JBoss Web Services User Guide

Version: 3.2.0.GA

. JBOSSWS RUNIIME OVEIVIEW ettt e ettt e et et et e et et r e e ranes 1

1.1. Key Features of JBOSSWS ..o e e e e e e 1
1.2. Other relevant resources 0N the tOPICcccuuiiiiiiiiiiiii e 1

. Creating a Simple WED SEIVICE ..o 3
A I € 1= 1= = 11T} o PN 3

. Creating a Web Service using JBOSSWS runtimec.ccooviiiiiiiiii i, 9
3.1. Creating a Dynamic Web Projectoooeuiiiiiiiiii e 9
3.2. Configure JBoss Web Service facet Settingscocceiiviiiiiiiiiiiin e 11
3.3. Creating a Web Service from a WSDL document using JBossWS runtime 14
3.4. Creating a Web service from a Java bean using JBossWS runtime 20

. Creating a Web Service Client from a WSDL Document using JBoss WS 31
. JBoss WS and development enVIFrONMENTcooiiiiiiiiiiii e e e e 35
5.1. JBOSSWS PreferenCeScieiiiiiiiiiiee ettt e e e 35
5.2. Default Server and RUNLIMEooiiiiiiiiiiii e 39

. Sample Web Service WIizardsooooieiiiiiiii e 43
6.1. SamPple WED SEIVICEcouviiiii e 48
L0 I T =T =T = 4T I 48

L2007 I =T o] o)V 0 1 =T o | 51

6.2. Sample RESTIUI WED SEIVICEcoovuiiiiiiiii e 53

. RestEasy simple project eXample ... 59
7.1. The eXample PrOJECEcouuuiiiiii e et e e e eees 59

. WED SEIVICE TESE VIBW oiiiiiiiiiiiiieiiii ettt e et et e e et e e eaaa e e eaaen 61
S TR0 o Y 110 T = U= S 63
8.2. Testing @ WED SEIVICE ...couuiiiiiiii e e 64
8.3. Testing a RESTIul WeD SEervViCecoouuiiiiiiiii e 66
8.3.1. RestfulSample ProjeCtccouuiiiiii i 67

8.3.2. RESTEASY Sample PrOJECT ...cccuvuiiiiiiiee e 68

Chapter 1.

JBossWS Runtime Overview

JBossWS is a web service framework developed as a part of the JBoss Application Server. It
implements the JAX-WS and JAX-RS specifications. JAX-WS (Java API for XML Web Services)
defines a programming model and run-time architecture for implementing web services in Java,
targeted at the Java Platform, Enterprise Edition 5 (Java EE 5). JAX-RS (Java API for RESTful
Web Services) is a Java API that supports the creation of Representational State Transfer (REST)
web services, using annotations.

JBossWS integrates with most current JBoss Application Server releases as well as earlier
ones, that did implement the J2EE 1.4 specifications. Even though JAX-RPC, the web service

specification for J2EE 1.4, is still supported JBossWS does put a clear focus on JAX-WS.

1.1. Key Features of JBossWS

For a start, we propose you to look through the table of main features of JBossWS Runtime:

Table 1.1. Key Functionality for JBossWS

Feature Benefit

JAX-RPC and JAX-WS
support

JAX-RS support

EJB 2.1, EJB3 and JSE
endpoints

JBossWS implements both the JAX-WS and JAX-RPC
specifications.

JBossWS implements the JAX-RS specification.

JBossWS supports EJB 2.1, EJB3 and JSE as Web Service
Endpoints.

WS-Security 1.0 for XML
Encryption/Signature of the
SOAP message

JBoss AS

WS-Security standardizes authorization, encryption, and digital
signature processing of web services.

JBoss Application Server 5 (JavaEE 5 compliant) web service
stack.

Support for MTOM/XOP and
SwA-Ref

Message Transmission Optimization Mechanism (MTOM)
and XML-binary Optimized Packaging (XOP) more efficiently
serialize XML Infosets that have certain types of content.

1.2. Other relevant resources on the topic

You can find some extra information on:

« JBossWS Tools Wiki FAQ. [http://www.jboss.org/community/wiki/JBossWS-FAQ#Tools]

http://www.jboss.org/community/wiki/JBossWS-FAQ#Tools
http://www.jboss.org/community/wiki/JBossWS-FAQ#Tools

Chapter 2.

Creating a Simple Web Service

This chapter describes how to create a simple web service.

2.1. Generation

A simple web service can be created by using the Simple Web Service wizard as described in
Generate a simple web service

Procedure 2.1. Generate a simple web service
1. Access the New - Select a wizard dialog

a. Right click on the project name in the Project Explorer view.
b. Select New — Other.

c. Expand the Web Services folder and click on the Simple Web Service option.

Result: The New - Select a wizard dialog displays with the selected wizard type
highlighted.

Chapter 2. Creating a Simple ...

Select a wizard >
Create a Web Service from existing class [
Wizards:

|5imp . |

~ [|Boss Tools

& simple Web Service

=~ [= Web Services
A Simple Web Service

@ = Back “ Next = l Cancel || Einish

Figure 2.1. The New - Other (Wizard selection) dialog
2. Access the Simple Web Service dialog
Click the Next button to proceed.

Result: The Simple Web Service - Project and Web Service Details dialog displays.

Generation

Simple Web Service

Project and Web Service Details

Specify the Dynamic Web Project, service, package and class
name for the sample web service and web service class.

Technology
(@) {JAX-WS (WSDL-based) () JAX-RS (REST)

Dynamic web project

MyProjectl bk l

Service details

Service name [HEllDWDrld l

Update web . xml

Service implementation

Package [Drg.jtmss.samples.websewices l E]

Class [HeﬂoWarm] E]

Application class | !

@ cinca] [

Figure 2.2. Simple Web Service - Project and Web Service Details
Define the service attributes

Define the project, web service, package and class nhames according to the options displayed
in Table 2.1, “Project and Web Service Details”

Table 2.1. Project and Web Service Details

Dialog group Field Manda Instruction Description

Technology yes Select the technology A simple web service can
the Web Service will be based on either the Web
be based on. Service Definition Language

(WSDL) or RESTful (REST)
API. Click the radio button

Chapter 2. Creating a Simple ...

Dialog group Field Manda Instruction Description
beside the technology your
web service should use.
Dynamic web yes Select the project The project name will default
project name. to the highlighted project in the
Project Explorer. A different
project can be selected from
the drop-down list.
Service details | Service yes Enter the name to for The web service name will
name the web service. be the URL for the service as
mapped in the deployment
descriptor (web. xm).
Update no Checkbox is checked Leaving this checked will
web.xml by default, but is not add your new service to the
mandatory. web. xnl in your project.
Service Packageyes Enter the package The default package is
implementation for the web service org.j boss. sanpl es. websevi ce
servlet. Select your own package using
the ... button.
Class vyes Enter the name of the The default class name will
web service servlet. correspond to the default
web service name resulting
in an equivalent URL to
servlet name mapping in
the deployment descriptor
(web. xm).
Applicationly Enter the name of the The default application class
class when | JAX-RS application is MPRESTAppl i cat i on.Select
the class to use. your own application class
JAX- using the ... button.
RS
technology
option
is
selected

4. Generate the web service

Click the Finish button to complete the web service setup.

Result: The web service classes will be generated and the web. xnl file updated with the
deployment details if the Update web.xml option was selected.

2S.

Generation

Java EE - MyProjectl/src/org/jboss/samples/webservices/HelloWorld. jav:

File Edit Source Refactor MNavigate Search Project Bun Window Help
| ro- & ®| v |0 |Gre | ®c o P4
J @ J B || » B O BN J v v S 1o G v

7
[Project Explorer &2 b, = O\

Blg « ~

[» A |AX-WS Web Services

package org. jboss. samples. webservices;

= &4 MyProjectl # import javax.jws.WebMethod;[]
@AWebservice()

P ‘ZgDeployment Descriptor: MyPri public class HelloWorld {

= Ejava Resources: src

@webMethod()

public 5tring sayHello(String name) {
System.out.println{"Hello: " + name)
return "Hello " + name + "!";

=~ {4 org.jboss.samples.websen

* A HelloWorld java

[=i Libraries
[* =i |JavaScript Resources
I* [3Web Resources : WebContent

[| 111
b = build '

=
[2. Markers (EI Properties (ﬁ'&- Servers 2 8 Data source

[= WebContent

P E‘EJBGSS SOA-P 5.1 Runtime Server [Stopped]

E<> Writable Smart Insert 720

Figure 2.3. Created Simple Web Service

Chapter 3.

Creating a Web Service using
JBossWS runtime

In this chapter we provide you with the necessary steps to create a Web Service using JBossWS
runtime. First you need to create a Dynamic Web project:

3.1. Creating a Dynamic Web project
Before creating a web service, you should have a Dynamic Web Project created:

¢ Mew Project x
Select a wizard —_—

Create a Dynamic Web project

Wizards:
type filter text

B oEs |ava

B = Java EE

b= |JavaScript

b |PA

P = Plug-in Development
- = Web

¥ Cynamic Web Project

47 Static Web Project

] HNext = Cancel

Figure 3.1. Dynamic Web Project

Create a Web project by selecting New > Project... > Dynamic Web project. Enter the following
information:

» Project Name: enter a project name

« Target runtime: any server depending on your installation. If it is not listed, click New button and
browse to the location where it is installed to. You may set Target Runtime to None, in this
case, you should read the section Section 3.2, “Configure JBoss Web Service facet settings”.

Chapter 3. Creating a Web Ser...

¢ Mew Dynamic Web Project =

Dynamic Web Project

Create a standalone Dynamic Web project or add it 0o a new or o
existing Enterpnse Apphcation.

Project name; |test

Project contents:
& Use default

Target Runtime
< MNome: v | NEW..

Dynamic Web Module version

2.4 w
Configuration
Default Configuration v |Modify.

The default configuration provides a good starting point. Additional
facets can later be installed to add mew functionality to the project.

EAR Membership
&Add project to an EAR

(| = Back Mext = Eimish Cancel

Figure 3.2. Dynamic Web Project Wizard

« Configuration: You may Section 3.2, “Configure JBoss Web Service facet settings” by clicking
the Modify... button. The opened page is like Figure 2.4.

» Configure Web Module values:

10

Configure JBoss Web Service facet settings

¥ New Dynamic Web Project

b
Web Module ﬁ
Configure web module settings, ,-_" i

Context Root:

test
Content Directony:
WebContent
Java Source Directony:
SIC

T | = Back Enish Cancel

Figure 3.3. Web Module Settings Configuration

If you added the JBoss Web Service facet to the project, now the Finish button is unavailable. You
must click Next button to set more information about the JBoss Web Service facet. The page is
like Figure 2.5. Then click on the Finish button.

If you didn't add the JBoss Web Service facet to the project, click on the Finish button. Next you
will need to add JBoss Web Service facet to the project.

3.2. Configure JBoss Web Service facet settings

If you have already created a new Dynamic Web project and not set the JBoss Web Service facet
to the project, the next step is to add JBoss Web Service facet to the project. Right-click on the

11

Chapter 3. Creating a Web Ser...

project, select its Properties and then find Project Facets in the tree-view on the left-side of the
project properties dialog. Tick on the check box for JBoss Web Services. You will see what like this:

Rasaurce
Builders
Droals
FreeMarker Context
Hibernate Sattings
Java Build Path
b Java Code Style
b Java Compiler
b Java Editor
Java EE Madule Dependeand
Javadoc Location
b JavaScript
JEE Module Dependenoies |
J5P Fragment
Praject Archives
Project References
Fun/Debug Settngs
Seam Settings
aryEr
Sarvice Palicias
Targeted Runtimes
Task Tags
Templates
b Validation
Wek Content Settings
Wb Page Edites
Wel Froject Settings
b XDoclet

Project Facets

Configuration: | <custom=

Project Facet Ve
eI Aunis? Web Servces
& £ Dvaamic Web Madule 24
B el Java 1s
+ Java Parsistence L
0O 2 JavaSaipt Toolkit L
lavaServer Faces i.:
+ K B JBass Web Services
© Seam 23
= WebDodet (XDoclet) 1.

G Further configuration reguired...

Froperties for 2z

T
Detalls Rumtimes

Z JBoss Web Services

Enables Web sendces generation through the JBoss Web services anginea.

Figure 3.4. Choose JBoss Web Service Facet

At the bottom-left of the right-side of the project properties dialog, there is a error link: Further
configuration required... . You must click the link to set more information about JBoss Web Service

facet.

Click on the Further configuration required... link. In the opened window

12

Configure JBoss Web Service facet settings

x|

¢ Modify Faceted Project

|BossWS Facet
@ A |Bossws runtime has not been chosen

) Server Supplied |BossWS Runtime

[[] Package all |JBossWS runtime jars into the deployment archive

@ oK

Figure 3.5. Configure JBoss Web Service Facet

Server Supplied JBossWS Runtime: If you have already set a JBoss runtime to the project's target
runtime, you may choose Server Supplied JBossWS Runtime and then click Ok to finish the
configuration of JBoss Web Service facet.

If the project has no Target Runtime settings, you should check the second radio button and
specify a JBossWS runtime from the list. You also can create a new JBossWS runtime, click on
the New... button will bring you to another dialog to configure new JBossWS runtime.

13

Chapter 3. Creating a Web Ser...

Mew |[BossWS Runtime

|BossWS Runtime
Create a |Bossws Runtime

Mame: Il I
\ersion E
Home Folder: l] [Brmu...]

[] Customize |Boss Web Service runtime jars

@® | Einish | | Cancel

Figure 3.6. Configure JBossWS Runtime

See how to configure a new JBossWS runtime in the Chapter 5, JBoss WS and development
environment section.

After setting the information about JBoss Web Service facet, for saving the result, you should click
the Apply or OK button at the bottom-right of the right-side of the project properties dialog.

3.3. Creating a Web Service from a WSDL document
using JBossWS runtime

In this chapter we provide you with the necessary steps to create a Web Service from a WSDL
document using JBossWS runtime.

At first, please make sure that you have already created a dynamic Web project with JBoss Web
Service facet installed.

See how to make it in the Section 3.1, “Creating a Dynamic Web project” section and in the
Section 3.2, “Configure JBoss Web Service facet settings” section.

Chapter 2, Creating a Simple Web Service

14

Creating a Web Service from a WSDL document using JBossWS runtime

To create a Web Service using JBossWS runtime select File > New > Other > Web Services >
Web Service to run Web Service creation wizard.

Let's get through the wizard step-by-step:

Web Services

Select a service implementation or definition and move the shiders to set the
level of service and client generation.

Web senice type: Top down Java bean Web Senice w
Service definition: f|BossWSProject/HelloWorld wsdl .:Ej:nwse_..?
| Stert service _
. Configuration:
@ L2 Server: |Boss AS 4.2
£5] o Web service runtime: |BossWS
. 5 SRR
Client type: | Java Proxy w
Mo chienk

Configuration: No chient generation.

Bublish the Web service
Monitor the Web service

@ < Back Mext = Finish Cancel

Figure 3.7. New Web Service Wizard

15

Chapter 3. Creating a Web Ser...

First, please select Top down Java bean Web Service from the Web Service type list, and select
a WSDL document from workspace, click on the Server name link on the page will bring you to
another dialog. Here you can specify the server to a JBoss Server and Web Service runtime to
JBossWS runtime:

¢ Service Deployment Configuration x

Choose fram the list of runtimes and deployment servers, or use the default
settings.

Server-Side Deployment Selection:
Choose server first
Choose Web seprvice runtime first

Explore options

Web service runtime:
Apache Axis
Apache Axis2

|BossWS

Server:

= [] Existing Servers

27 orgjboss.ide eclipse.as.42
b server Types

oK Cancel

Figure 3.8. Select Server and Web Service runtime

Click on the Finish button to see the next wizard view opened:

16

Creating a Web Service from a WSDL document using JBossWS runtime

e Web Service *

Web Services
Select a service implementation or definition and move the sliders to set the

level of service and client genaration,

Web senice type: Top down Java bean Web Sennce 4
Service definition: [|BossWSProject/HelloWorld wsdl Ej:uw'se
I Stert service .
. Configuration:
¢ Server: |Boss AS 4.2
£5] o Web service runtime: |BossWS
= Service EAR project: aEAR
Client type: | Java Proxy W

Configuration: No client generation.

Bublish the Web service
Monitor the Web service

@ < Back Mext > | Finish Cancel

Figure 3.9. New Web Service Wizard

Click on the Next button to proceed:

17

Chapter 3. Creating a Web Ser...

; Web Service

JBoss Web Service Code Generation Configuration

Flease input the appropnate option for the code generation ’

Custom package name |org example wwwhelloworld
JAX-WS specification 2.0
Catalog file Add

Binding files Add

" Generate default Web Service Implementation classes
+" Update the default Web.xmi

¥ <Back || Next> | Finish Cancel

Figure 3.10. New Web Service Wizard

On this page, the default package name comes from the namespace of the WSDL document, you
also can change it to any valid package name you want. JAX-WS specification should be setto 2.0
if your JBossWS runtime in JBoss Server is JBossWS native runtime. You can specify a catalog
file and binding files if you have them. If you want the wizard to generate empty implementation

18

Creating a Web Service from a WSDL document using JBossWS runtime

classes for the Web Service, check the Generate default Web Service implementation classes
check box. If you want to update the default Web.xml file with the Web Service servlets configured,
check the Update the default Web.xml check box. Click on the Next or on the Finish button
to generate code.

Once the Web Service code is generated, you can view the implementation class and add
business logic to each method.

package org.apache.hello world scap http;

import javax.jws.WebService;

MebService(name = “GreeterImpl”, serviceName = "Greeter”, emndpointInterface =
public class GreeterImpl implements Greeter {
public String sayHi() {

return "";

}

public String greetMe(String requestType) {
return "";

}

public void greetMeOneWay(String requestType) {
return;

}

| o

public wvoid pingMe() {
return;

}

Figure 3.11. The generated implementation Java code

View the Web.xml file:

19

Chapter 3. Creating a Web Ser...

<?fxml version="1.8" encoding="UTF-8"7= |
wweb-app id="Webdpp ID" version="2.4" xmlns=“http://java.sun.com/xml/ns/jlee” xml
= isplay -name>
JBossWsProject</display -name:=
<serylet»
<d15p lay -name:>
Greeter</display - name:s
<serylet - namexGreater</servliet -namo:s
weprylet-classs
org.apache. hello world_soap hitp.Greeterlmpl=/serviet-class=
fservlet>
<sarviet -mapplngs
servlet -namesGregter</ serviet -names
url-pattern=/Greeter<furl-patterns
</serviet-mapping=>
gealeome-Tile-lists
<welcome-file=index. html</welcome-file=
<welcome-file=index.htm</welcome-file=
<welcome-file=index. jsp</welcome-file>
wyeleome-filex-default. htEal< welcome-file=
<welcome-fille=déefault. htm< welcome-flle=
<welcome -file=default. jsp</welcome-file=
</walcome-Tfile-list>
</web-app=

—

Figure 3.12. Web.xml

In the next chapter you will find out how to create a Web service from a Java bean.

3.4. Creating a Web service from a Java bean using
JBossWS runtime

The Web Service wizard assists you in creating a new Web service, configuring it for deployment,
and then deploying it to the server.

To create a Web service from a bean using JBoss WS:
Setup Chapter 5, JBoss WS and development environment.

Create Section 3.1, “Creating a Dynamic Web project”.

20

Creating a Web service from a Java bean using JBossWS runtime

Chapter 2, Creating a Simple Web Service

Section 3.2, “Configure JBoss Web Service facet settings”

Create a Web Service from a java bean:

» Switch to the Java EE perspective Window > Open Perspective > Java EE.

* In the Project Explorer view, select the bean that you created or imported into the source folder
of your Web project.

21

Chapter 3. Creating a Web Ser...

“Project Explorer = = Navigator “© [Helloworid javaii,

E % =
v Wtast package org.example.www.helloworld;
¢ & Deployment Descriptor: test simport javax.jws.webMethod;
= 2 ava Resources: src 1 1
ebservice(name = "Helloworld®, targetNamespace = "http://www. e
~ # org.example.www.helloworld public class HelloWorld{
- B HelloWorld. java
¢ mLibraries

¢ o= build @ebMethod{action = “http://www. example, org/HelloWorld/sayHe
@ebfesult{name = "sayHelloResponse”, partName = "sayHelloRe:
* & WebContent public String sayHello(@ebParam(name = "sayHelloRequest™, p
¢ mJavaScript Support return “Hello World®;
b 2JSR-109 Web Services }

@ebMethod(action = “"http://www. example.org/Helloworld/sayHe

@ebResult(name = “sayHelloResponse2”, partName = “sayHelloR

public String sayHello2(@WebParam(name = “sayHelloRequest2™,
return "Hello gq”;

}

£ Problems < Tasks = Properties| & Servers & - i Data Source Explorer & 5Snipp
Server State Status

|Boss AS 4.2 at lc: Stopped

Writable Smart

Figure 3.13. Select the Bean Created

e Click File > New > Other. Select Web Services in order to display various Web service wizards.
Select the Web Service wizard. Click on the Next button.

22

Creating a Web service from a Java bean using JBossWS runtime

¥ Mew

Select a wizard

Create a new XML web senice,

Wizards:
|
[D‘ = SUL Ueveloprment .
I+ (= User Assistance
b E=web
= [=web Services
& ant Fles
17 Unit Test UDDI

[*]

web Service

i web Service Client
SwsoL
b= XML

[= Examples

® e |

Figure 3.14. New Web Service

« On the first Web Service wizard page: select Bottom up Java bean Web service as your Web
service type, and select the Java bean from which the service will be created:

23

Chapter 3. Creating a Web Ser...

Web Services

2

Bottom up Java bean Web Service w

@ Select a service implementation,

Web service type:

Service implementation: Browse...
I | st serie Configuration:
g0 Server: |Boss AS 4.2
o ¥ Web service runtime; |Bossws
= _9 Service project: test
Client type: |Java Proxy *
prere=n Configuration: No client generation.
W
Publish the Web service
Monitor the Web service
7 < Back Cancel

Figure 3.15. Set Web Service Common values

‘ Browse Classes

Class name: (? = any character, * = a

HelloWaorld
Matching items:

£ HelloWorld - org.example.www.hel

org.example.www.helloworld - test

7 OK

» Select the stages of Web service development that you want to complete using the slider:

» Develop: this will develop the WSDL definition and implementation of the Web service.
This includes such tasks as creating modules that will contain generated code, WSDL files,

deployment descriptors, and Java files when appropriate.

* Assemble: this ensures the project that will host the Web service or client gets associated

to an EAR when required by the target application server.

» Deploy: this will create the deployment code for the service.

« Install: this will install and configure the Web module and EARSs on the target server.

« Start: this will start the server once the service has been installed on it. The server-

config.wsdd file will be generated.

24

Creating a Web service from a Java bean using JBossWS runtime

« Test: this will provide various options for testing the service, such as using the Web Service
Explorer or sample JSPs.

Select your server: the default server is displayed. If you want to deploy your service to a
different server click the link to specify a different server.

Select your runtime: ensure the JBoss WS runtime is selected.

Select the service project: the project selected in your workspace is displayed. To select a
different project click on the project link. If you are deploying to JBoss Application Server
you will also be asked to select the EAR associated with the project. Ensure that the project
selected as the Client Web Project is different from the Service Web Project, or the service
will be overwritten by the client's generated artifacts.

If you want to create a client, select the type of proxy to be generated and repeat the above
steps for the client. The better way is to create a web service client project separately.

Click on the Next button.

« On the JBoss Web Service Code Generation Configuration page, set the following values:

25

Chapter 3. Creating a Web Ser...

|Bass Web Service Code Generation Configuration 9
Please input the appropriate option for the code generation

< Generate WsDL file
< Update the default Web. xml

T = Back MNext = FEirish Cancel

Figure 3.16. Set Web Service values for Code Generation

» Generate WSDL file: select it, you will get a generated WSDL file in your project. But this
wsdl's service address location values are not a real address.

» After the Web service has been created, the following option can become available depending
on the options you selected: Update the default web.xm file. If selected, you may test the
web service by Explorer.

Click on the Next button.

» On this page, the project is deployed to the server. You can start the server and test the web
service. If you want to publish the web service to a UDDI registry, you may click the Next button
to publish it. If not, you may click the Finish button.

26

Creating a Web service from a Java bean using JBossWS runtime

' Web Service b
Server startup 9
Start the server from this page.

In order to proceed the server “|Boss AS 4.2 at localhost" must be st
Once the server is started the “next" buttan will be enabled,
The "back™ button can be used while the server is starting to

change any previous settings in this wizard.

Currently the server is stopped. Start server

. < Back Cancel

Figure 3.17. Start a Server

After the Web Service has been created, the following options may become available depending
on the options selected:

 the generated web services code

« If you selected to generate a WSDL file, you will get the file in your project's wsdl folder.

27

Chapter 3. Creating a Web Ser...

‘& Project Explorer = - = Navigatof
- Btest
b Deployment Descriptor: test
= ™ Java Resources: src
= @ org.example.www.helloworld
v 1 HelloWorld.java

&,
]

=0 [HelloWorld.java

T

b ®morg.example www. helloworld jaxws

b mlLibraries
b build
b = WebContent
- wsdl

+ #HelloWorldService wsdl

b = avasScript Support
b & testEAR
b L2|SR-109 Web Services

<input message='tns:HelloWorld sayHello2'/=>
<output message='tns:HelloWorld sayHelloZResponse' /=
</operation=
</portType>
=binding name='HelloWorldBinding' type='tns:HelloWorld'=
=spap:binding style='document' transport="http://schemas.xmlsocap.org/soap/
<operation names='sayHello'=
<spap:operation soapAction='http://www.example.org/HelloWorld/sayHello' />
<input=
<soap:body use='literal'/>
</input>
<output>
<soap:body use='literal’/=>
</output=
</operation>
<pperation name='sayHello2'=
<spap:operation seapAction="http://www.example.org/HelloWorld/sayHello2'/
<input=
<spap:body use='literal'/=
=finput>
<output>
<spap: body use='literal’/=
<foutput=
</operation=
</binding=
<service name='HelloWorldService'=

=port binding='tns:HelloWorldBinding®' name='HelloWorldPort'=
Zsoap-address \ocat ions" NEAEIVEITAERIIGHINIE /-

</port>

</services>

</definitions>

Design Source

Figure 3.18. The Generated HelloWorldService.wsdl| File in the wsdl Folder

If you selected to update the default web.xml, you will test the web service in the browser. Open

the Explorer, input the url for the web service according to web.xml plus ?wsdl, you will get the

WSDL file from Explorer.

28

Creating a Web service from a Java bean using JBossWS runtime

I Project Explorer 2 - <= Navigator =0 i HelloWorld.java #HelloWorldService.wsdl “web.xml&
B % = | <=?7xml version="1.0" encoding="UTF-8"7=

= & test <web-app id="WebApp ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee

) <display-name>

b % Deployment Descriptor: test test</display-name>

= M Java Resources: src <serviet>

=display-name>

HelloWorld</display-name=

=serviet-name=HelloWorld</serviet-name=

= @org.example. www. helloworld
b o Helloworld. java

¢+ #org.example www. helloworld. jaxws <servlet-class>
b mLibraries org.example.www.helloworld.HelloWorld=/serviet -class=
. </fserviet>
¥ e build <servlet-mapping=
= =WebContent =serviet-name=HelloWorld</serviet-name=
b o META-INF =url-pattern=/Helloworld</url-pattern=

= =WEB-INF <welcome-file-list>
=lib <welcome-file>index . html</welcome-file>

<welcome-file>index. htm</welcome - file>

=welcome-file=index. jsp</welcome-file=

I </servlet-mapping>

= =wsdl <welcome-file>default.html</welcome-file>
r 2 HelloworldService. wsdl =welcome-file>default.htm</welcome-file>
» mjovaseript Support <Ivercome Filetists T spe/etcone-Tite
b & testEAR </web-app=>
» 2]SR-109 Web Services
Tree Source

Figure 3.19. The Updated web.xml file

In the next chapter you will be able to create a Web Service Client from a WSDL document using
JBoss WS.

29

30

Chapter 4.

Creating a Web Service Client from a
WSDL Document using JBoss WS

To create a Web Service Client from a WSDL Document using JBoss WS you need to fulfil the
following steps:

Setup Chapter 5, JBoss WS and development environment.
Section 3.1, “Creating a Dynamic Web project”.
Section 3.2, “Configure JBoss Web Service facet settings”.

Then you can create a Web Service Client from a WSDL document:

» Switch to the Java EE perspective Window > Open Perspective > Java EE.

e Click File > New > Other. Select Web Services in order to display the various Web service
wizards. Select the Web Service Client wizard. Click on the Next button.

Selact a wizard —

Access an existing XML web senvice

Wizards:
L L =
= = Web Seraces

4| Ant Fles

& Unit Test uDD|

A Web Service

& Web Serace Chent
A WsDL

P & XML

I & Examples

4] Hext > Cancel

Figure 4.1. New Web Service Client

31

Chapter 4. Creating a Web Ser...

« The first and the second Web Service Client wizard pages are the same as for Section 3.3,
“Creating a Web Service from a WSDL document using JBossWS runtime”.

: Waeb Service Client =
Web Services -
Select a service definition, ; s
Service definition: H[-I]'HEE
Client type: |ava Proxy w
I Dephay dient Configuration:
N ¥ aerver: |Boss v4.2
e { Web service runtime:; |BossWS
L I;li:ut nmﬁ!- :li:ur
= Ly Client EAR project: testEAR
Monitor the Web service
@ < Back cancel |

Figure 4.2. Set Web Service Common values

32

£ Web Service Client x

|Boss Web Service Code Generation Configuration =
Flease input the appropriate option for the code generation ;]
Custom package name | org.example www hellowarid
JAX-WS specification 2.0 w
Catalog file Add
Binding files Add
2 = Back | Finish Cancel

Figure 4.3. Set Web Service values related to WSDL file
The only difference is:

 Client Type: Support of Java Proxy only.

Click on the Finish button.

After the Web Service Client has been created, the following may occur depending on the options
you selected:

« the generated web service and client codes

* a client sample class.

33

Chapter 4. Creating a Web Ser...

Java £l thentiwrd/arg e ample/www bl owarld'clisnt sampla/Client Sample, java - Eclipss PlatTarm

Be E&t Soece Refachor Neagate Segrch Propsct Bun Window Help
e i @ | Ov Qe [Gror s o [Pe | @£ |5 3w o

s Propect Explorer 34 E %+ =0
= dchent l
I i Deployrmeent Descrptor: chent
= vl RO S
=) org ewame Wi heloworid
b [Heloiworkd java
¥ [HeloiWoridhenace. e
¥ [ObjectFactonyjava
¥ 1 package-nds pva
b Sy e
F [SayHeled java
b [SayHeledResponie. dva
B[Sy HelsReppsnn g
= i org ki L]
|- OCentSwrglejos |
B omi Libswnies
F s busld
I o Weblontent
bk BRECTRE ST
b g best
b B bestEAR
B SR 100 vaeh Sensied

package org. coample. wee bl Lown rid. clientsample;
impert org. exsmple. wed bellowerld. =;
public class (liestSample {

public statlc weld main(Strisg[] args) {
51"'“‘- HII.II'!.I“.I IRRLLLEEE L I'Itll-ll-llilp_-
Systes. cut, printia ["Create web Service {limt...");
Hellowarldservice Servicel = e Hellowarlaservice]);
Syites cut, printia["Creats web fervide. .. "]
hellowerld portl = servicel.getrie] Losor|Sart(];
System out, priatla [call] web Service Operatisn...*1;
Systes ouf printla["Server said: * & partl. saymellojangs|0])):
Systen.out. printin*Server said: * « portl. saytellokargs[0]]]:
SYSTEm oUt. PrANTIR[$oRessasdanmnnniansbnni
Systes out. printia[*Call oweri®];

—r
}

(. Probiems| I Tasks = Propesties | #6 Servers 11 i Data Source Explorer | L Sngpets.

Sener State Status
B teStEAR
= Writabie Smar.sert 13 1)

Figure 4.4. Client Sample Class

JBoss WS use a Java class to test Web Service. A client sample class will be generated, you may
run this client as a java application to call a web service.

34

Chapter 5.

JBoss WS and development
environment

In this chapter you will learn how to change JBossWS preferences and how to set default server
and runtime.

5.1. JBossWS Preferences

In this section you will know how JBossWS preferences can be modified during the development
process.

JBossWS preferences can be set on the JBossWS preference page. Click on Window >
Preferences > JBoss Tools > Web > JBossWS Preferences.

On this page you can manage the JBossWS Runtime. Use the appropriate buttons to Add more
runtimes or to Remove those that are not needed.

35

Chapter 5. JBoss WS and devel...

[type filter text

b JavaSeript
I+ |Boss [BPM
b |Boss Tools
JPA
b Plug-in Development
Project Archives
b Report Design
b Pun/Debug
b Server
Service Policies
b Teamn

walidation

-

Wb
= ‘Web Services
Axis Emitter

Axis2 Preferences

Project Topology
Resource Managem
Seenario Defaults

Server and Funtime

|BossWS Preferences

Popup Dialog Selection

Toart Camilitn Funkaibbe

[+)

ent ||

L

DIl

@

|BossWS Preferences

MName

Preferences

Versio Path

jboss-4.2.2.GA 4.2.2 (homefuserEclipse/jboss-4.2.2.GA

r’

Cancel

Figure 5.1. JBossWS Preferences Page

Clicking on Add or Edit button will open the form where you can configure a new JBossWS
runtime and change the path to JBossWS runtime home folder, modify the name and version of
the existing JBossWS runtime settings. Press Finish to apply the changes.

36

JBossWS Preferences

.

e | Preferences

[type filter text] |BossWS Preferences -

FreeMarker Editor
Guvner

b Help
HOL editar

Instal
Java | Edit JBossWS Runtime

Mame “ersio Path [add |
jposs-4.2.2.GA 2.0 fhomejuserEclipse/jboss-4.2.2.GA

Edit |BossWS Runtime

Javasd Input new values

|Boss
JBoss | Mame: [jbuss -4.2.2.GA]

b = A = A = =

JPA Version [422 2]
b Plug-if

broi Home Folder: [mum&ruser.l'ﬁclipsqjjbuss-d.E.I.Gﬁ] [Emwse...]
rojec

b Reporf []Customize JBoss Web Service runtime jars|
b RunD
b Serve
Servic
b Team
valida

Cancel

@

|BOsSSWS Preterences H

Daniin Nialan Salactiag

Il

0K | | cancel

Figure 5.2. Edit JBossWS Runtime

WS container allows Source and JavaDoc locations to be set via the Properties dialog on each
contained .jar: right-click on any .jar file in the Project Explorer view, select Properties. Choose
Java Source Attachment and select location (folder, JAR or zip) containing new source for the
chosen .jar using one of the suggested options (workspace, external folder or file) or enter the
path manually:

37

Chapter 5. JBoss WS and devel...

Properties for fhomefuserfjbdevstudiofjboss-eap/fjboss-as/clientfjavassist.jar

Eype filter text] | Java Source Attachment
Java Source Attachment select the location (folder, JAR or zip) containing the source for javassist.jar'; [work
Javadoc Location :
Native Library Logation path: | Exter
| Extern
| Restore Defaults | |

Figure 5.3. Classpath Container: Java Source Attachment

Click on Apply and then on Ok.

To change JavaDoc Location choose Javadoc Location and specify URL to the documentation
generated by Javadoc. The Javadoc location will contain a file called package-list:

38

Default Server and Runtime

Properties for fhome/user/jbdevstudiofjboss-eap/fjboss-as/client/javassist.jar

[type filter text ' Javadoc Location =y

Java Source Attachment specify the location (URL) of the documentation generated by Javadoc. The Javadoc locatio

Javadoc Location contain a file called ‘package-list'.

Native Library ® Javadoc URL (e.q. 'http:ffwww.sample-url.org/docy® or ‘file:fcfmyworkspace/myproject/doc

Javadoe location path: [] | =
[v

) Javadac in archive

|Restore Defaults | |

Figure 5.4. Classpath Container: Javadoc Location

Click on Apply and then on Ok.

5.2. Default Server and Runtime

Open Window > Preferences > Web Services > Server and Runtime. On this page, you can
specify a default server and runtime.

For ease of use, the better way is to set runtime to JBoss WS.

After server and runtime are specified, click on the Apply button to save the values.

39

Chapter 5. JBoss WS and devel...

¢ Preferences

Server and Runtime

Server: |Boss v4.2
Ant

Data Management | NEEAEINREIEIRIE. TR

Help

Installpdate

|ava

JavasScript

| P&

Mylyn

Flug-=in Development

Remate Systems

Run/Debug

Server

Service Policies

TEeam

[+ Usage Data Collectar
Validation

B wWeb

= Web Services

Axis Emitter

Axis2 Preferences

|BossWS Preferences

P
f
[+
[
D-
[
2

R =

-

Popup Dialeg Selection
Project Topology
Resource Management
Scenana Defaults
Server and Runtime
Test Facility Defaults
Wizard Validation
WSDL Files

P XDoclet

[+ ML

il

Figure 5.5. Specifing a default server and runtime

40

Default Server and Runtime

On the whole, this guide covers the fundamental concepts of work with tooling for JBossWS. It
describes how to easily create a Web Service and a Web Service Client using JBossWS Runtime
and adjust JBossWS and development environment as well.

If the information on JBossWS tools in this guide isn't enough for you, ask questions on our
forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=201]. Your comments and
suggestions are also welcome.

41

http://www.jboss.com/index.html?module=bb&op=viewforum&f=201
http://www.jboss.com/index.html?module=bb&op=viewforum&f=201

42

Chapter 6.

Sample Web Service wizards

JBoss Tools includes wizards for the creation of sample web services. These include:

« Create a sample Web Service for a JAX-WS web service; and
» Create a sample RESTful Web Service for a JAX-WS web service.

These wizards are used within a Dynamic Web project. A dynamic web project can be created by
following the steps in Creating a dynamic web project.

Procedure 6.1. Creating a dynamic web project

1. Access the New Project Dialog

Select File -~ New - Project
Result: The New Project screen displays.

2. Define the Project Type

a. Click the Dynamic Web Project label by expanding the Web folder.
b. Click the Next button to proceed.

Result: The New Dynamic Web Project screen displays.

43

Chapter 6. Sample Web Service...

New Dynamic Web Project

Dynamic Web Project L =

Create a standalone Dynamic Web project or add it to a new or
existing Enterprise Application.

Project name: | |

Project location
& Use default location

Location; |-'I1:1'm—"hcI.-:.'.—--".-M:r<:-:3c al/Eclipse_Nightly_Test | Browse... |

~Target runtime
[JBuss v5.0 <] [Hew Flum]'me...l

-Dynamic web module version
2.5

L]

Configuration
[Defaul.t Configuration for |Boss v5.0 =] [Maodify... l

A good starting point for working with |Boss v5.0 runtime. Additional
facets can later be installed to add new functionality to the project.

-EAR membership
[] Add project to an EAR

EAR project name: |EAF{ | v | Wew Project...
~Working sets
[Add project to working sets

Working sets - | I Select

@ | = Back Next > :' Cancel Finish

Figure 6.1. Dynamic Web Project Attributes

3. Define the Project Attributes

Define the Dynamic Web Project attributes according to the options displayed in Table 6.1,
“New Dynamic Web Project”

44

Table 6.1. New Dynamic Web Project

Mandator Instruction

Description

Project yes Enter the project name. The project name can be any
name name defined by the user.
Project yes Click the Use default location | The default location
location checkbox to define the corresponds to the Eclipse
project location as the Eclipse workspace.
workspace or define a custom
path in the Location field.
Target no Select a pre-configured runtime | The target runtime defines the
runtime from the available options server to which the application
or configure a new runtime will be deployed.
environment.
Dynamic | yes Select the required web module | This option adds support for
web version. the Java Servlet API with
module module versions corresponding
version to J2EE levels as listed in
Table 6.2, “New Dynamic
Project - Dynamic web module
version”.
Configuratigres Select the project configuration | The project can be based on
from the available options. either a custom or a set of
pre-defined configurations
as described in Table 6.3,
“New Dymanic Project -
Configuration”.
EAR no Add the project to an existing The project can be added to
membership EAR project. an existing EAR project by
selecting the checkbox. Once
checked, a new EAR project
can be defined by clicking the
New Project button.
Working | no Add the project to an existing A working set provides the
sets working set. ability to group projects

or project attributes in a
customized way to improve
access. A new working set can
be defined once the Select
button has been clicked.

45

Chapter 6. Sample Web Service...

Table 6.2. New Dynamic Project - Dynamic web module version

Option

Description

2.2
2.3
2.4

This web module version corresponds to the J2EE 1.2 implementation.
This web module version corresponds to the J2EE 1.3 implementation.

This web module version corresponds to the J2EE 1.4 implementation.

2.5

This web module version corresponds to the JEE 5 implementation.

4.

Table 6.3. New Dymanic Project - Configuration

<custom>

BIRT Charting Web Project
BIRT Charting Web Project

Option Description

Choosing from one of the pre-defined configurations will
minimise the effort required to set up the project.

A project with the BIRT Charting Runtime Component.

A project with the BIRT Reporting Runtime Component.

CXF Web Services Project
v2.5

Default Configuration for
JBoss 5.0 Runtime

Configures a project with CXF using Web Module v2.5 and
Java v5.0.

This option is a suitable starting point. Additional facets
can be installed later to add new functionality.

Dynamic Web Project with
Seam 1.2

Configures a project to use Seam v1.2.

Dynamic Web Project with
Seam 2.0

Dynamic Web Project with
Seam 2.1

Dynamic Web Project with
Seam 2.2

Configures a project to use Seam v2.0.

Configures a project to use Seam v2.1.

Configures a project to use Seam v2.2.

JBoss WS Web Service
Project v3.0

Configures a project with JBossWS using Web Module
v2.5 and Java v5.0.

JavaServer Faces v1.2
Project

Minimal Configuration

Configures a project to use JSF v1.2.

The minimum required facets are installed. Additional
facets can be chosen later to add functionality to the
project.

Access the Java sub-dialog

Click Next to proceed.

Result: The New Dynamic Web Project - Java dialog displays.

46

Define the source and ouput folders

Define the Dynamic Web Project source and output folders by adding or editing folders as
required.

Access the Web Module sub-dialog

Click Next to proceed.

Result: The New Dynamic Web Project - Web Module dialog displays.

Web Module _
Configure web module settings. E /
Context root: [SampleDynamic]

Content directory: | WebContent]

v Generate web.xml deployment descriptor

@ EE =

Figure 6.2. New Dynamic Web Project - Web Module

Enter the web module settings

Define the settings as listed in Table 6.4, “New Dynamic Web Project - Web Module” including
the root folder for path names in the web project context and the name of the web content
directory.

Table 6.4. New Dynamic Web Project - Web Module

Field Mandator Instruction Description
Context | yes Enter the context root for the The context root identifies a
root project. web application to the server

and which URLs to delegate to
the application.

Content | yes Enter the directory name for the | Web resources such as html,

directory web content. jsp files and graphic files will be
written to the specified content
directory.

47

Chapter 6. Sample Web Service...

Field Mandator Instruction Description

Generate no Check this box to generate a URL to servlet mappings and

web.xml deployment descriptor for the servlet authentication details

deployment project. are written to the deployment

descriptor descriptor enabling the web
server to serve requests.

8. Open the Java EE perspective.

a. Click the Finish button to complete the project setup.

Result: If not already set, a dialog will appear prompting the user to open the relevant
perspective.

b. Click the Yes button to display the Java EE perspective.

Result: The project is configured and the Java EE perspective is displayed.

6.1. Sample Web Service

These sections describe how to generate and deploy a sample web service.

6.1.1. Generation

A sample web service can be created by using the Create a Sample Web Service wizard as
described in Generate a sample web service

Procedure 6.2. Generate a sample web service

1. Access the New - Select a wizard dialog

a. Right click on the project name in the Project Explorer view.

b. Select New — Other.
c. Click the Create a Sample Web Service label by expanding the Web Services folder.

Result: The New - Select a wizard dialog displays with the selected wizard type
highlighted.

2. Access the Generate a Sample Web Service dialog
Click the Next button to proceed.

Result: The Generate a Sample Web Service - Project and Web Service Name dialog
displays.

48

Generation

i} Generate a Sample Web Service

Project and Web Service Name

Specify the Dynamic Web Project, service, package and class
name for the sample web service and web service class.

Dynamic Web Project

| WebServiceSample W

‘Web Service
Name | HelloWorld |

Sample Web Service Class

Package [nrg.jbcss.samples.websewices]

Class [HEIIuWurId |

@ Next = ~ Cancel | | Finish |

Figure 6.3. Generate a Sample Web Service - Project and Web Service
Name

Define the service attributes

Define the project, web service, package and class hames according to the options displayed
in Table 6.5, “Project and Web Service Name”

Table 6.5. Project and Web Service Name

Dialog group Field Mandai Instruction Description
Dynamic Web yes Enter the project The project name will default
Project name. to the highlighted project in the

Project Explorer. A different
project can be selected from
the list or entered directly in the
editable drop-down list.

Web Service | Name yes Enter the name for the The web service name will

web service. be the url for the service as
mapped in the deployment
descriptor (web. xn).

49

Chapter 6. Sample Web Service...

Dialog group Field Mandai Instruction Description

Sample Web | Packageyes Enter the package The default package for the

Service Class for the web service sample web service will be
servlet. displayed.

Class vyes Enter the name of the The default class name will

web service servlet. correspond to the default web
service name resulting in an
equivalent url to servlet name
mapping in the deployment
descriptor (web. xnm).

4. Generate the web service
Click the Finish button to complete the web service setup.

Result: The web service classes will be generated and the web.xml file updated with the
deployment details.

5. Browse the HelloWorld.java class

Double click the Hel | owr | d. j ava class and note the annotated class name and method.
These annotations identify the web service entities to the server.

J] HelloWorld.java 82~ ™ web.xml | s = B

package org.jboss.samples.webservices;
®import javax.jws.WebMethod;[]

@WebServicel()
public class Helloworld {]

= @wWebMethod()
public String sayHello(String name) {
System.out.println("Hello: " + name);
return "Hello " + name + "I";

k

[«] 1 |

Figure 6.4. web.xml
6. Browse the web.xml deployment decriptor

Double click the web. xm file and note the servlet mapping as defined in Figure 6.3, “Generate
a Sample Web Service - Project and Web Service Name”. Note also that:

50

Deployment

« the main servlet for the application is org. j boss. sanpl es. webser vi ces. Hel | oVor | d
which is given the custom name HelloWorld; and

» the main servlet is mapped to the particular url / Hel | owor | d [1].

4 Helloword.java ™0 12 . P webxml 1) shoppingapplication, | ™ =
<teml version="1.8" encoding="UTF-8"7= [=]
web -app dmlns:xsi="RLlp:/ Sww. wd. org/ 2000 AMLSchendg - 4 Lp
<display-name>wWebServiceSample<,/display-name=»

Lay
=welcome-file-lists
=welcome-filesindex, himl</welcome- file=
<wellcome-T1lex1ndex. htm=/welcone - file=
caelcome - File=index. jsp</welcone- File=
=welcome-file>default. html</welcome-file=
=wel come-filesdefault, htmewelcome-File=
=welcone-file=dafault, jsp=/welcoms-Tile>
<fwelcone-Tile-lists
= «serviet>
=display-name=Helloworld=/display-name:=
=serylet-name=HelloWorld=/servlet-names=
=serylet-class=org, jbess. samples webservices, HelloWorld=/serviet-classs
rvlels
=servlet-mapping=
=servlet-name=Helloworld</servlet-names=
=url-pattern=/HelloWorld=/url-patterns=
</serviet-mapplngs>

< fwizh - app

Tree | Source

Figure 6.5. web.xml

Upon start up, the server will write a WSDL file to the ser ver - prof i | e/ dat a/ wsdl / directory

and the WSDL can be accessed with http://localhost:8080/ProjectName/[1]?WSDL or, http://
localhost:8080/WebServiceSample/HelloWorld?WSDL.

6.1.2. Deployment

Once created, the sample web service can be deployed to the target runtime as described in
Export the project as a Web Archive (WAR).

Procedure 6.3. Export the project as a Web Archive (WAR)

1. Access the Export dialog

a. Right click on the project name in the Project Explorer view.

b. Select Export -» WAR file.

Result: The Export- WAR Export dialog displays with the selected web project
highlighted.

51

http://localhost:8080/ProjectName/[1]?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL

Chapter 6. Sample Web Service...

2.

WAR Export

Export Web project to the local file system.

@

Web project: | WebServiceSample|

o

Destination: [

| hd ‘ [BTGWSE...I

Target runtime

Optimize for a specific server runtime

JBoss v5.0

@

[| Export source files

(] Overwrite existing file

Cancel

Figure 6.6. Export - WAR Export dialog

Complete the export dialog

Define the WAR file attributes as described in Table 6.6, “Export - War Export”

Table 6.6. Export - War Export

Field Mandat Instruction Description
Web project yes Enter the web project The project name will default
name. to the highlighted project in the

Project Explorer. A different
project can be selected from
the list or entered directly in the
editable drop-down list.

Destination yes Enter or browse to the Set the destination as the bui | d

destination.

folder to store the WAR file within
the project. Alternatively, deploy
the project directly to the depl oy

52

Sample RESTful Web Service

Field Mandat Instruction Description
directory of the target server
profile.
Optimize for a no Select this box to The list of available runtimes will
specific server optimize the WAR file be those configured during the
runtime for deployment to the project set-up or by selecting File
targeted runtime. _ New - Server.

3. Deploy the application

Copy the file to the depl oy directory of the required target server profile, such as the al |
profile. Note that the WAR file destination may have already been set as the deploy directory
in Step 2.

6.2. Sample RESTful Web Service

A sample Restful web service can be generated by following the steps outlined in Generate a
sample RESTful web service.

Procedure 6.4. Generate a sample RESTful web service

Target runtime must have RESTEasy installed

The sample RESTful web service will not work unless it is deployed to a server
with RESTEasy installed.

1. Access the New - Select a wizard dialog

a. Right click on the project name in the Project Explorer view.

b. Select New — Other.

c. Click the Create a Sample RESTful Web Service label by expanding the Web Services
folder.

Result: The New - Select a wizard dialog displays with the selected wizard type
highlighted.

2. Access the Generate a Sample RESTful Web Service dialog
Click the Next button to proceed.

Result: The Generate a Sample RESTful Web Service - Project and Web Service
Name dialog displays.

53

Chapter 6. Sample Web Service...

| e Generate a Sample RESTful Web Service
Project and Web Service Name

Specify the Dynamic Web Project, service, package and class
narme for the sample web service and web service class.

Dynamic Web Project
IH.ESthIlSEF‘r’IpIE w I

‘Web Service
Name [MyRESTAppIication]
¥ Update web.xml

sample Web Service Class
Package [nrg.j boss.samples.rs.webservices]
Class [Helluw:}rid Resource]

Application Class Name: [MyHESTAppIication]

@ Nex | Cancel | Finish

Figure 6.7. Generate a Sample RESTful Web Service - Project and Web
Service Name

3. Define the service attributes

Define the project, web service, package and class names according to the options displayed
in Table 6.7, “Project and Web Service Name”

Table 6.7. Project and Web Service Name

Dialog group Field Manda Instruction Description
Dynamic Web yes Enter the project The project name will default
Project name. to the highlighted project in the

Project Explorer. A different
project can be selected from
the list or entered directly in the
editable drop-down list.

Web Service | Name yes Enter the name for the The web service name will

web service. be the url for the service as
mapped in the deployment
descriptor (web. xm).

54

Sample RESTful Web Service

Dialog group Field Mandai Instruction Description
Update no Check this box to This option is checked by
web.xml add the service to the default and may be unchecked

deployment descriptor. when deploying to JBoss AS
6.0 or RESTEasy 2.0 servers.
Service information is not
required in the deployment
descriptor for these servers.

Sample Web | Packageyes Enter the package for The default package for the

Service Class the web service class. sample web service will be
displayed.
Class vyes Enter the name of This class defines the path

the web service class to the web service and is
containing the JAX-RS referenced in the Application
annotated path. Class Name. The Application
Class Name is declared in
the deployment descriptor
providing indirect access to the
annotated path.

Applicatiges Enter the name of The Application Class Name
Class the Application Class constructor instantiates
Name Name. objects of the web service

class containing the JAX-

RS annotated path, GET and
POST methods. It serves as
a single point of access to the
application for the web server.

Generate the web service
Click the Finish button to complete the web service setup.

Result: The web service classes will be generated and the web.xml file updated with the
deployment details.

Browse the MyRESTApplication.java class

Double click the MyRESTAppl i cation.java class and note the constructor instantiating
objects of type HelloWorldResource. The relevance of this will be discussed shortly.

55

Chapter 6. Sample Web Service...

| J] MyRESTApplication.ja E@\E HelloworldResource.| | 7 =B

package org.jboss.samples.rs.webservices;
#import java.util.set;[]

public class MyRESTApplication extends Application {

private Set<Object= singletons = new HashSet<Object=();
private Set<Class<?=> empty = new HashSet<Class<?>=();
= public MyRESTApplication(){
singletons.add(new HelloWorldResource());
1

= @0verride
& public Set<Class<?>> getClasses() {
return empty;

[

H
' @0verride
- public Set<0Object= getSingletons() {
return singletons;
}
1

Figure 6.8. Application Class - MyRESTApplication.java

6. Browse the HelloWorldResource.java class

Double click the Hel | oWor | dResour ce. j ava class and note the JAX-RS annotated path and
the annotated GET method.

1) HelloworldResource.j 8 - ™ webxml | s = =

package org.jboss.samples.rs.webservices; A

#import javax.ws.rs.Produces;[]

aPath (" /MyRESTApplication”)

public class HelloWorldResource {

@GET(}

@Produces("text/plain")

public 5tring sayHello() {
return "Hello World!";

}

m

(e[

()

Figure 6.9. HelloWorldResource.java
7. Browse the web.xml deployment descriptor

Double click the web. xmi file and note the j ax. ws. rs. Appl i cati on paramater mapped to
the Application class. Note also that:

56

Sample RESTful Web Service

 the main servlet for the application is

org.j boss. resteasy. pl ugi ns. server.servlet. HtpServl et Di spatcher which is
given the custom name Resteasy; and

< the main servlet is hot mapped to a particular url as indicated by / *.

The url for sending GET requests can be resolved as follows:

a. Identify the Application Class as defined in the deployment descriptor.

b. Note the object type instantiated in the Application class and added to the singleton set:
Hel | oWor | dResour ce.

c. Note the JAX-RS annotated path declared in the corresponding Hel | oWor | dResour ce
class: @at h("/ MyRESTAppl i cati on") [1].

[1] MyRESTApplication ja J] HelloWorldResource,j ™2 8" =0
sserviets) [+
<servlet-name=Resteasy</serviet-nams=
zservlet-class»

arg.jboss. resteasy.plugins.server.servlet HttpServietDispatcher

zfserviet-class>
<fserviet=
= «servlel-mapping=
<servliet-name>Resteasy</serviel -names T

<url-pattern=/*<furl-patterns>
</servlet-mapplngs
<Context-params
<parai-names=javax . ws.rs.Application</param- names
<param-values
arg.jboss.samples. rs.webservices MyRESTApplication
</param-values=
</ contest - parans
=listener=
<listener-class=
arg.jboss, resteasy.plugins. server, servlet,ResteasyBootstrap
=flistener-classk
=/ listensr=
= /weh-appe=
-

Tree | source

[«

Figure 6.10. web.xml

The url for sending GET requests is therefore http://localhost:8080/ProjectName/[1] or, http://
localhost:8080/RestfulSample/MyRESTApplication.

57

http://localhost:8080/ProjectName/[1]
http://localhost:8080/RestfulSample/MyRESTApplication
http://localhost:8080/RestfulSample/MyRESTApplication

58

Chapter 7.

RestEasy simple project example

JBoss Tools includes many example projects which are available by selecting Help - Project

Examples. The following sections describe setting up the example RESTEasy project. This project
serves as a good example for testing the numerous Web Service Test View functions.

7.1. The example project

Once the required plugins have been installed, the example project can be set up as described
in JBoss Tools New Example Project

Procedure 7.1. JBoss Tools New Example Project

1.

Access the New Example Project Dialog

Select Help - Project Examples
Result: The New Example Project dialog displays.

Define the Example Project Type

a. Click the RESTEasy Simple Example label by expanding the RESTEasy node.
b. Click the Finish button to complete the project set up.

Result: The simple project is configured and ready to build.

@ Project requirements
In the event that a message is displayed indicating some requirements could
not be configured, click the Details button followed by the Fix button to rectify
the problem. The message will be displayed as a result of missing plugins or
a requirement to select or configure a suitable runtime.

Build the project

Right click on the project name and select Run As - Maven package
Result: The si npl e. war file is written to the project's 't ar get directory.
Deploy the project

Copy the si npl e. war file to the depl oy directory of the required server profile such as the
al | profile.

59

Chapter 7. RestEasy simple pr...

Result: The si npl e. war file is written to the t ar get directory.
Determine the URL for the web service
Double click the web. xnl file and note the j ax. ws. rs. Appl i cati on paramater mapped to

the Application class. Note also that:

 the main servlet for the application is
org.jboss.resteasy. pl ugi ns. server.servlet. HtpServl et Di spatcher which is
given the custom name Resteasy; and

» the main servlet is mapped to the url / r est - ser vi ces/ * [1].

The url for sending GET requests can be resolved as follows:

a. Identify the Application class as defined in the deployment descriptor.

b. Note the object type (CustomerResource) instantiated in the Application class
(Shoppi ngAppl i cation) and added to the singleton set (singletons. add(new
Cust omer Resource())).

c. Note the JAX-RS annotated path declared in the corresponding Cust oner Resour ce class:
@pat h("/ cust oners") [2].

[1] MyRESTApplication.ja J] HelloWorldResource,j ™ 8 "7 =0
=servlets !
=serylet-name=Resteasy=/serviet-namas
=servlet-class>
org.jboss.resteasy.plugins.server, servlet HttpServietDispatcher
fservliet-class»
=f viet>
= «sgrvlel-mapping=
cserviet-name>Resteasy</serviet -name> I
<url-pattern>/*cfurl-patterns
</serviet-mapping=
<Context-params
<param-name>javax.ws.rs.Application</param- name=

<param-values
org.jboss.samples. rs.webservices .MyRESTApplication
</param-values
=/context-param=
=listeners
<listener-class=

org.jboss.resteasy.plugins.server, servliet.ResteasyBootstrap

=flistener-classq
=/ listenar= L
= /weh-app= >
[i ¥
Tree | Source

Figure 7.1. web.xml

The url for sending GET requests can be formed from http://localhost:8080/ProjectName/[1]/
[2] or, http://localhost:8080/simple/rest-services/customers..

60

http://localhost:8080/ProjectName/[1]/[2]
http://localhost:8080/ProjectName/[1]/[2]
http://localhost:8080/simple/rest-services/customers

Chapter 8.

Web Service Test View

JBoss Tools provides a view to test web services. The Web Services Test View can be displayed
by following the steps in Web Services Test View.

Procedure 8.1. Web Services Test View

* Access the Show View dialog

a. Select Window — Show View - Other
Result: The Show View dialog displays.

b. Click on the Web Services Tester label by expanding the JBoss Tools Web Services
node and click OK.

Result: The Web Services test view displays.

[E Markers [Propesties| ¥4 Servers (B Data Source [Snippets | 32 - Blconzale TE

[lanws (3| 2

= Request Details = Response Details
T Prormpt tar Gasic Autrenticatian + Response Headers
- Heatders - =
~ Response Body Em ;E-.ll @
Parameters
- Body Taxt 1

= homl version="1.0" encoding= "utf-g"
ctandalone="yes" ¥=

RO EI'NElIZIFIE wml I'S!S-:EFI—"l'ﬁ._.ﬂ- i
Scnermas. emlspap. o seapervelope™
wrng: ksi="httpweas .anmy 20017

M Lachemp-instance” smilnsixsd="http:/
w30y 2001 XM LEChemat =

oA Rody s

isiapy Body =

wismapy Erwelopss- || -

Figure 8.1. Web Service Test View

The main components of the Web Service Tester View are:

« WSDL path/button bar (Table 8.1, “WSDL path/button bar”)
¢ Request details panel (Table 8.2, “Request details panel”)

« Response details panel (Table 8.3, “Response details panel”)

61

Chapter 8. Web Service Test View

Table 8.1. WSDL path/button bar

Component Description

Editable dropdown Enter the location of the WSDL file or HTTP address of the service

list to be tested. The combo box requires the path to the WSDL in a
URI format.
Combo box Select the type of service to test. The options are JAX-WS or

any other option to test a JAX-RS service using HTTP request
methods (PUT, GET, POST, DELETE or OPTI ONS).

Toolbar button - Get | Click this button to display the Select WSDL dialog. Enter the
From WSDL URL, File system location or Eclipse Workspace location of the
WSDL file. Given a vaild file, the dialog will allow selection of the
Port and Operation to test. Once selected, the request details will
be displayed in the Request Details panel.

Toolbar button - Once the WSDL file has been selected, the service can be
Invoke invoked by clicking this button. Reponse details will be displayed
in the Response Details panel.

Table 8.2. Request details panel

Component Description

Prompt for Basic Select this check box to send a username and password with the
Authentication request. Entering the user details for each subsequent request is
not necessary as the details are stored in memory.

Headers Enter (Add) one or more name=val ue pairs. These headers will
be passed with the invocation request at the HTTP level where
possible.

Parameters As for header information, enter one or more name=val ue pairs by

clicking the Add button.

Body Enter the JAX-WS SOAP request messages or input for JAX-RS
service invocations in this text box.

Table 8.3. Response details panel

Component Description

Response headers | The headers returned by the service invocation will be displayed in
this panel.

Response body The JAX-WS and JAX-RS response bodies will be displayed in
this box. The raw text returned form the web service invocation
can be displayed by clicking the Show Raw button. The output will
be embedded in a html browser by clicking the Show in Browser

62

Preliminaries

Component Description

button. The output can alternatively be displayed in the Eclipse
editor as xml or raw text (depending on the response content type)
by clicking the Show in Editor button.

Parameters As for header information, enter one or more name=val ue pairs by
clicking the Add button.

Body Enter JAX-WS SOAP request messages and input for JAX-RS
service invocations in this text box.

The following sections describe testing JAX-WS and JAX-RS web services including the
necessary preliminary steps.

8.1. Preliminaries

The following procedure describes the steps to perform before testing a web service.

Procedure 8.2. Testing a JAX-RS web service

e Preliminary steps

Prior to testing a web service:

a. TheWeb Service Test View should be opened as described in Web Services Test View;

Result: The Web Service Test View displays.

[E Markers [Propesties| ¥l Servers [Data Source [Snippets | 32 i BElConsale TE

[Jaxws [2]| =

- Request Details - Response Details
1 Prampk tor Basic Authenticatian * Response Headers
= Headers - =
= Response Body =] E‘l @
Parameters
- Body Taxt |

=eml verslon="1.0" encoding= "utf-g"
st.andal:ne—":.res '

<spap Envelope smilns:soap="htig{
schennas. cmlsoap. ory soapervalaps™
wrilng: ks i="http i wal i 1oy 2001y

KM Lacharmp-instance” xmlna:xsd="http:/y
w30y 2001 XM LEchema® =

s Body =

< fsiagy Body =

wispapy Erwvelopes L -

Figure 8.2. Web Service Test View

b. A web service has been deployed to the depl oy directory of the chosen server profile
as described in:

63

Chapter 8. Web Service Test View

» Export the project as a Web Archive (WAR) for the RestfulSample project; or
« JBoss Tools New Example Project for the RESTEasy sample project.

c. The server has been started with run. sh -c¢ <profile>

8.2. Testing a Web Service

A JAX-WS web service can be tested by using the Web Service Tester View displayed in
Figure 8.1, “Web Service Test View”. The JAX-WS test is specified by:

1. Selecting the JAX-WS combo box option.

2. Entering the location of the WDSL file.

Step 2 can be performed in a number of ways including:

 entering the location directly in the editable dropdown list; or

« clicking the Get from WSDL file button and entering the URL, Eclipse workspace or File
system details.

Testing a JAX-WS web service demonstrates testing the WebServiceSample project developed
in Generate a sample web service.

Procedure 8.3. Testing a JAX-WS web service

1. Following the preliminary steps described in Testing a JAX-RS web service, select JAX-WS
from the available combo box options.

Result: The SOAP message details are displayed in the Body Text textbox of the Request
Details panel.

- Body Text

=7xml version="1.0" encoding="utf-8" standalone="yes" 7=
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/
envelope/ xmins: xsi="http://www.w3.org/2001/XMLSchema-instance"
xmins:xsd="http:/fwww.w3.0rg/2001/XMLSchema" =

=soap:Body=

=/spap:Body=>
</spap:Envelope>

Figure 8.3. JAX-WS Body Text

64

Testing a Web Service

2.

Enter the location of the WSDL file in the editable dropdown list. The location for the
WebServiceSample web service is http://localhost:8080/WebServiceSample/HelloWorld?
WSDL [http://localhost:8080/WebServiceSample/Helloworld?WSDL]

Click the Invoke button.
Result: The Select WDSL dialog appears.
T Select WSDL el

Specify the Source WSDL for the Web Service

Select the source W5DL in the workspace or file system, or provide a
URL from which to download the WSDL.

WSDL URL: [hl‘tp:ﬂlucalhust:EUSD.l’WebSewiceS-ampIe.fHEIIchurld?WSDLl ’ |

Workspace... [File system... | | URL...]

select the service operation:
service: Helloworldservice =]

Port: HelloworldPort =

Figure 8.4. Select WSDL
Select the required service attributes
Select the Service, Port and Operation from the combo boxes and click OK.

Results: The <soap:Body/> section of the SOAP message is filled with the SayHello
message details.

<soap:Body=

<sayHello xmlins = "http://webservices.samples.jboss.org/"=
<arg0=7</arg0=

</sayHello=

</spap:Body=>

Figure 8.5. JBoss Tools Project Creation

The response header details are returned.

65

http://localhost:8080/WebServiceSample/HelloWorld?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL

Chapter 8. Web Service Test View

- Response Headers

Transfer-encoding=[chunked]

[HTTPR/1.1 200 OK]
Content-type=[text/xml;charset=UTF-8]
X-powered-by=[Servlet 2.5; |Boss-5.0/]Boss\Web-2.1]
Server=[Apache-Coyote/1.1]

Date=[Thu, 16 Sep 2010 03:50:15 GMT]

Figure 8.6. JBoss Tools Project Creation

The response message body is displayed in the Response Body textbox.

~ Response Body == |0_B| ?

<env:Envelope xmins:env="http://schemas.xmlsoap.org/ |||
soap/envelope/"=

<env:Header/=

<env:Body>

=ns2:sayHelloResponse xmins:ns2="http://
webservices.samples.jboss.org/"=
<retum=Hello null'</retum=
</ns2:sayHelloResponse=

</env:Body>

<[env:Envelope=

Figure 8.7. JBoss Tools Project Creation

These results indicate a successful test.

8.3. Testing a RESTful Web Service

Testing a RESTful (JAX-RS) web service is achieved by following a similar procedure to testing
a JAX-WS web service. Instead of selecting the JAX-WS option in the combo box, the JAX-RS
service is invoked by sending HTTP method requests of the form OPTIONS, GET, POST, PUT
and DELETE. As there is no WSDL file associated with a JAX-RS service, the available options
can be determined by selecting OPTIONS in the combo box.

A JAX-RS web service can be tested by using the Web Service Tester View displayed in
Figure 8.1, “Web Service Test View”. The JAX-RS test is specified by:

1. Selecting the OPTIONS combo box option.

2. Entering the url of the JAX-RS web service.

66

RestfulSample project

The test procedure is discussed in the following sections for both the RestfulSample and the
RESTEasy sample projects developed earlier.

8.3.1. RestfulSample project

Procedure 8.4. RestfulSample test

1. a. Querythe available options
Select OPTIONS from the available combo box options.

b. Enter the url of the web service in the editable drop-down list: http://localhost:8080/
RestfulSample/MyRESTApplication.

c. Click the Invoke button

Result: The Response Headers text area indicates that the allowed options are
[GET, OPTIONS, HEAD| as shown in Figure 8.8, “JAX-RS Response Header Text”".

- Response Headers

[HTTR/1.1 200 QK]

Date=[Mon, 25 Oct 2010 11:12:24 GMT]
Content-Length=[0]

Allow=[GET, OPTIONS, HEAD]

(] TR)

Figure 8.8. JAX-RS Response Header Text

2. Test the GET request

a. Having established that the GET request is valid, select GET from the available combo
box options.

b. Click the Invoke button.

Result: The Response Body text area displays the expected “Hello World” text as
shown in Figure 8.9, “JAX-RS Response Body Text”".

67

http://localhost:8080/RestfulSample/MyRESTApplication
http://localhost:8080/RestfulSample/MyRESTApplication

Chapter 8. Web Service Test View

~ Response Body ==k

Hello World!

Figure 8.9. JAX-RS Response Body Text

8.3.2. RESTEasy sample project

Procedure 8.5. Testing a JAX-RS web service- POST and GET requests

1. a. Query the available options

Following the preliminary steps described in Testing a JAX-RS web service, select the
OPTIONS method from the operations text area.

b. Enterthe url of the web service in the editable drop-down list http://localhost:8080/simple/
rest-services/customers.

c. Click the Invoke button

Result: The Response Headers text area indicates that the allowed options are
[POST, OPTI ONS] as shown in Figure 8.10, “JAX-RS RESTEasy project Body Text”.

~ Response Details

- Response Headers

[HTTP/1.1 200 OK]

Date=[Mon, 25 Oct 2010 12:08:17 GMT]
Content-Length=[0]

Allow=[POST, OPTIONS]
Server=[Apache-Coyote/1.1]

X-Powered-By=[Servlet 2.5; |Boss-5.0/)Boss\Web-2.1]

Figure 8.10. JAX-RS RESTEasy project Body Text

2. Test the POST option

a. Select POST method in the the operations drop-down list.

68

http://localhost:8080/simple/rest-services/customers
http://localhost:8080/simple/rest-services/customers

RESTEasy sample project

We will post xml data to this particular web service. Complete the header details by
entering cont ent -t ype=appl i cati on/ xm in the text area and click Add to add it to the
Headers list.

Result: The content-type is added to the Headers list as shown in Figure 8.11,
“content-type header”.

- Headers

content-t}rpe=applicati0njxml|] | Add

content-type=application/xml

'Clear AII'

Figure 8.11. content-type header
Enter customer details

Enter the customer details in the Body Text area as displayed in Figure 8.12, “Customer
data”.

~ Body Text

=customer=
=first-name=Bill</first-name>
<last-name=Customer</last-name=
<street=28 Red Hat Way</street>
<city>Boston</city>|
<state>MA</state><zip=>02115</zip>
<country=USA</country=

=/customer=

Figure 8.12. Customer data
Click the Invoke button.

Result: The Response Headers area indicated that a record was created and
lists the location as http://localhost:8080/simple/rest-services/cuntomers/1 as shown in
Figure 8.13, “Customer added”.

69

http://localhost:8080/simple/rest-services/cuntomers/1

Chapter 8. Web Service Test View

-l Response Headers

[HTTR/1.1 201 Created]

Date=[Wed, 27 Oct 2010 12:29:00 GMT]

Content-Length=[0]
Location=[http://localhost:8080/simple/rest-services/customers/1]
Server=[Apache-Coyote/1.1]

X-Powered-By=[5Servlet 2.5; |Boss-5.0/]BossWeb-2.1]

Figure 8.13. Customer added

The console also indicates the successful creation of the customer: 10: 44: 33, 846 | NFO
[STDOUT] Created customer 1

3. Test the GET option

a. Select the GET method in the the operations drop-down list.

b. We will retrieve the record created in the previous step. Enter the url for the record
returned in the previous step http://localhost:8080/simple/rest-services/customers/1

c. Click the Invoke button.

Result: The Response Headers area indicatesa[HTTP/ 1. 1 200 OK] response and
the customer data is retrieved and displayed in the Response Body area as shown in
Figure 8.14, “GET response”.

~ Response Body = =6 e

<customer id="1">
=first-name=Bill</first-name=>
=<last-name=Customer</last-name=
=street=28 Red Hat Way</street>
<city=Boston</city>
=state=MA</state=
<7ip=02115</zip>
<country=USA</country=

=/customer=

Figure 8.14. GET response

70

http://localhost:8080/simple/rest-services/customers/1

RESTEasy sample project

4. Test the PUT option

a. Editing a record is achieved by using the PUT method. Select the PUT method in the
operations drop-down list.

b. Enter the url of the record to be edited http:/localhost:8080/simple/rest-services/
customers/1

c. Enter the data in the Body Text area. Replace the first-name with a different entry as
in Figure 8.15, “Updated customer data”

~ Body Text

<customer=
=first-name=>Terry</first-name=

<last-name=Customer</last-name=
<street=28 Red Hat Way</street>
=city=Bostin</city=
<state>MA</state><zip>02115</zip>
=country=USA</country=

=/customer=

Figure 8.15. Updated customer data

d. Ensure that the cont ent -t ype=appl i cati on/ xml header is in the Headers list.

e. Click the Invoke button.

Result: The Response Headers area indicates a No Response ([HTTP/ 1. 1 204 No
Cont ent]) Figure 8.16, “Response header following PUT".

= Response Headers

[HTTP/1.1 204 No Content]

Date=[Mon, 01 Nov 2010 10:51:28 GMT]
Server=[Apache-Coyote/1.1]

X-Powered-By=[Servlet 2.5; |Boss-5.0/]BossWeb-2.1]

Figure 8.16. Response header following PUT

In this instance, the console does not indicate an update was performed, however, the
| ” fulinf ion followi on.
71

http://localhost:8080/simple/rest-services/customers/1
http://localhost:8080/simple/rest-services/customers/1

Chapter 8. Web Service Test View

5.

Check the updated data with a GET
Perform a GET operation by following the steps in Step 3.

Result: The Response Body area displays the updated data.

~ Response Body

=customer id="1"=
=first-name=Terry</first-name=
<last-name=Customer</last-name=
=street=28 Red Hat Way</street>
=city=Bostin</city=
<sfate=MA</state=
<zip=02115</zip=
=country=USA</country =

</customer=

Figure 8.17. Custmer data updated

Test the DELETE option

a. Deleting a record is a similar process to posting. Select the DELETE method in the
operations drop-down list.

b. Enter the url of the record to be deleted http://localhost:8080/simple/rest-services/
customers/1

c. Click the Invoke button.

Result: The Response Headers area indicates a No Response ([HTTP/ 1.1 204
No Cont ent]) as was the case for the PUT operation in Figure 8.16, “Response header
following PUT".

Once again, the console does not indicate an update was performed, however, the
console may provide useful information following an operation.

Check the DELETE operation with a GET
Perform a GET operation by following the steps in Step 3.

Result: The Response Body area returns an error report indicating that The request ed
resource () is not avail abl e and the Response Headers area returns a [HTTP/ 1. 1
404 Not Found].

72

http://localhost:8080/simple/rest-services/customers/1
http://localhost:8080/simple/rest-services/customers/1

RESTEasy sample project

- Response Headers

[HTTP/1.1 404 Not Found]

Date=[Mon, 01 Nov 2010 11:23:55 GMT]
Content-Length=[942]
Content-Type=[text/html;charset=utf-8]
Server=[Apache-Coyote/1.1]

Figure 8.18. Custmer data deleted

The response header and body messages indicate that the data was successfully deleted.

73

74

	JBoss Web Services User Guide
	Table of Contents
	Chapter 1. JBossWS Runtime Overview
	1.1. Key Features of JBossWS
	1.2. Other relevant resources on the topic

	Chapter 2. Creating a Simple Web Service
	2.1. Generation

	Chapter 3. Creating a Web Service using JBossWS runtime
	3.1. Creating a Dynamic Web project
	3.2. Configure JBoss Web Service facet settings
	3.3. Creating a Web Service from a WSDL document using JBossWS runtime
	3.4. Creating a Web service from a Java bean using JBossWS runtime

	Chapter 4. Creating a Web Service Client from a WSDL Document using JBoss WS
	Chapter 5. JBoss WS and development environment
	5.1. JBossWS Preferences
	5.2. Default Server and Runtime

	Chapter 6. Sample Web Service wizards
	6.1. Sample Web Service
	6.1.1. Generation
	6.1.2. Deployment

	6.2. Sample RESTful Web Service

	Chapter 7. RestEasy simple project example
	7.1. The example project

	Chapter 8. Web Service Test View
	8.1. Preliminaries
	8.2. Testing a Web Service
	8.3. Testing a RESTful Web Service
	8.3.1. RestfulSample project
	8.3.2. RESTEasy sample project

