
JBoss RESTful Web Services User Guide

Version: 3.3.0.M5

iii

1. JBoss RESTful Web Services Runtime and Tools support Overview 1

1.1. Key Features of JBoss RESTful Web Services ... 1

2. Sample Web Service wizards .. 3

2.1. Sample RESTful Web Service ... 8

3. RestEasy simple project example .. 15

3.1. The example project ... 15

4. Web Service Test View .. 19

4.1. Preliminaries ... 21

4.2. Testing a RESTful Web Service .. 22

4.2.1. RestfulSample project ... 22

4.2.2. RESTEasy sample project .. 23

5. JAX-RS Validation ... 29

iv

Chapter 1.

1

JBoss RESTful Web Services

Runtime and Tools support

Overview
JBoss RESTful Web Services is a framework developed as a part of the JBoss Application Server.

It implements the JAX-RS specifications. JAX-RS (Java API for RESTful Web Services) is a Java

API that supports the creation of Representational State Transfer (REST) web services, using

annotations.

JBoss RESTful Web Services integrates with most current JBoss Application Server releases as

well as earlier ones, that did implement the J2EE 1.4 specifications.

RESTful Web Services tooling works with JBossWS Runtime and allows you to create, deploy

and run RESTful Web Services

Also JBossWS Tool gives a way to test a web service running on a server.

1.1. Key Features of JBoss RESTful Web Services

Table 1.1. Key Functionality

Feature Benefit

JAX-RS support JBossWS implements the JAX-RS specification.

EJB 2.1, EJB3 and JSE

endpoints

JBossWS supports EJB 2.1, EJB3 and JSE as Web Service

Endpoints.

JBoss AS JBoss Application Server 5 (JavaEE 5 compliant) web service

stack.

2

Chapter 2.

3

Sample Web Service wizards
JBoss Tools includes wizards for the creation of sample web services. These include:

• Create a Sample RESTful Web Service for a JAX-RS web service.

These wizards are used within a Dynamic Web project. A dynamic web project can be created by

following the steps in Creating a dynamic web project.

Procedure 2.1. Creating a dynamic web project

1. Access the New Project Dialog

Select File → New → Project

Result: The New Project screen displays.

2. Define the Project Type

a. Click the Dynamic Web Project label by expanding the Web folder.

b. Click the Next button to proceed.

Result: The New Dynamic Web Project screen displays.

Chapter 2. Sample Web Service...

4

Figure 2.1. Dynamic Web Project Attributes

3. Define the Project Attributes

Define the Dynamic Web Project attributes according to the options displayed in Table 2.1,

“New Dynamic Web Project”

5

Table 2.1. New Dynamic Web Project

Field MandatoryInstruction Description

Project

name

yes Enter the project name. The project name can be any

name defined by the user.

Project

location

yes Click the Use default location

checkbox to define the

project location as the Eclipse

workspace or define a custom

path in the Location field.

The default location

corresponds to the Eclipse

workspace.

Target

runtime

no Select a pre-configured runtime

from the available options

or configure a new runtime

environment.

The target runtime defines the

server to which the application

will be deployed.

Dynamic

web

module

version

yes Select the required web module

version.

This option adds support for

the Java Servlet API with

module versions corresponding

to J2EE levels as listed in

Table 2.2, “New Dynamic

Project - Dynamic web module

version”.

Configurationyes Select the project configuration

from the available options.

The project can be based on

either a custom or a set of

pre-defined configurations

as described in Table 2.3,

“New Dynamic Project -

Configuration”.

EAR

membership

no Add the project to an existing

EAR project.

The project can be added to

an existing EAR project by

selecting the checkbox. Once

checked, a new EAR project

can be defined by clicking the

New Project button.

Working

sets

no Add the project to an existing

working set.

A working set provides the

ability to group projects

or project attributes in a

customized way to improve

access. A new working set can

be defined once the Select

button has been clicked.

Chapter 2. Sample Web Service...

6

Table 2.2. New Dynamic Project - Dynamic web module version

Option Description

2.2 This web module version corresponds to the J2EE 1.2 implementation.

2.3 This web module version corresponds to the J2EE 1.3 implementation.

2.4 This web module version corresponds to the J2EE 1.4 implementation.

2.5 This web module version corresponds to the JEE 5 implementation.

Table 2.3. New Dynamic Project - Configuration

Option Description

<custom> Choosing from one of the pre-defined configurations will

minimise the effort required to set up the project.

BIRT Charting Web Project A project with the BIRT Charting Runtime Component.

BIRT Charting Web Project A project with the BIRT Reporting Runtime Component.

CXF Web Services Project

v2.5

Configures a project with CXF using Web Module v2.5 and

Java v5.0.

Default Configuration for

JBoss 5.0 Runtime

This option is a suitable starting point. Additional facets

can be installed later to add new functionality.

Dynamic Web Project with

Seam 1.2

Configures a project to use Seam v1.2.

Dynamic Web Project with

Seam 2.0

Configures a project to use Seam v2.0.

Dynamic Web Project with

Seam 2.1

Configures a project to use Seam v2.1.

Dynamic Web Project with

Seam 2.2

Configures a project to use Seam v2.2.

JBoss WS Web Service

Project v3.0

Configures a project with JBossWS using Web Module

v2.5 and Java v5.0.

JavaServer Faces v1.2

Project

Configures a project to use JSF v1.2.

Minimal Configuration The minimum required facets are installed. Additional

facets can be chosen later to add functionality to the

project.

4. Access the Java sub-dialog

Click Next to proceed.

Result: The New Dynamic Web Project - Java dialog displays.

7

5. Define the source and output folders

Define the Dynamic Web Project source and output folders by adding or editing folders as

required.

6. Access the Web Module sub-dialog

Click Next to proceed.

Result: The New Dynamic Web Project - Web Module dialog displays.

Figure 2.2. New Dynamic Web Project - Web Module

7. Enter the web module settings

Define the settings as listed in Table 2.4, “New Dynamic Web Project - Web Module” including

the root folder for path names in the web project context and the name of the web content

directory.

Table 2.4. New Dynamic Web Project - Web Module

Field MandatoryInstruction Description

Context

root

yes Enter the context root for the

project.

The context root identifies a

web application to the server

and which URLs to delegate to

the application.

Content

directory

yes Enter the directory name for the

web content.

Web resources such as html,

jsp files and graphic files will be

written to the specified content

directory.

Chapter 2. Sample Web Service...

8

Field MandatoryInstruction Description

Generate

web.xml

deployment

descriptor

no Check this box to generate a

deployment descriptor for the

project.

URL to servlet mappings and

servlet authentication details

are written to the deployment

descriptor enabling the web

server to serve requests.

8. Open the Java EE perspective.

a. Click the Finish button to complete the project setup.

Result: If not already set, a dialog will appear prompting the user to open the relevant

perspective.

b. Click the Yes button to display the Java EE perspective.

Result: The project is configured and the Java EE perspective is displayed.

2.1. Sample RESTful Web Service

A sample RESTful web service can be generated by following the steps outlined in Generate a

sample RESTful web service.

Procedure 2.2. Generate a sample RESTful web service

Target runtime must have RESTEasy installed

The sample RESTful web service will not work unless it is deployed to a server

with RESTEasy installed, such as JBoss SOA-P.

1. Access the New - Select a wizard dialog

a. Right click on the project name in the Project Explorer view.

b. Select New → Other.

c. Click the Create a Sample RESTful Web Service label by expanding the Web Services

folder.

Result: The New - Select a wizard dialog displays with the selected wizard type

highlighted.

2. Access the Generate a Sample RESTful Web Service dialog

Click the Next button to proceed.

Sample RESTful Web Service

9

Result: The Generate a Sample RESTful Web Service - Project and Web Service

Name dialog displays.

Figure 2.3. Generate a Sample RESTful Web Service - Project and Web

Service Name

Due to the nature in which JBoss Application Server 7 and JBoss Enterprise Application

Server 5 handle JAX-RS support, the wizard can now be completed without the need for

RESTEasy JARs in the project classpath or associated project runtime. The JARs are

necessary for JBoss SOA-P servers.

3. Define the service attributes

Define the project, web service, package and class names according to the options displayed

in Table 2.5, “Project and Web Service Name”

Chapter 2. Sample Web Service...

10

Table 2.5. Project and Web Service Name

Dialog group Field MandatoryInstruction Description

Dynamic Web

Project

 yes Enter the project

name.

The project name will default

to the highlighted project in the

Project Explorer. A different

project can be selected from

the list or entered directly in the

editable drop-down list.

Web Service Name yes Enter the name for the

web service.

The web service name will

be the url for the service as

mapped in the deployment

descriptor (web.xml).

 Update

web.xml

no Check this box to

add the service to the

deployment descriptor.

This option is checked by

default and may be unchecked

when deploying to JBoss AS

6.0 or RESTEasy 2.0 servers.

Service information is not

required in the deployment

descriptor for these servers.

Add

RESTEasy

Jars

from

root

runtime

directory

no Check this box to add

RESTEasy JARs to

the project.

This option allows you to add

RESTEasy JARs to the project

if they appear in the root

runtime directory but are not

installed in the runtime. While

this is not required, it will assist

when working with JBoss

Application Server 5 and JBoss

Enterprse Application Platform

5 web service projects.

Sample Web

Service Class

Packageyes Enter the package for

the web service class.

The default package for the

sample web service will be

displayed.

 Class yes Enter the name of

the web service class

containing the JAX-RS

annotated path.

This class defines the path

to the web service and is

referenced in the Application

Class Name. The Application

Class Name is declared in

the deployment descriptor

providing indirect access to the

annotated path.

Sample RESTful Web Service

11

Dialog group Field MandatoryInstruction Description

 Application

Class

Name

yes Enter the name of

the Application Class

Name.

The Application Class Name

constructor instantiates

objects of the web service

class containing the JAX-

RS annotated path, GET and

POST methods. It serves as

a single point of access to the

application for the web server.

4. Generate the web service

Click the Finish button to complete the web service setup.

Result: The web service classes will be generated and the web.xml file updated with the

deployment details.

5. Browse the MyRESTApplication.java class

Double click the MyRESTApplication.java class and note the constructor instantiating

objects of type HelloWorldResource. The relevance of this will be discussed shortly.

Figure 2.4. Application Class - MyRESTApplication.java

6. Browse the HelloWorldResource.java class

Double click the HelloWorldResource.java class and note the JAX-RS annotated path and

the annotated GET method.

Chapter 2. Sample Web Service...

12

Figure 2.5. HelloWorldResource.java

7. Browse the web.xml deployment descriptor

Double click the web.xml file and note the jax.ws.rs.Application parameter mapped to

the Application class. Note also that:

• the main servlet for the application is

org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher which is

given the custom name Resteasy; and

• the main servlet is not mapped to a particular url as indicated by /*.

The url for sending GET requests can be resolved as follows:

a. Identify the Application Class as defined in the deployment descriptor.

b. Note the object type instantiated in the Application class and added to the singleton set:

HelloWorldResource.

c. Note the JAX-RS annotated path declared in the corresponding HelloWorldResource

class: @Path("/MyRESTApplication") [1].

Sample RESTful Web Service

13

Figure 2.6. web.xml

The url for sending GET requests is therefore http://localhost:8080/ProjectName/[1] or, http://

localhost:8080/RestfulSample/MyRESTApplication.

http://localhost:8080/ProjectName/[1]
http://localhost:8080/RestfulSample/MyRESTApplication
http://localhost:8080/RestfulSample/MyRESTApplication

14

Chapter 3.

15

RestEasy simple project example
JBoss Tools includes many example projects which are available by selecting Help → Project

Examples. The following sections describe setting up the example RESTEasy project. This project

serves as a good example for testing the numerous Web Service Test View functions.

3.1. The example project

Once the required plugins have been installed, the example project can be set up as described

in JBoss Tools New Example Project

Procedure 3.1. JBoss Tools New Example Project

1. Access the New Example Project Dialog

Select Help → Project Examples

Result: The New Example Project dialog displays.

2. Define the Example Project Type

a. Click the RESTEasy Simple Example label by expanding the RESTEasy node.

b. Click the Finish button to complete the project set up.

Result: The simple project is configured and ready to build.

Project requirements

In the event that a message is displayed indicating some requirements could

not be configured, click the Details button followed by the Fix button to rectify

the problem. The message will be displayed as a result of missing plugins or

a requirement to select or configure a suitable runtime.

3. Build the project

Right click on the project name and select Run As → Maven package

Result: The simple.war file is written to the project's 'target directory.

4. Deploy the project

Copy the simple.war file to the deploy directory of the required server profile such as the

all profile.

Chapter 3. RestEasy simple pr...

16

Result: The simple.war file is written to the target directory.

5. Determine the URL for the web service

Double click the web.xml file and note the jax.ws.rs.Application parameter mapped to

the Application class. Note also that:

• the main servlet for the application is

org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher which is

given the custom name Resteasy; and

• the main servlet is mapped to the url /rest-services/* [1].

The url for sending GET requests can be resolved as follows:

a. Identify the Application class as defined in the deployment descriptor.

b. Note the object type (CustomerResource) instantiated in the Application class

(ShoppingApplication) and added to the singleton set (singletons.add(new

CustomerResource())).

c. Note the JAX-RS annotated path declared in the corresponding CustomerResource class:

@Path("/customers") [2].

Figure 3.1. web.xml

The url for sending GET requests can be formed from http://localhost:8080/ProjectName/[1]/

[2] or, http://localhost:8080/simple/rest-services/customers..

http://localhost:8080/ProjectName/[1]/[2]
http://localhost:8080/ProjectName/[1]/[2]
http://localhost:8080/simple/rest-services/customers

The example project

17

Procedure 3.2. Export the project as a Web Archive (WAR)

1. Access the Export dialog

a. Right click on the project name in the Project Explorer view.

b. Select Export → WAR file.

Result: The Export- WAR Export dialog displays with the selected web project

highlighted.

Figure 3.2. Export - WAR Export dialog

2. Complete the export dialog

Define the WAR file attributes as described in Table 3.1, “Export - War Export”

Table 3.1. Export - War Export

Field MandatoryInstruction Description

Web project yes Enter the web project

name.

The project name will default

to the highlighted project in the

Chapter 3. RestEasy simple pr...

18

Field MandatoryInstruction Description

Project Explorer. A different

project can be selected from

the list or entered directly in the

editable drop-down list.

Destination yes Enter or browse to the

destination.

Set the destination as the build

folder to store the WAR file within

the project. Alternatively, deploy

the project directly to the deploy

directory of the target server

profile.

Optimize for a

specific server

runtime

no Select this box to

optimize the WAR file

for deployment to the

targeted runtime.

The list of available runtimes will

be those configured during the

project set-up or by selecting File

→ New → Server.

3. Deploy the application

Copy the file to the deploy directory of the required target server profile, such as the all

profile. Note that the WAR file destination may have already been set as the deploy directory

in Step 2.

Chapter 4.

19

Web Service Test View
JBoss Tools provides a view to test web services. The Web Services Test View can be displayed

by following the steps in Web Services Test View.

Procedure 4.1. Web Services Test View

• Access the Show View dialog

a. Select Window → Show View → Other

Result: The Show View dialog displays.

b. Click on the Web Services Tester label by expanding the JBoss Tools Web Services

node and click OK.

Result: The Web Services test view displays.

Figure 4.1. Web Service Test View

The main components of the Web Service Tester View are:

• WSDL path/button bar (Table 4.1, “WSDL path/button bar”)

• Request details panel (Table 4.2, “Request details panel”)

• Response details panel (Table 4.3, “Response details panel”)

Chapter 4. Web Service Test View

20

Table 4.1. WSDL path/button bar

Component Description

Editable dropdown

list

Enter the location of the WSDL file or HTTP address of the service

to be tested. The combo box requires the path to the WSDL in a

URI format.

Combo box Select the type of service to test. The options are JAX-WS or

any other option to test a JAX-RS service using HTTP request

methods (PUT, GET, POST, DELETE or OPTIONS).

Toolbar button - Get

From WSDL

Click this button to display the Select WSDL dialog. Enter the

URL, File system location or Eclipse Workspace location of the

WSDL file. Given a valid file, the dialog will allow selection of the

Port and Operation to test. Once selected, the request details will

be displayed in the Request Details panel.

Toolbar button -

Invoke

Once the WSDL file has been selected, the service can be

invoked by clicking this button. Response details will be displayed

in the Response Details panel.

Table 4.2. Request details panel

Component Description

Prompt for Basic

Authentication

Select this check box to send a username and password with the

request. Entering the user details for each subsequent request is

not necessary as the details are stored in memory.

Headers Enter (Add) one or more name=value pairs. These headers will

be passed with the invocation request at the HTTP level where

possible.

Parameters As for header information, enter one or more name=value pairs by

clicking the Add button.

Body Enter the JAX-WS SOAP request messages or input for JAX-RS

service invocations in this text box.

Table 4.3. Response details panel

Component Description

Response headers The headers returned by the service invocation will be displayed in

this panel.

Response body The JAX-WS and JAX-RS response bodies will be displayed in

this box. The raw text returned from the web service invocation

can be displayed by clicking the Show Raw button. The output will

be embedded in a html browser by clicking the Show in Browser

Preliminaries

21

Component Description

button. The output can alternatively be displayed in the Eclipse

editor as xml or raw text (depending on the response content type)

by clicking the Show in Editor button.

Parameters As for header information, enter one or more name=value pairs by

clicking the Add button.

Body Enter JAX-WS SOAP request messages and input for JAX-RS

service invocations in this text box.

The following sections describe testing JAX-RS web services, including the necessary preliminary

steps.

4.1. Preliminaries

The following procedure describes the steps to perform before testing a web service.

Procedure 4.2. Testing a web service

• Preliminary steps

Prior to testing a web service:

a. The Web Service Test View should be opened as described in Web Services Test View;

Result: The Web Service Test View displays.

Figure 4.2. Web Service Test View

b. A web service has been deployed to the deploy directory of the chosen server profile.

c. The server has been started with run.sh -c <profile>

Chapter 4. Web Service Test View

22

4.2. Testing a RESTful Web Service

Testing a RESTful (JAX-RS) web service is achieved by following a similar procedure to testing

a JAX-WS web service. Instead of selecting the JAX-WS option in the combobox, the JAX-RS

service is invoked by sending HTTP method requests of the form OPTIONS, GET, POST, PUT

and DELETE. As there is no WSDL file associated with a JAX-RS service, the available options

can be determined by selecting OPTIONS in the combobox.

A JAX-RS web service can be tested by using the Web Service Tester View displayed in

Figure 4.1, “Web Service Test View”. The JAX-RS test is specified by:

1. Selecting the OPTIONS combobox option.

2. Entering the url of the JAX-RS web service.

The test procedure is discussed in the following sections for both the RestfulSample and the

RESTEasy sample projects developed earlier.

4.2.1. RestfulSample project

Procedure 4.3. RestfulSample test

1. a. Query the available options

Select OPTIONS from the available combobox options.

b. Enter the url of the web service in the editable drop-down list: http://localhost:8080/

RestfulSample/MyRESTApplication.

c. Click the Invoke button

Result: The Response Headers text area indicates that the allowed options are

[GET, OPTIONS, HEAD] as shown in Figure 4.3, “JAX-RS Response Header Text”.

Figure 4.3. JAX-RS Response Header Text

http://localhost:8080/RestfulSample/MyRESTApplication
http://localhost:8080/RestfulSample/MyRESTApplication

RESTEasy sample project

23

2. Test the GET request

a. Having established that the GET request is valid, select GET from the available

combobox options.

b. Click the Invoke button.

Result: The Response Body text area displays the expected “Hello World” text as

shown in Figure 4.4, “JAX-RS Response Body Text”.

Figure 4.4. JAX-RS Response Body Text

4.2.2. RESTEasy sample project

Procedure 4.4. Testing a JAX-RS web service- POST and GET requests

1. a. Query the available options

Following the preliminary steps described in Testing a web service, select the OPTIONS

method from the operations text area.

b. Enter the url of the web service in the editable drop-down list http://localhost:8080/simple/

rest-services/customers.

c. Click the Invoke button

Result: The Response Headers text area indicates that the allowed options are

[POST, OPTIONS] as shown in Figure 4.5, “JAX-RS RESTEasy project Body Text”.

http://localhost:8080/simple/rest-services/customers
http://localhost:8080/simple/rest-services/customers

Chapter 4. Web Service Test View

24

Figure 4.5. JAX-RS RESTEasy project Body Text

2. Test the POST option

a. Select POST method in the the operations drop-down list.

b. We will post xml data to this particular web service. Complete the header details by

entering content-type=application/xml in the text area and click Add to add it to the

Headers list.

Result: The content-type is added to the Headers list as shown in Figure 4.6,

“content-type header”.

Figure 4.6. content-type header

c. Enter customer details

Enter the customer details in the Body Text area as displayed in Figure 4.7, “Customer

data”.

RESTEasy sample project

25

Figure 4.7. Customer data

d. Click the Invoke button.

Result: The Response Headers area indicated that a record was created and

lists the location as http://localhost:8080/simple/rest-services/customers/1 as shown in

Figure 4.8, “Customer added”.

Figure 4.8. Customer added

The console also indicates the successful creation of the customer: 10:44:33,846 INFO

[STDOUT] Created customer 1

3. Test the GET option

a. Select the GET method in the the operations drop-down list.

b. We will retrieve the record created in the previous step. Enter the url for the record

returned in the previous step http://localhost:8080/simple/rest-services/customers/1

c. Click the Invoke button.

http://localhost:8080/simple/rest-services/customers/1
http://localhost:8080/simple/rest-services/customers/1

Chapter 4. Web Service Test View

26

Result: The Response Headers area indicates a [HTTP/1.1 200 OK] response and

the customer data is retrieved and displayed in the Response Body area as shown in

Figure 4.9, “GET response”.

Figure 4.9. GET response

4. Test the PUT option

a. Editing a record is achieved by using the PUT method. Select the PUT method in the

operations drop-down list.

b. Enter the url of the record to be edited http://localhost:8080/simple/rest-services/

customers/1

c. Enter the data in the Body Text area. Replace the first-name with a different entry as

in Figure 4.10, “Updated customer data”

Figure 4.10. Updated customer data

d. Ensure that the content-type=application/xml header is in the Headers list.

e. Click the Invoke button.

http://localhost:8080/simple/rest-services/customers/1
http://localhost:8080/simple/rest-services/customers/1

RESTEasy sample project

27

Result: The Response Headers area indicates a No Response ([HTTP/1.1 204 No

Content]) Figure 4.11, “Response header following PUT”.

Figure 4.11. Response header following PUT

In this instance, the console does not indicate an update was performed, however, the

console may provide useful information following an operation.

5. Check the updated data with a GET

Perform a GET operation by following the steps in Step 3.

Result: The Response Body area displays the updated data.

Figure 4.12. Customer data updated

6. Test the DELETE option

a. Deleting a record is a similar process to posting. Select the DELETE method in the

operations drop-down list.

b. Enter the url of the record to be deleted http://localhost:8080/simple/rest-services/

customers/1

http://localhost:8080/simple/rest-services/customers/1
http://localhost:8080/simple/rest-services/customers/1

Chapter 4. Web Service Test View

28

c. Click the Invoke button.

Result: The Response Headers area indicates a No Response ([HTTP/1.1 204

No Content]) as was the case for the PUT operation in Figure 4.11, “Response header

following PUT”.

Once again, the console does not indicate an update was performed, however, the

console may provide useful information following an operation.

7. Check the DELETE operation with a GET

Perform a GET operation by following the steps in Step 3.

Result: The Response Body area returns an error report indicating that The requested

resource () is not available and the Response Headers area returns a [HTTP/1.1

404 Not Found].

Figure 4.13. Customer data deleted

The response header and body messages indicate that the data was successfully deleted.

Chapter 5.

29

JAX-RS Validation
JAX-RS validation is enabled by default. Validation allows your project to be checked for errors.

If an error is discovered a Problems tab will appear in the bottom section of your workbench,

outlining the errors found.

If you wish to turn off JAX-RS Validation, you can do so by first navigating to Window →

Preferences → Validation. In the Validator section of the dialog, deselect the checkboxes for

JAX-RS Metamodel Validator and click the Apply button, followed by OK.

Chapter 5. JAX-RS Validation

30

Figure 5.1. Validator preferences

	JBoss RESTful Web Services User Guide
	Table of Contents
	Chapter 1. JBoss RESTful Web Services Runtime and Tools support Overview
	1.1. Key Features of JBoss RESTful Web Services

	Chapter 2. Sample Web Service wizards
	2.1. Sample RESTful Web Service

	Chapter 3. RestEasy simple project example
	3.1. The example project

	Chapter 4. Web Service Test View
	4.1. Preliminaries
	4.2. Testing a RESTful Web Service
	4.2.1. RestfulSample project
	4.2.2. RESTEasy sample project

	Chapter 5. JAX-RS Validation

