
Hibernate Tools

Reference Guide
Version: 3.2.1.CR1

iii

Preface ... v

1. Download and install Hibernate Tools ... 1

1.1. JBoss Tools ... 1

1.2. Eclipse IDE .. 1

1.2.1. Usage of Eclipse WTP ... 1

1.3. Ant ... 2

2. Code generation architecture .. 3

2.1. Hibernate Meta Model ... 3

2.2. Exporters .. 4

3. Eclipse Plugins .. 5

3.1. Introduction .. 5

3.2. Creating a Hibernate Mapping File .. 5

3.3. Creating a Hibernate Configuration File .. 8

3.4. Creating a Hibernate Console Configuration ... 10

3.5. Reverse Engineering and Code Generation .. 15

3.5.1. Code Generation Launcher ... 15

3.5.2. Exporters ... 18

3.6. Hibernate Mapping and Configuration File Editor .. 19

3.6.1. Java property/class completion ... 20

3.6.2. Table/Column completion .. 21

3.6.3. Configuration property completion ... 22

3.7. Structured Hibernate Mapping and Configuration File Editor 22

3.8. Reveng.xml Editor ... 24

3.9. Hibernate Console Perspective .. 27

3.9.1. Viewing the entity structure ... 27

3.9.2. Prototyping Queries .. 32

3.9.3. Properties View .. 36

3.10. Enable debug logging in the plugins ... 37

3.10.1. Relevant Resources Links ... 37

4. Ant Tools ... 39

4.1. Introduction ... 39

4.2. The <hibernatetool> Ant Task .. 39

4.2.1. Basic examples .. 41

4.3. Hibernate Configurations ... 41

4.3.1. Standard Hibernate Configuration (<configuration>) 42

4.3.2. Annotation based Configuration (<annotationconfiguration>) 43

4.3.3. JPA based configuration (<jpaconfiguration>) ... 44

4.3.4. JDBC Configuration for reverse engineering (<jdbcconfiguration>) 45

4.4. Exporters .. 46

4.4.1. Database schema exporter (<hbm2ddl>) ... 47

4.4.2. POJO java code exporter (<hbm2java>) .. 48

4.4.3. Hibernate Mapping files exporter (<hbm2hbmxml>) 48

4.4.4. Hibernate Configuration file exporter (<hbm2cfgxml>) 49

4.4.5. Documentation exporter (<hbm2doc>) .. 50

Hibernate Tools

iv

4.4.6. Query exporter (<query>) ... 50

4.4.7. Generic Hibernate metamodel exporter (<hbmtemplate>) 51

4.5. Using properties to configure Exporters .. 52

4.5.1. <property> and <propertyset> .. 52

4.5.2. Getting access to user specific classes .. 52

5. Controlling reverse engineering .. 55

5.1. Default reverse engineering strategy .. 55

5.2. hibernate.reveng.xml file .. 55

5.2.1. Schema Selection (<schema-selection>) .. 56

5.2.2. Type mappings (<type-mapping>) ... 57

5.2.3. Table filters (<table-filter>) .. 59

5.2.4. Specific table configuration (<table>) ... 60

5.3. Custom strategy .. 63

5.4. Custom Database Metadata .. 64

6. Controlling POJO code generation .. 65

6.1. The <meta> attribute ... 65

6.1.1. Recommendations .. 67

6.1.2. Advanced <meta> attribute examples .. 70

v

Preface

Hibernate Tools is a toolset for Hibernate 3 [http://www.hibernate.org/6.html] and related projects

[http://www.hibernate.org/27.html]. The tools provide Ant tasks and Eclipse plugins for performing

reverse engineering, code generation, visualization and interaction with Hibernate.

http://www.hibernate.org/6.html
http://www.hibernate.org/6.html
http://www.hibernate.org/27.html
http://www.hibernate.org/27.html

vi

Chapter 1.

1

Download and install Hibernate

Tools
Hibernate Tools can be used "standalone" via Ant 1.6.x or fully integrated into an Eclipse 3.3.x +

WTP 2.x based IDE, such as JBoss Tools or a default Eclipse 3.3.x + WTP 2.x installation. The

following describes the install steps in these environments.

1.1. JBoss Tools

JBoss Tools 2.x includes Hibernate Tools and thus nothing is required besides downloading [http:/

/labs.jboss.com/tools/download/index.html] and installing JBoss Tools [../../GettingStartedGuide/

html_single/index.html#JBossToolsInstall]. If you need to update to a newer version of the

Hibernate Tools just follow the instructions in the Eclipse IDE section.

1.2. Eclipse IDE

To install into any Eclipse 3.3.x based Eclipse IDE you can either download the Hibernate

Tools distribution from the Hibernate website [http://www.hibernate.org/6.html] or use the

JBoss Tools Update Site [http://download.jboss.org/jbosstools/updates/stable/] (see also http://

tools.hibernate.org for links to the update site).

If you download the Hibernate Tools distribution you need to place the /plugins and /feature

directory into your eclipse directory or eclipse extensions directory. Sometimes Eclipse does not

automatically detect new plugins and thus the tools will not be activated. To ensure eclipse sees

these changes just clean up the cached plugin information by running eclipse with the -clean

option, e.g. eclipse -clean. Using the updatesite does not require any additional steps.

Note

If you need more basic instructions on installing plugins and general usage of

eclipse then check out https://eclipse-tutorial.dev.java.net/ and especially https:/

/eclipse-tutorial.dev.java.net/visual-tutorials/updatemanager.html which covers

using the update manager.

1.2.1. Usage of Eclipse WTP

The Hibernate Tools plugins currently use WTP 2.x which at this time is the latest stable release

from the Eclipse Webtools project.

Because the WTP project not always have had proper versioning of their plugins there might exist

WTP plugins in your existing eclipse directory from other Eclipse based projects that are from an

earlier WTP release but has either the same version number or higher. It is thus recommended

http://labs.jboss.com/tools/download/index.html
http://labs.jboss.com/tools/download/index.html
http://labs.jboss.com/tools/download/index.html
../../GettingStartedGuide/html_single/index.html#JBossToolsInstall
../../GettingStartedGuide/html_single/index.html#JBossToolsInstall
../../GettingStartedGuide/html_single/index.html#JBossToolsInstall
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html
http://download.jboss.org/jbosstools/updates/stable/
http://download.jboss.org/jbosstools/updates/stable/
http://tools.hibernate.org
http://tools.hibernate.org
https://eclipse-tutorial.dev.java.net/
https://eclipse-tutorial.dev.java.net/visual-tutorials/updatemanager.html
https://eclipse-tutorial.dev.java.net/visual-tutorials/updatemanager.html

Chapter 1. Download and insta...

2

that if you have issues with WTP provided features to try and install the plugins on a clean install

of eclipse to ensure there are no version collisions.

1.3. Ant

To use the tools via Ant you need the hibernate-tools.jar and associated libraries. The libraries

are included in the distribution from the Hibernate website and the Eclipse updatesite. The libraries

are located in the eclipse plugins directory at /plugins/org.hibernate.eclipse.x.x.x/lib/tools/. These

libraries are 100% independent from the eclipse platform. How to use these via ant tasks are

described in the Ant Tools chapter.

Chapter 2.

3

Code generation architecture
The code generation mechanism in the Hibernate Tools consists of a few core concepts. This

section explains their overall structure which are the same for the Ant and Eclipse tools.

2.1. Hibernate Meta Model

The meta model is the model used by Hibernate Core to perform its object relational mapping.

The model includes information about tables, columns, classes, properties, components,

values, collections etc. The API is in org.hibernate.mapping and its main entry point is the

Configuration class, the same class that is used to build a session factory.

The model represented by the Configuration class can be build in many ways. The following

list the currently supported ones in Hibernate Tools.

• A Core configuration uses Hibernate Core and supports reading hbm.xml files, requires a

hibernate.cfg.xml . Named core in Eclipse and <configuration> in ant.

• An Annotation configuration uses Hibernate Annotations and supports hbm.xml and

annotated classes, requires a hibernate.cfg.xml . Named annotations in Eclipse and

<annotationconfiguration> in ant.

• A JPA configuration uses a Hibernate EntityManager and supports hbm.xml and annotated

classes requires that the project has a META-INF/persistence.xml in its classpath. Named JPA

in Eclipse and <jpaconfiguration> in ant.

• A JDBC configuration uses Hibernate Tools reverse engineering and reads its mappings via

JDBC metadata + additional reverse engineering files (reveng.xml). Automatically used in

Eclipse when doing reverse engineering from JDBC and named <jdbcconfiguration> in ant.

In most projects you will normally use only one of the Core, Annotation or JPA configuration and

possibly the JDBC configuration if you are using the reverse engineering facilities of Hibernate

Tools.

Note

No matter which Hibernate Configuration type you are using Hibernate Tools

supports them.

The following drawing illustrates the core concepts:

Chapter 2. Code generation ar...

4

Figure 2.1. Hibernate Core Concepts

The code generation is done based on the Configuration model no matter which type of

configuration have been used to create the meta model, and thus the code generation is

independent on the source of the meta model and represented via Exporters.

2.2. Exporters

Code generation is done in so called Exporters. An Exporter is handed a Hibernate Meta Model

represented as a Configuration instance and it is then the job of the exporter to generate a set

of code artifacts.

The tools provides a default set of Exporter's which can be used in both Ant and the Eclipse UI.

Documentation for these Exporters is in the Ant Tools and Eclipse Plugins chapters.

Users can provide their own customer Exporter's, either by custom classes implementing the

Exporter interface or simply be providing custom templates. This is documented at Section 4.4.7,

“Generic Hibernate metamodel exporter (<hbmtemplate>)”

Chapter 3.

5

Eclipse Plugins
This chapter will introduce you to the functionality that Hibernate Tools provide within Eclipse.

That is a set of wizards and editors for simplifying the work with Hibernate.

3.1. Introduction

The following features are available in the Hibernate Tools Eclipse plugins:

Mapping Editor: An editor for Hibernate XML mapping files, supporting auto-completion and

syntax highlighting. It also supports semantic auto-completion for class names and property/field

names, making it much more versatile than a normal XML editor.

Hibernate Console: The console is a new perspective in Eclipse. It provides an overview of your

Hibernate Console configurations, were you also can get an interactive view of your persistent

classes and their relationships. The console allows you to execute HQL queries against your

database and browse the result directly in Eclipse.

Configuration Wizards and Code generation: A set of wizards are provided with the Hibernate

Eclipse tools; you can use a wizard to quickly generate common Hibernate configuration (cfg.xml)

files, and from these you can code generate a series of various artifacts, there is even support

for completely reverse engineer an existing database schema and use the code generation to

generate POJO source files and Hibernate mapping files.

Eclipse JDT integration: Hibernate Tools integrates into the Java code completion and build

support of Java in Eclipse. This gives you codecompletion of HQL inside Java code plus Hibernate

Tools will add problem markers if your queries are not valid against the console configuration

associated with the project.

Note

Please note that these tools do not try to hide any functionality of Hibernate. The

tools make working with Hibernate easier, but you are still encouraged/required to

read the Hibernate Documentation [http://www.hibernate.org/5.html] to fully utilize

Hibernate Tools and especially Hibernate it self.

3.2. Creating a Hibernate Mapping File

Hibernate mapping files are used to specify how your objects are related to database tables.

For creating a skeleton mapping file, i. e. any .hbm.xml , Hibernate Tools provide a basic wizard

which you can bring up by navigating New > Hibernate XML mapping file.

http://www.hibernate.org/5.html
http://www.hibernate.org/5.html

Chapter 3. Eclipse Plugins

6

Figure 3.1. Hibernate XML Mapping File Wizard

At first you'll be asked to specify the location and the name for a new mapping file. On the next

dialog you should type or browse the class to map.

Creating a Hibernate Mapping File

7

Figure 3.2. Specifying the Class to Map

Pressing finish creates the file and opens it in the structured hbm.xml editor.

If you start the wizard from the selected class, all values will be detected there automatically.

Chapter 3. Eclipse Plugins

8

Figure 3.3. Creating Mapping File for Selected Class

3.3. Creating a Hibernate Configuration File

To be able to reverse engineer, prototype queries, and of course to simply use Hibernate Core a

hibernate.properties or hibernate.cfg.xml file is needed. The Hibernate Tools provide a wizard

for generating the hibernate.cfg.xml file if you do not already have such one.

Start the wizard by clicking New > Other (Ctrl+N) , then Hibernate > Hibernate Configuration

File (cfg.xml) and press Next . After selecting the wanted location for the hibernate.cfg.xml file,

you will see the following page:

Creating a Hibernate Configuration File

9

Figure 3.4. Hibernate Configuration File Wizard

Note

The contents in the combo boxes for the JDBC driver class and JDBC URL change

automatically, depending on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can be

found in Hibernate Reference Documentation [http://docs.jboss.org/ejb3/app-server/Hibernate3/

reference/en/html_single].

Press Finish to create the configuration file, after optionally creating a Console configuration,

the hibernate.cfg.xml will be automatically opened in an editor. The last option Create

Console Configuration is enabled by default and when enabled, it will automatically use the

hibernate.cfg.xml for the basis of a Console configuration.

http://docs.jboss.org/ejb3/app-server/Hibernate3/reference/en/html_single
http://docs.jboss.org/ejb3/app-server/Hibernate3/reference/en/html_single
http://docs.jboss.org/ejb3/app-server/Hibernate3/reference/en/html_single

Chapter 3. Eclipse Plugins

10

3.4. Creating a Hibernate Console Configuration

A Console configuration describes how the Hibernate plugin should configure Hibernate and what

configuration files, including which classpath are needed to load the POJO's, JDBC drivers etc.

It is required to make usage of query prototyping, reverse engineering and code generation. You

can have multiple named console configurations. Normally you would just need one per project,

but more is definitely possible if your project requires this.

You create a console configuration by running the Console Configuration Wizard, shown in

the following screenshot. The same wizard will also be used if you are coming from the

hibernate.cfg.xml wizard and had enabled Create Console Configuration .

Note

The wizard will look at the current selection in the IDE and try and auto-detect the

settings which you then can just approve or modify to suit your needs.

Creating a Hibernate Console Configuration

11

Figure 3.5. Creating Hibernate Console Configuration

The dialog consists of three tabs, General for the basic/required settings, Classpath for classpath

and Mappings for additional mappings. The two latter ones are normally not required if you

specify a project and it has /hibernate.cfg.xml or /META-INF/persistence.xml in its

project classpath.

The following table describes the available settings. The wizard can automatically detect default

values for most of these if you started the wizard with the relevant java project or resource selected.

Table 3.1. Hibernate Console Configuration Parameters

Parameter Description Auto detected

value

Name The unique name of the console configuration Name of the

selected project

Project The name of a java project which classpath should be

used in the console configuration

Name of the

selected project

Type No default value

Chapter 3. Eclipse Plugins

12

Parameter Description Auto detected

value

Choose between "Core", "Annotations" and "JPA". Note

that the two latter requires running Eclipse IDE with a

JDK 5 runtime, otherwise you will get classloading and/or

version errors.

Property file Path to a hibernate.properties file First

hibernate.properties

file found in the

selected project

Configuration file Path to a hibernate.cfg.xml file First

hibernate.cfg.xml

file found in the

selected project

Persistence unit Name of the persistence unit to use No default value

(lets Hibernate

Entity Manager

find the

persistence unit)

Naming strategy Fully qualified classname of a custom NamingStrategy.

Only required if you use a special naming strategy.

No default value

Entity resolver Fully qualified classname of a custom EntityResolver.

Only required if you have special xml entity includes in

your mapping files.

No default value

Creating a Hibernate Console Configuration

13

Figure 3.6. Specifying Classpath in Hibernate Console Configuration

The fallowing table specifies the parameters of the Classpath tab of the wizard.

Table 3.2. Hibernate Console Configuration Classpath

Parameter Description Auto detected

value

Classpath The classpath for loading POJO and JDBC drivers; only

needed if the default classpath of the Project does not

contain the required classes. Do not add Hibernate core

libraries or dependencies, they are already included. If

you get ClassNotFound errors then check this list for

possible missing or redundant directories/jars.

Empty

Include default

classpath from

project

When enabled the project classpath will be appended to

the classpath specified above

Enabled

Chapter 3. Eclipse Plugins

14

Figure 3.7. Specifying additional Mappings in Hibernate Console

Configuration

Parameters of the Mappings tab in the Hibernate Console Configuration wizard are explained

below:

Table 3.3. Hibernate Console Configuration Mappings

Parameter Description Auto detected

value

Mapping files List of additional mapping files that should be loaded.

Note: A hibernate.cfg.xml or persistence.xml can also

contain mappings. Thus if these are duplicated here,

you will get "Duplicate mapping" errors when using the

console configuration.

empty

Clicking Finish creates the configuration and shows it in the Hibernate Configurations View.

Reverse Engineering and Code Generation

15

Figure 3.8. Console Overview

3.5. Reverse Engineering and Code Generation

A "click-and-generate" reverse engineering and code generation facility is available. This facility

allows you to generate a range of artifacts based on database or an already existing Hibernate

configuration, be that mapping files or annotated classes. Some of these are POJO Java source

file, Hibernate .hbm.xml , hibernate.cfg.xml generation and schema documentation.

To start working with this process, start the Hibernate Code Generation which is available in the

toolbar via the Hibernate icon or via the Run > Hibernate Code Generation menu item.

3.5.1. Code Generation Launcher

When you click on Open Hibernate Code Generation Dialog... the standard Eclipse launcher

dialog will appear. In this dialog you can create, edit and delete named Hibernate code generation

"launchers".

Figure 3.9. Getting Hibernate Code Generation Wizard

Chapter 3. Eclipse Plugins

16

Figure 3.10. Hibernate Code Generation Wizard

The first time you create a code generation launcher you should give it a meaningful name,

otherwise the default prefix New_Generation will be used.

Tip:

The "At least one exporter option must be selected" is just a warning stating that

for this launch to work you need to select an exporter on the Exporter tab. When

an exporter has been selected the warning will disappear.

The dialog also have the standard tabs Refresh and Common that can be used to configure

which directories should be automatically refreshed and various general settings launchers, such

as saving them in a project for sharing the launcher within a team.

On the Main tab you see the following fields:

Table 3.4. Code generation "Main" tab fields

Field Description

Console Configuration

Code Generation Launcher

17

Field Description

The name of the console configuration which should be used when code

generating

Output directory Path to a directory where all output will be written by default. Be aware

that existing files will be overwritten, so be sure to specify the correct

directory.

Reverse engineer

from JDBC

Connection

If enabled, the tools will reverse engineer the database available via the

connection information in the selected Hibernate Console Configuration

and generate code based on the database schema. If not enabled, the

code generation will just be based on the mappings already specified

in the Hibernate Console configuration.

Package The package name here is used as the default package name for any

entities found when reverse engineering

reveng.xml Path to a reveng.xml file. A reveng.xml file allows you to control certain

aspects of the reverse engineering. e.g. how jdbc types are mapped

to hibernate types and especially important which tables are included/

excluded from the process. Clicking "setup" allows you to select an

existing reveng.xml file or create a new one. See more details about the

reveng.xml file in Chapter 5, Controlling reverse engineering.

reveng. strategy If reveng.xml does not provide enough customization you can provide

your own implementation of an ReverseEngineeringStrategy. The class

needs to be in the classpath of the Console Configuration, otherwise

you will get class not found exceptions. See Section 5.3, “Custom

strategy” for details and an example of a custom strategy.

Generate basic typed

composite ids

A table that has a multi-colum primary key a <composite-id> mapping

will always be created. If this option is enabled and there are matching

foreign-keys each key column is still considered a 'basic' scalar (string,

long, etc.) instead of a reference to an entity. If you disable this option

a <key-many-to-one> instead. Note: a <many-to-one> property is still

created, but is simply marked as non-updatable and non-insertable.

Detect optimistic lock

columns

Automatically detect optimistic lock columns. Controllable via reveng.

strategy; the current default is to use columns named VERSION or

TIMESTAMP.

Detect many-to-many

tables

Automatically detect many-to-many tables. Controllable via reveng.

strategy.

Use custom templates If enabled, the Template directory will be searched first when looking

up the templates, allowing you to redefine how the individual templates

process the hibernate mapping model.

Template directory A path to a directory with custom templates

Chapter 3. Eclipse Plugins

18

3.5.2. Exporters

The Exporters tab is used to specify which type of code that should be generated. Each selection

represents an Exporter that is responsible for generating the code, hence the name.

Figure 3.11. Selecting Exporters

The following table describes in short the various exporters. Remember you can add/remove any

Exporters depending on your needs.

Table 3.5. Code generation "Exporter" tab fields

Field Description

Domain code Generates POJO's for all the persistent classes and components found

in the given Hibernate configuration.

DAO code Generates a set of DAO's for each entity found.

Hibernate XML

Mappings

Generate mapping (hbm.xml) files for each entity.

Hibernate Mapping and Configuration File

Editor

19

Field Description

Hibernate XML

Configuration

Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml

update with any new found mapping files.

Schema

Documentation (.html)

Generates a set of html pages that documents the database schema

and some of the mappings.

Generic Exporter

(hbmtemplate)

Fully customizable exporter which can be used to perform custom

generation.

Each Exporter listens to certain properties and these can be setup in the Properties section where

you can add/remove predefined or customer properties for each of the exporters. The following

table lists the time of writing predefined properties:

Table 3.6. Exporter Properties

Name Description

jdk5 Generate Java 5 syntax

ejb3 Generate EJB 3 annotations

for_each Specifies for which type of model elements the exporter should create

a file and run through the templates. Possible values are: entity,

component, configuration

template_path Custom template directory for this specific exporter. You can use

Eclipse variables.

template_name Name for template relative to the template path

outputdir Custom output directory for this specific exporter. You can use Eclipse

variables.

file_pattern Pattern to use for the generated files, relatively for the output dir.

Example: {package-name}/{class-name}.java .

dot.executable Executable to run GraphViz (only relevant, but optional for Schema

documentation)

3.6. Hibernate Mapping and Configuration File Editor

The Hibernate Mapping File editor provides XML editing functionality for the hbm.xml and

cfg.xml files. The editor is based on the Eclipse WTP tools and extends its functionality to provide

Hibernate specific code completion.

Chapter 3. Eclipse Plugins

20

Figure 3.12. XML Editing Functionality

3.6.1. Java property/class completion

Package, class, and field completion is enabled for relevant XML attributes. The auto-completion

detects its context and limits the completion for e.g. <property> and only shows the properties/

fields available in the enclosing <class> , <subclass> etc. It is also possible to navigate from the

hbm.xml files to the relevant class/field in java code.

Table/Column completion

21

Figure 3.13. Navigation Functionality

This is done via the standard hyperlink navigation functionality in Eclipse; per default it is done

by pressing F3 while the cursor is on a class/field or by pressing Ctrl and the mouse button to

perform the same navigation.

For java completion and navigation to work the file needs to reside inside an Eclipse Java project,

otherwise no completion will occur.

Note

Java completion does not require a Hibernate console configuration to be used.

3.6.2. Table/Column completion

Table and column completion is also available for all table and column attributes.

Chapter 3. Eclipse Plugins

22

Figure 3.14. Table and Column Completion

Important

Table/Column completion requires a proper configured hibernate console

configuration and this configuration should be the default for the project where the

hbm.xml resides.

You can check which console configuration is selected under the Properties of a project and look

under the Hibernate Settings page. When a proper configuration is selected it will be used to

fetch the table/column names in the background.

Note

Currently it is not recommended to use this feature on large databases since it

does not fetch the information iteratively. It will be improved in future versions.

3.6.3. Configuration property completion

In cfg.xml code completion for the value of <property> name attributes is available.

Figure 3.15. Property Completion

3.7. Structured Hibernate Mapping and Configuration

File Editor

The structured editor represents the file in the tree form. It also allows to modify the structure of

the file and its elements with the help of tables provided on the right-hand area.

Structured Hibernate Mapping and

Configuration File Editor

23

To open any mapping file in the editor, choose Open With > Hibernate 3.0 XML Editor option

from the context menu of the file. The editor should look as follows:

Figure 3.16. Structured hbm.xml Editor

For the configuration file you should choose Open With > Hibernate Configuration 3.0 XML Editor

option.

Figure 3.17. Structured cfg.xml Editor

Chapter 3. Eclipse Plugins

24

3.8. Reveng.xml Editor

A reveng.xml file is used to customize and control how reverse engineering is performed by the

tools. The plugins provide an editor to ease the editing of this file and hence used to configure

the reverse engineering process.

The editor is intended to allow easy definition of type mappings, table include/excludes and specific

override settings for columns, e.g. define an explicit name for a column when the default naming

rules are not applicable.

Note

Not all the features of the .reveng.xml file are exposed or fully implemented in

the editor, but the main functionality is there. To understand the full flexibility of the

reveng.xml , please see Section 5.2, “hibernate.reveng.xml file”

The editor is activated as soon as an .reveng.xml file is opened. To get an initial reveng.xml

file the Reverse Engineering File Wizard can be started via Ctrl+N and Hibernate > Hibernate

Reverse Engineering File (reveng.xml) then.

Figure 3.18. Overview Page

Or you can get it via the Code Generation Launcher by checking the proper section in the Main

tab of the Hibernate Code Generation Wizard.

The following screenshot shows the Overview page where the wanted console configuration is

selected (auto-detected if Hibernate 3 support is enabled for the project)

Reveng.xml Editor

25

Figure 3.19. Overview Page

The Table Filter page allows you to specify which tables to include and exclude. Pressing Refresh

shows the tables from the database that have not yet been excluded.

Figure 3.20. Table Filters Page

The Type Mappings page is used for specifying type mappings from JBDC types to any Hibernate

type (including usertypes) if the default rules are not applicable. Here again to see the database

Chapter 3. Eclipse Plugins

26

tables press Refresh button underneath. More about type mappings you can find further in the

Type Mappings section.

Figure 3.21. Type Mappings Page

The Table and Columns page allows you to explicit set e.g. which hibernatetype and

propertyname that should be used in the reverse engineered model. For more details on how to

configure the tables while reverse engineering read the Specific table configuration section.

Figure 3.22. Table and Columns Page

Hibernate Console Perspective

27

Now that you have configured all necessary parts, you can learn how to work with Hibernate

Console Perspective.

3.9. Hibernate Console Perspective

The Hibernate Console Perspective combines a set of views which allow you to see the structure

of your mapped entities/classes, edit HQL queries, execute the queries, and see the results. To

use this perspective you need to create a Console configuration.

3.9.1. Viewing the entity structure

To view your new configuration and entity/class structure, switch to Hibernate Configurations View.

Expanding the tree allows you to browse the class/entity structure and see the relationships.

Figure 3.23. Hibernate Console Perspective

The Console Configuration does not dynamically adjust to changes done in mappings and java

code. To reload the configuration select the configuration and click the Reload button in the view

toolbar or in the context menu.

Besides, it's possible to open source and mapping files for objects showed in Hibernate

Configurations View. Just bring up the context menu for a necessary object and select Open

Source File to see appropriate Java class or Open Mapping File to open a proper .hbm.xml.

Chapter 3. Eclipse Plugins

28

Figure 3.24. Opening Source for Objects

3.9.1.1. Mapping Diagram

In order to get a visual feel on how entities are related as well as view their structures, a Mapping

Diagram is provided. It is available by right clicking on the entity you want a mapping diagram for

and then choosing Open Mapping Diagram.

Figure 3.25. Mapping Diagram

For better navigating on the Diagram use Outline view which is available in the structural and

graphical modes.

Viewing the entity structure

29

Figure 3.26. Navigating in the Structural Mode

To switch over between the modes use the buttons in the top-right corner of the Outline view.

Figure 3.27. Navigating in the Graphical Mode

Chapter 3. Eclipse Plugins

30

As in Hibernate Configurations View in Mapping Diagram it's also possible to open source/

mapping file for a chosen object by selecting appropriate option in the context menu.

Figure 3.28. Navigating on the Diagram

If you ask to open source/mapping file by right clicking on any entity element, this element will

be highlighted in the open file.

Viewing the entity structure

31

Figure 3.29. Opening Source for Object

Finally, if you need to have your Diagram exported as .png , .jpeg or .bmp , you should right-click

anywhere in the Mapping Diagram editor and select Export as Image.

Chapter 3. Eclipse Plugins

32

Figure 3.30. Mapping Diagram Export

As you can see on the figure above, Undo, Redo and Auto layout options are also available

through the context menu.

3.9.2. Prototyping Queries

Queries can be prototyped by entering them in the HQL or Criteria Editor. The query editors are

opened by right-clicking the Console Configuration and selecting either HQL Editor or Hibernate

Criteria Editor. The editors automatically detect the chosen configuration.

If the menu item is disabled then you need at first to create a Session Factory. That is done by

simply expanding the Session Factory node.

By brining up the context menu for a chosen entity or property in the Console Configuration and

opening HQL Editor or Hibernate Criteria Editor you'll get a prefill query.

Prototyping Queries

33

Figure 3.31. Entering Simple Queries

To copy a portion of code from .java file into a HQL or Criteria editor, make use of the Quick Fix

option (Ctrl + 1).

Chapter 3. Eclipse Plugins

34

Figure 3.32. Quick Fix Option Demonstration

You can also update the original java code according to changes in the HQL or Criteria editor. For

that you should save your HQL/Criteria query and submit the replacing in appeared confirmation

dialog.

Prototyping Queries

35

Figure 3.33. Updating Java Code

Executing the query is done by clicking the green run button in the toolbar or pressing Ctrl+Enter .

Errors during creation of the Session Factory or running the queries (e.g. if your configuration or

query is incorrect) will be shown in a message dialog or inclined in the view that detected the error,

you may get more information about the error in the Error Log View on the right pane.

Results of a query will be shown in the Hibernate Query Result View and details of possible errors

(syntax errors, database errors, etc.) can be seen in the Error Log View.

Note

HQL queries are executed by default using list() thus without any limit of the

size of the output the query could return a large result set. You might run out of

memory. To avoid this you can put a value in the Max results field to reduce the

number of elements returned.

3.9.2.1. Dynamic Query Translator

If the Hibernate Dynamic Query Translator View is visible while writing in the HQL Editor it will

show the generated SQL for a HQL query.

Chapter 3. Eclipse Plugins

36

Figure 3.34. Hibernate Dynamic Query Translator View

The translation is done each time you stop typing into the editor, if there are errors in the HQL the

parse exception will be shown embedded in the view.

3.9.3. Properties View

As you can see on the figure, Properties view shows the number of query results as well as the

time of executing.

Figure 3.35. Properties View

It also displays the structure of any persistent object selected in the Hibernate Query Results View.

Editing is not yet supported.

Enable debug logging in the plugins

37

Figure 3.36. Properties View for Selected Object

3.10. Enable debug logging in the plugins

It is possible to configure the eclipse plugin to route all logging made by the plugins and hibernate

code it self to the Error Log View in Eclipse.

This is done by editing the hibernate-log4j.properties in org.hibernate.eclipse/ directory/jar .

This file includes a default configuration that only logs WARN and above to a set of custom

appenders (PluginFileAppender and PluginLogAppender). You can change these settings to be as

verbose or silent as you please - see Hibernate Documentation [http://www.hibernate.org/5.html]

for interesting categories and Log4j documentation.

3.10.1. Relevant Resources Links

Find more on how to configure logging via a log4j property file in Log4j documentation [http://

supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/log4j/log4j.html].

http://www.hibernate.org/5.html
http://www.hibernate.org/5.html
http://supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/log4j/log4j.html
http://supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/log4j/log4j.html
http://supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/log4j/log4j.html

38

Chapter 4.

39

Ant Tools
Maybe somebody will find it more preferable to use Ant for generation purposes. Thus, this chapter

is intended to get you ready to start using Hibernate Tools via Ant tasks.

4.1. Introduction

The hibernate-tools.jar contains the core for the Hibernate Tools. It is used as the basis

for both the Ant tasks described in this document and the eclipse plugins both available from

tools.hibernate.org. The hibernate-tools.jar is located in your eclipse plugins directory at /plugins/

org.hibernate.eclipse.x.x.x/lib/tools/hibernate-tools.jar.

This jar is 100% independent from the eclipse platform and can thus be used independently of

eclipse.

Note

There might be incompatibilities with respect to the Hibernate3.jar bundled with the

tools and your own jar. Thus to avoid any confusion it is recommended to use the

hibernate3.jar and hibernate-annotations.jar bundled with the tools when you want

to use the Ant tasks. Do not worry about using e.g. Hibernate 3.2 jar's with e.g. a

Hibernate 3.1 project since the output generated will work with previous Hibernate

3 versions.

4.2. The <hibernatetool> Ant Task

To use the ant tasks you need to have the hibernatetool task defined. That is done in your

build.xml by inserting the following xml (assuming the jars are in the lib directory):

<path id="toolslib">

 <path location="lib/hibernate-tools.jar" />

 <path location="lib/hibernate3.jar" />

 <path location="lib/freemarker.jar" />

 <path location="${jdbc.driver.jar}" />

</path>

<taskdef name="hibernatetool"

 classname="org.hibernate.tool.ant.HibernateToolTask"

 classpathref="toolslib" />

Chapter 4. Ant Tools

40

This <taskdef> defines an Ant task called hibernatetool which now can be used anywhere in

your ant build.xml files. It is important to include all the Hibernate Tools dependencies as well

as the jdbc driver.

Notice that to use the annotation based Configuration you must get a release [http://

annotations.hibernate.org].

When using the hibernatetool task you have to specify one or more of the following:

<hibernatetool

 destdir="defaultDestinationDirectory"

 templatepath="defaultTemplatePath"

>

 <classpath ...>

 <property key="propertyName" value="value"/>

 <propertyset ...>

 (<configuration ...>|<annotationconfiguration ...>|

 <jpaconfiguration ...>|<jdbcconfiguration ...>)

 (<hbm2java>,<hbm2cfgxml>,<hbmtemplate>,...)

</hibernatetool>

Table 4.1. Hibernatetool attributes

Attribute name Definition Attribute use

destdir Destination directory for files generated with exporters Required

templatepath A path to be used to look up user-edited templates Optional

classpath A classpath to be used to resolve resources, such as

mappings and usertypes

Optional, but

very often

required

property (and

propertyset)

Used to set properties to control the exporters. Mostly

relevant for providing custom properties to user defined

templates

Optional

configuration

(annotationconfiguration,

jpaconfiguration,

jdbcconfiguration)

One of four different ways of configuring the Hibernate Meta

Model must be specified

hbm2java

(hbm2cfgxml,

hbmtemplate,

etc.)

One or more of the exporters must be specified

http://annotations.hibernate.org
http://annotations.hibernate.org
http://annotations.hibernate.org

Basic examples

41

4.2.1. Basic examples

The following example shows the most basic setup for generating pojo's via <hbm2java> from a

normal hibernate.cfg.xml . The output will be put in the ${build.dir}/generated directory.

<hibernatetool destdir="${build.dir}/generated">

 <classpath>

 <path location="${build.dir}/classes"/>

 </classpath>

 <configuration configurationfile="hibernate.cfg.xml"/>

 <hbm2java/>

</hibernatetool>

The following example is similar, but now we are performing multiple exports from the same

configuration. We are exporting the schema via <hbm2dll>, generates some DAO code via

<hbm2dao> and finally runs a custom code generation via <hbmtemplate>. This is again from a

normal hibernate.cfg.xml and the output is still put in the ${build.dir}/generated directory.

Furthermore the example also shows where a classpath is specified when you e.g. have custom

usertypes or some mappings that is needed to be looked up as a classpath resource.

<hibernatetool destdir="${build.dir}/generated">

 <classpath>

 <path location="${build.dir}/classes"/>

 </classpath>

 <configuration configurationfile="hibernate.cfg.xml"/>

 <hbm2ddl/>

 <hbm2dao/>

 <hbmtemplate

 filepattern="{package-name}/I{class-name}Constants.java"

 templatepath="${etc.dir}/customtemplates"

 template="myconstants.vm"

 />

</hibernatetool>

4.3. Hibernate Configurations

Hibernatetool supports four different Hibernate configurations: A standard Hibernate

configuration (<configuration>), Annotation based configuration (<annotationconfiguration>),

JPA persistence based configuration (<jpaconfiguration>) and a JDBC based configuration

(<jdbcconfiguration>) for use when reverse engineering.

Chapter 4. Ant Tools

42

Each have in common that they are able to build up a Hibernate Configuration object from which

a set of exporters can be run to generate various output.

Note

Output can be anything, e.g. specific files, statements execution against a

database, error reporting or anything else that can be done in java code.

The following sections describe what the various configurations can do, plus lists the individual

settings they have.

4.3.1. Standard Hibernate Configuration (<configuration>)

A <configuration> is used to define a standard Hibernate configuration. A standard Hibernate

configuration reads the mappings from a cfg.xml and/or a fileset.

<configuration

 configurationfile="hibernate.cfg.xml"

 propertyfile="hibernate.properties"

 entityresolver="EntityResolver classname"

 namingstrategy="NamingStrategy classname"

>

 <fileset...>

 </configuration>

Table 4.2. Configuration attributes

Attribute name Definition Attribute use

configurationfile The name of a Hibernate configuration file, e.g.

"hibernate.cfg.xml"

Optional

propertyfile The name of a property file, e.g. "hibernate.properties" Optional

entity-resolver Name of a class that implements

org.xml.sax.EntityResolver. Used if the mapping files

require custom entity resolver

Optional

namingstrategy Name of a class that implements

org.hibernate.cfg.NamingStrategy. Used for setting up the

naming strategy in Hibernate which controls the automatic

naming of tables and columns.

Optional

fileset A standard Ant fileset. Used to include hibernate mapping

files. Remember that if mappings are already specified in

Annotation based Configuration

(<annotationconfiguration>)

43

Attribute name Definition Attribute use

the hibernate.cfg.xml then it should not be included via the

fileset as it will result in duplicate import exceptions.

4.3.1.1. Example

This example shows an example where no hibernate.cfg.xml exists, and a

hibernate.properties and fileset is used instead.

Tip:

Hibernate will still read any global hibernate.properties available in the classpath,

but the specified properties file here will override those values for any non-global

property.

<hibernatetool destdir="${build.dir}/generated">

 <configuration propertyfile="{etc.dir}/hibernate.properties">

 <fileset dir="${src.dir}">

 <include name="**/*.hbm.xml"/>

 <exclude name="**/*Test.hbm.xml"/>

 </fileset>

 </configuration>

 <!-- list exporters here -->

</hibernatetool>

4.3.2. Annotation based Configuration

(<annotationconfiguration>)

An <annotationconfiguration> is used when you want to read the metamodel from EJB3/

Hibernate Annotations based POJO's.

Tip:

To use it remember to put the jar files needed for using hibernate annotations

in the classpath of the <taskdef>, i. e. hibernate-annotations.jar and hibernate-

commons-annotations.jar.

Chapter 4. Ant Tools

44

The <annotationconfiguration> supports the same attributes as a <configuration> except that

the configurationfile attribute is now required as that is from where an AnnotationConfiguration

gets the list of classes/packages it should load.

Thus the minimal usage is:

<hibernatetool destdir="${build.dir}/generated">

 <annotationconfiguration

 configurationfile="hibernate.cfg.xml"/>

 <!-- list exporters here -->

</hibernatetool>

4.3.3. JPA based configuration (<jpaconfiguration>)

A <jpaconfiguration> is used when you want to read the metamodel from JPA/Hibernate

Annotation where you want to use the auto-scan configuration as defined in the JPA spec (part

of EJB3). In other words, when you do not have a hibernate.cfg.xml, but instead have a setup

where you use a persistence.xml packaged in a JPA compliant manner.

The <jpaconfiguration> will simply just try and auto-configure it self based on the available

classpath, e.g. look for META-INF/persistence.xml.

The persistenceunit attribute can be used to select a specific persistence unit. If no

persistenceunit is specified it will automatically search for one and if a unique one is found, use

it, but if multiple persistence units are available it will error.

To use a <jpaconfiguration> you will need to specify some additional jars from Hibernate

EntityManager in the <taskdef> of the hibernatetool. The following shows a full setup:

<path id="ejb3toolslib">

 <path refid="jpatoolslib"/> <!-- ref to previously defined toolslib -->

 <path location="lib/hibernate-annotations.jar" />

 <path location="lib/ejb3-persistence.jar" />

 <path location="lib/hibernate-entitymanager.jar" />

 <path location="lib/jboss-archive-browsing.jar" />

 <path location="lib/javaassist.jar" />

</path>

<taskdef name="hibernatetool"

 classname="org.hibernate.tool.ant.HibernateToolTask"

 classpathref="jpatoolslib" />

JDBC Configuration for reverse engineering

(<jdbcconfiguration>)

45

<hibernatetool destdir="${build.dir}">

 <jpaconfiguration persistenceunit="caveatemptor"/>

 <classpath>

 <!-- it is in this classpath you put your classes dir,

 and/or jpa persistence compliant jar -->

 <path location="${build.dir}/jpa/classes" />

 </classpath>

 <!-- list exporters here -->

</hibernatetool>

Note

ejb3configuration was the name used in previous versions. It still works but will

emit a warning telling you to use jpaconfiguration instead.

4.3.4. JDBC Configuration for reverse engineering

(<jdbcconfiguration>)

A <jdbcconfiguration> is used to perform reverse engineering of the database from a JDBC

connection.

This configuration works by reading the connection properties either from hibernate.cfg.xml or

hibernate.properties with a fileset.

The <jdbcconfiguration> has the same attributes as a <configuration> plus the following

additional attributes:

<jdbcconfiguration

 ...

 packagename="package.name"

 revengfile="hibernate.reveng.xml"

 reversestrategy="ReverseEngineeringStrategy classname"

 detectmanytomany="true|false"

 detectoptmisticlock="true|false"

>

 ...

 </jdbcconfiguration>

Chapter 4. Ant Tools

46

Table 4.3. Jdbcconfiguration attributes

Attribute name Definition Attribute use

packagename The default package name to use when mappings for

classes are created

Optional

revengfile The name of a property file, e.g. "hibernate.properties" Optional

reversestrategy Name of a class that implements

org.hibernate.cfg.reveng.ReverseEngineeringStrategy.

Used for setting up the strategy the tools will use to control

the reverse engineering, e.g. naming of properties, which

tables to include/exclude etc. Using a class instead of (or

as addition to) a reveng.xml file gives you full programmatic

control of the reverse engineering.

Optional

detectManytoManyIf true, tables which are pure many-to-many link tables

will be mapped as such. A pure many-to-many table is

one which primary-key contains exactly two foreign-keys

pointing to other entity tables and has no other columns.

Default: true

detectOptimisticLockIf true, columns named VERSION or TIMESTAMP

with appropriate types will be mapped with the

appropriate optimistic locking corresponding to <version>

or <timestamp>.

Default: true

4.3.4.1. Example

Here is an example of using <jdbcconfiguration> to generate Hibernate xml mappings via

<hbm2hbmxml>. The connection settings here is read from a hibernate.properties file but could

just as well have been read from a hibernate.cfg.xml.

<hibernatetool>

 <jdbcconfiguration propertyfile="etc/hibernate.properties" />

 <hbm2hbmxml destdir="${build.dir}/src" />

</hibernatetool>

4.4. Exporters

Exporters are the parts that do the actual job of converting the hibernate metamodel into various

artifacts, mainly code. The following section describes the current supported set of exporters in

the Hibernate Tool distribution. It is also possible for userdefined exporters, that is done through

the <hbmtemplate> exporter.

Database schema exporter (<hbm2ddl>)

47

4.4.1. Database schema exporter (<hbm2ddl>)

<hbm2ddl> lets you run schemaexport and schemaupdate which generates the appropriate SQL

DDL and allow you to store the result in a file or export it directly to the database. Remember that

if a custom naming strategy is needed it is placed on the configuration element.

<hbm2ddl

 export="true|false"

 update="true|false"

 drop="true|false"

 create="true|false"

 outputfilename="filename.ddl"

 delimiter=";"

 format="true|false"

 haltonerror="true|false"

 >

Table 4.4. Hbm2ddl exporter attributes

Attribute name Definition Attribute use

export Executes the generated statements against the database Default: true

update Try and create an update script representing the "delta"

between what is in the database and what the mappings

specify. Ignores create/update attributes. (Do *not* use

against production databases, no guarantees at all that

the proper delta can be generated nor that the underlying

database can actually execute the needed operations).

Default: false

drop Output will contain drop statements for the tables, indices

and constraints

Default: false

create Output will contain create statements for the tables, indices

and constraints

Default: true

outputfilename If specified the statements will be dumped to this file Optional

delimiter If specified the statements will be dumped to this file Default: ";"

format Apply basic formatting to the statements Default: false

haltonerror Halt build process if an error occurs Default: false

4.4.1.1. Example

Basic example of using <hbm2ddl>, which does not export to the database but simply dumps

the sql to a file named sql.ddl.

Chapter 4. Ant Tools

48

<hibernatetool destdir="${build.dir}/generated">

 <configuration configurationfile="hibernate.cfg.xml"/>

 <hbm2ddl export="false" outputfilename="sql.ddl"/>

</hibernatetool>

4.4.2. POJO java code exporter (<hbm2java>)

<hbm2java> is a java codegenerator. Options for controlling whether JDK 5 syntax can be used

and whether the POJO should be annotated with EJB3/Hibernate Annotations.

<hbm2java

 jdk5="true|false"

 ejb3="true|false"

>

Table 4.5. Hbm2java exporter attributes

Attribute name Definition Default value

jdk Code will contain JDK 5 constructs such as generics and

static imports

False

ejb3 Code will contain EJB 3 features, e.g. using annotations

from javax.persistence and org.hibernate.annotations

False

4.4.2.1. Example

Basic example of using <hbm2java> to generate POJO's that utilize jdk5 constructs.

<hibernatetool destdir="${build.dir}/generated">

 <configuration configurationfile="hibernate.cfg.xml"/>

 <hbm2java jdk5="true"/>

</hibernatetool>

4.4.3. Hibernate Mapping files exporter (<hbm2hbmxml>)

<hbm2hbmxml> generates a set of .hbm files. Intended to be used together with a

<jdbcconfiguration> when performing reverse engineering, but can be used with any kind of

configuration. e.g. to convert from annotation based pojo's to hbm.xml.

Hibernate Configuration file exporter

(<hbm2cfgxml>)

49

Note

Not every possible mapping transformation is possible/implemented (contributions

welcome) so some hand editing might be necessary.

<hbm2hbmxml/>

4.4.3.1. Example

Basic usage of <hbm2hbmxml>.

<hibernatetool destdir="${build.dir}/generated">

 <configuration configurationfile="hibernate.cfg.xml"/>

 <hbm2hbmxml/>

</hibernatetool>

<hbm2hbmxml> is normally used with a <jdbcconfiguration> like in the above example, but

any other configuration can also be used to convert between the different ways of performing

mappings. Here is an example of that, using an <annotationconfiguration> .

Note

Not all conversions are implemented (contributions welcome), so some hand

editing might be necessary.

<hibernatetool destdir="${build.dir}/generated">

 <annotationconfiguration configurationfile="hibernate.cfg.xml"/>

 <hbm2hbmxml/>

</hibernatetool>

4.4.4. Hibernate Configuration file exporter (<hbm2cfgxml>)

<hbm2cfgxml> generates a hibernate.cfg.xml. Intended to be used together with a

<jdbcconfiguration> when performing reverse engineering, but it can be used with any kind of

configuration. The <hbm2cfgxml> will contain the properties used and adds mapping entries for

each mapped class.

Chapter 4. Ant Tools

50

<hbm2cfgxml

 ejb3="true|false"

/>

Table 4.6. Hbm2cfgxml exporter attribute

Attribute name Definition Default value

ejb3 The generated cfg.xml will have <mapping class=".."/>,

opposed to <mapping resource="..."/> for each mapping.

False

4.4.5. Documentation exporter (<hbm2doc>)

<hbm2doc> generates html documentation a'la javadoc for the database schema et.al.

<hbm2doc/>

4.4.6. Query exporter (<query>)

<query> is used to execute a HQL query statements and optionally sends the output to a file. It

can be used for verifying the mappings and for basic data extraction.

<query

 destfile="filename">

 <hql>[a HQL query string]</hql>

</query>

Currently one session is opened and used for all queries and the query is executed via the list()

method. In the future more options might become available, like performing executeUpdate(), use

named queries and etc.

4.4.6.1. Examples

The simplest usage of <query> will just execute the query without dumping to a file. This can be

used to verify that queries can actually be performed.

<hibernatetool>

 <configuration configurationfile="hibernate.cfg.xml"/>

 <query>from java.lang.Object</query>

</hibernatetool>

Generic Hibernate metamodel exporter

(<hbmtemplate>)

51

Multiple queries can be executed by nested <hql> elements. In this example we also let the

output be dumped to queryresult.txt.

Tip:

Currently the dump is simply a call to toString on each element.

<hibernatetool>

 <configuration configurationfile="hibernate.cfg.xml"/>

 <query destfile="queryresult.txt">

 <hql>select c.name from Customer c where c.age > 42</hql>

 <hql>from Cat</hql>

</hibernatetool>

4.4.7. Generic Hibernate metamodel exporter (<hbmtemplate>)

Generic exporter that can be controlled by a user provides a template or class.

<hbmtemplate

 filepattern="{package-name}/{class-name}.ftl"

 template="somename.ftl"

 exporterclass="Exporter classname"

/>

Note

Previous versions of the tools used Velocity. We are now using Freemarker which

provides us much better exception and error handling.

4.4.7.1. Exporter via <hbmtemplate>

The following is an example of reverse engineering via <jdbcconfiguration> and usage of a

custom Exporter via the <hbmtemplate> .

 <hibernatetool destdir="${destdir}">

 <jdbcconfiguration

 configurationfile="hibernate.cfg.xml"

 packagename="my.model"/>

Chapter 4. Ant Tools

52

 <!-- setup properties -->

 <property key="appname" value="Registration"/>

 <property key="shortname" value="crud"/>

 <hbmtemplate

 exporterclass="my.own.Exporter"

 filepattern="."/>

</hibernatetool>

4.4.7.2. Relevant Resources Links

Read more about Velocity [http://velocity.apache.org/] and Freemarker [http://freemarker.org/

] to find out why using the last is better or refer to Max Andersen discussion

on the topic in "A story about FreeMarker and Velocity" [http://in.relation.to/

2110.lace;jsessionid=3462F47B17556604C15DF1B96572E940].

4.5. Using properties to configure Exporters

Exporters can be controlled by user properties. The user properties are specified via <property>

or <propertyset> and each exporter will have access to them directly in the templates and via

Exporter.setProperties().

4.5.1. <property> and <propertyset>

The <property> allows you bind a string value to a key. The value will be available in the templates

via $<key> . The following example will assign the string value "true" to the variable $descriptors .

<property key="descriptors" value="true"/>

Most times using <property> is enough for specifying the properties needed for the exporters.

Still the ant tools supports the notion of <propertyset> that is used for grouping a set of

properties. More about the functionality of <propertyset> is explained in detail in the Ant manual

[http://ant.apache.org/manual/].

4.5.2. Getting access to user specific classes

If the templates need to access some user class it becomes possible by specifying a "toolclass"

in the properties.

<property key="hibernatetool.sometool.toolclass" value="x.y.z.NameOfToolClass"/>

http://velocity.apache.org/
http://velocity.apache.org/
http://freemarker.org/
http://freemarker.org/
http://in.relation.to/2110.lace;jsessionid=3462F47B17556604C15DF1B96572E940
http://in.relation.to/2110.lace;jsessionid=3462F47B17556604C15DF1B96572E940
http://in.relation.to/2110.lace;jsessionid=3462F47B17556604C15DF1B96572E940
http://ant.apache.org/manual/
http://ant.apache.org/manual/

Getting access to user specific classes

53

Placing the above <property> tag in <hibernatetool> or inside any exporter will automatically

create an instance of x.y.z.NameOfToolClass and it will be available in the templates as

$sometool. This is useful to delegate logic and code generation to java code instead of placing

such logic in the templates.

4.5.2.1. Example

Here is an example that uses <hbmtemplate> together with <property> which will be available

to the templates/exporter.

Tip:

This example actually simulates what <hbm2java> actually does.

<hibernatetool destdir="${build.dir}/generated">

<configuration

 configurationfile="etc/hibernate.cfg.xml"/>

 <hbmtemplate

 templateprefix="pojo/"

 template="pojo/Pojo.ftl"

 filepattern="{package-name}/{class-name}.java">

 <property key="jdk5" value="true" />

 <property key="ejb3" value="true" />

 </hbmtemplate>

</hibernatetool>

54

Chapter 5.

55

Controlling reverse engineering
When using the <jdbcconfiguration>, the ant task will read the database metadata and thus will

perform a reverse engineering of the database schema into a normal Hibernate Configuration. It

is from this object e.g. <hbm2java> can generate other artifacts such as .java , .hbm.xml etc.

To govern this process Hibernate uses a reverse engineering strategy. A reverse engineering

strategy is mainly called to provide more java like names for tables, column and foreignkeys

into classes, properties and associations. It also used to provide mappings from SQL types to

Hibernate types. The strategy can be customized by a user. The user can even provide its own

custom reverse engineering strategy if the provided strategy is not enough, or simply just provide

a small part of the strategy and delegate the rest to the default strategy.

Thus, further in this chapter we will discuss how you can configure the process of a reverse

engineering, what default reverse engineering strategy includes as well as some custom concepts.

5.1. Default reverse engineering strategy

The default strategy uses some rules for mapping JDBC artifact names to java artifact names. It

also provide basic typemappings from JDBC types to Hibernate types. It is the default strategy

that uses the packagename attribute to convert a table name to a fully qualified classname.

5.2. hibernate.reveng.xml file

To have fine control over the process a hibernate.reveng.xml file can be provided. In this file you

can specify type mappings and table filtering. This file can be created by hand (it's just basic XML)

or you can use the Hibernate plugins [http://www.hibernate.org/30.html] which have a specialized

editor.

Note

Many databases are case-sensitive with their names and thus if you cannot make

some table match and you are sure it is not excluded by a <table-filter> then check

if the case matches; most databases stores table names in uppercase.

Below you can see an example of a reveng.xml. Following the example gives you more details

about the format.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-reverse-engineering

 SYSTEM "http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd" >

<hibernate-reverse-engineering>

http://www.hibernate.org/30.html
http://www.hibernate.org/30.html

Chapter 5. Controlling revers...

56

<type-mapping>

 <!-- jdbc-type is name fom java.sql.Types -->

 <sql-type jdbc-type="VARCHAR" length='20' hibernate-type="SomeUserType" />

 <sql-type jdbc-type="VARCHAR" length='1' hibernate-type="yes_no" />

 <!-- length, scale and precision can be used to specify the mapping precisly -->

 <sql-type jdbc-type="NUMERIC" precision='1' hibernate-type="boolean" />

 <!-- the type-mappings are ordered. This mapping will be consulted last,

 thus overriden by the previous one if precision=1 for the column -->

 <sql-type jdbc-type="NUMERIC" hibernate-type="long" />

</type-mapping>

<!-- BIN$ is recycle bin tables in Oracle -->

<table-filter match-name="BIN$.*" exclude="true" />

<!-- Exclude DoNotWantIt from all catalogs/schemas -->

<table-filter match-name="DoNotWantIt" exclude="true" />

<!-- exclude all tables from the schema SCHEMA in catalog BAD. -->

<table-filter match-catalog="BAD" match-schema="SCHEMA" match-name=".*"

 exclude="true" />

<!-- table allows you to override/define how reverse engineering

 is done for a specific table -->

<table name="ORDERS">

 <primary-key>

 <!-- setting up a specific id generator for a table -->

 <generator class="sequence">

 <param name="table">seq_table</param>

 </generator>

 <key-column name="CUSTID"/>

 </primary-key>

 <column name="NAME" property="orderName" type="string" />

 <!-- control many-to-one and set names for a specific named foreign key constraint -->

 <foreign-key constraint-name="ORDER_CUST">

 <many-to-one property="customer"/>

 <set property="orders"/>

 </foreign-key>

</table>

</hibernate-reverse-engineering>

5.2.1. Schema Selection (<schema-selection>)

<schema-selection> is used to drive which schemas the reverse engineering will try and process.

Type mappings (<type-mapping>)

57

By default the reverse engineering will read all schemas and then use <table-filter> to decide

which tables get reverse engineered and which do not; this makes it easy to get started but can

be inefficient on databases with many schemas.

With <schema-selection> it is thus possible to limit the actual processed schemas and thus

significantly speed-up the reverse engineering. <table-filter> is still used to then decide which

tables will be included/excluded.

Note

If no <schema-selection> is specified, the reverse engineering works as if all

schemas should be processed. This is equal to: <schema-selection/>. Which in

turn is equal to: <schema-selection match-catalog=".*" match-schema=".*" match-

table=".*"/>

5.2.1.1. Examples

The following will process all tables from "MY_SCHEMA".

<schema-selection match-schema="MY_SCHEMA"/>

It is possible to have multiple schema-selection's to support multi-schema reading or simply

to limit the processing to very specific tables. The following example processes all tables in

"MY_SCHEMA", a specific "CITY" table plus all tables that starts with "CODES_" in

"COMMON_SCHEMA".

<schema-selection match-schema="MY_SCHEMA"/>

<schema-selection match-schema="COMMON_SCHEMA" match-table="CITY"/>

<schema-selection match-schema="COMMON_SCHEMA" match-table="CODES_.*"/>

5.2.2. Type mappings (<type-mapping>)

The <type-mapping> section specifies how the JDBC types found in the database should be

mapped to Hibernate types. e.g. java.sql.Types.VARCHAR with a length of 1 should be mapped

to the Hibernate type yes_no or java.sql.Types.NUMERIC should generally just be converted

to the Hibernate type long.

<type-mapping>

 <sql-type

 jdbc-type="integer value or name from java.sql.Types"

 length="a numeric value"

Chapter 5. Controlling revers...

58

 precision="a numeric value"

 scale="a numeric value"

 not-null="true|false"

 hibernate-type="hibernate type name"

 />

</type-mapping>

The number of attributes specified and the sequence of the sql-type's is important. Meaning that

Hibernate will search for the most specific first, and if no specific match is found it will seek from

top to bottom when trying to resolve a type mapping.

5.2.2.1. Example

The following is an example of a type-mapping which shows the flexibility and the importance of

ordering of the type mappings.

<type-mapping>

 <sql-type jdbc-type="NUMERIC" precision="15" hibernate-type="big_decimal"/>

 <sql-type jdbc-type="NUMERIC" not-null="true" hibernate-type="long" />

 <sql-type jdbc-type="NUMERIC" not-null="false" hibernate-type="java.lang.Long" />

 <sql-type jdbc-type="VARCHAR" length="1" not-null="true"

 hibernate-type="java.lang.Character"/>

 <sql-type jdbc-type="VARCHAR" hibernate-type="your.package.TrimStringUserType"/>

 <sql-type jdbc-type="VARCHAR" length="1" hibernate-type="char"/>

 <sql-type jdbc-type="VARCHAR" hibernate-type="string"/>

</type-mapping>

The following table shows how this affects an example table named CUSTOMER:

Table 5.1. sql-type examples

Column jdbc-type lengthprecisionnot-

null

Resulting hibernate-type Rationale

ID INTEGER 10 true int Nothing is defined

for INTEGER.

Falling back to

default behavior.

NAME VARCHAR 30 false your.package.TrimStringUserTypeNo type-mapping

matches length=30

and not-null=false,

but type-mapping

matches the 2

mappings which

Table filters (<table-filter>)

59

Column jdbc-type lengthprecisionnot-

null

Resulting hibernate-type Rationale

only specifies

VARCHAR. The

type-mapping that

comes first is

chosen.

INITIAL VARCHAR 1 false char Even though there

is a generic match

for VARCHAR,

the more specific

type-mapping for

VARCHAR with

not-null="false" is

chosen. The first

VARCHAR sql-

type matches in

length but has no

value for not-null

and thus is not

considered.

CODE VARCHAR 1 true java.lang.Character The most specific

VARCHAR with

not-null="true" is

selected

SALARY NUMERIC 15 false big_decimal There is a

precise match for

NUMERIC with

precision 15

AGE NUMERIC 3 false java.lang.Long type-mapping for

NUMERIC with

not-null="false"

5.2.3. Table filters (<table-filter>)

The <table-filter> let you specify matching rules for performing general filtering/setup for tables,

e.g. let you include or exclude specific tables based on the schema or even a specific prefix.

<table-filter

 match-catalog="catalog_matching_rule"

 match-schema="schema_matching_rule"

 match-name="table_matching_rule"

Chapter 5. Controlling revers...

60

 exclude="true|false"

 package="package.name"

/>

Table 5.2. Table-filter attributes

Attribute name Definition Default value

match-catalog Pattern for matching catalog part of the table .*

match-schema Pattern for matching schema part of the table .*

match-table Pattern for matching table part of the table .*

exclude If true the table will not be part of the reverse engineering false

package The default package name to use for classes based on

tables matched by this table-filter

""

5.2.4. Specific table configuration (<table>)

<table> allows you to provide explicit configuration on how a table should be reverse engineered.

Amongst other things it allows controlling over the naming of a class for the table, specifying which

identifier generator should be used for the primary key etc.

<table

 catalog="catalog_name"

 schema="schema_name"

 name="table_name"

 class="ClassName"

>

 <primary-key.../>

 <column.../>

 <foreign-key.../>

 </table>

Table 5.3. Table attributes

Attribute name Definition Attribute use

catalog Catalog name for a table. It has to be specified if you are

reverse engineering multiple catalogs or if it is not equal to

hiberante.default_catalog.

Optional

schema Schema name for a table. It has to be specified if you are

reverse engineering multiple schemas or if it is not equal to

hiberante.default_schema.

Optional

name Name for a table. Required

Specific table configuration (<table>)

61

Attribute name Definition Attribute use

class The class name for a table. Default name is a camelcase

version of the table name.

Optional

5.2.4.1. <primary-key>

A <primary-key> allows you to define a primary-key for tables that don't have it defined in the

database, and probably more importantly it allows you to define which identifier strategy should

be used (even for already existing primary-key's).

<primary-key

 <generator class="generatorname">

 <param name="param_name">parameter value</param>

 </generator>

 <key-column...>

 </primary-key>

Table 5.4. Primary-key attributes

Attribute name Definition Attribute use

generator/class Defines which identifier generator should be used. The

class name is any hibernate short hand name or fully

qualified class name for an identifier strategy.

Optional

generator/

param

Allows to specify which parameter with a name and value

should be passed to the identifier generator.

Optional

key-column Specifies which column(s) the primary-key consists of.

A key-column is same as column, but does not have the

exclude property.

Optional

5.2.4.2. <column>

With a <column> it is possible to explicitly name the resulting property for a column. It is also

possible to redefine what jdbc and/or Hibernate type a column should be processed as and finally

it is possible to completely exclude a column from processing.

<column

 name="column_name"

 jdbc-type="java.sql.Types type"

 type="hibernate_type"

 property="propertyName"

 exclude="true|false"

/>

Chapter 5. Controlling revers...

62

Table 5.5. Column attributes

Attribute name Definition Attribute use

name Column name Required

jdbc-type Which jdbc-type this column should be processed as. A

value from java.sql.Types, either numerical (93) or the

constant name (TIMESTAMP).

Optional

type Which hibernate-type to use for this specific column Optional

property What property name will be generated for this column Optional

exclude Set to true if this column should be ignored default: false

5.2.4.3. <foreign-key>

The <foreign-key> has two purposes. One for allowing to define foreign-keys in databases that

does not support them or does not have them defined in their schema. Secondly, to allow defining

the name of the resulting properties (many-to-one and one-to-many's).

Note:

<foreign-key

 constraint-name="foreignKeyName"

 foreign-catalog="catalogName"

 foreign-schema="schemaName"

 foreign-table="tableName"

 >

 <column-ref local-column="columnName" foreign-column="foreignColumnName"/>

 <many-to-one

 property="aPropertyName"

 exclude="true|false"/>

 <set

 property="aCollectionName"

 exclude="true|false"/>

 </foreign-key>

Table 5.6. Foreign-key attributes

Attribute name Definition Attribute use

constraint-

name

Name of the foreign key constraint. Important when naming

many-to-one and set. It is the constraint-name that is

used to link the processed foreign-keys with the resulting

property names.

Required

foreign-catalog Optional

Custom strategy

63

Attribute name Definition Attribute use

Name of the foreign table's catalog. (Only relevant if you

want to explicitly define a foreign key).

foreign-schema Name of the foreign table's schema. (Only relevant if you

want to explicitly define a foreign key).

Optional

foreign-table Name of the foreign table. (Only relevant if you want to

explicitly define a foreign key).

Optional

column-ref Defines that the foreign-key constraint between a local-

column and foreign-column name. (Only relevant if you

want to explicitly define a foreign key).

Optional

many-to-one Defines that a many-to-one should be created and the

property attribute specifies the name of the resulting

property. Exclude can be used to explicitly define that it

should be created or not.

Optional

set Defines that a set should be created based on this foreign-

key and the property attribute specifies the name of the

resulting (set) property. Exclude can be used to explicitly

define that it should be created or not.

Optional

5.3. Custom strategy

It is possible to implement a user strategy. Such strategy must implement

org.hibernate.cfg.reveng.ReverseEngineeringStrategy. It is recommended that one uses the

DelegatingReverseEngineeringStrategy and provide a public constructor which takes another

ReverseEngineeringStrategy as an argument. This will allow you to only implement the relevant

methods and provide a fallback strategy. Example of custom delegating strategy which converts

all column names that ends with "PK" into a property named "id".

public class ExampleStrategy extends DelegatingReverseEngineeringStrategy {

 public ExampleStrategy(ReverseEngineeringStrategy delegate) {

 super(delegate);

 }

 public String columnToPropertyName(TableIdentifier table, String column) {

 if(column.endsWith("PK")) {

 return "id";

 } else {

 return super.columnToPropertyName(table, column);

 }

 }

Chapter 5. Controlling revers...

64

}

5.4. Custom Database Metadata

By default the reverse engineering is performed by reading using the JDBC database metadata

API. This is done via the class org.hibernate.cfg.reveng.dialect.JDBCMetaDataDialect which is

an implementation of org.hibernate.cfg.reveng.dialect.MetaDataDialect.

The default implementation can be replaced with an alternative implementation by setting the

property hibernatetool.metadatadialect to a fully qualified classname for a class that implements

JDBCMetaDataDialect.

This can be used to provide database specific optimized metadata reading. If you create an

optimized/better metadata reading for your database it will be a very welcome contribution.

Chapter 6.

65

Controlling POJO code generation
When using <hbm2java> or the eclipse plugin to generate POJO java code you have the

possibility to control certain aspects of the code generation. This is primarily done with the <meta>

tag in the mapping files. The following section describes the possible <meta> tags and their use.

6.1. The <meta> attribute

The <meta> tag is a simple way of annotating the hbm.xml with information, so tools have a

natural place to store/read information that is not directly related to the Hibernate core.

You can use the <meta> tag to e.g. tell <hbm2java> to only generate "protected" setters,

have classes always implement a certain set of interfaces or even have them extend a certain

base class and even more.

The following example shows how to use various <meta> attributes and the resulting java code.

<class name="Person">

 <meta attribute="class-description">

 Javadoc for the Person class

 @author Frodo

 </meta>

 <meta attribute="implements">IAuditable</meta>

 <id name="id" type="long">

 <meta attribute="scope-set">protected</meta>

 <generator class="increment"/>

 </id>

 <property name="name" type="string">

 <meta attribute="field-description">The name of the person</meta>

 </property>

</class>

The above hbm.xml will produce something like the following (code shortened for better

understanding). Notice the Javadoc comment and the protected set methods:

// default package

import java.io.Serializable;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

import org.apache.commons.lang.builder.ToStringBuilder;

/**

Chapter 6. Controlling POJO c...

66

 * Javadoc for the Person class

 * @author Frodo

 */

public class Person implements Serializable, IAuditable {

 public Long id;

 public String name;

 public Person(java.lang.String name) {

 this.name = name;

 }

 public Person() {

 }

 public java.lang.Long getId() {

 return this.id;

 }

 protected void setId(java.lang.Long id) {

 this.id = id;

 }

 /**

 * The name of the person

 */

 public java.lang.String getName() {

 return this.name;

 }

 public void setName(java.lang.String name) {

 this.name = name;

 }

}

Table 6.1. Supported meta tags

Attribute Description

class-description inserted into the javadoc for classes

field-description inserted into the javadoc for fields/properties

interface If true, an interface is generated instead of an class.

Recommendations

67

Attribute Description

implements interface the class should implement

extends class that the current class should extend (ignored for

subclasses)

generated-class overrule the name of the actual class generated

scope-class scope for class

scope-set scope for setter method

scope-get scope for getter method

scope-field scope for actual field

default-value default initialization value for a field

use-in-tostring include this property in the toString()

use-in-equals include this property in the equals() and hashCode() method.

If no use-in-equals is specified, no equals/hashcode will be

generated.

gen-property property will not be generated if false (use with care)

property-type Overrides the default type of property. Use this with any tag's

to specify the concrete type instead of just Object.

class-code Extra code that will inserted at the end of the class

extra-import Extra import that will inserted at the end of all other imports

Attributes declared via the <meta> tag are per default "inherited" inside an hbm.xml file.

What does that mean? It means that if you e.g want to have all your classes implement IAuditable

then you just add an <meta attribute="implements">IAuditable</meta> in the top of the hbm.xml

file, just after <hibernate-mapping>. Now all classes defined in that hbm.xml file will implement

IAuditable!

Note

This applies to all <meta>-tags. Thus it can also e.g. be used to specify that all

fields should be declare protected, instead of the default private. This is done by

adding <meta attribute="scope-field">protected</meta> at e.g. just under

the <class> tag and all fields of that class will be protected.

To avoid having a <meta> tag inherited then you can simply specify inherit = "false" for the

attribute, e.g. <meta attribute = "scope-class" inherit = "false">public abstract</meta> will restrict

the "class-scope" to the current class, not the subclasses.

6.1.1. Recommendations

The following are some good practices when using <meta> attributes.

Chapter 6. Controlling POJO c...

68

6.1.1.1. Dangers of a class level use-in-string and use-in-equals meta

attributes when having bi-directional associations

If we have two entities with a bi-directional association between them and define at class scope

level the meta attributes: use-in-string, use-in-equals:

<hibernate-mapping>

 <class name="Person">

 <meta attribute="use-in-tostring">true</meta>

 <meta attribute="use-in-equals">true</meta>

 ...

 </class>

</hibernate-mapping>

And for Event.hbm file:

<hibernate-mapping>

 <class name="events.Event" table="EVENTS">

 <meta attribute="use-in-tostring">true</meta>

 <meta attribute="use-in-equals">true</meta>

 <id name="id" column="EVENT_ID">

 <generator class="native"/>

 </id>

 <property name="date" type="timestamp" column="EVENT_DATE"/>

 <property name="title"/>

 <set name="participants" table="PERSON_EVENT" inverse="true">

 <key column="EVENT_ID"/>

 <many-to-many column="PERSON_ID" class="events.Person"/>

 </set>

 </class>

</hibernate-mapping>

Then <hbm2java> will assume you want to include all properties and collections in the toString()/

equals() methods and this can result in infinite recursive calls.

To remedy this you have to decide which side of the association will include the other part (if at all)

in the toString()/equals() methods. Therefore it is not a good practice to put at class scope such

meta attributes, unless you are defining a class without bi-directional associations.

We recomend instead to add the meta attributes at the property level:

<hibernate-mapping>

Recommendations

69

 <class name="events.Event" table="EVENTS">

 <id name="id" column="EVENT_ID">

 <meta attribute="use-in-tostring">true</meta>

 <generator class="native"/>

 </id>

 <property name="date" type="timestamp" column="EVENT_DATE"/>

 <property name="title">

 <meta attribute="use-in-tostring">true</meta>

 <meta attribute="use-in-equals">true</meta>

 </property>

 <set name="participants" table="PERSON_EVENT" inverse="true">

 <key column="EVENT_ID"/>

 <many-to-many column="PERSON_ID" class="events.Person"/>

 </set>

 </class>

</hibernate-mapping>

and now for Person:

<hibernate-mapping>

 <class name="Person">

 <meta attribute="class-description">

 Javadoc for the Person class

 @author Frodo

 </meta>

 <meta attribute="implements">IAuditable</meta>

 <id name="id" type="long">

 <meta attribute="scope-set">protected</meta>

 <meta attribute="use-in-tostring">true</meta>

 <generator class="increment"/>

 </id>

 <property name="name" type="string">

 <meta attribute="field-description">The name of the person</meta>

 <meta attribute="use-in-tostring">true</meta>

 </property>

 </class>

</hibernate-mapping>

Chapter 6. Controlling POJO c...

70

6.1.1.2. Be aware of putting at class scope level <meta> attribute use-

in-equals

For equal()/hashCode() method generation, you have to take into account that the attributes

that participate on such method definition, should take into account only attributes with business

meaning (the name, social security number, etc, but no generated id's, for example).

This is important because Java's hashbased collections, such as java.util.Set relies on equals()

and hashcode() to be correct and not change for objects in the set; this can be a problem if the

id gets assigned for an object after you inserted it into a set.

Therefore automatically configuration of the generation of equals()/hashCode() methods

specifying at class scope level the <meta> attribute use-in-equals could be a dangerous decision

that could produce non expected side-effect.

Here [http://www.hibernate.org/109.html] you can get more in-depth explanation on the subject

of equals() and hashcode().

6.1.2. Advanced <meta> attribute examples

This section shows an example for using meta attributes (including userspecific attributes)

together with the code generation features in Hibernate Tools.

The usecase being implemented is to automatically insert some pre- and post-conditions into the

getter and setters of the generated POJO.

6.1.2.1. Generate pre/post-conditions for methods

With a <meta attribute="class-code">, you can add additional methods on a given class,

nevertheless such <meta> attribute can not be used at a property scope level and Hibernate

Tools does not provide such <meta> attributes.

A possible solution for this is to modify the freemarker templates responsible for generating

the POJO's. If you look inside hibernate-tools.jar, you can find the template: pojo/

PojoPropertyAccessor.ftl

This file is as the name indicates used to generate property accessors for pojo's.

Extract the PojoPropertyAccessor.ftl into a local folder i.e. ${hbm.template.path}, respecting the

whole path, for example: ${hbm.template.path}/pojo/PojoPropertyAccessor.ftl

The contents of the file is something like this:

<#foreach property in pojo.getAllPropertiesIterator()>

 ${pojo.getPropertyGetModifiers(property)}

 ${pojo.getJavaTypeName(property, jdk5)}

 ${pojo.getGetterSignature(property)}() {

http://www.hibernate.org/109.html
http://www.hibernate.org/109.html

Advanced <meta> attribute examples

71

 return this.${property.name};

 }

 ${pojo.getPropertySetModifiers(property)} void set${pojo.getPropertyName(property)}

 (${pojo.getJavaTypeName(property, jdk5)} ${property.name})

 {

 this.${property.name} = ${property.name};

 }

</#foreach>

We can add conditionally pre/post-conditions on our set method generation just adding a little

Freemarker syntax to the above source code:

<#foreach property in pojo.getAllPropertiesIterator()>

 ${pojo.getPropertyGetModifiers(property)}

 ${pojo.getJavaTypeName(property, jdk5)}

 ${pojo.getGetterSignature(property)}()

 {

 return this.${property.name};

 }

 ${pojo.getPropertySetModifiers(property)} void set${pojo.getPropertyName(property)}

 (${pojo.getJavaTypeName(property, jdk5)} ${property.name})

 {

 <#if pojo.hasMetaAttribute(property, "pre-cond")>

 ${c2j.getMetaAsString(property, "pre-cond","\n")}

 </#if>

 this.${property.name} = ${property.name};

 <#if pojo.hasMetaAttribute(property, "post-cond")>

 ${c2j.getMetaAsString(property, "post-cond","\n")}

 </#if>

}

</#foreach>

Now if in any .hbm.xml file we define the <meta> attributes: pre-cond or post-cond, their

contents will be generated into the body of the relevant set method.

As an example let us add a pre-condition for property name preventing no Person can have an

empty name. Hence we have to modify the Person.hbm.xml file like this:

<hibernate-mapping>

 <class name="Person">

Chapter 6. Controlling POJO c...

72

 <id name="id" type="long">

 <generator class="increment"/>

 </id>

 <property name="firstName" type="string">

 <meta attribute="pre-cond">

 if ((firstName != null) && (firstName.length() == 0)) {

 throw new IllegalArgumentException("firstName can not be an empty String");

 }

 </meta>

 </property>

</class>

</hibernate-mapping>

Note

I) To escape the & symbol we put &. You can use <![CDATA[]]> instead.

II) Note that we are referring to "firstName" directly and this is the parameter

name not the actual field name. If you want to refer the field you have to use

"this.firstName" instead.

Finally we have to generate the Person.java class, for this we can use both Eclipse and

Ant as long as you remember to set or fill in the templatepath setting. For Ant we configure

<hibernatetool> task via the templatepath attribute as in:

 <target name="hbm2java">

 <taskdef name="hibernatetool"

 classname="org.hibernate.tool.ant.HibernateToolTask"

 classpathref="lib.classpath"/>

 <hibernatetool destdir="${hbm2java.dest.dir}"

 templatepath="${hbm.template.path}">

 <classpath>

 <path refid="pojo.classpath"/>

 </classpath>

 <configuration>

 <fileset dir="${hbm2java.src.dir}">

 <include name="**/*.hbm.xml"/>

 </fileset>

 </configuration>

 <hbm2java/>

 </hibernatetool>

Advanced <meta> attribute examples

73

 </target>

Invoking the target <hbm2java> will generate on the ${hbm2java.dest.dir} the file Person.java :

// default package

import java.io.Serializable;

public class Person implements Serializable {

 public Long id;

 public String name;

 public Person(java.lang.String name) {

 this.name = name;

 }

 public Person() {

 }

 public java.lang.Long getId() {

 return this.id;

 }

 public void setId(java.lang.Long id) {

 this.id = id;

 }

 public java.lang.String getName() {

 return this.name;

 }

 public void setName(java.lang.String name) {

 if ((name != null) && (name.length() == 0)) {

 throw new IllegalArgumentException("name can not be an empty String");

 }

 this.name = name;

 }

}

To find additional information about Hibernate Tools we suggest that you visit our website [http://

www.hibernate.org/255.html]. If you have questions, you are always welcome in our forum [http:/

/forum.hibernate.org/viewforum.php?f=6].

http://www.hibernate.org/255.html
http://www.hibernate.org/255.html
http://www.hibernate.org/255.html
http://forum.hibernate.org/viewforum.php?f=6
http://forum.hibernate.org/viewforum.php?f=6
http://forum.hibernate.org/viewforum.php?f=6

74

	Hibernate Tools
	Table of Contents
	Preface
	Chapter 1. Download and install Hibernate Tools
	1.1. JBoss Tools
	1.2. Eclipse IDE
	1.2.1. Usage of Eclipse WTP

	1.3. Ant

	Chapter 2. Code generation architecture
	2.1. Hibernate Meta Model
	2.2. Exporters

	Chapter 3. Eclipse Plugins
	3.1. Introduction
	3.2. Creating a Hibernate Mapping File
	3.3. Creating a Hibernate Configuration File
	3.4. Creating a Hibernate Console Configuration
	3.5. Reverse Engineering and Code Generation
	3.5.1. Code Generation Launcher
	3.5.2. Exporters

	3.6. Hibernate Mapping and Configuration File Editor
	3.6.1. Java property/class completion
	3.6.2. Table/Column completion
	3.6.3. Configuration property completion

	3.7. Structured Hibernate Mapping and Configuration File Editor
	3.8. Reveng.xml Editor
	3.9. Hibernate Console Perspective
	3.9.1. Viewing the entity structure
	3.9.1.1. Mapping Diagram

	3.9.2. Prototyping Queries
	3.9.2.1. Dynamic Query Translator

	3.9.3. Properties View

	3.10. Enable debug logging in the plugins
	3.10.1. Relevant Resources Links

	Chapter 4. Ant Tools
	4.1. Introduction
	4.2. The <hibernatetool> Ant Task
	4.2.1. Basic examples

	4.3. Hibernate Configurations
	4.3.1. Standard Hibernate Configuration (<configuration>)
	4.3.1.1. Example

	4.3.2. Annotation based Configuration (<annotationconfiguration>)
	4.3.3. JPA based configuration (<jpaconfiguration>)
	4.3.4. JDBC Configuration for reverse engineering (<jdbcconfiguration>)
	4.3.4.1. Example

	4.4. Exporters
	4.4.1. Database schema exporter (<hbm2ddl>)
	4.4.1.1. Example

	4.4.2. POJO java code exporter (<hbm2java>)
	4.4.2.1. Example

	4.4.3. Hibernate Mapping files exporter (<hbm2hbmxml>)
	4.4.3.1. Example

	4.4.4. Hibernate Configuration file exporter (<hbm2cfgxml>)
	4.4.5. Documentation exporter (<hbm2doc>)
	4.4.6. Query exporter (<query>)
	4.4.6.1. Examples

	4.4.7. Generic Hibernate metamodel exporter (<hbmtemplate>)
	4.4.7.1. Exporter via <hbmtemplate>
	4.4.7.2. Relevant Resources Links

	4.5. Using properties to configure Exporters
	4.5.1. <property> and <propertyset>
	4.5.2. Getting access to user specific classes
	4.5.2.1. Example

	Chapter 5. Controlling reverse engineering
	5.1. Default reverse engineering strategy
	5.2. hibernate.reveng.xml file
	5.2.1. Schema Selection (<schema-selection>)
	5.2.1.1. Examples

	5.2.2. Type mappings (<type-mapping>)
	5.2.2.1. Example

	5.2.3. Table filters (<table-filter>)
	5.2.4. Specific table configuration (<table>)
	5.2.4.1. <primary-key>
	5.2.4.2. <column>
	5.2.4.3. <foreign-key>

	5.3. Custom strategy
	5.4. Custom Database Metadata

	Chapter 6. Controlling POJO code generation
	6.1. The <meta> attribute
	6.1.1. Recommendations
	6.1.1.1. Dangers of a class level use-in-string and use-in-equals meta attributes when having bi-directional associations
	6.1.1.2. Be aware of putting at class scope level <meta> attribute use-in-equals

	6.1.2. Advanced <meta> attribute examples
	6.1.2.1. Generate pre/post-conditions for methods

