
Web Beans: Java Contexts

and Dependency Injection

The new standard

for dependency

injection and contextual

state management

Gavin King

JSR-299 specification lead

Red Hat Middleware LLC

Pete Muir

Web Beans (JSR-299 Reference Implementation) lead

Red Hat Middleware LLC

David Allen

Italian Translation: Nicola Benaglia, Francesco Milesi

Spanish Translation: Gladys Guerrero

Red Hat Middleware LLC

Korean Translation: Eun-Ju Ki,

Web Beans: Java Contexts and ...

Red Hat Middleware LLC

Traditional Chinese Translation: Terry Chuang

Red Hat Middleware LLC

Simplified Chinese Translation: Sean Wu

Kava Community

iii

Note .. vii

I. Using contextual objects ... 1

1. Getting started with Web Beans .. 3

1.1. Your first Web Bean ... 3

1.2. What is a Web Bean? ... 5

1.2.1. API types, binding types and dependency injection 6

1.2.2. Deployment types .. 7

1.2.3. Scope .. 8

1.2.4. Web Bean names and Unified EL ... 8

1.2.5. Interceptor binding types .. 9

1.3. What kinds of objects can be Web Beans? ... 9

1.3.1. Simple Web Beans .. 9

1.3.2. Enterprise Web Beans .. 10

1.3.3. Producer methods .. 11

1.3.4. JMS endpoints ... 12

2. JSF web application example .. 13

3. Web Beans, the Reference Implementation of JSR-299 17

3.1. Using JBoss AS 5 ... 17

3.2. Using Apache Tomcat 6.0 ... 19

3.3. Using GlassFish .. 20

3.4. The numberguess example ... 20

3.4.1. The numberguess example for Tomcat .. 27

3.5. The translator example .. 28

4. Dependency injection .. 33

4.1. Binding annotations ... 35

4.1.1. Binding annotations with members .. 36

4.1.2. Combinations of binding annnotations .. 36

4.1.3. Binding annotations and producer methods 37

4.1.4. The default binding type ... 37

4.2. Deployment types ... 37

4.2.1. Enabling deployment types ... 38

4.2.2. Deployment type precedence .. 39

4.2.3. Example deployment types ... 39

4.3. Fixing unsatisfied dependencies ... 40

4.4. Client proxies .. 40

4.5. Obtaining a Web Bean by programatic lookup .. 41

4.6. Lifecycle callbacks, @Resource, @EJB and @PersistenceContext 42

4.7. The InjectionPoint object .. 42

5. Scopes and contexts ... 45

5.1. Scope types ... 45

5.2. Built-in scopes .. 45

5.3. The conversation scope .. 46

5.3.1. Conversation demarcation .. 47

5.3.2. Conversation propagation ... 48

Web Beans: Java Contexts and ...

iv

5.3.3. Conversation timeout .. 48

5.4. The dependent pseudo-scope .. 48

5.4.1. The @New annotation ... 49

6. Producer methods ... 51

6.1. Scope of a producer method ... 52

6.2. Injection into producer methods ... 52

6.3. Use of @New with producer methods ... 53

II. Developing loosely-coupled code .. 55

7. Interceptors .. 57

7.1. Interceptor bindings ... 57

7.2. Implementing interceptors .. 58

7.3. Enabling interceptors ... 58

7.4. Interceptor bindings with members ... 59

7.5. Multiple interceptor binding annotations .. 60

7.6. Interceptor binding type inheritance .. 61

7.7. Use of @Interceptors .. 62

8. Decorators ... 63

8.1. Delegate attributes .. 64

8.2. Enabling decorators .. 64

9. Events .. 67

9.1. Event observers .. 67

9.2. Event producers .. 68

9.3. Registering observers dynamically ... 69

9.4. Event bindings with members .. 69

9.5. Multiple event bindings .. 70

9.6. Transactional observers .. 71

III. Making the most of strong typing ... 75

10. Stereotypes .. 77

10.1. Default scope and deployment type for a stereotype 77

10.2. Restricting scope and type with a stereotype .. 78

10.3. Interceptor bindings for stereotypes .. 79

10.4. Name defaulting with stereotypes ... 79

10.5. Standard stereotypes .. 80

11. Specialization ... 81

11.1. Using specialization ... 82

11.2. Advantages of specialization .. 82

12. Defining Web Beans using XML .. 85

12.1. Declaring Web Bean classes ... 85

12.2. Declaring Web Bean metadata .. 86

12.3. Declaring Web Bean members .. 87

12.4. Declaring inline Web Beans ... 87

12.5. Using a schema .. 88

IV. Web Beans and the Java EE ecosystem ... 89

13. Java EE integration .. 91

v

13.1. Injecting Java EE resources into a Web Bean ... 91

13.2. Calling a Web Bean from a Servlet .. 92

13.3. Calling a Web Bean from a Message-Driven Bean 92

13.4. JMS endpoints .. 93

13.5. Packaging and deployment .. 94

14. Extending Web Beans .. 95

14.1. The Manager object ... 95

14.2. The Bean class ... 96

14.3. The Context interface ... 97

15. Next steps .. 99

V. Web Beans Reference ... 101

16. Application Servers and environments supported by Web Beans 103

16.1. Using Web Beans with JBoss AS ... 103

16.2. Glassfish ... 103

16.3. Tomcat (or any plain Servlet container) ... 103

16.4. Java SE .. 105

16.4.1. Web Beans SE Module ... 105

17. JSR-299 extensions available as part of Web Beans 109

17.1. Web Beans Logger ... 109

17.2. XSD Generator for JSR-299 XML deployment descriptors 109

A. Integrating the Web Beans RI into other environments ... 111

A.1. The Web Beans RI SPI .. 111

A.1.1. Web Bean Discovery .. 111

A.1.2. EJB services .. 112

A.1.3. JPA services .. 114

A.1.4. Transaction Services .. 114

A.1.5. The application context ... 115

A.1.6. Bootstrap and shutdown ... 115

A.1.7. JNDI .. 116

A.1.8. Resource loading ... 116

A.1.9. Servlet injection ... 117

A.2. The contract with the container .. 117

vi

vii

Note

JSR-299 has recently changed its name from "Web Beans" to "Java Contexts and Dependency

Injection". The reference guide still refers to JSR-299 as "Web Beans" and the JSR-299 Reference

Implementation as the "Web Beans RI". Other documentation, blogs, forum posts etc. may use the

new nomenclature, including the new name for the JSR-299 Reference Implementation - "Web

Beans".

You'll also find that some of the more recent functionality to be specified is missing (such as

producer fields, realization, asynchronous events, XML mapping of EE resources).

viii

Part I. Using contextual objects
The Web Beans (JSR-299) specification defines a set of services for the Java EE environment

that makes applications much easier to develop. Web Beans layers an enhanced lifecycle and

interaction model over existing Java component types including JavaBeans and Enterprise Java

Beans. As a complement to the traditional Java EE programming model, the Web Beans services

provide:

• an improved lifecycle for stateful components, bound to well-defined contexts,

• a typesafe approach to dependency injection,

• interaction via an event notification facility, and

• a better approach to binding interceptors to components, along with a new kind of interceptor,

called a decorator, that is more appropriate for use in solving business problems.

Dependency injection, together with contextual lifecycle management, saves the user of an

unfamiliar API from having to ask and answer the following questions:

• what is the lifecycle of this object?

• how many simultaneous clients can it have?

• is it multithreaded?

• where can I get one from?

• do I need to explicitly destroy it?

• where should I keep my reference to it when I'm not using it directly?

• how can I add an indirection layer, so that the implementation of this object can vary at

deployment time?

• how should I go about sharing this object between other objects?

A Web Bean specifies only the type and semantics of other Web Beans it depends upon. It need

not be aware of the actual lifecycle, concrete implementation, threading model or other clients of

any Web Bean it depends upon. Even better, the concrete implementation, lifecycle and threading

model of a Web Bean it depends upon may vary according to the deployment scenario, without

affecting any client.

Events, interceptors and decorators enhance the loose-coupling that is inherent in this model:

• event notifications decouple event producers from event consumers,

• interceptors decouple technical concerns from business logic, and

Part I. Using contextual objects

• decorators allow business concerns to be compartmentalized.

Most importantly, Web Beans provides all these facilities in a typesafe way. Web Beans never

uses string-based identifiers to determine how collaborating objects fit together. And XML, though

it remains an option, is rarely used. Instead, Web Beans uses the typing information that is already

available in the Java object model, together with a new pattern, called binding annotations, to

wire together Web Beans, their dependencies, their interceptors and decorators and their event

consumers.

The Web Beans services are general and apply to the following types of components that exist

in the Java EE environment:

• all JavaBeans,

• all EJBs, and

• all Servlets.

Web Beans even provides the necessary integration points so that other kinds of components

defined by future Java EE specifications or by non-standard frameworks may be cleanly integrated

with Web Beans, take advantage of the Web Beans services, and interact with any other kind

of Web Bean.

Web Beans was influenced by a number of existing Java frameworks, including Seam, Guice

and Spring. However, Web Beans has its own very distinct character: more typesafe than Seam,

more stateful and less XML-centric than Spring, more web and enterprise-application capable

than Guice.

Most importantly, Web Beans is a JCP standard that integrates cleanly with Java EE, and with

any Java SE environment where embeddable EJB Lite is available.

Chapter 1.

3

Getting started with Web Beans
So you're already keen to get started writing your first Web Bean? Or perhaps you're skeptical,

wondering what kinds of hoops the Web Beans specification will make you jump through! The

good news is that you've probably already written and used hundreds, perhaps thousands of Web

Beans. You might not even remember the first Web Bean you wrote.

1.1. Your first Web Bean

With certain, very special exceptions, every Java class with a constructor that accepts no

parameters is a Web Bean. That includes every JavaBean. Furthermore, every EJB 3-style

session bean is a Web Bean. Sure, the JavaBeans and EJBs you've been writing every day have

not been able to take advantage of the new services defined by the Web Beans specification, but

you'll be able to use every one of them as Web Beans # injecting them into other Web Beans,

configuring them via the Web Beans XML configuration facility, even adding interceptors and

decorators to them # without touching your existing code.

Suppose that we have two existing Java classes, that we've been using for years in various

applications. The first class parses a string into a list of sentences:

public class SentenceParser {

 public List<String> parse(String text) { ... }

}

The second existing class is a stateless session bean front-end for an external system that is able

to translate sentences from one language to another:

@Stateless

public class SentenceTranslator implements Translator {

 public String translate(String sentence) { ... }

}

Where Translator is the local interface:

@Local

public interface Translator {

 public String translate(String sentence);

}

Chapter 1. Getting started wi...

4

Unfortunately, we don't have a preexisting class that translates whole text documents. So let's

write a Web Bean that does this job:

public class TextTranslator {

 private SentenceParser sentenceParser;

 private Translator sentenceTranslator;

 @Initializer

 TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {

 this.sentenceParser = sentenceParser;

 this.sentenceTranslator = sentenceTranslator;

 }

 public String translate(String text) {

 StringBuilder sb = new StringBuilder();

 for (String sentence: sentenceParser.parse(text)) {

 sb.append(sentenceTranslator.translate(sentence));

 }

 return sb.toString();

 }

}

We may obtain an instance of TextTranslator by injecting it into a Web Bean, Servlet or EJB:

@Initializer

public setTextTranslator(TextTranslator textTranslator) {

 this.textTranslator = textTranslator;

}

Alternatively, we may obtain an instance by directly calling a method of the Web Bean manager:

TextTranslator tt = manager.getInstanceByType(TextTranslator.class);

But wait: TextTranslator does not have a constructor with no parameters! Is it still a Web Bean?

Well, a class that does not have a constructor with no parameters can still be a Web Bean if it

has a constructor annotated @Initializer.

As you've guessed, the @Initializer annotation has something to do with dependency injection!

@Initializer may be applied to a constructor or method of a Web Bean, and tells the Web Bean

What is a Web Bean?

5

manager to call that constructor or method when instantiating the Web Bean. The Web Bean

manager will inject other Web Beans to the parameters of the constructor or method.

At system initialization time, the Web Bean manager must validate that exactly one Web Bean

exists which satisfies each injection point. In our example, if no implementation of Translator

available # if the SentenceTranslator EJB was not deployed # the Web Bean manager would

throw an UnsatisfiedDependencyException. If more than one implementation of Translator

was available, the Web Bean manager would throw an AmbiguousDependencyException.

1.2. What is a Web Bean?

So what, exactly, is a Web Bean?

A Web Bean is an application class that contains business logic. A Web Bean may be called

directly from Java code, or it may be invoked via Unified EL. A Web Bean may access transactional

resources. Dependencies between Web Beans are managed automatically by the Web Bean

manager. Most Web Beans are stateful and contextual. The lifecycle of a Web Bean is always

managed by the Web Bean manager.

Let's back up a second. What does it really mean to be "contextual"? Since Web Beans may be

stateful, it matters which bean instance I have. Unlike a stateless component model (for example,

stateless session beans) or a singleton component model (such as servlets, or singleton beans),

different clients of a Web Bean see the Web Bean in different states. The client-visible state

depends upon which instance of the Web Bean the client has a reference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does

not control the lifecycle of the instance by explicitly creating and destroying it. Instead, the scope

of the Web Bean determines:

• the lifecycle of each instance of the Web Bean and

• which clients share a reference to a particular instance of the Web Bean.

For a given thread in a Web Beans application, there may be an active context associated with

the scope of the Web Bean. This context may be unique to the thread (for example, if the Web

Bean is request scoped), or it may be shared with certain other threads (for example, if the Web

Bean is session scoped) or even all other threads (if it is application scoped).

Clients (for example, other Web Beans) executing in the same context will see the same instance

of the Web Bean. But clients in a different context will see a different instance.

One great advantage of the contextual model is that it allows stateful Web Beans to be treated like

services! The client need not concern itself with managing the lifecycle of the Web Bean it is using,

nor does it even need to know what that lifecyle is. Web Beans interact by passing messages,

and the Web Bean implementations define the lifecycle of their own state. The Web Beans are

loosely coupled because:

• they interact via well-defined public APIs

Chapter 1. Getting started wi...

6

• their lifecycles are completely decoupled

We can replace one Web Bean with a different Web Bean that implements the same API and

has a different lifecycle (a different scope) without affecting the other Web Bean implementation.

In fact, Web Beans defines a sophisticated facility for overriding Web Bean implementations at

deployment time, as we will see in Section 4.2, “Deployment types”.

Note that not all clients of a Web Bean are Web Beans. Other objects such as Servlets or Message-

Driven Beans # which are by nature not injectable, contextual objects # may also obtain references

to Web Beans by injection.

Enough hand-waving. More formally, according to the spec:

A Web Bean comprises:

• A (nonempty) set of API types

• A (nonempty) set of binding annotation types

• A scope

• A deployment type

• Optionally, a Web Bean name

• A set of interceptor binding types

• A Web Bean implementation

Let's see what some of these terms mean, to the Web Bean developer.

1.2.1. API types, binding types and dependency injection

Web Beans usually acquire references to other Web Beans via dependency injection. Any injected

attribute specifies a "contract" that must be satisfied by the Web Bean to be injected. The contract

is:

• an API type, together with

• a set of binding types.

An API is a user-defined class or interface. (If the Web Bean is an EJB session bean, the API type

is the @Local interface or bean-class local view). A binding type represents some client-visible

semantic that is satisfied by some implementations of the API and not by others.

Binding types are represented by user-defined annotations that are themselves annotated

@BindingType. For example, the following injection point has API type PaymentProcessor and

binding type @CreditCard:

@CreditCard PaymentProcessor paymentProcessor

Deployment types

7

If no binding type is explicitly specified at an injection point, the default binding type @Current

is assumed.

For each injection point, the Web Bean manager searches for a Web Bean which satisfies the

contract (implements the API, and has all the binding types), and injects that Web Bean.

The following Web Bean has the binding type @CreditCard and implements the API type

PaymentProcessor. It could therefore be injected to the example injection point:

@CreditCard

public class CreditCardPaymentProcessor

 implements PaymentProcessor { ... }

If a Web Bean does not explicitly specify a set of binding types, it has exactly one binding type:

the default binding type @Current.

Web Beans defines a sophisticated but intuitive resolution algorithm that helps the container

decide what to do if there is more than one Web Bean that satisfies a particular contract. We'll get

into the details in Chapter 4, Dependency injection.

1.2.2. Deployment types

Deployment types let us classify our Web Beans by deployment scenario. A deployment type is

an annotation that represents a particular deployment scenario, for example @Mock, @Staging or

@AustralianTaxLaw. We apply the annotation to Web Beans which should be deployed in that

scenario. A deployment type allows a whole set of Web Beans to be conditionally deployed, with

a just single line of configuration.

Many Web Beans just use the default deployment type @Production, in which case no deployment

type need be explicitly specified. All three Web Bean in our example have the deployment type

@Production.

In a testing environment, we might want to replace the SentenceTranslator Web Bean with a

"mock object":

@Mock

public class MockSentenceTranslator implements Translator {

 public String translate(String sentence) {

 return "Lorem ipsum dolor sit amet";

 }

}

We would enable the deployment type @Mock in our testing environment, to indicate that

MockSentenceTranslator and any other Web Bean annotated @Mock should be used.

Chapter 1. Getting started wi...

8

We'll talk more about this unique and powerful feature in Section 4.2, “Deployment types”.

1.2.3. Scope

The scope defines the lifecycle and visibility of instances of the Web Bean. The Web Beans context

model is extensible, accommodating arbitrary scopes. However, certain important scopes are

built-in to the specification, and provided by the Web Bean manager. A scope is represented by

an annotation type.

For example, any web application may have session scoped Web Beans:

@SessionScoped

public class ShoppingCart { ... }

An instance of a session scoped Web Bean is bound to a user session and is shared by all requests

that execute in the context of that session.

By default, Web Beans belong to a special scope called the dependent pseudo-scope. Web Beans

with this scope are pure dependent objects of the object into which they are injected, and their

lifecycle is bound to the lifecycle of that object.

We'll talk more about scopes in Chapter 5, Scopes and contexts.

1.2.4. Web Bean names and Unified EL

A Web Bean may have a name, allowing it to be used in Unified EL expressions. It's easy to

specify the name of a Web Bean:

@SessionScoped @Named("cart")

public class ShoppingCart { ... }

Now we can easily use the Web Bean in any JSF or JSP page:

<h:dataTable value="#{cart.lineItems}" var="item">

</h:dataTable>

It's even easier to just let the name be defaulted by the Web Bean manager:

@SessionScoped @Named

public class ShoppingCart { ... }

Interceptor binding types

9

In this case, the name defaults to shoppingCart # the unqualified class name, with the first

character changed to lowercase.

1.2.5. Interceptor binding types

Web Beans supports the interceptor functionality defined by EJB 3, not only for EJB beans,

but also for plain Java classes. In addition, Web Beans provides a new approach to binding

interceptors to EJB beans and other Web Beans.

It remains possible to directly specify the interceptor class via use of the @Interceptors

annotation:

@SessionScoped

@Interceptors(TransactionInterceptor.class)

public class ShoppingCart { ... }

However, it is more elegant, and better practice, to indirect the interceptor binding through an

interceptor binding type:

@SessionScoped @Transactional

public class ShoppingCart { ... }

We'll discuss Web Beans interceptors and decorators in Chapter 7, Interceptors and Chapter 8,

Decorators.

1.3. What kinds of objects can be Web Beans?

We've already seen that JavaBeans, EJBs and some other Java classes can be Web Beans. But

exactly what kinds of objects are Web Beans?

1.3.1. Simple Web Beans

The Web Beans specification says that a concrete Java class is a simple Web Bean if:

• it is not an EE container-managed component, like an EJB, a Servlet or a JPA entity,

• it is not a non-static static inner class,

• it is not a parameterized type, and

• it has a constructor with no parameters, or a constructor annotated @Initializer.

Thus, almost every JavaBean is a simple Web Bean.

Chapter 1. Getting started wi...

10

Every interface implemented directly or indirectly by a simple Web Bean is an API type of the

simple Web Bean. The class and its superclasses are also API types.

1.3.2. Enterprise Web Beans

The specification says that all EJB 3-style session and singleton beans are enterprise Web Beans.

Message driven beans are not Web Beans # since they are not intended to be injected into

other objects # but they can take advantage of most of the functionality of Web Beans, including

dependency injection and interceptors.

Every local interface of an enterprise Web Bean that does not have a wildcard type parameter or

type variable, and every one of its superinterfaces, is an API type of the enterprise Web Bean.

If the EJB bean has a bean class local view, the bean class, and every one of its superclasses,

is also an API type.

Stateful session beans should declare a remove method with no parameters or a remove method

annotated @Destructor. The Web Bean manager calls this method to destroy the stateful session

bean instance at the end of its lifecycle. This method is called the destructor method of the

enterprise Web Bean.

@Stateful @SessionScoped

public class ShoppingCart {

 ...

 @Remove

 public void destroy() {}

}

So when should we use an enterprise Web Bean instead of a simple Web Bean? Well, whenever

we need the advanced enterprise services offered by EJB, such as:

• method-level transaction management and security,

• concurrency management,

• instance-level passivation for stateful session beans and instance-pooling for stateless session

beans,

• remote and web service invocation, and

• timers and asynchronous methods,

we should use an enterprise Web Bean. When we don't need any of these things, a simple Web

Bean will serve just fine.

Producer methods

11

Many Web Beans (including any session or application scoped Web Bean) are available for

concurrent access. Therefore, the concurrency management provided by EJB 3.1 is especially

useful. Most session and application scoped Web Beans should be EJBs.

Web Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit

from the advanced container-managed lifecycle defined by the EJB @Stateless/@Stateful/

@Singleton model, with its support for passivation and instance pooling.

Finally, it's usually obvious when method-level transaction management, method-level security,

timers, remote methods or asynchronous methods are needed.

It's usually easy to start with simple Web Bean, and then turn it into an EJB, just by adding an

annotation: @Stateless, @Stateful or @Singleton.

1.3.3. Producer methods

A producer method is a method that is called by the Web Bean manager to obtain an instance

of the Web Bean when no instance exists in the current context. A producer method lets the

application take full control of the instantiation process, instead of leaving instantiation to the Web

Bean manager. For example:

@ApplicationScoped

public class Generator {

 private Random random = new Random(System.currentTimeMillis());

 @Produces @Random int next() {

 return random.nextInt(100);

 }

}

The result of a producer method is injected just like any other Web Bean.

@Random int randomNumber

The method return type and all interfaces it extends/implements directly or indirectly are API types

of the producer method. If the return type is a class, all superclasses are also API types.

Some producer methods return objects that require explicit destruction:

@Produces @RequestScoped Connection connect(User user) {

 return createConnection(user.getId(), user.getPassword());

Chapter 1. Getting started wi...

12

}

These producer methods may define matching disposal methods:

void close(@Disposes Connection connection) {

 connection.close();

}

This disposal method is called automatically by the Web Bean manager at the end of the request.

We'll talk much more about producer methods in Chapter 6, Producer methods.

1.3.4. JMS endpoints

Finally, a JMS queue or topic can be a Web Bean. Web Beans relieves the developer from the

tedium of managing the lifecycles of all the various JMS objects required to send messages to

queues and topics. We'll discuss JMS endpoints in Section 13.4, “JMS endpoints”.

Chapter 2.

13

JSF web application example
Let's illustrate these ideas with a full example. We're going to implement user login/logout for an

application that uses JSF. First, we'll define a Web Bean to hold the username and password

entered during login:

@Named @RequestScoped

public class Credentials {

 private String username;

 private String password;

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

 public String getPassword() { return password; }

 public void setPassword(String password) { this.password = password; }

}

This Web Bean is bound to the login prompt in the following JSF form:

<h:form>

 <h:panelGrid columns="2" rendered="#{!login.loggedIn}">

 <h:outputLabel for="username">Username:</h:outputLabel>

 <h:inputText id="username" value="#{credentials.username}"/>

 <h:outputLabel for="password">Password:</h:outputLabel>

 <h:inputText id="password" value="#{credentials.password}"/>

 </h:panelGrid>

 <h:commandButton value="Login" action="#{login.login}" rendered="#{!login.loggedIn}"/>

 <h:commandButton value="Logout" acion="#{login.logout}" rendered="#{login.loggedIn}"/>

</h:form>

The actual work is done by a session scoped Web Bean that maintains information about the

currently logged-in user and exposes the User entity to other Web Beans:

@SessionScoped @Named

public class Login {

 @Current Credentials credentials;

Chapter 2. JSF web applicatio...

14

 @PersistenceContext EntityManager userDatabase;

 private User user;

 public void login() {

 List<User> results = userDatabase.createQuery(

 "select u from User u where u.username=:username and u.password=:password")

 .setParameter("username", credentials.getUsername())

 .setParameter("password", credentials.getPassword())

 .getResultList();

 if (!results.isEmpty()) {

 user = results.get(0);

 }

 }

 public void logout() {

 user = null;

 }

 public boolean isLoggedIn() {

 return user!=null;

 }

 @Produces @LoggedIn User getCurrentUser() {

 return user;

 }

}

Of course, @LoggedIn is a binding annotation:

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD})

@BindingType

public @interface LoggedIn {}

Now, any other Web Bean can easily inject the current user:

public class DocumentEditor {

15

 @Current Document document;

 @LoggedIn User currentUser;

 @PersistenceContext EntityManager docDatabase;

 public void save() {

 document.setCreatedBy(currentUser);

 docDatabase.persist(document);

 }

}

Hopefully, this example gives a flavor of the Web Bean programming model. In the next chapter,

we'll explore Web Beans dependency injection in greater depth.

16

Chapter 3.

17

Web Beans, the Reference

Implementation of JSR-299
The Web Beans is being developed at the Seam project [http://seamframework.org/WebBeans].

You can download the latest developer release of Web Beans from the the downloads page [http:/

/seamframework.org/Download].

Web Beans comes with a two deployable example applications: webbeans-numberguess, a war

example, containing only simple beans, and webbeans-translator an ear example, containing

enterprise beans. There are also two variations on the numberguess example, the tomcat example

(suitable for deployment to Tomcat) and the jsf2 example, which you can use if you are running

JSF2. To run the examples you'll need the following:

• the latest release of Web Beans,

• JBoss AS 5.0.1.GA, or

• Apache Tomcat 6.0.x, and

• Ant 1.7.0.

3.1. Using JBoss AS 5

You'll need to download JBoss AS 5.0.1.GA from jboss.org [http://www.jboss.org/jbossas/

downloads/], and unzip it. For example:

$ cd /Applications

$ unzip ~/jboss-5.0.1.GA.zip

Next, download Web Beans from seamframework.org [http://seamframework.org/Download], and

unzip it. For example

$ cd ~/

$ unzip ~/webbeans-$VERSION.zip

Next, we need to tell Web Beans where JBoss is located. Edit jboss-as/build.properties and

set the jboss.home property. For example:

jboss.home=/Applications/jboss-5.0.1.GA

http://seamframework.org/WebBeans
http://seamframework.org/WebBeans
http://seamframework.org/Download
http://seamframework.org/Download
http://seamframework.org/Download
http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/
http://seamframework.org/Download
http://seamframework.org/Download

Chapter 3. Web Beans, the Ref...

18

To install Web Beans, you'll need Ant 1.7.0 installed, and the ANT_HOME environment variable set.

For example:

$ unzip apache-ant-1.7.0.zip

$ export ANT_HOME=~/apache-ant-1.7.0

Then, you can install the update. The update script will use Maven to download Web Beans

automatically.

$ cd webbeans-$VERSION/jboss-as

$ ant update

Now, you're ready to deploy your first example!

Tip

The build scripts for the examples offer a number of targets for JBoss AS, these are:

• ant restart - deploy the example in exploded format

• ant explode - update an exploded example, without restarting the deployment

• ant deploy - deploy the example in compressed jar format

• ant undeploy - remove the example from the server

• ant clean - clean the example

To deploy the numberguess example:

$ cd examples/numberguess

ant deploy

Start JBoss AS:

$ /Application/jboss-5.0.0.GA/bin/run.sh

Using Apache Tomcat 6.0

19

Tip

If you use Windows, use the run.batscript.

Wait for the application to deploy, and enjoy hours of fun at http://localhost:8080/webbeans-

numberguess!

Web Beans includes a second simple example that will translate your text into Latin. The

numberguess example is a war example, and uses only simple beans; the translator example is

an ear example, and includes enterprise beans, packaged in an EJB module. To try it out:

$ cd examples/translator

ant deploy

Wait for the application to deploy, and visit http://localhost:8080/webbeans-translator!

3.2. Using Apache Tomcat 6.0

You'll need to download Tomcat 6.0.18 or later from tomcat.apache.org [http://tomcat.apache.org/

download-60.cgi], and unzip it. For example:

$ cd /Applications

$ unzip ~/apache-tomcat-6.0.18.zip

Next, download Web Beans from seamframework.org [http://seamframework.org/Download], and

unzip it. For example

$ cd ~/

$ unzip ~/webbeans-$VERSION.zip

Next, we need to tell Web Beans where Tomcat is located. Edit jboss-as/build.properties

and set the tomcat.home property. For example:

tomcat.home=/Applications/apache-tomcat-6.0.18

Tip

The build scripts for the examples offer a number of targets for Tomcat, these are:

http://localhost:8080/webbeans-numberguess
http://localhost:8080/webbeans-numberguess
http://localhost:8080/webbeans-translator
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-60.cgi
http://seamframework.org/Download
http://seamframework.org/Download

Chapter 3. Web Beans, the Ref...

20

• ant tomcat.restart - deploy the example in exploded format

• ant tomcat.explode - update an exploded example, without restarting the

deployment

• ant tomcat.deploy - deploy the example in compressed jar format

• ant tomcat.undeploy - remove the example from the server

• ant tomcat.clean - clean the example

To deploy the numberguess example for tomcat:

$ cd examples/tomcat

ant tomcat.deploy

Start Tomcat:

$ /Applications/apache-tomcat-6.0.18/bin/startup.sh

Tip

If you use Windows, use the startup.batscript.

Wait for the application to deploy, and enjoy hours of fun at http://localhost:8080/webbeans-

numberguess!

3.3. Using GlassFish

TODO

3.4. The numberguess example

In the numberguess application you get given 10 attempts to guess a number between 1 and 100.

After each attempt, you will be told whether you are too high, or too low.

The numberguess example is comprised of a number of Web Beans, configuration files, and

Facelet JSF pages, packaged as a war. Let's start with the configuration files.

All the configuration files for this example are located in WEB-INF/, which is stored in WebContent

in the source tree. First, we have faces-config.xml, in which we tell JSF to use Facelets:

http://localhost:8080/webbeans-numberguess
http://localhost:8080/webbeans-numberguess

The numberguess example

21

<?xml version='1.0' encoding='UTF-8'?>

<faces-config version="1.2"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/

javaee/web-facesconfig_1_2.xsd">

 <application>

 <view-handler>com.sun.facelets.FaceletViewHandler</view-handler>

 </application>

</faces-config>

There is an empty web-beans.xml file, which marks this application as a Web Beans application.

Finally there is web.xml:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/

web-app_2_5.xsd">

 <display-name>Web Beans Numbergues example</display-name>

 <!-- JSF -->

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.jsf</url-pattern>

 </servlet-mapping>

 <context-param>

Chapter 3. Web Beans, the Ref...

22

 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>

 <param-value>.xhtml</param-value>

 </context-param>

 <session-config>

 <session-timeout>10</session-timeout>

 </session-config>

</web-app>

Enable and load the JSF servlet

Configure requests to .jsf pages to be handled by JSF

Tell JSF that we will be giving our source files (facelets) an extension of .xhtml

Configure a session timeout of 10 minutes

Note

Whilst this demo is a JSF demo, you can use Web Beans with any Servlet based

web framework.

Let's take a look at the Facelet view:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:s="http://jboss.com/products/seam/taglib">

 <ui:composition template="template.xhtml">

 <ui:define name="content">

 <h1>Guess a number...</h1>

 <h:form id="NumberGuessMain">

 <div style="color: red">

 <h:messages id="messages" globalOnly="false"/>

 <h:outputText id="Higher" value="Higher!" rendered="#{game.number gt game.guess

 and game.guess ne 0}"/>

 <h:outputText id="Lower" value="Lower!" rendered="#{game.number lt game.guess and

 game.guess ne 0}"/>

The numberguess example

23

 </div>

 <div>

 I'm thinking of a number between #{game.smallest} and #{game.bigge st}.

 You have #{game.remainingGuesses} guesses.

 </div>

 <div>

 Your guess:

 <h:inputText id="inputGuess"

 value="#{game.guess}"

 required="true"

 size="3"

 disabled="#{game.number eq game.guess}">

 <f:validateLongRange maximum="#{game.biggest}"

 minimum="#{game.smallest}"/>

 </h:inputText>

 <h:commandButton id="GuessButton"

 value="Guess"

 action="#{game.check}"

 disabled="#{game.number eq game.guess}"/>

 </div>

 <div>

 <h:commandButton id="RestartButton" value="Reset" action="#{game.reset}"

 immediate="true" />

 </div>

 </h:form>

 </ui:define>

 </ui:composition>

</html>

Facelets is a templating language for JSF, here we are wrapping our page in a template

which defines the header.

There are a number of messages which can be sent to the user, "Higher!", "Lower!" and

"Correct!"

As the user guesses, the range of numbers they can guess gets smaller - this sentance

changes to make sure they know what range to guess in.

This input field is bound to a Web Bean, using the value expression.

A range validator is used to make sure the user doesn't accidentally input a number outside

of the range in which they can guess - if the validator wasn't here, the user might use up a

guess on an out of range number.

Chapter 3. Web Beans, the Ref...

24

And, of course, there must be a way for the user to send their guess to the server. Here we

bind to an action method on the Web Bean.

The example exists of 4 classes, the first two of which are binding types. First, there is the @Random

binding type, used for injecting a random number:

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@BindingType

public @interface Random {}

There is also the @MaxNumber binding type, used for injecting the maximum number that can be

injected:

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@BindingType

public @interface MaxNumber {}

The Generator class is responsible for creating the random number, via a producer method. It

also exposes the maximum possible number via a producer method:

@ApplicationScoped

public class Generator {

 private java.util.Random random = new java.util.Random(System.currentTimeMillis());

 private int maxNumber = 100;

 java.util.Random getRandom()

 {

 return random;

 }

 @Produces @Random int next() {

 return getRandom().nextInt(maxNumber);

 }

 @Produces @MaxNumber int getMaxNumber()

The numberguess example

25

 {

 return maxNumber;

 }

}

You'll notice that the Generator is application scoped; therefore we don't get a different random

each time.

The final Web Bean in the application is the session scoped Game.

You'll note that we've used the @Named annotation, so that we can use the bean through EL

in the JSF page. Finally, we've used constructor injection to initialize the game with a random

number. And of course, we need to tell the player when they've won, so we give feedback with

a FacesMessage.

package org.jboss.webbeans.examples.numberguess;

import javax.annotation.PostConstruct;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import javax.webbeans.AnnotationLiteral;

import javax.webbeans.Current;

import javax.webbeans.Initializer;

import javax.webbeans.Named;

import javax.webbeans.SessionScoped;

import javax.webbeans.manager.Manager;

@Named

@SessionScoped

public class Game

{

 private int number;

 private int guess;

 private int smallest;

 private int biggest;

 private int remainingGuesses;

 @Current Manager manager;

 public Game()

 {

Chapter 3. Web Beans, the Ref...

26

 }

 @Initializer

 Game(@MaxNumber int maxNumber)

 {

 this.biggest = maxNumber;

 }

 public int getNumber()

 {

 return number;

 }

 public int getGuess()

 {

 return guess;

 }

 public void setGuess(int guess)

 {

 this.guess = guess;

 }

 public int getSmallest()

 {

 return smallest;

 }

 public int getBiggest()

 {

 return biggest;

 }

 public int getRemainingGuesses()

 {

 return remainingGuesses;

 }

 public String check()

 {

 if (guess>number)

 {

 biggest = guess - 1;

 }

The numberguess example for Tomcat

27

 if (guess<number)

 {

 smallest = guess + 1;

 }

 if (guess == number)

 {

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage("Correct!"));

 }

 remainingGuesses--;

 return null;

 }

 @PostConstruct

 public void reset()

 {

 this.smallest = 0;

 this.guess = 0;

 this.remainingGuesses = 10;

 this.number = manager.getInstanceByType(Integer.class, new

 AnnotationLiteral<Random>(){});

 }

}

3.4.1. The numberguess example for Tomcat

The numberguess for Tomcat differs in a couple of ways. Firstly, Web Beans should be deployed

as a Web Application library in WEB-INF/lib. For your convenience we provide a single jar suitable

for running Web Beans on Tomcat webbeans-tomcat.jar.

Tip

Of course, you must also include JSF and EL, as well common annotations

(jsr250-api.jar) which a JEE server includes by default.

Secondly, we need to explicitly specify the Tomcat servlet listener (used to boot Web Beans, and

control it's interaction with requests) in web.xml:

<listener>

 <listener-class>org.jboss.webbeans.environment.tomcat.Listener</listener-class>

</listener>

Chapter 3. Web Beans, the Ref...

28

3.5. The translator example

The translator example will take any sentences you enter, and translate them to Latin.

The translator example is built as an ear, and contains EJBs. As a result, it's structure is more

complex than the numberguess example.

Note

EJB 3.1 and Jave EE 6 allow you to package EJBs in a war, which will make this

structure much simpler!

First, let's take a look at the ear aggregator, which is located in webbeans-translator-ear

module. Maven automatically generates the application.xml for us:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ear-plugin</artifactId>

 <configuration>

 <modules>

 <webModule>

 <groupId>org.jboss.webbeans.examples.translator</groupId>

 <artifactId>webbeans-translator-war</artifactId>

 <contextRoot>/webbeans-translator</contextRoot>

 </webModule>

 </modules>

 </configuration>

</plugin>

Here we set the context path, which gives us a nice url (http://localhost:8080/webbeans-

translator).

Tip

If you aren't using Maven to generate these files, you would need META-INF/

application.xml:

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://

java.sun.com/xml/ns/javaee/application_5.xsd"

http://localhost:8080/webbeans-translator
http://localhost:8080/webbeans-translator

The translator example

29

 version="5">

 <display-name>webbeans-translator-ear</display-name>

 <description>Ear Example for the reference implementation of JSR 299: Web

 Beans</description>

 <module>

 <web>

 <web-uri>webbeans-translator.war</web-uri>

 <context-root>/webbeans-translator</context-root>

 </web>

 </module>

 <module>

 <ejb>webbeans-translator.jar</ejb>

 </module>

</application>

Next, lets look at the war. Just as in the numberguess example, we have a faces-config.xml

(to enable Facelets) and a web.xml (to enable JSF) in WebContent/WEB-INF.

More intersting is the facelet used to translate text. Just as in the numberguess example we have

a template, which surrounds the form (ommitted here for brevity):

<h:form id="NumberGuessMain">

 <table>

 <tr align="center" style="font-weight: bold" >

 <td>

 Your text

 </td>

 <td>

 Translation

 </td>

 </tr>

 <tr>

 <td>

 <h:inputTextarea id="text" value="#{translator.text}" required="true" rows="5" cols="80" />

 </td>

 <td>

 <h:outputText value="#{translator.translatedText}" />

 </td>

 </tr>

 </table>

 <div>

Chapter 3. Web Beans, the Ref...

30

 <h:commandButton id="button" value="Translate" action="#{translator.translate}"/>

 </div>

</h:form>

The user can enter some text in the lefthand textarea, and hit the translate button to see the result

to the right.

Finally, let's look at the ejb module, webbeans-translator-ejb. In src/main/resources/META-

INF there is just an empty web-beans.xml, used to mark the archive as containing Web Beans.

We've saved the most interesting bit to last, the code! The project has two simple beans,

SentenceParser and TextTranslator and two enterprise beans, TranslatorControllerBean

and SentenceTranslator. You should be getting quite familiar with what a Web Bean looks like

by now, so we'll just highlight the most interesting bits here.

Both SentenceParser and TextTranslator are dependent beans, and TextTranslator uses

constructor initialization:

public class TextTranslator {

 private SentenceParser sentenceParser;

 private Translator sentenceTranslator;

 @Initializer

 TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator)

 {

 this.sentenceParser = sentenceParser;

 this.sentenceTranslator = sentenceTranslator;

TextTranslator is a stateless bean (with a local business interface), where the magic happens

- of course, we couldn't develop a full translator, but we gave it a good go!

Finally, there is UI orientated controller, that collects the text from the user, and dispatches it to the

translator. This is a request scoped, named, stateful session bean, which injects the translator.

@Stateful

@RequestScoped

@Named("translator")

public class TranslatorControllerBean implements TranslatorController

{

 @Current TextTranslator translator;

The translator example

31

The bean also has getters and setters for all the fields on the page.

As this is a stateful session bean, we have to have a remove method:

 @Remove

 public void remove()

 {

 }

The Web Beans manager will call the remove method for you when the bean is destroyed; in this

case at the end of the request.

That concludes our short tour of the Web Beans examples. For more on Web Beans , or to help

out, please visit http://www.seamframework.org/WebBeans/Development.

We need help in all areas - bug fixing, writing new features, writing examples and translating this

reference guide.

http://www.seamframework.org/WebBeans/Development

32

Chapter 4.

33

Dependency injection
Web Beans supports three primary mechanisms for dependency injection:

Constructor parameter injection:

public class Checkout {

 private final ShoppingCart cart;

 @Initializer

 public Checkout(ShoppingCart cart) {

 this.cart = cart;

 }

}

Initializer method parameter injection:

public class Checkout {

 private ShoppingCart cart;

 @Initializer

 void setShoppingCart(ShoppingCart cart) {

 this.cart = cart;

 }

}

And direct field injection:

public class Checkout {

 private @Current ShoppingCart cart;

}

Dependency injection always occurs when the Web Bean instance is first instantiated.

Chapter 4. Dependency injection

34

• First, the Web Bean manager calls the Web Bean constructor, to obtain an instance of the Web

Bean.

• Next, the Web Bean manager initializes the values of all injected fields of the Web Bean.

• Next, the Web Bean manager calls all initializer methods of Web Bean.

• Finally, the @PostConstruct method of the Web Bean, if any, is called.

Constructor parameter injection is not supported for EJB beans, since the EJB is instantiated by

the EJB container, not the Web Bean manager.

Parameters of constructors and initializer methods need not be explicitly annotated when the

default binding type @Current applies. Injected fields, however, must specify a binding type, even

when the default binding type applies. If the field does not specify a binding type, it will not be

injected.

Producer methods also support parameter injection:

@Produces Checkout createCheckout(ShoppingCart cart) {

 return new Checkout(cart);

}

Finally, observer methods (which we'll meet in Chapter 9, Events), disposal methods and

destructor methods all support parameter injection.

The Web Beans specification defines a procedure, called the typesafe resolution algorithm,

that the Web Bean manager follows when identifying the Web Bean to inject to an injection

point. This algorithm looks complex at first, but once you understand it, it's really quite intuitive.

Typesafe resolution is performed at system initialization time, which means that the manager will

inform the user immediately if a Web Bean's dependencies cannot be satisfied, by throwing a

UnsatisfiedDependencyException or AmbiguousDependencyException.

The purpose of this algorithm is to allow multiple Web Beans to implement the same API type

and either:

• allow the client to select which implementation it requires using binding annotations,

• allow the application deployer to select which implementation is appropriate for a particular

deployment, without changes to the client, by enabling or disabling deployment types, or

• allow one implementation of an API to override another implementation of the same API at

deployment time, without changes to the client, using deployment type precedence.

Let's explore how the Web Beans manager determines a Web Bean to be injected.

Binding annotations

35

4.1. Binding annotations

If we have more than one Web Bean that implements a particular API type, the injection point

can specify exactly which Web Bean should be injected using a binding annotation. For example,

there might be two implementations of PaymentProcessor:

@PayByCheque

public class ChequePaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

@PayByCreditCard

public class CreditCardPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

Where @PayByCheque and @PayByCreditCard are binding annotations:

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

@BindingType

public @interface PayByCheque {}

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

@BindingType

public @interface PayByCreditCard {}

A client Web Bean developer uses the binding annotation to specify exactly which Web Bean

should be injected.

Using field injection:

@PayByCheque PaymentProcessor chequePaymentProcessor;

@PayByCreditCard PaymentProcessor creditCardPaymentProcessor;

Using initializer method injection:

Chapter 4. Dependency injection

36

@Initializer

public void setPaymentProcessors(@PayByCheque PaymentProcessor

 chequePaymentProcessor,

 @PayByCreditCard PaymentProcessor creditCardPaymentProcessor) {

 this.chequePaymentProcessor = chequePaymentProcessor;

 this.creditCardPaymentProcessor = creditCardPaymentProcessor;

}

Or using constructor injection:

@Initializer

public Checkout(@PayByCheque PaymentProcessor chequePaymentProcessor,

 @PayByCreditCard PaymentProcessor creditCardPaymentProcessor) {

 this.chequePaymentProcessor = chequePaymentProcessor;

 this.creditCardPaymentProcessor = creditCardPaymentProcessor;

}

4.1.1. Binding annotations with members

Binding annotations may have members:

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

@BindingType

public @interface PayBy {

 PaymentType value();

}

In which case, the member value is significant:

@PayBy(CHEQUE) PaymentProcessor chequePaymentProcessor;

@PayBy(CREDIT_CARD) PaymentProcessor creditCardPaymentProcessor;

You can tell the Web Bean manager to ignore a member of a binding annotation type by annotating

the member @NonBinding.

4.1.2. Combinations of binding annnotations

An injection point may even specify multiple binding annotations:

Binding annotations and producer methods

37

@Asynchronous @PayByCheque PaymentProcessor paymentProcessor

In this case, only a Web Bean which has both binding annotations would be eligible for injection.

4.1.3. Binding annotations and producer methods

Even producer methods may specify binding annotations:

@Produces

@Asynchronous @PayByCheque

PaymentProcessor createAsyncPaymentProcessor(@PayByCheque PaymentProcessor

 processor) {

 return new AsynchronousPaymentProcessor(processor);

}

4.1.4. The default binding type

Web Beans defines a binding type @Current that is the default binding type for any injection point

or Web Bean that does not explicitly specify a binding type.

There are two common circumstances in which it is necessary to explicitly specify @Current:

• on a field, in order to declare it as an injected field with the default binding type, and

• on a Web Bean which has another binding type in addition to the default binding type.

4.2. Deployment types

All Web Beans have a deployment type. Each deployment type identifies a set of Web Beans that

should be conditionally installed in some deployments of the system.

For example, we could define a deployment type named @Mock, which would identify Web Beans

that should only be installed when the system executes inside an integration testing environment:

@Retention(RUNTIME)

 @Target({TYPE, METHOD})

 @DeploymentType

 public @interface Mock {}

Suppose we had some Web Bean that interacted with an external system to process payments:

Chapter 4. Dependency injection

38

public class ExternalPaymentProcessor {

 public void process(Payment p) {

 ...

 }

}

Since this Web Bean does not explicitly specify a deployment type, it has the default deployment

type @Production.

For integration or unit testing, the external system is slow or unavailable. So we would create a

mock object:

@Mock

public class MockPaymentProcessor implements PaymentProcessor {

 @Override

 public void process(Payment p) {

 p.setSuccessful(true);

 }

}

But how does the Web Bean manager determine which implementation to use in a particular

deployment?

4.2.1. Enabling deployment types

Web Beans defines two built-in deployment types: @Production and @Standard. By default, only

Web Beans with the built-in deployment types are enabled when the system is deployed. We can

identify additional deployment types to be enabled in a particular deployment by listing them in

web-beans.xml.

Going back to our example, when we deploy our integration tests, we want all our @Mock objects

to be installed:

<WebBeans>

 <Deploy>

 <Standard/>

 <Production/>

 <test:Mock/>

Deployment type precedence

39

 </Deploy>

</WebBeans>

Now the Web Bean manager will identify and install all Web Beans annotated @Production,

@Standard or @Mock at deployment time.

The deployment type @Standard is used only for certain special Web Beans defined by the Web

Beans specification. We can't use it for our own Web Beans, and we can't disable it.

The deployment type @Production is the default deployment type for Web Beans which don't

explicitly declare a deployment type, and may be disabled.

4.2.2. Deployment type precedence

If you've been paying attention, you're probably wondering how the Web Bean manager decides

which implementation # ExternalPaymentProcessor or MockPaymentProcessor # to choose.

Consider what happens when the manager encounters this injection point:

@Current PaymentProcessor paymentProcessor

There are now two Web Beans which satisfy the PaymentProcessor contract. Of course, we

can't use a binding annotation to disambiguate, since binding annotations are hard-coded into the

source at the injection point, and we want the manager to be able to decide at deployment time!

The solution to this problem is that each deployment type has a different precedence. The

precedence of the deployment types is determined by the order in which they appear in web-

beans.xml. In our example, @Mock appears later than @Production so it has a higher precedence.

Whenever the manager discovers that more than one Web Bean could satisfy the contract

(API type plus binding annotations) specified by an injection point, it considers the relative

precedence of the Web Beans. If one has a higher precedence than the others, it chooses the

higher precedence Web Bean to inject. So, in our example, the Web Bean manager will inject

MockPaymentProcessor when executing in our integration testing environment (which is exactly

what we want).

It's interesting to compare this facility to today's popular manager architectures. Various

"lightweight" containers also allow conditional deployment of classes that exist in the classpath,

but the classes that are to be deployed must be explicity, individually, listed in configuration code

or in some XML configuration file. Web Beans does support Web Bean definition and configuration

via XML, but in the common case where no complex configuration is required, deployment types

allow a whole set of Web Beans to be enabled with a single line of XML. Meanwhile, a developer

browsing the code can easily identify what deployment scenarios the Web Bean will be used in.

4.2.3. Example deployment types

Deployment types are useful for all kinds of things, here's some examples:

Chapter 4. Dependency injection

40

• @Mock and @Staging deployment types for testing

• @AustralianTaxLaw for site-specific Web Beans

• @SeamFramework, @Guice for third-party frameworks which build on Web Beans

• @Standard for standard Web Beans defined by the Web Beans specification

I'm sure you can think of more applications...

4.3. Fixing unsatisfied dependencies

The typesafe resolution algorithm fails when, after considering the binding annotations and and

deployment types of all Web Beans that implement the API type of an injection point, the Web

Bean manager is unable to identify exactly one Web Bean to inject.

It's usually easy to fix an UnsatisfiedDependencyException or

AmbiguousDependencyException.

To fix an UnsatisfiedDependencyException, simply provide a Web Bean which implements the

API type and has the binding types of the injection point # or enable the deployment type of a Web

Bean that already implements the API type and has the binding types.

To fix an AmbiguousDependencyException, introduce a binding type to distinguish between the

two implementations of the API type, or change the deployment type of one of the implementations

so that the Web Bean manager can use deployment type precedence to choose between them.

An AmbiguousDependencyException can only occur if two Web Beans share a binding type and

have exactly the same deployment type.

There's one more issue you need to be aware of when using dependency injection in Web Beans.

4.4. Client proxies

Clients of an injected Web Bean do not usually hold a direct reference to a Web Bean instance.

Imagine that a Web Bean bound to the application scope held a direct reference to a Web Bean

bound to the request scope. The application scoped Web Bean is shared between many different

requests. However, each request should see a different instance of the request scoped Web bean!

Now imagine that a Web Bean bound to the session scope held a direct reference to a Web Bean

bound to the application scope. From time to time, the session context is serialized to disk in order

to use memory more efficiently. However, the application scoped Web Bean instance should not

be serialized along with the session scoped Web Bean!

Therefore, unless a Web Bean has the default scope @Dependent, the Web Bean manager must

indirect all injected references to the Web Bean through a proxy object. This client proxy is

responsible for ensuring that the Web Bean instance that receives a method invocation is the

instance that is associated with the current context. The client proxy also allows Web Beans bound

to contexts such as the session context to be serialized to disk without recursively serializing other

injected Web Beans.

Obtaining a Web Bean by programatic lookup

41

Unfortunately, due to limitations of the Java language, some Java types cannot be

proxied by the Web Bean manager. Therefore, the Web Bean manager throws an

UnproxyableDependencyException if the type of an injection point cannot be proxied.

The following Java types cannot be proxied by the Web Bean manager:

• classes which are declared final or have a final method,

• classes which have no non-private constructor with no parameters, and

• arrays and primitive types.

It's usually very easy to fix an UnproxyableDependencyException. Simply add a constructor with

no parameters to the injected class, introduce an interface, or change the scope of the injected

Web Bean to @Dependent.

4.5. Obtaining a Web Bean by programatic lookup

The application may obtain an instance of the interface Manager by injection:

@Current Manager manager;

The Manager object provides a set of methods for obtaining a Web Bean instance programatically.

PaymentProcessor p = manager.getInstanceByType(PaymentProcessor.class);

Binding annotations may be specified by subclassing the helper class AnnotationLiteral, since

it is otherwise difficult to instantiate an annotation type in Java.

PaymentProcessor p = manager.getInstanceByType(PaymentProcessor.class,

 new AnnotationLiteral<CreditCard>(){});

If the binding type has an annotation member, we can't use an anonymous subclass of

AnnotationLiteral # instead we'll need to create a named subclass:

abstract class CreditCardBinding

 extends AnnotationLiteral<CreditCard>

 implements CreditCard {}

PaymentProcessor p = manager.getInstanceByType(PaymentProcessor.class,

 new CreditCardBinding() {

Chapter 4. Dependency injection

42

 public void value() { return paymentType; }

 });

4.6. Lifecycle callbacks, @Resource, @EJB and @PersistenceContext

Enterprise Web Beans support all the lifecycle callbacks defined by the EJB specification:

@PostConstruct, @PreDestroy, @PrePassivate and @PostActivate.

Simple Web Beans support only the @PostConstruct and @PreDestroy callbacks.

Both enterprise and simple Web Beans support the use of @Resource, @EJB

and @PersistenceContext for injection of Java EE resources, EJBs and JPA

persistence contexts, respectively. Simple Web Beans do not support the use of

@PersistenceContext(type=EXTENDED).

The @PostConstruct callback always occurs after all dependencies have been injected.

4.7. The InjectionPoint object

There are certain kinds of dependent objects # Web Beans with scope @Dependent # that need

to know something about the object or injection point into which they are injected in order to be

able to do what they do. For example:

• The log category for a Logger depends upon the class of the object that owns it.

• Injection of a HTTP parameter or header value depends upon what parameter or header name

was specified at the injection point.

• Injection of the result of an EL expression evaluation depends upon the expression that was

specified at the injection point.

A Web Bean with scope @Dependent may inject an instance of InjectionPoint and access

metadata relating to the injection point to which it belongs.

Let's look at an example. The following code is verbose, and vulnerable to refactoring problems:

Logger log = Logger.getLogger(MyClass.class.getName());

This clever little producer method lets you inject a JDK Logger without explicitly specifying the

log category:

class LogFactory {

 @Produces Logger createLogger(InjectionPoint injectionPoint) {

 return Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());

The InjectionPoint object

43

 }

}

We can now write:

@Current Logger log;

Not convinced? Then here's a second example. To inject HTTP parameters, we need to define

a binding type:

@BindingType

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface HttpParam {

 @NonBinding public String value();

}

We would use this binding type at injection points as follows:

@HttpParam("username") String username;

@HttpParam("password") String password;

The following producer method does the work:

class HttpParams

 @Produces @HttpParam("")

 String getParamValue(ServletRequest request, InjectionPoint ip) {

 return request.getParameter(ip.getAnnotation(HttpParam.class).value());

 }

}

(Note that the value() member of the HttpParam annotation is ignored by the Web Bean manager

since it is annotated @NonBinding.)

The Web Bean manager provides a built-in Web Bean that implements the InjectionPoint

interface:

Chapter 4. Dependency injection

44

public interface InjectionPoint {

 public Object getInstance();

 public Bean<?> getBean();

 public Member getMember():

 public <T extends Annotation> T getAnnotation(Class<T> annotation);

 public Set<T extends Annotation> getAnnotations();

}

Chapter 5.

45

Scopes and contexts
So far, we've seen a few examples of scope type annotations. The scope of a Web Bean

determines the lifecycle of instances of the Web Bean. The scope also determines which clients

refer to which instances of the Web Bean. According to the Web Beans specification, a scope

determines:

• When a new instance of any Web Bean with that scope is created

• When an existing instance of any Web Bean with that scope is destroyed

• Which injected references refer to any instance of a Web Bean with that scope

For example, if we have a session scoped Web Bean, CurrentUser, all Web Beans that are

called in the context of the same HttpSession will see the same instance of CurrentUser. This

instance will be automatically created the first time a CurrentUser is needed in that session, and

automatically destroyed when the session ends.

5.1. Scope types

Web Beans features an extensible context model. It is possible to define new scopes by creating

a new scope type annotation:

@Retention(RUNTIME)

@Target({TYPE, METHOD})

@ScopeType

public @interface ClusterScoped {}

Of course, that's the easy part of the job. For this scope type to be useful, we will also need to

define a Context object that implements the scope! Implementing a Context is usually a very

technical task, intended for framework development only.

We can apply a scope type annotation to a Web Bean implementation class to specify the scope

of the Web Bean:

@ClusterScoped

public class SecondLevelCache { ... }

Usually, you'll use one of Web Beans' built-in scopes.

5.2. Built-in scopes

Web Beans defines four built-in scopes:

Chapter 5. Scopes and contexts

46

• @RequestScoped

• @SessionScoped

• @ApplicationScoped

• @ConversationScoped

For a web application that uses Web Beans:

• any servlet request has access to active request, session and application scopes, and,

additionally

• any JSF request has access to an active conversation scope.

The request and application scopes are also active:

• during invocations of EJB remote methods,

• during EJB timeouts,

• during message delivery to a message-driven bean, and

• during web service invocations.

If the application tries to invoke a Web Bean with a scope that does not have an active context, a

ContextNotActiveException is thrown by the Web Bean manager at runtime.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so let's

not waste time discussing them here. One of the scopes, however, is new.

5.3. The conversation scope

The Web Beans conversation scope is a bit like the traditional session scope in that it holds state

associated with a user of the system, and spans multiple requests to the server. However, unlike

the session scope, the conversation scope:

• is demarcated explicitly by the application, and

• holds state associated with a particular web browser tab in a JSF application.

A conversation represents a task, a unit of work from the point of view of the user. The conversation

context holds state associated with what the user is currently working on. If the user is doing

multiple things at the same time, there are multiple conversations.

The conversation context is active during any JSF request. However, most conversations are

destroyed at the end of the request. If a conversation should hold state across multiple requests,

it must be explicitly promoted to a long-running conversation.

Conversation demarcation

47

5.3.1. Conversation demarcation

Web Beans provides a built-in Web Bean for controlling the lifecyle of conversations in a JSF

application. This Web Bean may be obtained by injection:

@Current Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation,

call the begin() method from application code. To schedule the current long-running conversation

context for destruction at the end of the current request, call end().

In the following example, a conversation-scoped Web Bean controls the conversation with which

it is associated:

@ConversationScoped @Stateful

public class OrderBuilder {

 private Order order;

 private @Current Conversation conversation;

 private @PersistenceContext(type=EXTENDED) EntityManager em;

 @Produces public Order getOrder() {

 return order;

 }

 public Order createOrder() {

 order = new Order();

 conversation.begin();

 return order;

 }

 public void addLineItem(Product product, int quantity) {

 order.add(new LineItem(product, quantity));

 }

 public void saveOrder(Order order) {

 em.persist(order);

 conversation.end();

 }

 @Remove

 public void destroy() {}

Chapter 5. Scopes and contexts

48

}

This Web Bean is able to control its own lifecycle through use of the Conversation API. But some

other Web Beans have a lifecycle which depends completely upon another object.

5.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form

submission). It does not automatically propagate with non-faces requests, for example, navigation

via a link.

We can force the conversation to propagate with a non-faces request by including the unique

identifier of the conversation as a request parameter. The Web Beans specification reserves the

request parameter named cid for this use. The unique identifier of the conversation may be

obtained from the Conversation object, which has the Web Beans name conversation.

Therefore, the following link propagates the conversation:

Add Product

The Web Bean manager is also required to propagate conversations across any redirect, even if

the conversation is not marked long-running. This makes it very easy to implement the common

POST-then-redirect pattern, without resort to fragile constructs such as a "flash" object. In this

case, the Web Bean manager automatically adds a request parameter to the redirect URL.

5.3.3. Conversation timeout

The Web Bean manager is permitted to destroy a conversation and all state held in its context

at any time in order to preserve resources. A Web Bean manager implementation will normally

do this on the basis of some kind of timeout # though this is not required by the Web Beans

specification. The timeout is the period of inactivity before the conversation is destroyed.

The Conversation object provides a method to set the timeout. This is a hint to the Web Bean

manager, which is free to ignore the setting.

conversation.setTimeout(timeoutInMillis);

5.4. The dependent pseudo-scope

In addition to the four built-in scopes, Web Beans features the so-called dependent pseudo-scope.

This is the default scope for a Web Bean which does not explicitly declare a scope type.

For example, this Web Bean has the scope type @Dependent:

The @New annotation

49

public class Calculator { ... }

When an injection point of a Web Bean resolves to a dependent Web Bean, a new instance of

the dependent Web Bean is created every time the first Web Bean is instantiated. Instances of

dependent Web Beans are never shared between different Web Beans or different injection points.

They are dependent objects of some other Web Bean instance.

Dependent Web Bean instances are destroyed when the instance they depend upon is destroyed.

Web Beans makes it easy to obtain a dependent instance of a Java class or EJB bean, even if

the class or EJB bean is already declared as a Web Bean with some other scope type.

5.4.1. The @New annotation

The built-in @New binding annotation allows implicit definition of a dependent Web Bean at an

injection point. Suppose we declare the following injected field:

@New Calculator calculator;

Then a Web Bean with scope @Dependent, binding type @New, API type Calculator,

implementation class Calculator and deployment type @Standard is implicitly defined.

This is true even if Calculator is already declared with a different scope type, for example:

@ConversationScoped

public class Calculator { ... }

So the following injected attributes each get a different instance of Calculator:

public class PaymentCalc {

 @Current Calculator calculator;

 @New Calculator newCalculator;

}

The calculator field has a conversation-scoped instance of Calculator injected. The

newCalculator field has a new instance of Calculator injected, with a lifecycle that is bound

to the owning PaymentCalc.

This feature is particularly useful with producer methods, as we'll see in the next chapter.

50

Chapter 6.

51

Producer methods
Producer methods let us overcome certain limitations that arise when the Web Bean manager,

instead of the application, is responsible for instantiating objects. They're also the easiest way

to integrate objects which are not Web Beans into the Web Beans environment. (We'll meet a

second approach in Chapter 12, Defining Web Beans using XML.)

According to the spec:

A Web Beans producer method acts as a source of objects to be injected, where:

• the objects to be injected are not required to be instances of Web Beans,

• the concrete type of the objects to be injected may vary at runtime or

• the objects require some custom initialization that is not performed by the Web

Bean constructor

For example, producer methods let us:

• expose a JPA entity as a Web Bean,

• expose any JDK class as a Web Bean,

• define multiple Web Beans, with different scopes or initialization, for the same implementation

class, or

• vary the implementation of an API type at runtime.

In particular, producer methods let us use runtime polymorphism with Web Beans. As we've seen,

deployment types are a powerful solution to the problem of deployment-time polymorphism. But

once the system is deployed, the Web Bean implementation is fixed. A producer method has no

such limitation:

@SessionScoped

public class Preferences {

 private PaymentStrategyType paymentStrategy;

 ...

 @Produces @Preferred

 public PaymentStrategy getPaymentStrategy() {

 switch (paymentStrategy) {

 case CREDIT_CARD: return new CreditCardPaymentStrategy();

 case CHEQUE: return new ChequePaymentStrategy();

 case PAYPAL: return new PayPalPaymentStrategy();

Chapter 6. Producer methods

52

 default: return null;

 }

 }

}

Consider an injection point:

@Preferred PaymentStrategy paymentStrat;

This injection point has the same type and binding annotations as the producer method, so it

resolves to the producer method using the usual Web Beans injection rules. The producer method

will be called by the Web Bean manager to obtain an instance to service this injection point.

6.1. Scope of a producer method

The scope of the producer method defaults to @Dependent, and so it will be called every time the

Web Bean manager injects this field or any other field that resolves to the same producer method.

Thus, there could be multiple instances of the PaymentStrategy object for each user session.

To change this behavior, we can add a @SessionScoped annotation to the method.

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy() {

 ...

}

Now, when the producer method is called, the returned PaymentStrategy will be bound to the

session context. The producer method won't be called again in the same session.

6.2. Injection into producer methods

There's one potential problem with the code above. The implementations of

CreditCardPaymentStrategy are instantiated using the Java new operator. Objects instantiated

directly by the application can't take advantage of dependency injection and don't have

interceptors.

If this isn't what we want we can use dependency injection into the producer method to obtain

Web Bean instances:

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,

Use of @New with producer methods

53

 ChequePaymentStrategy cps,

 PayPalPaymentStrategy ppps) {

 switch (paymentStrategy) {

 case CREDIT_CARD: return ccps;

 case CHEQUE: return cps;

 case PAYPAL: return ppps;

 default: return null;

 }

}

Wait, what if CreditCardPaymentStrategy is a request scoped Web Bean? Then the producer

method has the effect of "promoting" the current request scoped instance into session scope. This

is almost certainly a bug! The request scoped object will be destroyed by the Web Bean manager

before the session ends, but the reference to the object will be left "hanging" in the session scope.

This error will not be detected by the Web Bean manager, so please take extra care when returning

Web Bean instances from producer methods!

There's at least three ways we could go about fixing this bug. We could change the scope of

the CreditCardPaymentStrategy implementation, but this would affect other clients of that Web

Bean. A better option would be to change the scope of the producer method to @Dependent or

@RequestScoped.

But a more common solution is to use the special @New binding annotation.

6.3. Use of @New with producer methods

Consider the following producer method:

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy(@New CreditCardPaymentStrategy ccps,

 @New ChequePaymentStrategy cps,

 @New PayPalPaymentStrategy ppps) {

 switch (paymentStrategy) {

 case CREDIT_CARD: return ccps;

 case CHEQUE: return cps;

 case PAYPAL: return ppps;

 default: return null;

 }

}

Then a new dependent instance of CreditCardPaymentStrategy will be created, passed to the

producer method, returned by the producer method and finally bound to the session context. The

dependent object won't be destroyed until the Preferences object is destroyed, at the end of the

session.

54

Part II. Developing

loosely-coupled code
The first major theme of Web Beans is loose coupling. We've already seen three means of

achieving loose coupling:

• deployment types enable deployment time polymorphism,

• producer methods enable runtime polymorphism, and

• contextual lifecycle management decouples Web Bean lifecycles.

These techniques serve to enable loose coupling of client and server. The client is no longer tightly

bound to an implementation of an API, nor is it required to manage the lifecycle of the server

object. This approach lets stateful objects interact as if they were services.

Loose coupling makes a system more dynamic. The system can respond to change in a well-

defined manner. In the past, frameworks that attempted to provide the facilities listed above

invariably did it by sacrificing type safety. Web Beans is the first technology that achieves this

level of loose coupling in a typesafe way.

Web Beans provides three extra important facilities that further the goal of loose coupling:

• interceptors decouple technical concerns from business logic,

• decorators may be used to decouple some business concerns, and

• event notifications decouple event producers from event consumers.

Let's explore interceptors first.

Chapter 7.

57

Interceptors
Web Beans re-uses the basic interceptor architecture of EJB 3.0, extending the functionality in

two directions:

• Any Web Bean may have interceptors, not just session beans.

• Web Beans features a more sophisticated annotation-based approach to binding interceptors

to Web Beans.

The EJB specification defines two kinds of interception points:

• business method interception, and

• lifecycle callback interception.

A business method interceptor applies to invocations of methods of the Web Bean by clients of

the Web Bean:

public class TransactionInterceptor {

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container:

public class DependencyInjectionInterceptor {

 @PostConstruct public void injectDependencies(InvocationContext ctx) { ... }

}

An interceptor class may intercept both lifecycle callbacks and business methods.

7.1. Interceptor bindings

Suppose we want to declare that some of our Web Beans are transactional. The first thing we

need is an interceptor binding annotation to specify exactly which Web Beans we're interested in:

@InterceptorBindingType

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Transactional {}

Chapter 7. Interceptors

58

Now we can easily specify that our ShoppingCart is a transactional object:

@Transactional

public class ShoppingCart { ... }

Or, if we prefer, we can specify that just one method is transactional:

public class ShoppingCart {

 @Transactional public void checkout() { ... }

}

7.2. Implementing interceptors

That's great, but somewhere along the line we're going to have to actually implement the

interceptor that provides this transaction management aspect. All we need to do is create a

standard EJB interceptor, and annotate it @Interceptor and @Transactional.

@Transactional @Interceptor

public class TransactionInterceptor {

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

All Web Beans interceptors are simple Web Beans, and can take advantage of dependency

injection and contextual lifecycle management.

@ApplicationScoped @Transactional @Interceptor

public class TransactionInterceptor {

 @Resource Transaction transaction;

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

Multiple interceptors may use the same interceptor binding type.

7.3. Enabling interceptors

Finally, we need to enable our interceptor in web-beans.xml.

Interceptor bindings with members

59

<Interceptors>

 <tx:TransactionInterceptor/>

</Interceptors>

Whoah! Why the angle bracket stew?

Well, the XML declaration solves two problems:

• it enables us to specify a total ordering for all the interceptors in our system, ensuring

deterministic behavior, and

• it lets us enable or disable interceptor classes at deployment time.

For example, we could specify that our security interceptor runs before our

TransactionInterceptor.

<Interceptors>

 <sx:SecurityInterceptor/>

 <tx:TransactionInterceptor/>

</Interceptors>

Or we could turn them both off in our test environment!

7.4. Interceptor bindings with members

Suppose we want to add some extra information to our @Transactional annotation:

@InterceptorBindingType

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Transactional {

 boolean requiresNew() default false;

}

Web Beans will use the value of requiresNew to choose between two different interceptors,

TransactionInterceptor and RequiresNewTransactionInterceptor.

@Transactional(requiresNew=true) @Interceptor

public class RequiresNewTransactionInterceptor {

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

Chapter 7. Interceptors

60

}

Now we can use RequiresNewTransactionInterceptor like this:

@Transactional(requiresNew=true)

public class ShoppingCart { ... }

But what if we only have one interceptor and we want the manager to ignore the value of

requiresNew when binding interceptors? We can use the @NonBinding annotation:

@InterceptorBindingType

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Secure {

 @NonBinding String[] rolesAllowed() default {};

}

7.5. Multiple interceptor binding annotations

Usually we use combinations of interceptor bindings types to bind multiple interceptors to a Web

Bean. For example, the following declaration would be used to bind TransactionInterceptor

and SecurityInterceptor to the same Web Bean:

@Secure(rolesAllowed="admin") @Transactional

public class ShoppingCart { ... }

However, in very complex cases, an interceptor itself may specify some combination of interceptor

binding types:

@Transactional @Secure @Interceptor

public class TransactionalSecureInterceptor { ... }

Then this interceptor could be bound to the checkout() method using any one of the following

combinations:

public class ShoppingCart {

 @Transactional @Secure public void checkout() { ... }

Interceptor binding type inheritance

61

}

@Secure

public class ShoppingCart {

 @Transactional public void checkout() { ... }

}

@Transactionl

public class ShoppingCart {

 @Secure public void checkout() { ... }

}

@Transactional @Secure

public class ShoppingCart {

 public void checkout() { ... }

}

7.6. Interceptor binding type inheritance

One limitation of the Java language support for annotations is the lack of annotation inheritance.

Really, annotations should have reuse built in, to allow this kind of thing to work:

public @interface Action extends Transactional, Secure { ... }

Well, fortunately, Web Beans works around this missing feature of Java. We may annotate one

interceptor binding type with other interceptor binding types. The interceptor bindings are transitive

any Web Bean with the first interceptor binding inherits the interceptor bindings declared as

meta-annotations.

@Transactional @Secure

@InterceptorBindingType

@Target(TYPE)

@Retention(RUNTIME)

public @interface Action { ... }

Chapter 7. Interceptors

62

Any Web Bean annotated @Action will be bound to both TransactionInterceptor and

SecurityInterceptor. (And even TransactionalSecureInterceptor, if it exists.)

7.7. Use of @Interceptors

The @Interceptors annotation defined by the EJB specification is supported for both enterprise

and simple Web Beans, for example:

@Interceptors({TransactionInterceptor.class, SecurityInterceptor.class})

public class ShoppingCart {

 public void checkout() { ... }

}

However, this approach suffers the following drawbacks:

• the interceptor implementation is hardcoded in business code,

• interceptors may not be easily disabled at deployment time, and

• the interceptor ordering is non-global # it is determined by the order in which interceptors are

listed at the class level.

Therefore, we recommend the use of Web Beans-style interceptor bindings.

Chapter 8.

63

Decorators
Interceptors are a powerful way to capture and separate concerns which are orthogonal to the

type system. Any interceptor is able to intercept invocations of any Java type. This makes them

perfect for solving technical concerns such as transaction management and security. However,

by nature, interceptors are unaware of the actual semantics of the events they intercept. Thus,

interceptors aren't an appropriate tool for separating business-related concerns.

The reverse is true of decorators. A decorator intercepts invocations only for a certain Java

interface, and is therefore aware of all the semantics attached to that interface. This makes

decorators a perfect tool for modeling some kinds of business concerns. It also means that a

decorator doesn't have the generality of an interceptor. Decorators aren't able to solve technical

concerns that cut across many disparate types.

Suppose we have an interface that represents accounts:

public interface Account {

 public BigDecimal getBalance();

 public User getOwner();

 public void withdraw(BigDecimal amount);

 public void deposit(BigDecimal amount);

}

Several different Web Beans in our system implement the Account interface. However, we have

a common legal requirement that, for any kind of account, large transactions must be recorded

by the system in a special log. This is a perfect job for a decorator.

A decorator is a simple Web Bean that implements the type it decorates and is annotated

@Decorator.

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Decorates Account account;

 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {

 account.withdraw(amount);

 if (amount.compareTo(LARGE_AMOUNT)>0) {

 em.persist(new LoggedWithdrawl(amount));

 }

Chapter 8. Decorators

64

 }

 public void deposit(BigDecimal amount);

 account.deposit(amount);

 if (amount.compareTo(LARGE_AMOUNT)>0) {

 em.persist(new LoggedDeposit(amount));

 }

 }

}

Unlike other simple Web Beans, a decorator may be an abstract class. If there's nothing special

the decorator needs to do for a particular method of the decorated interface, you don't need to

implement that method.

8.1. Delegate attributes

All decorators have a delegate attribute. The type and binding types of the delegate attribute

determine which Web Beans the decorator is bound to. The delegate attribute type must

implement or extend all interfaces implemented by the decorator.

This delegate attribute specifies that the decorator is bound to all Web Beans that implement

Account:

@Decorates Account account;

A delegate attribute may specify a binding annotation. Then the decorator will only be bound to

Web Beans with the same binding.

@Decorates @Foreign Account account;

A decorator is bound to any Web Bean which:

• has the type of the delegate attribute as an API type, and

• has all binding types that are declared by the delegate attribute.

The decorator may invoke the delegate attribute, which has much the same effect as calling

InvocationContext.proceed() from an interceptor.

8.2. Enabling decorators

We need to enable our decorator in web-beans.xml.

Enabling decorators

65

<Decorators>

 <myapp:LargeTransactionDecorator/>

</Decorators>

This declaration serves the same purpose for decorators that the <Interceptors> declaration

serves for interceptors:

• it enables us to specify a total ordering for all decorators in our system, ensuring deterministic

behavior, and

• it lets us enable or disable decorator classes at deployment time.

Interceptors for a method are called before decorators that apply to that method.

66

Chapter 9.

67

Events
The Web Beans event notification facility allows Web Beans to interact in a totally decoupled

manner. Event producers raise events that are then delivered to event observers by the Web

Bean manager. This basic schema might sound like the familiar observer/observable pattern, but

there are a couple of twists:

• not only are event producers decoupled from observers; observers are completely decoupled

from producers,

• observers can specify a combination of "selectors" to narrow the set of event notifications they

will receive, and

• observers can be notified immediately, or can specify that delivery of the event should be

delayed until the end of the current transaction

9.1. Event observers

An observer method is a method of a Web Bean with a parameter annotated @Observes.

public void onAnyDocumentEvent(@Observes Document document) { ... }

The annotated parameter is called the event parameter. The type of the event parameter is the

observed event type. Observer methods may also specify "selectors", which are just instances

of Web Beans binding types. When a binding type is used as an event selector, it is called an

event binding type.

@BindingType

@Target({PARAMETER, FIELD})

@Retention(RUNTIME)

public @interface Updated { ... }

We specify the event bindings of the observer method by annotating the event parameter:

public void afterDocumentUpdate(@Observes @Updated Document document) { ... }

An observer method need not specify any event bindings # in this case it is interested in all events

of a particular type. If it does specify event bindings, it is only interested in events which also have

those event bindings.

Chapter 9. Events

68

The observer method may have additional parameters, which are injected according to the usual

Web Beans method parameter injection semantics:

public void afterDocumentUpdate(@Observes @Updated Document document, User user) { ... }

9.2. Event producers

The event producer may obtain an event notifier object by injection:

@Observable Event<Document> documentEvent

The @Observable annotation implicitly defines a Web Bean with scope @Dependent and

deployment type @Standard, with an implementation provided by the Web Bean manager.

A producer raises events by calling the fire() method of the Event interface, passing an event

object:

documentEvent.fire(document);

An event object may be an instance of any Java class that has no type variables or wildcard type

parameters. The event will be delivered to every observer method that:

• has an event parameter to which the event object is assignable, and

• specifies no event bindings.

The Web Bean manager simply calls all the observer methods, passing the event object as the

value of the event parameter. If any observer method throws an exception, the Web Bean manager

stops calling observer methods, and the exception is rethrown by the fire() method.

To specify a "selector", the event producer may pass an instance of the event binding type to the

fire() method:

documentEvent.fire(document, new AnnotationLiteral<Updated>(){});

The helper class AnnotationLiteral makes it possible to instantiate binding types inline, since

this is otherwise difficult to do in Java.

The event will be delivered to every observer method that:

• has an event parameter to which the event object is assignable, and

Registering observers dynamically

69

• does not specify any event binding except for the event bindings passed to fire().

Alternatively, event bindings may be specified by annotating the event notifier injection point:

@Observable @Updated Event<Document> documentUpdatedEvent

Then every event fired via this instance of Event has the annotated event binding. The event will

be delivered to every observer method that:

• has an event parameter to which the event object is assignable, and

• does not specify any event binding except for the event bindings passed to fire() or the

annotated event bindings of the event notifier injection point.

9.3. Registering observers dynamically

It's often useful to register an event observer dynamically. The application may implement the

Observer interface and register an instance with an event notifier by calling the observe()

method.

documentEvent.observe(new Observer<Document>() { public void notify(Document doc) { ... }

 });

Event binding types may be specified by the event notifier injection point or by passing event

binding type instances to the observe() method:

documentEvent.observe(new Observer<Document>() { public void notify(Document doc) { ... } },

 new AnnotationLiteral<Updated>(){});

9.4. Event bindings with members

An event binding type may have annotation members:

@BindingType

@Target({PARAMETER, FIELD})

@Retention(RUNTIME)

public @interface Role {

 RoleType value();

}

Chapter 9. Events

70

The member value is used to narrow the messages delivered to the observer:

public void adminLoggedIn(@Observes @Role(ADMIN) LoggedIn event) { ... }

Event binding type members may be specified statically by the event producer, via annotations

at the event notifier injection point:

@Observable @Role(ADMIN) Event<LoggedIn> LoggedInEvent;}}

Alternatively, the value of the event binding type member may be determined dynamically by the

event producer. We start by writing an abstract subclass of AnnotationLiteral:

abstract class RoleBinding

 extends AnnotationLiteral<Role>

 implements Role {}

The event producer passes an instance of this class to fire():

documentEvent.fire(document, new RoleBinding() { public void value() { return user.getRole();

 } });

9.5. Multiple event bindings

Event binding types may be combined, for example:

@Observable @Blog Event<Document> blogEvent;

...

if (document.isBlog()) blogEvent.fire(document, new AnnotationLiteral<Updated>(){});

When this event occurs, all of the following observer methods will be notified:

public void afterBlogUpdate(@Observes @Updated @Blog Document document) { ... }

public void afterDocumentUpdate(@Observes @Updated Document document) { ... }

Transactional observers

71

public void onAnyBlogEvent(@Observes @Blog Document document) { ... }

public void onAnyDocumentEvent(@Observes Document document) { ... }}}

9.6. Transactional observers

Transactional observers receive their event notifications during the before or after completion

phase of the transaction in which the event was raised. For example, the following observer

method needs to refresh a query result set that is cached in the application context, but only when

transactions that update the Category tree succeed:

public void refreshCategoryTree(@AfterTransactionSuccess @Observes CategoryUpdateEvent

 event) { ... }

There are three kinds of transactional observers:

• @AfterTransactionSuccess observers are called during the after completion phase of the

transaction, but only if the transaction completes successfully

• @AfterTransactionFailure observers are called during the after completion phase of the

transaction, but only if the transaction fails to complete successfully

• @AfterTransactionCompletion observers are called during the after completion phase of the

transaction

• @BeforeTransactionCompletion observers are called during the before completion phase of

the transaction

Transactional observers are very important in a stateful object model like Web Beans, because

state is often held for longer than a single atomic transaction.

Imagine that we have cached a JPA query result set in the application scope:

@ApplicationScoped @Singleton

public class Catalog {

 @PersistenceContext EntityManager em;

 List<Product> products;

 @Produces @Catalog

Chapter 9. Events

72

 List<Product> getCatalog() {

 if (products==null) {

 products = em.createQuery("select p from Product p where p.deleted = false")

 .getResultList();

 }

 return products;

 }

}

From time to time, a Product is created or deleted. When this occurs, we need to refresh the

Product catalog. But we should wait until after the transaction completes successfully before

performing this refresh!

The Web Bean that creates and deletes Products could raise events, for example:

@Stateless

public class ProductManager {

 @PersistenceContext EntityManager em;

 @Observable Event<Product> productEvent;

 public void delete(Product product) {

 em.delete(product);

 productEvent.fire(product, new AnnotationLiteral<Deleted>(){});

 }

 public void persist(Product product) {

 em.persist(product);

 productEvent.fire(product, new AnnotationLiteral<Created>(){});

 }

 ...

}

And now Catalog can observe the events after successful completion of the transaction:

@ApplicationScoped @Singleton

public class Catalog {

 ...

Transactional observers

73

 void addProduct(@AfterTransactionSuccess @Observes @Created Product product) {

 products.add(product);

 }

 void addProduct(@AfterTransactionSuccess @Observes @Deleted Product product) {

 products.remove(product);

 }

}

74

Part III. Making the

most of strong typing
The second major theme of Web Beans is strong typing. The information about the dependencies,

interceptors and decorators of a Web Bean, and the information about event consumers for an

event producer, is contained in typesafe Java constructs that may be validated by the compiler.

You don't see string-based identifiers in Web Beans code, not because the framework is hiding

them from you using clever defaulting rules # so-called "configuration by convention" # but

because there are simply no strings there to begin with!

The obvious benefit of this approach is that any IDE can provide autocompletion, validation and

refactoring without the need for special tooling. But there is a second, less-immediately-obvious,

benefit. It turns out that when you start thinking of identifying objects, events or interceptors via

annotations instead of names, you have an opportunity to lift the semantic level of your code.

Web Beans encourages you develop annotations that model concepts, for example,

• @Asynchronous,

• @Mock,

• @Secure or

• @Updated,

instead of using compound names like

• asyncPaymentProcessor,

• mockPaymentProcessor,

• SecurityInterceptor or

• DocumentUpdatedEvent.

The annotations are reusable. They help describe common qualities of disparate parts of the

system. They help us categorize and understand our code. They help us deal with common

concerns in a common way. They make our code more literate and more understandable.

Web Beans stereotypes take this idea a step further. A stereotype models a common role in your

application architecture. It encapsulates various properties of the role, including scope, interceptor

bindings, deployment type, etc, into a single reusable package.

Even Web Beans XML metadata is strongly typed! There's no compiler for XML, so Web Beans

takes advantage of XML schemas to validate the Java types and attributes that appear in XML.

Part III. Making the most of ...

This approach turns out to make the XML more literate, just like annotations made our Java code

more literate.

We're now ready to meet some more advanced features of Web Beans. Bear in mind that these

features exist to make our code both easier to validate and more understandable. Most of the

time you don't ever really need to use these features, but if you use them wisely, you'll come to

appreciate their power.

Chapter 10.

77

Stereotypes
According to the Web Beans specification:

In many systems, use of architectural patterns produces a set of recurring Web

Bean roles. A stereotype allows a framework developer to identify such a role and

declare some common metadata for Web Beans with that role in a central place.

A stereotype encapsulates any combination of:

• a default deployment type,

• a default scope type,

• a restriction upon the Web Bean scope,

• a requirement that the Web Bean implement or extend a certain type, and

• a set of interceptor binding annotations.

A stereotype may also specify that all Web Beans with the stereotype have

defaulted Web Bean names.

A Web Bean may declare zero, one or multiple stereotypes.

A stereotype is a Java annotation type. This stereotype identifies action classes in some MVC

framework:

@Retention(RUNTIME)

@Target(TYPE)

@Stereotype

public @interface Action {}

We use the stereotype by applying the annotation to a Web Bean.

@Action

public class LoginAction { ... }

10.1. Default scope and deployment type for a

stereotype

A stereotype may specify a default scope and/or default deployment type for Web Beans with

that stereotype. For example, if the deployment type @WebTier identifies Web Beans that should

Chapter 10. Stereotypes

78

only be deployed when the system executes as a web application, we might specify the following

defaults for action classes:

@Retention(RUNTIME)

@Target(TYPE)

@RequestScoped

@WebTier

@Stereotype

public @interface Action {}

Of course, a particular action may still override these defaults if necessary:

@Dependent @Mock @Action

public class MockLoginAction { ... }

If we want to force all actions to a particular scope, we can do that too.

10.2. Restricting scope and type with a stereotype

Suppose that we wish to prevent actions from declaring certain scopes. Web Beans lets us

explicitly specify the set of allowed scopes for Web Beans with a certain stereotype. For example:

@Retention(RUNTIME)

@Target(TYPE)

@RequestScoped

@WebTier

@Stereotype(supportedScopes=RequestScoped.class)

public @interface Action {}

If a particular action class attempts to specify a scope other than the Web Beans request scope,

an exception will be thrown by the Web Bean manager at initialization time.

We can also force all Web Bean with a certain stereotype to implement an interface or extend

a class:

@Retention(RUNTIME)

@Target(TYPE)

@RequestScoped

@WebTier

@Stereotype(requiredTypes=AbstractAction.class)

Interceptor bindings for stereotypes

79

public @interface Action {}

If a particular action class does not extend the class AbstractAction, an exception will be thrown

by the Web Bean manager at initialization time.

10.3. Interceptor bindings for stereotypes

A stereotype may specify a set of interceptor bindings to be inherited by all Web Beans with that

stereotype.

@Retention(RUNTIME)

@Target(TYPE)

@RequestScoped

@Transactional(requiresNew=true)

@Secure

@WebTier

@Stereotype

public @interface Action {}

This helps us get technical concerns even further away from the business code!

10.4. Name defaulting with stereotypes

Finally, we can specify that all Web Beans with a certain stereotype have a Web Bean name,

defaulted by the Web Bean manager. Actions are often referenced in JSP pages, so they're a

perfect use case for this feature. All we need to do is add an empty @Named annotation:

@Retention(RUNTIME)

@Target(TYPE)

@RequestScoped

@Transactional(requiresNew=true)

@Secure

@Named

@WebTier

@Stereotype

public @interface Action {}

Now, LoginAction will have the name loginAction.

Chapter 10. Stereotypes

80

10.5. Standard stereotypes

We've already met two standard stereotypes defined by the Web Beans specification:

@Interceptor and @Decorator.

Web Beans defines one further standard stereotype:

@Named

@RequestScoped

@Stereotype

@Target({TYPE, METHOD})

@Retention(RUNTIME)

public @interface Model {}

This stereotype is intended for use with JSF. Instead of using JSF managed beans, just annotate

a Web Bean @Model, and use it directly in your JSF page.

Chapter 11.

81

Specialization
We've already seen how the Web Beans dependency injection model lets us override the

implementation of an API at deployment time. For example, the following enterprise Web Bean

provides an implementation of the API PaymentProcessor in production:

@CreditCard @Stateless

public class CreditCardPaymentProcessor

 implements PaymentProcessor {

 ...

}

But in our staging environment, we override that implementation of PaymentProcessor with a

different Web Bean:

@CreditCard @Stateless @Staging

public class StagingCreditCardPaymentProcessor

 implements PaymentProcessor {

 ...

}

What we've tried to do with StagingCreditCardPaymentProcessor is to completely replace

AsyncPaymentProcessor in a particular deployment of the system. In that deployment, the

deployment type @Staging would have a higher priority than the default deployment type

@Production, and therefore clients with the following injection point:

@CreditCard PaymentProcessor ccpp

Would receive an instance of StagingCreditCardPaymentProcessor.

Unfortunately, there are several traps we can easily fall into:

• the higher-priority Web Bean may not implement all the API types of the Web Bean that it

attempts to override,

• the higher-priority Web Bean may not declare all the binding types of the Web Bean that it

attempts to override,

• the higher-priority Web Bean might not have the same name as the Web Bean that it attempts

to override, or

Chapter 11. Specialization

82

• the Web Bean that it attempts to override might declare a producer method, disposal method

or observer method.

In each of these cases, the Web Bean that we tried to override could still be called at runtime.

Therefore, overriding is somewhat prone to developer error.

Web Beans provides a special feature, called specialization, that helps the developer avoid these

traps. Specialization looks a little esoteric at first, but it's easy to use in practice, and you'll really

appreciate the extra security it provides.

11.1. Using specialization

Specialization is a feature that is specific to simple and enterprise Web Beans. To make use of

specialization, the higher-priority Web Bean must:

• be a direct subclass of the Web Bean it overrides, and

• be a simple Web Bean if the Web Bean it overrides is a simple Web Bean or an enterprise Web

Bean if the Web Bean it overrides is an enterprise Web Bean, and

• be annotated @Specializes.

@Stateless @Staging @Specializes

public class StagingCreditCardPaymentProcessor

 extends CreditCardPaymentProcessor {

 ...

}

We say that the higher-priority Web Bean specializes its superclass.

11.2. Advantages of specialization

When specialization is used:

• the binding types of the superclass are automatically inherited by the Web Bean annotated

@Specializes, and

• the Web Bean name of the superclass is automatically inherited by the Web Bean annotated

@Specializes, and

• producer methods, disposal methods and observer methods declared by the superclass are

called upon an instance of the Web Bean annotated @Specializes.

In our example, the binding type @CreditCard of CreditCardPaymentProcessor is inherited by

StagingCreditCardPaymentProcessor.

Advantages of specialization

83

Furthermore, the Web Bean manager will validate that:

• all API types of the superclass are API types of the Web Bean annotated @Specializes (all

local interfaces of the superclass enterprise bean are also local interfaces of the subclass),

• the deployment type of the Web Bean annotated @Specializes has a higher precedence than

the deployment type of the superclass, and

• there is no other enabled Web Bean that also specializes the superclass.

If any of these conditions are violated, the Web Bean manager throws an exception at initialization

time.

Therefore, we can be certain that the superclass will never be called in any deployment of the

system where the Web Bean annotated @Specializes is deployed and enabled.

84

Chapter 12.

85

Defining Web Beans using XML
So far, we've seen plenty of examples of Web Beans declared using annotations. However, there

are a couple of occasions when we can't use annotations to define the Web Bean:

• when the implementation class comes from some preexisting library, or

• when there should be multiple Web Beans with the same implementation class.

In either of these cases, Web Beans gives us two options:

• write a producer method, or

• declare the Web Bean using XML.

Many frameworks use XML to provide metadata relating to Java classes. However, Web Beans

uses a very different approach to specifying the names of Java classes, fields or methods to

most other frameworks. Instead of writing class and member names as the string values of XML

elements and attributes, Web Beans lets you use the class or member name as the name of the

XML element.

The advantage of this approach is that you can write an XML schema that prevents spelling errors

in your XML document. It's even possible for a tool to generate the XML schema automatically

from the compiled Java code. Or, an integrated development environment could perform the same

validation without the need for the explicit intermediate generation step.

12.1. Declaring Web Bean classes

For each Java package, Web Beans defines a corresponding XML namespace. The

namespace is formed by prepending urn:java: to the Java package name. For the package

com.mydomain.myapp, the XML namespace is urn:java:com.mydomain.myapp.

Java types belonging to a package are referred to using an XML element in the namespace

corresponding to the package. The name of the element is the name of the Java type. Fields and

methods of the type are specified by child elements in the same namespace. If the type is an

annotation, members are specified by attributes of the element.

For example, the element <util:Date/> in the following XML fragment refers to the class

java.util.Date:

<WebBeans xmlns="urn:java:javax.webbeans"

 xmlns:util="urn:java:java.util">

 <util:Date/>

</WebBeans>

Chapter 12. Defining Web Bean...

86

And this is all the code we need to declare that Date is a simple Web Bean! An instance of Date

may now be injected by any other Web Bean:

@Current Date date

12.2. Declaring Web Bean metadata

We can declare the scope, deployment type and interceptor binding types using direct child

elements of the Web Bean declaration:

<myapp:ShoppingCart>

 <SessionScoped/>

 <myfwk:Transactional requiresNew="true"/>

 <myfwk:Secure/>

</myapp:ShoppingCart>

We use exactly the same approach to specify names and binding type:

<util:Date>

 <Named>currentTime</Named>

</util:Date>

<util:Date>

 <SessionScoped/>

 <myapp:Login/>

 <Named>loginTime</Named>

</util:Date>

<util:Date>

 <ApplicationScoped/>

 <myapp:SystemStart/>

 <Named>systemStartTime</Named>

</util:Date>

Where @Login and @SystemStart are binding annotations types.

@Current Date currentTime;

@Login Date loginTime;

@SystemStart Date systemStartTime;

Declaring Web Bean members

87

As usual, a Web Bean may support multiple binding types:

<myapp:AsynchronousChequePaymentProcessor>

 <myapp:PayByCheque/>

 <myapp:Asynchronous/>

</myapp:AsynchronousChequePaymentProcessor>

Interceptors and decorators are just simple Web Beans, so they may be declared just like any

other simple Web Bean:

<myfwk:TransactionInterceptor>

 <Interceptor/>

 <myfwk:Transactional/>

</myfwk:TransactionInterceptor>

12.3. Declaring Web Bean members

TODO!

12.4. Declaring inline Web Beans

Web Beans lets us define a Web Bean at an injection point. For example:

<myapp:System>

 <ApplicationScoped/>

 <myapp:admin>

 <myapp:Name>

 <myapp:firstname>Gavin</myapp:firstname>

 <myapp:lastname>King</myapp:lastname>

 <myapp:email>gavin@hibernate.org</myapp:email>

 </myapp:Name>

 </myapp:admin>

</myapp:System>

The <Name> element declares a simple Web Bean of scope @Dependent and class Name, with a set

of initial field values. This Web Bean has a special, container-generated binding and is therefore

injectable only to the specific injection point at which it is declared.

This simple but powerful feature allows the Web Beans XML format to be used to specify whole

graphs of Java objects. It's not quite a full databinding solution, but it's close!

Chapter 12. Defining Web Bean...

88

12.5. Using a schema

If we want our XML document format to be authored by people who aren't Java developers, or

who don't have access to our code, we need to provide a schema. There's nothing specific to

Web Beans about writing or using the schema.

<WebBeans xmlns="urn:java:javax.webbeans"

 xmlns:myapp="urn:java:com.mydomain.myapp"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:java:javax.webbeans http://java.sun.com/jee/web-beans-1.0.xsd

 urn:java:com.mydomain.myapp http://mydomain.com/xsd/myapp-1.2.xsd">

 <myapp:System>

 ...

 </myapp:System>

</WebBeans>

Writing an XML schema is quite tedious. Therefore, the Web Beans RI project will provide a tool

which automatically generates the XML schema from compiled Java code.

Part IV. Web Beans and

the Java EE ecosystem
The third theme of Web Beans is integration. Web Beans was designed to work in concert

with other technologies, helping the application developer fit the other technologies together.

Web Beans is an open technology. It forms a part of the Java EE ecosystem, and is itself the

foundation for a new ecosystem of portable extensions and integration with existing frameworks

and technologies.

We've already seen how Web Beans helps integrate EJB and JSF, allowing EJBs to be bound

directly to JSF pages. That's just the beginning. Web Beans offers the same potential to diverse

other technologies, such as Business Process Management engines, other Web Frameworks,

and third-party component models. The Java EE platform will never be able to standardize all

the interesting technologies that are used in the world of Java application development, but Web

Beans makes it easier to use the technologies which are not yet part of the platform seamlessly

within the Java EE environment.

We're about to see how to take full advantage of the Java EE platform in an application that uses

Web Beans. We'll also briefly meet a set of SPIs that are provided to support portable extensions

to Web Beans. You might not ever need to use these SPIs directly, but it's nice to know they are

there if you need them. Most importantly, you'll take advantage of them indirectly, every time you

use a third-party extension.

Chapter 13.

91

Java EE integration
Web Beans is fully integrated into the Java EE environment. Web Beans have access to Java EE

resources and JPA persistence contexts. They may be used in Unified EL expressions in JSF and

JSP pages. They may even be injected into some objects, such as Servlets and Message-Driven

Beans, which are not Web Beans.

13.1. Injecting Java EE resources into a Web Bean

All simple and enterprise Web Beans may take advantage of Java EE dependency injection using

@Resource, @EJB and @PersistenceContext. We've already seen a couple of examples of this,

though we didn't pay much attention at the time:

@Transactional @Interceptor

public class TransactionInterceptor {

 @Resource Transaction transaction;

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) { ... }

}

@SessionScoped

public class Login {

 @Current Credentials credentials;

 @PersistenceContext EntityManager userDatabase;

 ...

}

The Java EE @PostConstruct and @PreDestroy callbacks are also supported for all simple

and enterprise Web Beans. The @PostConstruct method is called after all injection has been

performed.

There is one restriction to be aware of here: @PersistenceContext(type=EXTENDED) is not

supported for simple Web Beans.

Chapter 13. Java EE integration

92

13.2. Calling a Web Bean from a Servlet

It's easy to use a Web Bean from a Servlet in Java EE 6. Simply inject the Web Bean using Web

Beans field or initializer method injection.

public class Login extends HttpServlet {

 @Current Credentials credentials;

 @Current Login login;

 @Override

 public void service(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 credentials.setUsername(request.getAttribute("username")):

 credentials.setPassword(request.getAttribute("password")):

 login.login();

 if (login.isLoggedIn()) {

 response.sendRedirect("/home.jsp");

 }

 else {

 response.sendRedirect("/loginError.jsp");

 }

 }

}

The Web Beans client proxy takes care of routing method invocations from the Servlet to the

correct instances of Credentials and Login for the current request and HTTP session.

13.3. Calling a Web Bean from a Message-Driven Bean

Web Beans injection applies to all EJBs, even when they aren't under the control of the Web Bean

manager (if they were obtained by direct JNDI lookup, or injection using @EJB, for example. In

particular, you can use Web Beans injection in Message-Driven Beans, which are not considered

Web Beans because you can't inject them.

You can even use Web Beans interceptor bindings for Message-Driven Beans.

@Transactional @MessageDriven

public class ProcessOrder implements MessageListener {

 @Current Inventory inventory;

 @PersistenceContext EntityManager em;

JMS endpoints

93

 public void onMessage(Message message) {

 ...

 }

}

Thus, receiving messages is super-easy in a Web Beans environment. But beware that there is

no session or conversation context available when a message is delivered to a Message-Driven

Bean. Only @RequestScoped and @ApplicationScoped Web Beans are available.

It's also easy to send messages using Web Beans.

13.4. JMS endpoints

Sending messages using JMS can be quite complex, because of the number of different objects

you need to deal with. For queues we have Queue, QueueConnectionFactory, QueueConnection,

QueueSession and QueueSender. For topics we have Topic, TopicConnectionFactory,

TopicConnection, TopicSession and TopicPublisher. Each of these objects has its own

lifecycle and threading model that we need to worry about.

Web Beans takes care of all this for us. All we need to do is declare the queue or topic in web-

beans.xml, specifying an associated binding type and connection factory.

<Queue>

 <destination>java:comp/env/jms/OrderQueue</destination>

 <connectionFactory>java:comp/env/jms/QueueConnectionFactory</connectionFactory>

 <myapp:OrderProcessor/>

</Queue>

<Topic>

 <destination>java:comp/env/jms/StockPrices</destination>

 <connectionFactory>java:comp/env/jms/TopicConnectionFactory</connectionFactory>

 <myapp:StockPrices/>

</Topic>

Now we can just inject the Queue, QueueConnection, QueueSession or QueueSender for a queue,

or the Topic, TopicConnection, TopicSession or TopicPublisher for a topic.

@OrderProcessor QueueSender orderSender;

@OrderProcessor QueueSession orderSession;

Chapter 13. Java EE integration

94

public void sendMessage() {

 MapMessage msg = orderSession.createMapMessage();

 ...

 orderSender.send(msg);

}

@StockPrices TopicPublisher pricePublisher;

@StockPrices TopicSession priceSession;

public void sendMessage(String price) {

 pricePublisher.send(priceSession.createTextMessage(price));

}

The lifecycle of the injected JMS objects is completely controlled by the Web Bean manager.

13.5. Packaging and deployment

Web Beans doesn't define any special deployment archive. You can package Web Beans in

JARs, EJB-JARs or WARs # any deployment location in the application classpath. However, each

archive that contains Web Beans must include a file named web-beans.xml in the META-INF or

WEB-INF directory. The file may be empty. Web Beans deployed in archives that do not have a

web-beans.xml file will not be available for use in the application.

For Java SE execution, Web Beans may be deployed in any location in which EJBs may be

deployed for execution by the embeddable EJB Lite container. Again, each location must contain

a web-beans.xml file.

Chapter 14.

95

Extending Web Beans
Web Beans is intended to be a platform for frameworks, extensions and integration with other

technologies. Therefore, Web Beans exposes a set of SPIs for the use of developers of portable

extensions to Web Beans. For example, the following kinds of extensions were envisaged by the

designers of Web Beans:

• integration with Business Process Management engines,

• integration with third-party frameworks such as Spring, Seam, GWT or Wicket, and

• new technology based upon the Web Beans programming model.

The nerve center for extending Web Beans is the Manager object.

14.1. The Manager object

The Manager interface lets us register and obtain Web Beans, interceptors, decorators, observers

and contexts programatically.

public interface Manager

{

 public <T> Set<Bean<T>> resolveByType(Class<T> type, Annotation... bindings);

 public <T> Set<Bean<T>> resolveByType(TypeLiteral<T> apiType,

 Annotation... bindings);

 public <T> T getInstanceByType(Class<T> type, Annotation... bindings);

 public <T> T getInstanceByType(TypeLiteral<T> type,

 Annotation... bindings);

 public Set<Bean<?>> resolveByName(String name);

 public Object getInstanceByName(String name);

 public <T> T getInstance(Bean<T> bean);

 public void fireEvent(Object event, Annotation... bindings);

 public Context getContext(Class<? extends Annotation> scopeType);

 public Manager addContext(Context context);

Chapter 14. Extending Web Beans

96

 public Manager addBean(Bean<?> bean);

 public Manager addInterceptor(Interceptor interceptor);

 public Manager addDecorator(Decorator decorator);

 public <T> Manager addObserver(Observer<T> observer, Class<T> eventType,

 Annotation... bindings);

 public <T> Manager addObserver(Observer<T> observer, TypeLiteral<T> eventType,

 Annotation... bindings);

 public <T> Manager removeObserver(Observer<T> observer, Class<T> eventType,

 Annotation... bindings);

 public <T> Manager removeObserver(Observer<T> observer,

 TypeLiteral<T> eventType, Annotation... bindings);

 public <T> Set<Observer<T>> resolveObservers(T event, Annotation... bindings);

 public List<Interceptor> resolveInterceptors(InterceptionType type,

 Annotation... interceptorBindings);

 public List<Decorator> resolveDecorators(Set<Class<?>> types,

 Annotation... bindings);

}

We can obtain an instance of Manager via injection:

@Current Manager manager

14.2. The Bean class

Instances of the abstract class Bean represent Web Beans. There is an instance of Bean registered

with the Manager object for every Web Bean in the application.

public abstract class Bean<T> {

 private final Manager manager;

The Context interface

97

 protected Bean(Manager manager) {

 this.manager=manager;

 }

 protected Manager getManager() {

 return manager;

 }

 public abstract Set<Class> getTypes();

 public abstract Set<Annotation> getBindingTypes();

 public abstract Class<? extends Annotation> getScopeType();

 public abstract Class<? extends Annotation> getDeploymentType();

 public abstract String getName();

 public abstract boolean isSerializable();

 public abstract boolean isNullable();

 public abstract T create();

 public abstract void destroy(T instance);

}

It's possible to extend the Bean class and register instances by calling Manager.addBean()

to provide support for new kinds of Web Beans, beyond those defined by the Web Beans

specification (simple and enterprise Web Beans, producer methods and JMS endpoints). For

example, we could use the Bean class to allow objects managed by another framework to be

injected into Web Beans.

There are two subclasses of Bean defined by the Web Beans specification: Interceptor and

Decorator.

14.3. The Context interface

The Context interface supports addition of new scopes to Web Beans, or extension of the built-in

scopes to new environments.

public interface Context {

 public Class<? extends Annotation> getScopeType();

 public <T> T get(Bean<T> bean, boolean create);

 boolean isActive();

Chapter 14. Extending Web Beans

98

}

For example, we might implement Context to add a business process scope to Web Beans, or

to add support for the conversation scope to an application that uses Wicket.

Chapter 15.

99

Next steps
Because Web Beans is so new, there's not yet a lot of information available online.

Of course, the Web Beans specification is the best source of more information about Web Beans.

The spec is about 100 pages long, only twice the length of this article, and almost as readable.

But, of course, it covers many details that we've skipped over. The spec is available from http:/

/jcp.org/en/jsr/detail?id=299.

The Web Beans Reference implementation is being developed at http://seamframework.org/

WebBeans. The RI development team and the Web Beans spec lead blog at http://

in.relation.to. This article is substantially based upon a series of blog entries published there.

100

Part V. Web Beans Reference
Web Beans is the reference implementation of JSR-299, and is used by JBoss AS and Glassfish to

provide JSR-299 services for Java Enterprise Edition applications. Web Beans also goes beyond

the environments and APIs defined by the JSR-299 specification and provides support for a

number of other environments (such as a servlet container such as Tomcat, or Java SE) and

additional APIs and modules (such as logging, XSD generation for the JSR-299 XML deployment

descriptors).

If you want to get started quickly using Web Beans with JBoss AS or Tomcat and experiment with

one of the examples, take a look at Chapter 3, Web Beans, the Reference Implementation of JSR-

299. Otherwise read on for a exhaustive discussion of using Web Beans in all the environments

and application servers it supports, as well the Web Beans extensions.

Chapter 16.

103

Application Servers and

environments supported by Web

Beans

16.1. Using Web Beans with JBoss AS

No special configuration of your application, beyond adding either META-INF/beans.xml or WEB-

INF/beans.xml is needed.

If you are using JBoss AS 5.0.1.GA then you'll need to install Web Beans as an extra. First we

need to tell Web Beans where JBoss is located. Edit jboss-as/build.properties and set the

jboss.home property. For example:

jboss.home=/Applications/jboss-5.0.1.GA

Now we can install Web Beans:

$ cd webbeans-$VERSION/jboss-as

$ ant update

Note

A new deployer, webbeans.deployer is added to JBoss AS. This adds supports

for JSR-299 deployments to JBoss AS, and allows Web Beans to query the EJB3

container and discover which EJBs are installed in your application.

Web Beans is built into all releases of JBoss AS from 5.1 onwards.

16.2. Glassfish

TODO

16.3. Tomcat (or any plain Servlet container)

Web Beans can be used in Tomcat 6.0.

Chapter 16. Application Serve...

104

Note

Web Beans doesn't support deploying session beans, injection using @EJB, or

@PersistenceContext or using transactional events on Tomcat.

Web Beans should be used as a web application library in Tomcat. You should place

webbeans-tomcat.jar in WEB-INF/lib. webbeans-tomcat.jar is an "uber-jar" provided for your

convenience. Instead, you could use its component jars:

• jsr299-api.jar

• webbeans-api.jar

• webbeans-spi.jar

• webbeans-core.jar

• webbeans-logging.jar

• webbeans-tomcat-int.jar

• javassist.jar

• dom4j.jar

You also need to explicitly specify the Tomcat servlet listener (used to boot Web Beans, and

control its interaction with requests) in web.xml:

<listener>

 <listener-class>org.jboss.webbeans.environment.servlet.Listener</listener-class>

</listener>

Tomcat has a read-only JNDI, so Web Beans can't automatically bind the Manager. To bind the

Manager into JNDI, you should add the following to your META-INF/context.xml:

<Resource name="app/Manager"

 auth="Container"

 type="javax.inject.manager.Manager"

 factory="org.jboss.webbeans.resources.ManagerObjectFactory"/>

and make it available to your deployment by adding this to web.xml:

<resource-env-ref>

 <resource-env-ref-name>

Java SE

105

 app/Manager

 </resource-env-ref-name>

 <resource-env-ref-type>

 javax.inject.manager.Manager

 </resource-env-ref-type>

</resource-env-ref>

Tomcat only allows you to bind entries to java:comp/env, so the Manager will be available at

java:comp/env/app/Manager

Web Beans also supports Servlet injection in Tomcat. To enable this, place the webbeans-

tomcat-support.jar in $TOMCAT_HOME/lib, and add the following to your META-INF/

context.xml:

<Listener className="org.jboss.webbeans.environment.tomcat.WebBeansLifecycleListener" />

16.4. Java SE

Apart from improved integration of the Enterprise Java stack, Web Beans also provides a state

of the art typesafe, stateful dependency injection framework. This is useful in a wide range of

application types, enterprise or otherwise. To facilitate this, Web Beans provides a simple means

for executing in the Java Standard Edition environment independently of any Enterprise Edition

features.

When executing in the SE environment the following features of Web Beans are available:

• Simple Web Beans (POJOs)

• Typesafe Dependency Injection

• Application and Dependent Contexts

• Binding Types

• Stereotypes

• Decorators

• (TODO: Interceptors ?)

• Typesafe Event Model

16.4.1. Web Beans SE Module

To make life easy for developers Web Beans provides a special module with a main method

which will boot the Web Beans manager, automatically registering all simple Web Beans found

on the classpath. This eliminates the need for application developers to write any bootstrapping

Chapter 16. Application Serve...

106

code. The entry point for a Web Beans SE applications is a simple Web Bean which observes the

standard @Deployed Manager event. The command line paramters can be injected using either

of the following:

@Parameters List<String> params;

@Parameters String[] paramsArray; // useful for compatability with existing classes

Here's an example of a simple Web Beans SE application:

@ApplicationScoped

public class HelloWorld

{

 @Parameters List<String> parameters;

 public void printHello(@Observes @Deployed Manager manager)

 {

 System.out.println("Hello " + parameters.get(0));

 }

}

Web Beans SE applications are started by running the following main method.

java org.jboss.webbeans.environments.se.StartMain <args>

If you need to do any custom initialization of the Web Beans manager, for example registering

custom contexts or initializing resources for your beans you can do so in response to the

@Initialized Manager event. The following example registers a custom context:

public class PerformSetup

{

 public void setup(@Observes @Initialized Manager manager)

 {

 manager.addContext(ThreadContext.INSTANCE);

 }

}

Web Beans SE Module

107

Note

The command line parameters do not become available for injection until the

@Deployed Manager event is fired. If you need access to the parameters during

initialization you can do so via the public static String getParameters()

method in StartMain.

108

Chapter 17.

109

JSR-299 extensions available as part

of Web Beans

Important

These modules are usable on any JSR-299 implementation, not just Web Beans!

17.1. Web Beans Logger

TODO

17.2. XSD Generator for JSR-299 XML deployment

descriptors

TODO

110

111

Appendix A. Integrating the Web

Beans RI into other environments
Currently the Web Beans RI only runs in JBoss AS 5; integrating the RI into other EE environments

(for example another application server like Glassfish), into a servlet container (like Tomcat), or

with an Embedded EJB3.1 implementation is fairly easy. In this Appendix we will briefly discuss

the steps needed.

Note

It should be possible to run Web Beans in an SE environment, but you'll to do more

work, adding your own contexts and lifecycle. The Web Beans RI currently doesn't

expose lifecycle extension points, so you would have to code directly against Web

Beans RI classes.

A.1. The Web Beans RI SPI

The Web Beans SPI is located in webbeans-spi module, and packaged as webbeans-spi.jar.

Some SPIs are optional, if you need to override the default behavior, others are required.

All interfaces in the SPI support the decorator pattern and provide a Forwarding class.

A.1.1. Web Bean Discovery

public interface WebBeanDiscovery {

 /**

 * Gets list of all classes in classpath archives with web-beans.xml files

 *

 * @return An iterable over the classes

 */

 public Iterable<Class<?>> discoverWebBeanClasses();

 /**

 * Gets a list of all web-beans.xml files in the app classpath

 *

 * @return An iterable over the web-beans.xml files

 */

 public Iterable<URL> discoverWebBeansXml();

}

Appendix A. Integrating the W...

112

The discovery of Web Bean classes and web-bean.xml files is self-explanatory (the algorithm is

described in Section 11.1 of the JSR-299 specification, and isn't repeated here).

A.1.2. EJB services

The Web Beans RI also delegates EJB3 bean discovery to the container so that it doesn't

have to scan for EJB3 annotations or parse ejb-jar.xml. For each EJB in the application an

EJBDescriptor should be discovered:

public interface EjbServices

{

 /**

 * Gets a descriptor for each EJB in the application

 *

 * @return The bean class to descriptor map

 */

 public Iterable<EjbDescriptor<?>> discoverEjbs();

public interface EjbDescriptor<T> {

 /**

 * Gets the EJB type

 *

 * @return The EJB Bean class

 */

 public Class<T> getType();

 /**

 * Gets the local business interfaces of the EJB

 *

 * @return An iterator over the local business interfaces

 */

 public Iterable<BusinessInterfaceDescriptor<?>> getLocalBusinessInterfaces();

 /**

 * Gets the remote business interfaces of the EJB

 *

 * @return An iterator over the remote business interfaces

 */

 public Iterable<BusinessInterfaceDescriptor<?>> getRemoteBusinessInterfaces();

 /**

EJB services

113

 * Get the remove methods of the EJB

 *

 * @return An iterator over the remove methods

 */

 public Iterable<Method> getRemoveMethods();

 /**

 * Indicates if the bean is stateless

 *

 * @return True if stateless, false otherwise

 */

 public boolean isStateless();

 /**

 * Indicates if the bean is a EJB 3.1 Singleton

 *

 * @return True if the bean is a singleton, false otherwise

 */

 public boolean isSingleton();

 /**

 * Indicates if the EJB is stateful

 *

 * @return True if the bean is stateful, false otherwise

 */

 public boolean isStateful();

 /**

 * Indicates if the EJB is and MDB

 *

 * @return True if the bean is an MDB, false otherwise

 */

 public boolean isMessageDriven();

 /**

 * Gets the EJB name

 *

 * @return The name

 */

 public String getEjbName();

}

Appendix A. Integrating the W...

114

The EjbDescriptor is fairly self-explanatory, and should return the relevant metadata

as defined in the EJB specification. In addition to these two interfaces, there is

BusinessInterfaceDescriptor which represents a local business interface (encapsulating the

interface class and jndi name used to look up an instance of the EJB).

The resolution of @EJB and @Resource is delegated to the container. You must provide

an implementation of org.jboss.webbeans.ejb.spi.EjbServices which provides these

operations. Web Beans passes in the javax.inject.manager.InjectionPoint the resolution

is for, as well as the NamingContext in use for each resolution request.

A.1.3. JPA services

Just as resolution of @EJB is delegated to the container, so is resolution of @PersistenceContext.

OPEN ISSUE: Web Beans also requires the container to provide a list of entities in the deployment,

so that they aren't discovered as simple beans.

A.1.4. Transaction Services

The Web Beans RI must delegate JTA activities to the container. The SPI provides a couple hooks

to easily achieve this with the TransactionServices interface.

public interface TransactionServices

{

 /**

 * Possible status conditions for a transaction. This can be used by SPI

 * providers to keep track for which status an observer is used.

 */

 public static enum Status

 {

 ALL, SUCCESS, FAILURE

 }

 /**

 * Registers a synchronization object with the currently executing

 * transaction.

 *

 * @see javax.transaction.Synchronization

 * @param synchronizedObserver

 */

 public void registerSynchronization(Synchronization synchronizedObserver);

 /**

 * Queries the status of the current execution to see if a transaction is

 * currently active.

The application context

115

 *

 * @return true if a transaction is active

 */

 public boolean isTransactionActive();

}

The enumeration Status is a convenience for implementors to be able to keep track of whether

a synchronization is supposed to notify an observer only when the transaction is successful, or

after a failure, or regardless of the status of the transaction.

Any javax.transaction.Synchronization implementation may be passed to the

registerSynchronization() method and the SPI implementation should immediately register

the synchronization with the JTA transaction manager used for the EJBs.

To make it easier to determine whether or not a transaction is currently active for the requesting

thread, the isTransactionActive() method can be used. The SPI implementation should query

the same JTA transaction manager used for the EJBs.

A.1.5. The application context

Web Beans expects the Application Server or other container to provide the

storage for each application's context. The org.jboss.webbeans.context.api.BeanStore

should be implemented to provide an application scoped storage. You may find

org.jboss.webbeans.context.api.helpers.ConcurrentHashMapBeanStore useful.

A.1.6. Bootstrap and shutdown

The org.jboss.webbeans.bootstrap.api.Bootstrap interface defines the bootstrap

for Web Beans. To boot Web Beans, you must obtain an instance of

org.jboss.webbeans.bootstrap.WebBeansBootstrap (which implements Boostrap), tell it

about the SPIs in use, and then request the container start.

The bootstrap is split into phases, bootstrap initialization and boot and shutdown. Initialization will

create a manager, and add the standard (specification defined) contexts. Bootstrap will discover

EJBs, classes and XML; add beans defined using annotations; add beans defined using XML;

and validate all beans.

The bootstrap supports multiple environments. Different environments require different services

to be present (for example servlet doesn't require transaction, EJB or JPA services). By

default an EE environment is assumed, but you can adjust the environment by calling

bootstrap.setEnvironment().

To initialize the bootstrap you call Bootstrap.initialize(). Before calling initialize(),

you must register any services required by your environment. You can do this by calling

bootstrap.getServices().add(JpaServices.class, new MyJpaServices()). You must also

provide the application context bean store.

Appendix A. Integrating the W...

116

Having called initialize(), the Manager can be obtained by calling Bootstrap.getManager().

To boot the container you call Bootstrap.boot().

To shutdown the container you call Bootstrap.shutdown(). This allows the container to perform

any cleanup operations needed.

A.1.7. JNDI

The Web Beans RI implements JNDI binding and lookup according to standards, however you may

want to alter the binding and lookup (for example in an environment where JNDI isn't available).

To do this, implement org.jboss.webbeans.resources.spi.NamingContext:

public interface NamingContext extends Serializable {

 /**

 * Typed JNDI lookup

 *

 * @param <T> The type

 * @param name The JNDI name

 * @param expectedType The expected type

 * @return The object

 */

 public <T> T lookup(String name, Class<? extends T> expectedType);

 /**

 * Binds an item to JNDI

 *

 * @param name The key to bind under

 * @param value The item to bind

 */

 public void bind(String name, Object value);

}

A.1.8. Resource loading

The Web Beans RI needs to load classes and resources from the classpath at various

times. By default, they are loaded from the same classloader that was used to load the RI,

however this may not be correct for some environments. If this is case, you can implement

org.jboss.webbeans.spi.ResourceLoader:

 public interface ResourceLoader {

Servlet injection

117

 /**

 * Creates a class from a given FQCN

 *

 * @param name The name of the clsas

 * @return The class

 */

 public Class<?> classForName(String name);

 /**

 * Gets a resource as a URL by name

 *

 * @param name The name of the resource

 * @return An URL to the resource

 */

 public URL getResource(String name);

 /**

 * Gets resources as URLs by name

 *

 * @param name The name of the resource

 * @return An iterable reference to the URLS

 */

 public Iterable<URL> getResources(String name);

}

A.1.9. Servlet injection

Java EE / Servlet does not provide any hooks which can be used to provide injection into Servlets,

so Web Beans provides an API to allow the container to request JSR-299 injection for a Servlet.

To be compliant with JSR-299, the container should request servlet injection for each newly

instantiated servlet after the constructor returns and before the servlet is placed into service.

To perform injection on a servlet call WebBeansManager.injectServlet(). The manager can be

obtained from Bootstrap.getManager().

A.2. The contract with the container

There are a number of requirements that the Web Beans RI places on the container for correct

functioning that fall outside implementation of APIs

Appendix A. Integrating the W...

118

Classloader isolation

If you are integrating the Web Beans RI into an environment that supports deployment

of multiple applications, you must enable, automatically, or through user configuation,

classloader isolation for each Web Beans application.

Servlet listener and filters

If you are integrating the Web Beans into a Servlet environment you must

register org.jboss.webbeans.servlet.WebBeansListener as a Servlet listener, either

automatically, or through user configuration, for each Web Beans application which uses

Servlet.

If you are integrating the Web Beans into a JSF environment you must register

org.jboss.webbeans.servlet.ConversationPropagationFilter as a Servlet listener,

either automatically, or through user configuration, for each Web Beans application which

uses JSF. This filter can be registered for all Servlet deployment safely.

Session Bean Interceptor

If you are integrating the Web Beans into an EJB environment you must register

org.jboss.webbeans.ejb.SessionBeanInterceptor as a EJB interceptor for all EJBs in

the application, either automatically, or through user configuration, for each Web Beans

application which uses enterprise beans.

Important

You must register the SessionBeanInterceptor as the inner most interceptor

in the stack for all EJBs.

The webbeans-core.jar

If you are integrating the Web Beans into an environment that supports deployment

of applications, you must insert the webbeans-core.jar into the applications isolated

classloader. It cannot be loaded from a shared classloader.

	Web Beans: Java Contexts and Dependency Injection
	Table of Contents
	Note
	Part I. Using contextual objects
	Chapter 1. Getting started with Web Beans
	1.1. Your first Web Bean
	1.2. What is a Web Bean?
	1.2.1. API types, binding types and dependency injection
	1.2.2. Deployment types
	1.2.3. Scope
	1.2.4. Web Bean names and Unified EL
	1.2.5. Interceptor binding types

	1.3. What kinds of objects can be Web Beans?
	1.3.1. Simple Web Beans
	1.3.2. Enterprise Web Beans
	1.3.3. Producer methods
	1.3.4. JMS endpoints

	Chapter 2. JSF web application example
	Chapter 3. Web Beans, the Reference Implementation of JSR-299
	3.1. Using JBoss AS 5
	3.2. Using Apache Tomcat 6.0
	3.3. Using GlassFish
	3.4. The numberguess example
	3.4.1. The numberguess example for Tomcat

	3.5. The translator example

	Chapter 4. Dependency injection
	4.1. Binding annotations
	4.1.1. Binding annotations with members
	4.1.2. Combinations of binding annnotations
	4.1.3. Binding annotations and producer methods
	4.1.4. The default binding type

	4.2. Deployment types
	4.2.1. Enabling deployment types
	4.2.2. Deployment type precedence
	4.2.3. Example deployment types

	4.3. Fixing unsatisfied dependencies
	4.4. Client proxies
	4.5. Obtaining a Web Bean by programatic lookup
	4.6. Lifecycle callbacks, @Resource, @EJB and @PersistenceContext
	4.7. The InjectionPoint object

	Chapter 5. Scopes and contexts
	5.1. Scope types
	5.2. Built-in scopes
	5.3. The conversation scope
	5.3.1. Conversation demarcation
	5.3.2. Conversation propagation
	5.3.3. Conversation timeout

	5.4. The dependent pseudo-scope
	5.4.1. The @New annotation

	Chapter 6. Producer methods
	6.1. Scope of a producer method
	6.2. Injection into producer methods
	6.3. Use of @New with producer methods

	Part II. Developing loosely-coupled code
	Chapter 7. Interceptors
	7.1. Interceptor bindings
	7.2. Implementing interceptors
	7.3. Enabling interceptors
	7.4. Interceptor bindings with members
	7.5. Multiple interceptor binding annotations
	7.6. Interceptor binding type inheritance
	7.7. Use of @Interceptors

	Chapter 8. Decorators
	8.1. Delegate attributes
	8.2. Enabling decorators

	Chapter 9. Events
	9.1. Event observers
	9.2. Event producers
	9.3. Registering observers dynamically
	9.4. Event bindings with members
	9.5. Multiple event bindings
	9.6. Transactional observers

	Part III. Making the most of strong typing
	Chapter 10. Stereotypes
	10.1. Default scope and deployment type for a stereotype
	10.2. Restricting scope and type with a stereotype
	10.3. Interceptor bindings for stereotypes
	10.4. Name defaulting with stereotypes
	10.5. Standard stereotypes

	Chapter 11. Specialization
	11.1. Using specialization
	11.2. Advantages of specialization

	Chapter 12. Defining Web Beans using XML
	12.1. Declaring Web Bean classes
	12.2. Declaring Web Bean metadata
	12.3. Declaring Web Bean members
	12.4. Declaring inline Web Beans
	12.5. Using a schema

	Part IV. Web Beans and the Java EE ecosystem
	Chapter 13. Java EE integration
	13.1. Injecting Java EE resources into a Web Bean
	13.2. Calling a Web Bean from a Servlet
	13.3. Calling a Web Bean from a Message-Driven Bean
	13.4. JMS endpoints
	13.5. Packaging and deployment

	Chapter 14. Extending Web Beans
	14.1. The Manager object
	14.2. The Bean class
	14.3. The Context interface

	Chapter 15. Next steps
	Part V. Web Beans Reference
	Chapter 16. Application Servers and environments supported by Web Beans
	16.1. Using Web Beans with JBoss AS
	16.2. Glassfish
	16.3. Tomcat (or any plain Servlet container)
	16.4. Java SE
	16.4.1. Web Beans SE Module

	Chapter 17. JSR-299 extensions available as part of Web Beans
	17.1. Web Beans Logger
	17.2. XSD Generator for JSR-299 XML deployment descriptors

	Appendix A. Integrating the Web Beans RI into other environments
	A.1. The Web Beans RI SPI
	A.1.1. Web Bean Discovery
	A.1.2. EJB services
	A.1.3. JPA services
	A.1.4. Transaction Services
	A.1.5. The application context
	A.1.6. Bootstrap and shutdown
	A.1.7. JNDI
	A.1.8. Resource loading
	A.1.9. Servlet injection

	A.2. The contract with the container

