JBPM Tools Reference Guide

Version: 4.3.0.trunk

IO 1 (o Yo U o {1) o I 1

LLL. PrEfACE . e 1
I = - U S [PP 1
1.3. Other relevant resources on the tOPICoevvviiiiiiiiiiiie e 2
N I~ T < 3
2.1. JBoss jBPM Runtime Installationcccoiiiiiiiiii e 3
2.2. A Guided Tour of JBOSS JBPM GPDiiiiiiiiiiiiiiiii et 4
2.2.1. Creating @ JBPM PrOJECE ...cccvuiiiii i e 5
2.2.2. Creating an Empty Process Definitioncooiiiiiiiiniiiiiic e, 9

2.3. Actions : The JBoss jBPM Integration Mechanismc.cccoeveviiieiiineiiinnecieeennnn, 14
2.3.1. Creating a Hello WOorld ACHONcoouuiiiiiiiiiieiei e 14
2.3.2. Integrating the Hello World ACtioncoooviiiiiiiii e 17
2.3.3. INtegration POINTSoiiiiiiiieiiii e 26

2.4, QUICK HOWLO GUIEcvuiiiii i e e e e e e e e eaes 27
2.4.1. Change the Default Core |BPM Installationcccooiiiiiiiiniiiiiinneeenn, 27
2.4.2. Configuring Task NOUEScc.uiiiiiiiiiii e 27

B T B LT =T 1= o o = P 35
0 I VY- T o PRSPPI 35
3.1.1. Process ProjeCt Wizardcoouuiiiiiiiiiiiiiii e 35
3.1.2. New JBPM ACHON WIZardcooeiiiiiiiiiiiiie e 38

R 3 I T TV =Y 40
3.2.1. The OULHNE VIBW ...uuiiiiiiiii e 41
3.2.2. THE OVEIVIEW ...iiiiieii ettt et e e e et e e e e e e e eenas 42
3.2.3. The Properti€S VIEWcccuuiiiiiiiiii e e e e 42
3.2.4. The BPM Graphical Process Designer editor.cccovevveviineiiiiinneeeennnnnn. 44

Chapter 1.

Introduction

This guide demonstrates the use of JBoss jBPM in the creation of a process definition.

1.1. Preface

This document introduces the JBoss jBPM Graphical Process Designer (GPD), which is used to
create workflow processes. It will help first time users with the following tasks:

area

Installing the JBoss jBPM GPD Eclipse plugin, which is available from the JBoss jBPM download

» Setting up a Java project in Eclipse and preparing it for test driven process development

 Using the creation wizard to create an empty process definition

« Using the designer palette to draw the first process definition

» Demonstrating how the XML process definition can be inspected as an XML file

» Writing an example process test case

If you have any questions, please feel free to contact Koen Aers [mailto:koen.aers@jboss.com]
or Tom Baeyens [mailto:tom.baeyens@jboss.com] for more information.

1.2. Feature list

JBoss jBPM is a workflow that enables the creation and automation business processes. The
table below lists the main features of JBoss jBPM.

Table 1.1. Key Functionality for JBoss jBPM

Feature Benefit

Section 2.2.2.1, “A Minimal Process Definition”

Enables the management of workflow
processes as well as human tasks and the
interactions between them. jPDL combines the
best techniques both in Java and in declarative

processes.

GuidedTourJBossjBPMGPD

Is used to simplify declarative process
development and the visualization of all
actions.

Section 2.2.1, “Creating a jBPM Project”

Allows the creation of a new jBPM template
project that already includes all the advanced
artifacts and core jBPM libraries.

mailto:koen.aers@jboss.com
mailto:koen.aers@jboss.com
mailto:tom.baeyens@jboss.com
mailto:tom.baeyens@jboss.com

Chapter 1. Introduction

Feature Benefit

Section 2.2.2.1, “A Minimal Process Definition” Provides process-building functionality and
allows non-programmers to develop

processes.

the_views

Section 3.2.4.2, “The Source Mode” Shows the corresponding XML that is
generated automatically in the Source view of
the process definition editor when developing
the process.

Section 3.2.3, “The Properties View” Facilitates configuring and editing of all nodes

properties.

Section 3.2.4, “The jBPM Graphical Process The plugin is used for designing the workflow.
Designer editor.”

Interaction with all of the J2EE based Enables implementation, provides better
integration technologies including Web functionality and flexibility.

Services, Java Messaging, J2EE Connectors,

JBDC, EJBs.

Integration with jBoss Seam Allows applications to be written with complex
workflows and provides easier interactions
between them.

1.3. Other relevant resources on the topic

You can find JBoss Developer Studio and JBoss Tools release documentation at http:/
docs.jboss.org/tools [http://docs.jboss.org/tools/] in the corresponding release directory.

Additional information can be found in the JBoss Wiki [http://www.jboss.org/community/wiki/
JBPMWiki].

The latest documentation builds are available at http://download.jboss.org/jbosstools/nightly-docs
[http://download.jboss.org/jbosstools/nightly-docs/].

http://docs.jboss.org/tools/
http://docs.jboss.org/tools/
http://docs.jboss.org/tools/
http://www.jboss.org/community/wiki/JBPMWiki
http://www.jboss.org/community/wiki/JBPMWiki
http://www.jboss.org/community/wiki/JBPMWiki
http://download.jboss.org/jbosstools/nightly-docs/
http://download.jboss.org/jbosstools/nightly-docs/

Chapter 2.

Tasks

2.1. JBoss jBPM Runtime Installation

This chapter describes how to execute JBoss jBPM (business process management).

The jBPM plugin (jBPM Designer) is already included in JBoss Tools. To run it the jBPM
runtime needs to be downloaded (jbpm-jpdl|-3.2.3 [http://sourceforge.net/project/showfiles.php?
group_id=70542&package_id=145174&release_id=607377] currently), and the directory where
you extracted the runtime to needs to be specified, either when you create a jBPM project or
through the jBPM preference pages.

@ Note:

Try to avoid using spaces in the names of installation folders. It can cause problems
with Sun based VMs.

Select Window - Preferences — JBoss jBPM - Runtime Locations. Here you can add, edit
and remove JBoss jBPM installation locations. Click the Add button. In the subsequent dialog box
enter a name for a newly added jBPM runtime and point to the correct location of this package on
your file system. Click the OK button twice to save the changes.

http://sourceforge.net/project/showfiles.php?group_id=70542&package_id=145174&release_id=607377
http://sourceforge.net/project/showfiles.php?group_id=70542&package_id=145174&release_id=607377
http://sourceforge.net/project/showfiles.php?group_id=70542&package_id=145174&release_id=607377

Chapter 2. Tasks

=] Preferences (x|
[_u. et ' Runtime Locations O -
b General | Add. remove or edit |Boss jBPM installation locations.
P Agent Controller The checked location will be used by the jBPM creation wizards.
b Ant jBPM Installation Locations:
] 1

I+ Data Management Mame Version Location Add... |
b Drools

Drools Task

FreeMarker Editor

Guvnior
I Help

HOL editor
b installlUpdate [iF: Add Location x
b Java .

' Name : |igpm_runtime |
b JavaScript ;
< |Boss [BPM Location : [Iuptﬂbpmvjpdl-a.la] |§Saan:h...i

Assignment Types
Jpdl Templates

Funtime Locations

Server Deployment

ok || cancel

&

I |Boss Tools
JPA |
I+ Plug-in Development

I Profiling and Logging
Project Archives
I+ Report Design
I+ Pun/Debug
b Server ~
| [12)

|H.estnre QEFaults‘[Apply]

@ [oK l [Cancel

Figure 2.1. Adding jBPM Location

Now that a runtime has been installed, some of the powerful features of the jBPM can be
demonstrated.

2.2. A Guided Tour of JBoss jBPM GPD

This chapter will present a step-by-step walk-through demonstrating how to create and configure
a simple process. First, let's try to organize a new jBPM project.

A wizard for creating a jBPM project is included in the GPD plugin. We have opted to create a
project based on a template already containing a number of advanced artifacts that we will ignore

Creating a jBPM Project

for this section. In the future we will elaborate this wizard and offer the possibility to create an
empty jBPM project as well as projects based on templates taken from the jBPM tutorial.

2.2.1. Creating a jBPM Project

This section will show you how to use the Creation wizard to create a new jBPM project that
includes the required source folders.

At first you should select File -~ New Project... and then JBoss jBPM - Process Project in
the New Project dialog:

Chapter 2. Tasks

Select a wizard

A wizard that creates a new jBPM 3 Project

Wizards:

type filter text

P = Java Emitter Templates

b = Javascript

I = |AXB

¥ (= |Boss JBPM

45 jBPM 3 Action Handler

4o jBPM 3 Process Definition
I = |Boss Tools

I = |Boss Tools Web

@ < Back || Next > | | Cancel | [

Figure 2.2. New Project Dialog

Clicking the Next button brings us to the wizard page where the name and location for the project
are specified. We choose, for example, HellojBPM as the name and accept the default location.

Creating a jBPM Project

New Process Project

Process Project

Create a new process project.

Project name: | HellojBPM

Use default location

Location: |.-'r'errlhat.-"wmr'k5;:a-:65.-"ﬂ;u:|r'l~c:5;:au:e;t:r:l54.-'—e 0jBPM | |

Choose file system: | default | & |

@ < Back || Next = | | Cancel | [

Figure 2.3. Process Name and Location

The project will be created in the workspace root directory by default. If you want to change the
directory for your future project, deselect Use default location and click the Browse... button to
set desired location, or simply enter the location manually.

On the next screen you will be prompted to select the core jBPM location that we have defined
in the previous chapter.

Chapter 2. Tasks

New Process Project

Choose Process Project Details

Choose Process Project Details

-Choose the Core jBPM Location for this project

jBPM 3.2.7

-Check to enable generation of sample files in the project
Generate simple process definition, action handler and JUnit test

? < Back || Next > | | Cancel | [

Figure 2.4. Core jBPM Location Specifying

Clicking on the Finish button results in the project being generated. The wizard creates four source
folders: one for the processes (sr ¢/ mai n/ j pdl), one for the java sources (sr ¢/ mai n/ j ava), one
for the unit tests (src/ t est/j ava) and one for the resources such as the j bpm properti es and
the hi bernat e. properti es files (src/ mai n/ confi g). In addition a classpath container with all
the core jBPM libraries is added to the project

Creating an Empty Process Definition

-

;
[Project Explorer &3 E ¥ =0

- A HellojBPM

[= src/main/java

& src/main/config

= src/main/jpdl

= src/test/java

= JRE System Library [jdk1.6.0 22]
=i |BPM Library [jBPM 3.2.7]

= 5rc

VO OO T

g B

Figure 2.5. Layout of the Process Project

2.2.2. Creating an Empty Process Definition

Now when the project is set up, we can use a Creation wizard to create an empty process definition.

Bring up the New wizard by selecting File - New — Other.... The wizard opens on the Select
Wizard page.

Chapter 2. Tasks

Select a wizard

A wizard that creates a |JBPM 3 process diagram

Wizards:

type filter text

P = Java Emitter Templates
b = JavaScript

I = |AXB

¥ (= |Boss JBPM

L% JBPM 3 Action Handler
L5 JBPM 3 Project

> (= JBoss Tools

I = |Boss Tools Web

@ < Back || Next > | | Cancel | [

Figure 2.6. The Select Wizard Page

Selecting the JBoss jBPM category, then the jBPM Process Definition item and clicking on the
Next button brings us to the Create Process Definition page.

Creating an Empty Process Definition

New Process Definition

Create Process Definition

Create a new process definition

Process Name: | hello |

Source Folder: |HeIIDjBPMf5rcfmainfjpdl | [

? < Back “ Next > | | Cancel | [

Figure 2.7. The Create New Process Defining Page

We choose hello as the name of the process archive file. Click on the Finish button to end the
wizard and open the process definition editor.

11

Chapter 2. Tasks

[Project Explorer 2 S

= 1= HellojBPM
P 2 src/mainfjava
I src/main/config
= @ src/mainfjpdl
v [hello.jpdl.xm
b & hello.jpg
I sroftest/java
P =i JRE System Library [jdk1.6.0 22
> =i jBPM Library [jBPM 3.2.7]
P =src

a

Figure 2.8. The Process Definition Editor

You can see in the Package Explorer that creating a process definition involves creating an XML
file called [process nane].j pdl . xm , which contains the process definition information. A JPG
file called [process name] . j pg will also be automatically generated when changes are saved
to the process.

2.2.2.1. A Minimal Process Definition

Now we are ready to create a very simple process definition consisting of a begin state, an
intermediate state and an end state.

The jBPM jPDL 3 perspective should be used to aid in the configuration of the actions. It provides
the tabbed Properties Editor view which provides a way to configure all the relevant properties
of the current selected item.

2.2.2.1.1. Adding the Nodes

Add the Start, State and End nodes to the process definition by selecting the appropiate option
from the tools palette and clicking on the canvas. The result should look similar to this:

12

Creating an Empty Process Definition

[Project Explorer &2 = & ¥ = 0| [F hello 2

= 1= HellojBPM
P @ src/mainfjava
P = src/main/config
~ (@ src/main/jpdl
P [F hello.jpdl.xml
b F& hello.jpg
P = src/test/java
P = JRE System Library [jdk1.6.0 22]
P =))BPM Library [jBPM 3.2.7]
I = src

[| [l

[Select

i Marquee

O start

= State

End

o3 Fork

2ke Join

<7 Decision

{Zf Node

¥ Task Node
& Mail Node
1 ESB Service
<Z Process State
<% Super State

— Transition

Diagram | Deployment| Design | Source

Figure 2.9. A Simple Process With Three Nodes

2.2.2.1.2. Adding Transitions

[y <<Start State>>
start-statel

<< Sfate>>
statel

= <<End State==
end-statel

The nodes then need to be connected with transitions. To do that select the Transition tool in the
tools palette and click on the Start node, then move to the State node and click again to see the
transition being drawn. Perform the same steps to create a transition from the State node to the

End node. The result will look like:

13

Chapter 2. Tasks

[(5 Project Explorer &2 - 5 ¥ = 8 [F *hello
+ = HellojBPM [Select
P = sro/main/java i Marquee
P src/main/config O start
~ # src/main/jpdl e State o {:tsanf:ss;ftr:;}
B[F hello.ipdl.xml End
b FE hello.jpg
P = src/test/java *I3 Fork
P =3 JRE System Library [jdk1.6.0 22] sejoin e msst'ari;elw
b =mijBPM Library [jBPM 3.2.7] <% Decision
b = src Node
¥ Task Node
& Mail Node <<End State>>

1% ESB Service
<# Process State
<% Super State

— Transition

end-statel

(<] I | B Diagram | Deployment | Design | Source

Figure 2.10. A Simple Process With Transitions

Now, when you've got background knowledge of simple project creation, let's move to more
advanced tools.

2.3. Actions : The JBoss jBPM Integration Mechanism

This chapter will demonstrate how to integrate with JBoss jBPM. The standard mechanism to
implement this is to wrap the functionality you want to integrate in a class that implements the
ActionHandler interface. In order to demonstrate it let's specify a simple Hello World action for
our process.

2.3.1. Creating a Hello World Action

Each Hello World process should integrate one or more Hello World actions, so this is what we
will be doing. We can integrate custom code at different points in the process definition. To do
this we have to specify an action handler, represented by an implementation of the ActionHandler
interface, and attach this piece of code to a particular event. These events are amongst others,
going over a transition, leaving or entering nodes, after and before signaling.

To make things a little bit more concrete, let's create a new class called HelloActionHandler. For
that firstly we will create a new package com j bay. acti on in the src/ mai n/ j ava folder of our

14

Creating a Hello World Action

project. Then, we should call New Class Creation wizard as usual selecting New - Class from
the context menu.

15

Chapter 2. Tasks

Java Class

Source folder:
Package:

] Enclosing type:

MName:

Modifiers:

Superclass:

Interfaces:

@

New Java Class

Create a new Java class.

HellojBPM/src/main/java |

com.jbay.action |

|HeIIDAt:tiDnHandler |

@ public (" default O private O protected
] abstract [] final [static

java.lang.Object

I org.jbpm.graph.def ActionHandler

Which method stubs would you like to create?

] public static void main(string[] args)
] Constructors from superclass

Inherited abstract methods

Do you want to add comments? (Configure templates and default value her:

(Generate commenits

Figure 2.11. Creating HelloActionHendler Class

Cancel |

Integrating the Hello World Action

Notice that two first gaps have been filled automatically. Here, instead of the Package option, the
Enclose type option can be selected to define the type in which the new class should be created
will be enclosed.

In our case, we leave everything as it is, just type Hel | oAct i onHandl er as a name of new class
and add or g. j bpm gr aph. Acti onHendl er interface as it is shown in the picture above.

Thus, our Hel | oAct i onHandl er implements the Act i onHandl er interface, including the execut e
method as shown in the next figure. Here, we add a variable named gr eet i ng to the collection of
process variables and put a message init: "Hel | o from Acti onHandl er".

[F] hello 1J] HelloActionHandler.java 23

package com.jbay.action;
= ®import org.jbpm.graph.def.ActionHandler;[]
public class HelloActionHandler implements ActionHandler {

private static final long serialVersionUID = 1L;

@0verride
= public void execute(ExecutionContext executionContext) throws Exception {
executionContext.getContextInstance().createVariable("greeting”, "Hello
}

Figure 2.12. A Simple Hello Action

Now, as we have Hel | oActi onHandl er class defined, let's explore how we can handle it.

2.3.2. Integrating the Hello World Action

The main purpose of this chapter is to provide you with the steps required to associate our Hello
World action with a particular event and test the validity of our actions as well.

In order to validate our code we will first create a Unit Test that proves the behavior we want to
achieve by adding the Act i onHandl er to the process. So we implement another test.

First we need to create a new Junit Test Case by selecting File -~ New - Other - JUnit -
Junit Test Case. Give it a name of Hel | oTest, place it in the com j bay package, and click the
Finish button.

17

Chapter 2. Tasks

New JUnit Test Case

JUnit Test Case

Select the name of the new JUnit test case. You have the options to specify
the class under test and on the next page, to select methods to be tested.

@ New JUnit 3 test New JUnit 4 test

Source folder: |HeIIDjBPMf5rc,ftestfjava | [
Package: | com.jbay | [
Name: | HelloTest] |
Superclass: |junit.framewnrk.TestCase | [
Which method stubs would you like to create?

[0 setUpBeforeClass() [0 tearDownAfterClass()

] setUp() [tearDown()

[] constructor
Do you want to add comments? (Configure templates and default value her:
[Generate comments

Class under test: | | [

_ @ | < Back || Next > | | Cancel | [
Figure 2.13. Create the Hell

18

Integrating the Hello World Action

Populate the new class with the following code:

package com j bay;

i mport org.jbpm graph. def. ProcessDefinition;
i mport org.jbpm graph. exe. Processl nst ance;

i mport junit.framework. Test Case;

public class Hell oTest extends Test Case

{

public void testActionhandl er() throws Exception {

ProcessDefinition definition =
ProcessDefi ni tion. parseXm Resource("hello.jpdl.xm");

Processl nstance i nstance = new Processl nstance(definition);
assertNul | ("The greeting variabl e should not exist",
i nst ance. get Cont ext | nst ance() . get Vari abl e("greeting"));

i nst ance. signal ();

assert Equal s("The greeting variable is created",
i nst ance. get Cont ext | nst ance() . get Vari abl e("greeti ng"),
"Hell o from Acti onHandl er");

19

Chapter 2. Tasks

-,

p
(5 Project Explorer 2 F & ¥ 50

= 12 HellojBPM
b 2 src/main/java
P 2 src/main/config
= #srcf/main/jpdl
P [F hello.jpdl.xml
b & hello.jpg
= #srcftest/java
<~ f3 com.jbay
P H com.sample
P =4 JRE System Library [jdk1.6.0_22]
b =4 jBPM Library [jBPM 3.2.7]

.
[J] HelloTest.java &2

package com.jbay;
~import junit.framework.TestCase;

import org.jbpm.graph.def.ProcessDefinif
import org.jbpm.graph.exe.ProcessInstant

public class HelloTest extends Test(ase

{
= public void testActionHandler() thre

ProcessDefinition definition =
ProcessDefinition.parseXmlRe

ProcessInstance instance = new |
asserthNull("The greeting variab]
instance.getContextInst:

P 5= src
instance.signal(};
assertbEquals("The greeting vari:
instance.getContextInst:
"Hello from ActionHandle
}
}

Figure 2.14. Create the Hello Action Test

We assert that no variable called gr eet i ng exist. Then we give the process a signal to move it
to the action state. We want to associate the execution of the action with the event of going over
the transition from the start state to the action state. So after the signal, the process should be
in the action state as in the previous scenario. But moreover, the gr eet i ng variable should exist
and contain the string "Hel I o from Acti onHandl er”. That is what we assert in the last lines

of the test method.

Running the tests now results in a failure. The point is that we did not associate the action with
any particular event in the process definition, so the process variable did not get set.

20

Integrating the Hello World Action

JBPM jPDL 3 - HellojBPM/src/test/java/com/jbay/HelloTest.|:

= [0@ | ® 6 | & 9 | IS S
| 81~ v = @y v
? (5 Project Explorer &3 ‘G, ¥ = 0| [HelloTest.java 2 . [F] hello 1
o | 12 HellojBPM ProcessDefinition definiti
o= - ProcessDefinition.pars
b i#src/main/java
o P 2 src/main/config ProcessInstance instance =
& < @8 src/mainjpdl assertﬂu@l{;The grei’éing v
P > @ hello,jpdl.xml instance.getContex
P [hello.jpg instance.signal();
< (= src/test/java assertfqnfalsl["The greeting
. instance.getContex
¥ i com.jbay "Hello from Action
+ N HelloTest.java 1
I* H com.sample }
P =k JRE System Library [jdk1.6.0_22] a
b =4]BPM Library [JBPM 3.2.7] v JUnit 2 . 5 Properties} 2| Consolew 15 D
b s Finished after 0.395 seconds
Runs: 1/1 B Errors: 0 B
= g com.jbay.HelloTest [Runner: Junit 3] (0.3
M testActionHandler (0.380 s)
(I B
D<}~

Figure 2.15. Test Results Before Integration

Let's do something about it and add an action to the first transition of our sample process. To do
this you can use the Actions tab in the Properties Editor that is under the graphical canvas. Bring

21

Chapter 2. Tasks

up the popup menu of the action element container and chose New Action as it's shown on the
figure below. The other way to add an action to the transition is simply to use the dropdown menu
that is available under the action icon in the right upper corner of the Properties View.

gv JUnit | = Properties 22 . El Console
— Transition

General
Condition

Exceptions

+ Actions New Script

New Create Timer
New Cancel Timer
New Mail

New ESB Notifier

Figure 2.16. Adding an Action to a Transition

After adding the action a tabbed view with three pages will appear.

22

Integrating the Hello World Action

gv Junit £ Properties 2 - & Cnnsnle]

— Transition

General General] Details| Advanced

Condition Mame
Exceptions
w+ Actions

Figure 2.17. Configuration Dialog for an Action

The first of these three pages allows you to give the Action a name. The last page contains some
advanced attributes such as whether the Action is asynchronous. The Details page is the most
important. It allows to choose and configure the actual action handler implementation.

23

Chapter 2. Tasks

gv Junit £ Properties &2 . & Consale]

— Transition

General General Detailslﬂdvanced|
R Class Name

Exceptions
+ Actions

The class does not exist or

Figure 2.18. The Details page of an Action Configuration Dialog

Clicking on the Search... button brings us to a Choose Class dialog.

24

Integrating the Hello World Action

Choose Action Handler

Choose an action handler from the list

helloact

Matching items:

‘¢ HelloActionHandler - com.jbay.action

com.jbay.action - HellojBPM/src/main/java

@ | Cancel | |

Figure 2.19. The Choose Action Handler Dialog

We choose our previously created Hel | oActi onHandl er class and click the OK button. After
selecting the action handler for the action, we can run the test and observe it gives us a green light.

25

Chapter 2. Tasks

JBPMIjPDL 3'- HellojBPM/src/test/java/com/jbay/HelloTest.java -]I

File Edit Refactor Source MNavigate Search Project Run Window Help
Jrﬁv Jﬁwoqujﬁ.@vj@ = o | J=':;“’D%-""
| g1y 51y © &v v
? [Project Explorer 2 ‘5, ¥ = 8| [1] HelloTest.java & . [F hello
o |7 2 HellojBPM ProcessDefinition definition =
o= - ProcessDefinition.parseXmlRe
b ®src/main/java
- P2 src/main/config ProcessInstance instance = new P
o v @ sre/mainfjpdl assertNull("The greeting variabl
ﬁ i instance.getContextInsta
B [F] hello.jpdl.xmil
b [hello.jpg instance.signal();
< (@ src/test/java asserteqgaIsl["The greeting varia
) instance.getContextInsta
¥ com.jbay "Hello from ActionHandle
v B HelloTest.java }
P H com.sample }
P =k JRE System Library [jdk1.6.0_22] aQa
b =4 jBPM Library [jBPM 3.2.7] gt Junit &2 B Properties} = Console} ¥ Debug}'f:'ﬁ
bz sre Finished after 0.451 seconds
Runs: 1/1 B Errors: 0 B Failures
v Om com.jbay.HelloTest [Runner: JUnit 3] (0.437 s)
(BT B
n* [J] com.jbay.HelloTest.java - HellojBPM/src/test/java

Figure 2.20. Test Results
There we are. The above objective has been achieved.
2.3.3. Integration Points

The different integration points in a process definition are thoroughly documented in the JBoss
jBPM User Guide [http://docs.jboss.com/jbpm/v3/userguide/]. Instance nodes can contain many

26

http://docs.jboss.com/jbpm/v3/userguide/
http://docs.jboss.com/jbpm/v3/userguide/
http://docs.jboss.com/jbpm/v3/userguide/

Quick Howto Guide

action elements. Each of these will appear in the Action element list of the Actions tab. But each
Action also has a properties view of itself. You can navigate to this view by selecting the added
Action in the outline view.

2.4. Quick Howto Guide

This chapter contains additional information related to the JBoss jBPM.

2.4.1. Change the Default Core |BPM Installation

You can change the default jBPM installation by means of the Eclipse preference mechanism.

Open the Preferences dialog by selecting Window - Preferences and select the JBoss jBPM -
Runtime Location category. Using this page you can add multiple jBPM installation locations and
change the default one. The default installation is used for the classpath settings when creating
a new Process Project. Changing the preferences has no influence on already created projects.
Getting rid of a jBPM installation that is being referenced by a project however will cause the
classpath to contain errors.

e preferences =
[type filter text] Runtime Locations o
b General — Add,. remove or edit |Boss jBPM installation locations.

I+ Ant The checked location will be used by the jBPM creation wizards.
b Connechivity JEPM Installation Locations:

FreeMarker Editor . Marme Version Location

HOL editor
I InstallUpdate
b Internet
b Java 7
= |Boss [BPM

Assignment Types

Jpdl Templates

server Deployme

b |Boss Tools - .
I — Restore QeraultSH Apply

@ [OK I | Cancel

Figure 2.21. The jBPM Preferences Page

2.4.2. Configuring Task Nodes

Here, we'll examine how you can configure the Task nodes in jBPM jPDL GPD.

27

Chapter 2. Tasks

You can add Tasks to Task nodes and then configure them in a similar manner Actions are
configured. Let's consider the process definition similar to the previous one that contains three
nodes: Start state, Task node and End state. The Properties view for the selected Task node
includes several tabs.

28

Configuring Task Nodes

JBPM jPDL 3 - HellojBPM/src/main/jpdl/hello.jpdl.xml
File Edit Mavigate Search Project jBPM Run Window Help

v H B & | $ 0@ | &6 | &9 |4y b %o
[& 5y & @v an

? KE‘E’_ﬁ Project Explorer &3 5 v =) f@ *hello 2
o |7 1= HellojBPM [+ Select
- ¥ #src/main/java il Marguee
? < 3 com.jbay.action Q start
A et
= End
[» [J] MessageActionHandler.java
I @ src/main/config *[3 Fork
< @ src/main/jpdl she Join
b A hello,jpdl.xml <2 Decision
b @, hello.jpg 1 Node
< (@ src/test/java ¥ Task Node
= @ com.jbay & Mail Node
l» g com.sample =& Process State
I* =} JRE System Library [jdk1.6.0 22] ¥ Super State
b =4 jBPM Library [[BPM 3.2.7] Diagram | Deployment | Design | Source|
b Gz src (ﬂ‘FuJUnit £ Properties 22 - & Conscle} %5 D
it Process Definition
General
Exceptions
¥ Tasks
Actions
Swimlanes
Events
[]
D<>

Figure 2.22. The Properties View of the selected Task Node

29

Chapter 2. Tasks

We should choose the Task tab and then bring up the context menu or click the button in the top
right corner of the view to add a Task to our Task node.

-~

gu Junit = Properties 32 - E Consale] - Debugw is Expressinnsw

Task Node

General
Exceptions
& Tasks NewTask |
Events -
Timers S
Advanced
I T —

Figure 2.23. Adding a Task to the Task Node

Every added Task has its own configuration possibilities. You can access them through the
Properties view as well.

-~

gv Junit £ Properties &2 . & Consale] g Debug} o Expressinns}

Task Node

e General] [}etails| Assignment| Controller | Reminder
Exceptions Name

7] Tasks Description

Events

Timers

Advanced

g—/""/""—

Figure 2.24. The Task properties

The General page is a place where you can specify the name of a Task and its description. For
instance, let it be approve oder with appropriate description that you can see in the figure below.

30

Configuring Task Nodes

g Junit| =] Properties 2 . & Cnnsnlew g Debug} & Expressinns]

¥ Task Node

General & approve order General Details | Assignment| Controller Remindei

Exceptions Name approve order

¥ Tasks Description This task shows the approval form fc
Events
Timers
Advanced

Figure 2.25. The Task General Page

Now, look at Details page. First, you should specify the due date that is a mandatory property for
the Task. The due date is the date on which the task should be accomplished. Here you can also
set a Task priority as well as signaling, notifying or blocking. The Blocking attribute indicates that
the process will not be able to continue if this task is still unaccomplished. The Generate Form...
button is for creating a simple task form that can be rendered by the jBPM console.

E
g Junit| =] Properties 2 . & Cnnsnlew g Debug} & Expressinns]

¥ Task Node

General = approve order General Details]Assignment| Controller Remindei

Exceptions Due Date 3 business days

¥ Tasks Priority high

Events

Timers | Generate Form...

Advanced

Figure 2.26. The Task Details Page

For our example, we specify the due date as 2 business days, choose the high priority and also
check the Signaling and Notify attributes. It means that the Task should be accomplished in 2
business days and the assignee will be notified by email when the task is assigned. To specify
how the Task should be assigned switch on to the Assignment page.

31

Chapter 2. Tasks

Task Node

General

Exceptions

¥ Tasks

Events

Timers

Advanced

g Junit| =] Properties 2 . & Consnlew g Debugw & Expressinns]

= approve order

General Details | Assignment Controller Reminde

Actor Actor Bill

Figure 2.27. The Task Assignment Page

On the Reminder page you can specify whether the assignee will be reminded of the task that

awaits him.

-

Task Node

gv JUnit | £ Properties 3

General

Exceptions

| Tasks

Events

Timers

Advanced

El Cunsalew s Debug} iz Expressinns]

= approve order

General | Details |Assignment | Controller |Reminde

Configure Reminder

Due Date 2 business days

Repeat 1 business day

Figure 2.28. The Task Reminder Page

In our case, the assignee will be reminded by email after two business hours and continue to get
reminding every business hour after that.

In the next figure you can see our configuring generated into XML.

32

Configuring Task Nodes

[P hello &3

<?xml version="1.6" encoding="UTF-8"7>

= <process-definition xmlns="urn:jbpm.org:jpdl-3.2" name="hello"=

= <start-state name="start-statel"=
<transition to="task-nodel"=</transition=
<fstart-state=

<task-node name="task-nodel"=
S =task name="approve order" duedate="3 business days" priority="high'
=] <description=
This task shows the approval form to the approver
</description=
<assignment actor-id="Bill"=</assignment=
<reminder duedate="2 business days" repeat="1 business day"/=
</task=
<transition to="end-statel"=</transition=
</task-node>

<end-state name="end-statel"=</end-state>

<action class="com. jbay.action.HelloActionHandler"=</action=

</process-definition=

{

Diagram Deployment Design

Figure 2.29. The Task Reminder Page

We hope, our guide will help you to get started with the jPDL process language and jBPM
workflow on the whole. Besides, for additional information you are welcome on JBoss forum [http://
www.jboss.com/index.html?module=bb&op=viewforum&f=201].

33

http://www.jboss.com/index.html?module=bb&op=viewforum&f=201
http://www.jboss.com/index.html?module=bb&op=viewforum&f=201
http://www.jboss.com/index.html?module=bb&op=viewforum&f=201

34

Chapter 3.

Reference

3.1. Wizards

3.1.1. Process Project Wizard

This wizard is used to create new jBPM project. It is available by selecting File - New — Other

- jBPM 3 Project.

35

Chapter 3. Reference

Select a wizard

A wizard that creates a new jBPM 3 Project

Wizards:
type filter text
[= JAXB

< (= |Boss |BPM

&5 jBPM 3 Action Handler

L5 jBPM 3 Process Definition
P =]Boss Tools
[(= |Boss Tools Web

> = JPA
B oo Bllos e Dieacal scoss oond

@ < Back |[Next >] | Cancel | [

Figure 3.1. New Process Project Wizard

It consists of several pages:

» Onthe first page you can adjust the name of the project and the directory where it will be created.

If the Use default option is checked the output directory will be the workspace, otherwise the
user should specify the location by clicking the Browse button.

Process Project Wizard

New Process Project

Process Project

Create a new process project.

Project name: | HellojBPM

Use default location

Location: | fredhat/workspaces/workspace-jbds4/HellojBPM | [

Choose file system: | default | |

@ < Back || Next > | | Cancel | I

Figure 3.2. New Process Project Wizard
« On the second page you should point the location of your jbpm runtime.

e The last page is only available for enabling and disabling Generate simple process
definition,action handling and Unit test. If you enable the option all the mentioned code will be
generated automatically.

37

Chapter 3. Reference

3.1.2. New JBPM Action Wizard

This wizard is available by selecting File -~ New - Other - jBPM 3 Action Handler.

38

New JBPM Action Wizard

New jBPM Action

jBPM Action

A, Type name is discouraged. By convention, Java type names usually start w
an uppercase letter

Source folder: HellojBPM/src/main/java |

Package: com.sample |

[] Enclosing type: | |

Name: | testAction |

Modifiers: @ public) default () private (O protected
] abstract [] final [static

Superclass: org.jopm.graph.def.ActionHandler

Interfaces:

Which method stubs would you like to create?
] public static void main(String(] args)

Constructors from superclass

Inherited abstract methods
Do you want to add comments? (Configure templates and default value her:
] Generate comments

Figure 3.3. New JBPM Action Wizard

@ < Back || Next > | | Cancel |

Chapter 3. Reference

It includes the next options to adjust:

Table 3.1. New JBPM Action Wizard. Options.

Option

Source folder

Description

The path to the source folder relative to the selected
project

Default

The source
folder of the
project selected
in the Project

field
Package Enter a package to contain an Action Handler. Either type | <blank>
a valid package name or click the Browse to select a
package via the dialog box.
Enclosing type Select the enclosing type of your jBPM action click the | <blank>
Browse button.
Modifiers Select the modifiers that will be added to the generated | Public
class.
Name Type a name for a new Action Handler <blank>
Superclass Type or click the Browse button to select a superclass | org.jopm.graph.de
for an Action Handler
Interface Type or click the Add button to select an interface/ | org.jopm.graph.de

interfaces for an Action Handler

Which method
stubs you would
like to create?

Do you want to
add comments?

Select the stubs that you would like to be created
automatically.

Select Generate comments check box if you want
comment mask to be generated before the class
definition.

¢ Constructors
from
superclass

¢ Inherited
abstract
methods

<blank>

3.2. The views

Here, it will be explained how to work with views and editors provided by JBDS.

The views are used to represent and navigate through the resources you are currently working
on. One of the advantages of all the views is that they immediately reflect all modifications made
in the current active file. Let's explore the views that the jPDL perspective provides in more detail.

40

f ActionHandler

f.ActionHandler

The Outline View

JBPM JPDL - Hello]BPM/bin/hello/processdefinition.xml - Eclipse Platform

File Edit View MNavigate Search Project Bun Window Help
=N E S B SRR T - N N RE- T ¢ [22em gpot|
==
i# Package Explorer ® =08 The iPDL cti =8
ej perspective
B & ||k seect
i_i Marquee
o
-) Start o =<Start States>
P (# sre/mainfjava e State stariatated
P (# sre/mainfconfig # End
B (# srefmainfjpdl o2 Fork
b (® srefestjava &= Join o <<Staless
b)) 2 Decision =
B JRE System Library [jokl £% Nod state1
ode
I =4 jBPM Library [jBPM_runtirr ¥ Task Node
B (= sre @ Mail Node
<& Process <cEnd Statess
(<] [D) . State end-state
' ~a* Super State
7 Overview 2 = g||73ue
— 1| —+ Transition
o=
The jBPM GPD Editor
s The Overview
]
lDiagram Deployment Design | Source
o i = [Properties = i i =8
o= Outline 2 = - -~ The Properties View -~
I swimlanes m it Process Definition
< soNodes The Qutline View mneral Name hello
= (3 start-statel | Exceptions Description
‘@: Events Tasks
- = Transitions Actions
—s transition Swimlanes
I+ =

Figure 3.4. The jPDL Perspective Views and Editors

As you can see in the picture above, the jPDL perspective contains a complete set of functionality
that's necessary for working on the jBPM project.

3.2.1. The Outline View

The Outline view provides a classical tree that allows you to quickly view the outline of a process.

If it is not visible select Window — Show view - Outline.

41

Chapter 3. Reference

oF Outhine 2 ¥ =0
™ swimlanes
¥ @@ Nodes
= 3 stant-statel
Y& Events
w = Transitions
—¢ transition
= o= gtate]l
& Events
w = Transitions
¢ ransition
[B end.-statel
& Events
%5 Action Elaments

& Tasks

Figure 3.5. The Overview View

3.2.2. The Overview

This view provides a visual representation of the entire current developing process. The Overview
comes as a scrollable thumbnail which enables a better navigation of the process structure if it
is too large.

" Overvie E . g5 Outline = B8

i -

Figure 3.6. The Overview

3.2.3. The Properties View
Here, we dwell on the JBDS Properties view.

The Properties view can be displayed by selecting Window - Show view - Properties.

This view will list the relevant properties of the selected item in the tabbed form. Every item has
its own set of properties, which can be directly edited in the Properties view or by brining up the
context menu.

42

The Properties View

|F| *hello &3

[select
i_i Marquee
i start

o= State

& End

«3 Fork

2 Join

% Decision
£ Node

"_" Task
Node

Mail Node

JE Process
State

= Super
State

—+ Transition

ﬂ oS Shiler
start-stated

L]
Lto_auction
L]
e o S e e
stated

<cEnd State s
end-state 1

Diagram Deployment Design | Source

] Properties

+ Transition

General Name
Condition Description
Exceptions

Actions

to_auction

Figure 3.7. The Properties View of selected Transition

For example, on the picture above the Properties view displays all the properties for a selected
transition. Its name has been changed to to_auction. We have done it directly in active General
tab of the view. The same way let's change the name for the second transition to to_end.

If no one item is selected, the view represents the properties of the whole process definition.

[Properties 2

2% Process Definition

General Name
Exceptions Description
Tasks

Actions

=

hello

Figure 3.8. The Properties View of Process Definition

'?EE

In this case, it contains six tabs. The first one is the General. It allows to specify a process name
and add necessary description. To illustrate let's change the process definition name to jbay.

43

Chapter 3. Reference

3.2.4. The |BPM Graphical Process Designer editor.

The jBPM GPD editor includes four modes: Diagram, Deployment, Design and Source, which are
available as switchable tabs at the bottom of the editor.

3.2.4.1. The Diagram mode

In this mode we define the process in the form of a diagram using the tools provided on the left-
hand side of the jBPM GPD.

|F| *halle E2 ~°
[Selact
... Marguee
i start
S+ State
o <= SIar Siaigr>
= End start
o Fork
:]-nqu to_auction
7 Decision -
D o = w Sigtess
¥ Task Node
@ Mail Node to_end
r ESB Service ==Eng Siates>
<& Process State —
< Super State
— Transition

Diagrarm | Deployment Design | Source

Figure 3.9. The Diagram mode

Some properties can be directly edited in the Diagram mode of the graphical editor. One example
of this is the name property of nodes. You can edit this directly by selecting the node of which you
want to change the name and then clicking once inside this node. This enables an editor in the
node. We then change the name of the node to auction.

3.2.4.2. The Source Mode

Now, that we have defined a simple process definition, we can have a look at the XML that is being
generated under the covers. To see this XML click on the Source tab of the graphical process
designer editor.

44

The jBPM Graphical Process Designer editor.

=?xml version="1.0" encoding="UTF-8"7>

<process-definition smlns="urn:jbpm.org:jpdl-3.2" name="jbay">

<start-state name=*start”>
=transition to=*auction® name=*to_auction®=</transition=
<fstart-state>

<state names"auction®=
<transition to="end* name="te_end®s</transition=
</statex>

<gnd-state name=*end*s</end-states

</process-definition>

(]

Diagram Deployment Design |Source

Figure 3.10. The Source Mode

The Source mode provides a way to easily manipulate the raw XML source. In addition, here you

can take advantage of content assist.

A template is added to better render the jBPM task forms in the Visual editor. Now the jBPM
Graphical Process designer can create facelets that are associated with tasks and are rendered

in the jBPM console.

45

Chapter 3. Reference

|l best.xhtml £ =0

<f:facet name="kheader™:> ~
<h:outpucText value="Ffieldl"™ />
L/t fmoet >
<h:inputText values"Fivrapr] "fieldl"1}"™ />
</ dbpmidatacell>
<jbpm:datacell>
<f:facet name="kheader™:>
<h:outpucText value="Ffield2" />
</ T faner
ch:inputText valuss ¥ gFirapf ' fiald2* 1} " />
</ dbpm:datace 11>

<jbpm:datacel l> "

il

#{taskName}

field1 #{var[field!'}

field2 #fvar[field2']}

field3 #varfield3']}

field4 #lvar[fieldd']}

Action 1 Save || Cancel || buttan’ I[buttons || button3 |

htrd — wi:component jbprr:dataform | Fifacet heoutputText i |

Visual/Source Source | Preview .

Figure 3.11. A task form in VPE

3.2.4.3. The Design Mode

One more way to edit your file is to use the Design mode. This mode is shown in the next picture:

46

The jBPM Graphical Process Designer editor.

|F] hello 23 =08
2 wimil - version="1.0" encoding="UTF-8"
@ xmilns um:joprn.org:jpdl-3.2
@ name jpay
= [&] start-state
@ name start

= [e] transition

@ to auction
@ name to_auction
= [g] state
@ name aucton

b [e] transition
= [&] end-state

@ name end

Diagram Deployment Design | Source

Figure 3.12. The Design Mode

The Designh mode presents a table. The process structure is shown in the first column. Here, you
can also insert, remove and edit elements or attributes, moreover add comments and instructions.
Their values can be directly edited in the second column of the Design mode table.

For instance, let's add a comment on the second transition. For that, you should bring up the

context menu for it and select Add Before -~ Comment.

47

Chapter 3. Reference

Do, ~=
2 il version="1.0" encoding="UTF-8"
= [g] process-definition (description | swimlane | start-state | ((node | state | task-node
@ xmilns urmn: joprm.org:jpdl-3.2
@ name jpay
- E start-state {description | task | transition | event | exception-handler)®*
@ name start
= [g] transition {description | condition | ((action | script | create-timer | cancel-ti
@ to auction
@ narme to_auction
= [&] state {{{description | event | exception-handler | timer | transition))*
@ name auction
m Remuve fcription | condition | ({achon | sSCrpt | create-tmer | cancel-u
@ to Add DTD Information. ..
@ name Edit Mamespaces. .. fnd
= [e] end-state Add Child ¥ jcription | event | exception-handler)*
@ name Add Before [¢] description
Diagram |Depluyment De bltg L
== Replace With ¥ | [g] exception-handler
. L] timer
(] transition

Figure 3.13. Adding a Comment

7 Add Processing Instruction |

Then, we can enter the text This transition leads to the end state in the right column as its value.

48

The jBPM Graphical Process Designer editor.

!

=7 xmil
= [E] process-definition
@ ®mins
@ name
= [g] start-state
@ name
= [e] transition
@
@ name
= [g] state
@ name
e —
- [] transition
@
@ name
= [&] end-state

E name

version="1.0" encoding="UTF-8"
{description | swimlane | start-state |
urm:jbpm.org:jpdl-3.2

|bay

exception

{description | task

start

transition | event
{description | condition | action | script | create
auckion

to_auction

il descrnplion | event

exceplion-handler | brmer

auction

his transition leads to the end state

{description | condition | action | script | create
end

to_end

exception-nandler)*

(description | event

end

node | state

task-node

-hand|aer)®*

-fimer | Cance

transtion)))”

-fimer | Cance

ail

Diagram Deployment Design 5uun:e|

Figure 3.14. Comment is added

3.2.4.4. The Deployment Mode

Finally, to adjust the deployment settings of the project you should select the tab that opens the
Deployment mode. On the picture below the Deployment mode is performed with default settings.
Here, you can easily modify them or, if the settings do not match your needs, to reset them to
their defaults.

49

Chapter 3. Reference

[P hello &3

Deployment

Main Process Files
Check and select the files to be included in the deployment.

“rocess Info File: | /HellojBPM/hello.jpdl.xml
] Graphical Info File:
] Image File:

Additional Files

Add additional files such as forms that need to be
included in the deployment.

Add...

Remove |

User Credentials
Specify the user credentials for the chosen server.

[] Use credentials
Username: |USEr name

Password: |ssssssss

Classes an

Add classes
the deploym

Server Set
Specify the s

Server Nam
Sserver Port

Server Depl

Diagram | Deployment | Design Source

Figure 3.15. The Deployment Mode

50

	jBPM Tools Reference Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Preface
	1.2. Feature list
	1.3. Other relevant resources on the topic

	Chapter 2. Tasks
	2.1. JBoss jBPM Runtime Installation
	2.2. A Guided Tour of JBoss jBPM GPD
	2.2.1. Creating a jBPM Project
	2.2.2. Creating an Empty Process Definition
	2.2.2.1. A Minimal Process Definition
	2.2.2.1.1. Adding the Nodes
	2.2.2.1.2. Adding Transitions

	2.3. Actions : The JBoss jBPM Integration Mechanism
	2.3.1. Creating a Hello World Action
	2.3.2. Integrating the Hello World Action
	2.3.3. Integration Points

	2.4. Quick Howto Guide
	2.4.1. Change the Default Core jBPM Installation
	2.4.2. Configuring Task Nodes

	Chapter 3. Reference
	3.1. Wizards
	3.1.1. Process Project Wizard
	3.1.2. New JBPM Action Wizard

	3.2. The views
	3.2.1. The Outline View
	3.2.2. The Overview
	3.2.3. The Properties View
	3.2.4. The jBPM Graphical Process Designer editor.
	3.2.4.1. The Diagram mode
	3.2.4.2. The Source Mode
	3.2.4.3. The Design Mode
	3.2.4.4. The Deployment Mode

