Drools Tools Reference Guide

Version: 5.1.0.trunk

IO 1 (o Yo U o {1) o I 1

T o A S I o T PSP 1

1.2. Drools TOOIS KEY FEALUIESuiiiiiiiieiiiii ettt eeaens 1

1.3. Other relevant resources on the tOPICoevvviiiiiiiiiiiie e 2

2. Creating @ New DroolS ProjJECT it 3
2.1. Creating a Sample Drools ProjECtcoviuiiiiiii e 3

2.2. Drools Project StruCture OVEIVIEWccoeuuuieiiiiiieeiiiiee et 11

2.3. Creating @ NEW RUIEcoiiiiii e e 12

3. DEBUGUING TUIES .ottt e et e eaan s 17
3.1. Creating BreakPOiNtSciciuuieiiierii e e e e s e e e e e e e e e e e e e 17

3.2, DEBUGGING it 18
o) (0] = PP 21
I I 1 o1 (o PP 21
4.1.1. Edit language mapping Wizardccooeeiiiiiiiiiiin e 23

4.1.2. Add language mapping Wizardccoooeeuiiiiiiiiiinie e 23

T 1Y =l 1) (o PSP 24
4.2.1. Different types of control elements in Flow Paletteccccooooiiiiiiinnnnnn. 29

4.2.2. Different types of nodes in Flow Paletteccocovviiiiiiiiiin e, 30

e T I o ST U] T o 1) o] P 31
4.3.1. CONENT ASSIST .uuiiiiiiii et e e e e 33

4.3.2. COAe FOIAING ...t 34

4.3.3. Synchronization with Outling VIEWcc.ceeiiiiiiiii e 35

4.3.4. The REte TrEE VIBW ...uiiiiiiiiiiii ettt e e e e e e 37

Chapter 1.

Introduction

1.1. What is Drools?

Drools is a business rule management system (BRMS) with a forward chaining inference
based rules engine, more correctly known as a production rule system, using an enhanced
implementation of the Rete algorithm.

In this guide we are going to get you familiar with Drools Eclipse plugin which provides
development tools for creating, executing and debugging Drools processes and rules from within
Eclipse.

@ Note:

It is assumed that you has some familiarity with rule engines and Drools
in particular. If not, we suggest that you look -carefully through the

[http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/
html_single/index.html].

Drools Tools comes bundled with the JBoss Tools set of Eclipse plugins. You can find instructions
on how to install JBoss Tools in the Getting Started Guide.

1.2. Drools Tools Key Features

The following table lists the main features of Drools Tools.

Table 1.1. Key Functionality of Drools Tools

Feature Benefit Chapter

Wizard for The wizard provides a way to create a sample project to easily get | Section 2.1,

creatinga started with Drools “Creating

new Drools a Sample

Project Drools
Project”

Wizards for A set of wizards are provided with the Drools Eclipse tools to quickly | Section 2.3,
creation of create a new Rule resource, a new Domain Specific language, | “Creating a
new Drools Decision Table and Business rule New Rule”

resources

The Rule An editor that is aware of DRL syntax and provides content| Section 4.3,
editor assistance and synchronizing with the Outline view “The Rule
Editor”

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html

Chapter 1. Introduction

Feature Benefit

The An editor that provides a way to create and manage mappings from
Domain users language to the rule language

Specific

Language

editor

The Rule The editor provides a way to edit the visual graphs which represent
Flow a process (a rule flow)

graphical

editor

Chapter

Section 4.1,
“DSL
Editor”

Section 4.2,
“Flow
Editor”

1.3. Other relevant resources on the topic

Drools on JBoss.org [http://www.jboss.org/drools/]

JBoss Tools Home Page [http://www.jboss.org/tools/]

e The latest JBossTools/JBDS documentation builds [http://download.jboss.org/jbosstools/

nightly-docs/]

docs.jboss.org/tools/].

All JBoss Tools/JBDS documentation you can find on the documentation release page [http://

http://www.jboss.org/drools/
http://www.jboss.org/drools/
http://www.jboss.org/tools/
http://www.jboss.org/tools/
http://download.jboss.org/jbosstools/nightly-docs/
http://download.jboss.org/jbosstools/nightly-docs/
http://download.jboss.org/jbosstools/nightly-docs/
http://docs.jboss.org/tools/
http://docs.jboss.org/tools/
http://docs.jboss.org/tools/

Chapter 2.

Creating a New Drools Project

This chapter will cover the steps required to setup an executable sample Drools project in which
rules can be used.

2.1. Creating a Sample Drools Project

First, we suggest that you use Drools perspective which is aimed at work with Drools specific
resources.

To create a new Drools project select File - New - Project... -~ Drools — Drools Project. This
will open the New Drools Project wizard, as shown in the figure below.

On the first page type the project name and click the Next button.

Chapter 2. Creating a New Dro...

New Drools Project

Create a new Drools Project

Project name: |TE'EtDrDD|E|

Use default location

Location: |,-'hﬂme,-'matthew,-'redhauwcurk5pace5;‘uﬁmrHSpace-jI:J-r:|54,-'TE-5tE| |

Choose file system: | default | 2

@ < Back || Next = | | Cancel | [

Figure 2.1. Creating a New Drools Project

Next you have the choice to add some default artifacts to it like sample rules, decision tables or
ruleflows and Java classes for them. Let's select first two check boxes and click the Next button.

Creating a Sample Drools Project

r

.

New Drools Project

Create a new Drools Project

Add a sample Helloworld rule file to this project.

Add a sample Java class for loading and executing the HelloWorld rules.
] Add a sample Helloworld decision table file to this project.

] Add a sample Java class for loading and executing the HelloWorld decisi
] Add a sample HelloWorld process file to this project.

] Add a sample Java class for loading and executing the HelloWorld proce:

@ < Back || Next = | | Cancel

Figure 2.2. Selecting Drools Project Elements

The next page asks you to specify a Drools runtime. If you have not yet set it up, you should do
this now by clicking the Configure Workspace Settings link.

Chapter 2. Creating a New Dro...

Drools Runtime

& No Drools Runtimes have been defined, configure workspace settings firsi

Use default Drools Runtime (currently undefined)

Drools Runtime:

Configure Workspace Settings...

Generate code compatible with: | Drools 5.0.x

@ < Back || Next = | | Cancel

Figure 2.3. Configuring Drools Runtime

You should see the Preferences window where you can configure the workspace settings for
Drools runtimes. To create a new runtime, click the Add button. The appeared dialog prompts you
to enter a name for a new runtime and a path to the Drools runtime on your file system.

Creating a Sample Drools Project

Chapter 2. Creating a New Dro...

-

) Preferences (Filtered)
| pe filter text Q§| €& Select a default Drools Runtime

Add, remove or edit Drools Runtime definitions
Runtime is added to the build path of newly cre

Installed Drools Runtimes

Name Location

Figure 2.4. Adding a New Drools Runtime

Creating a Sample Drools Project

Let's simply create a new Drools 5 runtime from the jars embedded in the Drools Eclipse plugin.
Thus, you should click the Create a new Drools 5 runtime button, select the folder where you
want this runtime to be created and click the OK button.

You will see the newly created runtime show up in your list of Drools runtimes. Check it and click
the OK button.

Chapter 2. Creating a New Dro...

Preferences

type filter text & | Installed Droc

Add, remove or
Is added to the |

Installed Drool:

Name

Drools 5.1.

@

Figure 2.5. Selecting a Drools Runtime

10

Drools Project Structure Overview

Now click the Finish to complete the project creation.

Drools Runtime

Select a Drools Runtime

Use default Drools Runtime (currently undefined)

Drools Runtime: | Drools 5.1.0 runtime

Configure Workspace Settings...

Generate code compatible with: | Drools 5.0.x

@ < Back || Next > | | Cancel | [

Figure 2.6. Completing the Drools Project Creation

This will setup a basic structure, classpath, sample rules and test case to get you started.

2.2. Drools Project Structure Overview

Now let's look at the structure of the organized project. In the Package Explorer you should see

the following:

11

Chapter 2. Creating a New Dro...

1 Package Explo &3 [Project Explor | =

B 5 ¥

- & TestDrools

< @ src/main/java
- ff com.sample

P [J] DroolsTest.java
- @src/main/rules
{7 Sample.drl
D =i JRE System Library [jdk1.6.0 22]
I =i Drools Library
b = src

Figure 2.7. Drools Project in the Package Explorer

The newly created project contains an example rule file Sanpl e. drl in the src/ main/rul es
directory and an example java file Dr ool sTest . j ava that can be used to execute the rules in a
Drools engine in the folder src/ nai n/ j ava, in the com sanpl e package. All the others jar's that
are necessary during execution are also added to the classpath in a custom classpath container
called Drools Library.

2.3. Creating a New Rule

Now we are going to add a new Rule package to the project.

You can either create an empty text . dr| file or make use of the special New Rule Package...
wizard to do it.

12

Creating a New Rule

To open the wizard select File - New — Rule Resource or use the menu with the JBoss Drools
icon on the toolbar.

File Edit Source Refactor Navigate Search Project Bun Window |

| ra S ev srovar [wer @ & e

New Drools Project

e B S

o
¥ 1= TestDrools New Domain Specific Language
¥ E@sramainfjay new Decision Table

Figure 2.8. Opening the New Rule Package Wizard

On the wizard page first select /rules as a top level directory to store your rules and type the
rule name. Next specify the mandatory rule package name. It defines a namespace that groups
rules together.

Chapter 2. Creating a New Dro...

New Rule Package...

New Rules File

Create a new rules file (drl)

Enter or select the parent folder:

TestDrools/src/main/rules

- = TestDrools
b = bin
¥ = sIC
V7 = main
I = java

File name; |Testﬂule

Type of rule resource: | New DRL (rule package) ¢ |

Use a DSL: [
Use functions: []

Rule package name: |cnm.sample

Advanced == |

Figu@.g. New Rule Package Wizard [

14

Creating a New Rule

As a result the wizard generates a rule skeleton to get you started.

15

Chapter 2. Creating a New Dro...

Figure 2.10. New Rule

% Package Explorer 32 - o Navigatﬂrw ¥ = 0 {) TestRule.t
+ [z TestDrools #creat
< @ src/main/java packag:
< {3 com.sample #list .
P [J] DroolsTest.java
- @src/main/rules
{7 Sample.drl #decla
® TestRule.drl
D =i JRE System Library [jdk1.6.0 22]
b =i Drools Library
b = src =rule ™
wh
th
end
“rule ™
#1|
whi
th
end

Text Editor

16

Chapter 3.

Debugging rules

This chapter describes how to debug rules during the execution of your Drools application.

3.1. Creating Breakpoints

This section will focus on how to add breakpoints in the consequences of your rules.

Whenever such a breakpoint is encountered during the execution of the rules, the execution is
halted. Once the execution is halted, it's possible to inspect the variables known at that point and
use any of the default debugging actions to decide what should happen next (step over, continue,
etc). To inspect the content of the working memory and agenda the Debug views can be used.

To create breakpoints in the Package Explorer view or Navigator view of the Drools perspective,
double-click the selected . drl file to open it in the editor. In the example below we opened
Sanpl e. drl file.

You can add and remove rule breakpoints in the . drl files in two ways, similar to the way
breakpoints are added to Java files:

« Double-click the ruler in the Rule editor at the line where you want to add a breakpoint.

b

Note that rule breakpoints can only be created in the consequence of a rule.
Double-clicking on a line where no breakpoint is allowed will do nothing.

A breakpoint can be removed by double-clicking the ruler once more.

 Right-click the ruler. Select the Toggle Breakpoint action in the context menu. Choosing this
action will add a breakpoint at the selected line or remove it if there is one already.

17

Chapter 3. Debugging rules

i Package Ex 2 - %5 Navigator| =

= [TestDrools
= [Esrofmain/java
v @ com.sample
I [J) DroolsTest java
- [Esrgfmain/rules
" wsampeat |
) TestRule.drl |
b =i JRE System Library [jdk1.5.0 12]
Pz Drools Library
P o= src

2% 7|

) TestRule.drl

package cn ample
“import com.sample. DroolsTest.Message;

‘rule "Hello World"
when
m : Message(status
then

[|e System.out.println{ myMessage };

m.setMessage("Goodbye cruel world");
m.setStatus({ Message.GOODBYE);

mndadal = b

Add Bookmark...
Add Task...

: Toggle Breakpoint

] Show Quick Diff ssage.G0ODBYE, myMessage :

Show Annotation
|| Show Line Numbers

Shift+Ctri+0
yMessage);

Preferences...

Message.HELLD, myMessage :

message

message)

[

| Text Editor | Rete Tree

Figure 3.1. Adding Breakpoints

The Debug perspective contains a Breakpoints view which can be used to see all defined
breakpoints, get their properties, enable/disable or remove them, etc. You can switch to it by

navigating to Window - Perspective - Others - Debug.

3.2. Debugging

Drools breakpoints are only enabled if you debug your application as a Drools Application. To do
this you should perform one of the actions:

* Select the main class of your application. Right click it and select Debug As - Drools

Application.

18

Debugging

i ﬁiwi ﬁ ET hlmsamata
Mew »

Go Into
- AZTestDrools .
| - Open in Mew Window
= @ srefmainfjava)
Open Type Hierarchy Fa
¥ B ComSAME showin Shift+alt+w >
b [J DreclsTi :
o @ srefmainjrule] 12 CORY ctri+C
Q) sample.dr #2 Copy Qualified Name
| Paste Cri+v
b mi)RE SystemL| =
. ¥ Delete Delete
b mi Drools Librany
boEosre Build Path »
Source chift+alt+s »
Refactor shift+ARk+T >
g4g Import...
e Export...
4" Refresh B
Close Project
! ; Assign Working Sets...

4} Convert to Drools Project
Run AS »

5 1Debug on Server shirak0 R
Profile As % 2 Drools Application

validate i 3 Java Applet shift+Ak+D A
Team ¥ | 7] 4 Java Application Shift+Alt+0 |
Coempare With »

Debug Configurations...

Restrre from | neal Histare

Figure 3.2. Debugging Drools Application

* Alternatively, you can also select Debug As - Debug Configuration to open a new dialog for
creating, managing and running debug configurations.

Select the Drools Application item in the left tree and click the New launch configuration
button (leftmost icon in the toolbar above the tree). This will create a new configuration with
a number of the properties already filled in (like the Project and Main class) based on main
class you selected in the beginning. All properties shown here are the same as any standard
Java program.

19

Chapter 3. Debugging rules

Debug Configurations

Create, manage, and run configurations
Debug a Drools apphcation
e | i
e X 8% MName: !New_cunﬁguratiun !
[type fiter text | | /@ Main ¢ Arguments | =) JRE| % Classpath| % Source| P8 Environment | [common|
f Aapache Tomcat | | -Project:
= 1 Drools Application [mstnmnh } | Browse... I
%) DroolsTest _
. -Main class:
% Mew_configuratio I . u -
© Drools JUnit Test Icnrn.samp- e.DroalsTest] Search...
® Eclipse Application | [Include system libraries when searching for a main class
E Eclipse Data Tools | [Include inherited mains when searching for a main class
i Generic Server [Stop in main
H Generic Server(Exte
H HTTP Preview
B J2EE Preview
il Java Applet
3 Java Application
Ju JUnit ~
o — [y][pewert |
Filter matched 17 of 17 lomsl
(i) I Debug I [Close '

Figure 3.3. New Debug Configuration

Next click the Debug button on the bottom to start debugging your application.

After enabling the debugging, the application starts executing and will halt if any breakpoint
is encountered. This can be a Drools rule breakpoint, or any other standard Java breakpoint.
Whenever a Drools rule breakpoint is encountered, the corresponding . dr | file is opened and the
active line is highlighted. The Variables view also contains all rule parameters and their value. You
can then use the default Java debug actions to decide what to do next (resume, terminate, step
over, etc). The debug views can also be used to determine the contents of the working memory
and agenda at that time as well (you don't have to select a working memory now, the current
executing working memory is automatically shown).

20

Chapter 4.

Editors

4.1. DSL Editor

A domain-specific language is a set of custom rules, that is created specifically to solve problems
in a particular domain and is not intended to be able to solve problems outside it. A DSL's
configuration is stored in plain text.

In Drools this configuration is presented by . ds! files that can be created selecting File — New

- Other - Drools —» Domain Specific Language from the projects context menu.

DSL Editor is a default editor for . dsl files:

|4 #test.dsl 22 =0
Editing Domain specific language: [test.dsl)

Description: I |

Language Expression Fule Language Mapping Ohject Scope

There is an Instance with fizld of *{value}" L Instancelfisld=="{valus}") [condition]
Instance is &t least {number} and field is * {valus1" i: Instance(number = {numbeé [condition]
Leg : "{message}" i S)fstern.ou’f.printfn{"{me&sagfé [consequence]
Set field of instance to *{value}" i.setField("{value 1" [consequence]
Create instance : "{valus}" Linsertinew Instancei"{value}"i [consequence]
Thers is no current Instance with fisld : "{valus}" not Instancelfield == '{ualue}f [condition]
Report error ; "{error}” ! gystermn.errprntin"{error}*): [consequence]
Retract the fact : '{variable ' retract{ {variable }); /ithis wuu[é [consequence]

Expression: '

Mapping: |

Object: (

Sort by

Copy

Figure 4.1. DSL Editor

In the table below all the components of the DSL Editor page are described:

Table 4.1. DSL Editor Components.

Components Description

Description User's comments on a certain language message mapping

21

Chapter 4. Editors

Components Description

Table of language The table is divided into 4 rows:
message mappings

» Language Expression: expression you want to use as a rule

* Rule Language Mapping: the implementation of the rules. This
means that to this language expression the rule will be compiled by
the rule engine compiler.

» Object: name of the object

» Scope: indicates where the expression is targeted, is it for the
"condition” part of the rule ,"consequence” part, etc.

By clicking on some row's header you can sort the lines in the table

according to the clicked row. By double clicking on the line the

Section 4.1.1, “Edit language mapping Wizard” will be open.

Expression Shows the language expression of the selected table line (language
message mapping).

Mapping Shows the rule of language mapping for the selected table line
(language message mapping).

Object Shows the object for the selected table line (language message
mapping)
Sort By Using this option you can change the sorting order of the language

message mappings. To do this select from the drop down list the
method of sorting you want and click the Sort button.

Buttons « Edit: by clicking the button users can edit the selected line in the
language message mappings table. For more information look at
the Section 4.1.1, “Edit language mapping Wizard” section.

» Remove: if you click the button the selected mapping line will be
deleted.

< Add: with this button you can add new mapping lines to the table.
For more information look at the Section 4.1.2, “Add language
mapping Wizard” section.

» Sort: please, for more information see the Sort By row above.

» Copy: with this button you can add new mapping lines to the
table in which all the information will be copied from the selected
mapping line.

22

Edit language mapping Wizard

4.1.1. Edit language mapping Wizard

This wizard can be opened by double clicking some line in the table of language message
mappings or by clicking the Edit button.

On the picture below you can see all the options the Edit Language Mapping Wizard will allow
you to change.

Their names as well as the meaning of the options are correspond to the rows of the table (see
the Table of language message mappings row in Table 4.1, “DSL Editor Components.”).

Edit an existing language mapping item.

Language expression: hnstance Is at least {number} and field is "{value}"

Rule mapping: |i: Instance(number = {number}, location=="{value

Object:

Scope: | condition - |

@ Cancel | [

Figure 4.2. Edit language mapping Wizard
To change the mapping a user should edit the appropriate options and finally click the OK button.
4.1.2. Add language mapping Wizard

This wizard is equal to the wizard described in Section 4.1.1, “Edit language mapping Wizard”. It
can be opened by clicking the Add button.

The only difference is that instead of editing the information you should enter new one.

23

Chapter 4. Editors

Create a new language element mapping.

Language expression:

Rule mapping:

Object:

Scope: | * >

@ Cancel | [

Figure 4.3. Add language mapping Wizard

4.2. Flow Editor

Drools tools also provides the ability to define the order in which rules should be executed. The
Ruleflow file allows you to specify the order in which rule sets should be evaluated using a flow
chart. This allows you to define which rule sets should be evaluated in sequence or in parallel as
well as specify the conditions under which rule sets should be evaluated.

Ruleflows can be set only by using the graphical flow editor which is part of the Drools plugin for
Eclipse. Once you have set up a Drools project,you can start adding ruleflows. Add a ruleflow

file(.rf) by clicking on the project and selecting File - New - Other... - Flow File:

24

Flow Editor

Select a wizard

A wizard that creates a new Flow file

Wizards:

type filter text

P = VS

+ (= Drools

] Decision Table

Domain Specific Language
9) Drools Project

. Flow File

Figure 4.4. RuleFlow file creation

By default these ruleflow files (.rf) are opened in the graphical Flow editor. You can see this in
the picture below.

25

Chapter 4. Editors

47 TestRule.drl [ﬁi’é +test.dsl (ﬂﬁ ruleflow.rf &2

[+ Select

r-

' Marquee

— Sequence
Flow

= Components <«
() Start Event
@ End Event
Rule Task

@ Gateway
[diverge]

@ Gateway
[converge]

(=) Reusable
Sub-Process

Script Task

Figure 4.5. Flow Editor

26

Flow Editor

The Flow editor consists of a palette, a canvas and an outline view. To add new elements to the
canvas, select the element you would like to create in the palette and then add it to the canvas

by clicking on the preferred location.

i) TestRule.drl | *test.dsl | =X *ruleflow.rf &3

[Select

' Marquee

— Sequence
Flow

(= Components < r . W
() Start Event O = Rule
@ End Event .L

Rule Task

@ Gateway
[diverge] |Create a new Rule

Task

@ Gateway
[converge]

(=) Reusable
Sub-Process

Script Task

Figure 4.6. Adding an element to the canvas

Clicking on the Select option in the palette and then on the element in your ruleflow allows you to
view and set the properties of that element in the Properties view.

27

Chapter 4. Editors

= Properties &2

Property
Id
MetaData
Name
RuleFlowGroup
Timers

= (&) %
Value
2

{height=48, width=80, y=107, x=200}
Rule

Figure 4.7. Properties view

The Outline view is useful for big complex schemata where not all nodes are seen at one time.
So using your Outline view you can easily navigate between parts of a schema.

28

Different types of control elements in Flow Palette

-~

0= Qutline &2

é)j

Rou

=]
)

Rule

@

Figure 4.8. Outline view usage

4.2.1. Different types of control elements in Flow Palette

Flow editor supports three types of control elements. They are:

Table 4.2. Flow Palette Components.Part 1

Component Component Description

Picture Name

hﬁ Select Select a node on the canvas

Ll Marquee Is used for selecting a group of elements

— Sequence Flow | Use this element to join two elements on the canvas

29

Chapter 4. Editors

4.2.2. Different types of nodes in Flow Palette

Currently, ruleflow supports seven types of nodes. In the table below you can find information
about them:

Table 4.3. Flow Palette Components.Part 2.

Component Component Description
Picture Name
i) Start Event The start of the ruleflow. A ruleflow should have exactly

one start node. The Start Event can not have incoming
connections and should have one outgoing connection.
Whenever the ruleflow process is started, the execution
is started here and is automatically proceeded to the
first node linked to this Start Event

] End Event A ruleflow file can have one or more End Events. The
End Event node should have one incoming connection
and can not have outgoing connections. When an

end node is reached in the ruleflow, the ruleflow is
terminated (including other remaining active nodes
when parallelism is used).

Rule Task Represents a set of rules. A Rule Task node should
have one incoming connection and one outgoing
connection. The RuleFlowGroup property which is
used to specify the name of the ruleflow-group that
represents the set of rules of this Rule Task node.
When a Rule Task node is reached in the ruleflow, the
engine will start executing rules that are a part of the
corresponding ruleflow-group. Execution automatically
continues to the next node when there are no more
active rules in this ruleflow-group.

& Gateway|[diverge] | Allows you to create branches in your ruleflow. A
Gateway|[diverge] node should have one incoming
connection and two or more outgoing connections.

D Gateway[converge]Allows you to synchronize multiple branches. A
Gateway[converge] node should have two or more
incoming connections and one outgoing connection.

() Reusable Sup- Represents the invocation of another ruleflow from this
Process ruleflow. A subflow node should have one incoming
connection and one outgoing connection. It contains
the property processld which specifies the id of the
process that should be executed. When a Reusable
Sup-Process node is reached in the ruleflow, the

30

The Rule Editor

Component Component Description

Picture Name

engine will start the process with the given id. The
subflow node will only continue if that subflow process
has terminated its execution. Note that the subflow
process is started as an independent process, which
means that the subflow process will not be terminated if
this process reaches an end node.

Script Task Represents an action that should be executed in

this ruleflow. An Script Task node should have one
incoming connection and one outgoing connection.

It contains the property "action” which specifies the
action that should be executed. When a Script Task
node is reached in the ruleflow, it will execute the action
and continue with the next node. An action should be
specified as a piece of (valid) MVEL code.

4.3. The Rule Editor

The Rule editor works on files that have a . dr| (or . rul e in the case of spreading rules across
multiple rule files) extension.

31

Chapter 4. Editors

i) sample.drl &3

package com.sample
= import com.sample.DroolsTest.Message;

=rule "Hello World"

when
m : Message(status == Message.HELLO, myMessage : m

then
System.out.println(myMessage);
m.setMessage("Goodbye cruel world");
m.setStatus(Message.GOODBYE);
update(m);

end

= rule "GoodBye"
when
Message(status == Message.GOODBYE, myMessage : mes
then
System.out.println(myMessage);
end|

Figur
Text Editor | Rete Tree

32

Content Assist

The editor follows the pattern of a normal text editor in eclipse, with all the normal features of a
text editor:

e Section 4.3.1, “Content Assist”
e Section 4.3.2, “Code Folding”

« Section 4.3.3, “Synchronization with Outline View”

4.3.1. Content Assist

While working in the Rule editor you can get a content assistance the usual way by pressing
Ctrl+Space.

Content Assist shows all possible keywords for the current cursor position.

i .

2 package 51 Navgato| = O () ssampleatzn
T‘QV package com.sample
v (2 TestDrools “import com.sample.DroolsTest.Massage;
= @ srcfmainfjava
¥ & com sample e s ———
b [DroclsTest java dialect *ravels ge : message |
{) sample.drl function
i) TestRule.drl global
b mhJRE Systern Library [java-15. import
b @i Drools Library package
b s | query
rule : message)
termplate
| -
AT [3) | Text Editor | Rete Tree

Figure 4.10. Content Assist Demonstration

Content Assist inside of the Message suggests all available fields.

33

Chapter 4. Editors

E

package com.sample El
“import com.sample.DroolsTest. Message;

“rule "Hello World®
when
m : Message()
then o class
System.out.pr
m.setMessage(| @ hashCode
m.setStatus(| 5 message

updatel m }; =

@ this

“rule "GoodBye"® .
when @ toStnng
Message(stat

then
System.out.pr

end

(=] Il [+]
Text Editor | Rete Tree

Figure 4.11. Content Assist Demonstration

4.3.2. Code Folding

Code folding is also available in the Rule editor. To hide and show sections of the file use the
icons with minus and plus on the left vertical line of the editor.

34

Synchronization with Outline View

9 TestRule.drl & *test.dsl = *ruleflow.rf 9-) Sample.drl &

package com.sample

~import com.sample.DroolsTest.Message;

@ rule "Hello World"[]
end| |

#irule "GoodBye"
when
Message(status == Message.GOODBYE, myMessage : me:

then
System.out.println(myMessage);

end

[| 11
Text Editor | Rete Tree

Figure 4.12. Code Folding

4.3.3. Synchronization with Outline View

The Rule editor works in synchronization with the Outline view which shows the structure of the
rules, imports in the file and also globals and functions if the file has them.

35

Chapter 4. Editors

4} TestRule.drl (ﬁ?} *test.dsl (ﬂﬁ *ruleflow.rf (‘E} sample.drl &2

package com.sample

CE 1 JaMcom. sample.DroolsTest.Messagef

=rule "Hello World"
when
m : Message(status == Message.HELLO, myMessage : me
then
System.out.println(myMessage);
m.setMessage("Goodbye cruel world");
m.setStatus(Message.GOODBYE);
update(m);

end

= rule "GoodBye"
when
Message(status == Message.GOODBYE, myMessage : mess
then
System.out.println(myMessage);
end

4
Text Editnr‘ Rete Tree‘

Figure 4.13. Synchronization with Outline View

The view is updated on save. It provides a quick way of navigating around rules by names in a
file which may have hundreds of rules. The items are sorted alphabetically by default.

36

The Rete Tree View

4.3.4. The Rete Tree View

The Rete Tree view shows you the current Rete Network for your . dr | file. Just click on the Rete
Tree tab at the bottom of the Rule editor.

37

Chapter 4. Editors

4:) TestRule.drl & *test.dsl =2 *ruleflow.rf 9 Sample.drl &

O

Figure 4.14. Rete Tree
Text Editor Rete Tree

38

The Rete Tree View

Afterwards you can generate the current Rete Network visualization. You can push and pull the
nodes to arrange your optimal network overview.

If you have a large number of nodes, select some of them with a frame. Then you can pull groups
of them.

39

Chapter 4. Editors

4-) TestRule.drl & *test.dsl =2 *ruleflow.rf 4-) Sample.drl &

O

Figure 4.15. Selecting the nodes in the Rete Tree with Frame
Text Editor Rete Tree

40

The Rete Tree View

You can zoom in and out the Rete tree in case not all nodes are shown in the current view. For
this use the combobox or + and - icons on the toolbar.

41

Chapter 4. Editors

File Edit Navigate Search Project Run Window Help

jev i me|ov | ovar |#e @ &9 e

o

[Package Explorer 23 . = Navigatﬂrw = O

{;) TestRule.drl (ﬁé *

= =

+ iz= TestDrools
- @ src/main/java
< com.sample
b [J) DroolsTest.java
- ##sro/main/rules
{;) TestRule.drl
D =i JRE System Library [jdk1.6.0 22]
b =i Drools Library
b G src

Figure 4.16. Rete Tree Zooming

The Rete Tree View

.

We hope, this guide helped you to get started with the JBoss BPMN Convert module. For

additional information you are welcome on JBoss forum [http://www.jboss.com/index.html|?
module=bb&op=viewforum&f=201].

43

http://www.jboss.com/index.html?module=bb&op=viewforum&f=201
http://www.jboss.com/index.html?module=bb&op=viewforum&f=201
http://www.jboss.com/index.html?module=bb&op=viewforum&f=201

44

	Drools Tools Reference Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is Drools?
	1.2. Drools Tools Key Features
	1.3. Other relevant resources on the topic

	Chapter 2. Creating a New Drools Project
	2.1. Creating a Sample Drools Project
	2.2. Drools Project Structure Overview
	2.3. Creating a New Rule

	Chapter 3. Debugging rules
	3.1. Creating Breakpoints
	3.2. Debugging

	Chapter 4. Editors
	4.1. DSL Editor
	4.1.1. Edit language mapping Wizard
	4.1.2. Add language mapping Wizard

	4.2. Flow Editor
	4.2.1. Different types of control elements in Flow Palette
	4.2.2. Different types of nodes in Flow Palette

	4.3. The Rule Editor
	4.3.1. Content Assist
	4.3.2. Code Folding
	4.3.3. Synchronization with Outline View
	4.3.4. The Rete Tree View

