JSF Tools Reference Guide

Version: 3.3.0.M5






IO 1 (o Yo U o {1 ) o I 1

1.1. Key Features of JSF TOOIS ......covuiiiiii e aa s 1

1.2. Other relevant resources 0N the tOPIC ........cccuuiiiiiiiiiiiii e 2

2. JaVASEIVElr FACES SUP PO ettt aae e 3
2.1, FACEIBIS SUPPOIT . .eeeieiiii ettt et e e e 4
2.1.1. Creating a JSF project with Facelets ............ccooviiiiiiiiii e 4

2.1.2. Facelets COMPONENTS .....c.uuiiiiiiiie ettt 6

2.1.3. Code assist fOr FACEIELS .......oiiiiiiiiiiiii e 6

2.1.4. OPEN ON TRALUIE ....ciiiii it 8

G T = o T[T £ PP 11
3.1. Creating & New JSF Project ........oiiiiiiiiiiii e 11

3.2. Importing Existing JSF Projects with Any Structure ..........c.cccovviviieiiieeiiii e, 17

3.3. Adding JSF Capability to Any EXisting Project ............c.occoiiiiiiiiiniiiiincineees 17

3.4. Adding Your Own Project TEMPIALES .....cceviiiiiiiiiii e e e 19

3.5. Relevant ReSOUICES LINKS .....cciuuiiiiiiiiieii e e e e 21

T LY o 35 4 1 I =L ) (0 Y PSP 23
5. JSF Configuration File EditOr ........ooooiiiiii e 25
LN B 1= Vo [ = 1 ¢ Y = PP 25

L I (=TI T P 30

5.3, SOUICE VIBW .ottt e et e e ettt s e e e et n e e e et aeeeeatnaeeeees 48

L o |1 (o gl 1= = L (0 50
4.1, OPEN N it 50

L O To [ I = [ 50

L T = ¢ (o] gl ==Y o o] 1 1oV S 52

6. MANAGEA BEANS .....iiiiiiii ittt 55
6.1. Code Generation for Managed BEANS ..........c.ccuuviiiiieiiiiiiiii e e e 55

6.2. Add Existing Java Beans to a JSF Configuration File ...........cccccoooiiiniiiiiiineeiinnnnn. 64

7. Creation and ReQiSIIatiON ......ccouiiiiiiiiii e e e e e e e e e e eeen 67
7.1. Create and Register a CUStomM CONVEITET .......viiiiiiiiiiiiiieeiei e 67

7.2. Create and Register a Custom Validator .............ccoooeviiiiiiii i, 74

7.3. Create and Register Referenced Beans ...........ocoeuiiiiiiiiiiiiiiiii e 82

8. JSF Project VEIfiCAtiON ....ccuuiiiiiiii e e e e e e e e eeas 91







Chapter 1.

Introduction

JSF Tools are especially designed to support JSF and JSF-related technologies. JSF Tools
provide extensible tools for building JSF-based applications as well as adding JSF capabilities
to existing web projects, importing JSF projects and choosing any JSF implementation while
developing JSF application.

This guide provides the information on JSF tooling you need to allow you to quickly develop JSF
applications with far fewer errors.

1.1. Key Features of JSF Tools

The table below lists the functionality provided by the JSF Tools.

Table 1.1. Key Functionality for JSF Tools

Feature

JSF and Facelets
support

Flexible and
customizable
project template

Benefit

Step-by-step wizards for creating new JSF and
Facelets projects with a number of predefined
templates, importing existing ones and adding
JSF capabilities to non-JSF web projects.

Jump-start development with the supplied
templates or easily create customized
templates for re-use.

Chapter
Chapter 2,
JavaServer Faces
Support

Chapter 3, Projects

management

Support for JSF Work on a file using three modes: diagram, Chapter 5, JSF

Configuration File tree and source. Automatic synchronization Configuration File
between the modes and full control over the Editor

Support for Managed
Beans

Support for Custom
Converters and
Validators

code. Easily move around the diagram using
the Diagram Navigator.

Adding new managed beans, generating code
for attributes, properties and getter/setter
methods.

Fast creation of custom converters and
validators with a tree view of the faces-
config. xn file.

Chapter 6, Managed
Beans

Chapter 7, Creation
and Registration

Verification and
Validation

All errors will be immediately reported by
verification feature, no matter in what view
you are working. Constant validation and error
checking allows you to catch many of the errors
during development process that significantly
reduces development time.

Chapter 8, JSF
Project Verification




Chapter 1. Introduction

1.2. Other relevant resources on the topic

All JBoss Developer Studio and JBoss Tools release documentation can be found
on the RedHat Documentation [http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/
index.html] website.

Nightly documentation builds are available at http://download.jboss.org/jbosstools/nightly-docs
[http://download.jboss.org/jbosstools/nightly-docs/].



http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/index.html
http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/index.html
http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/index.html
http://download.jboss.org/jbosstools/nightly-docs/
http://download.jboss.org/jbosstools/nightly-docs/

Chapter 2.

JavaServer Faces Support

JSF Tools does not lock you into any one JavaServer Faces implementation. You can always
specify the desired JavaServer Faces implementation while creating a new JSF project (see
Section 3.1, “Creating a New JSF Project”), adding JSF capability to any existing Eclipse project
(see Section 3.3, “Adding JSF Capability to Any Existing Project”), or importing existing JSF
projects (see Section 3.2, “Importing Existing JSF Projects with Any Structure”).

At this point the special wizard will prompt you to specify an appropriate JSF environment. It may
be JSF 1.1.02 RI, JSF 1.2, JSF 2.0 or JSF 2.1. The wizard also lets you select JSF implementation
with a component orientation such as JSF 1.2 with Facelets or MyFaces 1.1.4.

Create JSF Project @‘{?’

Project Name* |JSFProject

Use default path*

Location [,.fhomefimoskoufwlarkfjBDS{workspaceijFiject Browse

JSF Environment* [JSF 1.2

{3

Template* [ JSFKickStartWithoutLibs

L

@ < Back " Next = l [ Cancel F

Figure 2.1. Choosing JSF Environment

After specifying an appropriate JSF environment, all the required libraries associated with the
selected version will be added to your project.




Chapter 2. JavaServer Faces S...

2.1. Facelets Support

In this section we will focus all the concepts that relate to working with Facelets.

Facelets extend JavaServer Faces by providing a lightweight framework that radically simplifies
the design of JSF presentation pages. Facelets can be used in a variety of ways that we will
consider further in this section.

2.1.1. Creating a JSF project with Facelets

If you want to build an application using Facelets, create a project with Facelets based on version
1.2 of the JSF Reference Implementation, i. e. select the JSF 1.2 with Facelets option in the JSF
Environment section of the New JSF Project wizard.

Create JSF Project @‘i}

Project Name* [jSFijectwithFacelets

Use default path*

Locatit [t,.l’wDrkspacesfworkspace-jbdsﬂlfjSFijectwithFacelets Browse

JSF Environment* [JSF 1.2 with Facelets

{3

Template* [ FaceletsBlankWithoutLibs

L

@ < Bal Next = l [ Cancel l [ Finish

Figure 2.2. Choosing Facelets Environment

Once you have selected the environment, it is possible to specify one of three available templates:




Creating a JSF project with Facelets

G New JSF Project £3
Create JSF Project @‘i}?
Project Name#* [JSFijectwithFacelets ]

Use default path*

Location® [Uworkspacesfworkspac&jbds4fjSFPrDjectwithFacelets] | Browse |
JSF Environment* [jSF 1.2 with Facelets > l
Template*

FaceletsKickStartWithRILibs

FaceletsKickStartWithoutLibs

@ | < Back |[ Next > l [ Cancel l [ Finish

Figure 2.3. Choosing Facelets Template

The following table lists the templates that can be used with Facelets for any JSF project, and
gives a detailed description for each one.

Table 2.1. Facelets Templates

Template Description

FaceletsBlankWithoutLibs Some servers already provide JSF libs and you risk
library conflicts while deploying your project. To avoid
such conflicts, use a template without libs if you have a
server with its own JSF libraries.

FaceletsKickStartWithRILibs A sample application with Facelets that is ready to run.

FaceletsKickStartWithoutLibs A sample application without libraries.




Chapter 2. JavaServer Faces S...

2.1.2. Facelets components

The JBoss Tools Palette comes with the Facelets components ready to use. A useful tip appears
when you hover the mouse cursor over the tag; this tip includes a detailed description of the tag
component, the syntax and available attributes.

= O || 1 Palette | 4 |Boss Tools Pa & =0

= X & @
= |Boss Ajax4)sf

= |Boss RichFaces

= ]Boss Seam

= JSF Facelets 0
3 £* component

«¥ composition

The component tag and the composition tag behave exactly
the same, except the component tag will insert a new
UlComponent instance into the tree as the root of all the child
components/fragments it has.

Syntax:

<ui:component=

<fui:component=>

~ |Attributes:

id, binding

=F param

Figure 2.4. Facelets Components

2.1.3. Code assist for Facelets

JSF Tools provides Facelets code assistance, which can be accessed by pressing Ctrl+Space.
It is available for Facelets tags while editing . xht 1 files.




Code assist for Facelets

= *index.jsp oz *inputname.xhtml 232

1=<html>

2c <head=>

3 <title>Test</title>
4 </head=>

52 <body=>

B <input |

7 </body> <> Close with " j>" -|Attribute : accept
8 </html> = Data Type : CDATA
@ accesskey

@ align="top"

@ alt

@ checked="checked"
@ class

@ dir="1tr"

y - @ disabled="disabled"
J |. “@id
@ lang

L]

"Press 'Ctri+5pace' to show HTML Template Proposal

Figure 2.5. XHTML File Code Assist

Code assist is also available for j sf ¢ attributes in any HTML tag.

Enemmame o E -8

ns: ttp://java. sun, com/jsf/core”
ns:c="http://java.sun.com/jstl/core”=

[+)
I=

of: loadBundle basename="resources” wvar="msg" /> -
uli:composition template="/templates/common.xhtmi®=
<ui:define name="pageTitle®=JSF 1.2 and Facelets under Tomcat. KickStart Application-
<ui:define name="pageHeader”=J5F 1.2 Hello Application</ui.define=

<uidefine name="body"=>
<h:message showSummary="true® showDetail="false" style="color: red; Tont-weight:
i =form jsfc="h:form® id="helloForm®=
${msg. prompt}

<input | />
@ dir

<INPUT | @ disabled
act

</ form= @ id =

-
=/ul:define= =

ui:composition> |@ lang
@ maxlength

0 s — [—

@ onblur o

e M

@ onchange

Visual/Souree Source F

@ onclick
@ ondblclick B

Figure 2.6. Code Assist for JSFC Attribute

After selecting an j sf ¢ attribute, the code assist feature will list the JSF components available
on a page.




Chapter 2. JavaServer Faces S...

|4 home xhirni ﬁﬁi“ﬂ iw ﬁ i O web xml | =8

=!DOCTYPE html PUELIC *-//W3C//DTD XHTML 1.0 Tramsitional//EN" 'http:th.wS.orgffoxhtmllfD'l'l:T_

=html xmlns="http://www. w3, org/ 1999/ xhtml"
xmlns:ui="http://java. sun.com/jsf/Tacelets”
xmlns:h="http://java. sun.com/jsf/htmlL"
xmlns: f="http://java. sun.com/jsf/care”
xmlns:c="http://java. sun.com/jstl/core"=

<T:loadBundle basename="resources” vars"msg" />
<ui:composition template="/templates/common.xhtml®=>
ui:define name="pageTitle"=J5F 1.2 and Facelets under Tomcat. KickS5tart Applicatic

| <input jsfc=T= 1
Renders an HTML “input” element of “type” “text" & h:cornmandLink =
Decode Behavior @ h:dataTable
(Obtain the Map from the "requestParameterMap” property of the
ExternalContext. If the Map contains an entry for the “clientld” @ n:rorm

of the component, pass the value of the entry to the @ h:graphicimage i
setsubmittedvaluel) method of the cormponent, which must be

an instance of EditableValueHolder. @ h:Inputt-idden

Encode Behavior ® h:inputsecret 3

Render the clientld of the component as the value of the -
"name” attribute. Render the current value of the component as :

the value of the *value® attribute. If the “styleClass® attribute is |® h:inputTextarea
specified, render its value as the value of the “"class” attribute.

(4]

@ h:message

@ h:messages

@ h:outputFormat

4]

Figure 2.7. Code Assist for JSF Components

When a component is selected you will see all available attributes for it.

iz hame xhtml ; o D weboxmi | =0

<I'DOCTYPE html PUBLIC *-//W3C//DTD XHTML 1.0 Transitional// EN" 'nttp:f{hw.wi.orngfontmL].fD‘l'L:'T_
. <html xmlns="http:// /www.w3. org/1999/xhtml"
xmlns:ui="http://java. sun.com/)sfT/Tacelets”
xmlns: h="http://java. sun.com/jsf/htmL"
xmlns: f="http://java. sun.com/jsf/core”
xmlns:c="http://java. sun.com/jstl/core">

<f:loadBundle basename="resources” wvar="msg" /=
=ui:composition template="/templates/common.xhtml®>
“ui:define name="pageTitle"=JSF 1.2 and Facelets under Tomcat. KickStart Applicatic

] <input jsfc="h:inputText* }=> ]
If the value of this attribute is “off”, render "off” as the value of |@ accept
the attribute. This indicates that the browser should disable its
autocomplete feature for this cormponent. This is useful for @ accesskey
components that perform autocempletion and do not want the | @ align
browser interfering. If this attribute is not set or the value is "on®
render nothing. @ att

0 autocomplete

@ binding
@ checked

@ class
@ converter

@ converterMessage b

1]

Figure 2.8. Available Attributes for the Component

2.1.4. Open On feature

Finally, JSF Tools supports Eclipse's OpenOn™ feature while editing Facelets files. Using this
feature, you can easily navigate between the Facelets templates and other parts of your projects.




Open On feature

By holding down the Ctrl key while hovering the mouse cursor over a reference to a template, the
reference becomes a hyperlink to navigate to that template.

= D\
<!DOCTYPE mEmlL PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN™ “http://wew. w3, ol
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/Tacelets”
xmins:h="nttp://java.sun.com/jsf/htmL®
xmlns: f="http://java.sun.com/jsf/core” =

=f: LloadBundle basename="resources” var="msg" /=

<ui:composition template="/templates/common.xhtml®=>

<ul:define name="pageTitle”=Input User Name</ui:defines=
<ui:define name="pageHeader">Facelets Hello Application</ui:defines|=

=ui:define name="body"=
=fi:message showSummarys="true” showDetail="false" style="color:
=form jsfc="h:form" id="helloForm"=
#{msg. prompt}
=input jsfc="h:inputText" required="true® id="name® value="
=input type="submit® jsfc="h:commandButton” id="submit”
action="greeting” value="Say Hello® />
</ form=
</ui:define:=
</ui:composition=>
</html> |

(<] I D]

Visual/Source Source | Preview

i
=
e
=
=
=
=
i
i
i

Figure 2.9. Template Hyperlink




10



Chapter 3.

Projects

To take an advantage of JSF you will need to perform one of the next steps:

« Create new JSF projects

Import (open) existing JSF projects

Add JSF capability to any existing Eclipse project

Import and add JSF capability to any existing project created outside Eclipse.

This section will go into more detail for each step.

3.1. Creating a New JSF Project

It is easy to create a new project that contains all the JSF libraries, tag libraries and JSF
configuration file with the aid of a special wizard. To get it, select File -~ New — Other - JBoos

Tools Web - JSF - JSF Project and click the Next button.

11



Chapter 3. Projects

Select a wizard —
Create a JSF Project r o
Wizards:
[t}'pe filter text @?]
T ¥ WEeD UEesCITpT r

&% XHTML Page B

<~ (= JSF
Faces Config

I = Portlet

P = Struts
b = )PA
b Plug-in Development |

@ < Back ” Next > | [ Cancel l [ Finish

Figure 3.1. Choosing a JSF Project

On the next page you will be prompted to enter the Project Name and select a location for the
project (or just leave a default path).

The JSF Version option also allows you to specify the JSF implementation to use.




Creating a New JSF Project

MNew'|]SF Project

Create JSF Project @Ci}

Project Name* |JSFProject |

Use default path*

Location [,.I'hDr‘r'IE'fiI'DDEkDVIWDrkaBDSJ’WDrkEpEIEE:ijFPI‘DjEEl‘ H Browse... |

L

JSF Environment* [JSF 1.2

{3

Template* [ JSFKickStartWithoutLibs

® < Back " Next > l [ Cancel l | Finish

Figure 3.2. Creating a New JSF Project

There are a number of predefined project templates that are both flexible and easily customizable.
You can pick a different template on which the projects Importing Existing should be based on.
Almost all templates come in two variations: with and without JSF libraries.

13



Chapter 3. Projects

Create JSF Project @‘G’

Project Name#* [JSFPrDject ]

Use default path*

[m efirooskov/Work/|BDS_5.0/workspace/]SFProject

L

JSF Environment* [JSF 1.2

Template* JSFBlankWithLibs
JSFElankWithoutLibs
JSFKickstartwWithoutLibs

® < Back " Next > l [ Cancel

Figure 3.3. Choosing JSF Templates

The table below provides description for each possible JSF template.

Table 3.1. JSF Project Templates

Template Description

JSFBlankWithoutLibs  This template will create a standard Web project structure with all the
JSF capabilities.

Use a template without libs to avoid library conflicts when your server
already has JSF libraries installed.

JSFKickStartWithoutLibg his template will create a standard Web project structure, and also
include a sample application that is ready to run.

Use a template without libs to avoid library conflicts when your server
already has JSF libraries installed.

On the next page you need to select which Servlet version to use, and specify whether or not to
register this application with JBoss AS (or other server) in order to run and test your application.

14



Creating a New JSF Project

The Context Path option defines the name under which the application will be deployed.

The Runtime value tells Eclipse where to find the Web libraries necessary to build (compile) the
project. It is not possible to finish the project creation without selecting a Runtime. If you do not
have any values, click the New... button to add new Runtime.

The Target Server option allows you specifying whether or not to deploy the application. The
Target Server corresponds to the Runtime value selected above. If you do not want to deploy the
application, uncheck this option.

Servlet Version: [2.5 v l

Context Path:* |JSFProject

l
Runtime:* [jboss-eap Runtime W l [ New... l
Target Server: jboss-eap [ MNew... l
[ Select All l
[ Deselect All l

@ < Back Next = Cancel l [ Finish

Figure 3.4. Registering the Project on Server

When you are all done, you should see that the project has appeared in the Package Explorer
view:

15



Chapter 3. Projects

-,

fFE Packag 3 'WEI:}PFW . Seam 1 = 08
g ¥
(= JavaSource
[> =i Web App Libraries
P =i JBoss Enterprise Application Platform 5.
P =i JRE System Library [jdk1.6.0 22]
[ = ant
¥ = WebContent
P = META-INF
v = WEB-INF
P =lib
ez faces-config.xml
ez web.xml
B

Figure 3.5. A New Project in the Package Explorer

At this point you can open the f aces- confi g. xn file and start working on your application. There
are a lot of features available when developing JSF applications. These features will be discussed
in more detail later in this document.

16



Importing Existing JSF Projects with Any Structure

3.2. Importing Existing JSF Projects with Any Structure

For detailed information on migration of JSF projects into a workspace see the Migration Guide.

3.3. Adding JSF Capability to Any Existing Project

It is also possible to add JSF™ capabilities (JSF libraries, tag libraries) to any existing project in
your workspace. After that you will be able to make use of features such as the JSF configuration
editor, JBoss Tools JSP editor and any others. No pre-existing web. xnl file is necessary.

Right-click on the project in the Project Explorer, bringing up the context menu. From this menu

navigate to Configure — Add JSF Capabilities.

TestNG
Source

> Add |Boss Tools Knowledge Base Support
d

Add CDI (Context and Dependency Injection) supj

Figure 3.6. Add JSF Capabilities menu item

This will open the Project Facets dialog for the project. Click the checkbox next to JavaServer
Faces. You undertake further configuration by clicking the Further configuration available
button at the bottom of the dialog; this will allow you to define specific configuration options. Click
Apply and then the OK on the Project Facets dialog when you are finished.

17



Chapter 3. Projects

type filter text "] Project Facets

Project Facets

Configuration: [ <custom:=

Project Facet Version
B[] 5 Axis2? Web Services
[] = CDI (Contexts and Dependency Injection) 1.0
[] |2 CXF 2.x Web Services 1.0
] 5 Dynamic Web Module 3.0
& Java 1.7
&2 Javascript 1.0
[ £ JAX-RS (REST Web Services) 1.1
b [] [2 JBoss Portlets
[] ¥ |Boss Web Services Core 3.0
] JPA 2.0
[] 2 seam 2 2.2
[] 5 WebDoclet (XDoclet) 1.2.3
i Further configuration available...

@

Figure 3.7. Project Facets dialog

The project will now contain a new node (visible through the Project Explorer) named Web
Resources.You will also notice new files within the WebContent folder.

18



Adding Your Own Project Templates

You can now open the new f aces- confi g. xni file, thatis found under your projects WebContent

- WEB-INF folder. This file can be opened in a unique editor (see Chapter 5, JSF Configuration
File Editor).

3.4. Adding Your Own Project Templates

Atemplate is a set of files that is provided as a basis when creating a new project. Project templates
provide content and structure for a project.

JSF Tools provides powerful template capabilities which allow you to create new templates and
import existing Struts and JSF projects. This templating facility has a variety of aspects to consider.
Let's start with the most straightforward case and consider the process of creating a template from
your existing JSF project.

Let's say you have a project that you want to use as the basis for a new template. The following
steps will show you how to achieve this:

* In the Web Projects view, right-click the project and select JBoss Tools JS - Save As
Template

¥ Package Expl

B ESE B S

» £ JSFProject JBoss Tools JSF
b | SomeWebProject

Save As Templat

Delete Remove |SF Capa

Properties Add Custom Cape

Add ORM Capabil

Figure 3.8. Saving Your Project as Template

19



Chapter 3. Projects

« Inthe first dialog box, you can specify a name for the template (it will default to the project name)
and confirm what run-time implementation of the project technology will be used.

Define Common Template Properties @

Name:* [MijFijeclj ]

Implementation:* [jSF 1.1.02 - Reference Implementation v l
Next == ‘ ‘ Finish ‘ | Cancel

Figure 3.9. Define Template Properties

» When you click the Next button a dialog box will be presented with your project structure
displayed, along with a number of check boxes. Here you can select only those parts and files
in your project directory that should be part of the template.

20



Relevant Resources Links

Select Folders and Files @

v [= & )SFProject
] & .settings
(= JavaSource
= = WebContent
= META-INF
~ = WEB-INF
[ = classes
L& lib
= ant

<= Back ‘ ‘ Next == ‘ ‘ Finish ‘ | Cancel

Figure 3.10. Define Template Properties
« At this point, unless you want to designate some extra files as having Velocity template coding
inside them, you should click the Finish button.

That's it. This template can be used with any new or imported project that uses the same run-time
implementation as the project you turned into a template.

At this point you have a fully configured project. Now you can add some additional logic to it
starting with the JSF configuration file.

3.5. Relevant Resources Links

You can find a more in-depth explanation on how to work with the special wizards, editors and
views that can be used while developing JSF applications in our Visual Web Tools Guide.

21



22



Chapter 4.

Web.xml Editor

The web. xm file inside the WEB- | NF folder is a deployment descriptor file for a Web Application.
It describes the servlets and other components and deployment properties that make up your
application.

JBoss Tools add the web. xni file to created JSF project automatically and provides a special
editor for its editing. See the Visual Web Tools guide for more information on the web. xm editor.

23



24



Chapter 5.

JSF Configuration File Editor

First, we should mention that JSF configuration file (f aces- conf i g. xnl ) is intended for registering
JSF application resources such as Converters, Validators, Managed Beans and page-to-page
navigation rules.

Now, let's look at how you can easily configure this file by means of a special graphical editor for
the JSF configuration file. The editor has three main views:

« Diagram
e Tree
e Source

They can be selected via the tabs at the bottom of the editor.

5.1. Diagram view

Here, we will show you how to work with JSF configuration file through the Diagram view of the
editor.

As you can see on the figure below, the Diagram view displays the navigation rules container in
the f aces-confi g. xm file:

25



Cc

hapter 5. JSF Configuration ...

Fi

2. *faces-config.xml 3

s

r-1
1 1

L-+ Mtestpagel.jsp

k
testpage2
E pag

Diagram Tree Source

gure 5.1. Diagram View

Mtestpagel.jsp

[F1R
customerinput

Jeustomerinput.jsp

finish

Mfinish.jsp

If you have a large diagram, make use of the Outline view. Within it you can switch to a Diagram
Navigator mode by selecting the middle icon at the top of the view window. This allows you to

26



Diagram view

easily move around the diagram. Just move the blue area in any direction, and the diagram on
the left will also move:

2, *faces-config.xml i3 = 0| &= outline & .* Palette| 3 |Boss Tools Palette =0
B i
:1 [testpagel.jsp

testpage2 [a—
B )

/testpagel.jsp @ﬂlmngu(

@A
customerinput

| | u E|

Diagram | Tree| Source

Figure 5.2. Outline View for Diagram

To create a new page here, you should click the page icon (View Template) on the toolbar from
the left and then click anywhere on the diagram. A New Page Wizard will appear.

To create a transition for connecting pages:

 Select the transition icon from the toolbar (New Connection).
 Click the source page.
« Click the target page.

A transition will appear between the two pages:

27



Chapter 5. JSF Configuration ...

Figure 5.3. Transition between JSP Pages

s

r-1
1 1

L-+

-
B

2. *faces-config.xml 3

Mtestpagel.jsp

IR
testpagel

Mtestpagel.jsp

IR
customerinput

It is also possible to create a new page with context menu by right-clicking anywhere on the

diagram and selecting the New View... option.

28



Diagram view

-

s

r-1
1 1
L+

L

*faces-config.xml &3

Mtestpagel.jsp

EIEN

testpagel

[testpagel.jsp
=}
customerinput

Jocustomerinput.jsp

finish

Mfinish.jsp

x BN

Auto Layout

Select Element

Verify

Paste Ctrl + V
Input Methods >

Diagram | Tree | Source|

Figure 5.4. Creating a New View

29



Chapter 5. JSF Configuration ...

To edit an existing transition, first select the transition line. Then, place the mouse cursor over the
last black dot (on the target page). The mouse cursor will change to a big +. At this point, drag
the line to a new target page:

., *faces-config.xml &3

K

;
-+ ftestpagel.jsp

EIEN

r=Aa

LA | ¥

testpage2
Mtestpage.jsp
| ]
Jcustomerinput.jsp
- P [Minish.jsp

finish

Figure 5.5. Editing Transition between Views

5.2. Tree View

You can find it more convenient to edit your JSF Configuration file in the Tree view of the VPE.

The view displays all JSF application artifacts referenced in the configuration file in a tree format.
By selecting any node on the left, you can view and edit its properties which will appear in the
right-hand area. Let's look at the structure of this tree more closely.

e Under the Application node you can adjust JSF application specific settings such as
internationalization, extensions, adding property and variable resolvers, etc.

30



Tree View

-

+*faces-config.xml &3

Faces Config Editor

~ faces-config » Application

- |# faces-config.xml* » EL Resolvers

» Property Resolvers
5 Components » Variable Resolvers
5 Converters

» Message Bundles
s Managed Beans

I+ & Navigation Rules
= Referenced Beans
= Render Kits Default Locale:

& Validators Supported Locale
& Extensions Locale

» Resource Bundles

~ Locale Config

» Extensions

» Advanced

Diagram | Tree | Source

Figure 5.6. JSF Application Specific Settings

31



Chapter 5. JSF Configuration ...

« The Components node is for registering custom JSF components. Right-click and select New

- Component or just click the Add button in the right-hand area to add a new component to
the JSF Configuration file.

32



Tree View

.
+*faces-config.xml &3

Faces Config Editor

~ faces-config ~ Components

- |# faces-config.xml*
@' Application
& Components
¥ Converters
& Managed Beans
b % Navigation Rules Copy Ctrl +C
% Referenced Beans Paste Ctrl +V
= Render Kits Delete Delete
& Validators
& Extensions

type  class

Component...

Cut Ctrl + X

Properties

Diagram  Tree | Source

Figure 5.7. Registering a New JSF Component

33



Chapter 5. JSF Configuration ...

In the Add Component wizard you should set a component type and point to a component class
by using the Browse button or create a new class for this component by using the Component-
Class link.

Add Component

Component

Attribute Component Type must be set.

Component Type:* “ ]

Component Class:* [ l [ Browse... l

® Cancel l | Finish

Figure 5.8. Adding a New JSF Component to the JSF Configuration File

* Use the Render Kit node to create and register a set of related renderers for custom JSF
components.

34



Tree View

.
+*faces-config.xml &3

Faces Config Editor

~ faces-config ~ Render Kits
+ |2 faces-config.xml* id class
@' Application
5 Components
¥ Converters
& Managed Beans
I 5% Navigation Rules
% Referenced Beans
&% Render Kits > Render Kit
ender Kit...
& Validators
[E' Exte.nsi[}ns_ Cut Ctrl + X
Copy Ctrl + C
Paste ctrl + v
Delete Delete
Properties
Diagram | Tree | Source

Figure 5.9. Adding a New JSF Renderer Kit to the JSF Configuration File

35



Chapter 5. JSF Configuration ...

» Under the Converters node you can create a converter class for your JSF application either
with an id or for a proper class. For more information on this procedure see Section 7.1, “Create
and Register a Custom Converter”.

36



Tree View

.
+*faces-config.xml &3

Faces Config Editor

~ faces-config

~ Converters

+ | & faces-config.xml*
@' Application
5 Components
En Converters
& Managed Beans
I 5% Navigation Rules

% Referenced Beans

= Render Kits

& Validators

& Extensions

id ' class

Cut Ctrl + X for class...

Copy Ctrl + C
Paste Ctrl + V

Delete Delete

Properties

Diagram  Tree | Source

Figure 5.10. Creating a New Custom Converter

37



Chapter 5. JSF Configuration ...

« The Managed Bean node allows you to create and register Bean classes in your JSF
application. Read more on the topic in Chapter 6, Managed Beans.

38



Tree View

.
+faces-config.xml &3

Faces Config Editor

~ faces-config ~ Managed Beans

— | A faces-config.xml* name
@' Application
% Components
5 Converters
& Managed Beans
I 5% Navigation Rules
& Referenced Beans
= Render Kits copy
& Validators
& Extensions Delete Delete

Cut Ctrl + X
Ctrl + C
Paste Ctrl + vV

Properties

Diagram  Tree | Source|

Figure 5.11. Managed Beans

39



Chapter 5. JSF Configuration ...

« Use the Navigation Rules node to configure a navigation between the pages in your
application. Here you can create a new navigation rule and adjust necessary properties for it
in the right-hand area.

™

Section 5.1, “Diagram view”

40



Tree View

-

*faces-config.xml &3

Faces Config Editor

~ faces-config

v |#; faces-config.xml*

@' Application

5 Components

5 Converters

& Managed Beans

+ g% Navigation Rules

- testpage2

I+ % /testpage2.jsp

% /customerinput.jsp

% Referenced Beans

5+ Render Kits

& Validators

& Extensions

~ Navigation Rule

From View ID:

Description:

/testpagel.jsp

g/

~ Navigation Cases

From Outcome

From Actio

~ Advanced

1D:

Display Name:

small lcon:

Large lcon:

Diagram  Tree | Source

Figure 5.12. Configuring Navigation Rules

41



Chapter 5. JSF Configuration ...

» Under the Referenced Beans node you can add a new Referenced Bean and configure various
properties for it. To learn more on this refer to Section 7.3, “Create and Register Referenced
Beans”.

42



Tree View

.
faces-config.xml &3

Faces Config Editor

~ faces-config ~ Referenced Beans

- |# faces-config.xml
@ Application
% Components
(5 Converters
s Managed Beans
I s Navigation Rules

& Referenced Beans N Rof i
. ew eference
= Render Kits 4

name class

& Validators Cut Ctrl + X

& Extensions Copy Ctrl + C
Paste Ctrl + Vv
Delete Delete
Properties

Diagram  Tree | Source

Figure 5.13. Referenced Beans

43



Chapter 5. JSF Configuration ...

« The Validators node is needed to create validator classes for organizing the validation of your
application data. You can read more on the topic in Section 7.2, “Create and Register a Custom
Validator”.

44



Tree View

.
faces-config.xml &2

Faces Config Editor

~ faces-config ~ Validators
+ |2 faces-config.xml id class
@' Application

5 Components
¥ Converters
& Managed Beans

I 5% Navigation Rules
% Referenced Beans
= Render Kits

= Validators > Validator
& Extensions
Cut Ctrl + X
Copy Ctrl + C
Paste ctrl + v
Delete Delete
Properties
Diagram  Tree | Source

Figure 5.14. Validators

45



Chapter 5. JSF Configuration ...

» The Extensions node is for setting extensions in your f aces- confi g. xm file.

46



Tree View

.
faces-config.xml &2

Faces Config Editor

~ faces-config ~ Extensions
- | & faces-config.xml element
@' Application

5 Components
¥ Converters
& Managed Beans

I 5% Navigation Rules
% Referenced Beans

=7 Render Kits
& Validators
& EX cions i
Extensions > Extension
Cut Ctrl + X
Copy Ctrl + C
Paste Ctrl + V
Delete Delete
Properties

Diagram | Tree | Source

Figure 5.15. Adding Extensions

47



Chapter 5. JSF Configuration ...

In the Tree view you can also edit the properties of the selected element with the help of the

Properties view as shown below:

|[# *races-config xmi 52
Faces Config Editor

~ faces-config ~ Managed Bean

¥ A faces-config xmi — Managed-Bean-Name: |person

I Browse... l

2 Application

) Managed-Bean-Class: |uemu.Person
5 Components
& Converters Managed-Bean-Scope: |[request

= kg Managed Bean:

= 7= person

Description:

]

HD:DE

* name

I+ L Navigation Rule
& Referenced Be,
L7 Render Kits
i Validators

~ Properties

narne class

T =)

| T i D)

Diagram | Tree|Source|

Figure 5.16. Properties View

5.3. Source View

value

Add..

ame [y

Edit.

:

€1)

| o

dlsplay-name

id

large-icen
I oo rrson
managed-bean- name person
managed-bean-sc ope I'EqLIESt

small-icon

T, # 57 "8
Froperty Value

comment

description

L

Here, we'll discuss how you can configure your f aces- confi g. xni file with the help of the Source

View.

The Source View for the editor displays the text content of the JSF configuration file. It is always
synchronized with other two views, so any changes made in one of the views will immediately

appear in the other:

48



Source View

-

3
4

6
7
B

10
11
12
13

16

18
19
28
21

23
25
26
27
28
38

32

faces-config.xml 2

1 <?xml version="1.8" encoding="UTF-8"7=
2o=faces-config version="1.2" xmlns="http://java.sun.com/xml/ns

5.7.

9.7.

14=

17=

228

242

292

31@

= 0O

-

xmlns:xi="http://www.w3.0rg/2001/XInclude"
¥mlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:sc
<managed-bean=
<managed-bean-name=person</managed-bean-name>
=managed-bean-class=demo.Person</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope=>
<managed-property=
<property-name=name</property-name=
<value/=
</managed-property=
</managed-bean=
=navigation-rule=
<description>This is a test</descriptiop>
<from-view-id=/testpagel. jsp</from-view-id=
=navigation-case=
<from-outcome=testpage2</from-outcome=
<to-view-id=/testpage2. jsp</to-view-id=>
</navigation-case>
</navigation-rule=
=navigation-rule=
<from-view-id=/testpage2. jsp</from-view-id=
=navigation-case>
<from-outcome=customerinput</from-outcome=
<to-view-id=/customerinput.jsp</to-view-1id=>
<fnavigation-case>
</navigation-rule=
=navigation-rule=
<from-view-id=/customerinput. jsp</from-view-id=
=navigation-case>
<from-outcome=finish</from-outcome=

Diagram Tree

¢ [>]

Figure 5.17. Source View

You can also work in the Source View with the help of the Outline View. The Outline view shows
a tree structure of the JSF configuration file. Simply select any element in the Outline View, and
it will jump to the same place in the Source editor, so you can navigate through the source code
with Outline View.

49



Chapter 5. JSF Configuration ...

|2 faces-config.xml £2 = B || = properties (EE Outline 52 g ¥ =0

1 <?xml version="1.0" encoding="UTF-8"7>

2=<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns " [# faces-config.xml

3 xmlns:xi="http://www.w3.org/2001/XInclude" b @) Application

4 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:sc #¢ factory

5= <managed-bean> @ lifecycle

6  <managed-bean-name>person</managed-bean-name> ¥

7  <managed-bean-class>demo.Person</managed-bean-class> (& Components

8  <managed-bean-scope>request</managed-bean-scope> & Converters

9= <managed-property>
18 <property-name>name</property-name> v Eg Managed Beans
11 <value/= ~ @ person
12 </managed-property> ° name

13 </managed-bean> o
14= <navigation-rule> ¥ g Navigation Rules

<description>This is a test</description=> — % [testpagel.jsp

<from-view-id>/testpagel.jsp</from-view-1id> testpage?

<from-outcome>testpage2</from-outcome> b % [testpage2.jsp

<to-view-1d>/testpage2.]sp</to-view-1id> P fcustomerinput.jsp
</navigation-case> G Referenced Beans

</navigation-rule> )
22= <navigation-rule> (57 Render Kits
23 <from-view-id=/testpage2.jsp</from-view-1id= & Validators
24= <navigation-case> .

25 <from-outcome>customerinput</from-outcome= & Extensions
26 <tp-view-id=/customerinput.jsp</to-view-id=>

27  =</navigation-case=

28 </navigation-rule>

292 <navigation-rule>

30  <from-view-id>/customerinput.jsp</from-view-id>
312 <navigation-case>

32 <from-outcome>finish</from-outcome> b

[>]

Diagram |Tree | Source

Figure 5.18. Outline View

5.4. Editor Features

Here we'll discuss a very important features that JSF configuration file editor provides when
working with JSF resources.

5.4.1. Open On

The JSF configuration file editor comes with the very useful OpenOn navigation feature. You can
find more information on this feature in the Visual Web Tools Reference Guide.

5.4.2. Code Assist

Code Assist provides a pop-up tip to help you complete your code statements. It allows you to
write your code faster and with more accuracy.

Code assist is always available in the Source mode:

50




Code Assist

+faces-config.xml 22

1 <?xml version="1.8" encoding="UTF-8"7>

2=<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee"

3 xmlns:xi="http://www.w3.org/2001/XInclude"

4  xmlns:xsi="http://www.w3.0rg/2001/XML5chema-instance" xsi:schemalLocation="http://java.sun.c
5= <managed-bean>

6  <managed-bean-name=person</managed-bean-name>

7  <=managed-bean-class=demo.Person</managed-bean-class>

8  <=managed-bean-scope=request</managed-bean-scope>

9= <managed-property=

18 <property-name=name</property-name=

11 <value/>

12 </managed-property=

13  </managed-bean=

14= <navigation-rule=

<description=This is a test</description=

<from-view-id=/testpagel.jsp</from-view-id>

<=navigation-case>

<from-outcome>testpage2</from-outcome>

<> description Element : from-outcome
The "from-outcome" eleme
execution of an applicatior
22= <n| <> from-action {or a literal value specified

21 </ € display-name

23 <., icon component. If specified, th
24= matches this element's val
25 «» from-outcome matter what the outcome \
26 <> redirect

3; {j <> to-view-id e

79- =n| # XSL processing instruction - XSL processing instruction
3'3_ = &# comment - xml comment
b %, person : Person

<|Pr~:-155 'Ctri+5Space’ to show JBoss CDI (Context and Dependency Injection) Class Proposall

35 e e
36= <application=

37= <locale-config=

38 <supported-locale=en US</supported-locale>
39  </locale-config=

40  </application=

41 </faces-config=

42

Diagram | Tree m

Figure 5.19. Code Assist in Source View

51



Chapter 5. JSF Configuration ...

5.4.3. Error Reporting

Constant error checking is provided while you are developing your project. This greatly reduces
your development time as it allows you to catch many errors during the development process.

Errors will be reported by Chapter 8, JSF Project Verification facility:

.
& *faces-config.xml 2

1 =?xml version="1.8" encoding="UTF-8"7=>
3 xmlns:xi="http://www.w3.org/2001/XInclude"

5= =managed-bean=
& <=managed-bean-name=person</managed-bean-name>

8  <managed-bean-scope=request</managed-bean-scope>
9= <=managed-property=

10 <property-name=name</property-name=
11 <value/>

& 7  <=managed-bean-class=demo.Persons</managed-bean-class>

2==faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee"

4  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"” xsi:schemalLocation="http:

Diagram Tree -

E
[%. Problems 2 - & Tasks} &L SEwersw E Cnnsnlew =
0 errors, 2 warnings, 0 others

Description

Resource Path

= & Warnings (2 items)
% Bean property name not found on parent class demo.Persons
& Cannot find fully gualified class: demo.Persons

Figure 5.20. Error Reporting in Source View

Other errors are also reported.

faces—conﬁg.xné fISFPro
: faces-config.xm: /JSFPro

52



Error Reporting

;
faces-config.xml 2

@ 7 <managed-bean-class=demo.Persons</managed-bean-class=
8  <managed-bean-scope=request</managed-bean-scope>
9=  <managed-property=
] <property-name=name</property-name=
1 =value/=
2 K/managed-property]
@13 </managed-bean=
14= <=pavigation-rule=
15 =description=This is a test</description=
16 <from-view-id>/testpagel.jsp</from-view-id>
17= <navigation-case>
Diagram Tree
E
(2 Problems 2 & Tasks] 4 Serversw = {:onsolew =
2 errors, 2 warnings, 0 others

Description Resource Path
< @ Errors (2 items) : :

@ error: Attribute managed-bean-class references to non-existent {:Iass faces-config. xrr f]SFPm
@ The end-tag for element type "managed-property” must end with a ' faces config. :-:nr f]SFPrD
b & Warnings (2 items) :

Figure 5.21. Other Errors Reporting

53



54



Chapter 6.

Managed Beans

JSF Tools provides a number of useful features when working with managed beans, such as:

« Adding and generating code for new managed beans
» Generating code for attributes and getter/setter methods
« Adding existing managed beans to a JSF configuration file

This guide will look at each of these features in more detail.

6.1. Code Generation for Managed Beans

To begin, create a new managed bean in JSF configuration file editor using the Tree view.

55



Chapter 6. Managed Beans

.
faces-config.xml &2

Faces Config Editor

~ faces-config ~ Managed Beans

+ |# faces-config.xml name
) Application person
(5 Components
(5 Converters

~ B Managed Beans
P & person

I & Navigation Rules Cut ctrl + X
% Referenced Beans Copy Ctrl + €

1 Render Kits Paste Ctrl + V
& Validators

»* Extensions

Delete Delete

Properties

Diagram  Tree | Source

Figure 6.1. Creation of New Managed Bean

56



Code Generation for Managed Beans

New Managed Bean

Managed Bean

Scope: [request

Class:* [example.ca rBean

Name:* [{:arBearﬂ ]

] Generate Source Code

Next == ] [ Finish ] [ Cancel

Figure 6.2. New Managed Bean

After the Java class has been generated you can open it for additional editing. There are two ways
to open a Java class:

+ Click on the Managed-Bean-Class link in the editor.

 Right click the managed bean and select the Open Declaration option.

57



Chapter 6. Managed Beans

-

2, *faces-config.xml 2 )] carBean.java 1

Faces Config Editor

~ faces-config

+ & faces-config.xml*

@' Application
% Components
5 Converters

v o5 Managed Beans
[ & person

[+ Navigation Rules
% Referenced Beans
5+ Render Kits
& Validators
& Extensions

~ Managed Bean

MEHEQE‘d Bean Name: |carBear

Managed Bean Class: |exampl

Manan Scope: |requesi

Description:

‘ m

~ Properties

name

g

~ Advanced

1D:

Display Name:

Crmmll lemrma |

Diagram | Tree | Source

Figure 6.3. Opening of Created Managed Bean

58



Code Generation for Managed Beans

The generated Java source should look as follows:

59



Chapter 6. Managed Beans

% “faces-configxml | [3 carBeanjava &3

14 ‘,.r:t:tD

4 package example;

)

B f*#

7 * @author matthew

E £ 3

g | ¥/

160 public class carBean {
11 public carBean() {
12 }

13 }

14 |

Figure 6.4. Java Source Code

60



Code Generation for Managed Beans

You can also generate source code for properties, also includes getter and setter methods. Right

click on the bean and select New — Property. You will then see the Add Property dialog.

61



Chapter 6. Managed Beans

-

2, *faces-config.xml &2 lJ| carBean.java 1

Faces Config Editor

~ faces-config ~ Managed Bean

- |# faces-config.xml*
&' Application

Managed Bean Name: |carBear

Managed Bean Class: |exampl

5 Components

i Converters Managed Bean Scope: @

+ Iz Managed Beans o LS
b @ person Description:

b G Navigation Rules New > Property...
(3 Referenced Bear Open Declaration List-Entries
(5 Render Kits Rename Class... Map-Entrie:
% Validators cut ctrl + X
% Extensions Copy Ctrl + C

Paste Ctrl + V

Delete Delete

Properties —
ID:
Display Name:

L e | P

Diagram  Tree | Source

Figure 6.5. Generation of Source Code for Properties

62



Code Generation for Managed Beans

When the form is open make sure that all the check boxes are selected:

* Add Java property
* Generate Getter

¢ Generate Setter

Add Property

Property Name:* |carName w
Property Class: java.lang.string | [ Browse...

Value Kind: value v
Value: A

[
Add Java property

Generate Getter
Generate Setter

Finish ‘ ‘ Cancel

Figure 6.6. "Add Property" Form

Once the generation is complete, you can open the file and see the newly added property with
accompanying "get" and "set" methods:

63



Chapter 6. Managed Beans

|#; *faces-config.xml [J] carBean.java 2

= Ijr,-m

*/

Fa L B

- ,-"r"

9 =/

03 =J Ch LN

package example;

* @author matthew

18 public class carBean {

11
12
138
14
13
16€
17
18

19

[ ]

o PR R R s
1
[

Bd Bl Bd B

private java.lang.5tring carName;

public carBean() {

}

public java.lang.5tring getCarMame() {
return carName;

}

public void setCarName(java.lang.String carName) {
this.carName = carName;

}

(<

Figure 6.7. Generated Java Source Code for Property

This covers the options available when creating a new Managed Bean. The next section will show
you how to add an existing Bean into a JSF configuration file.

6.2. Add Existing Java Beans to a JSF Configuration

File

If you already have a Java bean you can easily add it to a JSF configuration file.

You should start the same way you create a new managed bean. Use the Browse... button to
add your existing Java class.

64



Add Existing Java Beans to a JSF Configuration File

New Managed Bean

Managed Bean

Scope: request W

Class:* |example.carBean || Browse...

Name:* |car]

Generate Source Code

Next »>=> ‘ ‘ Finish ‘ ‘ Cancel

Figure 6.8. New Managed Bean Form

Once the class is set, its Name will be set as well. But you can easily substitute it for the other
one. Notice that Generate Source Code option is not available as the Java class already exists.

After adding your class the Next button will be activated. When you click it you will be presented
with the Managed Properties dialog where all corresponding properties are displayed. Checking
the appropriate ones will add them into your JSF Configuration File.

65



Chapter 6. Managed Beans

New Managed Bean

Managed Properties

Select properties you want to add to the managed-bean

name

value

B carName

<< Back ‘ ‘

Finish ‘ ‘ Cancel

Figure 6.9. Selection of Bean's Properties.

If you don't want to add any, just click the Finish button.

The steps above have demonstrated how you can add an existing Bean to the JSF configuration
file, i.e. faces- confi g. xnl . The next chapter will demonstrate how to organize and register other

kinds of artifacts.

66



Chapter 7.

Creation and Registration

7.1. Create and Register a Custom Converter

It's also possible to create a custom Converter in order to specify your own converting rules. Let's
look at how you can do this.

To create and register a custom converter it is necessary perform the following steps:

« In the Project Explorer view open the f aces- confi g. xnl file and select Tree tab.

67



Chapter 7. Creation and Regis...

B
2 faces-config.xml 32 |J] carBean.java W

Faces Config Editor

~ faces-config Lonverters

) _ 3 =
- |# faces-config.xml id class

@Y Application
% Components

b L& Managed Beans

P & Navigation Rules
L3 Referenced Beans
=7 Render Kits
& Validators
& Extensions

Diagram Tree 50ur::e|

Figure 7.1. Converters

» Select Converters and click the Add button.

« On the form type the name of your converter in the Converter-id field and name of the class for
converters. After clicking Finish button your custom converter is registered under the entered

name.

68



Create and Register a Custom Converter

Add Converter

Converter
Converter ID:* | MyConverter
U
Converter Class:* n| test.Customconverter | E

@ Cancel | [

Figure 7.2. Add Converter Form

 Now you can create a "converter" class. In the Converter section you should see your
Converter-id and Converter-class. Click on the Converter-Class link to generate the source
code.

69



Chapter 7. Creation and Regis...

Converter Class:

Figure 7.3. Generation of Source Code for Converter Class

« A usual wizard for creating a Java class will appear. All needed fields here will be adjusted
automatically. Just leave everything without changes and click the Finish button.




Create and Register a Custom Converter

New Java Class

Java Class

Create a new Java class.

Source folder: |SFProject/]avaSource |

Package: test |

] Enclosing type:

Name: [Customconverter |
Modifiers: @ public (" default O private O protected
] abstract [] final [] static
Superclass: java.lang.Object

Interfaces:

& javax.faces.convert.Converter

Which method stubs would you like to create?
] public static void main(string[] args)
Constructors from superclass
Inherited abstract methods

Do you want to add comments? (Configure templates and default value her:
] Generate comments

Figure 7.4. New Java Class Form

@

Cancel |




Chapter 7. Creation and Regis...

« To open a converter class click again on the Converter-Class link in the Converter section.

72



Create and Register a Custom Converter

f

-~

2 *faces-config.xml (Il] carBean.java (II] Customconverter.java &3

1 package test;

2

3# import javax.faces.component.UIComponent;

B

7 public class Customconverter implements Converter {
8

Q= public Customconverter() {
#10 // TODO Auto-generated constructor stub

11 }

12

13= @verride
«14 public Object getAsObject(FacesContext arg®, UICompone
15 // TODO Auto-generated method stub

16 return null;

17 }

18

19= @verride
220 public String getAsString(FacesContext arg®, UICompone
21 // TODO Auto-generated method stub

22 return null;

23 }

24

25 }

26

-igure 7.5. Converter Class

L




Chapter 7. Creation and Regis...

Now you are able to add a business logic of converter in the Java editor.

7.2. Create and Register a Custom Validator

It is also quite easy to develop your own custom Validators. The required steps are similar to
those shown previously:

« In the Project Explorer view open the f aces- confi g. xnl and select the Tree tab.

74



Create and Register a Custom Validator

;
faces-config.xml &3

Faces Config Editor

~ faces-config -~ Validators
v |#; faces-config.xml id class
@' Application

5 Components

b 5 Converters

I & Managed Beans

P g% Navigation Rules
% Referenced Beans
5+ Render Kits

™~ Validators

& Extensions

-igure 7.6. Validator in Faces Config Editor

Diagram | Tree | Source




Chapter 7. Creation and Regis...

» Select the Validators option and click the Add button.

» Type the name of your validator in the Validator-id field and name of the class for validators.
After clicking the Finish button your custom validator is registered under the entered name.

Add Validator

Validator

Validator ID:* | MyValidator

. g
Validator Class:* =

test.CustomValidator | E

@ Cancel | [

Figure 7.7. Adding Validator

Now you can create the "validator" class.

 In the Validator section you can see your Validator-id and Validator-class. To generate the
source code click on Validator-class.

76



Create and Register a Custom Validator




Chapter 7. Creation and Regis...

» Java class will be created automatically. Leave everything without changes and click the Finish.

78



Create and Register a Custom Validator

New Java Class

Java Class

Create a new Java class.

Source folder: |SFProject/]avaSource |

Package: test |

] Enclosing type: '

Name: | CustomValidator| |
Modifiers: @ public (" default (O private (O protected
] abstract [] final [] static
Superclass: java.lang.Object

Interfaces:

& javax.faces.validator.validator

Which method stubs would you like to create?
] public static void main(String(] args)
Constructors from superclass
Inherited abstract methods

Do you want to add comments? (Configure templates and default value her:
] Generate comments

Figure 7.9. New Java Class Form

@

Cancel |




Chapter 7. Creation and Regis...

« To open the validator class click on the Validator-Class link in the Validator section. Now you
are able to write a business logic of validator in the Java editor.

80



Create and Register a Custom Validator

-~

2 *faces-config.xml (Il] CustomValidator.java &

f

..... 1
2

package test;

3#import javax.faces.component.UIComponent;|]

7
8
g9

10=

¥11
12
13

14&

215
16
17
18
19
28
21
22

public class CustomValidator implements Validator {

public CustomValidator() {
// TODO Auto-generated constructor stub

}

@verride
public void validate(FacesContext arg®, UIComponent ar
throws ValidatorException {
// TODO Auto-generated method stub

}
|

-igure 7.10. Converter Class Editing

a0




Chapter 7. Creation and Regis...

7.3. Create and Register Referenced Beans

The creation of Referenced Beans is similar to the creation of Custom Validators. The steps below
show you the steps required to create Referenced Beans.

* In the Project Explorer view open the f aces- confi g. xn and select the Tree tab.

82



Create and Register Referenced Beans

-

*faces-config.xml &3

Faces Config Editor

~ faces-config ~ Referenced Beans

: -config.xml*
= &, faces-config.xml name class

@ Application
= Components
I 5 Converters
I & Managed Beans
I 5% Navigation Rules
7 Render Kits
I & Validators
& Extensions

-igure 7.11. Referenced Beans in Faces Config Editor

Diagram | Tree | Source




Chapter 7. Creation and Regis...

» Select the Referenced Beans option and click on the Add button.

» Type in the name of your Referenced Bean and type in or select the Referenced-Bean-Class
value by clicking the Browse button.

Add Referenced Bean

Referenced Bean

Referenced Bean Name:* |M3rreferencedﬂean

g
Referenced Bean Class:* =

test.ReferencedBean|

@ Cancel

L

Figure 7.12. Add Referenced Bean

e In the Referenced Bean section you should see your Referenced-Bean-Name and
Referenced-Bean-Class. Click on the link to open the Java creation wizard.

84



Create and Register Referenced Beans




Chapter 7. Creation and Regis...

« The Java class will be created automatically. Leave everything with their default values and
click the Finish button.

86



Create and Register Referenced Beans

New Java Class

Java Class

Create a new Java class.

Source folder: |SFProject/]avaSource |

Package: test |

] Enclosing type: |

Mame: | ReferencedBea |
Modifiers: @ public (" default O private O protected
] abstract [ ] final [] static

Superclass: java.lang.Object

Interfaces:

Which method stubs would you like to create?
] public static void main(string[] args)

Constructors from superclass

Inherited abstract methods
Do you want to add comments? (Configure templates and default value her:
] Generate comments

Figure 7.14. New Java Class Form

@ Cancel |




Chapter 7. Creation and Regis...

« To open a Referenced Bean class click the Referenced-Bean-Class in the Referenced Bean
section. Now you are able to write business logic of Referenced Bean in the Java editor.

88



Create and Register Referenced Beans

-~

2 *faces-config.xml (m ReferencedBean.java i3
1 package test;

2
3 public class ReferencedBean {
4
b= public ReferencedBean() {
¥ 6 f/ TODO Auto-generated constructor stub
7 }
8
9 }
10 |

Figure 7.15. Referenced Bean Class Editing




90



Chapter 8.

JSF Project Verification

In this chapter we'll discuss a possible verification that you can take advantage of.

Many different rules are checked for a JSF project that can be configured by selecting Window

- Preferences from the menu bar, selecting JBoss Tools - Web - JSF - Validation.

91



Chapter 8. JSF Project Verifi...

P JavaScript
=~ JBoss Tools
b CDI (Context ar
JBoss Central
JBoss Maven Int

JBoss Portlet

JBoss Tools Runi—

Project Example
Remote Debug
Usage Reporting
=~ Web
P Editors
P Expression Lz
~ JSF
Project
P Knowledge B
Label Decora
P Seam
P Struts
Web XML Va
P Maven
P Mylyn
P Plug-in Developme

Project Archives

(8 —_ -

(< [ 2]

@

Figure 8.1. JSF Rules

[2)

Validation

| Enable validation

Maximum number of problems reported per file:

Wrong order of project builders:

Configure Project Specific Settings...

Error

I

Select the severity level for the following optional JSF validation

problems:

v Composite Components

Unknown composite component:

Unknown composite component attribute:

q

b Context Param in web.xml

k

¥

»

¥

Application
Component
Converter

Factory

List and Map entries
Managed Bean
Phase Listener
Renderers

Mavigation Rules

Warning | <

. e
Warning

B

(<]

‘ Restore Defaults ‘ ‘

Apply

‘ Cancel

OK

92



Suppose you are working in the Source viewer for a JSF configuration file as shown below:

;
faces-config.xml &2

1 <?xml version="1.0" encoding="UTF-8"7=>

2==faces-config version="1.2" xmlns="http://java.sun.com/xml,
3 xmlns:xi="http://www.w3.org/2001/XInclude"

4  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi
5= <converter=

] <converter-id=MyConverter</converter-id=

7  =<converter-class=test.Customconverter</converter-class=
8 </converter=

9= <managed-bean>

18  <managed-bean-name>person</managed-bean-name>

11 <managed-bean-class>demo.Person</managed-bean-class>

12  <managed-bean-scope=request</managed-bean-scope>

13= <managed-property=

4 <property-name>name</property-name>|

15 <value/>

16 </managed-property=

17 </managed-bean>

18= <managed-bean>

19 <managed-bean-name>carBean</managed-bean-name>

20  <=managed-bean-class=example.carBean</managed-bean-class>
21  <=managed-bean-scope=request</managed-bean-scope>

22= <managed-property>

23 <property-name>=carName</property-name>

24 <property-class=java.lang.String</property-class=
25 <value/=

26 </managed-property=

Diagram Tree

Figure 8.2. Faces-config.xml File

While typing a class name, you might make a minor typo (like "demo.Person9" instead of
"demo.Person" ). After saving the file, verification checks to make sure everything is correct and
finds the error below:

93



Chapter 8. JSF Project Verifi...

P =4 Boss Enterprise Application PIatrorm 5.x RU
P =4 JRE System Library [jdk1.6.0 22]
P = ant
¥ = WebContent
P = META-INF

= = WEB-INF

b = lib
g1 faces-config.xml
azt web.xml

R e L e Ll L L

Figure 8.3. Error in Source View

!
8

10
211
12

14
15
16
17

19

9.7.

13_

182

SLCONVET LETN-CLdss>LEsS L. LUusLomconver
</converter>
<managed-bean=
<managed-bean-name=person</managed
=managed-bean-class=demo.Person9=</
<managed-bean-scope=request</manag
<managed-property=
<property-name=name<,/property-nam
=value/>
=/managed-property=
=/managed-bean=
<managed-bean=
=mananed-hean-name=carBean</manane

Notice that the Package Explorer View shows a marked folder and a marked file where the error is.

You can place the cursor over the line with an error message and get a detailed error message:

94



3
4

B
7
8

10
311
12

14

15
16
17

19
20
21

23
24
25
26

5.7.

9.7.

;
faces-config.xml &3

1 <?xml version="1.0" encoding="UTF-8"7=
2==faces-config version="1.2" xmlns="http://java.sun.com/xml,

xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsl
<converter>

<converter-id=MyConverter</converter-id=>
<converter-class=>test.Customconverter</converter-class=
</converter=

<managed-bean>
<managed-bean-name=person</managed-bean-name=

132

Multiple annotations found at this line:
- Cannot find fully qualified class: demo.Person9
- error: Attribute managed-bean-class references to non-existent cl

182

228

<property-name=name</propgrty-name=
<value/=
</managed-property=
</managed-bean>
<managed-bean>
<managed-bean-name>carBean</managed-bean-name>
<managed-bean-class=example.carBean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property=
<property-name=carName</property-name=>
<property-class=java.lang.5tring</property-class=>
<value/>
</managed-property=

L]

Diagram Tree

Figure 8.4. Error Message

Verification also checks navigation rules:

95



Chapter 8. JSF Project Verifi...

;
faces-config.xml &3

28= <navlgatlion-rule>

29  <description=This is a test</description=

30 <from-view-id>=/testpagel.jsp</from-view-id>
31= <npavigation-case=

32 <from-outcome=testpage2</from-outcome=

33 <to-view-1id=/testpage2.jsp</to-view-1id=

34 <=/navigation-case=

35 </navigation-rule>

36= <navigation-rule>

37 <from-view-1id>/testpage2.jsp</from-view-1id>
38= <npavigation-case>

39 <from-outcome=customerinput</from-outcome=

48 <to-view-1id=/customerinput.jsp</to-view-1id=

41 </navigation-case>

42 </navigation-rule=>

43= <pavigation-rule=
<from-viej-id>/customerinput.jsp</from-view-id=
45= <npavigation-case>

46 <from-outcome=>finish</from-outcome=

47 <to-view-1d=/finish.jsp</to-view-1id=>

48 <fnavigation-case>

49 </navigation-rule=

50= <referenced-bean>

51 <referenced-bean-name=MyreferencedBean</referenced-bean-|
52 =zreferenced-bean-class=test.ReferencedBean</referenced-b
53 </referenced-bean=

Diagram Tree

Figure 8.5. Checking Navigation Rules

If you provide a page name that does not exist, verification will let you know about that:

96



I = META-INF
P &=lib
gt faces-config.xmil
ez web.xml
o customerinput.jsp
oz finish.jsp

IR PVl T T

Figure 8.6. Page Name Verification

39 =from-outcome=customerinput</fro
48 <to-view-id=/customerinput.jsp</
41 </navigation-case>

42  =/navigation-rule=

43= =navigation-rule=

QM <from-view-id=/customerinput-brok

452 =navigation-case=
46 =from-outcome=finish</from-outco
47 <to-view-id=/finish.jsp=/to-view
48 </navigation-case=
49  efnAavinatinn-rnl es

In summary, this document highlights all the JSF-specific features of JBoss Tools meant for
enhancing the development of rich Web applications based on JSF technology. The reference
introduces you to wizards for creating and importing JSF projects, JSF Configuration File editor

features, functionality for enabling JSF capabilities and etc.

97



98



	JSF Tools Reference Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Key Features of JSF Tools
	1.2. Other relevant resources on the topic

	Chapter 2. JavaServer Faces Support
	2.1. Facelets Support
	2.1.1. Creating a JSF project with Facelets
	2.1.2. Facelets components
	2.1.3. Code assist for Facelets
	2.1.4. Open On feature


	Chapter 3. Projects
	3.1. Creating a New JSF Project
	3.2. Importing Existing JSF Projects with Any Structure
	3.3. Adding JSF Capability to Any Existing Project
	3.4. Adding Your Own Project Templates
	3.5. Relevant Resources Links

	Chapter 4. Web.xml Editor
	Chapter 5. JSF Configuration File Editor
	5.1. Diagram view
	5.2. Tree View
	5.3. Source View
	5.4. Editor Features
	5.4.1. Open On
	5.4.2. Code Assist
	5.4.3. Error Reporting


	Chapter 6. Managed Beans
	6.1. Code Generation for Managed Beans
	6.2. Add Existing Java Beans to a JSF Configuration File

	Chapter 7. Creation and Registration
	7.1. Create and Register a Custom Converter
	7.2. Create and Register a Custom Validator
	7.3. Create and Register Referenced Beans

	Chapter 8. JSF Project Verification

