the property useDataRoles to false in the configuration section of the RuntimeEngineDeployer.

Warning

Unlike previous versions of Teiid data roles will only be checked if present in a

VDB. A VDB deployed without data roles is open for use by any authenticated user.

9.1. Permissions

CREATE, READ, UPDATE, DELETE (CRUD) permissions can be set for any resource path in a

VDB. A resource path can be as specific as the fully qualified name of a column or as general

a top level model (schema) name. Permissions granted to a particular path apply to it and any

resource paths that share the same partial name. For example, granting read to "model" will also

grant read to "model.table", "model.table.column", etc. Allowing or denying a particular action is

determined by searching for permissions from the most to least specific resource paths. The first

permission found with a specific allow or deny will be used. Thus it is possible to set very general

permissions at high-level resource path names and to override only as necessary at more specific

resource paths.

Permission grants are only needed for resources that a role needs access to. Permissions are

also only applied to the columns/tables/procedures in the user query - not to every resource

accessed transitively through view and procedure definitions. It is important therefore to ensure

that permission grants are applied consistently across models that access the same resources.

Chapter 9. Data Roles

84

Warning

Unlike previous versions of Teiid, non-visible models are accessible by user

queries. To restrict user access at a model level, at least one data role should

be created to enable data role checking. In turn that role can be mapped to any

authenticated user and should not grant permissions to models that should be

inaccessable.

Permissions are not applicable to the SYS and pg_catalog schemas. These metadata reporting

schemas are always accessible regardless of the user. The SYSADMIN schema however may

need permissions as applicable.

To process a SELECT statement or a stored procedure execution, the user account requires the

following access rights:

1. READ - on the Table(s) being accessed or the procedure being called.

2. READ - on every column referenced.

To process an INSERT statement, the user account requires the following access rights:

1. CREATE - on the Table being inserted into.

2. CREATE - on every column being inserted on that Table.

To process an UPDATE statement, the user account requires the following access rights:

1. UPDATE - on the Table being updated.

2. UPDATE - on every column being updated on that Table.

3. READ - on every column referenced in the criteria.

To process a DELETE statement, the user account requires the following access rights:

1. DELETE - on the Table being deleted.

2. READ - on every column referenced in the criteria.

To process a EXEC/CALL statement, the user account requires the following access rights:

1. EXECUTE (or READ) - on the Procedure being executed.

Role Mapping

85

To process any function, the user account requires the following access rights:

1. EXECUTE (or READ) - on the Function being called.

Note

For backwards compatibility

RuntimeEngineDeployer.allowFunctionCallsByDefault located in the <jboss-

install>/server/<profile>/deploy/teiid/teiid-jboss-beans.xml file

in the RuntimeEngineDeployer section defaults to true. This means that to

actually require permissions for functions, you need to set this property to false.

To process any ALTER or CREATE TRIGGER statement, the user account requires the following

access rights:

1. ALTER - on the view or procedure that is effected. INSTEAD OF Triggers (update procedures)

are not yet treated as full schema objects and are instead treated as attributes of the view.

9.2. Role Mapping

Each Teiid data role can be mapped to any number of container roles or any authenticated

user. You may control role membership through whatever system the Teiid security domain

login modules are associated with. The kit includes example files for use with the

UsersRolesLoginModule - see teiid-security-roles.properties.

It is possible for a user to have any number of container roles, which in turn imply a subset of Teiid

data roles. Each applicable Teiid data role contributes cumulatively to the permissions of the user.

No one role supercedes or negates the permissions of the other data roles.

9.3. XML Definition

Data roles are defined inside the vdb.xml file (inside the .vdb Zip archive under META-INF/

vdb.xml) if you used Designer. The "vdb.xml" file is checked against the schema file vdb-

deployer.xsd, which can be found in the kit under teiid-docs/schema. This example will show a

sample "vdb.xml" file with few simple data roles.

For example, if a VDB defines a table "TableA" in schema "modelName" with columns (column1,

column2) - note that the column types do not matter. And we wish to define three roles "RoleA",

"RoleB", "RoleC" with following permissions:

1. RoleA has permissions to read, write access to TableA, but can not delete.

Chapter 9. Data Roles

86

2. RoleB has no permissions that allow access to TableA

3. RoleC has permissions that only allow read access to TableA.column1

Example 9.1. vdb.xml defining RoleA, RoleB, and RoleC

<?xml version="1.0" encoding="UTF-8"?>

<vdb name="sample" version="1">

 <model name="modelName">

 <source name="source-name" translator-name="oracle" connection-jndi-name="java:myDS"

 />

 </model>

 <data-role name="RoleA">

 <description>Allow all, except Delete</description>

 <permission>

 <resource-name>modelName.TableA</resource-name>

 <allow-create>true</allow-create>

 <allow-read>true</allow-read>

 <allow-update>true</allow-update>

 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

 <data-role name="RoleC">

 <description>Allow read only</description>

 <permission>

 <resource-name>modelName.TableA</resource-name>

 <allow-read>true</allow-read>

 </permission>

 <permission>

 <resource-name>modelName.TableA.colum2</resource-name>

 <allow-read>false</allow-read>

 </permission>

 <mapped-role-name>role2</mapped-role-name>

 </data-role>

System Functions

87

</vdb>

The above XML defined two data roles, "RoleA" which allows everything except delete on the

table, "RoleC" that allows only read operation on the table. Since Teiid uses deny by default, there

is no explicit data-role entry needed for "RoleB". Note that explicit column permissions are not

needed for RoleA, since the parent resource path, modelName.TableA, permissions still apply.

RoleC however must explicitly disallow read to column2.

The "mapped-role-name" defines the container JAAS roles that are assigned the data role. For

assigning roles to your users in the JBoss AS, check out the instructions for the selected Login

Module. Check the "Admin Guide" for configuring Login Modules. You may also choose to allow

any authenticated user to have a data role by setting the any-authenticated attribute value to true

on data-role element.

The "allow-create-temporary-tables" data-role boolean attribute is used to explicitly enable

or disable temporary table usage for the role. If it is left unspecified, then the value will

be determined by the configuration setting allowCreateTemporaryTablesByDefault located in

the <jboss-install>/server/<profile>/deploy/teiid/teiid-jboss-beans.xml file in the

RuntimeEngineDeployer section.

9.4. System Functions

The hasRole system function will return true if the current user has the given data role. The

hasRole function can be used in procedure or view definitions to allow for a more dynamic

application of security - which allows for things such as value masking or row level security.

88

Chapter 10.

89

System Schema
The built-in SYS and SYSADMIN schemas provide metadata tables and procedures against the

current VDB.

10.1. System Tables

10.1.1. VDB, Schema, and Properties

10.1.1.1. SYSADMIN.VDBResources

This table provides the current VDB contents.

Column Name Type Description

resourcePath string The path to the contents.

contents blob The contents as a blob.

10.1.1.2. SYS.VirtualDatabases

This table supplies information about the currently connected virtual database, of which there is

always exactly one (in the context of a connection).

Column Name Type Description

Name string The name of the VDB

Version string The version of the VDB

10.1.1.3. SYS.Schemas

This table supplies information about all the schemas in the virtual database, including the system

schema itself (System).

Column Name Type Description

VDBName string VDB name

Name string Schema name

IsPhysical boolean True if this represents a source

UID string Unique ID

OID integer Unique ID (see note below)

Description string Description

PrimaryMetamodelURI string URI for the primary metamodel describing the

model used for this schema

Chapter 10. System Schema

90

10.1.1.4. SYS.Properties

This table supplies user-defined properties on all objects based on metamodel extensions.

Normally, this table is empty if no metamodel extensions are being used.

Column Name Type Description

Name string Extension property name

Value string Extension property value

UID string Key unique ID

OID integer Unique ID (see note below)

10.1.2. Table Metadata

10.1.2.1. SYS.Tables

This table supplies information about all the groups (tables, views, documents, etc) in the virtual

database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Short group name

Type string Table type (Table, View, Document, ...)

NameInSource string Name of this group in the source

IsPhysical boolean True if this is a source table

SupportsUpdates boolean True if group can be updated

UID string Group unique ID

OID integer Unique ID (see note below)

Cardinality integer Approximate number of rows in the group

Description string Description

IsSystem boolean True if in system table

10.1.2.2. SYSADMIN.MatViews

This table supplies information about all the materailized views in the virtual database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Short group name

Table Metadata

91

Column Name Type Description

TargetSchemaName string Name of the materialized table schema

TargetName string Name of the materialized table

Valid boolean True if materialized table is currently valid.

LoadState boolean The load state, can be one of

NEEDS_LOADING, LOADING, LOADED,

FAILED_LOAD

Updated timestamp The timestamp of the last full refresh.

Cardinality integer The number of rows in the materialized view

table.

10.1.2.3. SYS.Columns

This table supplies information about all the elements (columns, tags, attributes, etc) in the virtual

database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

TableName string Table name

Name string Element name (not qualified)

Position integer Position in group (1-based)

NameInSource string Name of element in source

DataType string Teiid runtime data type name

Scale integer Number of digits after the decimal point

ElementLength integer Element length (mostly used for strings)

sLengthFixed boolean Whether the length is fixed or variable

SupportsSelect boolean Element can be used in SELECT

SupportsUpdates boolean Values can be inserted or updated in the

element

IsCaseSensitive boolean Element is case-sensitive

IsSigned boolean Element is signed numeric value

IsCurrency boolean Element represents monetary value

IsAutoIncremented boolean Element is auto-incremented in the source

NullType string Nullability: "Nullable", "No Nulls", "Unknown"

MinRange string Minimum value

MaxRange string Maximum value

DistinctCount integer Distinct value count, -1 can indicate unknown

Chapter 10. System Schema

92

Column Name Type Description

NullCount integer Null value count, -1 can indicate unknown

SearchType string Searchability: "Searchable", "All Except Like",

"Like Only", "Unsearchable"

Format string Format of string value

DefaultValue string Default value

JavaClass string Java class that will be returned

Precision integer Number of digits in numeric value

CharOctetLength integer Measure of return value size

Radix integer Radix for numeric values

GroupUpperName string Upper-case full group name

UpperName string Upper-case element name

UID string Element unique ID

OID integer Unique ID (see note below)

Description string Description

10.1.2.4. SYS.Keys

This table supplies information about primary, foreign, and unique keys.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Table Name string Table name

Name string Key name

Description string Description

NameInSource string Name of key in source system

Type string Type of key: "Primary", "Foreign", "Unique", etc

IsIndexed boolean True if key is indexed

RefKeyUID string Referenced key UID (if foreign key)

UID string Key unique ID

OID integer Unique ID (see note below)

10.1.2.5. SYS.KeyColumns

This table supplies information about the columns referenced by a key.

Column Name Type Description

VDBName string VDB name

Procedure Metadata

93

Column Name Type Description

SchemaName string Schema Name

TableName string Table name

Name string Element name

KeyName string Key name

KeyType string Key type: "Primary", "Foreign", "Unique", etc

RefKeyUID string Referenced key UID

UID string Key UID

OID integer Unique ID (see note below)

Position integer Position in key

10.1.3. Procedure Metadata

10.1.3.1. SYS.Procedures

This table supplies information about the procedures in the virtual database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Procedure name

NameInSource string Procedure name in source system

ReturnsResults boolean Returns a result set

UID string Procedure UID

OID integer Unique ID (see note below)

Description string Description

10.1.3.2. SYS.ProcedureParams

This supplies information on procedure parameters.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

ProcedureName string Procedure name

Name string Parameter name

DataType string Teiid runtime data type name

Position integer Position in procedure args

Chapter 10. System Schema

94

Column Name Type Description

Type string Parameter direction: "In", "Out", "InOut",

"ResultSet", "ReturnValue"

Optional boolean Parameter is optional

Precision integer Precision of parameter

TypeLength integer Length of parameter value

Scale integer Scale of parameter

Radix integer Radix of parameter

NullType string Nullability: "Nullable", "No Nulls", "Unknown"

10.1.4. Datatype Metadata

10.1.4.1. SYS.DataTypes

This table supplies information on datatypes.

Column Name Type Description

Name string Teiid design-time type name

IsStandard boolean Always false

IsPhysical boolean Always false

TypeName string Design-time type name (same as Name)

JavaClass string Java class returned for this type

Scale integer Max scale of this type

TypeLength integer Max length of this type

NullType string Nullability: "Nullable", "No Nulls", "Unknown"

IsSigned boolean Is signed numeric?

IsAutoIncremented boolean Is auto-incremented?

IsCaseSensitive boolean Is case-sensitive?

Precision integer Max precision of this type

Radix integer Radix of this type

SearchType string Searchability: "Searchable", "All Except Like",

"Like Only", "Unsearchable"

UID string Data type unique ID

OID integer Unique ID (see note below)

RuntimeType string Teiid runtime data type name

BaseType string Base type

Description string Description of type

System Procedures

95

Warning

The OID column is guranteed to be unique/consistent only for given version running

instance of a VDB. If a different version of the VDB is deployed, these IDs are not

guranteed to be the same or unique across both versions of the VDB. Dynamic

VDB OIDs are not cluster safe.

10.2. System Procedures

10.2.1. SYS.getXMLSchemas

Returns a resultset with a single column, schema, containing the schemas as clobs.

SYS.getXMLSchemas(document in string) returns schema string

10.2.2. SYSADMIN.refreshMatView

Returns integer RowsUpdated. -1 indicates a load is in progress, otherwise the cardinality of the

table is returned. See the Caching Guide for more.

SYSADMIN.refreshMatView(RowsUpdated return integer, ViewName in string,

 Invalidate in boolean)

10.2.3. SYSADMIN.refreshMatViewRow

Returns integer RowsUpdated. -1 indicates the materialized table is currently invalid. 0 indicates

that the specified row did not exist in the live data query or in the materialized table. See the

Caching Guide for more.

SYSADMIN.refreshMatViewRow(RowsUpdated return integer, ViewName in string,

 Key in object)

10.2.4. Metadata Procedures

Note

A MetadataRepository must be configured to make a non-temporary metadata

update persistent. See the Developers Guide Runtime Metadata Updates section

for more.

10.2.4.1. SYSADMIN.setTableStats

Set statistics for the given table.

Chapter 10. System Schema

96

SYSADMIN.setTableStats(TableName in string, Cardinality in integer)

10.2.4.2. SYSADMIN.setColumnStats

Set statistics for the given column.

SYSADMIN.setColumnStats(TableName in string, ColumnName in string,

 DistinctCount in integer, NullCount in integer, Max in string, Min in

 string)

All stat values are nullable. Passing a null stat value will leave corresponding metadata value

unchanged.

10.2.4.3. SYSADMIN.setProperty

Set an extension metadata property for the given record. Extension metadata is typically used by

Chapter 12, Translators.

SYSADMIN.setProperty(OldValue return clob, Uid in string, Name in string,

 Value in clob)

Setting a value to null will remove the property.

Example 10.1. Example Property Set

CALL SYSADMIN.setProperty(uid=>(SELECT uid FROM TABLES WHERE name='tab'),

 name=>'some name', value=>'some value')

This will set the property 'some name'='some value' on table tab.

The use of this procedure will not trigger replanning of associated prepared plans.

Chapter 11.

97

Multi-source models
Multi-source models can be used to quickly access data in multiple sources with homogeneous

metadata. Since all sources utilize the same physical metadata, this feature is most appropriate

for accessing the same source type with multiple instances.

A model is marked as supporting multi-source by setting the property supports-multi-source-

bindings to true. With supports-multi-source-bindings set to true, 1 or more uniquely named source

elements can be added to the model. See Section 12.3, “Dynamic VDBs” for a full template of

the vdb.xml.

A physical table in a multi-source model is effectively treated as a view that is a union all

of the actual physical table from each of the configured sources. These tables tables are

implicitly partitioned on a string pseudo-column "source_name". The "source_name" column will

be available to your use queries for a multi-source model regardless of whether it is explicitly part

of the metadata. The source_name column value for a particular row is the source name used

to obtain that row. More complex partitioning scenarios, such as heterogeneous sources or list

partitioning will require the use of a Section 13.2.8, “Partitioned Union”

In some scenarios, the source_name column can be manually added to the physical metadata in

the Designer tool so that virtual layer logic can be multi-source aware. It is important to understand

that a column or IN procedure parameter named source_name will always be treated as the explicit

form of the multi-source source_name column and will no longer be treated as an actual physical

column or procedure parameter.

11.1. Multi-source SELECTs

A multi-source SELECT may use the source_name column anywhere a column reference is

allowed. As a final stage of planning, a source query will be generated against each source and

each instance of the source_name column replaced by the appropriate value. If the resulting query

still needs executed, it is sent to the source. If the WHERE clause evaluates to always false, then

the query is pruned from the result. All results are then unioned together and returned as the full

result.

11.2. Multi-source INSERTs

A multi-source INSERT may use the source_name column as an insert target column to specify

which source should be targeted by the INSERT. Only a INSERT using the VALUES clause is

supported and the source_name column value must be a literal. If the source_name column is not

part of the INSERT column, then the INSERT will be issued against every source. The sum of the

update counts will be returned as the resultant update count.

11.3. Multi-source UPDATEs

A multi-source delete functions just like SELECT, however it is not possible to use the

source_name column as a target column in the change set. Any other usage of the source_name

Chapter 11. Multi-source models

98

column will be the appropriate value for each source. If the WHERE clause evaluates to always

false, then no update will be issued to the source. The sum of the update counts will be returned

as the resultant update count.

11.4. Multi-source DELETEs

A multi-source delete functions just like SELECT. Any usage of the source_name column will be

the appropriate value for each source. If the WHERE clause evaluates to always false, then no

delete will be issued to the source. The sum of the update counts will be returned as the resultant

update count.

11.5. Multi-source Stored Procedures

A physical stored procedures requires the manual addition of a string source_name parameter to

allow for specifying which source the procedure is executed on. If the source_name parameter

is not added or if named parameters are used and the source_name parameter is allowed to

default to a null value, then the procedure will be executed on each source and the results unioned

together.

It is not possible to execute procedures that required to return IN/OUT, OUT, or RETURN

parameters values on more than 1 source at a time.

11.6. Additional Concerns

When running under a transaction of in a mode that detects the need for a transation and multiple

updates are performed, an attempt will be made to enlist each source in the same XA transaction.

Chapter 12.

99

Translators

12.1. Introduction to the Teiid Connector Architecture

The Teiid Connector Architecture (TCA) provides Teiid with a robust mechanism for integrating

with external systems. The TCA defines a common client interface between Teiid and an external

system that includes metadata as to what SQL constructs are supported for pushdown and the

ability to import metadata from the external system.

A Translator is the heart of the TCA and acts as the bridge logic between Teiid and an external

system, which is most commonly accessed through a JCA resource adapter. Refer to the Teiid

Developers Guide for details on developing custom Translators and JCA resource adapters for

use with Teiid.

Note

The TCA is not the same as the JCA, the JavaEE Connector Architecture, although

the TCA is designed for use with JCA resource adapters.

Note

The import capabilities of Teiid Translators is currently only used in dynamic VDBs

and not by the Teiid Designer.

12.2. Translators

A Translator is typically paired with a particular JCA resource adapter. In instances where

pooling, environment dependent configuration management, advanced security handling, etc.

are not needed, then a JCA resource adapter is not needed. The configuration of JCA

ConnectionFactories for needed resource adapters is not part of this guide, please see the Teiid

Administrator Guide and the kit examples for configuring resource adapters for use in JBossAS.

Translators can have a number of configurable properties. These are broken down into execution

properties, which determine aspects of how data is retrieved, and import settings, which determine

what metadata is read for import.

The execution properties for a translator typically have reasonable defaults. For specific translator

types, e.g. the Derby translator, base execution properties are already tuned to match the source.

In most cases the user will not need to adjust their values.

Chapter 12. Translators

100

Table 12.1. Base Execution Properties - shared by all translators

Name Description Default

Immutable Set to true to indicate that the source never

changes.

false

RequiresCriteria Set to true to indicate that source SELECT/

UPDATE/DELETE queries require a where

clause.

false

SupportsOrderBy Set to true to indicate that the ORDER BY

clause is supported.

false

SupportsOuterJoins Set to true to indicate that OUTER JOINs are

supported.

false

SupportsFullOuterJoins If outer joins are supported, true indicates that

FULL OUTER JOINs are supported.

false

SupportsInnerJoins Set to true to indicate that INNER JOINs are

supported.

false

SupportedJoinCriteria If joins are supported, defines what criteria may

be used as the join criteria. May be one of

(ANY, THETA, EQUI, or KEY).

ANY

MaxInCriteriaSize If in criteria are supported, defines what

the maximum number of in entries are per

predicate. -1 indicates no limit.

-1

MaxDependentInPredicates If in criteria are supported, defines what the

maximum number of predicates that can be

used for a dependent join. Values less than

1 indicate to use only one in predicate per

dependent value pushed (which matches the

pre-7.4 behavior).

-1

Note

Only a subset of the supports metadata can be set through execution properties.

If more control is needed, please consult the Teiid Developers Guide.

There are no base importer settings.

12.2.1. File Translator

The file translator, known by the type name file, exposes stored procedures to leverage file system

resources exposed by the file resource adapter. It will commonly be used with the TEXTTABLE

or XMLTABLE table functions to use CSV or XML formated data.

JDBC Translator

101

Table 12.2. Execution Properties

Name Description Default

Encoding The encoding that should be used for CLOBs returned by the

getTextFiles procedure

The system

default

encoding

There are file importer settings, but it does provide metadata for dynamic vdbs.

12.2.1.1. Usage

Retrieve all files as BLOBs with the given extension at the given path.

call getFiles('path/*.ext')

If the extension pattern is not specified and the path is a directory, then all files in the directory will

be returned. If the path or filename doesn't exist, then no results will be returned.

Retrieve all files as CLOBs with the given extension at the given path.

call getTextFiles('path/*.ext')

Save the CLOB, BLOB, or XML file to given path

call saveFile('path', value)

See the database metadata for full descriptions of the getFiles, getTextFiles, and saveFile

procedures.

12.2.1.2. JCA Resource Adapter

The resource adapter for this translator provided through "File Data Source", Refer to Admin Guide

for configuration information.

12.2.2. JDBC Translator

The JDBC translator bridges between SQL semantic and data type difference between Teiid and

a target RDBMS. Teiid has a range of specific translators that target the most popular open source

and proprietary databases.

Chapter 12. Translators

102

Type names:

• jdbc-ansi - declares support for most SQL constructs supported by Teiid, except for row limit/

offset and EXCEPT/INTERCECT. Translates source SQL into ANSI compliant syntax. This

translator should be used when another more specific type is not available.

• jdbc-simple - same as jdbc-ansi, except disables support for function, UNION, and aggregate

pushdown.

• db2 - for use with DB2 8 or later.

• derby - for use with Derby 10.1 or later.

• h2 - for use with H2 version 1.1 or later.

• hsql - for use with HSQLDB 1.7 or later.

• ingres - for use with Ingres 2006 or later.

• ingres93 - for use with Ingres 9.3 or later.

• intersystems-cache - for use with Intersystems Cache Object database (only relational aspect

of it)

• informix - for use with any version.

• metamatrix - for use with MetaMatrix 5.5.0 or later.

• modeshape - for use with Modeshape 2.2.1 or later. The PATH, NAME, LOCALNODENAME,

DEPTH, and SCORE functions should be accessed as pseudo-columns, e.g.

"nt:base"."jcr:path". Teiid UFDs (prefixed by JCR_) are available for CONTIANS,

ISCHILDNODE, ISDESCENDENT, ISSAMENODE, REFERENCE - see the JCRFunctions.xmi.

If a selector name is needed in a JCR function, you should use the pseudo-column

"jcr:path", e.g. JCR_ISCHILDNODE(foo.jcr_path, 'x/y') would become ISCHILDNODE(foo,

'x/y') in the ModeShape query. An additional pseudo-column "mode:properties" should be

imported by setting the ModeShape JDBC connection property teiidsupport=true. The column

"mode:properties" should be used by the JCR_REFERENCE and other functions that

expect a .* selector name, e.g. JCR_REFERENCE(nt_base.jcr_properties) would become

REFERENCE("nt:base".*) in the ModeShape query.

• mysql/mysql5 - for use with MySQL version 4.x and 5 or later respectively.

The MySQL Translators expect the database or session to be using ANSI mode. If the database

is not using ANSI mode, an initialization query should be used on the pool to set ANSI mode:

set SESSION sql_mode = 'ANSI'

• oracle - for use with Oracle 9i or later. Sequences may be used with the Oracle translator. A

sequence may be modeled as a table with a name in source of DUAL and columns with the

JDBC Translator

103

name in source set to <sequencesequence name>.[nextval|currentval]. You can use a

sequence as the default value for insert columns by setting the column to autoincrement and

the name in source to <element name>:SEQUENCE=<sequence name>.<sequence value>. A

rownum column can also added to any Oracle physical table to support the rownum pseudo-

column. A rownum colum should have a name in source of rownum. These rownum columns

do not have the same semantics as the Oracle rownum construct so care must be taken in

their usage.

• postgresql - for use with 8.0 or later clients and 7.1 or later server.

• sqlserver - for use with SQL Server 2000 or later. A SQL Server JDBC driver version 2.0 or later

(or compatible e.g. JTDS 1.2 or later) should be used.

• sybase - for use with Sybase version 12.5 or later.

• teiid - for use with Teiid 6.0 or later.

• teradata - for use with Teradata V2R5.1 or later.

Table 12.3. Execution Properties - shared by all JDBC Translators

Name Description Default

DatabaseTimeZone The time zone of the database. Used when

fetchings date, time, or timestamp values.

The system

default time

zone

DatabaseVersion The specific database version. Used to further

tune pushdown support.

The base

supported

version

TrimStrings true to trim trailing whitespace from fixed length

character strings. Note that Teiid only has

a string, or varchar, type that treats trailing

whitespace as meaningful.

false

UseBindVariables true to indicate that PreparedStatements

should be used and that literal values in the

source query should be replace with bind

variables. If false only LOB values will trigger

the use of PreparedStatements.

true

UseCommentsInSourceQuery This will embed a /*comment*/ leading

comment with session/request id in source

SQL query for informational purposes

false

MaxPreparedInsertBatchSize The max size of a prepared insert batch. 2048

Table 12.4. Importer Properties - shared by all JDBC Translators

Name Description Default

catalog See DatabaseMetaData.getTables1 null

Chapter 12. Translators

104

Name Description Default

schemaPattern See DatabaseMetaData.getTables1 null

tableNamePattern See DatabaseMetaData.getTables1 null

procedurePatternName See DatabaseMetaData.getProcedures1 null

tableTypes Comma separated list - without spaces

- of imported table types. See

DatabaseMetaData.getTables1

null

useFullSchemaName When false, directs the importer to drop the

source catalog/schema from the Teiid object

name, so that the Teiid fully qualified name

will be in the form of <model name>.<table

name> - Note: that this may lead to objects with

duplicate names when importing from multiple

schemas, which results in an exception

true

importKeys true to import primary and foriegn keys true

importIndexes true to import index/unique key/cardinality

information

true

importApproximateIndexes true to import approximate index information.

See DatabaseMetaData.getIndexInfo1

true

importProcedures true to import procedures and procedure

columns - Note that it is not always possible

to import procedure result set columns due

to database limitations. It is also not currently

possible to import overloaded procedures.

true

widenUnsignedTypes true to convert unsigned types to the next

widest type. For example SQL Server reports

tinyint as an unsigned type. With this option

enabled, tinyint would be imported as a short

instead of a byte.

true

quoteNameInSource false will override the default and direct Teiid

to create source queries using unquoted

identifiers.

true

useProcedureSpecificName true will allow the import of overloaded

procedures (which will normally result in a

duplicate procedure error) by using the unique

procedure specific name as the Teiid name.

This option will only work with JDBC 4.0

compatable drivers that report specific names.

false

1Full JavaDoc for DatabaseMetaData [http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html]

http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

LDAP Translator

105

Warning

The default import settings will crawl all available metadata. This import process

is time consuming and full metadata import is not needed in most situations. Most

commonly you'll want to limit import by schemaPattern and tableTypes.

Example importer settings to only import tables and views from my-schema.

...

<property name="importer.tableTypes" value="TABLE,VIEW"/>

<property name="importer.schemaPattern" value="my-schema"/>

...

12.2.2.1. Usage

Usage of a JDBC source is straight-forward. Using Teiid SQL, the source may be queried as if

the tables and procedures were local to the Teiid system.

12.2.2.2. JCA Resource Adapter

The resource adapter for this translator provided through data source in JBoss AS, Refer to Admin

Guide for "JDBC Data Sources" configuration section.

12.2.3. LDAP Translator

The LDAP translator, known by the type name ldap, exposes an LDAP directory tree relationally

with pushdown support for filtering via criteria. This is typically coupled with the LDAP resource

adapter.

Table 12.5. Execution Properties

Name Description Default

SearchDerfaultBaseDN Default Base DN for LDAP

Searches

null

SearchDefaultScope Default Scope for LDAP

Searches. Can be one

of SUBTREE_SCOPE,

OBJECT_SCOPE,

ONELEVEL_SCOPE.

ONELEVEL_SCOPE

RestrictToObjectClass Restrict Searches to

objectClass named in the

Name field for a table

false

Chapter 12. Translators

106

There are no import settings for the ldap translator; it also does not provide metadata.

12.2.3.1. Metadata Directives

String columns with a default value of "multivalued-concat" will concatinate all attribute values

together in alphabetical order using a ? delimiter. If a multivalued attribute does not have a default

value of "multivalued-concat", then any value may be returned.

12.2.3.2. JCA Resource Adapter

The resource adapter for this translator provided through "LDAP Data Source", Refer to Admin

Guide for configuration.

12.2.4. Loopback Translator

The Loopback translator, known by the type name loopback, provides a quick testing solution. It

supports all SQL constructs and returns default results, with configurable behavior.

Table 12.6. Execution Properties

Name Description Default

ThrowError true to always throw an error false

RowCount Rows returned for non-update queries. 1

WaitTime Wait randomly up to this number of milliseconds

with each sourc query.

0

PollIntervalInMilli if positive results will be "asynchronously" returned

- that is a DataNotAvailableException will be thrown

initially and the engine will wait the poll interval

before polling for the results.

-1

There are no import settings for the Loopback translator; it also does not provide metadata - it

should be used as a testing stub.

12.2.4.1. JCA Resource Adapter

The source connection is required for this translator

12.2.5. Salesforce Translator

The Salesforce translator, known by the type name salesforce supports the SELECT, DELETE,

INSERT and UPDATE operations against a Salesforce.com account. It is designed for use with

the Teiid Salesforce resource adapter.

Table 12.7. Execution Properties

Name Description Default

ModelAuditFeilds Audit Model Fields false

Salesforce Translator

107

The Salesforce translator can import metadata, but does not currently have import settings.

12.2.5.1. Usage

12.2.5.1.1. SQL Processing

Salesforce does not provide the same set of functionality as a relational database. For example,

Salesforce does not support arbitrary joins between tables. However, working in combination with

the Teiid Query Planner, the Salesforce connector supports nearly all of the SQL syntax supported

by the Teiid.

The Salesforce Connector executes SQL commands by “pushing down” the command to

Salesforce whenever possible, based on the supported capabilities. Teiid will automatically

provide additional database functionality when the Salesforce Connector does not explicitly

provide support for a given SQL construct. In these cases, the SQL construct cannot be “pushed

down” to the data source, so it will be evaluated in Teiid, in order to ensure that the operation

is performed.

In cases where certain SQL capabilities cannot be pushed down to Salesforce, Teiid will push

down the capabilities that are supported, and fetch a set of data from Salesforce. Then, Teiid will

evaluate the additional capabilities, creating a subset of the original data set. Finally, Teiid will

pass the result to the client.

SELECT sum(Reports) FROM Supervisor where Division = 'customer support';

Neither Salesforce nor the Salesforce Connector support the sum() scalar function, but they do

support CompareCriteriaEquals, so the query that is passed to Salesforce by the connector will

be transformed to this query.

SELECT Reports FROM Supervisor where Division = 'customer support';

The sum() scalar function will be applied by the Teiid Query Engine to the result set returned by

the connector.

In some cases multiple calls to the Salesforce application will be made to support the SQL passed

to the connector.

DELETE From Case WHERE Status = 'Closed';

The API in Salesforce to delete objects only supports deleting by ID. In order to accomplish this

the Salesforce connector will first execute a query to get the IDs of the correct objects, and then

delete those objects. So the above DELETE command will result in the following two commands.

Chapter 12. Translators

108

SELECT ID From Case WHERE Status = 'Closed';

DELETE From Case where ID IN (<result of query>);

*The Salesforce API DELETE call is not expressed in SQL, but the above is an SQL equivalent

expression.

It's useful to be aware of unsupported capabilities, in order to avoid fetching large data sets from

Salesforce and making you queries as performant as possible. See all Supported Capabilities.

12.2.5.1.2. Selecting from Multi-Select Picklists

A multi-select picklist is a field type in Salesforce

that can contain multiple values in a single field.

Query criteria operators for fields of this type in

SOQL are limited to EQ, NE, includes and excludes.

The full Salesforce documentation for selecting from mullti-

select picklists can be found at the following link. Querying

Mulit-select Picklists [http://www.salesforce.com/us/developer/docs/api/

index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp]

Teiid SQL does not support the includes or excludes operators, but the Salesforce connector

provides user defined function definitions for these operators that provided equivalent functionality

for fields of type multi-select. The definition for the functions is:

boolean includes(Column column, String param)

boolean excludes(Column column, String param)

For example, take a single multi-select picklist column called Status that contains all of these

values.

• current

• working

• critical

For that column, all of the below are valid queries:

SELECT * FROM Issue WHERE true = includes (Status, 'current, working');

SELECT * FROM Issue WHERE true = excludes (Status, 'current, working');

SELECT * FROM Issue WHERE true = includes (Status, 'current;working, critical');

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp

Salesforce Translator

109

EQ and NE criteria will pass to Salesforce as supplied. For example, these queries will not be

modified by the connector.

SELECT * FROM Issue WHERE Status = 'current';

SELECT * FROM Issue WHERE Status = 'current;critical';

SELECT * FROM Issue WHERE Status != 'current;working';

12.2.5.1.3. Selecting All Objects

The Salesforce connector supports the calling the queryAll operation from the Salesforce API.

The queryAll operation is equivalent to the query operation with the exception that it returns data

about all current and deleted objects in the system.

The connector determines if it will call the query or queryAll operation via reference to the isDeleted

property present on each Salesforce object, and modeled as a column on each table generated

by the importer. By default this value is set to False when the model is generated and thus the

connector calls query. Users are free to change the value in the model to True, changing the

default behavior of the connector to be queryAll.

The behavior is different if isDeleted is used as a parameter in the query. If the isDeleted column

is used as a parameter in the query, and the value is 'true' the connector will call queryAll.

select * from Contact where isDeleted = true;

If the isDeleted column is used as a parameter in the query, and the value is 'false' the connector

perform the default behavior will call query.

select * from Contact where isDeleted = false;

12.2.5.1.4. Selecting Updated Objects

If the option is selected when importing metadata from Salesforce, a GetUpdated procedure is

generated in the model with the following structure:

GetUpdated (ObjectName IN string,

 StartDate IN datetime,

 EndDate IN datetime,

 LatestDateCovered OUT datetime)

returns

 ID string

Chapter 12. Translators

110

See the description of the GetUpdated [http://www.salesforce.com/us/developer/docs/api/

Content/sforce_api_calls_getupdated.htm] operation in the Salesforce documentation for usage

details.

12.2.5.1.5. Selecting Deleted Objects

If the option is selected when importing metadata from Salesforce, a GetDeleted procedure is

generated in the model with the following structure:

GetDeleted (ObjectName IN string,

 StartDate IN datetime,

 EndDate IN datetime,

 EarliestDateAvailable OUT datetime,

 LatestDateCovered OUT datetime)

returns

 ID string,

 DeletedDate datetime

See the description of the GetDeleted [http://www.salesforce.com/us/developer/docs/api/Content/

sforce_api_calls_getdeleted.htm] operation in the Salesforce documentation for usage details.

12.2.5.1.6. Relationship Queries

Salesforce does not support joins like a relational database, but it does have support for queries

that include parent-to-child or child-to-parent relationships between objects. These are termed

Relationship Queries. The SalesForce connector supports Relationship Queries through Outer

Join syntax.

SELECT Account.name, Contact.Name from Contact LEFT OUTER JOIN Account

on Contact.Accountid = Account.id

This query shows the correct syntax to query a SalesForce model with to produce a relationship

query from child to parent. It resolves to the following query to SalesForce.

SELECT Contact.Account.Name, Contact.Name FROM Contact

select Contact.Name, Account.Name from Account Left outer Join Contact

on Contact.Accountid = Account.id

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm

Web Services Translator

111

This query shows the correct syntax to query a SalesForce model with to produce a relationship

query from parent to child. It resolves to the following query to SalesForce.

SELECT Account.Name, (SELECT Contact.Name FROM

Account.Contacts) FROM Account

See the description of the Relationship Queries [http://www.salesforce.com/us/developer/docs/

api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm] operation in the

SalesForce documentation for limitations.

12.2.5.1.7. Supported Capabilities

The following are the the connector capabilities supported by the Salesforce Connector. These

SQL constructs will be pushed down to Salesforce.

• SELECT command

• INSERT Command

• UPDATE Command

• DELETE Command

• CompareCriteriaEquals

• InCriteria

• LikeCriteria - Supported for String fields only.

• RowLimit

• AggregatesCountStar

• NotCriteria

• OrCriteria

• CompareCriteriaOrdered

• OuterJoins with join criteria KEY

12.2.5.2. JCA Resource Adapter

The resource adapter for this translator provided through "Salesforce Data Source", Refer to

Admin Guide for configuration.

12.2.6. Web Services Translator

The Web Services translator, known by the type name ws, exposes stored procedures for

calling web services backed by a Teiid WS resource adapter. It will commonly be used with the

TEXTTABLE or XMLTABLE table functions to use CSV or XML formated data.

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm

Chapter 12. Translators

112

Note

Setting the proper binding value on the translator is recommended as it removes

the need for callers to pass an explict value. If your service is actually uses

SOAP11, but the binding used SOAP12 you will receive execution failures.

Table 12.8. Execution Properties

Name Description Default

DefaultBinding The binding that should be used if one is not

specified. Can be one of HTTP, SOAP11, or

SOAP12

SOAP12

DefaultServiceMode The default service mode. For SOAP, MESSAGE

mode indicates that the request will contain the

entire SOAP envelope and not just the contents

of the SOAP body. Can be one of MESSAGE or

PAYLOAD

PAYLOAD

XMLParamName Used with the HTTP binding (typically with the

GET method) to indicate that the request document

should be part of the query string.

null - unused

There are ws importer settings, but it does provide metadata for dynamic VDBs.

12.2.6.1. Usage

The WS translator exposes low level procedures for accessing web services. See also the ws-

weather example in the kit.

12.2.6.1.1. Invoke Procedure

Invoke allows for multiple binding, or protocol modes, including HTTP, SOAP11, and SOAP12.

Procedure invoke(binding in STRING, action in STRING, request in XML, endpoint in STRING)

 returns XML

The binding may be one of null (to use the default) HTTP, SOAP11, or SOAP12. Action with a

SOAP binding indicates the SOAPAction value. Action with a HTTP binding indicates the HTTP

method (GET, POST, etc.), which defaults to POST.

A null value for the binding or endpoint will use the default value. The default endpoint is specified

in the WS resource adapter configuration. The endpoint URL may be absolute or relative. If it's

relative then it will be combined with the default endpoint.

OLAP Translator

113

Since multiple parameters are not required to have values, it is often more clear to call the invoke

procedure with named parameter syntax.

call invoke(binding=>'HTTP', action=>'GET')

The request XML should be a valid XML document or root element.

12.2.6.1.2. InvokeHTTP Procedure

invokeHttp can return the byte contents of an HTTP(S) call.

Procedure invokeHttp(action in STRING, request in OBJECT, endpoint in STRING, contentType

 out STRING) returns BLOB

Action indicates the HTTP method (GET, POST, etc.), which defaults to POST.

A null value for endpoint will use the default value. The default endpoint is specified in the WS

resource adapter configuration. The endpoint URL may be absolute or relative. If it's relative then

it will be combined with the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invoke

procedure with named parameter syntax.

call invokeHttp(action=>'GET')

The request can be one of SQLXML, STRING, BLOB, or CLOB. The request will be sent as the

POST payload in byte form. For STRING/CLOB values this will default to the UTF-8 encoding. To

control the byte encoding, see the to_bytes [42] function.

12.2.6.2. JCA Resource Adapter

Theresource adapter for this translator provided through "Web Service Data Source", Refer to

Admin Guide for configuration.

12.2.7. OLAP Translator

The OLAP Services translator, known by the type name olap, exposes stored procedures for

calling analysis sevices backed by a OLAP server using MDX query lanaguage. This translator

exposes a stored procedure, invokeMDX, that returns a result set containing tuple array values

for a given MDX query. invokeMDX will commonly be used with the ARRAYTABLE table function

to extract the results.

Since the Cube metadata exposed by the OLAP servers and relational database metadata are so

different, there is no single way to map the metadata from one to other. It is best to query OLAP

Chapter 12. Translators

114

system using its own native MDX language through. MDX queries my be defined statically or built

dynamically in Teiid's abstraction layers.

12.2.7.1. Usage

The olap translator exposes one low level procedure for accessing olap services.

12.2.7.1.1. InvokeMDX Procedure

invokeMdx returns a resultset of the tuples as array values.

Procedure invokeMdx(mdx in STRING) returns resultset (tuple object)

The mdx parameter is a MDX query to be executed on the OLAP server.

The results of the query will be returned such that each row on the row axis will be packed into an

array value that will first contain each hierarcy member name on the row axis then each measure

value from the column axis.

Note

The use of Chapter 9, Data Roles should be considered to prevent arbitrary MDX

from being submitted to the invokeMDX procedure.

12.2.7.2. JCA Resource Adapter

The resource adapter for this translator provided through data source in JBoss AS, Refer to

Admin Guide for "JDBC Data Sources" configuration section. Two sample -ds.xml files provided

for accessing OLAP servers in teiid-examples section. One is Mondrian specific, when Mondrian

server is deloyed in the same JBoss AS as Teiid (mondrian-ds.xml). To access any other OLAP

servers using XMLA interface, the data source for them can be created using them example

template olap-xmla-ds.xml

12.2.8. Delegating Translators

You may create a delegating translator by extending the

org.teiid.translator.BaseDelegatingExecutionFactory. Once your classes are then

packaged as a custom translator, you will be able to wire another translator instance into your

delegating translator at runtime in order to intercept all of the calls to the delegate. This base class

does not provide any functionality on its own, other than delegation.

Table 12.9. Execution Properties

Name Description Default

delegateName Translator instance name to delegate to

Dynamic VDBs

115

12.3. Dynamic VDBs

Teiid integration is available via a "Dynamic VDB" without the need for Teiid Designer tooling.

While this mode of operation does not yet allow for the creation of view layers, the underlying

sources can still be queried as if they are a single source. See the kit's "teiid-example/dynamicvdb-

*" for working examples.

To build a dynamic VDB, you'll need to create a SOME-NAME-vdb.xml file. The XML file captures

information about the VDB, the sources it integrate, and preferences for importing metadata.

Note

VDB name pattern must adhere to "-vdb.xml" for the Teiid VDB deployer to

recognize this file as a dynamic VDB.

my-vdb.xml: (The vdb-deployer.xml schema for this file is available in the schema folder under

the docs with the Teiid distribution.)

<vdb name="${vdb-name}" version="${vdb-version}">

 <property name="UseConnectorMetadata" value="..." />

 <!-- define a model fragment for each data source -->

 <model name="${model-name}">

 <property name="..." value="..." />

 ...

 <source name="${source-name}" translator-name="${translator-name}"

 connection-jndi-name="${deployed-jndi-name}">

 ...

 </model>

 <!-- create translator instances that override default properties -->

 <translator name="${translator-name}" type="${translator-type}" />

 <property name="..." value="..." />

 ...

 </translator>

Chapter 12. Translators

116

</vdb>

12.3.1. VDB Element

Attributes

• name

The name of the VDB. The VDB name referenced through the driver or datasource during the

connection time.

• version

The version of the VDB (should be an positive integer). This determines the deployed directory

location (see Name), and provides an explicit versioning mechanism to the VDB name.

Property Elements

• UseConnectorMetadata

Setting to use connector supplied metadata. Can be "true" or "cached". "true" will obtain

metadata once for every launch of Teiid. "cached" will save a file containing the metadata into

the PROFILE/data/teiid directory

12.3.2. Model Element

Attributes

• name

The name of the model is used as a top level schema name for all of the metadata imported

from the connector. The name should be unique among all Models in the VDB and should not

contain the '.' character.

• version

The version of the VDB (should be an positive integer). This determines the deployed directory

location (see Name), and provides an explicit versioning mechanism to the VDB name.

Source Element

• name

Translator Element

117

The name of the source to use for this model. This can be any name you like, but will typically

be the same as the model name. Having a name different than the model name is only useful

in multi-source scenarios.

• translator-name

The name or type of the Teiid Translator to use. Possible values include the built-in types (ws,

file, ldap, oracle, sqlserver, db2, derby, etc.) and translators defined in the translators section.

• connection-jndi-name

The JNDI name of this source's connection factory. There should be a corresponding "-

ds.xml" file that defines the connection factory in the JBoss AS. Check out the deploying VDB

dependencies section for info. You also need to deploy these connection factories before you

can deploy the VDB.

Property Elements

• importer.<propertyname>

Property to be used by the connector importer for the model for purposes importing metadata.

See possible property name/values in the Translator specific section. Note that using these

properties you can narrow or widen the data elements available for integration.

12.3.3. Translator Element

Attributes

• name

The name of the the Translator. Referenced by the source element.

• type

The base type of the Translator. Can be one of the built-in types (ws, file, ldap, oracle, sqlserver,

db2, derby, etc.).

Property Elements

• Set a value that overrides a translator default property. See possible property name/values in

the Translator specific section.

12.4. Multi-Source Models and VDB

When you have multiple instances of data that are using identical schema (horizontal sharding),

Teiid can help you aggregate data across all the instances, using "multi-source" models. In this

Chapter 12. Translators

118

scenario, instead of creating/importing a model for every data source, user needs to define one

source model that represents the schema and configure multiple data "sources" underneath it.

During runtime, when a query issued against this model, the query engine analyzes the information

and gathers the required data from all the sources configured and aggregates the results and

provides in a single result set.

To mark a model as multi-source, the user needs to supply property called supports-multi-source-

bindings, in the "vdb.xml" file. Also, the user needs to define multiple sources. Here is code

example showing dynamic vdb with single model with multiple sources defined.

<vdb name="vdbname" version="1">

 <model visible="true" type="PHYSICAL" name="Customers" path="/Test/Customers.xmi">

 <property name="supports-multi-source-bindings" value="true"/>

 <source name="chicago"

 translator-name="oracle" connection-jndi-name="chicago-customers"/>

 <source name="newyork"

 translator-name="oracle" connection-jndi-name="newyork-customers"/>

 <source name="la"

 translator-name="oracle" connection-jndi-name="la-customers"/>

 </model>

</vdb>

In the above example, the VDB defined has single model called Customers, that has multiple

sources (chicago, newyork, and la) that define different instances of data. Every time a model is

marked as "multi-source", the runtime engine adds a additional column called "SOURCE_NAME"

to every table in that model. This column maps to the source's name from the XML. In the above

XML code that would be chicago, la, newyork. This allows queries like the following:

select * from table where SOURCE_NAME = 'newyork'

update table column=value where SOURCE_NAME='chicago'

delete from table where column = x and SOURCE_NAME='la'

insert into table (column, SOURCE_NAME) VALUES ('value', 'newyork')

Note that when user do not supply the "SOURCE_NAME" in the criteria, the command applies

to all the sources. If SOURCE_NAME supplied, the query is executed only aginst the source

specified. Another useful feature along with this feature is "partial results" to skip unavailable

sources if they are down.

Note

Currently the tooling support for managing the multi-source feature is limited, so if

you need to use this feature build the VDB as usual in the Teiid Designer and then

Multi-Source Models and VDB

119

edit the "vdb.xml" file in the VDB archive using a Text editor to add the additional

sources as defined above. You must deploy a separate data source for each source

defined in the xml file.

Note

If you would like to use "SOURCE_NAME" in your transformations to control which

sources are accessed or updated, you would manually need to add this extra

column on your view table in the Designer. This column will not be automatically

added on the source table, when you import the medata from source.

120

Chapter 13.

121

Federated Planning
Teiid at its core is a federated relational query engine. This query engine allows you to treat all of

your data sources as one virtual database and access them in a single SQL query. This allows you

to focus on building your application, not on hand-coding joins, and other relational operations,

between data sources.

13.1. Overview

When the query engine receives an incoming SQL query it performs the following operations:

1. Parsing - validate syntax and convert to internal form

2. Resolving - link all identifiers to metadata and functions to the function library

3. Validating - validate SQL semantics based on metadata references and type signatures

4. Rewriting - rewrite SQL to simplify expressions and criteria

5. Logical plan optimization - the rewritten canonical SQL is converted into a logical plan for in-

depth optimization. The Teiid optimizer is predominantly rule-based. Based upon the query

structure and hints a certain rule set will be applied. These rules may trigger in turn trigger the

execution of more rules. Within several rules, Teiid also takes advantage of costing information.

The logical plan optimization steps can be seen by using SHOWPLAN DEBUG clause and are

described in the query planner section.

6. Processing plan conversion - the logic plan is converted into an executable form where the

nodes are representative of basic processing operations. The final processing plan is displayed

as the query plan .

The logical query plan is a tree of operations used to transform data in source tables to the

expected result set. In the tree, data flows from the bottom (tables) to the top (output). The primary

logical operations are select (select or filter rows based on a criteria), project (project or compute

column values), join , source (retrieve data from a table), sort (ORDER BY), duplicate removal

(SELECT DISTINCT), group (GROUP BY), and union (UNION).

For example, consider the following query that retrieves all engineering employees born since

1970.

Example 13.1. Example query

SELECT e.title, e.lastname FROM Employees AS e JOIN

Departments AS d ON e.dept_id = d.dept_id WHERE year(e.birthday) >= 1970 AND d.dept_name

 = 'Engineering'

Chapter 13. Federated Planning

122

Logically, the data from the Employees and Departments tables are retrieved, then joined, then

filtered as specified, and finally the output columns are projected. The canonical query plan thus

looks like this:

Data flows from the tables at the bottom upwards through the join, through the select, and finally

through the project to produce the final results. The data passed between each node is logically

a result set with columns and rows.

Of course, this is what happens logically , not how the plan is actually executed. Starting

from this initial plan, the query planner performs transformations on the query plan tree to

produce an equivalent plan that retrieves the same results faster. Both a federated query planner

and a relational database planner deal with the same concepts and many of the same plan

transformations. In this example, the criteria on the Departments and Employees tables will be

pushed down the tree to filter the results as early as possible.

In both cases, the goal is to retrieve the query results in the fastest possible time. However, the

relational database planner does this primarily by optimizing the access paths in pulling data from

storage.

In contrast, a federated query planner is less concerned about storage access because it is

typically pushing that burden to the data source. The most important consideration for a federated

query planner is minimizing data transfer.

Federated Optimizations

123

13.2. Federated Optimizations

13.2.1. Access Patterns

Access patterns are used on both physical tables and views to specify the need for criteria against

a set of columns. Failure to supply the criteria will result in a planning error, rather than a run-away

source query. Access patterns can be applied in a set such that only one of the access patterns

is required to be satisfied.

Currently any form of criteria referencing an affected column may satisfy an access pattern.

13.2.2. Pushdown

In federated database systems pushdown refers to decomposing the user level query into source

queries that perform as much work as possible on their respective source system. Pushdown

analysis requires knowledge of source system capabilities, which is provided to Teiid though the

Connector API. Any work not performed at the source is then processed in Federate's relational

engine.

Based upon capabilities, Teiid will manipulate the query plan to ensure that each source performs

as much joining, filtering, grouping, etc. as possible. In may cases, such as with join ordering,

planning is a combination of standard relational techniques and, cost based and heuristics for

pushdown optimization.

Criteria and join push down are typically the most important aspects of the query to push down

when performance is a concern. See Query Plans on how to read a plan to ensure that source

queries are as efficient as possible.

13.2.3. Dependent Joins

A special optimization called a dependent join is used to reduce the rows returned from one of the

two relations involved in a multi-source join. In a dependent join, queries are issued to each source

sequentially rather than in parallel, with the results obtained from the first source used to restrict

the records returned from the second. Dependent joins can perform some joins much faster by

drastically reducing the amount of data retrieved from the second source and the number of join

comparisons that must be performed.

The conditions when a dependent join is used are determined by the query planner based on

Section 13.2.1, “Access Patterns”, hints, and costing information.

Teiid supports the MAKEDEP and MAKENOTDEP hints. Theses are can be placed in either the

OPTION clause or directly in the FROM clause . As long as all Section 13.2.1, “Access Patterns”

can be met, the MAKEDEP and MAKENOTDEP hints override any use of costing information.

Chapter 13. Federated Planning

124

Tip

The MAKEDEP hint should only be used if the proper query plan is not chosen by

default. You should ensure that your costing information is representative of the

actual source cardinality. An inappropriate MAKEDEP hint can force an inefficient

join structure and may result in many source queries.

The engine will for IN clauses to filter the values coming from the dependent side. If the number

of values from the independent side exceeds the translators MaxInCriteriaSize, the values will be

split into multiple IN predicates up to MaxDependentPredicates. When the number of independent

values exceeds MaxInCriteriaSize*MaxDependentPredicates, then multiple dependent queries

will be issued in parallel.

13.2.4. Copy Criteria

Copy criteria is an optimization that creates additional predicates based upon combining

join and where clause criteria. For example, equi-join predicates (source1.table.column =

source2.table.column) are used to create new predicates by substituting source1.table.column

for source2.table.column and vice versa. In a cross source scenario, this allows for where criteria

applied to a single side of the join to be applied to both source queries

13.2.5. Projection Minimization

Teiid ensures that each pushdown query only projects the symbols required for processing the

user query. This is especially helpful when querying through large intermediate view layers.

13.2.6. Partial Aggregate Pushdown

Partial aggregate pushdown allows for grouping operations above multi-source joins and unions

to be decomposed so that some of the grouping and aggregate functions may be pushed down

to the sources.

13.2.7. Optional Join

The optional join hint indicates to the optimizer that a joined table should be omitted if none of its

columns are used by the output of the user query or in a meaningful way to construct the results

of the user query. This hint is typically only used in view layers containing multi-source joins.

The optional join hint is applied as a comment on a join clause. It can be applied in both ANSI and

non-ANSI joins. With non-ANSI joins an entire joined table may be marked as optional.

Example 13.2. Example Optional Join Hint

select a.column1, b.column2 from a, /*+ optional */ b WHERE a.key = b.key

Optional Join

125

Suppose this example defines a view layer X. If X is queried in such a way as to not need

b.column2, then the optional join hint will cause b to be omitted from the query plan. The result

would be the same as if X were defined as:

select a.column1 from a

Example 13.3. Example ANSI Optional Join Hint

select a.column1, b.column2, c.column3 from /*+ optional */ (a inner join b ON a.key = b.key)

 INNER JOIN c ON a.key = c.key

In this example the ANSI join syntax allows for the join of a and b to be marked as optional.

Suppose this example defines a view layer X. Only if both column a.column1 and b.column2 are

not needed, e.g. "SELECT column3 FROM X" will the join be removed.

The optional join hint will not remove a bridging table that is still required.

Example 13.4. Example Briding Table

select a.column1, b.column2, c.column3 from /*+ optional */ a, b, c WHERE ON a.key = b.key

 AND a.key = c.key

Suppose this example defines a view layer X. If b.column2 or c.column3 are solely required by a

query to X, then the join on a be removed. However if a.column1 or both b.column2 and c.column3

are needed, then the optional join hint will not take effect.

Tip

When a join clause is omitted via the optional join hint, the relevant criteria is not

applied. Thus it is possible that the query results may not have the same cardinality

or even the same row values as when the join is fully applied.

Left/right outer joins where the inner side values are not used and whose rows

under go a distinct operation will automatically be treated as an optional join and

do not require a hint.

Chapter 13. Federated Planning

126

Example 13.5. Example Unnecessary Optional Join Hint

select a.column1, b.column2 from a LEFT OUTER JOIN /*+optional*/ b ON a.key

 = b.key

Warning

A simple "SELECT COUNT(*) FROM VIEW" against a view where all join tables

are marked as optional will not return a meaningful result.

13.2.8. Partitioned Union

Union partitioning is inferred from the transformation/inline view. If one (or more) of the UNION

columns is defined by constants and/or has WHERE clause IN predicates containing only

constants that make each branch mutually exclusive, then the UNION is considered partitioned.

UNION ALL must be used and the UNION cannot have a LIMIT, WITH, or ORDER BY clause

(although individual branches may use LIMIT, WITH, or ORDER BY). Partitioning values should

not be null. For example the view definition "select 1 as x, y from foo union all select z, a from foo1

where z in (2, 3)" would be considered partitioned on column x, since the first branch can only

be the value 1 and the second branch can only be the values 2 or 3. Note that more advanced

or explicit partition could be considered in the future. The concept of a partitioned union is used

for performing partition-wise joins, in Chapter 6, Updatable Views, and Section 13.2.6, “Partial

Aggregate Pushdown”.

13.2.9. Standard Relational Techniques

Teiid also incorporates many standard relational techniques to ensure efficient query plans.

• Rewrite analysis for function simplification and evaluation.

• Boolean optimizations for basic criteria simplification.

• Removal of unnecessary view layers.

• Removal of unnecessary sort operations.

• Advanced search techniques through the left-linear space of join trees.

• Parallelizing of source access during execution.

• Section 13.3, “Subquery optimization”

Subquery optimization

127

13.3. Subquery optimization

• EXISTS subqueries are typically rewrite to "SELECT 1 FROM ..." to prevent unnecessary

evaluation of SELECT expressions.

• Quantified compare SOME subqueries are always turned into an equivalent IN prediate or

comparison against an aggregate value. e.g. col > SOME (select col1 from table) would become

col > (select min(col1) from table)

• Uncorrelated EXISTs and scalar subquery that are not pushed to the source can be

preevaluated prior to source command formation.

• Correlated subqueries used in DETELEs or UPDATEs that are not pushed as part of

the corresponding DELETE/UPDATE will cause Teiid to perform row-by-row compensating

processing. This will only happen if the affected table has a primary key. If it does not, then an

exception will be thrown.

• WHERE or HAVING clause IN and EXISTs predicates can take the MJ (merge join) or

NO_UNNEST (no unnest) hints appearing just before the subquery. The MJ hint directs the

optimizer to use a traditional, semijoin, or antisemijoin merge join if possible. The NO_UNNEST

hint, which supercedes the MJ hint, will direct the optimizer to leave the subquery in place.

Example 13.6. Merge Join Hint Usage

SELECT col1 from tbl where col2 IN /*+ MJ */ (SELECT col1 FROM tbl2)

Example 13.7. No Unnest Hint Usage

SELECT col1 from tbl where col2 IN /*+ NO_UNNEST */ (SELECT col1 FROM tbl2)

• The system property org.teiid.subqueryUnnestDefault controls whether the optimizer will by

default unnest subqueries. The default is false. If true, then most non-negated WHERE

or HAVING clause non-negated EXISTS or IN subquery predicates can be converted to a

traditional merge join or as antijoin or semijoin variants.

• WHERE clause EXISTs and IN predicates that can be rewriten to a traditional

join with the semantics of the semi-join can preserved if the system property

org.teiid.subqueryUnnestDefault is set to true or the subquery has a MJ hint.

• EXISTs and scalar subqueries that are not pushed down, and not converted to merge joins, are

implicitly limited to 1 and 2 result rows respectively.

• Conversion of subquery predicates to nested loop joins is not yet available.

Chapter 13. Federated Planning

128

13.4. Federated Failure Modes

13.4.1. Partial Results

Teiid provides the capability to obtain "partial results" in the event of data source unavailability or

failure. This is especially useful when unioning information from multiple sources, or when doing

a left outer join, where you are 'appending' columns to a master record but still want the record

if the extra information is not available.

A source is considered to be 'unavailable' if the connection factory associated with the source

issues an exception in response to a query. The exception will be propagated to the query

processor, where it will become a warning on the statement. See the Client Guide for more on

Partial Results Mode and SQLWarnings.

13.5. Query Plans

When integrating information using a federated query planner, it is useful to be able to view

the query plans that are created, to better understand how information is being accessed and

processed, and to troubleshoot problems.

A query plan is a set of instructions created by a query engine for executing a command submitted

by a user or application. The purpose of the query plan is to execute the user's query in as efficient

a way as possible.

13.5.1. Getting a Query Plan

You can get a query plan any time you execute a command. The SQL options available are as

follows:

• SHOWPLAN [ON|DEBUG]- Returns the plan or the plan and the full planner debug log.

With the above options, the query plan is available from the Statement object by casting to the

org.teiid.jdbc.TeiidStatement interface.

Example 13.8. Retrieving a Query Plan

statement.execute("set showplan on");

ResultSet rs = statement.executeQuery("select ...");

TeiidStatement tstatement = statement.unwrap(TeiidStatement.class);

PlanNode queryPlan = tstatement.getPlanDescription();

System.out.println(queryPlan);

The query plan is made available automatically in several of Teiid's tools.

Analyzing a Query Plan

129

13.5.2. Analyzing a Query Plan

Once a query plan has been obtained you will most commonly be looking for:

• Source pushdown -- what parts of the query that got pushed to each source

• Join ordering

• Join algorithm used - merge or nested loop.

• Presence of federated optimizations, such as dependent joins.

• Join criteria type mismatches.

All of these issues presented above will be present subsections of the plan that are specific to

relational queries. If you are executing a procedure or generating an XML document, the overall

query plan will contain additional information related the surrounding procedural execution.

A query plan consists of a set of nodes organized in a tree structure. As with the above example,

you will typically be interested in analyzing the textual form of the plan.

In a procedural context the ordering of child nodes implies the order of execution. In most other

situation, child nodes may be executed in any order even in parallel. Only in specific optimizations,

such as dependent join, will the children of a join execute serially.

13.5.3. Relational Plans

Relational plans represent the actually processing plan that is composed of nodes that are the

basic building blocks of logical relational operations. Physical relational plans differ from logical

relational plans in that they will contain additional operations and execution specifics that were

chosen by the optimizer.

The nodes for a relational query plan are:

• Access - Access a source. A source query is sent to the connection factory associated with the

source. [For a dependent join, this node is called Dependent Select.]

• Project - Defines the columns returned from the node. This does not alter the number of records

returned. [When there is a subquery in the Select clause, this node is called Dependent Project.]

• Project Into - Like a normal project, but outputs rows into a target table.

• Select - Select is a criteria evaluation filter node (WHERE / HAVING). [When there is a subquery

in the criteria, this node is called Dependent Select.]

• Join - Defines the join type, join criteria, and join strategy (merge or nested loop).

Chapter 13. Federated Planning

130

• Union - There are no properties for this node, it just passes rows through from it's children

• Sort - Defines the columns to sort on, the sort direction for each column, and whether to remove

duplicates or not.

• Dup Removal - Same properties as for Sort, but the removeDups property is set to true

• Group - Groups sets of rows into groups and evaluates aggregate functions.

• Null - A node that produces no rows. Usually replaces a Select node where the criteria is always

false (and whatever tree is underneath). There are no properties for this node.

• Plan Execution - Executes another sub plan.

• Limit - Returns a specified number of rows, then stops processing. Also processes an offset

if present.

13.5.3.1. Node Statistics

Every node has a set of statistics that are output. These can be used to determine the amount

of data flowing through the node.

Statistic Description Units

Node Output Rows Number of records output from

the node

count

Node Process Time Time processing in this node

only

millisec

Node Cumulative Process

Time

Elapsed time from beginning

of processing to end

millisec

Node Cumulative Next Batch

Process Time

Time processing in this node +

child nodes

millisec

Node Next Batch Calls Number of times a node was

called for processing

count

Node Blocks Number of times a blocked

exception was thrown by this

node or a child

count

In addition to node statistics, some nodes display cost estimates computed at the node.

Cost Estimates Description Units

Estimated Node Cardinality Estimated number of records

that will be output from the

node; -1 if unknown

count

Query Planner

131

13.6. Query Planner

For each sub-command in the user command an appropriate kind of sub-planner is used

(relational, XML, procedure, etc).

Each planner has three primary phases:

1. Generate canonical plan

2. Optimization

3. Plan to process converter - converts plan data structure into a processing form

13.6.1. Relational Planner

The GenerateCanonical class generates the initial (or “canonical” plan). This plan is based on

the typical logical order that a SQL query gets executed. A SQL select query has the following

possible clauses (all but SELECT are optional): SELECT, FROM, WHERE, GROUP BY, HAVING,

ORDER BY, LIMIT. These clauses are logically executed in the following order:

1. FROM (read and join all data from tables)

2. WHERE (filter rows)

3. GROUP BY (group rows into collapsed rows)

4. HAVING (filter grouped rows)

5. SELECT (evaluate expressions and return only requested columns)

6. INTO

7. ORDER BY (sort rows)

8. LIMIT (limit result set to a certain range of results)

These clauses translate into the following types of planning nodes:

• FROM: Source node for each from clause item, Join node (if >1 table)

• WHERE: Select node

• GROUP BY: Group node

• HAVING: Select node

• SELECT: Project node and DupRemoval node (for SELECT DISTINCT)

• INTO: Project node with a SOURCE Node

• ORDER BY: Sort node

• LIMIT: Limit node

Chapter 13. Federated Planning

132

• UNION, EXCEPT, INTERSECT: SetOp Node

There is also a Null Node that can be created as the result of rewrite or planning optimizations.

It represents a node that produces no rows

Relational optimization is based upon rule execution that evolves the initial plan into the execution

plan. There are a set of pre-defined rules that are dynamically assembled into a rule stack for

every query. The rule stack is assembled based on the contents of the user’s query and its

transformations. For example, if there are no view layers, then RuleMergeVirtual, which merges

view layers together, is not needed and will not be added to the stack. This allows the rule stack

to reflect the complexity of the query.

Logically the plan node data structure represents a tree of nodes where the source data comes

up from the leaf nodes (typically Access nodes in the final plan), flows up through the tree and

produces the user’s results out the top. The nodes in the plan structure can have bidirectional

links, dynamic properties, and allow any number of child nodes. Processing plan nodes in contrast

typical have fixed properties, and only allow for binary operations - due to algorithmic limitations.

Below are some of the rules included in the planner:

• RuleRemoveSorts - removes sort nodes that do not have an effect on the result. This most

common when a view has an non-limited ORDER BY.

• RulePlaceAccess - insert an Access node above every physical Source node. The source node

represents a table typically. An access node represents the point at which everything below

the access node gets pushed to the source. Later rules focus on either pushing stuff under the

access or pulling the access node up the tree to move more work down to the data sources.

 This rule is also responsible for placing Section 13.2.1, “Access Patterns”.

• RulePushSelectCriteria - pushes select criteria down through unions, joins, and views into the

source below the access node. In most cases movement down the tree is good as this will filter

rows earlier in the plan. We currently do not undo the decisions made by PushSelectCriteria.

 However in situations where criteria cannot be evaluated by the source, this can lead to sub

optimal plans.

One of the most important optimization related to pushing criteria, is how the criteria will be

pushed trough join. Consider the following plan tree that represents a subtree of the plan for

the query "select ... from A inner join b on (A.x = B.x) where A.y = 3"

 SELECT (B.y = 3)

 |

 JOIN - Inner Join on (A.x = B.x

 / \

 SRC (A) SRC (B)

Note: SELECT nodes represent criteria, and SRC stands for SOURCE.

Relational Planner

133

It is always valid for inner join and cross joins to push (single source) criteria that are above the

join, below the join. This allows for criteria originating in the user query to eventually be present

in source queries below the joins. This result can be represented visually as:

 JOIN - Inner Join on (A.x = B.x)

 / \

 / SELECT (B.y = 3)

 | |

 SRC (A) SRC (B)

The same optimization is valid for criteria specified against the outer side of an outer join. For

example:

 SELECT (B.y = 3)

 |

 JOIN - Right Outer Join on (A.x = B.x)

 / \

 SRC (A) SRC (B)

Becomes

 JOIN - Right Outer Join on (A.x = B.x)

 / \

 / SELECT (B.y = 3)

 | |

 SRC (A) SRC (B)

However criteria specified against the inner side of an outer join needs special consideration.

 The above scenario with a left or full outer join is not the same. For example:

 SELECT (B.y = 3)

 |

 JOIN - Left Outer Join on (A.x = B.x)

 / \

 SRC (A) SRC (B)

Can become (available only after 5.0.2):

Chapter 13. Federated Planning

134

 JOIN - Inner Join on (A.x = B.x)

 / \

 / SELECT (B.y = 3)

 | |

 SRC (A) SRC (B)

Since the criterion is not dependent upon the null values that may be populated from the inner

side of the join, the criterion is eligible to be pushed below the join – but only if the join type is

also changed to an inner join.

On the other hand, criteria that are dependent upon the presence of null values CANNOT be

moved. For example:

 SELECT (B.y is null)

 |

 JOIN - Left Outer Join on (A.x = B.x)

 / \

 SRC (A) SRC (B)

This plan tree must have the criteria remain above the join, since the outer join may be

introducing null values itself. This will be true regardless of which version of Teiid is used.

• RulePushNonJoinCriteria - this rule will push criteria out of an on clause if it is not necessary

for the correctness of the join.

• RuleRaiseNull - this rule will raise null nodes to their highest possible point. Raising a null node

removes the need to consider any part of the old plan that was below the null node.

• RuleMergeVirtual - merges view layers together. View layers are connected by nesting

canonical plans under source leaf nodes of the parent plan. Each canonical plan is also

sometimes referred to as a “query frame”. RuleMergeVirtual attempts to merge child frames into

the parent frame. The merge involves renaming any symbols in the lower frame that overlap

with symbols in the upper frame. It also involves merging the join information together.

• RuleRemoveOptionalJoins - removes optional join nodes form the plan tree as soon as possible

so that planning will be more optimal.

• RulePlanJoins - this rule attempts to find an optimal ordering of the joins performed in the plan,

while ensuring that Section 13.2.1, “Access Patterns” dependencies are met. This rule has

three main steps. First it must determine an ordering of joins that satisfy the access patterns

present. Second it will heuristically create joins that can be pushed to the source (if a set of joins

are pushed to the source, we will not attempt to create an optimal ordering within that set. More

than likely it will be sent to the source in the non-ANSI multi-join syntax and will be optimized

Relational Planner

135

by the database). Third it will use costing information to determine the best left-linear ordering

of joins performed in the processing engine. This third step will do an exhaustive search for 6

or less join sources and is heuristically driven by join selectivity for 7 or more sources.

• RuleCopyCriteria - this rule copies criteria over an equality criteria that is present in the criteria

of a join. Since the equality defines an equivalence, this is a valid way to create a new criteria

that may limit results on the other side of the join (especially in the case of a multi-source join).

• RuleCleanCriteria - this rule cleans up criteria after all the other rules.

• RuleMergeCriteria - looks for adjacent criteria nodes and merges them together. It looks for

adjacent identical conjuncts and removes duplicates.

• RuleRaiseAccess - this rule attempts to raise the Access nodes as far up the plan as possible.

 This is mostly done by looking at the source’s capabilities and determining whether the

operations can be achieved in the source or not.

• RuleChooseDependent - this rule looks at each join node and determines whether the join

should be made dependent and in which direction. Cardinality, the number of distinct values,

and primary key information are used in several formulas to determine whether a dependent

join is likely to be worthwhile. The dependent join differs in performance ideally because a

fewer number of values will be returned from the dependent side. Also, we must consider the

number of values passed from independent to dependent side. If that set is larger than the max

number of values in an IN criteria on the dependent side, then we must break the query into

a set of queries and combine their results. Executing each query in the connector has some

overhead and that is taken into account. Without costing information a lot of common cases

where the only criteria specified is on a non-unique (but strongly limiting) field are missed. A

join is eligible to be dependent if:

1. there is at least one equi-join criterion, i.e. tablea.col = tableb.col

2. the join is not a full outer join and the dependent side of the join is on the inner side of the join

The join will be made dependent if one of the following conditions, listed in precedence order,

holds:

1. There is an unsatisfied access pattern that can be satisfied with the dependent join criteria

2. The potential dependent side of the join is marked with an option makedep

3. (4.3.2) if costing was enabled, the estimated cost for the dependent join (5.0+ possibly in

each direction in the case of inner joins) is computed and compared to not performing the

dependent join. If the costs were all determined (which requires all relevant table cardinality,

column ndv, and possibly nnv values to be populated) the lowest is chosen.

4. If key metadata information indicates that the potential dependent side is not “small” and

the other side is “not small” or (5.0.1) the potential dependent side is the inner side of a left

outer join.

Chapter 13. Federated Planning

136

Dependent join is the key optimization we use to efficiently process multi-source joins.

Instead of reading all of source A and all of source B and joining them on A.x = B.x, we read all

of A then build a set of A.x that are passed as a criteria when querying B. In cases where A is

small and B is large, this can drastically reduce the data retrieved from B, thus greatly speeding

the overall query.

• RuleChooseJoinStrategy - Determines the base join strategy. Currently this is a decision as

to whether to use a merge join rather than the default strategy, which is a nested loop join.

 Ideally the choice of a hash join would also be evaluated here. Also costing should be used

to determine the strategy cost.

• RuleDecomposeJoin - this rule perfomrs a partition-wise join optimization on joins of

Section 13.2.8, “Partitioned Union”. The decision to decompose is based upon detecting that

each side of the join is a partitioned union (note that non-ansi joins of more than 2 tables

may cause the optimization to not detect the appropriate join). The rule currently only looks for

situations where at most 1 partition matches from each side.

• RuleCollapseSource - this rule removes all nodes below an Access node and collapses them

into an equivalent query that is placed in the Access node.

• RuleAssignOutputElements - this rule walks top down through every node and calculates the

output columns for each node. Columns that are not needed are dropped at every node. This

is done by keeping track of both the columns needed to feed the parent node and also keeping

track of columns that are “created” at a certain node.

• RuleValidateWhereAll - this rule validates a rarely used model option.

• RuleAccessPatternValidation - validates that all access patterns have been satisfied.

• RulePushLimit - pushes limit and offset information as far as possible in the plan.

13.6.2. Procedure Planner

The procedure planner is fairly simple. It converts the statements in the procedure into instructions

in a program that will be run during processing. This is mostly a 1-to-1 mapping and very little

optimization is performed.

13.6.3. XML Planner

The XML Planner creates an XML plan that is relatively close to the end result of the Procedure

Planner – a program with instructions. Many of the instructions are even similar (while loop,

execute SQL, etc). Additional instructions deal with producing the output result document (adding

elements and attributes).

The XML planner does several types of planning (not necessarily in this order):

- Document selection - determine which tags of the virtual document should be excluded from

the output document. This is done based on a combination of the model (which marks parts of

XML Planner

137

the document excluded) and the query (which may specify a subset of columns to include in the

SELECT clause).

- Criteria evaluation - breaks apart the user’s criteria, determine which result set the criteria should

be applied to, and add that criteria to that result set query.

- Result set ordering - the query’s ORDER BY clause is broken up and the ORDER BY is applied

to each result set as necessary

- Result set planning - ultimately, each result set is planned using the relational planner and taking

into account all the impacts from the user’s query

- Program generation - a set of instructions to produce the desired output document is produced,

taking into account the final result set queries and the excluded parts of the document. Generally,

this involves walking through the virtual document in document order, executing queries as

necessary and emitting elements and attributes.

XML programs can also be recursive, which involves using the same document fragment for both

the initial fragment and a set of repeated fragments (each a new query) until some termination

criteria or limit is met.

138

Chapter 14.

139

Architecture

14.1. Terminology

• VM or Process – a JBossAS instance running Teiid.

• Host – a machine that is “hosting” one or more VMs.

• Service – a subsystem running in a VM (often in many VMs) and providing a related set of

functionality

In addition to these main components, the service platform provides a core set of services available

to applications built on top of the service platform. These services are:

• Session – the Session service manages active session information.

• Buffer Manager – the Buffer Manager service provides access to data management for

intermediate results.

• Transaction – the Transaction service manages global, local, and request scoped transactions.

 See also the documentation on transaction support.

14.2. Data Management

14.2.1. Cursoring and Batching

Teiid cursors all results, regardless of whether they are from one source or many sources, and

regardless of what type of processing (joins, unions, etc.) have been performed on the results.

Teiid processes results in batches. A batch is simply a set of records. The number of rows in a

batch is determined by the buffer system properties Processor Batch Size (within query engine)

and Connector Batch Size (created at connectors).

Client applications have no direct knowledge of batches or batch sizes, but rather specify

fetch size. However the first batch, regardless of fetch size is always proactively returned to

synchronous clients. Subsequent batches are returned based on client demand for the data. Pre-

fetching is utilized at both the client and connector levels.

14.2.2. Buffer Management

The buffer manager manages memory for all result sets used in the query engine. That includes

result sets read from a connection factory, result sets used temporarily during processing, and

result sets prepared for a user. Each result set is referred to in the buffer manager as a tuple

source.

When retrieving batches from the buffer manager, the size of a batch in bytes is estimated and

then allocated against the max limit.

Chapter 14. Architecture

140

14.2.2.1. Memory Management

The buffer manager has two storage managers - a memory manager and a disk manager. The

buffer manager maintains the state of all the batches, and determines when batches must be

moved from memory to disk.

14.2.2.2. Disk Management

Each tuple source has a dedicated file (named by the ID) on disk. This file will be created only

if at least one batch for the tuple source had to be swapped to disk. The file is random access.

The connector batch size and processor batch size properties define how many rows can exist

in a batch and thus define how granular the batches are when stored into the storage manager.

Batches are always read and written from the storage manager whole.

The disk storage manager has a cap on the maximum number of open files to prevent running

out of file handles. In cases with heavy buffering, this can cause wait times while waiting for a file

handle to become available (the default max open files is 64).

14.2.3. Cleanup

When a tuple source is no longer needed, it is removed from the buffer manager. The buffer

manager will remove it from both the memory storage manager and the disk storage manager.

The disk storage manager will delete the file. In addition, every tuple source is tagged with a "group

name" which is typically the session ID of the client. When the client's session is terminated (by

closing the connection, server detecting client shutdown, or administrative termination), a call is

sent to the buffer manager to remove all tuple sources for the session.

In addition, when the query engine is shutdown, the buffer manager is shut down, which will

remove all state from the disk storage manager and cause all files to be closed. When the query

engine is stopped, it is safe to delete any files in the buffer directory as they are not used across

query engine restarts and must be due to a system crash where buffer files were not cleaned up.

14.3. Query Termination

14.3.1. Canceling Queries

When a query is canceled, processing will be stopped in the query engine and in all connectors

involved in the query. The semantics of what a connector does in response to a cancellation

command is dependent on the connector implementation. For example, JDBC connectors will

asynchronously call cancel on the underlying JDBC driver, which may or may not actually support

this method.

14.3.2. Timeouts

Timeouts in Teiid are managed on the client-side, in the JDBC API (which underlies both SOAP

and ODBC access). Timeouts are only relevant for the first record returned. If the first record has

Processing

141

not been received by the client within the specified timeout period, a ‘cancel’ command is issued

to the server for the request and no results are returned to the client. The cancel command is

issued by the JDBC API without the client’s intervention.

14.4. Processing

14.4.1. Join Algorithms

Nested loop does the most obvious processing – for every row in the outer source, it compares

with every row in the inner source. Nested loop is only used when the join criteria has no equi-join

predicates.

Merge join first sorts the input sources on the joined columns. You can then walk through each

side in parallel (effectively one pass through each sorted source) and when you have a match,

emit a row. In general, merge join is on the order of n+m rather than n*m in nested loop. Merge

join is the default algorithm.

Using costing information the engine may also delay the decision to perform a full sort merge

join. Based upon the actual row counts involved, the engine can choose to build an index of the

smaller side (which will perform similarly to a hash join) or to only partially sort the larger side

of the relation.

Joins involving equi-join predicates are also eligible to be made into Section 13.2.3, “Dependent

Joins”.

14.4.2. Sort Based Algorithms

Sorting is used as the basis of the Sort (ORDER BY), Grouping (GROUP BY), and DupRemoval

(SELECT DISTINCT) operations. The sort algorithm is a multi-pass merge-sort that does not

require all of the result set to ever be in memory yet uses the maximal amount of memory allowed

by the buffer manager.

It consists of two phases. The first phase ("sort") will take an unsorted input stream and produce

one or more sorted input streams. Each pass reads as much of the unsorted stream as possible,

sorts it, and writes it back out as a new stream. Since the stream may be more than can fit in

memory, this may result in many sorted streams.

The second phase ("merge") consists of a set of phases that grab the next batch from as many

sorted input streams as will fit in memory. It then repeatedly grabs the next tuple in sorted order

from each stream and outputs merged sorted batches to a new sorted stream. At completion of

the pass, all input streams are dropped. In this way, each pass reduces the number of sorted

streams. When only one stream remains, it is the final output.

142

143

Appendix A. BNF for SQL Grammar

A.1. TOKENS

<DEFAULT> SKIP : { " " | "\t" | "\n" | "\r" }

<DEFAULT> MORE : { "/*" : IN_MULTI_LINE_COMMENT }

<IN_MULTI_LINE_COMMENT> SPECIAL : { <MULTI_LINE_COMMENT: "*/"> : DEFAULT }

<IN_MULTI_LINE_COMMENT> MORE : { <~[]> }

<DEFAULT> TOKEN : { <STRING: "string"> | <VARCHAR: "varchar"> | <BOOLEAN: "boolean">

| <BYTE: "byte"> | <TINYINT: "tinyint"> | <SHORT: "short"> | <SMALLINT: "smallint"> | <CHAR:

"char"> | <INTEGER: "integer"> | <LONG: "long"> | <BIGINT: "bigint"> | <BIGINTEGER:

"biginteger"> | <FLOAT: "float"> | <REAL: "real"> | <DOUBLE: "double"> | <BIGDECIMAL:

"bigdecimal"> | <DECIMAL: "decimal"> | <DATE: "date"> | <TIME: "time"> | <TIMESTAMP:

"timestamp"> | <OBJECT: "object"> | <BLOB: "blob"> | <CLOB: "clob"> | <XML: "xml"> }

<DEFAULT> TOKEN : { <CAST: "cast"> | <CONVERT: "convert"> }

<DEFAULT> TOKEN : { <ADD: "add"> | <ALL: "all"> | <ALTER: "alter"> | <AND: "and">

| <ANY: "any"> | <ARRAY: "array"> | <ARRAY_AGG: "array_agg"> | <AS: "as"> | <ASC:

"asc"> | <ATOMIC: "atomic"> | <AUTORIZATION: "authorization"> | <BEGIN: "begin"> |

<BETWEEN: "between"> | <BINARY: "binary"> | <BOTH: "both"> | <BREAK: "break">

| <BY: "by"> | <CALL: "call"> | <CALLED: "called"> | <CASCADED: "cascaded"> |

<CASE: "case"> | <CHARACTER: "character"> | <CHECK: "check"> | <CLOSE: "close">

| <COLLATE: "collate"> | <COLUMN: "column"> | <COMMIT: "commit"> | <CONNECT:

"connect"> | <CONSTRAINT: "constraint"> | <CONTINUE: "continue"> | <CORRESPONDING:

"corresponding"> | <CURRENT_DATE: "current_date"> | <CURRENT_TIME: "current_time">

| <CURRENT_TIMESTAMP: "current_timestamp"> | <CURRENT_USER: "current_user"> |

<CREATE: "create"> | <CRITERIA: "criteria"> | <CROSS: "cross"> | <CURSOR: "cursor">

| <DAY: "day"> | <DEALLOCATE: "deallocate"> | <DEFAULT_KEYWORD: "default"> |

<DECLARE: "declare"> | <DELETE: "delete"> | <DESC: "desc"> | <DESCRIBE: "describe"> |

<DETERMINISTIC: "deterministic"> | <DISCONNECT: "disconnect"> | <DISTINCT: "distinct">

| <DROP: "drop"> | <EACH: "each"> | <ELSE: "else"> | <END: "end"> | <ERROR: "error">

| <ESCAPE: "escape"> | <EXCEPT: "except"> | <EXEC: "exec"> | <EXECUTE: "execute">

| <EXTERNAL: "external"> | <EXISTS: "exists"> | <FALSE: "false"> | <FETCH: "fetch"> |

<FILTER: "filter"> | <FOR: "for"> | <FORIEGN: "foriegn"> | <FROM: "from"> | <FULL: "full"> |

<FUNCTION: "function"> | <GET: "get"> | <GLOBAL: "global"> | <GRANT: "grant"> | <GROUP:

"group"> | <HAS: "has"> | <HAVING: "having"> | <HOLD: "hold"> | <HOUR: "hour"> | <IF: "if">

| <IDENTITY: "identity"> | <IMMEDIATE: "immediate"> | <IN: "in"> | <INDICATOR: "indicator">

| <INNER: "inner"> | <INPUT: "input"> | <INOUT: "inout"> | <INSENSITIVE: "insensitive"> |

<INSERT: "insert"> | <INTERSECT: "intersect"> | <INTERVAL: "interval"> | <INTO: "into"> | <IS:

"is"> | <ISOLATION: "isolation"> | <JOIN: "join"> | <LEFT: "left"> | <LANGUAGE: "language"> |

<LARGE: "large"> | <LEADING: "leading"> | <LIKE: "like"> | <LIMIT: "limit"> | <LOCAL: "local">

| <LOOP: "loop"> | <MAKEDEP: "makedep"> | <MAKENOTDEP: "makenotdep"> | <MATCH:

Appendix A. BNF for SQL Grammar

144

"match"> | <MERGE: "merge"> | <METHOD: "method"> | <MINUTE: "minute"> | <MODIFIES:

"modifies"> | <MODULE: "module"> | <MONTH: "month"> | <NATURAL: "natural"> | <NEW:

"new"> | <NOCACHE: "nocache"> | <NO: "no"> | <NONE: "none"> | <NOT: "not"> | <NULL:

"null"> | <OF: "of"> | <OLD: "old"> | <ON: "on"> | <ONLY: "only"> | <OPEN: "open"> | <OPTION:

"option"> | <OR: "or"> | <ORDER: "order"> | <OUTER: "outer"> | <OUTPUT: "output"> |

<OVER: "over"> | <OVERLAPS: "OVERLAPS"> | <PARAMETER: "parameter"> | <PARTITION:

"partition"> | <PRECISION: "precision"> | <PREPARE: "prepare"> | <PRIMARY: "primary">

| <PROCEDURE: "procedure"> | <RANGE: "range"> | <READS: "reads"> | <RECURSIVE:

"recursive"> | <REFERENCES: "REFERENCES"> | <REFERENCING: "REFERENCING">

| <RETURN: "return"> | <RETURNS: "returns"> | <REVOKE: "REVOKE"> | <RIGHT:

"right"> | <ROLLBACK: "ROLLBACK"> | <ROLLUP: "ROLLUP"> | <ROW: "row"> | <ROWS:

"rows"> | <SAVEPOINT: "savepoint"> | <SCROLL: "scroll"> | <SEARCH: "search"> |

<SECOND: "second"> | <SELECT: "select"> | <SENSITIVE: "sensitive"> | <SESSION_USER:

"session_user"> | <SET: "set"> | <SIMILAR: "similar"> | <SPECIFIC: "specific"> | <SOME:

"some"> | <SQL: "sql"> | <SQLEXCEPTION: "sqlexception"> | <SQLSTATE: "sqlstate"> |

<SQLWARNING: "sqlwarning"> | <START: "start"> | <STATIC: "static"> | <SYSTEM: "system">

| <SYSTEM_USER: "system_user"> | <TABLE: "table"> | <TEMPORARY: "temporary">

| <THEN: "then"> | <TIMEZONE_HOUR: "timezone_hour"> | <TIMEZONE_MINUTE:

"timezone_minute"> | <TO: "to"> | <TRAILING: "trailing"> | <TRANSLATE: "translate">

| <TRIGGER: "trigger"> | <TRUE: "true"> | <UNION: "union"> | <UNIQUE: "unique"> |

<UNKNOWN: "unknown"> | <USER: "user"> | <UPDATE: "update"> | <USING: "using">

| <VALUE: "value"> | <VALUES: "values"> | <VIRTUAL: "virtual"> | <WHEN: "when"> |

<WHENEVER: "whenever"> | <WHERE: "where"> | <WITH: "with"> | <WHILE: "while"> |

<WINDOW: "window"> | <WITHIN: "within"> | <WITHOUT: "without"> | <YEAR: "year"> |

<ALLOCATE: "allocate"> | <ARE: "are"> | <ASENSITIVE: "asensitive"> | <ASYMETRIC:

"asymetric"> | <CYCLE: "cycle"> | <DEC: "dec"> | <DEREF: "deref"> | <DYNAMIC: "dynamic"> |

<ELEMENT: "element"> | <FREE: "free"> | <INT: "int"> | <LATERAL: "lateral"> | <LOCALTIME:

"localtime"> | <LOCALTIMESTAMP: "localtimestamp"> | <MEMBER: "member"> | <MULTISET:

"multiset"> | <NATIONAL: "national"> | <NCHAR: "nchar"> | <NCLOB: "nclob"> | <NUMERIC:

"numeric"> | <RELEASE: "release"> | <SPECIFICTYPE: "specifictype"> | <SYMETRIC:

"symetric"> | <SUBMULTILIST: "submultilist"> | <TRANSLATION: "translation"> | <TREAT:

"treat"> | <VARYING: "varying"> }

<DEFAULT> TOKEN : { <XMLAGG: "xmlagg"> | <XMLATTRIBUTES: "xmlattributes"> |

<XMLBINARY: "xmlbinary"> | <XMLCAST: "xmlcast"> | <XMLCONCAT: "xmlconcat"> |

<XMLCOMMENT: "xmlcomment"> | <XMLDOCUMENT: "xmldocument"> | <XMLELEMENT:

"xmlelement"> | <XMLEXISTS: "xmlexists"> | <XMLFOREST: "xmlforest"> | <XMLITERATE:

"xmliterate"> | <XMLNAMESPACES: "xmlnamespaces"> | <XMLPARSE: "xmlparse"> |

<XMLPI: "xmlpi"> | <XMLQUERY: "xmlquery"> | <XMLSERIALIZE: "xmlserialize"> |

<XMLTABLE: "xmltable"> | <XMLTEXT: "xmltext"> | <XMLVALIDATE: "xmlvalidate"> }

<DEFAULT> TOKEN : { <DATALINK: "datalink"> | <DLNEWCOPY: "dlnewcopy">

| <DLPREVIOUSCOPY: "dlpreviouscopy"> | <DLURLCOMPLETE: "dlurlcomplete">

| <DLURLCOMPLETEWRITE: "dlurlcompletewrite"> | <DLURLCOMPLETEONLY:

"dlurlcompleteonly"> | <DLURLPATH: "dlurlpath"> | <DLURLPATHWRITE: "dlurlpathwrite"> |

NON-TERMINALS

145

<DLURLPATHONLY: "dlurlpathonly"> | <DLURLSCHEME: "dlurlscheme"> | <DLURLSERVER:

"dlurlserver"> | <DLVALUE: "dlvalue"> | <IMPORT: "import"> }

<DEFAULT> TOKEN : { <ALL_IN_GROUP: <ID> <PERIOD> <STAR>> | <ID: <QUOTED_ID>

(<PERIOD> <QUOTED_ID>)*> | <#QUOTED_ID: <ID_PART> | "\"" ("\"\"" | ~["\""])+ "\""> |

<#ID_PART: ("@" | "#" | <LETTER>) (<LETTER> | "_" | <DIGIT>)*> | <DATETYPE: "{" "d"> |

<TIMETYPE: "{" "t"> | <TIMESTAMPTYPE: "{" "ts"> | <BOOLEANTYPE: "{" "b"> | <POS_REF:

["$"] (<DIGIT>)+> | <INTEGERVAL: (<MINUS>)? (<DIGIT>)+> | <FLOATVAL: (<MINUS>)?

(<DIGIT>)* <PERIOD> (<DIGIT>)+ (["e","E"] (["+","-"])? (<DIGIT>)+)?> | <STRINGVAL: ("N" |

"E")? "\'" ("\'\'" | ~["\'"])* "\'"> | <#LETTER: ["a"-"z","A"-"Z"] | ["\u0153"-"\ufffd"]> | <#DIGIT: ["0"-

"9"]> }

<DEFAULT> TOKEN : { <COMMA: ","> | <PERIOD: "."> | <LPAREN: "("> | <RPAREN: ")">

| <LBRACE: "{"> | <RBRACE: "}"> | <LSBRACE: "["> | <RSBRACE: "]"> | <EQ: "="> | <NE:

"<>"> | <NE2: "!="> | <LT: "<"> | <LE: "<="> | <GT: ">"> | <GE: ">="> | <STAR: "*"> | <SLASH:

"/"> | <PLUS: "+"> | <MINUS: "-"> | <QMARK: "?"> | <DOLLAR: "$"> | <SEMICOLON: ";"> |

<CONCAT_OP: "||"> }

A.2. NON-TERMINALS

stringVal ::= (<STRINGVAL>)

id ::= (<ID>)

command ::= (createUpdateProcedure | userCommand | callableStatement) (

<SEMICOLON>)? <EOF>

designerCommand ::= (updateProcedure | userCommand) (<SEMICOLON>)? <EOF>

updateProcedure ::= (createUpdateProcedure | forEachRowTriggerAction) <EOF>

createTrigger ::= <CREATE> <TRIGGER> <ON> id nonReserved

<OF> (<INSERT> | <UPDATE> | <DELETE>) <AS>

forEachRowTriggerAction

alter ::= <ALTER> ((nonReserved id <AS> queryExpression) |

(<PROCEDURE> id <AS> block) | (<TRIGGER> <ON> id

nonReserved <OF> (<INSERT> | <UPDATE> | <DELETE>) ((<AS>

forEachRowTriggerAction) | nonReserved)))

forEachRowTriggerAction ::= <FOR> <EACH> <ROW> block

userCommand ::= (queryExpression | storedProcedure | insert | update | delete |

dropTable | createTempTable | alter | createTrigger)

dropTable ::= <DROP> <TABLE> id

createTempTable ::= <CREATE> <LOCAL> <TEMPORARY> <TABLE> id <LPAREN>

tableElement (<COMMA> tableElement)* (<COMMA> <PRIMARY>

nonReserved <LPAREN> id (<COMMA> id)* <RPAREN>)?

<RPAREN>

tableElement ::= id (dataTypeString | nonReserved) (<NOT> <NULL>)?

errorStatement ::= <ERROR> expression

Appendix A. BNF for SQL Grammar

146

statement ::= (ifStatement | loopStatement | whileStatement |

delimitedStatement)

delimitedStatement ::= (assignStatement | sqlStatement | errorStatement |

declareStatement | continueStatement | breakStatement)

<SEMICOLON>

block ::= (statement | (<BEGIN> (statement)* <END>))

breakStatement ::= <BREAK>

continueStatement ::= <CONTINUE>

whileStatement ::= <WHILE> <LPAREN> criteria <RPAREN> block

loopStatement ::= <LOOP> <ON> <LPAREN> queryExpression <RPAREN> <AS> id

block

ifStatement ::= <IF> <LPAREN> criteria <RPAREN> block (<ELSE> block)?

criteriaSelector ::= ((<EQ> | <NE> | <NE2> | <LE> | <GE> | <LT> | <GT> | <IN> |

<LIKE> | (<IS> <NULL>) | <BETWEEN>))? <CRITERIA> (<ON>

<LPAREN> id (<COMMA> id)* <RPAREN>)?

hasCriteria ::= <HAS> criteriaSelector

declareStatement ::= <DECLARE> dataType id ((nonReserved | <EQ>)

assignStatementOperand)?

assignStatement ::= id (nonReserved | <EQ>) assignStatementOperand

assignStatementOperand ::= ((insert) | update | delete | (expression) | queryExpression)

sqlStatement ::= ((userCommand) | dynamicCommand | (id (nonReserved |

<EQ>) storedProcedure))

translateCriteria ::= <TRANSLATE> criteriaSelector (<WITH> <LPAREN> id <EQ>

expression (<COMMA> id <EQ> expression)* <RPAREN>)?

createUpdateProcedure ::= <CREATE> (<VIRTUAL>)? (<UPDATE>)? <PROCEDURE>

block

dynamicCommand ::= (<EXECUTE> | <EXEC>) ((<STRING> | <IMMEDIATE>))?

expression (<AS> createElementsWithTypes (<INTO> id)?)? (

<USING> setClauseList)? (<UPDATE> ((<INTEGERVAL>) | (

<STAR>)))?

setClauseList ::= id <EQ> (<COMMA> id <EQ>)*

createElementsWithTypes ::= id dataTypeString (<COMMA> id dataTypeString)*

callableStatement ::= <LBRACE> (<QMARK> <EQ>)? <CALL> id (<LPAREN> (

executeUnnamedParams) <RPAREN>)? <RBRACE> (option)?

storedProcedure ::= ((<EXEC> | <EXECUTE> | <CALL>) id <LPAREN> (

executeNamedParams | executeUnnamedParams) <RPAREN>) (

option)?

executeUnnamedParams ::= (expression (<COMMA> expression)*)?

NON-TERMINALS

147

executeNamedParams ::= (id <EQ> (<GT>)? expression (<COMMA> id <EQ> (<GT>)?

expression)*)

insert ::= <INSERT> <INTO> id (columnList)? ((<VALUES> rowValues) |

(queryExpression)) (option)?

columnList ::= <LPAREN> id (<COMMA> id)* <RPAREN>

rowValues ::= <LPAREN> expression (<COMMA> expression)* <RPAREN>

update ::= <UPDATE> id <SET> setClauseList (where)? (option)?

delete ::= <DELETE> <FROM> id (where)? (option)?

queryExpression ::= (<WITH> withListElement (<COMMA> withListElement)*)?

queryExpressionBody

withListElement ::= id (columnList)? <AS> <LPAREN> queryExpression <RPAREN>

queryExpressionBody ::= queryTerm ((<UNION> | <EXCEPT>) (<ALL> | <DISTINCT>)?

queryTerm)* (orderby)? (limit)? (option)?

queryTerm ::= queryPrimary (<INTERSECT> (<ALL> | <DISTINCT>)?

queryPrimary)*

queryPrimary ::= (query | (<TABLE> id) | (<LPAREN> queryExpressionBody

<RPAREN>))

query ::= select (into)? (from (where)? (groupBy)? (having)?)?

into ::= <INTO> (id)

select ::= <SELECT> (<ALL> | (<DISTINCT>))? (<STAR> | (

selectSymbol (<COMMA> selectSymbol)*))

selectSymbol ::= (selectExpression | allInGroupSymbol)

selectExpression ::= (expression ((<AS>)? id)?)

derivedColumn ::= (expression (<AS> id)?)

allInGroupSymbol ::= <ALL_IN_GROUP>

xmlAgg ::= <XMLAGG> <LPAREN> expression (orderby)? <RPAREN>

arrayAgg ::= <ARRAY_AGG> <LPAREN> expression (orderby)? <RPAREN>

textAgg ::= nonReserved <LPAREN> <FOR> derivedColumn (<COMMA>

derivedColumn)* (<ID> charVal)? ((<ID> charVal))? (<ID>)? ((

<ID> id))? (orderby)? <RPAREN>

aggregateSymbol ::= ((nonReserved <LPAREN> <STAR> <RPAREN>) | ((

nonReserved | <ANY> | <SOME>) <LPAREN> (<DISTINCT> |

<ALL>)? expression <RPAREN>))

from ::= <FROM> (tableReference (<COMMA> tableReference)*)

tableReference ::= ((<LBRACE> nonReserved joinedTable <RBRACE>) |

joinedTable)

joinedTable ::= tablePrimary ((crossJoin | qualifiedJoin))*

Appendix A. BNF for SQL Grammar

148

crossJoin ::= ((<CROSS> | <UNION>) <JOIN> tablePrimary)

qualifiedJoin ::= (((<RIGHT> (<OUTER>)?) | (<LEFT> (<OUTER>)?) | (

<FULL> (<OUTER>)?) | <INNER>)? <JOIN> tableReference <ON>

criteria)

tablePrimary ::= (textTable | arrayTable | xmlTable | unaryFromClause |

subqueryFromClause | (<LPAREN> joinedTable <RPAREN>)) ((

<MAKEDEP>) | (<MAKENOTDEP>))?

xmlSerialize ::= <XMLSERIALIZE> <LPAREN> (nonReserved)? expression (

<AS> (<STRING> | <VARCHAR> | <CLOB>))? <RPAREN>

nonReserved ::= <ID>

arrayTable ::= <ID> <LPAREN> expression nonReserved

createElementsWithTypes <RPAREN> (<AS>)? id

textTable ::= <ID> <LPAREN> expression nonReserved textColumn (

<COMMA> textColumn)* (<ID> charVal)? ((<ESCAPE> charVal)

| (<ID> charVal))? (<ID> (intVal)?)? (<ID> intVal)? <RPAREN> (

<AS>)? id

textColumn ::= id dataType (<ID> intVal)?

xmlQuery ::= <XMLQUERY> <LPAREN> (xmlNamespaces <COMMA>)?

stringVal (<ID> derivedColumn (<COMMA> derivedColumn)*)? ((

<NULL> | nonReserved) <ON> nonReserved)? <RPAREN>

xmlTable ::= <XMLTABLE> <LPAREN> (xmlNamespaces <COMMA>)?

stringVal (<ID> derivedColumn (<COMMA> derivedColumn)*)? (

<ID> xmlColumn (<COMMA> xmlColumn)*)? <RPAREN> (<AS>)?

id

xmlColumn ::= id ((<FOR> nonReserved) | (dataType (

<DEFAULT_KEYWORD> expression)? (nonReserved stringVal)?))

intVal ::= <INTEGERVAL>

subqueryFromClause ::= (<TABLE>)? <LPAREN> (queryExpression | storedProcedure)

<RPAREN> (<AS>)? id

unaryFromClause ::= (<ID> ((<AS>)? id)?)

where ::= <WHERE> criteria

criteria ::= compoundCritOr

compoundCritOr ::= compoundCritAnd (<OR> compoundCritAnd)*

compoundCritAnd ::= notCrit (<AND> notCrit)*

notCrit ::= (<NOT>)? booleanPrimary

booleanPrimary ::= (translateCriteria | (commonValueExpression ((betweenCrit

| matchCrit | setCrit | isNullCrit | subqueryCompareCriteria |

compareCrit))?) | existsCriteria | hasCriteria)

NON-TERMINALS

149

operator ::= (<EQ> | <NE> | <NE2> | <LT> | <LE> | <GT> | <GE>)

compareCrit ::= operator commonValueExpression

subquery ::= <LPAREN> (queryExpression | (storedProcedure)) <RPAREN>

subqueryAndHint ::= subquery

subqueryCompareCriteria ::= operator (<ANY> | <SOME> | <ALL>) subquery

matchCrit ::= (<NOT>)? <LIKE> commonValueExpression (<ESCAPE>

charVal | (<LBRACE> <ESCAPE> charVal <RBRACE>))?

charVal ::= stringVal

betweenCrit ::= (<NOT>)? <BETWEEN> commonValueExpression <AND>

commonValueExpression

isNullCrit ::= <IS> (<NOT>)? <NULL>

setCrit ::= (<NOT>)? <IN> ((subqueryAndHint) | (<LPAREN>

commonValueExpression (<COMMA> commonValueExpression)*

<RPAREN>))

existsCriteria ::= <EXISTS> subqueryAndHint

groupBy ::= <GROUP> <BY> (groupByItem (<COMMA> groupByItem)*)

groupByItem ::= expression

having ::= <HAVING> criteria

orderby ::= <ORDER> <BY> sortSpecification (<COMMA> sortSpecification)*

sortSpecification ::= sortKey (<ASC> | <DESC>)? (nonReserved nonReserved)?

sortKey ::= expression

limit ::= <LIMIT> (<INTEGERVAL> | <QMARK>) (<COMMA> (

<INTEGERVAL> | <QMARK>))?

option ::= <OPTION> (<MAKEDEP> id (<COMMA> id)* |

<MAKENOTDEP> id (<COMMA> id)* | <NOCACHE> (id (

<COMMA> id)*)?)*

expression ::= criteria

commonValueExpression ::= (plusExpression (<CONCAT_OP> plusExpression)*)

plusExpression ::= (timesExpression (plusOperator timesExpression)*)

plusOperator ::= (<PLUS> | <MINUS>)

timesExpression ::= (valueExpressionPrimary (timesOperator valueExpressionPrimary

)*)

timesOperator ::= (<STAR> | <SLASH>)

valueExpressionPrimary ::= (<QMARK> | <POS_REF> | literal | (<LBRACE> nonReserved

function <RBRACE>) | (textAgg) | (aggregateSymbol) | (

aggregateSymbol) | (aggregateSymbol) | (xmlAgg) | (arrayAgg

) | (function) | (<ID> (<LSBRACE> intVal <RSBRACE>)?) |

Appendix A. BNF for SQL Grammar

150

subquery | (<LPAREN> expression <RPAREN> (<LSBRACE> intVal

<RSBRACE>)?) | searchedCaseExpression | caseExpression)

caseExpression ::= <CASE> expression (<WHEN> expression <THEN> expression)+

(<ELSE> expression)? <END>

searchedCaseExpression ::= <CASE> (<WHEN> criteria <THEN> expression)+ (<ELSE>

expression)? <END>

function ::= ((<CONVERT> <LPAREN> expression <COMMA> dataType

<RPAREN>) | (<CAST> <LPAREN> expression <AS> dataType

<RPAREN>) | (nonReserved <LPAREN> expression <COMMA>

stringConstant <RPAREN>) | (nonReserved <LPAREN>

intervalType <COMMA> expression <COMMA> expression

<RPAREN>) | queryString | ((<LEFT> | <RIGHT> | <CHAR>

| <USER> | <YEAR> | <MONTH> | <HOUR> | <MINUTE> |

<SECOND> | <XMLCONCAT> | <XMLCOMMENT>) <LPAREN> (

expression (<COMMA> expression)*)? <RPAREN>) | ((<INSERT>

) <LPAREN> (expression (<COMMA> expression)*)? <RPAREN>

) | ((<TRANSLATE>) <LPAREN> (expression (<COMMA>

expression)*)? <RPAREN>) | xmlParse | xmlElement | (<XMLPI>

<LPAREN> (<ID> idExpression | idExpression) (<COMMA>

expression)? <RPAREN>) | xmlForest | xmlSerialize | xmlQuery | (id

<LPAREN> (expression (<COMMA> expression)*)? <RPAREN>))

stringConstant ::= stringVal

xmlParse ::= <XMLPARSE> <LPAREN> nonReserved expression (

nonReserved)? <RPAREN>

queryString ::= nonReserved <LPAREN> expression (<COMMA> derivedColumn

)* <RPAREN>

xmlElement ::= <XMLELEMENT> <LPAREN> (<ID> id | id) (<COMMA>

xmlNamespaces)? (<COMMA> xmlAttributes)? (<COMMA>

expression)* <RPAREN>

xmlAttributes ::= <XMLATTRIBUTES> <LPAREN> derivedColumn (<COMMA>

derivedColumn)* <RPAREN>

xmlForest ::= <XMLFOREST> <LPAREN> (xmlNamespaces <COMMA>)?

derivedColumn (<COMMA> derivedColumn)* <RPAREN>

xmlNamespaces ::= <XMLNAMESPACES> <LPAREN> namespaceItem (<COMMA>

namespaceItem)* <RPAREN>

namespaceItem ::= (stringVal <AS> id)

::= (<NO> <DEFAULT_KEYWORD>)

::= (<DEFAULT_KEYWORD> stringVal)

idExpression ::= id

NON-TERMINALS

151

dataTypeString ::= (<STRING> | <VARCHAR> | <BOOLEAN> | <BYTE> | <TINYINT>

| <SHORT> | <SMALLINT> | <CHAR> | <INTEGER> | <LONG> |

<BIGINT> | <BIGINTEGER> | <FLOAT> | <REAL> | <DOUBLE> |

<BIGDECIMAL> | <DECIMAL> | <DATE> | <TIME> | <TIMESTAMP> |

<OBJECT> | <BLOB> | <CLOB> | <XML>)

dataType ::= dataTypeString

intervalType ::= (nonReserved)

literal ::= (stringVal | <INTEGERVAL> | <FLOATVAL> | <FALSE> |

<TRUE> | <UNKNOWN> | <NULL> | ((<BOOLEANTYPE> |

<TIMESTAMPTYPE> | <DATETYPE> | <TIMETYPE>) stringVal

<RBRACE>))

152

	Teiid - Scalable Information Integration
	Table of Contents
	Preface
	Chapter 1. DML Support
	1.1. Identifiers
	1.2. Expressions
	1.2.1. Column Identifiers
	1.2.2. Literals
	1.2.3. Aggregate Functions
	1.2.4. Case and searched case
	1.2.5. Scalar subqueries
	1.2.6. Parameter references

	1.3. Criteria
	1.4. SQL Commands
	1.4.1. SELECT Command
	1.4.2. INSERT Command
	1.4.3. UPDATE Command
	1.4.4. DELETE Command
	1.4.5. EXECUTE Command
	1.4.6. Procedural Relational Command

	1.5. SQL Clauses
	1.5.1. WITH Clause
	1.5.2. SELECT Clause
	1.5.3. FROM Clause
	1.5.3.1. Nested Table Reference
	1.5.3.2. TEXTTABLE
	1.5.3.3. XMLTABLE

	1.5.4. ARRAYTABLE
	1.5.5. WHERE Clause
	1.5.6. GROUP BY Clause
	1.5.7. HAVING Clause
	1.5.8. ORDER BY Clause
	1.5.9. LIMIT Clause
	1.5.10. INTO Clause
	1.5.11. OPTION Clause

	1.6. Set Operations
	1.7. Subqueries
	1.7.1. Inline views
	1.7.2. Subqueries can appear anywhere where an expression or criteria is expected.

	Chapter 2. DDL Support
	2.1. Temp Tables
	2.2. Alter View
	2.3. Alter Procedure
	2.4. Create Trigger
	2.5. Alter Trigger

	Chapter 3. XML SELECT Command
	3.1. Overview
	3.2. Query Structure
	3.2.1. FROM Clause
	3.2.2. SELECT Clause
	3.2.3. WHERE Clause
	3.2.3.1. XML SELECT Command Specific Functions
	3.2.3.1.1. Context Function
	3.2.3.1.2. Rowlimit Function
	3.2.3.1.3. Rowlimitexception Function

	3.2.4. ORDER BY Clause

	3.3. Document Generation
	3.3.1. Document Validation

	Chapter 4. Datatypes
	4.1. Supported Types
	4.2. Type Conversions
	4.3. Special Conversion Cases
	4.3.1. Conversion of String Literals
	4.3.2. Converting to Boolean
	4.3.3. Date/Time/Timestamp Type Conversions

	4.4. Escaped Literal Syntax

	Chapter 5. Scalar Functions
	5.1. Numeric Functions
	5.1.1. Parsing Numeric Datatypes from Strings
	5.1.2. Formatting Numeric Datatypes as Strings

	5.2. String Functions
	5.3. Date/Time Functions
	5.3.1. Parsing Date Datatypes from Strings
	5.3.2. Specifying Time Zones

	5.4. Type Conversion Functions
	5.5. Choice Functions
	5.6. Decode Functions
	5.7. Lookup Function
	5.8. System Functions
	5.9. XML Functions
	5.9.1. JSONTOXML
	5.9.2. XMLCOMMENT
	5.9.3. XMLCONCAT
	5.9.4. XMLELEMENT
	5.9.5. XMLFOREST
	5.9.6. XMLPARSE
	5.9.7. XMLPI
	5.9.8. XMLQUERY
	5.9.9. XMLSERIALIZE
	5.9.10. XSLTRANSFORM
	5.9.11. XPATHVALUE

	5.10. Security Functions
	5.10.1. HASROLE

	5.11. Miscellaneous Functions
	5.11.1. array_get
	5.11.2. array_length
	5.11.3. uuid

	5.12. Nondeterministic Function Handling

	Chapter 6. Updatable Views
	6.1. Key-preserved Table

	Chapter 7. Procedures
	7.1. Procedure Language
	7.1.1. Command Statement
	7.1.2. Dynamic SQL Command
	7.1.3. Declaration Statement
	7.1.4. Assignment Statement
	7.1.4.1. Special Variables

	7.1.5. If Statement
	7.1.6. Loop Statement
	7.1.7. While Statement
	7.1.8. Continue Statement
	7.1.9. Break Statement
	7.1.10. Error Statement

	7.2. Virtual Procedures
	7.2.1. Virtual Procedure Definition
	7.2.2. Procedure Parameters
	7.2.3. Example Virtual Procedures
	7.2.4. Executing Virtual Procedures
	7.2.5. Limitations

	7.3. Update Procedures
	7.3.1. Update Procedure Processing
	7.3.2. For Each Row
	7.3.2.1. Definition
	7.3.2.2. Special Variables
	7.3.2.2.1. NEW Variables
	7.3.2.2.2. OLD Variables
	7.3.2.2.3. CHANGING Variables

	7.3.2.3. Examples

	7.3.3. Create Procedure
	7.3.3.1. Definition
	7.3.3.2. Special Variables
	7.3.3.2.1. INPUT Variables
	7.3.3.2.2. CHANGING Variables
	7.3.3.2.3. ROWS_UPDATED Variable

	7.3.3.3. Update Procedure Command Criteria
	7.3.3.3.1. HAS CRITERIA
	7.3.3.3.2. TRANSLATE CRITERIA

	Chapter 8. Transaction Support
	8.1. AutoCommitTxn Execution Property
	8.2. Updating Model Count
	8.3. JDBC and Transactions
	8.3.1. JDBC API Functionality
	8.3.2. J2EE Usage Models

	8.4. Transactional Behavior with JBoss Data Source Types
	8.5. Limitations and Workarounds

	Chapter 9. Data Roles
	9.1. Permissions
	9.2. Role Mapping
	9.3. XML Definition
	9.4. System Functions

	Chapter 10. System Schema
	10.1. System Tables
	10.1.1. VDB, Schema, and Properties
	10.1.1.1. SYSADMIN.VDBResources
	10.1.1.2. SYS.VirtualDatabases
	10.1.1.3. SYS.Schemas
	10.1.1.4. SYS.Properties

	10.1.2. Table Metadata
	10.1.2.1. SYS.Tables
	10.1.2.2. SYSADMIN.MatViews
	10.1.2.3. SYS.Columns
	10.1.2.4. SYS.Keys
	10.1.2.5. SYS.KeyColumns

	10.1.3. Procedure Metadata
	10.1.3.1. SYS.Procedures
	10.1.3.2. SYS.ProcedureParams

	10.1.4. Datatype Metadata
	10.1.4.1. SYS.DataTypes

	10.2. System Procedures
	10.2.1. SYS.getXMLSchemas
	10.2.2. SYSADMIN.refreshMatView
	10.2.3. SYSADMIN.refreshMatViewRow
	10.2.4. Metadata Procedures
	10.2.4.1. SYSADMIN.setTableStats
	10.2.4.2. SYSADMIN.setColumnStats
	10.2.4.3. SYSADMIN.setProperty

	Chapter 11. Multi-source models
	11.1. Multi-source SELECTs
	11.2. Multi-source INSERTs
	11.3. Multi-source UPDATEs
	11.4. Multi-source DELETEs
	11.5. Multi-source Stored Procedures
	11.6. Additional Concerns

	Chapter 12. Translators
	12.1. Introduction to the Teiid Connector Architecture
	12.2. Translators
	12.2.1. File Translator
	12.2.1.1. Usage
	12.2.1.2. JCA Resource Adapter

	12.2.2. JDBC Translator
	12.2.2.1. Usage
	12.2.2.2. JCA Resource Adapter

	12.2.3. LDAP Translator
	12.2.3.1. Metadata Directives
	12.2.3.2. JCA Resource Adapter

	12.2.4. Loopback Translator
	12.2.4.1. JCA Resource Adapter

	12.2.5. Salesforce Translator
	12.2.5.1. Usage
	12.2.5.1.1. SQL Processing
	12.2.5.1.2. Selecting from Multi-Select Picklists
	12.2.5.1.3. Selecting All Objects
	12.2.5.1.4. Selecting Updated Objects
	12.2.5.1.5. Selecting Deleted Objects
	12.2.5.1.6. Relationship Queries
	12.2.5.1.7. Supported Capabilities

	12.2.5.2. JCA Resource Adapter

	12.2.6. Web Services Translator
	12.2.6.1. Usage
	12.2.6.1.1. Invoke Procedure
	12.2.6.1.2. InvokeHTTP Procedure

	12.2.6.2. JCA Resource Adapter

	12.2.7. OLAP Translator
	12.2.7.1. Usage
	12.2.7.1.1. InvokeMDX Procedure

	12.2.7.2. JCA Resource Adapter

	12.2.8. Delegating Translators

	12.3. Dynamic VDBs
	12.3.1. VDB Element
	12.3.2. Model Element
	12.3.3. Translator Element

	12.4. Multi-Source Models and VDB

	Chapter 13. Federated Planning
	13.1. Overview
	13.2. Federated Optimizations
	13.2.1. Access Patterns
	13.2.2. Pushdown
	13.2.3. Dependent Joins
	13.2.4. Copy Criteria
	13.2.5. Projection Minimization
	13.2.6. Partial Aggregate Pushdown
	13.2.7. Optional Join
	13.2.8. Partitioned Union
	13.2.9. Standard Relational Techniques

	13.3. Subquery optimization
	13.4. Federated Failure Modes
	13.4.1. Partial Results

	13.5. Query Plans
	13.5.1. Getting a Query Plan
	13.5.2. Analyzing a Query Plan
	13.5.3. Relational Plans
	13.5.3.1. Node Statistics

	13.6. Query Planner
	13.6.1. Relational Planner
	13.6.2. Procedure Planner
	13.6.3. XML Planner

	Chapter 14. Architecture
	14.1. Terminology
	14.2. Data Management
	14.2.1. Cursoring and Batching
	14.2.2. Buffer Management
	14.2.2.1. Memory Management
	14.2.2.2. Disk Management

	14.2.3. Cleanup

	14.3. Query Termination
	14.3.1. Canceling Queries
	14.3.2. Timeouts

	14.4. Processing
	14.4.1. Join Algorithms
	14.4.2. Sort Based Algorithms

	Appendix A. BNF for SQL Grammar
	A.1. TOKENS
	A.2. NON-TERMINALS

