
Seam Tools Tutorial

Version: 3.3.0.Beta1

iii

1. Create a Seam Application .. 1

1.1. Start Development Database ... 1

1.2. Create and deploy Seam Web Project ... 3

1.3. Start JBoss Application Server ... 19

1.4. Workshop Project Code Overview .. 25

2. Seam Action Development .. 27

2.1. Create a New Seam Action ... 27

2.2. Test Seam Action ... 29

2.3. Modify Seam Action User Interface .. 31

3. Declarative Security ... 35

3.1. Edit Login Authentication Logic .. 35

3.2. Secure Seam Page Component ... 35

4. Browsing Workshop Database .. 39

4.1. Database Connectivity Setup ... 39

4.2. Browse Workshop Database .. 40

5. Database Programming ... 43

5.1. Reverse Engineer CRUD from a Running Database .. 43

5.2. Use Hibernate Tools to Query Data via JPA ... 47

5.3. Use Hibernate Tools to visualize the Data Model .. 54

6. Rich Components .. 57

6.1. Add a Richfaces component to the CRUD Application ... 57

iv

Chapter 1.

1

Create a Seam Application
In this section you will learn how to create a Seam project in JBoss Developer Studio, how to start

the server and what structure your project has after it is created.

1.1. Start Development Database

Before opening the JBoss Developer studio you need to download and start the Workshop

Database [http://docs.jboss.org/tools/resources/GSG_database.zip] .

To start the database just run ./runDBServer.sh or runDBServer.bat from the database

directory.

The end result should be a console window that looks like:

http://docs.jboss.org/tools/resources/GSG_database.zip
http://docs.jboss.org/tools/resources/GSG_database.zip
http://docs.jboss.org/tools/resources/GSG_database.zip

Chapter 1. Create a Seam Appl...

2

Figure 1.1. Starting the Database

Tip

You may need to set the runDBServer.sh executable flag with the following

command:

chmod +x runDBServer.sh

Create and deploy Seam Web Project

3

1.2. Create and deploy Seam Web Project

Minimize the terminal window and run JBoss Developer Studio from Applications Menu or from

the desktop icon.

First you will see the Workspace Launcher. Change the default workspace location if it's needed.

Click the OK button.

Figure 1.2. Workspace Launcher Dialog

After startup, you see the welcome page. Select Create New... icon and then press on Create

Seam Project link.

The New Seam Project wizard is started. You need to enter a name (e.g., "workshop") and a

location for your new project. The wizard has an option for selecting the actual Server (and not just

WTP runtime) that will be used for the project. This allows the wizard to correctly identify where

the destination folder for the required datasource and driver libraries.

Chapter 1. Create a Seam Appl...

4

Figure 1.3. New Seam Project Wizard

Create and deploy Seam Web Project

5

All settings are already specified here, you can just modify the Configuration. Click on the Modify...

button to configure your custom facet options:

Chapter 1. Create a Seam Appl...

6

Figure 1.4. Project Facets Specifying

Create and deploy Seam Web Project

7

On the whole the dialog allows to select the "features" you want to use in your project. JBoss

Developer Studio will then setup the appropriate tooling for your project. Since JBoss Seam

integrates all popular Java EE frameworks, you can select any combination of technologies from

the list. Here, for the default configuration, Dynamic Web Module, Java, JavaServer Faces (JSF),

and Seam Facet are already selected for a typical database-driven web application. The default

project facets should suffice.

In the Project Facets form you can also bring up server runtimes panel by clicking Runtimes tab

on the right corner. This panel shows available server runtimes.

Chapter 1. Create a Seam Appl...

8

Figure 1.5. Runtimes Selecting

Create and deploy Seam Web Project

9

Click the OK and then the Next button to proceed to the next step.

A dynamic web application contains both web pages and Java code. The next wizard will ask you

where you want to store Java files.

Figure 1.6. Java Build Path

Following page provides you Web Module Settings .You can just leave the default values or

choose another folder.

Chapter 1. Create a Seam Appl...

10

Figure 1.7. Web Module Settings

On the next form, you will be able to select where those library JARs come from. The easiest is

just to select the JARs provided by the JBoss AS runtime associated with this project. That is why

it is important to chose the right JBoss AS 4.2 runtime in the project setup window.

• Select Library Provided by Target Runtime as Type of JSF Implementation Library. We will

use the JSF implementation that comes with JBoss server.

Create and deploy Seam Web Project

11

• Click the Next button

Figure 1.8. JSF Capabilities Adding

Next wizard step needs more settings that previous. Let's start with General section.

Leave the default Seam runtime and check a WAR deployment.

Chapter 1. Create a Seam Appl...

12

Figure 1.9. Seam Facet Setting

The Database section is a little tricky. The Connection Profile needs to be edited so that the new

project works properly with the external HSQLDB server. By default the project wizard tries to use

the JBoss embedded HSQLDB, but the tutorial uses an external database to replicate a more real

world development scenario. Click on the Edit button to modify the Connection Profile.

Figure 1.10. DataBase Setting

Select HSQLDB Profile Properties. Make sure the Database location is set to hsql://localhost:1701

Create and deploy Seam Web Project

13

Figure 1.11. JDBC Connection Properties

Chapter 1. Create a Seam Appl...

14

Click the Test Connection button. At this point it probably won’t work. This happens if the HSQL

JDBC driver is not exactly the same. This can be solved by modifying the HSQLDB database

driver settings. To modify the settings, click the Edit Driver Definition Driver button.

Create and deploy Seam Web Project

15

Figure 1.12. Driver Details

The proper Driver JAR File should be listed under Jar List. Select the hsqldb.jar file found in the

jbdevstudio/jboss-eap/jboss-as/common/lib/ directory and click the OK button.

Chapter 1. Create a Seam Appl...

16

Figure 1.13. Driver Details

Now, the Test Connection should succeed. After testing the connection, click the OK button.

Create and deploy Seam Web Project

17

Figure 1.14. Connection Testing

You can leave the Code Generation section as is. It refers to Java packages in which the generated

code will be placed.

Figure 1.15. Code Generation Setting

Tip:

If you want to name your web project "MyProject-war" note that the Test project

name should not be "MyProject-war-test", it should be "MyProject-test".

Click on Finish button. Now, there should be a new Seam project called “workshop” listed in the

Package Explorer view.

Chapter 1. Create a Seam Appl...

18

Figure 1.16. "workshop" Project in the Package Explorer

Start JBoss Application Server

19

1.3. Start JBoss Application Server

Start the server by clicking on the Start the server icon (

) in the Servers view.

Then run the project by selecting the project then selecting Run As... → Run on Server.

Chapter 1. Create a Seam Appl...

20

Figure 1.17. "workshop" Run As

Start JBoss Application Server

21

Select the server you want to run the project on, and click the Finish button.

Chapter 1. Create a Seam Appl...

22

Figure 1.18. "workshop" Run On Server

Start JBoss Application Server

23

Note:

If the project does not show up, then you can use a normal browser and use http://

localhost:8080/workshop/home.seam as the URL.

Your project looks like this:

Chapter 1. Create a Seam Appl...

24

Figure 1.19. "workshop" Project Started

Workshop Project Code Overview

25

1.4. Workshop Project Code Overview

Now let's examine the project and its structure. Go back to the Package Explorer view in JBoss

Developer Studio.

It seems like it's not much for a project but this shell application contains a login screen with default

login logic, a menu template that can be further modified, and other layout templates.

It's important to note that the business logic will reside in the src/hot folder, by default. And,

the package naming conventions that were used in New Seam project wizard could have been

changed to something different from org.domain.workshop.session. Also, notice that there is a

default Authenticator.java file. This is where custom security logic can be added. Seam has a

nice declarative security model that we will explore in more detail later on. The src/main folder

is a model directory. It stores the project's JPA entity beans.

Figure 1.20. Project Structure

The view tier of the application is also important. Seam uses facelets and there is a built-in facelets

GUI editor that includes nice WYSIWYG and component drag/drop functionality. Try this out by

opening home.xhtml from WebContent folder.

Chapter 1. Create a Seam Appl...

26

Figure 1.21. Facelets GUI Editor

Notice that the templates reside in the WebContent/layout folder. There is a stylesheet in the

WebContent/stylesheet folder. There is also a login and default error page. The Facelet editor

will be explored in more detail later in the lab.

The project already has a datasource that was created via the Seam project wizard database

settings. All of the Seam specific configuration files and JAR dependencies are included and

located in their proper locations. On last noteworthy line item is related to the build script. There

isn’t a build script because the Eclipse WTP (Web Tools Project) plugin is used to publish

web application changes. As you can see, JBoss Developer Studio is removing a great deal of

complexity from the enterprise Java project setup and deployment process. The end result is the

developer is writing code, not spending time trying to figure out how to get a decent development

environment and project build process.

Chapter 2.

27

Seam Action Development
Now it’s time to write some code. The good news is that JBoss Developer Studio can also help

out in this respect. In this section, we will create a new Seam Action POJO and facelet with some

custom business logic and some GUI changes.

2.1. Create a New Seam Action

Go to main menu bar and click on File → New → New Seam Action to start the New Seam

Action wizard.

Specify a Seam component name (e.g., "myAction"). The other properties will be auto-completed

for you so there is no need to change them. Click on the Finish button.

Chapter 2. Seam Action Develo...

28

Figure 2.1. New Seam Action Wizard

Now, open the MyAction.java file and replace the "myAction" method with this logic:

 public void myAction() {

 Calendar cal = Calendar.getInstance();

 log.info("myAction.myAction() action called");

 statusMessages.add("MyAction Executed on:" + cal.getTime());

 }

Test Seam Action

29

You also need to import the java.util.Calendar class by clicking CTRL+Shift+O.

2.2. Test Seam Action

The new action can be tested by browsing the workshop-test project. JBoss Developer Studio has

already created a TestNG test case for you.

Figure 2.2. "workshop-test" Project

Tip

You may have to refresh the project to see the new files.

The test case simulates a Seam method execution for the MyAction.myAction() logic.

To run the test case, right click on MyActionTest.xml and click Run As → TestNG Suite or use

the Run As... toolbar shortcut as shown below.

Chapter 2. Seam Action Develo...

30

Figure 2.3. TestNG Running

With any luck, the test case will pass. Look at the TestNG view.

Figure 2.4. TestNG Results

Modify Seam Action User Interface

31

Now, it’s safe to test the new Seam Action in a web browser. The fastest way to do that is

to right click on myAction.xhtml and use Run As... → Run On Server which will show the

appropriate URL in the browser. Alternatively you can manually enter http://localhost:8080/

workshop/myAction.seam into a browser.

Figure 2.5. Seam Action in a Web Browser

2.3. Modify Seam Action User Interface

Browse to http://localhost:8080/workshop/myAction.seam and click on the myAction button.

This executes the “myAction” method. This looks pretty good, but we could make this page look

a little better.

Open WebContent/myAction.xhtml in JBoss Developer Studio to use the nice facelets editor.

Chapter 2. Seam Action Develo...

32

Figure 2.6. Open Seam Action with Editor

Right click on the "myAction!" button in the visual part of editor and select <h:commandButton>

Attributes.

Modify Seam Action User Interface

33

Figure 2.7. Seam Action Editing

Change the value of the button to something different. If desired, you can change any other text

on the page. Then, type CTRL+S to save the facelet.

Figure 2.8. Attributes Dialog

Refresh http://localhost:8080/workshop/myAction.seam and now you should see your changes.

Notice that you did not have to publish the application. JBoss Developer Studio auto-published

it for you.

Chapter 2. Seam Action Develo...

34

Figure 2.9. Seam Action Is Modified

Chapter 3.

35

Declarative Security
In this section you will see how easy it is to secure the facelets and facelet components in Seam.

Let’s go ahead and secure the action button, then we will secure the entire page.

3.1. Edit Login Authentication Logic

There is a class called Authenticator.java. The login page will execute the

Authenticator.authenticate() method by default, so we’ll start by viewing the authentication logic.

Open Authenticator.java in JBoss Developer Studio and you will see that it contains the

authenticate() method with this code:

public boolean authenticate()

 {

 log.info("authenticating {0}", credentials.getUsername());

 //write your authentication logic here,

 //return true if the authentication was

 //successful, false otherwise

 if ("admin".equals(credentials.getUsername()))

 {

 identity.addRole("admin");

 return true;

 }

 return false;

 }

3.2. Secure Seam Page Component

Open myAction.xhtml and add a new secured command button:

<h:commandButton id="myActionSecured"

value="Secured Action Button"

action="#{myAction.myAction}"

rendered="#{s:hasRole('admin')}"/>

Refresh http://localhost:8080/workshop/myAction.seam If you are not logged in you will only see

one button. If you are logged in, there will be two buttons.

Chapter 3. Declarative Security

36

Figure 3.1. One Button on a Page

The secured button is not visible because the user isn’t logged in as "admin".

Secure Seam Page Component

37

Figure 3.2. Secured Button is Visible

The user is logged in as "admin". Securing components is easy but securing pages is pretty simple

as well.

Open WebContent/WEB-INF/pages.xml . Then add this markup directly underneath the <pages>

element:

<page view-id="/myAction.xhtml" login-required="true"/>

Refresh http://localhost:8080/workshop/myAction.seam If you are not logged in you will get

bounced back to the login page.

Chapter 3. Declarative Security

38

Figure 3.3. Login Page

Thus, if you enter login credentials for the "admin" user, you will be re-directed to the secured

page and secured component. If you enter different login credentials, page access will be granted,

but the secured component will not be displayed.

Congratulations! You have secured your new action both at the facelet component and page level.

You also added custom authentication logic to the login action.

Chapter 4.

39

Browsing Workshop Database
In this section you get to know how to use the workshop database that was started at the beginning

of the lab.

4.1. Database Connectivity Setup

The workshop data can be browsed inside of JBoss Developer Studio.

To open the Data Source Explorer, click on Window → Open Perspective → Other → Database

Development.

In the Data Source Explorer, expand the Databases node and select the Default database. Right

click on it, select Connect from the context menu.

Figure 4.1. Data Source Explorer

Chapter 4. Browsing Workshop ...

40

4.2. Browse Workshop Database

Then in the current view, drill down to the CUSTOMERS table.

Browse Workshop Database

41

Figure 4.2. "CUSTOMERS" Table

Chapter 4. Browsing Workshop ...

42

Right click on CUSTOMERS, select Data → Sample Contents to view the data in the table.

There should be a SQL Results view on the workbench, but it could be hidden. Click on the

"Result1" tab in the right side and you should see the data in the CUSTOMERS table.

Figure 4.3. SQL Results View

Note:

If you can’t find the SQL Results view tab, click on Window → Show View → Other

→ SQL Development → SQL Results.

Congratulations! You just connected to the workshop database and queried the content using

Database Explorer tools.

Chapter 5.

43

Database Programming
Now, it’s time to reverse engineer the workshop database into a fully functioning Seam CRUD

(Create Read Update Delete) application.

5.1. Reverse Engineer CRUD from a Running Database

In JBoss Developer Studio, switch to the Seam perspective, and then right-click the project and

select New → Seam Generate Entities.

The "workshop" project in the Seam Generate Entities wizard will be selected automatically. There

is no need to change something more, click the Next button to proceed to the next step.

Chapter 5. Database Programming

44

Figure 5.1. Generate Seam Entities

On the next page use the Refresh button to display the database, then click the Include button

to include all the tables from the database, and finally click the Finish button.

Reverse Engineer CRUD from a Running Database

45

Figure 5.2. Selecting Tables

After running the Generate Entities action, you will see new org.domain.workshop.entity classes.

These classes represent insert/update/delete/query logic.

Chapter 5. Database Programming

46

Figure 5.3. org.domain.workshop.entity Classes

There is also the org.domain.workshop.entity package that contains the JPA classes.

These are the entity beans that are mapped to database tables. Note that you can

use Seam refactoring tools with Seam components. Read more about it in Seam

refactoring tools chapter [http://download.jboss.org/jbosstools/nightly-docs/en/seam/html_single/

index.html#seam_refactoring] of Seam Dev Tools Reference Guide.

Last, but not least, there are facelets for all of the CRUD screens. The best way to get a feel

for the generated code is to open a browser and play around with the application. Go to http://

localhost:8080/workshop and insert/update/delete/query a few records. There is quite a bit of

AJAX in this application, but we will explore that later on in the lab. For now, take note of the page

tabs, required field logic and data table sorting in the list pages.

Tip

If you see the error java.lang.ClassNotFoundException:

org.jboss.seam.servlet.SeamListener in the console output from the

Application Server, you may need to copy the jboss-seam.jar file from

the lib subdirectory in the Seam library (which can be downloaded from

here [http://seamframework.org/Seam2/Seam2DistributionDownloads]) into the

/server/default/deploy/workshop.war/WEB-INF/lib/ subdirectory in your

Application Server (where "default" refers to the server profile that you are using).

http://download.jboss.org/jbosstools/nightly-docs/en/seam/html_single/index.html#seam_refactoring
http://download.jboss.org/jbosstools/nightly-docs/en/seam/html_single/index.html#seam_refactoring
http://download.jboss.org/jbosstools/nightly-docs/en/seam/html_single/index.html#seam_refactoring
http://download.jboss.org/jbosstools/nightly-docs/en/seam/html_single/index.html#seam_refactoring
http://seamframework.org/Seam2/Seam2DistributionDownloads
http://seamframework.org/Seam2/Seam2DistributionDownloads

Use Hibernate Tools to Query Data via JPA

47

Tip

If you see the error Could not instantiate Seam

component: org.jboss.seam.security.ruleBasedPermissionResolver, copy

the mvel2.jar file from the Seam library to the same destination directory

mentioned in the tip above.

Figure 5.4. CustomersList.xhtml in the Editor

Congratulations! You now have a fully functioning CRUD application that is AJAX enabled.

5.2. Use Hibernate Tools to Query Data via JPA

Now, it's time to write some JPA queries using the Hibernate perspective in JBoss Developer

Studio.

In the upper right corner of the workbench there is a small icon (see the figure below), click on

it and select Hibernate.

Chapter 5. Database Programming

48

Figure 5.5. Hibernate Perspective

Look at the Hibernate Configurations view. In the "workshop" project, drill down on the Session

Factory and notice that the JPA entities/attributes are listed in a nice tree view.

Use Hibernate Tools to Query Data via JPA

49

Figure 5.6. Hibernate Configurations View

Right click on the Session Factory and select HQL Editor. This will open a JPA query scratch

pad window.

Write your query and click on the "Hibernate Dynamic SQL Preview" tab. You should see the SQL

that will be executed if this JPA query is run.

Chapter 5. Database Programming

50

Figure 5.7. JPA Query Editor

Run the query by clicking on the green run icon.

The results are listed in the "Hibernate Query Result" view. There is a "Properties" tab in the

workbench that can be used to see a specific JPA result. These results represent the JPA objects

because our query did not specify column names.

Use Hibernate Tools to Query Data via JPA

51

Figure 5.8. Hibernate Query Result View

The query can be refined, and take note that there is nice code completion in the JPA query editor.

Chapter 5. Database Programming

52

Figure 5.9. Code Completion

A refined query will return results that are more ResultSet oriented. Notice the join logic that JPA

supports.

Use Hibernate Tools to Query Data via JPA

53

Figure 5.10. The Hibernate Query Result

There was no need to specify an Employees table in the from part of the JPA query because

JPA supports reference traversal via Java class attribute references. Not only are JPA and HQL

queries fully supported, but Criteria based queries can also be written in the Criteria Editor. You

should spend some time tinkering with different queries and possibly Criteria based queries, even

though the instructions are not provided in this lab.

Chapter 5. Database Programming

54

Figure 5.11. Criteria Editor

5.3. Use Hibernate Tools to visualize the Data Model

Now, it’s time to view the data model for the workshop database.

In the Hibernate Configurations view, select "workshop" project and expand the Configuration

node. Select the Customers entity, right click on it, choose Mapping Diagram.

Use Hibernate Tools to visualize the Data Model

55

Figure 5.12. Mapping Diagram Opening

You see a Diagram tab for the CUSTOMERS table and any tables that have FK references. This

is a handy way to view the data model and JPA mappings. Now, you’ve got access to something

that the Erwin Data Modeler can’t do.

Chapter 5. Database Programming

56

Figure 5.13. Diagram Tab

Chapter 6.

57

Rich Components
This lab will conclude with one last AJAX twist. In this section we add a RichFaces

inputNumberSlider to the Order Details edit screen.

6.1. Add a Richfaces component to the CRUD

Application

Switch to Seam perspective, and open WebContent/OrderdetailsEdit.xhtml in JBoss

Developer Studio.

Change the form field values using the visual editor. Seam has generated the form field names

that match the database column names. This is not ideal for business users.

Figure 6.1. Form Fields Editing

Also, replace the QTY Ordered input field with a inputNumberSlider. You can use the JBoss

Developer Studio palette or right click on the form and insert the RichFaces component.

Chapter 6. Rich Components

58

Figure 6.2. Insert RichFaces Component from Context Menu

One the last option is to use the source view and manually copy the inputNumberSlider markup

listed below:

 <rich:inputNumberSlider id="quantityOrdered" required="true"

 value="#{orderdetailsHome.instance.quantityordered}"/>

Add a Richfaces component to the CRUD Application

59

Figure 6.3. Manually copying Source Code

The end result is an edit page that has better form labels and a new RichFaces control.

Chapter 6. Rich Components

60

Figure 6.4. The Result Page

Congratulations! You have completed the JBoss Developer Studio lab.

	Seam Tools Tutorial
	Table of Contents
	Chapter 1. Create a Seam Application
	1.1. Start Development Database
	1.2. Create and deploy Seam Web Project
	1.3. Start JBoss Application Server
	1.4. Workshop Project Code Overview

	Chapter 2. Seam Action Development
	2.1. Create a New Seam Action
	2.2. Test Seam Action
	2.3. Modify Seam Action User Interface

	Chapter 3. Declarative Security
	3.1. Edit Login Authentication Logic
	3.2. Secure Seam Page Component

	Chapter 4. Browsing Workshop Database
	4.1. Database Connectivity Setup
	4.2. Browse Workshop Database

	Chapter 5. Database Programming
	5.1. Reverse Engineer CRUD from a Running Database
	5.2. Use Hibernate Tools to Query Data via JPA
	5.3. Use Hibernate Tools to visualize the Data Model

	Chapter 6. Rich Components
	6.1. Add a Richfaces component to the CRUD Application

