
JBoss Web Services User Guide

Version: 3.2.0.GA

iii

1. JBossWS Runtime Overview ... 1

1.1. Key Features of JBossWS .. 1

1.2. Other relevant resources on the topic .. 1

2. Creating a Simple Web Service ... 3

2.1. Generation ... 3

3. Creating a Web Service using JBossWS runtime .. 9

3.1. Creating a Dynamic Web project ... 9

3.2. Configure JBoss Web Service facet settings ... 11

3.3. Creating a Web Service from a WSDL document using JBossWS runtime 14

3.4. Creating a Web service from a Java bean using JBossWS runtime 20

4. Creating a Web Service Client from a WSDL Document using JBoss WS 31

5. JBoss WS and development environment ... 35

5.1. JBossWS Preferences ... 35

5.2. Default Server and Runtime .. 39

6. Sample Web Service wizards .. 43

6.1. Sample Web Service .. 48

6.1.1. Generation ... 48

6.1.2. Deployment .. 51

6.2. Sample RESTful Web Service ... 53

7. RestEasy simple project example .. 59

7.1. The example project ... 59

8. Web Service Test View .. 61

8.1. Preliminaries ... 63

8.2. Testing a Web Service .. 64

8.3. Testing a RESTful Web Service .. 66

8.3.1. RestfulSample project ... 67

8.3.2. RESTEasy sample project .. 68

iv

Chapter 1.

1

JBossWS Runtime Overview
JBossWS is a web service framework developed as a part of the JBoss Application Server. It

implements the JAX-WS and JAX-RS specifications. JAX-WS (Java API for XML Web Services)

defines a programming model and run-time architecture for implementing web services in Java,

targeted at the Java Platform, Enterprise Edition 5 (Java EE 5). JAX-RS (Java API for RESTful

Web Services) is a Java API that supports the creation of Representational State Transfer (REST)

web services, using annotations.

JBossWS integrates with most current JBoss Application Server releases as well as earlier

ones, that did implement the J2EE 1.4 specifications. Even though JAX-RPC, the web service

specification for J2EE 1.4, is still supported JBossWS does put a clear focus on JAX-WS.

1.1. Key Features of JBossWS

For a start, we propose you to look through the table of main features of JBossWS Runtime:

Table 1.1. Key Functionality for JBossWS

Feature Benefit

JAX-RPC and JAX-WS

support

JBossWS implements both the JAX-WS and JAX-RPC

specifications.

JAX-RS support JBossWS implements the JAX-RS specification.

EJB 2.1, EJB3 and JSE

endpoints

JBossWS supports EJB 2.1, EJB3 and JSE as Web Service

Endpoints.

WS-Security 1.0 for XML

Encryption/Signature of the

SOAP message

WS-Security standardizes authorization, encryption, and digital

signature processing of web services.

JBoss AS JBoss Application Server 5 (JavaEE 5 compliant) web service

stack.

Support for MTOM/XOP and

SwA-Ref

Message Transmission Optimization Mechanism (MTOM)

and XML-binary Optimized Packaging (XOP) more efficiently

serialize XML Infosets that have certain types of content.

1.2. Other relevant resources on the topic

You can find some extra information on:

• JBossWS Tools Wiki FAQ. [http://www.jboss.org/community/wiki/JBossWS-FAQ#Tools]

http://www.jboss.org/community/wiki/JBossWS-FAQ#Tools
http://www.jboss.org/community/wiki/JBossWS-FAQ#Tools

2

Chapter 2.

3

Creating a Simple Web Service
This chapter describes how to create a simple web service.

2.1. Generation

A simple web service can be created by using the Simple Web Service wizard as described in

Generate a simple web service

Procedure 2.1. Generate a simple web service

1. Access the New - Select a wizard dialog

a. Right click on the project name in the Project Explorer view.

b. Select New → Other.

c. Expand the Web Services folder and click on the Simple Web Service option.

Result: The New - Select a wizard dialog displays with the selected wizard type

highlighted.

Chapter 2. Creating a Simple ...

4

Figure 2.1. The New - Other (Wizard selection) dialog

2. Access the Simple Web Service dialog

Click the Next button to proceed.

Result: The Simple Web Service - Project and Web Service Details dialog displays.

Generation

5

Figure 2.2. Simple Web Service - Project and Web Service Details

3. Define the service attributes

Define the project, web service, package and class names according to the options displayed

in Table 2.1, “Project and Web Service Details”

Table 2.1. Project and Web Service Details

Dialog group Field MandatoryInstruction Description

Technology yes Select the technology

the Web Service will

be based on.

A simple web service can

be based on either the Web

Service Definition Language

(WSDL) or RESTful (REST)

API. Click the radio button

Chapter 2. Creating a Simple ...

6

Dialog group Field MandatoryInstruction Description

beside the technology your

web service should use.

Dynamic web

project

 yes Select the project

name.

The project name will default

to the highlighted project in the

Project Explorer. A different

project can be selected from

the drop-down list.

Service details Service

name

yes Enter the name to for

the web service.

The web service name will

be the URL for the service as

mapped in the deployment

descriptor (web.xml).

 Update

web.xml

no Checkbox is checked

by default, but is not

mandatory.

Leaving this checked will

add your new service to the

web.xml in your project.

Service

implementation

Packageyes Enter the package

for the web service

servlet.

The default package is

org.jboss.samples.websevices.

Select your own package using

the ... button.

 Class yes Enter the name of the

web service servlet.

The default class name will

correspond to the default

web service name resulting

in an equivalent URL to

servlet name mapping in

the deployment descriptor

(web.xml).

 Application

class

only

when

the

JAX-

RS

technology

option

is

selected

Enter the name of the

JAX-RS application

class to use.

The default application class

is MyRESTApplication.Select

your own application class

using the ... button.

4. Generate the web service

Click the Finish button to complete the web service setup.

Result: The web service classes will be generated and the web.xml file updated with the

deployment details if the Update web.xml option was selected.

Generation

7

Figure 2.3. Created Simple Web Service

8

Chapter 3.

9

Creating a Web Service using

JBossWS runtime
In this chapter we provide you with the necessary steps to create a Web Service using JBossWS

runtime. First you need to create a Dynamic Web project:

3.1. Creating a Dynamic Web project

Before creating a web service, you should have a Dynamic Web Project created:

Figure 3.1. Dynamic Web Project

Create a Web project by selecting New > Project... > Dynamic Web project. Enter the following

information:

• Project Name: enter a project name

• Target runtime: any server depending on your installation. If it is not listed, click New button and

browse to the location where it is installed to. You may set Target Runtime to None, in this

case, you should read the section Section 3.2, “Configure JBoss Web Service facet settings”.

Chapter 3. Creating a Web Ser...

10

Figure 3.2. Dynamic Web Project Wizard

• Configuration: You may Section 3.2, “Configure JBoss Web Service facet settings” by clicking

the Modify... button. The opened page is like Figure 2.4.

• Configure Web Module values:

Configure JBoss Web Service facet settings

11

Figure 3.3. Web Module Settings Configuration

If you added the JBoss Web Service facet to the project, now the Finish button is unavailable. You

must click Next button to set more information about the JBoss Web Service facet. The page is

like Figure 2.5. Then click on the Finish button.

If you didn't add the JBoss Web Service facet to the project, click on the Finish button. Next you

will need to add JBoss Web Service facet to the project.

3.2. Configure JBoss Web Service facet settings

If you have already created a new Dynamic Web project and not set the JBoss Web Service facet

to the project, the next step is to add JBoss Web Service facet to the project. Right-click on the

Chapter 3. Creating a Web Ser...

12

project, select its Properties and then find Project Facets in the tree-view on the left-side of the

project properties dialog. Tick on the check box for JBoss Web Services. You will see what like this:

Figure 3.4. Choose JBoss Web Service Facet

At the bottom-left of the right-side of the project properties dialog, there is a error link: Further

configuration required... . You must click the link to set more information about JBoss Web Service

facet.

Click on the Further configuration required... link. In the opened window

Configure JBoss Web Service facet settings

13

Figure 3.5. Configure JBoss Web Service Facet

Server Supplied JBossWS Runtime: If you have already set a JBoss runtime to the project's target

runtime, you may choose Server Supplied JBossWS Runtime and then click Ok to finish the

configuration of JBoss Web Service facet.

If the project has no Target Runtime settings, you should check the second radio button and

specify a JBossWS runtime from the list. You also can create a new JBossWS runtime, click on

the New... button will bring you to another dialog to configure new JBossWS runtime.

Chapter 3. Creating a Web Ser...

14

Figure 3.6. Configure JBossWS Runtime

See how to configure a new JBossWS runtime in the Chapter 5, JBoss WS and development

environment section.

After setting the information about JBoss Web Service facet, for saving the result, you should click

the Apply or OK button at the bottom-right of the right-side of the project properties dialog.

3.3. Creating a Web Service from a WSDL document

using JBossWS runtime

In this chapter we provide you with the necessary steps to create a Web Service from a WSDL

document using JBossWS runtime.

At first, please make sure that you have already created a dynamic Web project with JBoss Web

Service facet installed.

See how to make it in the Section 3.1, “Creating a Dynamic Web project” section and in the

Section 3.2, “Configure JBoss Web Service facet settings” section.

Note

To use the Simple Web Service wizard to create this Web Service, replace

the Class and Applicaiton Class fields with your specific classes, within the

instructions in Chapter 2, Creating a Simple Web Service.

Creating a Web Service from a WSDL document using JBossWS runtime

15

To create a Web Service using JBossWS runtime select File > New > Other > Web Services >

Web Service to run Web Service creation wizard.

Let's get through the wizard step-by-step:

Figure 3.7. New Web Service Wizard

Chapter 3. Creating a Web Ser...

16

First, please select Top down Java bean Web Service from the Web Service type list, and select

a WSDL document from workspace, click on the Server name link on the page will bring you to

another dialog. Here you can specify the server to a JBoss Server and Web Service runtime to

JBossWS runtime:

Figure 3.8. Select Server and Web Service runtime

Click on the Finish button to see the next wizard view opened:

Creating a Web Service from a WSDL document using JBossWS runtime

17

Figure 3.9. New Web Service Wizard

Click on the Next button to proceed:

Chapter 3. Creating a Web Ser...

18

Figure 3.10. New Web Service Wizard

On this page, the default package name comes from the namespace of the WSDL document, you

also can change it to any valid package name you want. JAX-WS specification should be set to 2.0

if your JBossWS runtime in JBoss Server is JBossWS native runtime. You can specify a catalog

file and binding files if you have them. If you want the wizard to generate empty implementation

Creating a Web Service from a WSDL document using JBossWS runtime

19

classes for the Web Service, check the Generate default Web Service implementation classes

check box. If you want to update the default Web.xml file with the Web Service servlets configured,

check the Update the default Web.xml check box. Click on the Next or on the Finish button

to generate code.

Once the Web Service code is generated, you can view the implementation class and add

business logic to each method.

Figure 3.11. The generated implementation Java code

View the Web.xml file:

Chapter 3. Creating a Web Ser...

20

Figure 3.12. Web.xml

In the next chapter you will find out how to create a Web service from a Java bean.

3.4. Creating a Web service from a Java bean using

JBossWS runtime

The Web Service wizard assists you in creating a new Web service, configuring it for deployment,

and then deploying it to the server.

To create a Web service from a bean using JBoss WS:

Setup Chapter 5, JBoss WS and development environment.

Create Section 3.1, “Creating a Dynamic Web project”.

Creating a Web service from a Java bean using JBossWS runtime

21

Note

To use the Simple Web Service wizard to create this Web Service, replace

the Class and Applicaiton Class fields with your specific classes, within the

instructions in Chapter 2, Creating a Simple Web Service.

Section 3.2, “Configure JBoss Web Service facet settings”

Create a Web Service from a java bean:

• Switch to the Java EE perspective Window > Open Perspective > Java EE.

• In the Project Explorer view, select the bean that you created or imported into the source folder

of your Web project.

Chapter 3. Creating a Web Ser...

22

Figure 3.13. Select the Bean Created

• Click File > New > Other. Select Web Services in order to display various Web service wizards.

Select the Web Service wizard. Click on the Next button.

Creating a Web service from a Java bean using JBossWS runtime

23

Figure 3.14. New Web Service

• On the first Web Service wizard page: select Bottom up Java bean Web service as your Web

service type, and select the Java bean from which the service will be created:

Chapter 3. Creating a Web Ser...

24

Figure 3.15. Set Web Service Common values

• Select the stages of Web service development that you want to complete using the slider:

• Develop: this will develop the WSDL definition and implementation of the Web service.

This includes such tasks as creating modules that will contain generated code, WSDL files,

deployment descriptors, and Java files when appropriate.

• Assemble: this ensures the project that will host the Web service or client gets associated

to an EAR when required by the target application server.

• Deploy: this will create the deployment code for the service.

• Install: this will install and configure the Web module and EARs on the target server.

• Start: this will start the server once the service has been installed on it. The server-

config.wsdd file will be generated.

Creating a Web service from a Java bean using JBossWS runtime

25

• Test: this will provide various options for testing the service, such as using the Web Service

Explorer or sample JSPs.

• Select your server: the default server is displayed. If you want to deploy your service to a

different server click the link to specify a different server.

• Select your runtime: ensure the JBoss WS runtime is selected.

• Select the service project: the project selected in your workspace is displayed. To select a

different project click on the project link. If you are deploying to JBoss Application Server

you will also be asked to select the EAR associated with the project. Ensure that the project

selected as the Client Web Project is different from the Service Web Project, or the service

will be overwritten by the client's generated artifacts.

• If you want to create a client, select the type of proxy to be generated and repeat the above

steps for the client. The better way is to create a web service client project separately.

Click on the Next button.

• On the JBoss Web Service Code Generation Configuration page, set the following values:

Chapter 3. Creating a Web Ser...

26

Figure 3.16. Set Web Service values for Code Generation

• Generate WSDL file: select it, you will get a generated WSDL file in your project. But this

wsdl's service address location values are not a real address.

• After the Web service has been created, the following option can become available depending

on the options you selected: Update the default web.xm file. If selected, you may test the

web service by Explorer.

Click on the Next button.

• On this page, the project is deployed to the server. You can start the server and test the web

service. If you want to publish the web service to a UDDI registry, you may click the Next button

to publish it. If not, you may click the Finish button.

Creating a Web service from a Java bean using JBossWS runtime

27

Figure 3.17. Start a Server

After the Web Service has been created, the following options may become available depending

on the options selected:

• the generated web services code

• If you selected to generate a WSDL file, you will get the file in your project's wsdl folder.

Chapter 3. Creating a Web Ser...

28

Figure 3.18. The Generated HelloWorldService.wsdl File in the wsdl Folder

• If you selected to update the default web.xml, you will test the web service in the browser. Open

the Explorer, input the url for the web service according to web.xml plus ?wsdl, you will get the

WSDL file from Explorer.

Creating a Web service from a Java bean using JBossWS runtime

29

Figure 3.19. The Updated web.xml file

In the next chapter you will be able to create a Web Service Client from a WSDL document using

JBoss WS.

30

Chapter 4.

31

Creating a Web Service Client from a

WSDL Document using JBoss WS
To create a Web Service Client from a WSDL Document using JBoss WS you need to fulfil the

following steps:

Setup Chapter 5, JBoss WS and development environment.

Section 3.1, “Creating a Dynamic Web project”.

Section 3.2, “Configure JBoss Web Service facet settings”.

Then you can create a Web Service Client from a WSDL document:

• Switch to the Java EE perspective Window > Open Perspective > Java EE.

• Click File > New > Other. Select Web Services in order to display the various Web service

wizards. Select the Web Service Client wizard. Click on the Next button.

Figure 4.1. New Web Service Client

Chapter 4. Creating a Web Ser...

32

• The first and the second Web Service Client wizard pages are the same as for Section 3.3,

“Creating a Web Service from a WSDL document using JBossWS runtime”.

Figure 4.2. Set Web Service Common values

33

Figure 4.3. Set Web Service values related to WSDL file

The only difference is:

• Client Type: Support of Java Proxy only.

Click on the Finish button.

After the Web Service Client has been created, the following may occur depending on the options

you selected:

• the generated web service and client codes

• a client sample class.

Chapter 4. Creating a Web Ser...

34

Figure 4.4. Client Sample Class

JBoss WS use a Java class to test Web Service. A client sample class will be generated, you may

run this client as a java application to call a web service.

Note:

To run client sample as a Java application you need a JBoss Runtime in build path.

Chapter 5.

35

JBoss WS and development

environment
In this chapter you will learn how to change JBossWS preferences and how to set default server

and runtime.

5.1. JBossWS Preferences

In this section you will know how JBossWS preferences can be modified during the development

process.

JBossWS preferences can be set on the JBossWS preference page. Click on Window >

Preferences > JBoss Tools > Web > JBossWS Preferences.

On this page you can manage the JBossWS Runtime. Use the appropriate buttons to Add more

runtimes or to Remove those that are not needed.

Chapter 5. JBoss WS and devel...

36

Figure 5.1. JBossWS Preferences Page

Clicking on Add or Edit button will open the form where you can configure a new JBossWS

runtime and change the path to JBossWS runtime home folder, modify the name and version of

the existing JBossWS runtime settings. Press Finish to apply the changes.

JBossWS Preferences

37

Figure 5.2. Edit JBossWS Runtime

WS container allows Source and JavaDoc locations to be set via the Properties dialog on each

contained .jar: right-click on any .jar file in the Project Explorer view, select Properties. Choose

Java Source Attachment and select location (folder, JAR or zip) containing new source for the

chosen .jar using one of the suggested options (workspace, external folder or file) or enter the

path manually:

Chapter 5. JBoss WS and devel...

38

Figure 5.3. Classpath Container: Java Source Attachment

Click on Apply and then on Ok.

To change JavaDoc Location choose Javadoc Location and specify URL to the documentation

generated by Javadoc. The Javadoc location will contain a file called package-list:

Default Server and Runtime

39

Figure 5.4. Classpath Container: Javadoc Location

Click on Apply and then on Ok.

5.2. Default Server and Runtime

Open Window > Preferences > Web Services > Server and Runtime. On this page, you can

specify a default server and runtime.

For ease of use, the better way is to set runtime to JBoss WS.

After server and runtime are specified, click on the Apply button to save the values.

Chapter 5. JBoss WS and devel...

40

Figure 5.5. Specifing a default server and runtime

Default Server and Runtime

41

On the whole, this guide covers the fundamental concepts of work with tooling for JBossWS. It

describes how to easily create a Web Service and a Web Service Client using JBossWS Runtime

and adjust JBossWS and development environment as well.

If the information on JBossWS tools in this guide isn't enough for you, ask questions on our

forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=201]. Your comments and

suggestions are also welcome.

http://www.jboss.com/index.html?module=bb&op=viewforum&f=201
http://www.jboss.com/index.html?module=bb&op=viewforum&f=201

42

Chapter 6.

43

Sample Web Service wizards
JBoss Tools includes wizards for the creation of sample web services. These include:

• Create a sample Web Service for a JAX-WS web service; and

• Create a sample RESTful Web Service for a JAX-WS web service.

These wizards are used within a Dynamic Web project. A dynamic web project can be created by

following the steps in Creating a dynamic web project.

Procedure 6.1. Creating a dynamic web project

1. Access the New Project Dialog

Select File → New → Project

Result: The New Project screen displays.

2. Define the Project Type

a. Click the Dynamic Web Project label by expanding the Web folder.

b. Click the Next button to proceed.

Result: The New Dynamic Web Project screen displays.

Chapter 6. Sample Web Service...

44

Figure 6.1. Dynamic Web Project Attributes

3. Define the Project Attributes

Define the Dynamic Web Project attributes according to the options displayed in Table 6.1,

“New Dynamic Web Project”

45

Table 6.1. New Dynamic Web Project

Field MandatoryInstruction Description

Project

name

yes Enter the project name. The project name can be any

name defined by the user.

Project

location

yes Click the Use default location

checkbox to define the

project location as the Eclipse

workspace or define a custom

path in the Location field.

The default location

corresponds to the Eclipse

workspace.

Target

runtime

no Select a pre-configured runtime

from the available options

or configure a new runtime

environment.

The target runtime defines the

server to which the application

will be deployed.

Dynamic

web

module

version

yes Select the required web module

version.

This option adds support for

the Java Servlet API with

module versions corresponding

to J2EE levels as listed in

Table 6.2, “New Dynamic

Project - Dynamic web module

version”.

Configurationyes Select the project configuration

from the available options.

The project can be based on

either a custom or a set of

pre-defined configurations

as described in Table 6.3,

“New Dymanic Project -

Configuration”.

EAR

membership

no Add the project to an existing

EAR project.

The project can be added to

an existing EAR project by

selecting the checkbox. Once

checked, a new EAR project

can be defined by clicking the

New Project button.

Working

sets

no Add the project to an existing

working set.

A working set provides the

ability to group projects

or project attributes in a

customized way to improve

access. A new working set can

be defined once the Select

button has been clicked.

Chapter 6. Sample Web Service...

46

Table 6.2. New Dynamic Project - Dynamic web module version

Option Description

2.2 This web module version corresponds to the J2EE 1.2 implementation.

2.3 This web module version corresponds to the J2EE 1.3 implementation.

2.4 This web module version corresponds to the J2EE 1.4 implementation.

2.5 This web module version corresponds to the JEE 5 implementation.

Table 6.3. New Dymanic Project - Configuration

Option Description

<custom> Choosing from one of the pre-defined configurations will

minimise the effort required to set up the project.

BIRT Charting Web Project A project with the BIRT Charting Runtime Component.

BIRT Charting Web Project A project with the BIRT Reporting Runtime Component.

CXF Web Services Project

v2.5

Configures a project with CXF using Web Module v2.5 and

Java v5.0.

Default Configuration for

JBoss 5.0 Runtime

This option is a suitable starting point. Additional facets

can be installed later to add new functionality.

Dynamic Web Project with

Seam 1.2

Configures a project to use Seam v1.2.

Dynamic Web Project with

Seam 2.0

Configures a project to use Seam v2.0.

Dynamic Web Project with

Seam 2.1

Configures a project to use Seam v2.1.

Dynamic Web Project with

Seam 2.2

Configures a project to use Seam v2.2.

JBoss WS Web Service

Project v3.0

Configures a project with JBossWS using Web Module

v2.5 and Java v5.0.

JavaServer Faces v1.2

Project

Configures a project to use JSF v1.2.

Minimal Configuration The minimum required facets are installed. Additional

facets can be chosen later to add functionality to the

project.

4. Access the Java sub-dialog

Click Next to proceed.

Result: The New Dynamic Web Project - Java dialog displays.

47

5. Define the source and ouput folders

Define the Dynamic Web Project source and output folders by adding or editing folders as

required.

6. Access the Web Module sub-dialog

Click Next to proceed.

Result: The New Dynamic Web Project - Web Module dialog displays.

Figure 6.2. New Dynamic Web Project - Web Module

7. Enter the web module settings

Define the settings as listed in Table 6.4, “New Dynamic Web Project - Web Module” including

the root folder for path names in the web project context and the name of the web content

directory.

Table 6.4. New Dynamic Web Project - Web Module

Field MandatoryInstruction Description

Context

root

yes Enter the context root for the

project.

The context root identifies a

web application to the server

and which URLs to delegate to

the application.

Content

directory

yes Enter the directory name for the

web content.

Web resources such as html,

jsp files and graphic files will be

written to the specified content

directory.

Chapter 6. Sample Web Service...

48

Field MandatoryInstruction Description

Generate

web.xml

deployment

descriptor

no Check this box to generate a

deployment descriptor for the

project.

URL to servlet mappings and

servlet authentication details

are written to the deployment

descriptor enabling the web

server to serve requests.

8. Open the Java EE perspective.

a. Click the Finish button to complete the project setup.

Result: If not already set, a dialog will appear prompting the user to open the relevant

perspective.

b. Click the Yes button to display the Java EE perspective.

Result: The project is configured and the Java EE perspective is displayed.

6.1. Sample Web Service

These sections describe how to generate and deploy a sample web service.

6.1.1. Generation

A sample web service can be created by using the Create a Sample Web Service wizard as

described in Generate a sample web service

Procedure 6.2. Generate a sample web service

1. Access the New - Select a wizard dialog

a. Right click on the project name in the Project Explorer view.

b. Select New → Other.

c. Click the Create a Sample Web Service label by expanding the Web Services folder.

Result: The New - Select a wizard dialog displays with the selected wizard type

highlighted.

2. Access the Generate a Sample Web Service dialog

Click the Next button to proceed.

Result: The Generate a Sample Web Service - Project and Web Service Name dialog

displays.

Generation

49

Figure 6.3. Generate a Sample Web Service - Project and Web Service

Name

3. Define the service attributes

Define the project, web service, package and class names according to the options displayed

in Table 6.5, “Project and Web Service Name”

Table 6.5. Project and Web Service Name

Dialog group Field MandatoryInstruction Description

Dynamic Web

Project

 yes Enter the project

name.

The project name will default

to the highlighted project in the

Project Explorer. A different

project can be selected from

the list or entered directly in the

editable drop-down list.

Web Service Name yes Enter the name for the

web service.

The web service name will

be the url for the service as

mapped in the deployment

descriptor (web.xml).

Chapter 6. Sample Web Service...

50

Dialog group Field MandatoryInstruction Description

Sample Web

Service Class

Packageyes Enter the package

for the web service

servlet.

The default package for the

sample web service will be

displayed.

 Class yes Enter the name of the

web service servlet.

The default class name will

correspond to the default web

service name resulting in an

equivalent url to servlet name

mapping in the deployment

descriptor (web.xml).

4. Generate the web service

Click the Finish button to complete the web service setup.

Result: The web service classes will be generated and the web.xml file updated with the

deployment details.

5. Browse the HelloWorld.java class

Double click the HelloWorld.java class and note the annotated class name and method.

These annotations identify the web service entities to the server.

Figure 6.4. web.xml

6. Browse the web.xml deployment decriptor

Double click the web.xml file and note the servlet mapping as defined in Figure 6.3, “Generate

a Sample Web Service - Project and Web Service Name”. Note also that:

Deployment

51

• the main servlet for the application is org.jboss.samples.webservices.HelloWorld

which is given the custom name HelloWorld; and

• the main servlet is mapped to the particular url /HelloWorld [1].

Figure 6.5. web.xml

Upon start up, the server will write a WSDL file to the server-profile/data/wsdl/ directory

and the WSDL can be accessed with http://localhost:8080/ProjectName/[1]?WSDL or, http://

localhost:8080/WebServiceSample/HelloWorld?WSDL.

6.1.2. Deployment

Once created, the sample web service can be deployed to the target runtime as described in

Export the project as a Web Archive (WAR).

Procedure 6.3. Export the project as a Web Archive (WAR)

1. Access the Export dialog

a. Right click on the project name in the Project Explorer view.

b. Select Export → WAR file.

Result: The Export- WAR Export dialog displays with the selected web project

highlighted.

http://localhost:8080/ProjectName/[1]?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL

Chapter 6. Sample Web Service...

52

Figure 6.6. Export - WAR Export dialog

2. Complete the export dialog

Define the WAR file attributes as described in Table 6.6, “Export - War Export”

Table 6.6. Export - War Export

Field MandatoryInstruction Description

Web project yes Enter the web project

name.

The project name will default

to the highlighted project in the

Project Explorer. A different

project can be selected from

the list or entered directly in the

editable drop-down list.

Destination yes Enter or browse to the

destination.

Set the destination as the build

folder to store the WAR file within

the project. Alternatively, deploy

the project directly to the deploy

Sample RESTful Web Service

53

Field MandatoryInstruction Description

directory of the target server

profile.

Optimize for a

specific server

runtime

no Select this box to

optimize the WAR file

for deployment to the

targeted runtime.

The list of available runtimes will

be those configured during the

project set-up or by selecting File

→ New → Server.

3. Deploy the application

Copy the file to the deploy directory of the required target server profile, such as the all

profile. Note that the WAR file destination may have already been set as the deploy directory

in Step 2.

6.2. Sample RESTful Web Service

A sample Restful web service can be generated by following the steps outlined in Generate a

sample RESTful web service.

Procedure 6.4. Generate a sample RESTful web service

Target runtime must have RESTEasy installed

The sample RESTful web service will not work unless it is deployed to a server

with RESTEasy installed.

1. Access the New - Select a wizard dialog

a. Right click on the project name in the Project Explorer view.

b. Select New → Other.

c. Click the Create a Sample RESTful Web Service label by expanding the Web Services

folder.

Result: The New - Select a wizard dialog displays with the selected wizard type

highlighted.

2. Access the Generate a Sample RESTful Web Service dialog

Click the Next button to proceed.

Result: The Generate a Sample RESTful Web Service - Project and Web Service

Name dialog displays.

Chapter 6. Sample Web Service...

54

Figure 6.7. Generate a Sample RESTful Web Service - Project and Web

Service Name

3. Define the service attributes

Define the project, web service, package and class names according to the options displayed

in Table 6.7, “Project and Web Service Name”

Table 6.7. Project and Web Service Name

Dialog group Field MandatoryInstruction Description

Dynamic Web

Project

 yes Enter the project

name.

The project name will default

to the highlighted project in the

Project Explorer. A different

project can be selected from

the list or entered directly in the

editable drop-down list.

Web Service Name yes Enter the name for the

web service.

The web service name will

be the url for the service as

mapped in the deployment

descriptor (web.xml).

Sample RESTful Web Service

55

Dialog group Field MandatoryInstruction Description

 Update

web.xml

no Check this box to

add the service to the

deployment descriptor.

This option is checked by

default and may be unchecked

when deploying to JBoss AS

6.0 or RESTEasy 2.0 servers.

Service information is not

required in the deployment

descriptor for these servers.

Sample Web

Service Class

Packageyes Enter the package for

the web service class.

The default package for the

sample web service will be

displayed.

 Class yes Enter the name of

the web service class

containing the JAX-RS

annotated path.

This class defines the path

to the web service and is

referenced in the Application

Class Name. The Application

Class Name is declared in

the deployment descriptor

providing indirect access to the

annotated path.

 Application

Class

Name

yes Enter the name of

the Application Class

Name.

The Application Class Name

constructor instantiates

objects of the web service

class containing the JAX-

RS annotated path, GET and

POST methods. It serves as

a single point of access to the

application for the web server.

4. Generate the web service

Click the Finish button to complete the web service setup.

Result: The web service classes will be generated and the web.xml file updated with the

deployment details.

5. Browse the MyRESTApplication.java class

Double click the MyRESTApplication.java class and note the constructor instantiating

objects of type HelloWorldResource. The relevance of this will be discussed shortly.

Chapter 6. Sample Web Service...

56

Figure 6.8. Application Class - MyRESTApplication.java

6. Browse the HelloWorldResource.java class

Double click the HelloWorldResource.java class and note the JAX-RS annotated path and

the annotated GET method.

Figure 6.9. HelloWorldResource.java

7. Browse the web.xml deployment descriptor

Double click the web.xml file and note the jax.ws.rs.Application paramater mapped to

the Application class. Note also that:

Sample RESTful Web Service

57

• the main servlet for the application is

org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher which is

given the custom name Resteasy; and

• the main servlet is not mapped to a particular url as indicated by /*.

The url for sending GET requests can be resolved as follows:

a. Identify the Application Class as defined in the deployment descriptor.

b. Note the object type instantiated in the Application class and added to the singleton set:

HelloWorldResource.

c. Note the JAX-RS annotated path declared in the corresponding HelloWorldResource

class: @Path("/MyRESTApplication") [1].

Figure 6.10. web.xml

The url for sending GET requests is therefore http://localhost:8080/ProjectName/[1] or, http://

localhost:8080/RestfulSample/MyRESTApplication.

http://localhost:8080/ProjectName/[1]
http://localhost:8080/RestfulSample/MyRESTApplication
http://localhost:8080/RestfulSample/MyRESTApplication

58

Chapter 7.

59

RestEasy simple project example
JBoss Tools includes many example projects which are available by selecting Help → Project

Examples. The following sections describe setting up the example RESTEasy project. This project

serves as a good example for testing the numerous Web Service Test View functions.

7.1. The example project

Once the required plugins have been installed, the example project can be set up as described

in JBoss Tools New Example Project

Procedure 7.1. JBoss Tools New Example Project

1. Access the New Example Project Dialog

Select Help → Project Examples

Result: The New Example Project dialog displays.

2. Define the Example Project Type

a. Click the RESTEasy Simple Example label by expanding the RESTEasy node.

b. Click the Finish button to complete the project set up.

Result: The simple project is configured and ready to build.

Project requirements

In the event that a message is displayed indicating some requirements could

not be configured, click the Details button followed by the Fix button to rectify

the problem. The message will be displayed as a result of missing plugins or

a requirement to select or configure a suitable runtime.

3. Build the project

Right click on the project name and select Run As → Maven package

Result: The simple.war file is written to the project's 'target directory.

4. Deploy the project

Copy the simple.war file to the deploy directory of the required server profile such as the

all profile.

Chapter 7. RestEasy simple pr...

60

Result: The simple.war file is written to the target directory.

5. Determine the URL for the web service

Double click the web.xml file and note the jax.ws.rs.Application paramater mapped to

the Application class. Note also that:

• the main servlet for the application is

org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher which is

given the custom name Resteasy; and

• the main servlet is mapped to the url /rest-services/* [1].

The url for sending GET requests can be resolved as follows:

a. Identify the Application class as defined in the deployment descriptor.

b. Note the object type (CustomerResource) instantiated in the Application class

(ShoppingApplication) and added to the singleton set (singletons.add(new

CustomerResource())).

c. Note the JAX-RS annotated path declared in the corresponding CustomerResource class:

@Path("/customers") [2].

Figure 7.1. web.xml

The url for sending GET requests can be formed from http://localhost:8080/ProjectName/[1]/

[2] or, http://localhost:8080/simple/rest-services/customers..

http://localhost:8080/ProjectName/[1]/[2]
http://localhost:8080/ProjectName/[1]/[2]
http://localhost:8080/simple/rest-services/customers

Chapter 8.

61

Web Service Test View
JBoss Tools provides a view to test web services. The Web Services Test View can be displayed

by following the steps in Web Services Test View.

Procedure 8.1. Web Services Test View

• Access the Show View dialog

a. Select Window → Show View → Other

Result: The Show View dialog displays.

b. Click on the Web Services Tester label by expanding the JBoss Tools Web Services

node and click OK.

Result: The Web Services test view displays.

Figure 8.1. Web Service Test View

The main components of the Web Service Tester View are:

• WSDL path/button bar (Table 8.1, “WSDL path/button bar”)

• Request details panel (Table 8.2, “Request details panel”)

• Response details panel (Table 8.3, “Response details panel”)

Chapter 8. Web Service Test View

62

Table 8.1. WSDL path/button bar

Component Description

Editable dropdown

list

Enter the location of the WSDL file or HTTP address of the service

to be tested. The combo box requires the path to the WSDL in a

URI format.

Combo box Select the type of service to test. The options are JAX-WS or

any other option to test a JAX-RS service using HTTP request

methods (PUT, GET, POST, DELETE or OPTIONS).

Toolbar button - Get

From WSDL

Click this button to display the Select WSDL dialog. Enter the

URL, File system location or Eclipse Workspace location of the

WSDL file. Given a vaild file, the dialog will allow selection of the

Port and Operation to test. Once selected, the request details will

be displayed in the Request Details panel.

Toolbar button -

Invoke

Once the WSDL file has been selected, the service can be

invoked by clicking this button. Reponse details will be displayed

in the Response Details panel.

Table 8.2. Request details panel

Component Description

Prompt for Basic

Authentication

Select this check box to send a username and password with the

request. Entering the user details for each subsequent request is

not necessary as the details are stored in memory.

Headers Enter (Add) one or more name=value pairs. These headers will

be passed with the invocation request at the HTTP level where

possible.

Parameters As for header information, enter one or more name=value pairs by

clicking the Add button.

Body Enter the JAX-WS SOAP request messages or input for JAX-RS

service invocations in this text box.

Table 8.3. Response details panel

Component Description

Response headers The headers returned by the service invocation will be displayed in

this panel.

Response body The JAX-WS and JAX-RS response bodies will be displayed in

this box. The raw text returned form the web service invocation

can be displayed by clicking the Show Raw button. The output will

be embedded in a html browser by clicking the Show in Browser

Preliminaries

63

Component Description

button. The output can alternatively be displayed in the Eclipse

editor as xml or raw text (depending on the response content type)

by clicking the Show in Editor button.

Parameters As for header information, enter one or more name=value pairs by

clicking the Add button.

Body Enter JAX-WS SOAP request messages and input for JAX-RS

service invocations in this text box.

The following sections describe testing JAX-WS and JAX-RS web services including the

necessary preliminary steps.

8.1. Preliminaries

The following procedure describes the steps to perform before testing a web service.

Procedure 8.2. Testing a JAX-RS web service

• Preliminary steps

Prior to testing a web service:

a. The Web Service Test View should be opened as described in Web Services Test View;

Result: The Web Service Test View displays.

Figure 8.2. Web Service Test View

b. A web service has been deployed to the deploy directory of the chosen server profile

as described in:

Chapter 8. Web Service Test View

64

• Export the project as a Web Archive (WAR) for the RestfulSample project; or

• JBoss Tools New Example Project for the RESTEasy sample project.

c. The server has been started with run.sh -c <profile>

8.2. Testing a Web Service

A JAX-WS web service can be tested by using the Web Service Tester View displayed in

Figure 8.1, “Web Service Test View”. The JAX-WS test is specified by:

1. Selecting the JAX-WS combo box option.

2. Entering the location of the WDSL file.

Step 2 can be performed in a number of ways including:

• entering the location directly in the editable dropdown list; or

• clicking the Get from WSDL file button and entering the URL, Eclipse workspace or File

system details.

Testing a JAX-WS web service demonstrates testing the WebServiceSample project developed

in Generate a sample web service.

Procedure 8.3. Testing a JAX-WS web service

1. Following the preliminary steps described in Testing a JAX-RS web service, select JAX-WS

from the available combo box options.

Result: The SOAP message details are displayed in the Body Text textbox of the Request

Details panel.

Figure 8.3. JAX-WS Body Text

Testing a Web Service

65

2. Enter the location of the WSDL file in the editable dropdown list. The location for the

WebServiceSample web service is http://localhost:8080/WebServiceSample/HelloWorld?

WSDL [http://localhost:8080/WebServiceSample/HelloWorld?WSDL]

3. Click the Invoke button.

Result: The Select WDSL dialog appears.

Figure 8.4. Select WSDL

4. Select the required service attributes

Select the Service, Port and Operation from the combo boxes and click OK.

Results: The <soap:Body/> section of the SOAP message is filled with the SayHello

message details.

Figure 8.5. JBoss Tools Project Creation

The response header details are returned.

http://localhost:8080/WebServiceSample/HelloWorld?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL
http://localhost:8080/WebServiceSample/HelloWorld?WSDL

Chapter 8. Web Service Test View

66

Figure 8.6. JBoss Tools Project Creation

The response message body is displayed in the Response Body textbox.

Figure 8.7. JBoss Tools Project Creation

These results indicate a successful test.

8.3. Testing a RESTful Web Service

Testing a RESTful (JAX-RS) web service is achieved by following a similar procedure to testing

a JAX-WS web service. Instead of selecting the JAX-WS option in the combo box, the JAX-RS

service is invoked by sending HTTP method requests of the form OPTIONS, GET, POST, PUT

and DELETE. As there is no WSDL file associated with a JAX-RS service, the available options

can be determined by selecting OPTIONS in the combo box.

A JAX-RS web service can be tested by using the Web Service Tester View displayed in

Figure 8.1, “Web Service Test View”. The JAX-RS test is specified by:

1. Selecting the OPTIONS combo box option.

2. Entering the url of the JAX-RS web service.

RestfulSample project

67

The test procedure is discussed in the following sections for both the RestfulSample and the

RESTEasy sample projects developed earlier.

8.3.1. RestfulSample project

Procedure 8.4. RestfulSample test

1. a. Query the available options

Select OPTIONS from the available combo box options.

b. Enter the url of the web service in the editable drop-down list: http://localhost:8080/

RestfulSample/MyRESTApplication.

c. Click the Invoke button

Result: The Response Headers text area indicates that the allowed options are

[GET, OPTIONS, HEAD] as shown in Figure 8.8, “JAX-RS Response Header Text”.

Figure 8.8. JAX-RS Response Header Text

2. Test the GET request

a. Having established that the GET request is valid, select GET from the available combo

box options.

b. Click the Invoke button.

Result: The Response Body text area displays the expected “Hello World” text as

shown in Figure 8.9, “JAX-RS Response Body Text”.

http://localhost:8080/RestfulSample/MyRESTApplication
http://localhost:8080/RestfulSample/MyRESTApplication

Chapter 8. Web Service Test View

68

Figure 8.9. JAX-RS Response Body Text

8.3.2. RESTEasy sample project

Procedure 8.5. Testing a JAX-RS web service- POST and GET requests

1. a. Query the available options

Following the preliminary steps described in Testing a JAX-RS web service, select the

OPTIONS method from the operations text area.

b. Enter the url of the web service in the editable drop-down list http://localhost:8080/simple/

rest-services/customers.

c. Click the Invoke button

Result: The Response Headers text area indicates that the allowed options are

[POST, OPTIONS] as shown in Figure 8.10, “JAX-RS RESTEasy project Body Text”.

Figure 8.10. JAX-RS RESTEasy project Body Text

2. Test the POST option

a. Select POST method in the the operations drop-down list.

http://localhost:8080/simple/rest-services/customers
http://localhost:8080/simple/rest-services/customers

RESTEasy sample project

69

b. We will post xml data to this particular web service. Complete the header details by

entering content-type=application/xml in the text area and click Add to add it to the

Headers list.

Result: The content-type is added to the Headers list as shown in Figure 8.11,

“content-type header”.

Figure 8.11. content-type header

c. Enter customer details

Enter the customer details in the Body Text area as displayed in Figure 8.12, “Customer

data”.

Figure 8.12. Customer data

d. Click the Invoke button.

Result: The Response Headers area indicated that a record was created and

lists the location as http://localhost:8080/simple/rest-services/cuntomers/1 as shown in

Figure 8.13, “Customer added”.

http://localhost:8080/simple/rest-services/cuntomers/1

Chapter 8. Web Service Test View

70

Figure 8.13. Customer added

The console also indicates the successful creation of the customer: 10:44:33,846 INFO

[STDOUT] Created customer 1

3. Test the GET option

a. Select the GET method in the the operations drop-down list.

b. We will retrieve the record created in the previous step. Enter the url for the record

returned in the previous step http://localhost:8080/simple/rest-services/customers/1

c. Click the Invoke button.

Result: The Response Headers area indicates a [HTTP/1.1 200 OK] response and

the customer data is retrieved and displayed in the Response Body area as shown in

Figure 8.14, “GET response”.

Figure 8.14. GET response

http://localhost:8080/simple/rest-services/customers/1

RESTEasy sample project

71

4. Test the PUT option

a. Editing a record is achieved by using the PUT method. Select the PUT method in the

operations drop-down list.

b. Enter the url of the record to be edited http://localhost:8080/simple/rest-services/

customers/1

c. Enter the data in the Body Text area. Replace the first-name with a different entry as

in Figure 8.15, “Updated customer data”

Figure 8.15. Updated customer data

d. Ensure that the content-type=application/xml header is in the Headers list.

e. Click the Invoke button.

Result: The Response Headers area indicates a No Response ([HTTP/1.1 204 No

Content]) Figure 8.16, “Response header following PUT”.

Figure 8.16. Response header following PUT

In this instance, the console does not indicate an update was performed, however, the

console may provide useful information following an operation.

http://localhost:8080/simple/rest-services/customers/1
http://localhost:8080/simple/rest-services/customers/1

Chapter 8. Web Service Test View

72

5. Check the updated data with a GET

Perform a GET operation by following the steps in Step 3.

Result: The Response Body area displays the updated data.

Figure 8.17. Custmer data updated

6. Test the DELETE option

a. Deleting a record is a similar process to posting. Select the DELETE method in the

operations drop-down list.

b. Enter the url of the record to be deleted http://localhost:8080/simple/rest-services/

customers/1

c. Click the Invoke button.

Result: The Response Headers area indicates a No Response ([HTTP/1.1 204

No Content]) as was the case for the PUT operation in Figure 8.16, “Response header

following PUT”.

Once again, the console does not indicate an update was performed, however, the

console may provide useful information following an operation.

7. Check the DELETE operation with a GET

Perform a GET operation by following the steps in Step 3.

Result: The Response Body area returns an error report indicating that The requested

resource () is not available and the Response Headers area returns a [HTTP/1.1

404 Not Found].

http://localhost:8080/simple/rest-services/customers/1
http://localhost:8080/simple/rest-services/customers/1

RESTEasy sample project

73

Figure 8.18. Custmer data deleted

The response header and body messages indicate that the data was successfully deleted.

74

	JBoss Web Services User Guide
	Table of Contents
	Chapter 1. JBossWS Runtime Overview
	1.1. Key Features of JBossWS
	1.2. Other relevant resources on the topic

	Chapter 2. Creating a Simple Web Service
	2.1. Generation

	Chapter 3. Creating a Web Service using JBossWS runtime
	3.1. Creating a Dynamic Web project
	3.2. Configure JBoss Web Service facet settings
	3.3. Creating a Web Service from a WSDL document using JBossWS runtime
	3.4. Creating a Web service from a Java bean using JBossWS runtime

	Chapter 4. Creating a Web Service Client from a WSDL Document using JBoss WS
	Chapter 5. JBoss WS and development environment
	5.1. JBossWS Preferences
	5.2. Default Server and Runtime

	Chapter 6. Sample Web Service wizards
	6.1. Sample Web Service
	6.1.1. Generation
	6.1.2. Deployment

	6.2. Sample RESTful Web Service

	Chapter 7. RestEasy simple project example
	7.1. The example project

	Chapter 8. Web Service Test View
	8.1. Preliminaries
	8.2. Testing a Web Service
	8.3. Testing a RESTful Web Service
	8.3.1. RestfulSample project
	8.3.2. RESTEasy sample project

