JSR 299: Web Beans

Web Beans Expert Group

Version: Public Review

Table of Contents

N o 011 (= o O = PP PP TP UPPPTTRPPPPTN 1
N o 1 o T PP PT PP 1
1.2. SUPPOILEA ENVITONIMIENLSeetteeiiti ettt e e ettt e e ettt ettt e et et e e e e et s e e e eebe s e e e eateneeeesbeneeeenbaaeeeenes 1
1.3. Relationship to Other SPECITICALIONSuuiieiiiii et e e e e eees 2

131 RAEONSNIPTO BIBeiiiiiiiiieiiit e e ettt e e e e eee 2
1.3.2. RAEONSNIP IO JSF ...oeiiiiii e e e e et e et e et e e et e e eee 2
1.3.3. RAationship t0 JAVA SEIVIELSoouiiiiiii e e e e e 3
1.3.4. Relationship to Common Annotations for the Java Platformccoooveviiiiiiiieee 3
1.4, INtroOdUCEOIY EXAIMPIES ... ettt ettt ettt e et et e e et et s e et e et s e e e e et e e e esbeneeeeebaneeeenes 3
LA.0 JSF EXAMPIE <. e et eee 3
142 BB @XAMPIE ..ottt et e e e e e ana 4
1.4.3. INtErCEPLOr EXAMPIE ... et e e ettt e e e eee 5
1.4.4. DECOratOr EXAMPIEu it ettt e et eee 6

2. WeED BN dEfINITIONiiiiii ettt e et et e e s 8
2.1. Functionality provided by the Web Bean manager totheWeb Beancccooooiiiiiiiiiiiinienes 8
2.2. WED BEAN AP LYES ..ottt aaa s 9
2.3 BINUING TYPES .ottt ettt e et e e eaaas 10

2.3.1. Default DINAING TYPE ...t et 11
2.3.2. DefiNiNg DINAING TYPES .. .eve ettt et et e et 11
2.3.3. Declaring the binding types of aWeb Bean using annotationsccceveveiieviiniiiinieeinenne, 11
2.3.4. Declaring the binding types of aWeb Bean using XMLcoiiiiiiiiiiiiiiiiicei e, 12
2.3.5. Using binding annotations on injected fields ... 12
2.3.6. Using binding annotations on method or constructor parameterscoeveveieveniveinneeennennn. 12
2.4, WED BEAN SCOPES ...ttt ettt ettt ettt ettt e et e et et a e et ea e e e e eaans 13
2.4.1. BUIIT-IN SCOPEEYPES ..ottt ettt ettt ettt et e et et et e e e aaa e e eeaans 14
2.4.2. DEfiNING NEW SCOPE LYPIES ... eeietiiee et e ettt et ettt et e et e et e e et e e e eaa e e eeaans 14
2.4.3. Declaring the Web Bean Scope USING @nNOLaLiONSuurieereneeiiiiieeeeiiseeeeii e e e eeeens 14
2.4.4. Declaring the Web Bean Scope uUSING XMLoiiiiiiiiiiiiiiecii e 14
245, DEFAUIT SCOPE ... eeeet ettt ettt ettt ettt aaans 15
2.5, DEPIOYMENT TYPES ..ttt ettt ettt ettt ettt e e et et a et e ea e e aa e e aaans 15
2.5.1. BUIlt-iN dePIOYMENE LYPES ... ettt ettt et e e e e e eeaans 15
2.5.2. Defining New deplOYMENT TYPESceeeei et 15
2.5.3. Declaring the deployment type of a Web Bean using annotationsc.ceeveveeneveinneennenn. 16
2.5.4. Declaring the deployment type of aWeb Bean using XMLooovviiiiiiiiiiiicii e 17
2.5.5. Default deplOoyMENE TYPE ... oieeei ettt ettt 17
2.5.6. Enabled deplOoymMeNt TYPESccuuuiiiii e 17
2.5.7. Deployment tyPe PreCEOBINCEiiieei ettt ettt et e e et e e e eaans 18
2.6. WED BEAN NAIMES ...ttt et et e et e ettt e et e e e e b e e e e b e e eaans 18
2.6.1. Declaring the Web Bean name using @nNOLaiONSvveereniiieiiiieeieii e eeii e 18
2.6.2. Declaring the Web Bean name using XMLooiiiiiiiiiii e 18
2.6.3. Default WED BEAN NAITIEScouuiiiiiiii ettt et e e e e e e e e e aai e e eeaans 19
2.6.4. Web BEaNSWITN NO NAIMEiiiiiiieiit ettt e e e e eaens 19
S (= 151011 o1 S PP PP TPPT 19
2.7.1. DEfiNING NEW SLEIEOLYPES ... ieieti ettt e ettt ettt e et e et e e et e e e eaa e e eenans 19
2.7.2. Declaring the stereotypes for aWeb Bean using annotationscoeeveiviveiiineeiiiinneeennnn. 20
2.7.3. Declaring the stereotypes for aWeb Bean using XMLooooviiiiiiiiiiiiiii e, 21
2.7.4, SHEFEOLYPE FESLIICLIONS ...vui et e ettt ettt et e e e e e et e e e abi e eenans 21
2.7.5. BUIIT-IN SLEIEOLYPES ... ieeiiiieeeiii ettt ettt et e e e e et e e e aaa e e eeaans 21
2.8, SPECTBIIZALION ...ttt et ettt ettt e eaaans 21
2.8.1. Direct and indireCt SPECIaliZaliONcoveuuuiiiiiii e 23
2.8.2. INCONSISLENt SPECTAIIZALIONeevvi ettt et e e e e eeaans 23

3. Web Bean implemMeENTationoooeiuuiiiiii ettt e e e e e 24
3.1. Restriction upon Web Bean inStantialionviieiiiioiiii e 24
3.2 SIMPIEWED BEANS ...ttt ettt 24

3.2.1. Which Javaclasses are Smple Weh BaNS?ociiiiiiiiiiiiiiiciii e 24
3.2.2. APl typesof asimple WED BEaNoiiiiiiii e 25
3.2.3. Declaring asimple Web Bean using annotationscceuuurereriiieriiinne e e 25

JSR-299 Public Review

JSR 299: Web Beans

3.2.4. Declaring asimple Web Bean USING XIMLcooouiiiiiiiiiiii e 26
3.2.5. WED BEAN CONSIIUCIONS ... iiiiiieieiii ettt ettt et e et e et ab e e b s 26
3.2.5.1. Declaring a Web Bean constructor using annotations.cccuuevereriineeierineeeeninnnn 26

3.2.5.2. Declaring aWeb Bean constructor using XML,oviiiiiiniiiiiiie e 27

3.2.5.3. Web Bean CONSIIUCIOr PAraMELENSccvueieeieii ettt et 27

3.2.6. Specidizing asimple WED BEANiiiiiiiiiiii e 28
3.2.7. Default name for asimple WED BEANiiiiiiiiiiii et 28

3.3 ENErPriSE WED BEANS ...coeviiieiiii ettt ettt 28
3.3.1. Which EJBs are enterprise Web BEANS?cviiuiniiiiii et 29

3.3.2. API types of an enterpriSe WED BEANuiiiiiiiiiiiii et 29
3.3.3. Declaring an enterprise Web Bean using @annOtationsovevevviieiiiiinneiiiiinneeciie e 29
3.3.4. Declaring an enterprise Web Bean USINg XMLoiiiiiiiiiiiiii e 29
3.3.5. Web Bean remove MEtNOASoooeuiiiiiii et 30
3.3.5.1. Declaring a Web Bean remove method using annotations.cocuvevveievinneeinnnnnn. 30

3.3.5.2. Declaring a Web Bean remove method using XML.ooouiiiiiiiinniiiiiiecci e 31

3.3.5.3. RemMove MEthod PArAMELESc.uuuiiiiii et 31

3.3.6. Specidizing an enterprise WeD BEaNuiiiiiiiiiiiii e 31
3.3.7. Default name for an enterpriSe WEeD Beanc.uuiiiiiiiiiiiiii e 32
3.3.8. ENErPriSE DEAN PrOXIES ...ttt e et e b 32

34, ProduCer MEINOGS ittt e et e e ettt 32
3.4.1. API types of aproducer MEtNOdcoouuiiiiiii e 33
3.4.2. Declaring a producer method USING aNNOLELIONSuuiiiiiiieiiiiie e 33
3.4.3. Declaring a producer method USING XIMLviiiiiii e 33
3.4.4. Producer MethOd PArAMELEScceuun ittt e et e e e e era s 34
3.4.5. Specidizing aproducer MEthOdcoouuiiiiiii e 34
3.4.6. DIiSPOSAl MELNOUSceeeiii i ettt e e et eeaa s 35
3.4.7. Disposed parameter of adisposal Methodooooviiiiiiiii 35
3.4.8. Declaring a disposal method USING aNNOLEEIONSc.uuuiiiiiiieiiii e 35
3.4.9. Declaring adisposal Method USING XMLuiiiiiiiiii e 35
3.4.10. Digposal MEthO PArAIMELE'Sccuuniieiii et e e e b 36
3.4.11. Digposal MEthOd reSOIULIONceuuiiiiiii et 36
3.4.12. Default name for aproducer MEthodcoeueiiiiiiiii e 36

TN 1Y ST = 0T oo] | £ PP 37
3.5.1. AP types of @IMS €NUPOINToiieeiieieii ettt e 37

3.5.2. Declaring aJMS endpoint USING XIML .ccovuiiiiiiicieii e 37

R [T T= o= B = o PP 38
3.6.1. Declaring an injected field USING aNNOLALIONScievviniiiiie e 38
3.6.2. Declaring an injected field USING XIML ...oevuiiiiii e 38

37 INItIAliZEr MELNOAS ... ettt e 39
3.7.1. Declaring an initializer method USING ANNOLELIONSuuiiiiiiie e 39
3.7.2. Declaring an initializer method USING XML ...cooviiiiiii e 39
3.7.3. Initializer Method PArAMELEScouuiiiiii e b 40

3.8. The @NEW DINAING TYPE ...t e e et e et e et e e e e b 40
3.9. Support for ComMMON ANNOLBLIONSiiieiie ettt e e et e e b e e e b eeeaan s 41
3.10. The Bean object for aWED BEANuiiiiiiiiiii e 42
4. Lookup, dependency injection and EL reSOlULIONvoiiiiiiiiiiii e 43
4.1. Unsatisfied and ambiguous dEPEnTENCIEScoeeuieiiiiii e 43
4.2. Primitive types and NUIT VBIUESuuiiiiii et 43
4.3. Injected referenCe VAIIAITYiiiiiii e 43
O T 0| o0 (] =SSP 44
4.4.1. UNProxXyaldle APL LYPES ... 44
4.4.2. CHENt ProXY INVOCEHION ... ceeeeieieeii ettt ettt e e e et e e e bt eeeeban s 44

4.5. The default binding type at iNjeCtioN POINESuuuiiiiii e 45
4.6, GENENICLYPE HEEIEIS ... ettt e 46
A.7. ANNOLELION TYPE HEEIEIS ...vviieiie ettt e e e e s 46
4.8. The M@NaGEr ODJECTceeiii ettt e e et e e bt e e e b 47
4.9, INSEANCE FESOIULION ... ettt e e et e e e et b e e e et e e e et e e e e aan s 48
4.9.1. DYNBMIC IOOKUD ..ttt ettt ettt ettt s et e ettt e e e et e e et bt e e e eba s 48
4.9.2. Typesafe resolution algorithmiiiei e 49
4.9.2.1. Binding annotations With members ... 49

4.9.2.2. Multiple Binding aNNOLBLIONSiieeiiieieii e 50

4.10. EL NBME FESOIULIONeiitieeeeit ettt e et e e ettt e e e et e e e e bt eeeeban s 50

JSR-299 Public Review

JSR 299: Web Beans

4.10.1. Name resolution algorithmc.uueiiiiii e 51
4.10.2. Integration With Unified ELuniiiiiiii e 51

5. WED BEAN HITECYCIE .o ettt e e et 52
LT O = o] o PP 52
L B == (U Toi (o o PP 52
5.3. Lifecycle of SIMPIE@ WED BEANSccuuuiiiiii ittt 53
5.4. Lifecycle of stateful session enterprise Web beanscoooviiiiiiiiii e 53
5.5. Lifecycle of stateless session and singleton enterprise Web BEansvvveviiiiieiiiiinieiiiieeeeeiin 54
5.6. Lifecycle of producer MEtNOOSiiiiiiiii e 54
5.7. Lifecycle of IMS @NUPOINS .. .ceuuuiiiiii ettt e et e et e b e e e b s 55
5.8. LifecyCle Of EIB DEANSiiiiiiieeii e 56
5.9, LIifECYCI@ OF SEIVIELS ...t ettt e e 56
6. I NTEr CEPLOrSANA UECOMBLOIS ... ettt ettt ettt ettt e et et e e e et e e e et e e e eba e e enaans 58
6.1. BUSINESS MELNOMS ...ttt ettt e e et e et e e e et e e eeaans 58
O 1111 (0= oo £ TP PPPT 58
6.2.1. BUSINESS MEthO INTEICEPLOISuiiiiiii et e eeaans 58

6.2.2. Lifecycle callback INTErCEPLOISocuuuiiiiii e 58
6.2.3. SUPPOIt FOr @INLEICEPLOISeevviieeiit ettt e e et e e e eeaans 59
6.2.4. INtErceptor DINAINGS .. .ceevuiieiiii et 59
6.2.4.1. Interceptor binding types with additional interceptor bindingsccooovvivevinennnnn. 59

6.2.4.2. Interceptor bindings for SLErEOLYPESccevveiiiiii e 59

6.2.5. WED BEANS INTEICEPLOISiiiiiiiieee ittt et ettt e e et e e et e e eeaans 60
6.2.5.1. Declaring a Web Beans interceptor using annotationscceevvieieeeinneeeininneeennens 60

6.2.5.2. Declaring a Web Beans interceptor using XMLooviiiiiiiiiiiiini e, 60

6.2.6. Binding a Web Beansinterceptor toaWeb Beanor EJBbeanccooovvviviiiiiiiiiiiiieiieee, 60
6.2.6.1. Binding a Web Beans interceptor using annotationsoeeeeveieiiiiinieeiiiinneeennnn, 61

6.2.6.2. Binding a Web Beansinterceptor using XMLccoouiiiiiiiiiiiiiiiiicei e 61

6.2.7. Interceptor enablement and OFderiNgccuuuiiiiiiii e 62
6.2.8. The Interceptor object fOr an INtErCEPLONviiieeiiii e 62
6.2.9. INLErCEPLOr FESOIULIONeevti ettt ettt e e et e et e e eeaans 62
6.2.9.1. Interceptors with multiple BiNdiNg tYPEScvvvvvniiiii e 63

6.2.9.2. Interceptor binding types with MEMDErS ..o 63

6.2.10. INterceptor StACK CrEALIONuiiiiii et eeaans 64
6.2.11. INLErCEPLOr INVOCAIONiiiiiiiie ettt et e et e e e e eeaans 64

ORI B = ol - (o £ TP PPPT 65
6.3.1. Declaring adecorator USiNg anNNOLBLIONScceuuuiiiiiiiiieeeeii et e e e e e eeaans 65
6.3.2. Declaring adecorator USING XML ...oouueiiiii e e 65
6.3.3. Decorator delegate @triDULEScoeuueiiiiii e 65
6.3.4. Decorated types Of @ UECOIAIOTuuuriiiiiii ettt eeaans 66

6.3.5. Decorator enablement and OFderiNgooeuuuiiiiiii e 66
6.3.6. The Decorator ObjeCt fOr @TECOMEIONuuuiiiiii et 67

6.3.7. DECOIAOr FESOIULIONeeetiieeiiii ettt et e e et e et e e eeaans 67
6.3.8. DECOrator SEACK CIEALION ieeeeieeeeii et e ettt e e e e e et e e e e eeaans 67
6.3.9. DECOIAOr INVOCELIONeevtieeeiiti ettt ettt ettt ettt ettt e et e e et e e e et e e eeaans 68

A = 112 PP 69
7.1 Event types and DiNAiNG LYPEScevuniiiii et 69
7.2. Firing an event viathe Manager INtErfaCeoviiiiuiiiii e 69
7.3. Observing events viathe Observer INtErfate e 70
7.4, ODSEIVEN INVOCEIION ...t ettt ettt ettt e et e ettt e e et et e e bt neeesbanaeeeeaans 70
7.5. ODSENVEr MELNOASveiiiiii e ettt et e e et e e e b e e eeaans 71
7.5.1. Event parameter of an observer Methodcoouuiiiiiiiiiiiii e 71
7.5.2. Declaring an observer method using @nNOLAIONSuuiiiiiiniiieii e 71
7.5.3. Declaring an observer method USING XML ... 71
7.5.4. Observer MethOd PAraMELENSoiiiieieeeeii et e e e eeeaans 72
7.5.5. ConditionNal OBSEIVEIS . ..ouuiieii e 72
7.5.6. TransaCtional ODSEIVENS i ettt e et e et e eeeaans 72
7.5.7. Observer object for an observer methodoouiiiiiiiiii e 73

7.6, The EVENE INEEITACEee et ettt e e e et e e et e eeeaans 74
7.7, ODSEIVEN TESOIULION ..ueieiit ettt ettt e e et e ettt e e e et et e ebb e e e et e e eeaans 75
7.7.1. Event binding annotations with Membersc..ooiiiiiiiii 76
7.7.2. Multiple event binding anNNOLELIONScccuviiiiiiiie e e 76

8. SCOPES ANT CONTEXES ... ieiitiie ettt ettt ettt ettt ettt e e e et e e ettt e e ettt e et e bb e e e e bb e e e ebaneas 7

JSR-299 Public Review

JSR 299: Web Beans

8.1, The COoNEXE INLEITACEeeeei ittt e et e e e e e b 7
8.2. Normal SCOPES aNd PSEUAO-SCOPESvuunieetin ettt e e eeti et et e et et e et et a e e e bt e e ettt e e e e bt e e e eban s 7
8.3. DEPENENT PSEUO-STCOPE ... eeetti ettt ettt ettt ettt e et ettt e e et e e e e bt e e e et e e e et e e e eban s 78
8.3.1. Dependent objects of asimple or enterprise Web Beancccvvveviiniiiiiiiiieeiieeee e 78

8.3.2. Dependent objects of aproducer Methodoooviiiiiiiiiiii e 79

8.3.3. Dependent objects of an EJB bean or Servlet ..o 79
8.3.4. Dependent ObjECt AESITUCTIONccuuiiiiiiii e 79

8.4. Passivating Scopes and SEri@liZationoiiiiiuiiiiii e 79
8.5. Context management for BUITt-IN SCOPESiiiiii e 80
8.5.1. Request CONtEXE [IFECYCIEcveeei i e 81
8.5.2. SesSioN CONLEXE TIFECYCIE .. i 81
8.5.3. Application CONteXt HFECYCIEveeei e 81
8.5.4. Conversation CoNtEXt [IFECYCIEc.uuiiiii e 81

8.6. Context management fOr CUSIOM SCOPESuuuiiiiii ettt et e e e e 83
9. XML DASEA MELAUBLA ... eeeeeiiieiiii ettt et e e e et e e et e e e et e e e aba e eeeaans 84
9.1. XML namespace for aJaVapackagecoouuuiiiiiiiiii e 84
9.2. WED BEAN UECIArAIONSeeevi ittt ettt e e et e e e e et e eeaans 85
9.2.1. Child elements of aWeb Bean declarationoooeuuiiiiiiiiiiiiiiic e 86
9.2.2. Type-level metadatafor aWeED BEANcoovuiiiiiiiiiiii e 86
9.2.3. Web Bean conNStruCtor AECIarationSccuuuiiiiiiieeiiii et e e 87
0.2.4. FieldS Of aWED BEAN ...covuiiiiiiii et 87
9.2.5. Field initial value deClarationsiiiiiuiiiiiiii e e 88
9.2.6. Methods Of @WED BEANiiiiiiiiiiiii e e 89

9.3. Producer method deClarationscouuuiiiiuiiii e 90
9.3.1. Child elements of aproducer method declarationcoceiiiiiiiiiiiiiii e 91
9.3.2. Return type and binding types of aproducer methodccoovieiiiiiiiiiiinn e, 91

9.3.3. Method-level metadata for aproducer methodooiiiiiiiiiiiii 91

9.4. Interceptor and decorator eClarationSoviieuuiiiiiii e e 92
9.4.1. Decorator delegate @triDULEceeeeeiiiiii e 92

9.5. INJECLioN POINE AECIBIBLIONSeevtiieeiiti ettt ettt et e e et e e et e e aab e e eeeans 93
9.6. INliNe Weh BEaN deCIaralioNSoiiiiuiiiiiii ettt et e e 93
9.7. Specifying AP typesand DiNAING tYPEScoeuuniiiii e e 94
9.8, ANNOLELION MEMDENS ... ettt ettt e e et e e e et e e e et e e e etb s e e eeaans 96
9.9. DePloyMENt AECIArAIONS iiiitiee ettt e e et e et e eeaans 96
9.9.1. The <Deploy=> deClarationcieeuieieieiie et e e e e e e e e e e et eeanaeenns 96
9.9.2. The <INterceptors™ ECIAIaliONuiiieitieeiiii ettt e eeaans 97

9.9.3. The <DeCcOrators™ ECIaIrationNoeeeeuuuiiiiii ettt e e et e e e eeaans 97

10. Packaging and deplOyMENTooouuiiiiiii e ettt e 98
10.1. WED BEAN QISCOVEIY ..uiiiiiiiiee ettt sttt ettt ettt e ettt r e et ettt r e e e e et n e e e e abareeeeabaneeeees 98
10.2. WED BEAN TEQISIIAIION .. .ieitteeeeii ettt ettt e et e e e et e e e e et e e e eabe e e e eabaneeeens 99
O R = = (oo (U o TP OPPRTTRUPPIN 99
10.4. INIGAHZALHON BVENT ...ooveei et e e et e e e e aa s 100
10.5. JAVAEE INTEGrAtiONvuuiiiiiiie ettt e et 100
o= 1] PP PR 101
BT] o] (o g = (o] £ TP 101
11.2. DePloymMENE PrODIEMIS ...ttt ettt e et e et e e et e e e e e e eaa s 101
11,3, EXECULION BITOFS ...eeiti ettt e e ettt e et e e ettt e e ettt e e et e e et et e e e e et e e et e bb e e e e ebb e e e e e ba e e e e ebanas 102

JSR-299 Public Review

Chapter 1. Architecture

Web Beans provides a powerful new set of services to Java EE components. This specification defines:

« The lifecycle and interactions of stateful components bound to well-defined contexts, where the set of contexts is ex-
tensible

* A sophisticated, typesafe dependency injection mechanism, including a facility for choosing between various compon-
ents that implement the same Java interface at deployment time

* Integration with the Unified Expression Language (EL), allowing any component to be used directly within a JSF or
JSP page

« Generalization of the method and component lifecycle interceptors defined by EJB 3.0 to other kinds of components,
along with an improved approach to binding interceptors to components and a new type of interceptor, called a decor-
ator

< An event notification model
« A web conversation context in addition to the three standard web contexts defined by the Java Servlet specification
* An SPI alowing third-party frameworks that execute in the Java EE environment to integrate cleanly with Web Beans

To take advantage of these facilities, the Java EE component developer provides additional component-level and applica-
tion-level metadata in the form of Java annotations and/or XM L -based deployment descriptors.

A Java EE component with alifecycle bound to a Web Beans context is called a Web Bean. Any Web Bean may be injec-
ted into other Java EE components by the Web Beans dependency injection service.

The use of Web Beans significantly simplifies the task of creating Java EE applications by integrating the Java EE web tier
with Java EE enterprise services. In particular, Web Beans allows EJB 3 components to be used as JSF managed beans,
thus integrating the the component models of EJB and JSF and significantly simplifying the programming model when
EJB and JSF are used together. In an environment that supports Web Beans, all EJB 3 session and singleton beans are Web
Beans—no Web Beans specific metadatais required.

Furthermore, Web Beans makes it easy to use most plain Java classes as Java EE components that may inject, or be injec-
ted into, other Java EE components such as EJBs or Servlets. Web Beans promotes plain Java classes to the status of man-
aged Java EE components. In particular, in an environment that supports Web Beans, all JavaBeans are Web Beans—no
Web Beans specific metadatais required.

Even when EJB, or JSF, or both, are not used, Web Beans may be used to simplify development of the business-logic layer
of an application. It is even possible for applications developed using third-party frameworks to take advantage of the ser-
vices provided by Web Beans viaaframework integration SPI.

1.1. Contracts

This specification defines the responsibilities of a user who writes an application that executes inside an environment that
supports Web Beans and uses the functionality provided by Web Beans, along with responsibilities of a vendor who imple-
ments the functionality defined by this specification and provides a runtime environment in which Web Beans execute —
the Web Bean manager. Both the application that uses Web Beans and the Web Bean manager are written to comply with
Java EE contracts and may take advantage of the functionality provided by Java EE.

The Web Bean manager may be provided by a Java EE container vendor as integrated functionality of the Java EE con-
tainer or embeddable EJB Lite implementation. Alternatively, a plugin Web Bean manager may be provided by some
third-party for use with various Java EE containers and embeddable EJB Lite implementations.

1.2. Supported environments

A Web Bean application may be designed to execute in either the Java EE 6, Java EE 5 or Java SE environments. When a
Web Bean application executes in a Java SE environment, an embeddable EJB Lite implementation provides the Java EE
services.

JSR-299 Public Review 1

Architecture

All plugin Web Bean managers are required to support any Java EE 6 compliant container and any embeddable EJB Lite
implementation. An integrated Web Bean manager is not required to support any environment other than that in which it is
integrated.

A compliant plugin Web Bean manager may optionally support Java EE 5. Certain functionality defined in this specifica-
tion is optional when the Web Bean manager executes in a Java EE 5 environment. This is the case only when explicitly
noted in this specification. All other functionality defined by this specification must be supported by a compliant plugin
Web Bean manager that supports Java EE 5 when it executes in the Java EE 5 environment.

A plugin Web Bean manager integrates with the Java EE container or embeddable EJB Lite implementation via standard
Java EE APIs such as INDI, EJB interceptors and servlet filters.

1.3. Relationship to other specifications

An application developer using Web Beans creates Java EE components such as EJBs, Servlets and JavaBeans and then
provides additional Web Beans metadata that defines additional behavior in terms of the Web Beans context model. These
components may take advantage of the services defined by this specification, together with the enterprise and presentation-
al aspects defined by other Java EE platform technol ogies.

This specification defines the collaboration between the Web Bean manager and Java EE component technologies such as
EJB, JavaServer Faces and Java Servlets.

In addition, this specification defines an SPI that allows a Web Bean manager to be integrated with alternative, non-
platform technologies, for example, alternative web presentation technologies.

Open issue: the Web Beans annotations for dependency injection, scope and interceptor binding are currently defined in
the package j avax. webbeans. To make these annotations more easily consumable by other specifications, should they in-
stead be categorized by concern into packages such asj avax. dependency, j avax. cont ext s andj avax. i nt er cept ors?

1.3.1. Relationship to EJB

EJB defines a programming model for application components that access transactional resources in a multi-user environ-
ment. EJB allows concerns such as role-based security, transaction demarcation, concurrency and scalability to be spe-
cified declaratively using annotations and XML deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not by nature contextual. References to stateful component instances must be ex-
plicitly passed between clients and stateful instances must be explicitly destroyed by the application.

Any EJB bean obtained via the Web Beans dependency injection service is a contextual object. It is bound to a context and
available to other Web Beans that execute in that context. The Web Bean manager automatically calls the EJB container to
create the EJB bean when it is needed by a client. When the context ends, the Web Bean manager automatically calls the
EJB container to destroy the bean.

For any EJB bean, even EJB beans which are not obtained via the Web Beans dependency injection service, the Web Bean
manager provides certain services, including injection of Web Bean instances and binding of Web Bean interceptors and
decorators.

In general, The EJB container provides the services defined by the EJB specification, and the Web Bean manager provides
the services defined by this specification. In particular, the Web Bean manager provides contextual lifecycle management,
delegating the actual creation and destruction of the EJB bean to the EJB container. The Web Bean manager integrates
with the EJB container via standard EJB and Java EE APIs.

1.3.2. Relationship to JSF

JavaServer Faces is a web-tier presentation framework that provides a component model for graphical user interface com-
ponents, a managed bean component model for application logic, and an event-driven interaction model that binds the two
component models. The managed bean component model is a contextual model where managed beans are bound to one of
the three web tier contexts and may hold contextua state.

Any Web Bean may fulfill the role of the managed bean in a JSF application. Thus, a JSF application may take advantage
of the more sophisticated context and dependency injection model defined by this specification. Even better, the Web Bean
may be an EJB bean, allowing direct use of EJB in any JSF page.

JSR-299 Public Review 2

Architecture

The Web Bean manager integrates with JSF via standard JSF APIs.

1.3.3. Relationship to Java Servlets

Web Beans may be called by a Servlet or JSP. The Web Bean manager integrates with the Servlet engine via standard
APIs defined by the Java Servlets specification.

Servlets are not themselves Web Beans, because they may not be injected into another object by the Web Beans depend-
ency injection mechanism. However, in the Java EE 6 environment, the Web Bean manager does provide injection of Web
Beansinto Servlets and binding of Web Bean interceptors and decorators to Servlets.

Note: we have requested an additional API from the Serviet specification to make this possible!

1.3.4. Relationship to Common Annotations for the Java Platform

Certain functionality defined by Common Annotations for the Java Platform is available to any Web Bean. For Web Beans
which are not EJB beans, this functionality is provided by the Web Bean manager.

1.4. Introductory examples

The following examples demonstrate the Web Beans programming model.

1.4.1. JSF example

The following JSF page defines alogin prompt for aweb application:

<f:view>
<f:form
<h: panel Gid col ums="2" rendered="#{!1ogi n. | oggedl n}">
<h: out put Label for="usernanme">User nane: </ h: out put Label >
<h:i nput Text id="usernane" val ue="#{credenti al s. usernane}"/>
<h: out put Label for="password">Passwor d: </ h: out put Label >
<h: i nput Text id="password" val ue="#{credential s. password}"/>
</ h: panel G'i d>
<h: commandBut t on val ue="Logi n" action="#{login.login}" rendered="#{!1o0gin.|oggedln}"/>
<h: commandBut t on val ue="Logout" aci on="#{l ogi n. | ogout}" rendered="#{l ogi n. | oggedl n}"/>
</[f:form
</f:view

The Unified EL expressionsin this page refer to Web Beans named cr edent i al s and | ogi n.
TheCredenti al s classis aWeb Bean whose lifecycle is bound to the JSF request:

@bdel
public class Credentials {

private String usernang;
private String password;

public String getUsernane() { return usernane; }
public void setUsername(String usernane) { this.username = usernane; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

}

The @bdel annotation is a stereotype that identifies the o edent i al s class as a Web Bean which acts as a model object in
an MV C architecture.

The Logi n classis aWeb Bean whose lifecycleis bound to the HTTP session:

@pessi onScoped @bdel
public class Login {

@urrent Credentials credentials;
@er si st enceCont ext EntityManager user Dat abase;

private User user;

JSR-299 Public Review 3

Architecture

public void login() {

Li st<User> resul ts = user Dat abase. creat eQuer y(
"select u from User u where u.usernane=:usernanme and u. password=: password")
. set Paranet er ("usernane", credentials.getUserNanme())
. set Par anet er ("password", credentials.getPassword())
.getResul tList();

if (!results.isEnmpty()) {
user = results.get(0);
}

}

public void | ogout() {
user = null;

publ i c bool ean isLoggedl n() {
return user!=null;
}

@°r oduces @uoggedl n User getCurrentUser() {
if (user==null) {
t hr ow new Not Loggedl nException();

}
el se {

return user;
}

The @essi onScoped annotation is a scope type that specifies the lifecycle of instances of Logi n.

The @ur rent annotation is a binding annotation and causes the Cr edent i al s Web Bean to be injected into an instance of
Logi n when it is created by the Web Bean manager.

The Common Annotations @per si st enceCont ext annotation causes a JPA Ent i t yManager to be injected by the Web Bean
manager.

The @ogged! n annotation is aso a binding annotation. The method annotated @r oduces is a producer method, which
will be called whenever another Web Bean in the system needs the currently logged-in user, for example, whenever the
user attribute of the bocunent Edi t or classisinjected by the Web Bean manager:

@hdel
public class Document Editor {

@urrent Docunent docunent;
@oggedl n User user;
@Per si st enceCont ext EntityManager docDat abase;

public void save() {
docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

When the login form is submitted, JSF sets the entered username and password onto an instance of the cr edenti al s Web
Bean that is automatically instantiated and provided by the Web Bean manager. Next, JSF callsthe | ogi n() method on an
instance of Logi n that is automatically instantiated and provided by the Web Bean manager. This instance continues to ex-
ist for and be available to other requests in the same HTTP session, and provides the User object representing the current
user to any other Web Bean that requiresit (for example, Docunent Edi t or). If the producer method is called before the | o-
gi n() method initializes the user object, it throws aNot Logged! nExcept i on.

1.4.2. EJB example
Our Logi n class may take advantage of the functionality defined by EJB:

@5t at ef ul @essi onScoped @mbdel
public class Login {

@urrent Credentials credentials;

JSR-299 Public Review 4

Architecture

@er si st enceCont ext EntityManager user Dat abase;
private User user;
@ransacti onAttri but e(REQU RES_NEW

@Rol esAl | owed(" guest™)
public void login() {

}

public void | ogout() {
user = null;

}

publ i c bool ean isLoggedl n() {
return user!=null;
}

@Rol esAl | owed("user")
@r oduces @uoggedln User getCurrentUser() {

}

The @t at ef ul annotation specifies that this Web Bean is also an EJB stateful session bean. The @r ansactionAttribute
and @rol esAl | owed annotations declare the EJB transaction demarcation and security attributes.

1.4.3. Interceptor example

Web Beans interceptors allow common, cross-cutting concerns to be applied to Web Beans via custom annotations. Inter-
ceptor types may be individually enabled or disabled at deployment time.

The Aut hori zat i onl nt er cept or class defines a custom authorization check:

@becure @nterceptor public class Authorizationlnterceptor {
@oggedl n User user;

@Ar oundl nvoke public void authorize(lnvocationContext ic) {
try {
if (luser.isBanned()) {
System out . println("Authorized");
i c.proceed();

el se {
System out . println("Not authorized");
t hr ow new Not Aut hori zedExcepti on();

}

}

catch (Not Aut henti cat edExcepti on nae) {
System out . println("Not authenticated");
t hrow nae;

The Web Beans @ nt er cept or annotation identifies the Aut hori zati onl nt er cept or class as a Web Beans interceptor.
The @ecur e annotation is a custom interceptor binding type.

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI ME)

public @nterface Secure {}

The @ecur e annotation is used to apply the interceptor to a Web Beans or EJB bean:

@bdel
public class Docunent Editor {

@urrent Docunent document;
@oggedl n User user;
@er si stenceCont ext EntityManager em

@Becur e
public void save() {

JSR-299 Public Review 5

Architecture

docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

When the save() method is invoked, the aut hori ze() method of the interceptor will be called. The invocation will pro-
ceed to the Docunent Edi t or class only if the authorization check is successful.

1.4.4. Decorator example

Web Beans decorators are similar to interceptors, but apply only to Web Beans of a particular Java interface. Like inter-
ceptors, decorators may be easily enabled or disabled at deployment time. Unlike interceptors, decorators are aware of the
semantics of the intercepted method.

For example, the Dat aAccess interface might be implemented by many Web Beans:

public interface DataAccess {

public Onject |oad(Object id);
public oject getld();

public void save();
public void delete();

public O ass getDataType();

The Dat aAccessAut hori zat i onDecor at or €lass defines the authorization checks:

@pecorator public abstract class DataAccessAut hori zati onDecor at or
i npl enent s Dat aAccess {

@pecor at es Dat aAccess del egat e;
@oggedl n User user;

public void save() {
aut hori ze("save");
del egat e. save();

}

public void delete() {
aut hori ze("del ete");
del egat e. del ete();

}

private void authorize(String action) {

try {
oject id = del egate. getld();
Cl ass type = del egat e. get Dat aType();
if (user.hasPerm ssion(action, type, id))

System out. println("Authorized for " + action);

}

el se {
Systemout. println("Not authorized for " + action);
t hr ow new Not Aut hori zedExcepti on(action);

}

}

catch (Not Aut henti cat edExcepti on nae) {
Systemout. println("Not authenticated");
t hr ow nae;

The @ecorator annotation identifies the Dat aAccessAut hori zati onDecorat or class as a Web Beans decorator. The
@ecor at es annotation identifies the delegate attribute, which the decorator uses to delegate method calls to the Web
Bean manager. The decorator applies to any Web Bean that implements Dat aAccess.

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the decorator contains func-
tionality that is specific to the semantics of the method being called.

JSR-299 Public Review 6

Architecture

Decorators may be declared abstract, relieving the developer of the responsibility of implementing all methods of the dec-
orated interface. If a decorator does not implement a method of an API type, the decorator will simply not be called when
that method is invoked upon the decorated Web Bean.

JSR-299 Public Review 7

Chapter 2. Web Bean definition

A Web Bean is a Java EE component that bears additional metadata defining its lifecycle and interactions with other com-
ponents according to the Web Beans context model.

Speaking more abstractly, a Web Bean is a source of contextual objects which define application state and/or logic. These
objects are called instances of the Web Bean. The Web Bean manager creates and destroys these instances and associates
them with the appropriate Web Beans context. Instances of a\Web Bean may be injected into other objects (including other
Web Bean instances) that execute in the same context, and may be used in EL expressions that are evaluated in the same
context.

A Web Bean comprises the following attributes:

e A (nonempty) set of API types

* A (nonempty) set of binding annotation types
» A scope

e A deployment type

e Optionaly, aWeb Bean name

e A set of interceptor binding types

* A Web Bean implementation

In most cases, a Web Bean devel oper provides the Web Bean implementation by writing business logic in Java code. The
developer then defines the remaining attributes by providing additional Web Beans specific metadata, or by alowing them
to be defaulted by the Web Bean manager. In certain other cases, for example JM S endpoints defined in Section 3.5, “IMS
endpoints’, the developer provides only the Web Beans specific metadata and the Web Bean implementation is provided
by the Web Bean manager.

It is sometimes convenient to use XML instead of annotations to define this metadata. The web- beans. xm file format
defined in Chapter 9, XML based metadata supports XML declaration of Web Beans.

A Web Bean implementation may be a Java class, an EJB session or singleton bean class, a producer method or a IMS
queue or topic, as specified in Chapter 3, Web Bean implementation. The other attributes of the Web Bean are either:

» declared explicitly by annotating the implementation class,
e declared explicitly in web- beans. xni , or
o defaulted by the Web Bean manager.

The deployment type, API types and binding types of a Web Bean determine where its instances will be injected by the
Web Bean manager.

The Web Bean developer may also create Web Beans interceptors and/or decorators or reuse existing interceptors and/or
decorators. The interceptor binding types of a Web Bean determine which interceptors will be applied at runtime. The API
types and binding types of a Web Bean determine which decorators will be applied at runtime. Interceptors, decorators and
interceptor binding types are specified in Chapter 6, Interceptors and decorators.

A Web Bean implementation may produce or consume events. The Web Beans event notification facility is specified in
Chapter 7, Events.

2.1. Functionality provided by the Web Bean manager to the Web Bean

A Web Bean is provided by the Web Bean manager with the following capabilities:

« transparent creation and destruction and scoping to a particular Web Beans context, specified in Chapter 5, Web Bean
lifecycle and Chapter 8, Scopes and contexts,

JSR-299 Public Review 8

Web Bean definition

« scoped resolution by API type and binding annotation type when injected into a Java-based client, as defined by Sec-
tion 4.9, “Instance resolution”,

» scoped resolution by name when used in aUnified EL expression, as defined by Section 4.10, “EL name resolution”,

« lifecycle callbacks and automatic injection of other Web Bean instances, specified in Chapter 3, Web Bean implement-
ation,

* method interception, callback interception, and decoration, as defined in Chapter 6, Interceptors and decorators, and

« event notification, as defined in Chapter 7, Events.

2.2. Web Bean API types

A Web Bean API type defines a client-visible type of the Web Bean. A Web Bean may have multiple API types. For ex-
ample, the following Web Bean has three API types:

public cl ass BookShop
ext ends Busi ness
i mpl enent's Shop<Book> {

}
The API types are Book Shop, Busi ness and Shop<Book>.

Meanwhile, this EJB has only the local interfaces BookShop and Audi t abl e as API types, since the bean classis not a cli-
ent-visible type.

@5t at ef ul
public cl ass BookShopBean
ext ends Busi ness
i mpl enents BookShop, Auditable {

}
Therulesfor determining the set of API types for a\Web Bean are defined in Chapter 3, Web Bean implementation.

The API types of a Web Bean are used by the resolution algorithms defined in Chapter 4, Lookup, dependency injection
and EL resolution.

An API type may be a parameterized type with an actual type parameter. For the purposes of the typesafe resolution al-
gorithm defined in Section 4.9.2, “ Typesafe resolution algorithm”, parameterized API types are considered identical by the
Web Bean manager only if both the type and the type parameters (if any) are identical. However, API types may not de-
clare atype variable or wildcard.

Aside from this restriction, almost any Java type may be an API type of a Web Bean:

* An API type may be an interface, a concrete class or an abstract class, and may be declared final or have fina methods.
* An API type may be an array type. Two array types are considered identical only if the element type isidentical.

« An APl type may be a primitive types. Primitive types are considered to be identical to their corresponding wrapper
typesinj ava. | ang.

However, certain additional restrictions are specified in Section 4.4.1, “Unproxyable APl types’ for Web Beans with a
normal scope type, as defined in Section 8.2, “Normal scopes and pseudo-scopes’.

All Web Beans have the APl typej ava. | ang. Ovj ect .

A client of a Web Bean may typecast its reference to any instance of the Web Bean to any API type of the Web Bean. For
example, if our ssmple Web Bean was injected to the following field:

@Current Shop<Book> bookShop;

Then the following typecast islegal and will not result in an exception:

JSR-299 Public Review 9

Web Bean definition

Busi ness biz = (Business) bookShop;

Likewise, if our EJB wasinjected to the following field:

@current BookShop bookShop;

Then the following typecast islegal and will not result in an exception:

Audi t abl e aud = (Auditabl e) bookShop;

Open issue: currently it isimpossible for the client of a stateful session bean to typecast its reference to a different local
interface. We need a new API defined by the EJB specification.

2.3. Binding types

For agiven API type, there may be multiple Web Beans which implement the type. For example, an application may have
two implementations of the interface Payment Processor :

cl ass SynchronousPaynent Processor
i mpl enents Paynent Processor {

cl ass Asynchr onousPaynment Processor
i mpl enents Paynent Processor {

}

A client that needs a Paynent Processor that processes payments synchronously needs some way to distinguish between
the two different implementations. One approach would be for the client to explicitly specify the class that implements that
Payment Processor interface. However, this approach creates a hard dependence between client and implementa-
tion—exactly what use of the interface was designed to avoid!

A Web Beans binding type represents some client-visible semantic of an APl implementation that is satisfied by some im-
plementations of the API (and not by others). For example, we could introduce binding types representing synchronicity
and asynchronicity. In Java code, binding types are represented by annotations.

@ynchr onous
cl ass Synchr onousPaynent Processor
i mpl enents Paynent Processor {

@\synchr onous
cl ass Asynchr onousPaynment Processor
i mpl enents Paynent Processor {

}

Finally, binding types are applied to injection points to distinguish which implementation is required by the client. For ex-
ample, when the Web Bean manager encounters the following injected field, an instance of Synchr onousPaynent Pr o-
cessor Will beinjected:

@ynchronous Payment Processor paynent Processor;

But in this case, an instance of Asynchr onousPaynent Processor Will beinjected:

@\synchronous Paynent Processor payment Processor;

The Web Bean manager inspects the binding annotations and type of the injected attribute to determine the Web Bean in-
stance to be injected, according to the resolution algorithm defined in Chapter 4, Lookup, dependency injection and EL
resolution.

Binding types are also used as event selectors by observers of Web Beans events, as defined in Chapter 7, Events, and to
bind decorators to Web Beans, as specified in Section 6.3, “Decorators’.

JSR-299 Public Review 10

Web Bean definition

2.3.1. Default binding type

If a Web Bean does not explicitly declare a binding type, the Web Bean has exactly one binding type:

j avax. webbeans. Current . Thisis called the default binding type.
The following declarations are equivalent:

@cur r ent
public class Oder {}

public class Oder {}

The default binding type is also assumed for any injection point that does not explicitly declare a binding type. The follow-

ing declarations are equivalent:

public class Oder {
public Order(@urrent O derProcessor processor) { ... }

public class Oder {
public Order(OrderProcessor processor) { ... }
}

2.3.2. Defining binding types

A binding type is a Java annotation defined as @rarget ({ METHOD, FIELD,

@ret ent i on(RUNTI ME) . All binding types must specify the @i ndi ngType meta-annotation.
For example:

@Bi ndi ngType

@Ret ent i on(RUNTI ME)

@rar get ({ MVETHOD, FI ELD, PARANMETER, TYPE})
public @nterface Synchronous {}

@Bi ndi ngType

@Ret ent i on(RUNTI MVE)

@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Asynchronous {}

A binding annotation may define annotation members.

@Bi ndi ngType
@Ret ent i on(RUNTI ME)
@ar get ({ METHOD, FI ELD, PARAVETER, TYPE})
public @nterface PayBy {
Payment Met hod val ue();

Binding annotation member values are significant to the typesafe resol ution algorithm.

2.3.3. Declaring the binding types of a Web Bean using annotations

PARAMETER,

TYPE})

and

A Web Bean's binding types are declared by annotating the implementation class or producer method with the binding

types.

@DAP
cl ass LdapAut henti cat or
i npl enents Aut henticator {

public class Shop {

@r oduces @A |
public List<Product> getAllProducts() { ... }

@°r oduces @N shLi st

JSR-299 Public Review

11

Web Bean definition

public List<Product> getWshList() { }

@°r oduces @shoppi ngCar't
public List<Product> getShoppingCart() { }

}

Any Web Bean may declare multiple binding types.

@ynchronous @Rrel i abl e
cl ass SynchronousRel i abl ePayment Pr ocessor
i mpl enents Paynent Processor {

}

If no binding typeis explicitly specified, the default binding type is assumed.

2.3.4. Declaring the binding types of a Web Bean using XML
If aWeb Bean is declared in web- beans. xni , binding types may be specified using the binding type names:

<nyapp: Synchr onousPaynent Pr ocessor >
<myapp: Synchr onous/ >
<nmyapp: Rel i abl e/ >

</ myapp: Synchr onousPaynent Pr ocessor >

If any binding type is specified in XML, the binding annotations appearing on the implementation class or producer meth-
od are ignored and al binding types must be explicitly specified in XML.

Otherwise, if no binding types are specified in XML, the binding annotations that appear on the implementation class or

producer method are used. If no binding annotations appear on the implementation class or producer method, the default
binding type is used.

2.3.5. Using binding annotations on injected fields

Binding annotations are applied to injected fields (see Section 3.6, “Injected fields’) to determine the Web Bean that isin-
jected, according to the typesafe resolution algorithm defined in Section 4.9.2, “ Typesafe resolution algorithm”.

@DAP Aut henticator authenticator;

A Web Bean may only beinjected to an injection point if it has all the binding types of the injection point.
@ynchronous @Rel i abl e Paynent Processor paynent Processor;

For the case of producer methods, the binding annotation help determine exactly which producer method is called:
@\ | List<Product> cat al og;
@N shLi st Li st <Product > wi shlLi st;
@hoppi ngCart List<Product> cart;

For aWeb Bean defined in XML, the binding types of afield may be specified using XML:

<nyapp: paynent Processor >
<nyapp: Asynchr onous/ >
<nmyapp: Rel i abl e/ >

</ nyapp: paynment Processor >

When the binding types of afield are specified using XML, any binding type annotations of the field are ignored.

2.3.6. Using binding annotations on method or constructor parameters

Binding annotations may be applied to parameters of producer methods, initializer methods, disposal methods, Web Bean

JSR-299 Public Review 12

Web Bean definition

remove methods or Web Bean constructors (see Chapter 3, Web Bean implementation) to determine the Web Bean in-
stance that is passed when the method is called by the Web Bean manager. The Web Bean manager uses the typesafe res-
olution algorithm defined in Section 4.9.2, “ Typesafe resolution algorithm” to determine values for these parameters.

For example, when the Web Bean manager encounters the following producer method, an instance of Synchr onousPay-
ment Processor Will be passed to the first parameter and an instance of Asynchr onousPayment Processor Will be passed to
the second parameter:

@r oduces
Paynent Processor get Paynent Processor (@ynchr onous Paynent Processor sync,
@\synchronous Payment Processor async) {
return i sSynchronous() ? sync : async;

}

For aWeb Bean defined in XML, the binding types of a method parameter may be specified using XML:

<nyapp: get Paynment Pr ocessor >
<Pr oduces/ >
<myapp: Paynent Pr ocessor >
<myapp: Synchr onous/ >
</ myapp: Paynent Pr ocessor >
<nyapp: Paynent Pr ocessor >
<myapp: Asynchr onous/ >
</ myapp: Paynent Processor >
</ nyapp: get Paynent Pr ocessor >

When the binding types of a parameter are specified using XML, any binding type annotations of the parameter are ig-
nored.

2.4. Web Bean scopes

Unlike JSF managed beans, Java EE components such as Servlets, EJBs and JavaBeans do not have a well-defined scope.
These components are either:

» gingletons, such as EJB singleton beans, whose state is shared between all clients,
» stateless objects, such as Servlets and statel ess session beans, which do not contain client-visible state, or

e objects that must be explictly created and destroyed by their client, such as JavaBeans and stateful session beans,
whose state is shared by explicit reference passing between clients.

Scoped objects, by contrast, exist in awell-defined context:

« they may be automatically created when needed and then automatically destroyed when the context in which they were
created ends, and

e their stateis automatically shared by clients that execute in the same context.

All Web Beans have a scope. The scope of a Web Bean determines the lifecycle of its instances, and which instances of
the Web Bean are visible to instances of other Web Beans, as defined in Chapter 8, Scopes and contexts. A scope typeis
represented by an annotation type.

For example, an object that represents the current user is represented by a session scoped object:

@r oduces @bessi onScoped User getCurrentUser() { ... }

An object that represents an order is represented by a conversation scoped object:

@Conver sat i onScoped
public class Oder {

}

A list that contains the results of a search screen might be represented by arequest scoped object:

@°r oduces @Request Scoped @Naned("orders")

JSR-299 Public Review 13

Web Bean definition

Li st <Order> get Order SearchResults() { ... }

The set of scope typesis extensible.

2.4.1. Built-in scope types

There are several standard scope types defined by Web Beans. The @Request Scoped, @ppl i cationScoped and
@essi onScoped annotations defined in Section 8.5, “Context management for built-in scopes’ represent the standard
scopes defined by the Java Servlets specification. The @onver sat i onScoped annotation represents the Web Beans conver-

sation scope defined in Section 8.5.4, “Conversation context lifecycle”. In addition, there is the @ependent pseudo-scope
for dependent objects, as defined in Section 8.3, “ Dependent pseudo-scope”.

2.4.2. Defining new scope types

A Web Beans scope type is a Java annotation defined as @rar get ({ TYPE, METHOD}) and @ret ent i on(RUNTI ME) . All scope
types must also specify the @copeType meta-annotation.

For example, the following annotation declares a "business process scope”:

@scopeType

@rar get ({ TYPE, METHOD})

@Ret ent i on(RUNTI ME)

public @nterface Busi nessProcessScoped {}

An application or third-party framework might provide a context implementation for this custom scope (see Section 8.6,
“Context management for custom scopes’).

2.4.3. Declaring the Web Bean scope using annotations
The Web Bean's scope is defined by annotating the implementation class or producer method with a scope type.

A Web Bean implementation class or producer method may specify at most one scope type annotation. If an implementa-
tion class or producer method specifies multiple scope type annotations, a Def i ni ti onExcept i on is thrown by the Web
Bean manager at startup time.

The following examples demonstrate the use of built-in scope types:

@Request Scoped
public class ProductlList inplenents DatalMdel { ... }
public class Shop {

@°r oduces @bessi onScoped @N shLi st
public List<Product> getWshList() { }

@r oduces @onver sati onScoped @hoppi ngCart
public List<Product> getShoppingCart() { }

}

Likewise, a Web Bean with the custom business process scope may be declared by annotating it with the
@usi nessPr ocessScoped annotation:;

@usi nessProcessScoped
public class Oder {

}

Alternatively, a scope type may be specified using a stereotype annotation, as defined in Section 2.7.2, “ Declaring the ste-
reotypes for a Web Bean using annotations’.

2.4.4. Declaring the Web Bean scope using XML

If the Web Bean is declared in web- beans. xni , the scope may be specified using the scope annotation type name:

JSR-299 Public Review 14

Web Bean definition

<myapp: Product Li st >
<Request Scoped/ >
</ nyapp: Product Li st >

If more than one scope typeis specified in XML, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initializ-
aion time.

If an implementation class or producer method with a scope type annotation is specified and if no scope type is explicitly
specified in XML, the scope defined by the scope type annotation is used.

Alternatively, a scope type may be specified using a stereotype declared in XML, as defined in Section 2.7.3, “Declaring
the stereotypes for aWeb Bean using XML”.

2.4.5. Default scope

When no scope is explicitly declared by annotating the implementation class or producer method, or by using XML, the
scope of aWeb Bean is defaulted.

The default scope for a Web Bean which does not explicitly declare a scope depends upon its declared stereotypes:

< |f the Web Bean does not declare any stereotype with a declared default scope, the default scope for the Web Bean is
@ependent .

e |If al stereotypes declared by the Web Bean that have some declared default scope have the same default scope, then
that scope is the default scope for the Web Bean.

« If there are two different stereotypes declared by the Web Bean that declare different default scopes, then there is no
default scope and the Web Bean must explicitly declare a scope. If it does not explicitly declare a scope, a Defi ni -
ti onExcept i on isthrown by the Web Bean manager at initialization time.

If aWeb Bean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Deployment types

In many applications, there are various implementations of a particular API, and the implementation used at runtime varies
between different deployments of the system. Web Beans allows the developer to associate a particular implementation of
an API with a certain deployment scenario.

A Web Beans deployment type represents a deployment scenario. Web Beans may be classified by deployment type, and
thereby associated with various deployment scenarios.

Deployment types allow the Web Bean manager to identify which Web Beans should be enabled for use in a particular de-
ployment of the system. The deployment type also determines the precedence of a Web Bean, used by the resolution al-
gorithms specified in Chapter 4, Lookup, dependency injection and EL resolution.

The set of deployment typesis extensible.

2.5.1. Built-in deployment types

There are two standard deployment types defined by Web Beans: @r oduct i on and @t andar d.

All standard Web Beans defined by this specification, and provided by the Web Bean manager, are defined using the
@t andar d deployment type. For example, the Conver sati on object defined in Section 8.5.4, “Conversation context life-
cycle” and the Manager object defined in Section 4.8, “The Manager object” have this deployment type. No Web Bean
may be declared with the @t andar d deployment type unless explicitly required by this specification.

Application Web Beans may be defined using the @r oduct i on deployment type.

2.5.2. Defining new deployment types

A Web Beans deployment type is a Java annotation defined as @ar get ({ TYPE, METHOD}) and @Ret ent i on(RUNTI ME) . All

JSR-299 Public Review 15

Web Bean definition

deployment types must also specify the @epl oyrment Type meta-annotation.

Applications and third-party frameworks may define their own deployment types. For example, the following deployment
type might identify Web Beans which are used only at a particular site at which the application is deployed:

@epl oynent Type

@rarget ({ TYPE, METHOD})

@Ret ent i on(RUNTI ME)

public @nterface Australian {}

This deployment type might be used by a third-party framework that extends Web Beans:

@epl oyment Type

@arget ({ TYPE, METHOD})

@Ret ent i on(RUNTI MVE)

public @nterface DaoFramework {}

This deployment type might be used to define mock objects for integration testing:

@epl oynment Type

@arget ({ TYPE, METHOD})
@Ret ent i on(RUNTI MVE)
public @nterface Mck {}

2.5.3. Declaring the deployment type of a Web Bean using annotations
The deployment type of the Web Bean is declared by annotating the implementation class or producer method.

An implementation class or producer method may specify at most one deployment type. If multiple deployment type an-
notations are specified, aDefi ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

Open issue: is this too restrictive? We could allow multiple deployment types to be specified, and ignore all but the
highest-precedence enabled deployment type.

This Web Bean has the deployment type @r oduct i on:

@roduction
public class Oder {}

This Web Bean has the deployment type @bck:

@bck
public class MckOrder extends Order {}

By default, if no deployment type annotation is explicitly specified, a producer method inherits the deployment type of the
Web Bean in which it is defined.

This producer method has the deployment type @r oduct i on:

@r oducti on
public class Login {

@°r oduces
public User getUser() { ... }

}

This producer method has the deployment type @ust ral i an:

@r oducti on
public class TaxPolicies {

@roduces @\wustralian
public TaxPolicy getAustralianTaxPolicy() { ... }

}

Alternatively, a deployment type may be specified using a stereotype annotation, as defined in Section 2.7.2, “Declaring
the stereotypes for a Web Bean using annotations”.

JSR-299 Public Review 16

Web Bean definition

2.5.4. Declaring the deployment type of a Web Bean using XML

When a Web Bean is declared in web- beans. xm , the deployment type may be specified using a tag with the annotation
type name:

<myapp: Austr al i anTaxPol i cy>
<depl oynent : Austral i an/ >
</ nyapp: Austral i anTaxPol i cy>

If more than one deployment type is specified in XML, a Defi ni ti onExcepti on is thrown by the Web Bean manager at
initialization time.

If an implementation class or producer method with a deployment type annotation is specified and if no deployment typeis
explicitly specified in XML, the deployment type defined by the deployment type annotation is used.

Alternatively, a deployment type may be specified using a stereotype declared in XML, as defined in Section 2.7.3,
“Declaring the stereotypes for aWeb Bean using XML".

2.5.5. Default deployment type

When no deployment type is explicitly declared by annotating the implementation class or producer method, or by use of
XML, the deployment type is defaulted.

The default deployment type for a Web Bean which does not explicitly declare a deployment type depends upon its de-
clared stereotypes:

< |f aWeb Bean does not declare any stereotype with a declared default deployment type, then the default deployment
typeis @r oducti on.

e Otherwise, the default deployment type for the Web Bean is the highest-precedence default deployment type declared
by any stereotype declared by the Web Bean.

Thus, the following declarations are equival ent:

@r oduct i on
public class Oder {}

public class Oder {}

If aWeb Bean explicitly declares a deployment type, any default deployment type declared by stereotypes are ignored.

2.5.6. Enabled deployment types

In a particular deployment, only some deployment types are enabled. Web Beans declared with a deployment type that is
not enabled are not available to the resolution algorithms defined in Chapter 4, Lookup, dependency injection and EL res-
olution.

The Web Bean manager inspects the deployment type of each Web Bean that exists in a particular deployment (see Sec-
tion 10.1, “Web Bean discovery”) to determine whether the Web Bean is enabled in this deployment. If the deployment
type is enabled, an instance of the Web Bean may be obtained by lookup, injection or EL resolution. Otherwise, the Web
Bean is never instantiated by the Web Bean manager.

By default, only the built-in deployment types are enabled. To enable a custom deployment type, a <Depl oy> €lement must
beincluded in aweb- beans. xm file and the deployment type must be declared using the annotation type name.

<WebBeans>
<Depl oy>
<St andar d/ >
<Pr oducti on/ >
<myf wk: DaoFr amewor k/ >
<depl oynent : Austral i an/ >
<nyf wk: Mock/ >
</ Depl oy>
</ WbBeans>

JSR-299 Public Review 17

Web Bean definition

If a<Depl oy> element is specified, only the explicitly declared deployment types are enabled. The @t andar d deployment
type must be declared. If the @t andar d deployment type is not declared, a Depl oynent Except i on is thrown by the Web
Bean manager at initialization time.

If no <Depl oy> element is specified in any web- beans. xm file, only the @t andard and @r oduct i on deployment types
are enabled.

If the <Depl oy> element is specified in more than one web- beans. xm document, a Depl oynent Except i on isthrown by the
Web Bean manager at initialization time.

2.5.7. Deployment type precedence

In aparticular deployment, all enabled deployment types are strongly ordered in terms of precedence. The precedence of a
deployment type is used by the resolution algorithms defined in Chapter 4, Lookup, dependency injection and EL resolu-
tion.

If a<Depl oy> element is specified, the order of the deployment type declarations determines the deployment type preced-
ence. Deployment types which appear later in this list have a higher precedence than deployment types which appear earli-
er. The @t andar d deployment type must appear first and always has the lowest precedence of any deployment type.

If no <Depl oy> element is specified, the @r oduct i on deployment type has a higher precedence than the @t andar d de-
ployment type.

2.6. Web Bean names

A Web Bean may have a Web Bean name. A Web Bean with a name may be referred to by its Web Bean name in Unified
EL expressions. A valid Web Bean name is a period-separated list of valid EL identifiers.

There is no relationship between the Web Bean name of an EJB bean and the EJB name of the bean.
In certain circumstances, multiple Web Beans may share the same name.

Names are used by the EL name resolution algorithm defined in Section 4.9.2, “ Typesafe resolution algorithm”. This al-
lows a Web Bean to be used directly in a JSP or JSF page.

For example, a Web Bean with the name pr oduct s could be used like this:

<h: out put Text val ue="#{products.total }"/>

JMSS endpoints do not have names.

2.6.1. Declaring the Web Bean name using annotations

To specify the name of a Web Bean, the @iamed annotation is applied to the implementation class or producer method.
ThisWeb Bean is named pr oduct s:

@Namred(" pr oduct s")
public class ProductlList inplenments DataMdel { ... }

If the @amed annotation does not specify the val ue member, the default name is assumed.

2.6.2. Declaring the Web Bean name using XML
If the Web Bean is declared in web- beans. xni , the name may be specified using <Naned>:

<myapp: Product Li st >
<Nanmed>pr oduct s</ Naned>
</ myapp: Product Li st >

If the <Nanmed> element is empty, the default name is assumed.

If an implementation class or producer method with a @amed annotation is specified, and if no <Naned> element is expli-

JSR-299 Public Review 18

Web Bean definition

citly specified, the name specified by the @waned annotation is used. If the @aned annotation does not specify the val ue
member, the default name is assumed.

If a<Named> element is specified, the @vaned annotation isignored.

2.6.3. Default Web Bean names

In the following circumstances, a default name must be assigned by the Web Bean manager:

e Animplementation class or producer method of a Web Bean defined using annotations declares a @waned annotation
and no name s explicitly specified by the val ue member.

e Anempty <Naned> element is specified by a Web Bean defined in XML.

e No<Naned> element is specified by a Web Bean defined in XML, but the implementation class or producer method de-
clares a @amed annotation and no name is explicitly specified by the val ue member.

¢ A Web Bean declares a stereotype that declares an empty @aned annotation, and the Web Bean does not explicitly
specify aname.

The default name for a Web Bean depends upon the Web Bean implementation. The rules for determining the default
name for a Web Bean are defined in Chapter 3, Web Bean implementation.

2.6.4. Web Beans with no name

If neither <Naned> nor @ared is specified, by the Web Bean or its stereotypes, a Web Bean has no name.

2.7. Stereotypes

In many systems, use of architectural patterns produces a set of recurring Web Bean roles. A stereotype allows a frame-
work developer to identify such arole and declare some common metadata for Web Beans with that role in a central place.

A stereotype encapsulates any combination of:

e adefault deployment type,

e adefault scopetype,

e arestriction upon the Web Bean scope,

e arequirement that the Web Bean implement or extend a certain type, and

e aset of interceptor binding annotations.

A stereotype may also specify that all Web Beans with the stereotype have defaulted Web Bean names.
A Web Bean may declare zero, one or multiple stereotypes.

Open issue: should stereotype "inheritance” be supported?

2.7.1. Defining new stereotypes

A Web Beans stereotype is a Java annotation defined as @rar get ({ TYPE, METHOD}) , @ar get (METHOD) Of @ar get (TYPE)
and @ret ent i on(RUNTI ME) . All stereotypes must also specify the @t er eot ype meta-annotation.

A stereotype may declare at most one scope type. If a stereotype declares more than one scope type, a Def i ni t i onExcep-
ti on isthrown by the Web Bean manager at initialization time.

A stereotype may declare at most one deployment type. If a stereotype declares more than one deployment type, a Def i ni -
ti onExcepti on isthrown by the Web Bean manager at initialization time.

A stereotype may declare an empty @amed annotation. If a stereotype declares a non-empty @anmed annotation, a Def i ni -

JSR-299 Public Review 19

Web Bean definition

ti onExcepti on isthrown by the Web Bean manager at initialization time.

A stereotype may declare zero, one or multiple interceptor binding types, as defined in Section 6.2.4, “Interceptor bind-
ings’.

A stereotype may not declare any binding type annotation. If a stereotype declares a binding type annotation, a Def i ni -
ti onExcept i on isthrown by the Web Bean manager at initialization time.

For exampl e, the following stereotype might be used to identify action classesin aweb application:

@Request Scoped

@roducti on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

Then actions would have scope @request Scoped and deployment type @r oduct i on unless the scope or deployment type
explicitly specified by the Web Bean.

We may specify interceptor bindings that apply to all actions:

@Request Scoped

@ecur e
@r ansact i onal
@r oducti on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

We may specify that every Web Bean with the stereotype has a defaulted name when a name is not explicitly specified by
the Web Bean:

@Request Scoped

@secur e

@r ansacti onal
@\anmed

@Pr oducti on

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

If all actions are request scoped, we can make this restriction explicit:

@Request Scoped

@ecur e
@ransact i onal
@Pr oducti on

@5t er eot ype(suppor t edScopes=Request Scoped. cl ass)
@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

We may even require that all actions extend some Act i onBase class:

@Request Scoped

@secur e

@r ansacti onal

@r oducti on

@t er eot ype(requi redTypes=Act i onBase. cl ass)
@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

2.7.2. Declaring the stereotypes for a Web Bean using annotations
Stereotype annotations may be applied to a Web Bean implementation class or producer method.

@\ct i on

public class LoginAction { ... }

JSR-299 Public Review 20

Web Bean definition

The default deployment type and default scope declared by the stereotype may be overridden by the Web Bean:

@mbck @\pplicationScoped @Action
public class MdckLogi nActi on extends Logi nAction { ... }

Multiple stereotypes may be applied to the same Web Bean:

@ao @\ction
public class LoginAction { ... }

2.7.3. Declaring the stereotypes for a Web Bean using XML
If the Web Bean is declared in web- beans. xni , stereotypes may be declared using the stereotype annotation type name:

<nyapp: Logi nActi on>
<nyfwk: Acti on/ >
</ nyapp: Logi nAct i on>

If any stereotype is specified in XML, the stereotypes appearing on the implementation class or producer method are ig-
nored and all stereotypes must be explicitly specified in XML.

Otherwise, if no stereotypes are specified in XML, the stereotype annotations that appear on the implementation class or
producer method are used. If no stereotype annotations appear on the implementation class or producer method, the Web
Bean has no stereotypes.

2.7.4. Stereotype restrictions

A stereotype may place certain restrictions upon the Web Beans that declare the stereotype.

If a stereotype declares ar equi r edType, and the Web Bean API types do not include the type, a Defi ni ti onException IS
thrown by the Web Bean manager at initialization time.

If a stereotype explicitly declares a set of scope types using suppor t edScopes, and the Web Bean scopeis not in that set, a
Def i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

If a Web Bean declares multiple stereotypes, it must satisfy every restriction declared by every declared stereotype.

2.7.5. Built-in stereotypes

Web Beans provides a built-in stereotype. The @bdel stereotypeisintended for use with Web Beans that define the model
layer of an MV C web application architecture such as JSF:

@\aned

@Request Scoped

@5t er eot ype

@arget ({ TYPE, METHOD})
@Ret ent i on(RUNTI ME)

public @nterface Mdel {}

In addition, the special-purpose @ nt er cept or and @ecor at or stereotypes are defined in Chapter 6, Interceptors and dec-
orators.

2.8. Specialization

If two Web Beans both support a certain API type, and share at least one binding type, then they are both eligible for injec-
tion to any injection point with that declared type and binding type. The Web Bean manager will choose the Web Bean
with the highest priority enabled deployment type.

Consider the following Web Beans:

@current @\synchronous
public class AsynchronousService inplements Service{

}

JSR-299 Public Review 21

Web Bean definition

@mbck @urrent
public class MockAsynchronousServi ce extends AsynchronousService {
}

Suppose that the deployment type @wbck is enabled:

<WebBeans>
<Depl oy>
<St andar d/ >
<Pr oducti on/ >
<myf wk: Mock/ >
</ Depl oy>
</ WbBeans>

Then the following attribute will receive an instance of MockAsynchr onousSer vi ce:

@current Service service;

However, if the Web Bean with the lower priority deployment type declares a binding annotation that is not declared by
the Web Bean with the higher priority deployment type, then the Web Bean with the higher priority deployment type will
not be eligible for injection to an injection point with that binding type.

Therefore, the following attribute will receive an instance of AsynchronousServi ce even though the deployment type
@bck isenabled:

@current @\synchronous Service service;

Thisisauseful feature in many circumstances, however, it is not always what is intended by the devel oper.

The only way one Web Bean can completely override alower-priority Web Bean at all injection pointsisif it implements
all the API types and declares all the binding types of the lower-priority Web Bean. However, if the lower-priority Web
Bean declares a producer method, then even this is not enough to ensure that the lower-priority Web Bean is never called!

To help prevent developer error, the first Web Bean may:

< directly extend the implementation of the lower-priority Web Bean (or directly override it, in the case of a producer
method Web Bean), and

» explicitly declare that it specializes the lower-priority Web Bean.

Then the first Web Bean will inherit the binding types and name of the lower-priority Web Bean. For example, the follow-
ing Web Bean would have the inherited binding types @ur r ent and @synchr onous:

@mbck @bpeci alizes
public class MockAsynchronousServi ce extends AsynchronousService {

}

The binding types of a Web Bean that specializes alower-priority Web Bean include al binding types of the lower-priority
Web Bean, together with binding types declared explicitly by the first Web Bean.

If aWeb Bean specializes alower-priority Web Bean with a name, the name of the first Web Bean is the same as the name
of the lower-priority Web Bean. If the first Web Bean declares a name explicitly, aDef i ni ti onExcept i on iSthrown by the
Web Bean manager at initialization time.

For example, if Asynchr onousSer vi ce declared aname:

@urrent @\synchronous @aned("asyncService")
public class AsynchronousService inplenments Service{

}

Then the name will automatically be inherited by MockAsynchr onousSer vi ce.

When an enabled Web Bean specializes alower-priority Web Bean, we can be certain that the lower-priority Web Bean is
never instantiated or called by the Web Bean manager. Even if the lower-priority Web Bean defines a producer method,

JSR-299 Public Review 22

Web Bean definition

the method will be called upon an instance of the first Web Bean.

Specialization applies only to smple Web Beans, as defined in Section 3.2.6, “Specializing a smple Web Bean”, enter-
prise Web Beans, as defined in Section 3.3.6, “Specializing an enterprise Web Bean” and producer methods, as defined in
Section 3.4.5, “ Specializing a producer method”.

2.8.1. Direct and indirect specialization

The @8peci al i zes annotation or <Speci al i zes> XML element is used to indicate that one Web Bean directly specializes
another Web Bean.

Formally, aWeb Bean X is said to specialize another Web Bean Y if either:

o X directly specidizesY, or
e aWeb Bean Z exists, such that X directly specializes Z and Z speciaizesY.
If X specializes'Y but does not directly specialize Y, we say that X indirectly specializesY.

If, in a particular deployment, a Web Bean with a certain API type and set of binding typesis not specialized by any other
enabled Web Bean, we call it the most specialized Web Bean for that combination of type and binding typesin that deploy-
ment.

Any producer methods, disposal methods (see Section 3.4.6, “Disposal methods’) or observer methods (see Section 7.5,
“Observer methods’) declared by a Web Bean are invoked upon an instance of the most specialized enabled Web Bean
that specializes the Web Bean, as defined by Section 5.6, “Lifecycle of producer methods’ and Section 7.4, “ Observer in-
vocation”.

2.8.2. Inconsistent specialization

If, in aparticular deployment, either

« some enabled Web Bean X specializes another enabled Web Bean Y and X does not have a higher precedencethan Y,
or

* morethan one enabled Web Bean directly specializes the same Web Bean

we say that inconsistent specialization exists, and an | nconsi st ent Speci al i zat i onExcept i on isthrown by the Web Bean
manager at initialization time.

JSR-299 Public Review 23

Chapter 3. Web Bean implementation

A Web Bean implementation implements the API types of the Web Bean. The developer must follow certain rules when
defining a Web Bean implementation. However, the rules depend upon what kind of Web Bean it is. The Web Bean man-
ager provides built-in support for the following kinds of Web Bean:

e Simple Web Beans (Java classes)

< Enterprise Web Beans (EJB session and singleton beans)
* Producer methods

* JMS endpoints (topics and queues)

An application or third-party framework may support other kinds of Web Beans by implementing the Bean interface and
registering the implementation with the Web Bean manager, as defined in Section 10.2, “Web Bean registration”.

Open issue: should the functionality that is currently defined for IMS endpoints be generalized to support other Java EE
resour ces such as Web Service endpoints, connectors and JDBC datasources?

3.1. Restriction upon Web Bean instantiation

Most Web Beans are implemented by an annotated Java class, possibly an EJB bean class, called the implementation class
of the Web Bean. Implementation classes are defined in Section 3.2, “Simple Web Beans’” and Section 3.3, “Enterprise
Web Beans’.

This specification places very few restrictions upon the implementation class of a Web Bean. In particular, the classis a
concrete class and is not required to implement any special interface or extend any special superclass. Therefore, Web
Bean implementation classes are easy to instantiate and unit test.

However, if the application directly instantiates an implementation class of a Web Bean, instead of |etting the Web Bean
manager perform instantiation, the capabilities listed in Section 2.1, “Functionality provided by the Web Bean manager to
the Web Bean” will not be available to that particular class instance. In a deployed application, it is the Web Beans imple-
mentation that is responsible for instantiating Web Beans and initializing their dependencies.

If the application requires full control over instantiation of a Web Bean, a producer method may be used. A producer
method is just an annotated method of another Web Bean that is invoked by the Web Bean manager to instantiate the Web
Bean. Producer methods are defined in Section 3.4, “Producer methods’. However, asimilar restriction exists for producer
methods: if the application calls the producer method directly, instead of letting the Web Bean manager call it, the capabil-
ities listed in Section 2.1, “Functionality provided by the Web Bean manager to the Web Bean” will not be available to the
returned instance.

3.2. Simple Web Beans

A simple Web Bean is a Web Bean that isimplemented by a Java class. This classis called the implementation class of the
simple Web Bean.

The implementation class of asimple Web Bean may not be a non-static inner class or a parameterized type.

The implementation class of a simple Web Bean may not be an abstract class, unless the simple Web Bean is a Web Beans
decorator.

If the implementation class of a simple Web Bean is annotated with both the @ nt er cept or and @ecor at or stereotypes, a
Def i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

Note that multiple simple Web Beans may share the same implementation class. This occurs when Web Beans are defined
using XML. Only one simple Web Bean per implementation class may be defined using annotations.

3.2.1. Which Java classes are simple Web Beans?

A top-level Javaclassisasimple Web Bean if it meets the following conditions:

JSR-299 Public Review 24

Web Bean implementation

e Itisnot aparameterized type.
* |tisnot anon-static inner class.
¢ Itisaconcreteclass, or is annotated @ecor at or .

* Itisnot annotated with any of the following annotations:

» the JPA @ntity annotation,
» the EJB component-defining annotations.

¢ It does not implement any of the following interfaces:

* javax.servlet. Servlet

* javax.servlet.Filter

* javax.servlet. Servl et ContextLi stener

* javax.servlet. HttpSessionListener

* javax.servlet. Servl et Request Li st ener

* javax.ejb.EnterpriseBean
* |t doesnot extend j avax. f aces. conponent . Ul Conponent .
e Itisnot declared asan EJB bean classinej b-j ar. xni .
e Itisnot declared asa JPA entity inorm xni .

It has an appropriate constructor—either:

» theclass has a constructor with no parameters, or

» theclass declares a constructor annotated @ni ti al i zer.
All Java classes that meet these conditions are simple Web Beans and thus no special declaration is required to define a

simple Web Bean. Additional simple Web Beans for the class may be defined using XML, by specifying the class in web-

beans. xm .

3.2.2. APl types of a simple Web Bean

The set of API types for asimple Web Bean contains the implementation class, every superclass and all interfacesit imple-
ments directly or indirectly.

Note the additional restrictions upon APl types of Web Beans with normal scope types defined in Section 4.4.1,
“Unproxyable API types’.

3.2.3. Declaring a simple Web Bean using annotations

A simple Web Bean with a constructor that takes no parameters does not require any special annotations. The following
classes are Web Beans:

public class Shop { .. }
cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

An implementation class may also specify a scope type, name, deployment type, stereotypes and/or binding annotations:

@Conver sati onScoped @Current
public class ShoppingCart { ... }

JSR-299 Public Review 25

Web Bean implementation

A simple Web Bean may extend another simple Web Bean:

@aned("| ogi nActi on")

public class LoginAction { ... }

@bck

@Narred("1 ogi nActi on")

public class MdckLogi nAction extends Logi nAction { ... }

The second Web Bean isa"mock object" that overrides the implementation of Logi nAct i on when running in an embedded
EJB Lite based integration testing environment.

3.2.4. Declaring a simple Web Bean using XML
Simple Web Beans may be declared in web- beans. xn using the implementation class name.

<nyapp: O der > _
<depl oynent : St agi ng/ >
<Conver sat i onScoped/ >

</ rryébb: O der >

A simple Web Bean declared using XML must explicitly declare al producer, disposal and observer methods in XML.
Any annotations of the implementation class that define producer, disposal or observer methods are ignored.

A simple Web Bean may even be declared at any injection point declared in XML, as defined in Section 9.6, “Inline Web
Bean declarations’, in which case no binding types are specified.

If the implementation class of a smple Web Bean defined in XML is a parameterized type or a non-static inner class, a
Def i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

If the implementation class of a simple Web Bean defined in XML is an abstract class, and the simple Web Bean is not a
Web Beans decorator, aDef i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

If the implementation class of a simple Web Bean defined in XML is annotated @ nt er cept or, then the Web Bean must
be explicitly declared as an interceptor in XML, as defined in Section 6.2.5.2, “Declaring a Web Beans interceptor using
XML". If asimple Web Bean defined in XML has an implementation class annotated @ nt er cept or and is not declared as
aninterceptor in XML, aDefi ni ti onExcept i onisthrown by the Web Bean manager at initialization time.

If the implementation class of a ssmple Web Bean defined in XML is annotated @ecor at or, then the Web Bean must be
explicitly declared as a decorator in XML, as defined in Section 6.3.2, “Declaring a decorator using XML". If a simple
Web Bean defined in XML has an implementation class annotated @ecor at or and is not declared as a decorator in XML,
aDefinitionException isthrown by the Web Bean manager at initialization time.

3.2.5. Web Bean constructors
When the Web Bean manager instantiates a simple Web Bean, it calls the Web Bean constructor.

The application may call Web Bean constructors directly. However, if the application directly instantiates the Web Bean,
no parameters are passed to the constructor by the Web Bean manager; the returned object is not bound to any context; no
dependencies are injected by the Web Bean manager; and the lifecycle of the new instance is not managed by the Web
Bean manager.

3.2.5.1. Declaring a Web Bean constructor using annotations.
The Web Bean constructor may be identified by annotating the constructor @ni ti al i zer .

@essi onScoped
public class ShoppingCart {

private User custoner;
@nitializer

publ i ¢ Shoppi ngCart (User custoner) {
this.custoner = customner;
}

JSR-299 Public Review 26

Web Bean implementation

publ i ¢ Shoppi ngCart (Shoppi ngCart original) {
this. customer = original.custoner;
}

Shoppi ngCart () {}

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer

public Order(@el ected Product product, User custoner) ({
t hi s. product = product;
this.custoner = custoner;

}

public Oder(Oder original) {
this. product = original.product;
this. customer = original.custoner;

O der() {}

If a simple Web Bean defined using annotations does not explicitly declare a constructor using @ ni ti al i zer, the con-
structor that accepts no parametersis the Web Bean constructor.

If asimple Web Bean defined using annotations has more than one constructor annotated @ ni ti al i zer, aDef i ni ti onEx-
cepti on isthrown by the Web Bean manager at initialization time.

If a Web Bean constructor has a parameter annotated @i sposes, Or @bser ves, aDefi ni ti onExcepti on isthrown by the
Web Bean manager at initialization time.

3.2.5.2. Declaring a Web Bean constructor using XML.

For a simple Web Bean defined using XML, the Web Bean constructor may be specified by listing the parameter types of
the constructer, in order, as direct children of the element that declares the Web Bean.

<myapp: Shoppi ngCart >
<Conver sat i onScoped/ >
<myapp: User/ >

</ myapp: Shoppi ngCart >

<myapp: Or der >
<Conver sat i onScoped/ >
<myapp: Pr oduct >
<Sel ect ed/ >
</ nyapp: Pr oduct >
<myapp: User/ >
</ nyapp: Or der >

If asimple Web Bean defined using XML does not explicitly declare constructor parametersin XML, the constructor that
accepts no parametersis the Web Bean constructor.

If asimple Web Bean declared in XML does not have a constructor with the parameter types declared in XML, a Nonex-
i st ent Const ruct or Except i on isthrown by the Web Bean manager at initialization time.

When a Web Bean constructor is declared in XML, the Web Bean manager ignores binding annotations applied to Java
constructor parameters.

Open issue: should it default to use the constructor annotated @ ni ti al i zer ?

3.2.5.3. Web Bean constructor parameters

JSR-299 Public Review 27

Web Bean implementation

If the Web Bean constructor has parameters, the Web Bean manager calls the method Manager . get | nst anceBy Type()
defined in Section 4.9, “Instance resolution” to determine a value for each parameter and calls the constructor with those
parameter values.

3.2.6. Specializing a simple Web Bean

If an implementation class of a simple Web Bean X defined using annotations is annotated @peci al i zes, then the imple-
mentation class of X must directly extend the implementation class of another ssimple Web Bean Y defined using annota-
tions. Then:

e Xinheritsall binding types of Y, and
* if Y hasaname, X hasthesamenameasY.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X isenabled.

If the implementation class of X does not directly extend the implementation class of another simple Web Bean, a Def i ni -
ti onExcepti on isthrown by the Web Bean manager at initialization time.

For example, MockLogi nAct i on directly specializes Logi nActi on:

public class LoginAction { ... }

@mbck @bpeci alizes
public class MdckLogi nActi on extends Logi nAction { ... }

If asimple Web Bean X defined in XML declares the <Speci al i zes> element, then the implementation class of X must be
the implementation class of another simple Web Bean Y defined using annotations. Then:

e Xinheritsall binding types of Y, and
¢ if Y hasaname, X hasthe sasmenameasY.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X isenabled.

3.2.7. Default name for a simple Web Bean

The default name for a simple Web Bean is the unqualified class name of the Web Bean implementation class, after con-
verting the first character to lower case.

For example, if the implementation class is named Pr oduct Li st , the default Web Bean hameis pr oduct Li st .

3.3. Enterprise Web Beans

An enterprise Web Bean is aWeb Bean that is implemented by an EJB 3 style session or singleton bean. The bean classis
called the implementation class of the enterprise Web Bean.

An EJB stateless session bean must belong to the @ependent pseudo-scope. An EJB singleton bean must belong to either
the @ppl i cat i onScoped Scope or to the @ependent pseudo-scope. If an enterprise Web Bean specifies an illegal scope, a
Def i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

Note that multiple enterprise Web Beans may share the same implementation class. This occurs when Web Beans are
defined using XML. Only one Web Bean per implementation class may be defined using annotations.

However, in any deployment, there may be at most one most specialized enabled enterprise Web Bean for any particular
EJB enterprise bean. Therefore, for each distinct EJB name in a module, there is at most one Web Bean that may be called
at runtime. If there is more than one most specialized enabled enterprise Web Bean for a particular EJB enterprise bean, a
Depl oynent Except i on is thrown by the Web Bean manager at initiaization time. This restriction exists because the Web
Bean manager is not aware of the binding types of the client injection point when the Web Bean manager intercepts the li-

JSR-299 Public Review 28

Web Bean implementation

fecycle callbacks of the EJB bean, as defined in Section 5.8, “Lifecycle of EJB beans’.

If the implementation class of an enterprise Web Bean is annotated @ nt er cept or Or @ecor at or, aDef i ni ti onExcept i on
isthrown by the Web Bean manager at initialization time.

3.3.1. Which EJBs are enterprise Web Beans?

All EJB 3 style session and singleton beans declared via an EJB component defining annotation on the EJB bean class are
Web Beans, and thus no special declaration is required. Additional enterprise Web Beans for these EJBs may be defined
using XML, by specifying the bean classin web- beans. xni .

All EJB 3 style session and singleton beans declared in ej b-j ar. xnl are aso Web Beans. Additional enterprise Web
Beans for these EJBs may be defined using XML, by specifying the bean class and EJB namein web- beans. xni .

However, when a plugin Web Bean manager is used in a Java EE 5 environment, support for injection of enterprise Web
Beans that implement multiple local interfaces and have any scope other than @ependent is not required.

3.3.2. API types of an enterprise Web Bean

The set of API types for an enterprise Web Bean contains all local interfaces of the bean that do not have wildcard type
parameters or type variables and their superinterfaces. If the EJB bean has a bean class local view and the bean class is not
a parameterized type, the set of API types contains the bean class and all superclasses. In addition, j ava. | ang. Obj ect IS
an API type of every enterprise Web Bean.

Remote interfaces are not included in the set of APl types.

3.3.3. Declaring an enterprise Web Bean using annotations
An enterprise Web Bean does not require any special annotations. The following EJBs are Web Beans:

@i ngl et on
class Shop { .. }

@t at el ess
cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

An implementation class may also specify a scope type, name, deployment type, stereotypes and/or binding annotations:

@Conver sati onScoped @5t ateful @urrent @vbdel
public class ShoppingCart { ... }

An enterprise Web Bean implementation class may extend another Web Bean implementation class:

@t at el ess
@aned("| ogi nActi on")
public class LoginActionlnpl inplenments LoginAction { ... }

@5t at el ess

@mbck

@aned("| ogi nActi on")

public class MckLogi nActionl npl extends Logi nActionlnmpl { ... }

3.3.4. Declaring an enterprise Web Bean using XML

Enterprise Web Beans may be declared in web- beans. xni using the bean class name (for EJBs defined using a compon-
ent-defining annotation) or bean class and EJB name (for EJBs defined inej b-j ar. xni).

<myapp: O der Bean> _
<depl oynent : St agi ng/ >
<Conver sat i onScoped/ >

</ rry'a'p'p: O der Bean>

<myapp: Or der Bean ej bNane="RushOrder">
<myapp: Rush/ >

JSR-299 Public Review 29

Web Bean implementation

<Conver sat i onScoped/ >

</ rry;ai)i): Or der Bean>

The ej bNare attribute declares the EJB name of an EJB definedinej b-j ar. xni .

An enterprise Web Bean declared using XML must explicitly declare all producer, disposal and observer methods in
XML. Any annotations of the implementation class that define producer, disposal or observer methods are ignored.

Enterprise Web Beans declared in XML may not be singleton beans. If an enterprise Web Bean declared in XML is a
singleton bean, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

Enterprise Web Beans may not be message-driven beans. If an enterprise Web Bean declared in XML is a message-driven
bean, aDefi ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

3.3.5. Web Bean remove methods

When the Web Bean manager destroys an enterprise Web Bean instance that is an EJB stateful session bean, it calls the
Web Bean remove method.

If an enterprise Web Bean that is a stateful session bean does not have a Web Bean remove method, it must be scoped
@ependent and the application must explicitly destroy every instance of the Web Bean by calling an EJB remove method
before the Web Bean manager attempts to destroy the instance as specified by Section 8.3.4, “Dependent object destruc-
tion”.

If an enterprise Web Bean that is a stateful session bean and does not have a Web Bean remove method declares any scope

other than @ependent , aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

If an instance of an enterprise Web Bean that is a stateful session bean and does not have a Web Bean remove method is
not explicitly destroyed by the application before the Web Bean manager attempts to destroy the instance, an unr enove-
dExcept i on isthrown by the Web Bean manager, as defined in Section 5.4, “Lifecycle of stateful session enterprise Web
beans’.

The application may call any EJB remove method, at any time, but then no parameters will be passed to the method by the
Web Bean manager. However, whenever any remove method of a Web Bean instance is called by the application, the Web
Bean manager must remove the instance from the context with which it is associated.

Open issue: what restrictions exist upon invoking dependencies from the remove method?

3.3.5.1. Declaring a Web Bean remove method using annotations.
The Web Bean remove method may be identified by annotating an EJB remove method @est r uct or .

@Conver sati onScoped @5t at ef ul
public class Oder {

@pestructor @Renove
public renove(Log | og)
{

}

}

If an enterprise Web Bean defined using annotations does not explicitly declare a Web Bean remove method using
@est ruct or, and a remove method that accepts no parameters exists, then that remove method is the Web Bean remove
method. Otherwise, if no remove method that accepts no parameters exists, the enterprise Web Bean has no Web Bean re-
move method.

If an enterprise Web Bean defined using annotations has more than one method annotated @est r uct or, @ Def i ni ti onEx-
cepti on isthrown by the Web Bean manager at initialization time.

If an enterprise Web Bean defined using annotations has a method annotated @est r uct or, and that method is not an EJB
remove method, aDef i ni ti onExcepti on iSthrown by the Web Bean manager at initialization time.

If a Web Bean remove method is annotated @ni ti al i zer Or @roduces, has a parameter annotated @i sposes, or has a

JSR-299 Public Review 30

Web Bean implementation

parameter annotated @bser ves, aDefi ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

3.3.5.2. Declaring a Web Bean remove method using XML.

For an enterprise Web Bean defined using XML, the Web Bean remove method may be specified using the name of the re-
move method, and the <Dest r uct or > element.

<myapp: Order>
<Conver sat i onScoped/ >

<nmyapp: r enove>
<Destructor/>
<myfwk: Log/ >

</ nyapp: r enove>

</ myapp: Shoppi ngCart >

If an enterprise Web Bean defined using XML does not explicitly declare a Web Bean remove method, and a remove
method that accepts no parameters exists, the remove method that accepts no parameters is the Web Bean remove method.
Otherwise, if no remove method that accepts no parameters exists, the enterprise Web Bean has no Web Bean remove
method.

If the implementation class of an enterprise Web Bean declared in XML does not have an EJB remove method with the
name and parameter types declared in XML, a Nonexi st ent Met hodExcept i on iS thrown by the Web Bean manager at ini-
tialization time.

If an enterprise Web Bean defined using XML declares more than one Web Bean remove method in XML, a Defi ni -
ti onExcepti on isthrown by the Web Bean manager at initialization time.

When aWeb Bean remove method is declared in XML, the Web Bean manager ignores binding annotations applied to the
Java method parameters.

Open issue: should it default to use the remove method annotated @est r uct or ?

3.3.5.3. Remove method parameters

If the Web Bean remove method has parameters, the Web Bean manager calls Manager . get | nst anceByType() to determ-
ine avalue for each parameter and calls the method with these parameter values.

3.3.6. Specializing an enterprise Web Bean

If an implementation class of an enterprise Web Bean X defined using annotations is annotated @peci al i zes, then the
implementation class of X must directly extend the implementation class of another enterprise Web Bean Y defined using
annotations. Then:

¢ X inheritsall binding typesof Y, and
¢ if Y hasaname, X hasthesamenameasY.

Furthermore:

e X must support al local interfaces supported by Y, and
e if Y supports abean-classlocal view, X must also support a bean-class local view.
Otherwise, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X isenabled.

If the implementation class of X does not directly extend the implementation class of another enterprise Web Bean, a
Def i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

For example, MockLogi nAct i onBean directly specializes Logi nAct i onBean:

@t at el ess

JSR-299 Public Review 31

Web Bean implementation

public class Logi nActi onBean inplements LoginAction { ... }

@5t at el ess @mbck @ppeci al i zes
public class MckLogi nActi onBean extends Logi nActionBean { ... }

If an enterprise Web Bean X defined in XML declares the <Speci al i zes> element, then the implementation class of X
must be the implementation class of another enterprise Web Bean Y defined using annotations. Then:

¢ X inheritsall binding typesof Y, and
e if Y hasaname, X hasthe samenameasY.

We say that X directly specializes Y, and we can be certain that Y will never be instantiated or called by the Web Bean
manager if X isenabled.

3.3.7. Default name for an enterprise Web Bean

The default name for an enterprise Web Bean is the unqualified class name of the Web Bean implementation class, after
converting the first character to lower case.

For example, if the bean classis named Pr oduct Li st , the default Web Bean nameis pr oduct Li st .

3.3.8. Enterprise bean proxies

EJB local object references do not implement all local interfaces of the EJB. A local object reference may not be typecast
to different local interface type, as required by Section 2.2, “Web Bean API types’. Therefore, the Web Bean manager
proxies the local object reference. An enterprise bean proxy implements al local interfaces of the EJB.

When the proxy object is invoked, the proxy obtains the appropriate EJB local object reference from JNDI or using intern-
a container APIs, and delegates the invocation to the local object reference. In either case, the Web Bean manager should
follow the procedure defined in Section 10.3, “EJB lookup”.

When an enterprise Web Bean is invoked via the enterprise bean proxy, the interface returned by Sessi onCon-
text. get | nvokedBusi nessl nterface() Will be specific to the Web Bean manager implementation. Portable applications
should not rely upon the interface returned by this method.

3.4. Producer methods

A Web Beans producer method acts as a source of objects to be injected, where:

* theobjectsto beinjected are not required to be instances of Web Beans, or
« theconcrete type of the objectsto be injected may vary at runtime, or
« the objects require some custom initialization that is not performed by the Web Bean constructor.

A producer method must be a non-static method of a simple Web Bean implementation class or enterprise Web Bean im-
plementation class. If the Web Bean is an enterprise Web Bean, the producer method must be a business method of the
EJB.

If aproducer method sometimes returns a null value, then the producer method must have scope @ependent . If a producer
method returns a null value at runtime, and the producer method declares any other scope, an 1 1| egal Product Excepti on
is thrown by the Web Bean manager. This restriction allows the Web Beans manager to use a client proxy, as defined in
Section 4.4, “Client proxies’.

If the producer method return type is a parameterized type, it must specify actual type parameters for each type parameter.
If a producer method return type contains a wildcard type parameter or type variable, a Defi ni ti onExcepti on is thrown
by the Web Bean manager at initialization time.

The application may call producer methods directly. However, if the application calls a producer method directly, no para-
meters will be passed to the producer method by the Web Beans implementation; the returned object is not bound to any

JSR-299 Public Review 32

Web Bean implementation

context; and itslifecycle is not managed by the Web Bean manager.

A Web Bean may declare multiple producer methods.

3.4.1. APl types of a producer method

The API types of a producer method depend upon the method return type:

« |f thereturn typeis an interface, the set of API types contains the return type, all interfaces it extends directly or indir-
ectly andj ava. | ang. oj ect .

< |If areturn typeis primitive or is a Java array type, the set of API types contains exactly two types: the method return
typeandj ava. | ang. vj ect .

« If the return type is a class, the set of API types contains the return type, every superclass and all interfaces it imple-
ments directly or indirectly.

Note the additional restrictions upon APl types of Web Beans with normal scope types defined in Section 4.4.1,
“Unproxyable API types’.

3.4.2. Declaring a producer method using annotations
A producer method may be declared by annotating a method with the @r oduces annotation.

public class Shop {
@°r oduces Paynent Processor get Paynent Processor() { ... }

@°r oduces Li st <Product> get Products() { ... }

}

A producer method may also specify scope, name, deployment type, stereotypes and/or binding annotations.

public class Shop {

@°r oduces @\ppl i cationScoped @Catal og @Naned("cat al og")
Li st <Product > get Products() { ... }

}

If aproducer method is annotated @ ni ti al i zer Or @est ruct or, has a parameter annotated @i sposes, or has a paramet-
er annotated @bser ves, aDefini ti onExcepti on iSthrown by the Web Bean manager at initialization time.

3.4.3. Declaring a producer method using XML

For a Web Beans defined in XML, a producer method may be declared using the method name, the <Pr oduces> element,
the return type, and the parameter types of the method:

<myapp: Shop>

<nmyapp: get Product s>
<Pr oduces>
<Appl i cati onScoped/ >
<util:List>
<myapp: Pr oduct/ >
<nyapp: Cat al og/ >
</util:List>
<Naned>cat al og</ Nanmed>
</ Produces>
</ nyapp: get Pr oduct s>

</ nyapp: Shop>

When a producer method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java
method or method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with the name and parameter types

JSR-299 Public Review 33

Web Bean implementation

declared in XML, aNonexi st ent Met hodExcept i on isthrown by the Web Bean manager at initialization time.

3.4.4. Producer method parameters

If the producer method has parameters, the Web Bean manager calls Manager . get | nst anceByType() to determine avalue
for each parameter and calls the producer method with those parameter values.

public class OderFactory {

@°r oduces @Conver sati onScoped
public Order createCurrentO der(@ew O der order, @el ected Product product)

{

order. set Product (product);
return order;

<myapp: Or der Fact ory>
<myapp: creat eCurrent O der >
<Pr oduces>
<Conver sat i onScoped/ >
<myapp: Order/ >
</ Produces>
<myapp: Or der >
<New/ >
</ nyapp: Or der >
<nyapp: Product >
<myapp: Sel ect ed/ >
</ nyapp: Pr oduct >
</ nyapp: creat eCurrent O der >

</ nyapp: Or der Fact ory>

3.4.5. Specializing a producer method

If aproducer method X is annotated @peci al i zes, then it must directly override another producer method Y. Then:

e Xinheritsall binding type of Y, and
¢ if Y hasaname, X hasthe sasmenameasY.

We say that X directly specializes Y, and we can be certain that Y will never be called by the Web Bean manager if X is
enabled.

If the method does not directly override another producer method, a Defi ni ti onExcepti on is thrown by the Web Bean
manager at initialization time.

For example:

@mbck
public class MockShop extends Shop {

@verride @ppecializes

@r oduces

Payment Processor get Payment Processor () {
return new MockPaynent Processor();

}

@verride @bpecializes

@r oduces

Li st <Product > get Products() {
return PRODUCTS;

}

JSR-299 Public Review 34

Web Bean implementation

3.4.6. Disposal methods

A disposal method allows the application to perform customized cleanup of an object returned by a producer method.

A disposa method must be a non-static method of a simple Web Bean implementation class or enterprise Web Bean im-
plementation class. If the Web Bean is an enterprise Web Bean, the disposal method must be a business method of the
EJB.

A Web Bean may declare multiple disposal methods.

3.4.7. Disposed parameter of a disposal method

Each disposal method must have exactly one disposed parameter, of the same type as the corresponding producer method
return type. When searching for disposal methods for a producer method, the Web Bean manager considers the type and
binding types of the disposed parameter. If a disposed parameter resolves to a producer method according to the typesafe
resolution algorithm, the Web Bean manager must call this method when destroying an instance returned by that producer
method.

If the disposed parameter does not resolve to any producer method according to the typesafe resolution algorithm, an un-
sati sfi edDependencyExcept i on iSthrown by the Web Bean manager at initialization time.

3.4.8. Declaring a disposal method using annotations

A disposal method may be declared using annotations by annotating a parameter @i sposes. That parameter is the dis-
posed parameter.

public cl ass UserDat abaseEntityManager {

@°r oduces @Conver sati onScoped @Jser Dat abase

public EntityManager create(EntityManagerFactory enf) {
return enf.createEntityManager();

}

public void cl ose(@i sposes @Jser Dat abase EntityManager en) {
em cl ose();
}

}

If amethod has more than one parameter annotated @i sposes, aDefi ni ti onExcepti on isthrown by the Web Bean man-
ager.

If a disposal method is annotated @r oduces, @nitial i zer Or @estructor, Or has a parameter annotated @bser ves, a
Def i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

3.4.9. Declaring a disposal method using XML

For a Web Beans defined in XML, a disposal method may be declared using the method name, the <Di sposes> element,
and the parameter types of the method:

<myf wk: User Dat abaseEnt i t yManager >

<nyfwk: cr eat e>
<Pr oduces>
<Conver sat i onScoped/ >
<j pa: Enti t yManager >
<myapp: User Dat abase/ >
</j pa: Enti t yManager >
</ Produces>
<j pa: Enti t yManager Fact ory/ >
</ myf wk: cr eat e>

<nyf wk: cl ose>
<Di sposes>
<j pa: Enti t yManager >
<myapp: User Dat abase/ >
</j pa: Enti t yManager >
</ Di sposes>
</ nyfwk: cl ose>

JSR-299 Public Review 35

Web Bean implementation

</ myf wk: User Dat abaseEnt i t yManager >

When a disposal method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java
method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with the name and parameter types
declared in XML, aNonexi st ent Met hodExcept i on isthrown by the Web Bean manager at initialization time.

3.4.10. Disposal method parameters

In addition to the disposed parameter, a disposal method may declare additional parameters, which may also specify bind-
ing types. The Web Bean manager calls Manager . get | nst anceByType() to determine a value for each parameter of adis-
posal method and calls the disposal method with those parameter values.

public void cl ose(@i sposes @Jser Dat abase EntityManager em @uogger Log log) { ... }

<myf wk: cl ose>

<Di sposes>

<j pa: Enti t yManager >
<myapp: User Dat abase/ >

</j pa: Enti t yManager >

</ Di sposes>

<nyfwk: Log>
<myf wk: Logger />

<myf wk: Log>

</ myf wk: cl ose>

3.4.11. Disposal method resolution

When searching for disposal methods for a producer method, the Web Bean manager searches for disposal methods which
satisfy the following rules:

* Thedisposa method must be declared by an enabled Web Bean.

e The disposed parameter must resolve to the producer method, according to the typesafe resolution algorithm.

If there are multiple disposal methods for a producer method, a Def i ni ti onExcept i on is thrown by the Web Bean man-
ager at initialization time.

3.4.12. Default name for a producer method

The default name for a producer method is the method name, unless the method follows the JavaBeans property getter
naming convention, in which case the default name is the JavaBeans property name.

For example, this producer method is named pr oduct s:

public class Shop {

@r oduces @\aned
public List<Product> getProducts() { ... }

}

This producer method is named paynent Pr ocessor :

public class Shop {

@°r oduces @\aned
publ i ¢ Paynment Processor paynent Processor() { ... }

JSR-299 Public Review 36

Web Bean implementation

3.5. JMS endpoints

Web Beans that send JIM'S messages must interact with at least two different objects defined by the IMS API:

« tosend amessage to a queue, the Web Bean must interact with a QueueSessi on and the QueueSender , or
* to send amessage to atopic, the Web Bean must interact with a Topi cSessi on and the Topi cPubl i sher .

A Web Beans JMS endpoint is a Web Bean that represents a JIMS queue or topic. IM S endpoints may be declared in web-
beans. xn , and alow direct injection of any of the following JM S objects:

e For aqueue, the Queue, QueueConnect i on, QueueSessi on and/or QueueSender May beinjected.
» For atopic, the Topi ¢, Topi cConnect i on, Topi cSessi on and/or Topi cPubl i sher may be injected.

The lifecycles of the injected objects are managed by the Web Beans manager, and therefore the application need not ex-
plicitly cl ose() any injected IMS object. If the application calls cl ose() on an instance of a IMS endpoint, an Unsup-
por t edQper at i onExcept i on isthrown by the Web Bean manager.

For example:

@raynment Processor QueueSender paynent Sender ;
@raynent Processor QueueSessi on paynent Sessi on;

public void sendMessage() {
MapMessage nsg = paynent Sessi on. cr eat eMapMessage() ;

i)é&/rrent Sender . send(nsg) ;

@°rices Topi cPublisher pricePublisher;
@°rices Topi cSession priceSession;

public void sendMessage(String price) {
priceSender.send(priceSession.createText Message(price));
}

A IMS endpoint must belong to the @ependent pseudo-scope. If a IMS endpoint specifies any other scope, a Defi ni -
ti onExcepti on isthrown by the Web Bean manager at initialization time.

Web Beans JMS endpoints must explicitly declare at least one binding type, and must not declare the @urrent binding
type.

A IMS endpoint may not declare a Web Beans name.

JMS endpoints are always declared using XML.

3.5.1. APl types of a JMS endpoint

The API types of aJM S endpoint depend upon whether it represents a queue or topic.

e |If the IMS endpoint represents a queue, the API types are Queue, QueueConnect i on, QueueSessi on and QueueSender .

e |If the IMS endpoint represents a topic, the API types are Topi ¢, Topi cConnect i on, Topi cSessi on and Topi cPubl i sh-
er.

In addition, j ava. | ang. vj ect isan API type of every IMS endpoint.

3.5.2. Declaring a JMS endpoint using XML

A IMS endpoint may be declared using the <Topi ¢> or <Queue> elementsin web- beans. xm . The INDI name of the queue
or topic must be specified using <dest i nat i on> and the INDI name of the JM S connection factory must be specified using
<connecti onFact ory>.

<Queue>

JSR-299 Public Review 37

Web Bean implementation

<dest i nati on>j ava: conp/ env/j ms/ Payment Queue</ desti nati on>
<connecti onFact ory>j ava: conp/ env/j ms/ QueueConnect i onFact or y</ connect i onFact ory>
<nyapp: Paynent Pr ocessor/ >

</ Queue>

<Topi c>
<desti nati on>j ava: conp/ env/j ms/ Pri ces</desti nati on>
<connect i onFact ory>j ava: conp/ env/j ms/ Topi cConnect i onFact or y</ connect i onFact or y>
<myapp: Pri ces/ >

</ Topi c>

Open issue: do we need to allow specification of t r ansact ed and acknow edgeMode for the session?

3.6. Injected fields

An injected field is a non-static, non-fina field of a Web Bean implementation class, of a Servlet, or of any EJB session,
singleton or message driven bean class.

Injected fields are initialized by the Web Bean manager immediately after instantiation and before any methods of the in-
stance are invoked. The Web Bean implementation calls Manager . get | nst anceByType() to determine avalue for each in-
jected field.

Any EJB session, singleton or message driven bean running in the context of a Web Beans application may declare injec-
ted fields and have those fields injected by the Web Bean manager. The EJB bean is not required to be the implementation
class of aWeb Bean to take advantage of this functionality.

Open issue: are injected fields allowed to be declared transient? If so, should they be reinjected after deserialization
(activation)?

3.6.1. Declaring an injected field using annotations
An injected field may be declared by annotating the field with any binding type.

@Conver sat i onScoped
public class Oder {

@5el ect ed Product product;
@urrent User custoner;

3.6.2. Declaring an injected field using XML

For a Web Beans defined in XML, an injected field may be declared using the field name and a child element representing
the type of thefield:

<wamr0da>_
<Conver sat i onScoped/ >

<myapp: pr oduct >
<myapp: Pr oduct >
<myapp: Sel ect ed/ >
</ nmyapp: Product/ >
</ nyapp: pr oduct >

<nyapp: cust oner >
<myapp: User/ >
</ nmyapp: cust oner >

</ nyapp: Or der >
When an injected field is declared in XML, the Web Bean manager ignores binding annotations applied to the Javafield.

If the type element does not declare any binding type, the default binding type @ur r ent is assumed.

If the implementation class of a Web Bean declared in XML does not have a field with the name and type declared in
XML, aNonexi st ent Fi el dExcept i on isthrown by the Web Bean manager at initialization time.

JSR-299 Public Review 38

Web Bean implementation

A Web Bean declared using XML has the following injected fields:

e dl injected fields declared using XML, together with

e any injected fields declared using annotations, that were not also declared using XML.

3.7. Initializer methods

An initializer method is a non-static method of a Web Bean implementation class, of a Servlet, or of any EJB session,
singleton or message driven bean class.

Initializer methods are called by the Web Bean manager immediately after injected fields have been initialized by the Web
Bean manager and before any other methods of the instance are invoked.

If the Web Bean is an enterprise Web Bean, the initializer method is not required to be a business method of the session
bean.

Method interceptors are never called when the Web Bean manager calls an initializer method.
A Web Bean implementation class may declare multiple (or zero) initializer methods.

The application may call initializer methods directly, but then no parameters will be passed to the method by the Web
Bean manager.

Any EJB session, singleton or message driven bean running in the context of a Web Beans application may declare initial-
izer methods and have the methods called by the Web Bean manager. The EJB bean is not required to be the implementa-
tion class of a Web Bean to take advantage of this functionality.

3.7.1. Declaring an initializer method using annotations
An initializer method may be declared by annotating the method @ ni ti al i zer .

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer
voi d set Product (@el ect ed Product product)

t hi s. product = product;
@nitializer
public void setCustoner(User customner)

{
}

this. customer = custoner;

}

If an initializer method is annotated @r oduces or @est r uct or , has a parameter annotated @i sposes, or has a parameter
annotated @bser ves, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

3.7.2. Declaring an initializer method using XML

For a Web Beans defined in XML, an initializer method may be declared using the method name, the<ini ti al i zer > ele-
ment and the parameter types of the method.

<myapp: O der > _
<Conver sat i onScoped/ >

<myapp: set Product >
<Initializer/>
<myapp: Pr oduct >
<nyapp: Sel ect ed/ >
</ nyapp: Pr oduct >

JSR-299 Public Review 39

Web Bean implementation

</ nyapp: set Or der >

<nyapp: set Cust omer >
<Initializer/>
<myapp: User/ >

</ nyapp: set Cust oner >

</ nyapp: Or der >

When an initializer method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java
method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with the name and parameter types
declared in XML, aNonexi st ent Met hodExcept i on isthrown by the Web Bean manager at initialization time.

A Web Bean declared using XML has the following injected fields and initializer methods:

< dlinitializer methods declared using XML, together with
« any initializer methods declared using annotations, that were not also declared using XML.

If an initializer method of a Web Bean declared in XML is declared using both XML and annotations, the annotations are
ignored.

3.7.3. Initializer method parameters

An initializer method may have any number of parameters. If the initializer method has parameters, the Web Bean man-
ager calls manager . get | nst anceByType() to determine a value for each parameter and calls the initializer method with
those parameter values.

3.8. The @ewbinding type

Sometimes, the scope of a Web Bean is inconvenient for a particular usecase. One solution to this problem is to obtain an
independent instance of the Web Bean implementation and inject it as a dependent object of some other Web Bean, or
even bind it to a different context using a producer method.

When the built-in binding type @ewis applied to an injection point, a\Web Bean isimplicitly defined with:

* SCOpE @ependent ,

e deployment type @t andard,

¢ @ewasthe only binding annotation,

* no Web Bean name,

* no stereotypes, and such that

« theimplementation classis the declared type of the injection point.

If the parameter type satisfies the definition of a simple Web Bean implementation class, Section 3.2.1, “Which Java
classes are simple Web Beans?’, then the Web Bean is a simple Web Bean. If the parameter type satisfies the definition of
an enterprise Web Bean implementation class, Section 3.3.1, “Which EJBs are enterprise Web Beans?’, then the Web
Bean is an enterprise Web Bean.

Furthermore, this Web Bean:

» hasthe same Web Bean constructor, Web Bean remove method, initializer methods and injected fields as a Web Bean
defined using annotations—that is, it has any Web Bean constructor, Web Bean remove method, initializer method or
injected field declared by annotations that appear on the implementation class,

< has no observer methods, producer methods or disposal methods,

¢ hasthe same interceptors as a Web Bean defined using annotations—that is, it has all the interceptor binding types de-

JSR-299 Public Review 40

Web Bean implementation

clared by annotations that appear on the implementation class, and

* has no decorators.

The @ew annotation or <New> element may be applied to any field of a Web Bean implementation class or to any paramet-
er of a producer method, initializer method, disposal method, Web Bean remove method or Web Bean constructor where
the type of the field or parameter is a concrete Java type which satisfies the requirements of a ssimple Web Bean imple-
mentation class or enterprise Web Bean implementation class.

@°r oduces @Request Scoped

Paynment creat ePaynent (@ew Paynent paynent, Order order) {
paynent . set Or der (order);
return paynent;

<nyapp: cr eat ePaynent >
<Pr oduces>
<Request Scoped/ >
<nmyapp: Paynent />
</ Produces>
<myapp: Paynent >
<New/ >
</ nyapp: Paynent >
<myapp: Order/ >

</ nyapp: cr eat ePaynent >

In this example, the Paynent is created as a dependent object of the producer method Web Bean and is bound to the re-
quest context when returned by the method. It is now the current instance of the producer method Web Bean. When the re-
quest context ends, the Paynent is passed to the corresponding disposal method (if any), and then finally destroyed when
all dependent objects of the producer method are destroyed.

The @ew annotation and <New> element may not appear in conjunction with any other binding type. They may not be ap-
plied to afield or method parameter of a type which does not satisfy the definition of a simple Web Bean implementation
class or enterprise Web Bean implementation class.

If the @ew binding type appears in conjunction with some other binding type, or is specified for afield or parameter of a
type which does not satisfy the definition of a simple Web Bean implementation class or enterprise Web Bean implement-
ation class, aDefi ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

No Web Bean defined using annotations or XML may explicitly declare @vew as a binding type.

3.9. Support for Common Annotations

In addition to the capabilities defined by this specification, simple Web Beans a so support certain functionality defined by
the Common Annotations for the Java Platform and Enterprise JavaBeans specifications.

The following functionality is provided by the Web Bean manager when annotations are applied to the implementation
class of asimple Web Bean:

* dependency injection via @JB, @er si st enceCont ext and @esour ce

< JINDI lookup of resource references declared via @Resour ce and @esour ces

e @vost Construct and @r eDest r oy callbacks

e interception, asdefined inj avax. i nt er cept or

@er si st enceCont ext (t ype=EXTENDED) is not supported for simple Web Beans.

Open issue: should @r ePassi vat e and @ost Act i vat e be supported for simple Web Beans?

Open issue: what restrictions exist upon invoking dependencies from @ eDest r oy ?

JSR-299 Public Review 41

Web Bean implementation

Open issue: we need an additional API in Java EE to delegate EE injection back to the Java EE container for simple Web
Beans.

Support for @JB, @er si st enceCont ext , @Resour ce and @esour ces is not required when a plugin Web Bean manager is
used in a Java EE 5 environment.

This simple Web Bean makes use of annotations defined by the Common Annotations and EJB specifications:

@sessi onScoped
@ nt er cept or s(MyTr ansact i onl nt er cept or. cl ass)
public class ShoppingCart {

private User custoner;

private Order order;

private @Resource Connection connection;

private @JB Paynent Processor paynent Processor;

private @PersistenceContext(type=EXTENDED) EntityManager entityManager;

@nitializer

Shoppi ngCart (User custoner) {
this. customer = custoner;

}

@ost Const r uct
void retrieveOder() {

order = entityManager.find(Order.class, custoner.getld());
}

@°r eDestr oy

voi d updateOrder() {
entityManager. merge(order);

}

Of course, enterprise Web Beans may take advantage of all functionality defined by the EJB specification.

3.10. The Bean object for a Web Bean

The abstract class Bean provides everything the Web Bean manager needs to manage instances of a certain Web Bean.

public abstract class Bean<T> {
private final Manager nanager;

protect ed Bean(Manager nanager) {
t hi s. manager =manager ;
}

prot ect ed Manager get Manager () ({
return nanager;
}

public abstract Set<C ass> get Types();

public abstract Set<Annotation> getBi ndi ngTypes();

public abstract C ass<? extends Annotation> get ScopeType();
public abstract d ass<? extends Annotation> get Depl oynment Type();
public abstract String getNane();

public abstract bool ean isSerializable();
publ i c abstract bool ean isNull able();

public abstract T create();
public abstract void destroy(T instance);

An instance of Bean exists for every enabled Web Bean in a deployment.

An application or third party framework may add support for new kinds of Web Beans beyond those defined by the Web
Beans specification (ssmple Web Beans, enterprise Web Beans, producer methods and JM S endpoints) by extending Bean
and registering Web Beans with the Web Bean manager, using the mechanism defined in Section 10.2, “Web Bean regis-
tration”.

JSR-299 Public Review 42

Chapter 4. Lookup, dependency injection and EL resolution

Web Beans defines the following injection points:

* Any injected field of a Web Bean implementation class

* Any parameter of a Web Bean constructor, Web Bean remove method, initializer method, producer method or disposal
method

* Any parameter of an observer method, except for the event parameter
Web Bean instances may also be obtained by evaluating EL expressions which refer to the Web Bean by name.

In general, an API type or Web Bean name does not uniquely identify a Web Bean. When resolving a Web Bean at an in-
jection point, the Web Bean manager considers API type, binding annotations and Web Bean deployment type precedence.
When resolving a Web Bean name in EL, the Web Bean manager considers name and deployment type precedence. This
allows Web Bean devel opers to decoupl e type from implementation.

The Web Bean manager is required to ensure that any injected reference to a Web Bean instance may be cast to any API
type of the Web Bean.

4.1. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no enabled Web Bean has the API type and binding types de-
clared by the injection point.

An ambiguous dependency exists at an injection point when in the set of enabled Web Beans with the API type and bind-
ing types declared by the injection point there exists no unique Web Bean with a higher precedence than all other Web
Beansin the set.

The Web Bean manager must validate all injection points of all enabled Web Beans at initiaization time to ensure that
there are no unsatisfied or ambiguous dependencies. If an unsatisfied or ambiguous dependency exists, an Unsat i sf i edDe-
pendencyExcepti on OF Ambi guousDependencyException is thrown by the Web Bean manager at initialization time, as
defined in Section 4.9, “Instance resolution”.

4.2. Primitive types and null values

For the purposes of typesafe resolution and dependency injection, primitive types and their corresponding wrapper typesin
the package j ava. | ang are considered identical and assignable. If necessary, the Web Bean manager performs boxing or
unboxing when it injects avalue to afield or parameter of primitive or wrapper type.

However, if aninjection point of primitive type resolves to a Web Bean that may be null, such as a producer method with a
nullable (non-primitive) return type, a Nul | abl eDependencyExcepti on is thrown by the Web Bean manager at initializa-
tion time.

The method Bean. i sNul | abl e() may be used to detect if a Web Bean has null values.

4.3. Injected reference validity

References to Web Bean instances are valid only for a certain period of time. The application should not invoke a method
of aninvalid reference.

The validity of an injected reference depends upon whether the scope of the injected Web Bean is a normal scope or a
pseudo-scope.

« Any reference to a Web Bean with a normal scope is valid as long as the application maintains a hard reference to it.
However, it may only be invoked when the context associated with the normal scope is active. If it isinvoked when the
context isinactive, a Cont ext Not Act i veExcept i on isthrown by the Web Bean manager.

« Any reference to a Web Bean with a pseudo-scope (such as @ependent) is valid until the Web Bean instance to which

JSR-299 Public Review 43

L ookup, dependency injection and EL resolution

it refers is destroyed. It may be invoked even if the context associated with the pseudo-scope is not active. If the ap-
plication invokes a method of areference to an instance that has already been destroyed, the behavior is undefined.

4.4. Client proxies

Clients of a Web Bean with a normal scope type, as defined in Section 8.2, “Normal scopes and pseudo-scopes’, do not
hold a direct reference to the instance of the Web Bean (the object returned by Bean. creat e()). Instead, their reference is
to aclient proxy object. A client proxy implementg/extends all API types of the Web Bean and delegates al method calls
to the current instance (as defined in Section 8.2, “Normal scopes and pseudo-scopes’) of the Web Bean.

There are anumber of reasons for this indirection:

The Web Bean manager must guarantee that when any valid injected reference to a Web Bean of normal scope isin-
voked, the invocation is always processed by the current instance of the injected Web Bean. In certain scenarios, for
example if arequest scoped Web Bean is injected into a session scoped Web Bean, or into a Servlet, this rule requires
an indirect reference. (Note that the @ependent pseudo-scopeis not a normal scope.)

The Web Bean manager may use a client proxy when creating Web Beans with circular dependencies. Thisis only ne-
cessary when the circular dependencies areinitialized via a simple Web Bean constructor or producer method paramet-
er. (Web Beans with scope @ependent never have circular dependencies.)

Finally, client proxies are serializable, even when the Web Bean itsdlf is not. Therefore the Web Bean manager must
use a client proxy whenever a Web Bean with normal scope is injected into a Web Bean with a passivating scope, as
defined in Section 8.4, “Passivating scopes and serialization”. (On the other hand, Web Beans with scope @ependent
must be serialized along with their client.)

Client proxies are never required for a Web Bean whose scope is a pseudo-scope such as @ependent .

All client proxies must be serializable.

Client proxies may be shared between multiple injection points. For example, a particular Web Bean manager might in-
stantiate exactly one client proxy object per Web Bean. (However, this strategy is not required by the Web Beans specific-
ation.)

4.4.1. Unproxyable API types

Certain legal API types cannot be proxied by the Web Bean manager:

classes without a non-private constructor with no parameters,
classes which are declared final or have fina methods,
primitive types,

and array types.

If an injection point whose declared type cannot be proxied by the Web Bean manager resolves to a Web Bean with a nor-
mal scope type, an Unpr oxyabl eDependencyExcept i on isthrown by the Web Bean manager at initialization time.

4.4.2. Client proxy invocation

Every time a method of the Web Bean isinvoked upon aclient proxy, the client proxy must:

obtain the context object by calling Manager . get Cont ext () , passing the Web Bean scope, then

obtain an instance of the Web Bean by calling Cont ext . get (), passing the Bean instance representing the Web Bean
andt r ue asthe value of the cr eat e parameter, and

invoke the method upon the Web Bean.

JSR-299 Public Review 44

L ookup, dependency injection and EL resolution

4.5. The default binding type at injection points

If an injection point declares no binding type, the default binding type @ur r ent is assumed.
The following are equivalent:

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer
public void init(@el ected Product product, User custoner)
{

t hi s. product = product;

this.custoner = custoner;

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@nitializer
public void init(@bel ected Product product, @urrent User custoner)

t hi s. product = product;
t hi s. customer = custoner;

Asare the following:

<myapp: Or der >)
<Conver sat i onScoped/ >

<nyapp:init>
<Initializer/>
<myapp: Pr oduct >
<myapp: Sel ect ed/ >
</ nyapp: Pr oduct >
<nyapp: User/ >
</ nyapp:init>

</ nyapp: Or der >

<myapp: Order>
<Conver sat i onScoped/ >

<myapp:init>
<Initializer/>
<myapp: Pr oduct >
<myapp: Sel ect ed/ >
</ myapp: Product >
<nyapp: User >
<Current/>
</ nyapp: User >
</ nyapp:init>

</ nyapp: Or der >

The following definitions are equivalent:

public class Paynent {
public Payment (Bi gDeci mal amount) { ... }

@nitializer Paynment (Order order) {
t hi s(order. get Amobunt () ;
}

JSR-299 Public Review

L ookup, dependency injection and EL resolution

public class Paynent {
publ i ¢ Paynent (Bi gDeci nal anmount) { ... }

@nitializer Payment (@urrent Order order) ({
t hi s(order. get Anount () ;
}

Asare the following:

<myapp: Paynent >
<myapp: Order/ >
</ nmyapp: Paynent >

<nyapp: Paynent >
<myapp: Or der >
<Current/>
</ nyapp: Or der >
</ nyapp: Paynent >

4.6. Generic type literals

The Java language does not currently support a literal syntax for parameterized types. Therefore, Web Beans provides the
following helper class to allow inline instantiation of an object that represents a parameterized type.

public abstract class TypelLiteral <T> {

protected TypeLiteral () {
if (!(getd ass().getSuperclass() == TypeLiteral.class)) {
throw new Runti meException("Not a direct subclass of TypeLiteral");

if (!(getd ass().getCenericSuperclass() instanceof ParaneterizedType)) {
t hrow new Runti neException("M ssing type paranmeter in TypeLiteral");
}

}

public final Type getType() {
Par anet eri zedType paraneterized = (ParaneterizedType) getd ass()
. get Generi cSupercl ass();
return paraneterized. get Act ual TypeArgunents()[0];

}

@uppr essWar ni ngs("unchecked")
public final Cass<T> get RawType() {
Type type = get Type();
if (type instanceof d ass) {
return (Cl ass<T>) type;
} else if (type instanceof ParaneterizedType) {
return (C ass<T>) ((ParaneterizedType) type).get RawType();
} else if (type instanceof GCenericArrayType) {
return (O ass<T>) Object[].class;
} else {
t hrow new Runti neException("lllegal type parameter in TypeLiteral");
}

An object that represents any parameterized type may be obtained by subclassing TypelLi teral .

TypeLiteral type = new TypeLiteral <List<String>>() {};

This object may be passed to Web Beans APIs that perform typesafe resolution.

4.7. Annotation type literals

The Java language does not currently support a literal syntax for inline instantiation of annotation values. Therefore, Web
Beans provides the following helper classto alow inline instantiation of annotation type instances.

public abstract class AnnotationLiteral <T extends Annotation>
i npl enents Annotation {

JSR-299 Public Review 46

L ookup, dependency injection and EL resolution

protected AnnotationLiteral () {
if (!(getd ass().getSuperclass() == AnnotationLiteral.class)) {
t hrow new Runti meExcepti on(
"Not a direct subclass of AnnotationLiteral");
if (!(getd ass().getCGenericSuperclass() instanceof ParaneterizedType)) {
throw new Runti meExcepti on(
"M ssing type paraneter in AnnotationLiteral");

}

@Buppr essWar ni ngs(" unchecked")
public final C ass<T> annotationType() {
Par anet eri zedType paraneteri zed = (ParaneterizedType) getd ass()
. get Generi cSupercl ass();
return (Cl ass<T>) paraneterized. getActual TypeArgunments()[0];

}
An instance of an annotation type may be obtained by subclassing Annot ati onLi teral .

public abstract class PayByBi ndi ng
ext ends Annot ati onLi t er al <PayBy>
i npl enents PayBy {}

PayBy payby = new PayByBi nding() { public value() { return CHEQUE; } };

Annotation values are often passed to Web Beans APIs that perform typesafe resolution.

4.8. The manager object

Occasionally, the application might need to obtain a Web Bean instance via programmatic API call. This is useful when
the type or binding types vary dynamically—in generic framework code, for example. Thus, the manager interface
provides operations for resolving a Web Bean by type or name. The Web Bean manager provides an implementation of
this interface to the application.

The Web Bean manager provides a built-in Web Bean with APl type j avax. webbeans. Manager , SCOpe @ependent , de-
ployment type @t andar d and binding type @ur rent . Thus, any Web Bean may obtain an instance of Manager by inject-
ing it:

@urrent Manager manager;

Alternatively, the application may obtain the Manager object from JNDI. The Web Bean manager must register an instance
of Manager with namej ava: conp/ Manager in JNDI at initialization time.

A contextual instance of a Web Bean may be obtained by calling Manager . get I nst ance() , passing the Bean object repres-
enting the Web Bean.

public interface Manager {

public <T> T getlnstance(Bean<T> bean);

}

Manager . get | nst ance() returnsaWeb Bean instance or client proxy.

» If the given Bean instance represents a Web Bean with a normal scope, as defined in Section 8.2, “Normal scopes and
pseudo-scopes’, Manager . get | nst ance() must return aclient proxy.

* Otherwiseg, if the Bean instance represents a Web Bean with a pseudo-scope, as defined in Section 8.2, “Normal scopes
and pseudo-scopes’, Manager . get | nst ance() must:

» obtain the context object by calling Manager . get Cont ext (), passing the Web Bean scope, then

e obtain an instance of the Web Bean by calling Cont ext . get (), passing the Bean instance representing the Web

JSR-299 Public Review 47

L ookup, dependency injection and EL resolution

Bean and t r ue asthe value of the cr eat e parameter, and return it.

4.9. Instance resolution

The Manager . get | nst anceBy Type() methods obtain a contextual instance of a Web Bean:

public interface Manager {

public <T> T getlnstanceByType(C ass<T> type, Annotation... bindingTypes);
public <T> T getlnstanceByType(TypelLiteral <T> type, Annotation... bindingTypes);

}

Thefirst argument is a Web Bean API type, the remaining arguments are instances of binding annotation types.
For example:

Paynment Processor pp = nmnager. get | nst anceByType(Paynent Processor. cl ass,
synchr onousAnnot ati on,
payByAnnot ati on) ;

If no binding annotations are passed to get | nst anceBy Type() , the default binding type @ur r ent is assumed.

If two instances of the same binding type are passed to get | nst anceByType(), & Dupl i cat eBi ndi ngTypeException IS
thrown.

If an instance of an annotation that is not a binding type is passed to get | nst anceByType(), an I | | egal Ar gument Excep-
ti on isthrown.

Theget | nst anceByType() method must:

e ldentify the Web Bean by calling Manager . r esol veByType() , passing the type and binding annotations of the injection
point.

¢ If resol veByType() did not return a Web Bean, throw an Unsat i sfi edDependencyExcepti on Of, if resol veByType()
returned more than one Web Bean, throw an Anbi guousDependencyExcepti on.

« |f the Web Bean has anormal scope type and the type cannot be proxied by the Web Bean manager, as defined in Sec-
tion 4.4.1, “Unproxyable API types’, throw an Unpr oxyabl eDependencyExcept i on.

e Otherwise, obtain an instance of the Web Bean (or a client proxy) by calling Manager . get | nst ance(), passing the
Bean object representing the Web Bean, and return it.

The get I nst anceByType() method is called whenever the Web Bean manager injects a Web Bean instance into another
Web Bean.

4.9.1. Dynamic lookup

In certain situations, injection is not the most convenient way to obtain areference to aWeb Bean instance. For example, it
may not be used when the API type or and/binding types vary dynamically at runtime. In these situations, the application
may directly call Manager . get | nst anceByType() .

When the application calls get | nst anceByType() to obtain a Web Bean instance dynamically, it may need to pass in-
stances of the binding annotation types.

The helper classj avax. webbeans. Annot at i onLi t eral makesit easier to implement binding annotation types:

public class SynchronousBi ndi ng
ext ends Annot ati onLiteral <Synchronous>
i mpl enents Synchronous {}

public abstract class PayByBi ndi ng

JSR-299 Public Review 48

L ookup, dependency injection and EL resolution

ext ends Annot ati onLi t er al <PayBy>
i mpl enents PayBy {}

Then the application may easily instantiate instances of the binding type:

Payment Processor pp = manager. get | nst anceByType(Paynent Processor. cl ass,
new Synchr onousBi ndi ng(),
new PayByBi ndi ng() { public Paynent Method value() { return CHEQUE;, } });

Parameterized API types may be specified by passing a subclass of TypeLiteral :

Payment Processor pp = manager. getlnstanceByType(new TypeLiteral <List<String>>() {},
new W shLi st Bi ndi ng());

4.9.2. Typesafe resolution algorithm

The process of matching a Web Bean to an injection point is called typesafe resolution. The Web Bean manager considers
API type, binding annotations, and Web Bean precedences when resolving a Web Bean to be injected to an injection point.

Typesafe resolution usually occurs at Web Bean manager initialization time, allowing the Web Bean manager to warn the
user if any enabled Web Beans have unsatisfied or ambiguous dependencies.

Theresol veByType() method of the Manager interface returns the result of the typesafe resolution.

public interface Manager {

public <T> Set <Bean<T>> resol veByType(C ass<T> api Type, Annotation... bindingTypes);
public <T> Set <Bean<T>> resol veByType(TypeLiteral <T> api Type, Annotation... bindingTypes);

}

If no binding annotations are passed to r esol veByType() , the default binding annotation @ur r ent is assumed.
If two instances of the same binding type are passed to r esol veByType(), @Dupl i cat eBi ndi ngTypeExcept i on iSthrown.

If an instance of an annotation that is not a binding type is passed to r esol veByType(), an I | | egal Ar gunent Except i on iS
thrown.

The following agorithm must be used by the Web Bean manager when resolving a Web Bean by type:

« Firgt, the Web Bean manager identifies the set of matching enabled Web Beans which have the given API type. For
this purpose, primitive types are considered to be identical to their corresponding wrapper types in j ava. | ang, array
types are considered identical only if their element types are identical and parameterized types are considered identical
only if both the type and all type parameters are identical.

* Next, the Web Bean manager considers the given binding annotations. If no binding annotations were passed to r e-
sol veByType() , the Web Bean manager assumes the hinding annotation @urr ent . The Web Bean manager narrows
the set of matching Web Beans to just those where for each given binding annotation, the Web Bean declares a binding
annotation with (a) the same type and (b) the same annotation member value for each member which is not annotated
@WonBi ndi ng (see Section 4.9.2.1, “Binding annotations with members’).

« Next, the Web Bean manager examines the deployment types of the matching Web Beans, as defined in Section 2.5.7,
“Deployment type precedence”, and returns the set of Web Beans with the highest precedence deployment type that
occursin the set. If there are no matching Web Beans, an empty set is returned.

If resol veByType() is called with the API typej ava. | ang. Obj ect and no binding annotations, it returns the set of all en-
abled Web Beans.

4.9.2.1. Binding annotations with members
According to the algorithm above, binding annotations with members are supported:

@ay By (CHEQUE) _
cl ass ChequePaynent Processor inpl ements Paynent Processor { ... }

JSR-299 Public Review 49

L ookup, dependency injection and EL resolution

@rayBy(CREDI T_CARD)
cl ass Credit CardPaynent Processor inplenments Paynment Processor { ... }

Then only chequePaynent Processor isacandidate for injection to the following attribute:

@rayBy(CHEQUE) Paynent Processor paynent Processor;

On the other hand, only Cr edi t Car dPaynent Pr ocessor isacandidate for injection to this attribute:

@PayBy(CREDI T_CARD) Paynent Processor paynent Processor;

The Web Bean manager callsthe equal s() method of the annotation member value to compare values.
An annotation member may be excluded from consideration using the @onBi ndi ng annotation.

@i ndi ngType
@Ret ent i on(RUNTI MVE)
@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Payment Met hod val ue();
@NonBi ndi ng String comrent ();

Array-valued or annotation-values members of a binding annotation must be annotated @wonBi ndi ng. If an array-valued or
annotation-valued member of a binding annotation is not annotated @onBi ndi ng, a Defi ni ti onExcepti on is thrown by
the Web Bean manager at initialization time.

4.9.2.2. Multiple binding annotations

According to the algorithm above, a Web Bean implementation class or producer method may declare multiple binding an-
notations:

@ynchronous @PayBy(CHEQUE)
cl ass ChequePaynent Processor inpl ements Paynent Processor { ... }

Then chequePayment Processor would be considered a candidate for injection into any of the following attributes:

@rayBy(CHEQUE) Paynent Processor paynent Processor;
@ynchronous Payment Processor paynent Processor;
@ynchronous @PayBy(CHEQUE) Paynent Processor paynent Processor;

A Web Bean must declare all of the binding annotations that are specified at the injection point to be considered a candid-
ate for injection.
4.10. EL name resolution

The Web Bean manager provides a Unified EL ELResol ver. When this resolver is called with a null base object, it calls
the method Manager . get | nst anceByNare() to obtain an instance of the Web Bean named in the EL expression:

public interface Manager {

public nject getlnstanceByNane(String nane);

For example:

Obj ect pp = manager. get | nst anceByNane(" paynent Processor");

Theget I nst anceByName() method must:

JSR-299 Public Review 50

L ookup, dependency injection and EL resolution

e ldentify the Web Bean by calling Manager . r esol veByNare() , passing the name.
e Ifresol veByNane() returned an empty set, return anull value.
e Otherwise, if resol veByNanme() returned more than one Web Bean, throw an Ambi guousDependencyExcept i on.

e Otherwise, if exactly one Web Bean was returned, obtain an instance of the Web Bean by calling man-
ager . get | nst ance() , passing the Bean instance representing the Web Bean.

For each distinct name that appears in the EL expression, get | nst anceByName() must be called at most once. Even if a
name appears more than once in the same expression, the Web Bean manager may not call get | nst anceByNane() multiple
times with that name. This restriction ensures that there is a unique instance of each Web Bean with scope @ependent in
any EL evaluation.

Open issue: Web Beans supports qualified names. The ELResol ver implements support for qualified namesin Unified EL.
How exactly does this work?

4.10.1. Name resolution algorithm

The process of matching a Web Bean to aname used in EL is called name resolution. Since there is no typing information
availablein EL, the Web Bean manager may consider only Web Bean names.

Theresol veByNane() method of the Manager interface performs name resol ution.

public interface Manager {

publ i c Set <Bean<?>> resol veByNane(String nane);

}

The following agorithm must be used by the Web Bean manager when resolving a Web Bean by name:

* TheWeb Bean manager identifies the set of matching enabled Web Beans which have the given name.

¢ Next, the Web Bean manager examines the deployment types of the matching Web Beans, as defined in Section 2.5.7,
“Deployment type precedence”, and returns the set of Web Beans with the highest precedence deployment type that
occursin the set. If there are no matching Web Beans, an empty set is returned.

The name resolution algorithm usually occurs at runtime.

4.10.2. Integration with Unified EL

In a Servlet or JSF application, the Web Bean manager must register the ELResol ver with the web container.

In a JSF environment, the Web Bean manager calls Appl i cati on. addELResol ver () a initialization time (or provides a
faces-config.xn filewith an <el -resol ver > element).

If necessary, the Web Bean manager will register the ELResol ver directly with the JSP engine by calling JspFact -
ory. get Def aul t Fact ory(), JspFact ory. get JspAppl i cat i onCont ext () and finally JspAppl i cati onCon-
text . addELResol ver () at initialization time.

JSR-299 Public Review 51

Chapter 5. Web Bean lifecycle

The lifecycle of a Web Bean instance is managed by the Web Beans context object for the Web Bean's scope. The context
implementation collaborates with the Web Bean manager via the Cont ext and Bean interfaces to create and destroy Web
Bean instances.

The actual mechanics of Web Bean creation and destruction varies according to what kind of Web Bean it is:

e To create an EJB, the Web Bean manager obtains an instance from the EJB container

* To create aproducer method Web Bean instance, the Web Bean manager calls the producer method

* To create asimple Web Bean, the Web Bean manager calls the Web Bean constructor

e Todestroy an EJB, the Web Bean manager calls the Web Bean remove method

* Todestroy aproducer method Web Bean instance, the Web Bean manager calls the disposal method, if any

When the Web Bean manager injects dependencies or resolves EL names, and there is no existing instance of the Web
Bean cached by the context object for the Web Bean scope, the context object automatically creates a new instance of the
Web Bean. When a Web Beans context is destroyed, the context object automatically destroys any instances associated
with that context.

5.1. Creation

TheBean. creat e() method is responsible for creating new instances of a Web Bean.

public abstract class Bean<T> {

public abstract T create();

}

Thecreat e() method performs the following tasks:

» obtains an instance of the Web Bean,

« createsthe interceptor and decorator stacks and binds them to the instance,

« injectsany dependencies,

e setsany initial field values defined in XML, and

e callsthe @ost Const ruct method, if necessary.

If any exception occurs while creating an instance, the exception is rethrown by the cr eat e() method. If the exceptionisa
checked exception, it iswrapped and rethrown as an (unchecked) Cr eat i onExcept i on.

5.2. Destruction

The Bean. dest roy() method is responsible for destroying instances of a Web Bean.

public abstract class Bean<T> {

public abstract void destroy(T instance);

}

Thedestroy() method performs the following tasks:

JSR-299 Public Review 52

Web Bean lifecycle

« callsthe Web Bean remove method or disposal method, if necessary,

« callsthe @r eDest r oy method, if necessary, and

e destroysal dependent objects of the instance, as defined in Section 8.3.4, “ Dependent object destruction”.
If any exception occurs while destroying an instance, the exception is caught by the dest r oy() method.

If the application invokes a Web Bean instance after it has been destroyed, the behavior is undefined.

5.3. Lifecycle of simple Web Beans

An instance of asimple Web Bean is completely under the control of the Web Bean manager.

When thecr eat e() method is called:

« Firgt, the Web Bean manager calls the Web Bean constructor to obtain an instance of the Web Bean. For each con-
structor parameter, the Web Bean manager passes the object returned by Manager . get I nst anceByType() . The man-
ager is permitted to return an instance of a manager-generated subclass of the Web Bean implementation class, allow-
ing interceptor and decorator bindings.

* Next, the Web Bean manager initializes the values of any attributes annotated @JB, @ersi stenceContext Or
@esour ce, as defined in the Common Annotations for the Java Platform and EJB 3.0 specifications.

« Next, the Web Bean manager initializes the values of all injected fields. For each injected field, the Web Bean manager
sets the value to the object returned by Manager . get | nst anceBy Type() .

* Next, the Web Bean manager initializes the values of any fields with initial values specified in XML, as defined in
Section 9.2.5, “Field initial value declarations”.

* Next, the Web Bean manager calls all initializer methods. For each initializer method parameter, the Web Bean man-
ager passes the object returned by Manager . get | nst anceBy Type() .

* Next, the Web Bean manager calls the @ost Const ruct method, if any.

« Finaly, the Web Bean manager builds the interceptor and decorator stacks for the instance as defined in Sec-
tion 6.2.10, “Interceptor stack creation” and Section 6.3.8, “Decorator stack creation” and binds them to the instance.

When the dest roy() method is called:

e The Web Bean manager calls the @r eDest r oy method, if any.

« Finaly, the Web Bean manager destroys dependent objects.

5.4. Lifecycle of stateful session enterprise Web beans

The Web Bean manager and the EJB container share control of instances of enterprise Web Beans that are stateful session
beans.

When the creat e() method is called, the Web Bean manager creates and returns an enterprise bean proxy, as defined in
Section 3.3.8, “Enterprise bean proxies’.

When the dest roy() method is called, the Web Bean manager calls the Web Bean remove method upon the proxy. For
each remove method parameter, the Web Bean manager passes the object returned by Manager . get | nst anceByType() . If
the enterprise Web Bean has no Web Bean remove method, the Web Bean manager throws an Unr enovedExcept i on.

Open issue: this exception will just be caught and logged by the Web Bean manager!

Note that the Web Bean manager intercepts the @ost Const ruct and @r eDest r oy callbacks of any EJB and performs ad-
ditional work, as defined in Section 5.8, “Lifecycle of EJB beans’

JSR-299 Public Review 53

Web Bean lifecycle

5.5. Lifecycle of stateless session and singleton enterprise Web Beans

The EJB container aways controls the lifecycle of all stateless session and singleton bean instances. However, for in-
stances of enterprise Web Beans, the Web Bean manager controls the lifecycle of the EIJB local object reference.

When the creat e() method is called, the Web Bean manager creates and returns an enterprise bean proxy, as defined in
Section 3.3.8, “Enterprise bean proxies’.

When the dest roy() method is called, the Web Bean manager simply discards the proxy and al EJB local object refer-
ences.

Note that the Web Bean manager intercepts the @ost Construct and @reDestroy calbacks and performs additional
work, as defined in Section 5.8, “Lifecycle of EJB beans’

5.6. Lifecycle of producer methods

Any Java object may be returned by a producer method. It is not required that the returned object be an instance of another
Web Bean. However, if the returned object is not an instance of another Web Bean, the Web Bean manager will provide
none of the following capabilities:

e injection of other Web Beans

» lifecycle callbacks

« method and lifecycle interception

In the following example, the producer method returns instances of other Web Beans:

@sessi onScoped
public class Paynent StrategyProducer {

private Paynent Strat egyType paynent Strat egyType;

publ i c set Paynment St rat egyType(Paynment St rat egyType type) {
paynment St rat egyType = type;

@r oduces Paynent Strat egy get Paynent Strat egy(@CreditCard Payment Strategy creditCard,
@heque Paynent Strategy cheque,
@nl i ne Paynent Strategy online) {
switch (paynent StrategyType) {

case CREDIT_CARD: return creditCard;

case CHEQUE: return cheque;

case ONLINE: return online;

default: throw new ||| egal StateException();

}

In this case, the object returned by the producer method has already had its dependencies injected, receives lifecycle call-
backs and has interception enabled.

But in this example, the returned objects are not Web Bean instances:

@sessi onScoped
public class Paynent Strat egyProducer {

private Paynment StrategyType paynent Strat egyType;

publ i c set Paynent Strat egyType(Paynent Strat egyType type) {
paynment St rat egyType = type;

@roduces Paynent Strategy get Paynent Strategy() {
switch (paynent StrategyType) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHEQUE: return new ChequePaymnent Strategy();
case ONLINE: return new OnlinePayment Strategy();
default: throw new ||| egal StateException();

JSR-299 Public Review 54

Web Bean lifecycle

}

In this case, the object returned by the producer method will not have any dependencies injected by the Web Bean man-
ager, receives no lifecycle callbacks and does not have interception enabled.

When the cr eat e() method is called, the Web Bean manager must:

< obtain the Bean object for the most specialized Web Bean that specializes the Web Bean which declares the producer
method, and then

* obtain an instance of the most specialized Web Bean, by calling Manager . get | nst ance() , passing the Bean object rep-
resenting the Web Bean, and

e invoke the producer method upon this instance, passing to each parameter the object returned by Man-
ager . getl nstanceByType().

The return value of the producer method, after method interception completes, is the new Web Bean instance to be re-
turned by Bean. create() .

If the producer method returns a null value and the producer method Web Bean has the scope @ependent , the cr eat e()
method returns a null value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is not @ependent , thecr e-
at e() method throwsan 111 egal Product Excepti on.

When the dest r oy() method is called, and if there is a disposal method for this producer method, the Web Bean manager
must:

* obtain the Bean object for the most specialized Web Bean that specializes the Web Bean which declares the disposal
method, and then

« obtain an instance of the most specialized Web Bean, by calling Manager . get | nst ance() , passing the Bean object rep-
resenting the Web Bean, and

< invoke the disposal method upon the this instance, passing the object returned by Manager . get I nst anceByType() to
each parameter.

Finally, the Web Bean manager destroys dependent objects.

5.7. Lifecycle of IMS endpoints

The Web Bean manager completely controls the lifecycle of any IMS endpoint instance. An instance of aJMS endpoint is
a proxy object, provided by the Web Bean manager, that implements all the API types defined in Section 3.5, “JMS end-
points’, delegating the actual implementation of these methods directly to the underlying JIMS objects obtained via INDI
lookup and IMS APIs.

A IM S endpoint proxy object is a dependent object of the object it isinjected into.
JMS endpoint proxy objects are serializable.

When the cr eat e() method is called, the Web Bean manager creates and returns a special proxy object that implements all
the API types of the IMS endpoint.

The methods of this proxy object delegate to JM S objects obtained as needed via JINDI lookup and IMS APIs.

e ThenDestination isobtained by INDI lookup, using the INDI name defined in <dest i nat i on>.
e TheConnecti onFact ory isobtained by JNDI lookup, using the INDI name defined in <connect i onFact or y>.

e The Connection is obtained by calling QueueConnecti onFact ory. cr eat eQueueConnect i on() Of Topi cConnecti on-
Fact ory. cr eat eTopi cConnecti on(). The Web Bean manager is permitted to share a connection between multiple
proxy objects.

JSR-299 Public Review 55

Web Bean lifecycle

e The session object is obtained by caling QueueConnection.createQueueSession() OF TopicConnec-
tion. createTopi cSession().

e The MessageProducer oObject is obtained by caling QueueSession.createSender() OF TopicSes-
si on. creat ePubl i sher ().

When the dest roy() method is called, the Web Bean manager must ensure that all IMS objects created by the proxy ob-
ject are destroyed by calling cl ose() if necessary.

e The connecti on is destroyed by calling Connecti on. cl ose() if necessary. If the connection is being shared between
multiple proxy objects, the Web Bean manager is not required to close the connection when the proxy is destroyed.

e Thesessi on object is destroyed by calling Sessi on. cl ose() .
e TheMessageProducer object isdestroyed by calling MessagePr oducer . cl ose() .

Thecl ose() method of aJMS endpoint proxy object aways throws an Unsuppor t edQper at i onExcept i on.

5.8. Lifecycle of EJB beans

From time to time the EJB container creates EJB bean instances. The Web Bean manager must perform dependency injec-
tion upon any EJB session, singleton, or message driven bean instance that executes in the context of a Web Beans applic-
ation, regardless of whether it is aWeb Bean instance.

When the EJB container creates a new instance of an EJB bean, the Web Bean manager intercepts the @ost Const r uct
callback and performs the following steps, before the callback is allowed to proceed to the bean instance.

e Firgt, The Web Bean manager initializes the values of all injected fields. For each injected field, the Web Bean man-
ager sets the value to the object returned by Manager . get | nst anceBy Type() .

« Next, if the EJB bean instance is an instance of a Web Bean, the Web Bean manager initializes the values of any fields
with initial values specified in XML, as defined in Section 9.2.5, “Field initial value declarations’.

* Next, the Web Bean manager calls all initializer methods. For each initializer method parameter, the Web Bean man-
ager passes the object returned by Manager . get | nst anceBy Type() .

e Finaly, the Web Bean manager builds the interceptor and decorator stacks for the instance as defined in Sec-
tion 6.2.10, “Interceptor stack creation” and Section 6.3.8, “ Decorator stack creation” and binds them to the instance.

Open issue: we need to make sure that the Web Bean manager has fully initialized before singleton EJB beans are instan-
tiated.

When the EJB container destroys an instance of an EJB bean, the Web Bean manager intercepts the @r eDest r oy callback
and destroys all dependent objects, after the callback returns from the bean instance.

5.9. Lifecycle of Servlets

The Servlet container creates instances of Servlets. The Web Bean manager must perform dependency injection upon any
Servlet that executesin the context of a Web Beans application.

When the Servlet container creates a new instance of a Servlet, the Web Bean manager performs the following steps.

« Firgt, the Web Bean manager initializes the values of all injected fields. For each injected field, the Web Bean manager
sets the value to the object returned by Manager . get | nst anceBy Type() -

* Next, the Web Bean manager calls all initializer methods. For each initializer method parameter, the Web Bean man-
ager passes the object returned by Manager . get | nst anceBy Type() .

When the Servlet container destroys a Servlet, the Web Bean manager destroys all dependent objects.

Open issue: currently there is no way to intercept creation or destruction of Serviets. We need a new API from the Serviet

JSR-299 Public Review 56

Web Bean lifecycle

specification.
Open issue: we need to make sure that the Web Bean manager has fully initialized before Serviets are instantiated.

In aJava EE 5 environment, the Web Bean manager is not required to support injected fields or initializer methods of Ser-
vlets.

JSR-299 Public Review 57

Chapter 6. Interceptors and decorators

Web Beans support interception as defined by the package j avax. i nt er cept or . Interceptors may be bound to a smple
Web Bean, enterprise Web Bean or EJB 3 style session, singleton or message driven bean using the
javax.interceptor. |nterceptors annotation, or by using a Web Beans interceptor binding.

Interceptors are usually used to implement cross-cutting concerns, functionality that is orthogonal to the type system. In
addition, Web Beans provides support for decorators. A decorator intercepts method invocations for a specific APl type.
Unlike interceptors, decorators are typesafe, and cannot be used to implement cross-cutting concerns.

Producer methods and JM S endpoints may not declare interceptors or decorators.

6.1. Business methods

Method interception by interceptors and decorators applies to business method invocations of a simple Web Bean, enter-
prise Web Bean or EJB bean.

For asimple Web Bean, a method invocation is considered a business method invocation if:

» the method was invoked upon an object obtained by calling Manager . get | nst ance(), passing the Bean object repres-
enting the simple Web Bean (this includes any instance of the Web Bean injected by the Web Bean manager), and

e themethod is non-private and non-static.

Invocations of initializer methods by the Web Bean manager during Web Bean creation are not considered to be business
method invocations.

Invocations of Web Bean remove methods by the Web Bean manager during enterprise Web Bean destruction are not con-
sidered to be business method invocations.

Invocations of @ eDestroy and @ost Const ruct callbacks by the Web Bean manager are not considered to be business
method invocations.

All invocations of producer methods, disposal methods and observer methods are considered to be business method invoc-
ations.

Business method invocations of an enterprise Web Bean or EJB session, singleton or message driven bean are defined by
the EJB specification.

Self-invocations of a simple Web Bean are considered to be business method invocations. However, self-invocations of an
enterprise Web Bean or EJB session, singleton or message driven bean are not considered to be business method invoca
tions.

6.2. Interceptors

An interceptor may be amethod interceptor, alifecycle callback interceptor, or both.

6.2.1. Business method interceptors

An interceptor method for business method invocations is a method of an interceptor with return type oj ect and asingle
parameter of typej avax. i ntercept or. | nvocat i onCont ext , annotated @ oundl nvoke.

Interceptor methods for business method invocations are called when a business method is invoked.

If an interceptor has an interceptor method for business method invocations, we describe it as a business method inter cept-
or.

6.2.2. Lifecycle callback interceptors

An interceptor method for a lifecycle callback is a method of a Web Beans interceptor implementation class with return

JSR-299 Public Review 58

Interceptors and decorators

type void and a single parameter of type javax.interceptor.!nvocationContext, annotated @Post Construct,
@r eDest r oy, @r ePassi vat e OF @ost Acti vate.

Interceptor methods for a lifecycle callbacks are called when the corresponding @ost Construct, @reDestroy,
@ ePassi vat e OF @ost Acti vat e callbacksisinvoked.

If an interceptor has an interceptor method for alifecycle callback, we describe it as alifecycle callback interceptor.

6.2.3. Support for @nterceptors

Any Web Bean implementation class may declare interceptors using @ nt er cept or s. If the Web Bean is an EJB bean, the
EJB container is responsible for calling interceptors declared using @ nt er cept or s. Otherwise, the Web Bean manager is
responsible for calling the interceptors. In both cases, the semantics are fully defined by the EJB specification.

6.2.4. Interceptor bindings

As an extension to the functionality defined by thej avax. i nt er cept or package, Web Beans provides an alternative meth-
od of binding interceptors to simple Web Beans, enterprise Web Beans and EJB session, singleton and message driven
beans. Interceptors bound using this mechanism are always called by the Web Bean manager.

Even when interceptors are bound using this mechanism, the interception semantics are defined by the EJB specification.

An interceptor binding type is a Java annotation defined as @rarget ({TYPE, METHOD}) Of @arget(TYPE) and
@ret ent i on(RUNTI ME) . All interceptor binding types must also specify the @ nt er cept or Bi ndi ngType meta-annotation.

@ nt er cept or Bi ndi ngType

@rar get ({ TYPE, METHOD})

@Ret ent i on(RUNTI ME)

public @nterface Transactional {}

Multiple interceptors may be bound to the same interceptor binding type or types.

6.2.4.1. Interceptor binding types with additional interceptor bindings
An interceptor binding type may declare other interceptor bindings.

@ nt er cept or Bi ndi ngType

@arget ({ TYPE, METHOD})

@Ret ent i on(RUNTI MVE)

@r ansacti onal

public @nterface DataAccess {}

Interceptor bindings are transitive—an interceptor binding declared by an interceptor binding type is inherited by all Web
Beans and other interceptor binding types that declare that interceptor binding type.

Interceptor binding types declared @rarget (TYPE) may not be applied to interceptor binding types declared
@ar get ({TYPE, METHOD}).

6.2.4.2. Interceptor bindings for stereotypes
Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

@r ansact i onal

@becure

@°r oducti on

@Request Scoped

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

An interceptor binding declared by a stereotype are inherited by any Web Bean that declares that stereotype.

If a stereotype declares interceptor bindings, it must be defined as @rar get (TYPE) .

JSR-299 Public Review 59

Interceptors and decorators

6.2.5. Web Beans interceptors

A Web Beans interceptor is a simple Web Bean with an implementation class that is also an interceptor class as defined by
the EJB specification. Web Beans interceptors must declare at |east one interceptor binding type.

A Web Beans interceptor may be either a business method interceptor, alifecycle callback interceptor or both.

Web Beans lifecycle callback interceptors may only declare interceptor binding types that are defined as @rar get (TYPE) .
If a lifecycle callback interceptor declares an interceptor binding type that is defined @rarget ({TYPE, METHOD}), a
Def i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

If a Web Beans interceptor does not declare any interceptor binding type, a Def i ni ti onExcepti on is thrown by the Web
Bean manager at initialization time.

Open issue: do we need to support defining interceptor methodsin XML?

Open issue: should we support injection into interceptor methods?

6.2.5.1. Declaring a Web Beans interceptor using annotations

A Web Beans interceptor may be declared by annotating the interceptor implementation class with the @ nt er cept or ste-
reotype, along with at least one interceptor binding type.

@ransacti onal @ nterceptor
public class Transactionlnterceptor {

@\r oundl nvoke
public oject manageTransaction(lnvocati onContext ctx) { ... }

6.2.5.2. Declaring a Web Beans interceptor using XML

Additional Web Beans interceptors may be declared in web- beans. xni , using the interceptor implementation class name
and the <I nt er cept or > element:

<nmyf wk: Transact i onl nt er cept or >
<Interceptor/>
<nyfwk: Transacti onal / >

</ nyfwk: Transacti onl nt er cept or >

When an interceptor is declared in XML, the Web Bean manager ignores any interceptor binding annotations applied to
the interceptor class.

If the interceptor implementation class is already annotated @ nt er cept or, two different Web Beans interceptors exist,
with different interceptor binding types.

6.2.6. Binding a Web Beans interceptor to a Web Bean or EJB bean

A Web Beans lifecycle callback interceptor may be bound to any simple Web Bean that is not an interceptor or decorator,
any enterprise Web Bean or any EJB session, singleton or message-driven bean by declaring, at the class level, the same
interceptor binding types that were declared by the interceptor.

A Web Beans business method interceptor may be bound to all non-static, non-private, non-final methods of a simple Web
Bean that is not an interceptor or decorator or to al business methods of an enterprise Web Bean or EJB session, singleton
or message-driven bean by declaring the same interceptor binding types, at the class level, that were declared by the inter-
ceptor.

A Web Beans business method interceptor may be bound to a non-static, hon-private, non-final method of a simple Web
Bean that is not an interceptor or decorator or to a business method of an enterprise Web Bean or EJB session, singleton or
message-driven bean by declaring the same interceptor binding types, at the method level, that were declared by the inter-
ceptor.

If a simple Web Bean implementation class that is not an interceptor or decorator is declared final, or has any non-static,
non-private, final methods, and also declares an interceptor binding type or a stereotype with interceptor bindings, a

JSR-299 Public Review 60

Interceptors and decorators

Def i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

If anon-static, non-private method of a simple Web Bean implementation class is declared final and also declares an inter-
ceptor binding type, an Def i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

6.2.6.1. Binding a Web Beans interceptor using annotations

Interceptor binding types may be declared by annotating the implementation class of a simple Web Bean, enterprise Web
Bean, or by annotating the bean class of an EJB session, singleton or message-driven bean.

In the following example, the Tr ansact i onl nt er cept or Will be applied at the class level, and therefore applies to al busi-
ness methods of the class:

@ ansact i onal
public class ShoppingCart { ... }

In thisexample, the Transact i onl nt er cept or Will be applied at the method level:

public class ShoppingCart {

@r ansacti onal
public void placeOder() { ... }

}

Web Beans interceptors may be enabled or disabled at deployment time. Disabled interceptors are never called at runtime.

For a Web Bean defined using annotations, the interceptor bindings for the Web Bean include all interceptor bindings de-
clared by annotating the implementation class, together with all interceptor bindings of all stereotypes declared by the Web
Bean.

6.2.6.2. Binding a Web Beans interceptor using XML
Class-level or method-level interceptor binding types may be applied to any Web Bean declared in web- beans. xmi .
In the following example, the Tr ansact i onl nt er cept or Will be applied at the class level:

<nyapp: Shoppi ngCart >
<nyfwk: Transacti onal / >
</ myapp: Shoppi ngCart >

In this example, the Tr ansact i onl nt er cept or will be applied at the method level:

<myapp: Shoppi ngCart >
<myapp: pl aceOr der >
<nyfwk: Transacti onal / >
</ nyapp: pl aceOr der >
</ myapp: Shoppi ngCart >

If any class-level interceptor binding type is specified in XML, the interceptor binding annotations appearing on the imple-
mentation class are ignored. The class-level interceptor bindings for the Web Bean include all interceptor bindings de-
clared using XML, together with all interceptor bindings of all stereotypes declared by the Web Bean.

Otherwise, if no class-level interceptor binding types are specified in XML, the interceptor binding annotations that appear
on the implementation class are used. The class-level interceptor bindings for the Web Bean include all interceptor bind-
ings declared by annotating the implementation class, together with all interceptor bindings of all stereotypes declared by
the Web Bean.

If any method-level interceptor binding type is specified in XML, the interceptor binding annotations appearing on that
method are ignored. The method-level interceptor bindings for that method include only the interceptor bindings declared
using XML.

Otherwise, if no method-level interceptor binding types are specified in XML, the interceptor binding annotations that ap-
pear on that method are used. The method-level interceptor bindings for that method include all the interceptor bindings
declared by annotating the method.

JSR-299 Public Review 61

Interceptors and decorators

6.2.7. Interceptor enablement and ordering

By default, interceptors bound via interceptor binding types are not enabled. An interceptor must be explicitly enabled by
listing its implementation class under the <I nt er cept or s> element in web- beans. xni .

<I nt er cept or s>
<myfwk: Transacti onl nt ercept or/ >
<nyf wk: Loggi ngl nt ercept or/ >

</ | nt er cept or s>

The order of the interceptor declarations determines the interceptor ordering. Interceptors which occur earlier in the list are
caled first.

If the <I nt er cept or s> element is specified in more than one web- beans. xm document, aDefi ni ti onExcepti on iSthrown
by the Web Bean manager at initialization time.

Interceptors declared using @ nt er cept ors Or inej b-j ar. xn are called before interceptors declared using Web Beans in-
terceptor bindings.

Interceptors are called before decorators.

Open issue: how can we guarantee this for EJBS?

6.2.8. The Interceptor object for an interceptor

The Bean object for an interceptor must extend the abstract class | nt er ceptor.

public abstract class Interceptor extends Bean<(hject> {

protected Interceptor(Manager manager) {
super (manager) ;

public abstract Set<Annotation> getlnterceptorBindi ngTypes();

public abstract Method get Met hod(I nterceptionType type);

AninterceptionType identifiesthe kind of lifecycle callback or business method.
public enum | nterceptionType {

ARCUND_I NVOKE, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSI VATE, POST_ACTI VATE
}

The get Met hod() method returns the interceptor method for the specified kind of lifecycle callback or business method.
The get Met hod() method must return a null value if the interceptor does not intercepts callbacks or business methods of
the given type.

6.2.9. Interceptor resolution
The following method returns the ordered list of enabled interceptors for a set of interceptor binding types.

public interface Manager {

Li st<Interceptor> resol vel nterceptors(Intercepti onType type
Annot ation... interceptorBindi ngTypes);

If two instances of the same interceptor binding type are passed to r esol vel nt er cept ors(), @Dupl i cat eBi ndi ngTypeEx-
cepti on isthrown.

If no interceptor binding type instance is passed to r esol vel nt erceptors(), anl | egal Argument Except i on iSthrown.

If an instance of an annotation that is not an interceptor binding typeis passed to resol vel nterceptors(), anlllegal Ar-

JSR-299 Public Review 62

Interceptors and decorators

gunent Except i on isthrown.

The following a gorithm must be used by the Web Bean manager when resolving interceptors:

e Firgt, the Web Bean manager identifies the set of matching enabled interceptors where for each declared interceptor
binding annotation, there exists an interceptor binding annotation in the set of given binding annotations or, recurs-
ively, meta-annotations of those annotations, with (a) the same type and (b) the same annotation member value for
each member which is not annotated @onBi ndi ng (see Section 6.2.9.2, “Interceptor binding types with members”).

« Next, the Web Bean manager narrows the set of matching interceptors according to whether the interceptor intercepts
the given kind of lifecycle callback or business method.

¢ Next, the Web Bean manager orders the matching interceptors according to the interceptor ordering specified in Sec-
tion 6.2.7, “Interceptor enablement and ordering” and returns the resulting list of interceptors. If no matching intercept-
orsexist in the set, an empty list is returned.

6.2.9.1. Interceptors with multiple binding types

An interceptor class may specify multiple interceptor binding types, in which case the interceptor will be applied only to
Web Beans and EJB beans with an implementation class that also declares all the binding types, and to methods of Web
Beans and EJB beans where al the binding types appear on either the method or implementation class.

Consider the following interceptor:

@ransactional @ecure @ nterceptor
public class Transacti onal Securitylnterceptor {

@\r oundl nvoke
public void aroundl nvoke() { ... }

}

Thisinterceptor will be bound to all methods of this Web Bean:

@ransacti onal @decure
public class ShoppingCart { ... }

The interceptor will also be bound to the pl acer der () method of this Web Bean:

@r ansact i onal
public class ShoppingCart {

@ecur e
public void placeOder() { ... }

}

However, it will not be bound to the pl aceor der () method of this Web Bean, since the @ecur e interceptor binding type
does not appear:

@ransacti onal
public class ShoppingCart {

public void placeOder() { ... }

6.2.9.2. Interceptor binding types with members
According to the interceptor resolution agorithm defined above, interceptor binding types may have annotation members.
This interceptor binding type declares a member:

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI MVE)
public @nterface Transactional {
bool ean requi resNew() default false;
}

JSR-299 Public Review 63

Interceptors and decorators

Any interceptor with that interceptor binding type must select a member value:

@ ansact i onal (requi resNew=t rue) @ nterceptor
public cl ass RequiresNewlransactionl nterceptor {

@\r oundl nvoke
public Ooject manageTransaction(lnvocati onContext ctx) { ... }

}

The Requi r esNewTr ansact i onl nt er cept or appliesto this Web Bean:

@ ansact i onal (requi resNew=t rue)
public class ShoppingCart { ... }

But not to this Web Bean:

@ransacti onal
public class ShoppingCart { ... }

Annotation member values are compared using equal s() .
An annotation member may be excluded from consideration using the @onBi ndi ng annotation.

@ nt er cept or Bi ndi ngType
@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI VE)
public @nterface Transactional {
@\onBi ndi ng bool ean requiresNew() default false;

}

Array-valued or annotation-valued members of an interceptor binding annotation must be annotated @onBi ndi ng. If an ar-
ray-valued or annotation-valued member of an interceptor binding annotation is not annotated @onBi ndi ng, & Def i ni -
ti onExcepti on isthrown by the Web Bean manager at initialization time.

6.2.10. Interceptor stack creation

When asimple or enterprise Web Bean is created, the Web Bean manager must:

e ldentify the interceptors for each lifecycle callback and business method by calling Manager . r esol vel nt er cept or s()
passing the interceptor bindings for the callback or business method, including al interceptor bindings defined at the
classlevel, method level and by stereotypes.

« If thisis asimple Web Bean, identify the interceptors defined using the @ nt er cept or s annotation for each lifecycle
callback and business method.

e For each unique interceptor, call Manager . get | nst ance() , passing the I nt er cept or object, to obtain an instance of the
interceptor. For a given interceptor and a given Web Bean instance, the Web Bean manager must cal Man-
ager . get | nst ance() exactly once.

» For each lifecycle callback and business method build an ordered list of returned interceptor instances.

The resulting ordered lists of interceptor instances are called interceptor stacks.

6.2.11. Interceptor invocation

Whenever a business method or lifecycle callback is invoked on an instance of a simple Web Bean, enterprise Web Bean
or EJB session, singleton, or message driven bean, the Web Bean manager intercepts the method invocation and invokes
interceptors of the callback or business method.

The Web Bean manager identifies the first interceptor in the interceptor stack for the method. If no such interceptor exists,
the Web Bean manager starts processing the decorator stack, as defined in Section 6.3.9, “Decorator invocation”. Other-
wise, the Web Bean manager builds an instance of j avax. i nterceptor. | nvocat i onCont ext and calls the appropriate in-
terceptor method of the interceptor.

JSR-299 Public Review 64

Interceptors and decorators

When any interceptor is invoked by the Web Bean manager, it may in turn call 1 nvocat i onCont ext . proceed() . The Web
Bean manager then identifies the first interceptor in the interceptor stack for the method such that the interceptor has not
previously been invoked during this business method or lifecycle callback invocation. If no such interceptor exists, the
Web Bean manager starts processing the decorator stack. Otherwise, the Web Bean manager calls the appropriate inter-
ceptor method.

Eventually, by recursion, the interceptor stack is exhausted of uninvoked interceptors.

6.3. Decorators

A decorator implements one or more APl types and intercepts business method invocations for methods defined by the
implemented API types. These API types are called decorated types.

A decorator is a simple Web Bean. The set of decorated types of a decorator includes al interfaces implemented directly
or indirectly by the implementation class, except for j ava. i o. Seri al i zabl e. The decorator implementation class and its
superclasses are not decorated types of the decorator. The decorator class may be abstract.

Alternative definition: the set of decorated types includes all interfaces implemented directly and indirectly by both the
decorator implementation class and the declared type of the delegate attribute.

Decorators may be bound to any enterprise Web Bean, any simple Web Bean that implements an interface and is not an in-
tercepor or decorator, or to any EJB bean. Decorators are called by the Web Bean manager, according to the semantics
defined in Section 6.3.9, “ Decorator invocation”.

6.3.1. Declaring a decorator using annotations

A decorator is declared by annotating the implementation class with the @ecor at or stereotype.

@ecor at or
cl ass Ti mest anpLogger inplenments Logger { ... }

6.3.2. Declaring a decorator using XML

Additional decorators may be declared in web-beans. xni, using the decorator implementations class name and the
<Decor at or > €element:

<nyf wk: Ti mest anpLogger >
<Decor at or/ >

</ rryfvxk Ti mest anpLogger >

If the decorator implementation classis already annotated @ecor at or , two different decorators exist.

6.3.3. Decorator delegate attributes

All decorators inject a delegate attribute using the @ecor at es annotation or <Decor at es> €lement:

@ecor at or
cl ass Ti mest anpLogger inplenments Logger {
@ecor at es Logger | ogger;

<nyf wk: Ti nest anpLogger >
<Decorat or/ >
<nyf wk: | ogger >
<Decor at es>
<nyf wk: Logger/ >
</ Decor at es>
</ nyf wk: | ogger >
</ nyfwk: Ti nest anpLogger >

In this case, the decorator is bound to any Web Bean or EJB bean that has the type of the delegate attribute as an API type.

JSR-299 Public Review 65

Interceptors and decorators

The declared type of the delegate attribute must be a Java interface type. If the declared type of a delegate attribute is not a
Javainterface type, aDef i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

The delegate may optionally declare one or more binding types:

@ecor at or
cl ass Ti mestanplLogger inplenments Logger {
@ecor ates @ebug Logger | ogger;

<myf wk: Ti nest anpLogger >
<Decor at or/ >
<nyf wk: | ogger >
<Decor at es>
<nmyf wk: Logger >
<nyf wk: Debug/ >
</ myf wk: Logger >
</ Decor at es>
</ nyfwk: | ogger >
</ nyfwk: Ti nest anpLogger >

In this case, the decorator is bound to any Web Bean or EJB bean that has the type of the delegate attribute as an APl type,
and declares al the binding types specified by the delegate attribute.

All delegate binding types must be explicitly declared. If no binding type is explicitly declared by the delegate attribute,
the set of binding typesis empty.

A decorator must declare exactly one delegate attribute. If a decorator declares more than one delegate attribute, or does
not declare adelegate attribute, a Def i ni ti onExcept i on iSthrown by the Web Bean manager at initialization time.

When a decorator is declared in XML, it must explicitly declare a delegate attribute. The Web Bean manager ignores any
delegate attribute declared using annotations.

If a decorator applies to a simple Web Bean, and the Web Bean implementation class is declared final, a Def i ni ti onEx-
cepti on isthrown by the Web Bean manager at initialization time.

If a decorator applies to a simple Web Bean with a non-static, non-private, final method, and the decorator also imple-
ments that method, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

6.3.4. Decorated types of a decorator

A decorator is not required to implement all of the API types of its delegate attribute. If a decorator does not implement an
API type of the delegate attribute, that APl will not be intercepted by the decorator.

A decorator may be an abstract Java class, and is not required to implement all methods of its API types. If a decorator
does not implement a method of one of its API types, that method will not be intercepted by the decorator.

The declared type of the decorator delegate attribute must implement or extend all of the decorated types of the decorator.
If adecorator delegate attribute does not implement or extend a decorated type of the decorator, aDef i ni ti onExcepti on iS
thrown by the Web Bean manager at initialization time.

6.3.5. Decorator enablement and ordering

By default, decorators are not enabled. A decorator must be explicitly enabled by listing its implementation class under the
<Decor at or s> €lement in web- beans. xm .

<Decor at or s>
<nyf wk: Ti mest anpLogger/ >
<nmyfwk: | dentitylLogger/>
</ Decor at or s>

The order of the decorator declarations determines the decorator ordering. Decorators which occur earlier in the list are
caled first.

If the <Decor at or s> element is specified in more than one web- beans. xni document, a Depl oynent Except i on iS thrown
by the Web Bean manager at initialization time.

JSR-299 Public Review 66

Interceptors and decorators

Decorators are called after interceptors.

Would it be better to unify interceptors and decorators into a single stack, so that they can be interleaved?

6.3.6. The Decorat or object for a decorator

The Bean object for an interceptor must extend the abstract class Decor at or .

public abstract class Decorator extends Bean<Obj ect> {
protected Decorat or (Manager manager) {
super (manager) ;
}
public abstract O ass<?> get Del egat eType();
public abstract Set<Annotation> get Del egat eBi ndi ngTypes();

public abstract void setDel egate(bj ect instance, Object del egate);

6.3.7. Decorator resolution
The following method returns the ordered list of enabled decorators for a set of API types and a set of binding types.

public interface Manager {

Li st <Decor at or > resol veDecor at or s(Set <O ass<?>> types, Annotation... bindingTypes);

}

The first argument is the set of API types of the decorated Web Bean. The annotations are binding types declared by the
decorated Web Bean.

If two instances of the same binding type are passed to resol veDecor at ors(), & Dupl i cat eBi ndi ngTypeExcepti on IS
thrown.

If an instance of an annotation that is not a binding type is passed to r esol veDecorat ors(), an I |1 egal Ar gument Excep-
ti on isthrown.

If the set of API typesisempty, an1 1| egal Ar gument Except i on isthrown.

The following a gorithm must be used by the Web Bean manager when resolving decorators:

e Firgt, the Web Bean manager identifies the set of matching enabled decorators where the declared type of the delegate
attribute is one of the given APl types. For this purpose, primitive types are considered to be identical to their corres-
ponding wrapper typesin j ava. | ang, array types are considered identical only if their element types are identical and
parameterized types are considered identical only if both the type and al type parameters are identical.

* Next, the Web Bean manager considers the given binding annotations. If no binding annotations were passed to r e-
sol veDecor at or s() , the Web Bean manager assumes the binding annotation @ur r ent . The Web Bean manager nar-
rows the set of matching decorators to just those where for each binding annotation declared by the decorator delegate
attribute, there is a given binding annotation with (a) the same type and (b) the same annotation member value for each
member which is not annotated @onBi ndi ng (see Section 4.9.2.1, “Binding annotations with members”).

« Next, the Web Bean manager orders the matching decorators according to the decorator ordering specified in Sec-
tion 6.3.5, “Decorator enablement and ordering” and returns the resulting list of decorators. If no matching decorators
exist in the set, an empty list isreturned..

6.3.8. Decorator stack creation

When asimple or enterprise Web Bean is created, the Web Bean manager must:

JSR-299 Public Review 67

Interceptors and decorators

« ldentify the decorators for the Web Bean by calling Manager . r esol veDecor at or s() passing the API types and binding
types of the Web Bean.

» For each decorator, call Manager . get | nst ance() , passing the Decor at or 0Object, to obtain an instance of the decorator.

e For each returned decorator instance, call Decor at or . set Del egat e() to inject an object that implements the declared
type of the delegate attribute to the del egate attribute of the decorator instance.

¢ Build an ordered list of the decorator instances.

The resulting ordered list of decorator instancesis called the decorator stack.

6.3.9. Decorator invocation

Whenever a business method is invoked on an instance of a simple Web Bean, enterprise Web Bean or EJB session,
singleton, or message driven bean, the Web Bean manager intercepts the business method invocation and, after processing
the interceptor stack, as defined in Section 6.2.11, “Interceptor invocation”, invokes decorators of the Web Bean.

The Web Bean manager searches for the first decorator in the decorator stack for the instance that implements the method
that is being invoked as a business method. If no such decorator exists, the Web Bean manager invokes the business meth-
od of the Web Bean instance. Otherwise, the Web Bean manager calls the method of the decorator.

When any decorator is invoked by the Web Bean manager, it may in turn invoke a method of the delegate attribute. The
Web Bean manager intercepts the delegate invocation and searches for the first decorator in the decorator stack for the in-
stance such that:

< thedecorator implements the method that is being invoked upon the delegate, and
» thedecorator has not previously been invoked during this business method invocation.

If no such decorator exists, the Web Bean manager invokes the business method of the Web Bean instance. Otherwise, the
Web Bean manager calls the method of the decorator.

Eventually, by recursion, the decorator stack is exhausted of uninvoked decorators.

JSR-299 Public Review 68

Chapter 7. Events

Web Beans may produce and consume events. This facility allows Web Beans to interact in a completely decoupled fash-
ion, with no compile-time dependency between the two Web Beans.

An event comprises:

« A Javaobject (the event object)
* A (possibly empty) set of instances of binding annotation types (the event bindings)

The event object acts as a payload, to propagate state from producer to consumer. The event bindings act as topic selectors,
allowing the consumer to narrow to set of eventsit observes.

An event consumer observes events of a specific type, the observed event type, with a specific set of instances of event
binding types, the observed event bindings.

7.1. Event types and binding types

An event object is an instance of a concrete Java class with no type variables or wildcards. The event types of the event in-
clude all superclasses and interfaces of the class of the event object.

An event binding type isjust an ordinary binding type as specified in Section 2.3.2, “Defining binding types’ with the ex-
ception that it may be declared @rar get ({ FI ELD, PARAMETER}) .

More formaly, an event binding type is a Java annotation defined as @rarget ({FIELD, PARAMETER}) Of
@arget ({METHOD, FIELD, PARAMETER, TYPE}) and @retention(RUNTI ME). All event binding types must specify the
@i ndi ngType meta-annotation.

An event consumer will be notified of an event if the observed event type it specifiesis one of the event types of the event,
and if all the observed event bindings it specifies are event bindings of the event.

7.2. Firing an event via the manager interface

The manager interface provides a method for firing events:

public interface Manager {

public void fireEvent (Object event, Annotation... bindings);

}

Thefirst argument is the event object:

public void login() {
ﬁﬁﬁager .fireEvent (new Loggedl nEvent (user));

}

If the type of the event object passed to fi r eEvent () contains type variables or wildcards, an 111 egal Ar gunent Except i on
is thrown.

The remaining arguments are the event bindings, optional instances of event binding types:

public void login() {
User user = ...;
manager . fireEvent (user, new Loggedl nBi nding() {});

}

where Logged! nBi ndi ng is an implementation of the event binding type Logged! n:

JSR-299 Public Review 69

Events

public class Loggedl nBi ndi ng
ext ends Annot ati onLiteral <Logged| n>
i mpl enents Loggedlin {}

7.3. Observing events via the tbserver interface

An observer consumes events and allows the application to react to events that occur.
Observers of Web Beans events implement the Goser ver interface.

public interface Observer<T> {

public void notify(T event);

An observer instance may be registered with the Web Bean manager by calling Manager . addCbser ver () :

public interface Manager {
public <T> Manager addCbserver (Observer<T> observer, C ass<T> event Type,
Annot ati on... bindings);

public <T> Manager addCbserver (Observer <T> observer, Typeliteral <T> event Type,
Annot ati on... bindings);

The first parameter is the observer object. The second parameter is the observed event type. The remaining parameters are
optional observed event binding types. The observer is notified when an event object that is assignable to the observed
event typeis raised with the observed event binding types.

An observer instance may be deregistered by calling Manager . r emoveCbser ver () :

public interface Manager {

public <T> Manager renoveObserver (Cbserver<T> observer, Typeliteral <T> event Type,
Annot ati on. .. bindings);

public <T> Manager renpveCbserver (Observer<T> observer, C ass<T> event Type,
Annot ation. .. bindings);

If the observed event type passed to addCbser ver () Of removeCbser ver () containstype variables or wildcards, an I 1 | eg-
al Ar gunent Except i on isthrown.

If two instances of the same binding type are passed to addCbserver () Or renoveCbserver (), & Dupl i cat eBi ndi ng-
TypeExcept i on isthrown.

If an instance of an annotation that is not a binding type is passed to addObser ver () Of renoveCbserver (), anlllegal Ar-
gunent Except i on isthrown.
7.4. Observer invocation

When an event is fired by the application, the Web Bean manager must:

e determine the observers for that event by calling Manager . r esol veGbser ver s() , passing the event object and all event
binding type instances, then,

« for each observer, call thenoti fy() method of the avser ver interface, passing the event object.

Observers may throw exceptions. If an observer throws an exception, the exception aborts processing of the event. No oth-
er observers of that event will be called. Thefi reEvent () method rethrows the exception.

JSR-299 Public Review 70

Events

Any observer called before completion of a transaction may call set Rol | backOnl y() to force a transaction rollback. An
observer may not directly initiate, commit or rollback JTA transactions.

7.5. Observer methods

An observer method is an observer defined via annotations, instead of by explicitly implementing the coser ver interface.

An observer method must be a non-static method of a simple Web Bean implementation class or enterprise Web Bean im-
plementation class. If the Web Bean is an enterprise Web Bean, the observer method must be a business method of the
EJB.

There may be arbitrarily many observer methods with the same event parameter type and binding types.

A Web Bean may declare multiple observer methods.

7.5.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event type it observes. When
searching for observer methods for an event, the Web Bean manager considers the type and binding types of the event
parameter.

If the event parameter does not explicitly declare any binding type, the observer method observes events with no binding
type.

If the type of the event parameter contains type variables or wildcards, a Defi ni ti onExcepti on is thrown by the Web
Bean manager at initialization time.

7.5.2. Declaring an observer method using annotations

A observer method may be declared using annotations by annotating a parameter @bser ves. That parameter is the event
parameter.

public void afterLogi n(@bserves Loggedl nEvent event) { ... }

If amethod has more than one parameter annotated @bser ves, aDefi ni ti onExcepti on isthrown by the Web Bean man-
ager at initiaization time.

If an observer method is annotated @r oduces, @ni ti al i zer Or @est ruct or, Or has a parameter annotated @i sposes, a
Def i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

The event parameter may declare binding types:

public void afterLogi n(@hbserves @\dm n Loggedl nEvent event) { ... }

7.5.3. Declaring an observer method using XML

For a Web Beans defined in XML, an observer method may be declared using the method name, the <Cbser ves> element,
and the parameter types of the method:

<myapp: af t er Logi n>
<Observes>
<nmyapp: Logged| nEvent / >
</ Cbserves>
</ nyapp: af t er Logi n>

<nyapp: af t er Logi n>
<bserves>
<myapp: Loggedl nEvent >
<myapp: Admi n/ >
</ nyapp: Logged!| nEvent >
</ Cbserves>
</ nmyapp: af t er Logi n>

JSR-299 Public Review 71

Events

When an observer method is declared in XML, the Web Bean manager ignores binding annotations applied to the Java
method parameters.

If the implementation class of a Web Bean declared in XML does not have a method with parameters that match those de-
clared in XML, aNonexi st ent Met hodExcept i on isthrown by the Web Bean manager at initialization time.

7.5.4. Observer method parameters

In addition to the event parameter, observer methods may declare additional parameters, which may declare binding types.
The Web Bean manager calls Manager . get | nst anceByType() to determine a value for each parameter of an observer
method and calls the observer method with those parameter values.

public void afterLogi n(@bserves Loggedl nEvent event, @mnager User user, @uogger Log log) { ... }
public void afterAdm nLogi n(@bserves @\dni n Loggedl nEvent event, @uogger Log log) { ... }

<myapp: af t er Logi n>

<Observes>
<nyapp: Logged| nEvent />
</ Cbserves>

<myapp: User >
<nyapp: Manager/ >
</ nmyapp: User >

<myf wk: Log>
<nyf wk: Logger/ >
</ nyf wk: Log>

</ nmyapp: af t er Logi n>

<myapp: af t er Adm nLogi n>

<Cbserves>
<nyapp: Logged| nEvent >
<nyapp: Adm n/ >
</ nyapp: Logged!| nEvent >
</ Observes>

<nyfwk: Log>
<nyf wk: Logger/ >
</ nyf wk: Log>

</ nyapp: af t er Admi nLogi n>

7.5.5. Conditional observers

Conditional observers are observer methods which are notified of an event only if an instance of the Web Bean that
defines the observer method already exists in the current context.

A conditional observers may be declared by annotating the event parameter with the @ f Exi st s annotation.

public void refreshOnDocunent Updat e(@ f Exi sts @bserves @Jpdated Docunent doc) { ... }

Conditional observers may be declared in XML by adding a child <I f Exi st s> €element to the <tbser ves> element.

<myapp: r ef reshOnDocunent Updat e>
<Observes>
<| f Exi sts/ >
<nyapp: Docunent >
<myapp: Updat ed/ >
</ nyapp: Docunent >
</ Cbserves>
</ myapp: r ef reshOnDocunent Updat e>

7.5.6. Transactional observers

Transactional observers are observer methods which receive event notifications during the before or after completion

JSR-299 Public Review 72

Events

phase of the transaction in which the event was fired. If no transaction isin progress when the event is fired, they are noti-
fied at the same time as other observers.

Transactional observers may be declared by annotating the event parameter of the observer method.

e The @fterTransacti onConpl eti on annotation specifies that an observer method should be called during the after
completion phase.

e The @fterTransacti onSuccess annotation specifies that an observer method should be caled during the after com-
pletion phase, only when the transaction completes successfully.

e The @fterTransacti onFai | ure annotation specifies that an observer method should be called during the after com-
pletion phase, only when the transaction fails.

e The @ef oreTransact i onConpl eti on annotation specifies that an observer method should be called during the before
completion phase.

voi d onDocurent Updat e(@bserves @A\fter Transacti onSuccess @Jpdat ed Docunment doc) { ... }
Transactional observers may be declared in XML by achild element of the <tbser ves> element.

e The <After Transacti onConpl eti on> element specifies that the observer method should be called during the after
completion phase.

e The <AfterTransacti onSuccess> element specifies that the observer method should be called during the after com-
pletion phase, only when the transaction completes successfully.

e The <AfterTransactionFai | ure> element specifies that the observer method should be called during the after com-
pletion phase, only when the transaction fails.

e The <Bef oreTransact i onConpl eti on> element specifies that the observer method should be called during the before
completion phase.

<nmyapp: onDocunent Updat e>
<bserves>
<After Transacti onSuccess/ >
<nyapp: Docunent >
<myapp: Updat ed/ >
</ nmyapp: Docunent >
</ Cbserves>
</ myapp: onDocunent Updat e>

7.5.7. Observer object for an observer method

For every observer method of an enabled Web Bean, the Web Bean manager is responsible for providing and registering
an appropriate implementation of the oser ver interface, that delegates event notifications to the observer method.

Thenoti fy() method of the tbser ver implementation for an observer method either invokes the observer method imme-
diately, or registers the observer method for later invocation during the transaction completion phase, viaa JTA Synchr on-
i zati on object.

« |f the observer is atransactional observer and there is currently a JTA transaction in progress, the observer object calls
the observer method during the appropriate transaction completion phase. At the appropriate point during the comple-
tion phase of the transaction, the Web Bean manager invokes the observer method. If the observer is a method of an
EJB bean, the method is called with the same client invocation context as the call to the JTA Synchroni zat i on inter-
face.

e Otherwise, the Web Bean manager calls the observer immediately. If the observer is a method of an EJB bean, the
method is called in the client invocation context of the code that called Event . fire().

To invoke an observer method, the Web Bean manager must:

e obtain the Bean object for the most specialized Web Bean that specializes the Web Bean which declares the observer
method, and then

JSR-299 Public Review 73

Events

« obtain the context object by calling Manager . get Cont ext () , passing the Web Bean scope, then

e obtain an instance of the Web Bean by calling Cont ext . get (), passing the Bean instance representing the Web Bean
and f al se if this observer method is a conditional observer or true otherwise as the value of the creat e parameter,
and then

e if theget () method returned a non-null value, invoke the observer method on the returned instance, passing the event
object to the event parameter and passing the object returned by Manager . get | nst anceByType() to each of the other
parameters.

Observer methods may throw exceptions:

« |f the observer is atransactional observer, any exception is caught and logged by the Web Bean manager.

e Otherwise, the exception is rethrown by the noti fy() method of the observer object. If the exception is a checked ex-
ception, it is wrapped and rethrown as an (unchecked) Gbser ver Except i on.

The observer object is registered by calling Manager . addvser ver (), passing the event parameter type as the observed
event type, and the binding types of the event parameter as the observed event binding types.

7.6. The Event interface

Alternatively, an instance of the Event interface may be injected via use of the @bser vabl e binding annotation:

@servabl e Event <Loggedl nEvent > | oggedl nEvent ;

Additional binding annotations may be specified at the injection point:

@bservabl e @\dm n Event <Loggedl nEvent > | ogged! nEvent ;

The Event interface provides a method for firing events of a specific type, and a method for registering observers for
events of the sametype:

public interface Event<T> {
public void fire(T event, Annotation... bindings);

public void observe(Observer<T> observer, Annotation... bindings);
}
Thefirst parameter of fire() isthe event object. The remaining parameters are event binding types.
Thefirst parameter of obser ve() isthe observer object. The remaining parameters are the observed event binding types.

If two instances of the same binding type are passed to fire() Or observes(), & Dupl i cat eBi ndi ngTypeExcepti on IS
thrown.

If an instance of an annotation that is not a binding type is passed to fire() or observes(), an |11 egal Argument Excep-
ti on isthrown.

The @»ser vabl e annotation or <Gbser vabl e> element may be applied to any field of a Web Bean implementation class or
to any parameter of a producer method, initializer method, disposal method, Web Bean remove method or Web Bean con-
structor where the type of the field or parameter isEvent , and an actua type parameter is specified.

If the type of the injection point is not of type Event , if no actual type parameter is specified, or if the type parameter con-
tains atype variable or wildcard, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

Whenever the @bser vabl e annotation appears at an injection point, an implicit Web Beans exists with:

» exactly the API type and binding annotations that appear at the injection point,

e deployment type @t andard,

JSR-299 Public Review 74

Events

* (@ependent SCOpeE,
e no Web Bean name, and
e animplementation provided automatically by the Web Bean manager.

Theftire() method of the provided implementation of Event must call Manager . fireEvent (), passing the following para-
meters:

« theevent object passed to Event . fire()

< dl binding annotations declared at the injection point, except @bser vabl e
« al binding annotation instances passed to Event . fire()

The application may fire events by calling thefire() method:

@servabl e @Qoggedl n Event <User > | oggedl nEvent ;

if (user.isAdmin()) {
| oggedl nEvent . fire(user, new Adm nBi ndi ng() {});

el se {
| oggedl nEvent . fire(user);

In this example, an event of type User , with binding types @ oggedi n and, sometimes, @dni n occurs.

The observe() method of the provided implementation of Event must call Manager . addGbser ver (), passing the follow-
ing parameters:

» the observer object passed to Event . obser ve()

< dl binding annotations declared at the injection point, except @bser vabl e
 al binding annotation instances passed to Event . obser ve()

The application may register observers by caling the obser ve() method:

@bservabl e @oggedl n Event <User > | oggedl nEvent ;

ibégedl nEvent . observe(new Observer<User>() { public void notify(User user) { ... } });

7.7. Observer resolution

The method Manager . resol veObser ver s() resolves observers for an event:

public interface Manager {

public <T> Set <Cbserver<T>> resol veCbservers(T event, Annotation... bindings);

}

Thefirst parameter of resol veObservers() isthe event object. The remaining parameters are event binding types.

If the type of the event object passed to resol veObservers() contains type variables or wildcards, an 111 egal Ar gu-
ment Except i on isthrown.

If two instances of the same binding type are passed to resol veCbservers(), a Dupl i cat eBi ndi ngTypeExcepti on iS
thrown.

If an instance of an annotation that is not abinding type is passed to r esol veCbservers(), anl || egal Argument Excepti on
isthrown.

JSR-299 Public Review 75

Events

When searching for observers for an event, the Web Bean manager searches for observers which satisfy the following
rules:

< theevent object must be assignable to the observed event type, taking type parameters into consideration, and

« for each observed event binding type, (a) an instance of the binding type must have been passed to fi reEvent () and
(b) any member values of the binding type must match the member values of the instance passedtofi reEvent ().

7.7.1. Event binding annotations with members
Asusual, the binding type may have annotation members:

@Event Bi ndi ngType

@rar get (PARAVETER)

@Ret ent i on(RUNTI ME)

public @nterface Role {
String val ue();

}

Consider the following event:

public void login() {
final User user = ...;
manager . fi reEvent (new Loggedl nEvent (user),
new Rol eBi nding() { public String value() { return user.getRole(); });

}

Where Rol eBi ndi ng is an implementation of the binding type Rol e:

public abstract class Rol eBi ndi ng extends
Annot at i onLi t er al <Rol e>
i mpl enents Role {}

Then the following observer method will always be notified of the event:
public void afterLogi n(@bserves Loggedl nEvent event) { ... }
Whereas this observer method may or may not be notified, depending upon the value of user . get Rol e() :

public void after Adm nLogi n(@bserves @Rol e("adm n") Loggedl nEvent event) { ... }

Asusual, the Web Bean manager usesequal s() to compare event binding type member values.

7.7.2. Multiple event binding annotations
An event parameter may have multiple binding annotations:

public void afterDocument Updat edByAdm n(@bserves @Jpdated @yAdm n Docunment doc) { ... }

Then this observer method will only be notified if al the event binding types are specified when the event is fired:

manager . fi reEvent (docunent, new Updat edBi ndi ng() {}, new ByAdm nBi nding() {});

Other, less specific, observers will also be notified of this event:

public void afterDocunment Updat ed(@bserves @Jpdated Docunent doc) { ... }

public void afterDocunent Event (@bserves Docunent doc) { ... }

JSR-299 Public Review 76

Chapter 8. Scopes and contexts

Associated with every Web Beans scope type is a context object. The context object determines the lifecycle and visibility
of instances of all Web Beans with that scope. In particular, the context object defines:

* When anew instance of any Web Bean with that scope is created
« When an existing instance of any Web Bean with that scope is destroyed
* Which injected references refer to any instance of a Web Bean with that scope

Each context object is represented by an instance of the Cont ext interface.

8.1. The cont ext interface

The cont ext interface provides an operation for obtaining contextual instances of any Web Bean with a particular scope.

public interface Context {
public C ass<? extends Annotation> get ScopeType();
public <T> T get(Bean<T> bean, bool ean create);
bool ean isActive();
}
The cont ext SPI iscalled by the Web Bean manager. It should not be called directly by the application.

User instance = context.get(userBean, true);

Theget () method may either:

e return an existing instance of the given Web Bean, or
o if thevalue of thecr eat e parameter isf al se, return anull value, or

« if the value of the creat e parameter istrue, create a new instance of the given Web Bean by calling Bean. creat e()
and return the new instance.

The get () method may not return a null value unless the creat e parameter is fal se Or Bean. create() returns a null
value.

Theget () method may not create a new instance of the given Web Bean unlessthe cr eat e parameter ist r ue.

The cont ext implementation is responsible for destroying any Web Bean instance it creates by passing the instance to the
destroy() method of the Bean abject representing the Web Bean. A destroyed instance must not subsequently be returned
by the get () method.

At a particular point in the execution of the program a scope may be inactive with respect to the current thread. When a
scope is inactive, any invocation of the get () from the current thread upon the Cont ext object for that scope resultsin a
Cont ext Not Acti veExcepti on.

Otherwise, we say that the scope is active.

Thei sActive() method returnsf al se when the scope of the context object isinactive, and t r ue when it is active.

8.2. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from each enabled Web Bean
with that scope type to an instance of that Web Bean. This mapping may be associated with a single thread or with a set of
threads. There may be no more than one mapped instance per Web Bean per thread. The mapped instance of a Web Bean
associated with the current thread is called the current instance of the Web Bean. The set of all current instances for a cer-

JSR-299 Public Review 77

Scopes and contexts

tain thread is called the context associated with that thread. A context is said to propagate when the set of current instances
is preserved.

Theget () operation of the Cont ext object for an active normal scope returns the current instance of the given Web Bean.

At certain points in the execution of the program a context associated with the current thread may be destroyed. When a
context is destroyed, all current instances of Web Beans with that scope type are destroyed by passing them to the
Bean. dest roy() method.

Contexts with normal scopes must obey the following rule:

Suppose Web Beans A, B and z all have normal scopes. Suppose A has an injection point x, and B has an injection point y.
Suppose further that both x and y resolve to Web Bean z according to the typesafe resolution algorithm. If a is the current
instance of A, and b is the current instance of B, then both a. x and b. y refer to the same instance of z. This instance is the
current instance of z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance is not well-defined in the
case of a pseudo-scope.

All pseudo-scopes must be explicitly declared @copeType(nor nal =f al se) , to indicate to the Web Bean manager that no
client proxy isrequired.

All scopes defined by the Web Beans specification, except for the @ependent pseudo-scope, are normal scopes.

8.3. Dependent pseudo-scope

The @ependent scope type is a pseudo-scope. Components declared with scope type @ependent behave differently to
Web Beans with other built-in scope types.

When aWeb Bean is declared to have @ependent scope:

« Noinjected instance of the Web Bean is ever shared between multiple injection points.

* Any injected instance of the Web Bean is bound to the lifecycle of the Web Bean, Servlet or EJB bean into which it is
injected.

e Any instance of the Web Bean that is used to evaluate a Unified EL expression exists to service that evaluation only.

* Any instance of the Web Bean that receives a producer or observer method invocation exists to service that invocation
only.

Every invocation of the get () operation of the Cont ext object for the @ependent scope with the value t r ue for the cre-
at e parameter returns a new instance of the given Web Bean.

Every invocation of the get () operation of the Cont ext object for the @ependent scope with the valuef al se for thecre-
at e parameter returns anull value.

The @ependent scope isinactive except:

« when an instance of a Web Bean with scope @ependent is created by the Web Bean manager to receive a producer
method or observer method invocation, or

« whileaUnified EL expression is evaluated, or
* while an observer method isinvoked, or
« when the Web Bean manager is creating or destroying a Web Bean instance or injecting its dependencies, or

« when the Web Bean manager is injecting dependencies of an EJB bean or Servlet or when an EJB bean
@ost Construct Or @r eDest r oy callback isinvoked by the EJB container.

8.3.1. Dependent objects of a simple or enterprise Web Bean

A Web Bean may create an instance of a Web Bean with scope type @ependent by calling Manager . get | nst ance() from

JSR-299 Public Review 78

Scopes and contexts

the Web Bean constructor, the Web Bean remove method, initializer methods, producer methods, disposal methods,
@ost Const ruct and @r eDest r oy callbacks and Web Beans interceptors or decorators for any of these methods.

An instance of a @ependent scoped Web Bean is said to be a dependent object of a ssimple or enterprise Web Bean in-
stance if:

e it wasinjected into any field, the Web Bean constructor, the Web Bean remove method, any observer method or any
initializer method of the simple or enterprise Web Bean instance, or

e it was created by a direct call to Manager . get I nst ance() during invocation of the Web Bean constructor, the Web

Bean remove method, any observer method, any initializer method or any @ost Const ruct Or @r eDest r oy callback of
the simple or enterprise Web Bean instance.

8.3.2. Dependent objects of a producer method

An instance of a @ependent scoped Web Bean is said to be a dependent object of a producer method Web Bean instance
if:

e itwasinjected into the producer method or disposal method call that produced or disposed the instance, or

e it was created by adirect call to Manager . get I nst ance() during invocation of the producer method or disposal meth-
od that produced or disposed the instance.

8.3.3. Dependent objects of an EJB bean or Servlet

An EJB bean may create an instance of a Web Bean with scope type @ependent by calling Manager . get | nst ance() from
initializer methods and @ost Construct and @r eDest r oy callbacks.

An Servlet may create an instance of a Web Bean with scope type @ependent by calling Manager . get I nst ance() from
initializer methods.

An instance of a @ependent scoped Web Bean is said to be a dependent object of an EJB bean or Servlet if:

e itwasinjected into any field or initializer method of the EJB bean or Servlet, or

e it was created by adirect call to Manager . get | nst ance() during invocation of any initializer method of the EJB bean
or Servlet or during invocation of any @ost Const ruct or @r eDest r oy callback of the EJB bean.

8.3.4. Dependent object destruction

The Web Bean manager is responsible for destroying @ependent scoped Web Bean instances by passing them to the
Bean. dest roy() method.

The Web Bean manager must:

¢ destroy all dependent objects of a Web Bean instance when the instance is destroyed,
* destroy all dependent abjects of an EJB bean or Servlet when the EJB bean or Servlet is destroyed,

e destroy all @ependent scoped Web Bean instances created during an EL expression evaluation when the evaluation
completes, and

e destroy any @ependent scoped Web Bean instance created to receive a producer or observer method invocation when
the invocation completes.

Finally, the Web Bean manager is permitted to destroy any @ependent scoped Web Bean instance at any time if the in-
stanceis no longer referenced by the application (excluding weak, soft and phantom references).

8.4. Passivating scopes and serialization

A passivating scope requires that instances of Web Beans with that scope be serializable, so that their state may be stored

JSR-299 Public Review 79

Scopes and contexts

to disk when the scope becomes inactive. The process of storing the state of Web Bean instances belonging to a scope that
is about to become inactive to disk is called context passivation. Passivating scopes must be explicitly declared
@scopeType(passi vati ng=true).

For example, the built-in session and conversation scopes defined in Section 8.5, “Context management for built-in
Scopes’ are passivating Scopes.

The Web Bean manager must validate that every Web Bean declared with a passivating scope truly is serializable:

« EJB local objects are seridizable. Therefore, an enterprise Web Bean may declare any passivating scope.

« Simple Web Beans are not required to be seridizable. If a simple Web Bean declares a passivating scope, and the im-
plementation class is not serializable, a Defi ni ti onExcepti on is thrown by the Web Bean manager at initialization
time.

e |f aproducer method declares a passivating scope and returns a non-serializable object at runtime, an 1 11 egal Pr oduc-
t Except i on isthrown by the Web Bean manager.

The built-in session and conversation scopes are passivating. No other built-in scope is passivating.

A Web Bean instance may be serialized under one of two circumstances:

« the Web Bean declares a passivating scope type, and context passivation occurs, or
« the Web Bean isan EJB stateful session bean, and it is passivated by the EJB container.

In either case, any non-transient field that holds a reference to another Web Bean must be serialized along with the Web
Bean that is being serialized. Therefore, the reference must be to a serializable type.

Web Beans client proxies are serializable. Therefore, any reference to a Web Bean which declares a normal scope typeis
serializable. On the other hand, dependent objects (including interceptors and decorators with scope @ependent) of a
stateful session bean or of a Web Bean with a passivating scope must be serialized and deserialized along with their own-
er:

« EJB loca objects are serializable. Therefore, any reference to an enterprise Web Bean of scope @ependent is serializ-
able.

e A simple Web Bean of scope @ependent may or may not be serializable. If a simple Web Bean of scope @ependent
and a non-serializable implementation class is injected into a stateful session bean, into a non-transient field, Web
Bean constructor parameter or initializer method parameter of a Web Bean which declares a passivating scope type, or
into a parameter of a producer method which declares a passivating scope type, an Unser i al i zabl eDependencyExcep-
ti on must be thrown by the Web Bean manager at initialization time.

e |If aproducer method of scope @ependent returns a non-serializable object for injection into a stateful session bean,
into a non-transient field, Web Bean constructor parameter or initializer method parameter of a Web Bean which de-
clares a passivating scope type, or into a parameter of a producer method which declares a passivating scope type, an
I'l I egal Product Except i on isthrown by the Web Bean manager.

« The Web Bean manager must guarantee that JM S endpoint proxy objects are serializable.

The method Bean. i sSeri al i zabl e() may be used to detect if a\Web Bean is serializable.

8.5. Context management for built-in scopes

The Web Bean manager provides an implementation of the Cont ext interface for each of the built-in scopes.

For each of the built-in normal scopes, contexts propagate across any Java method call, including invocation of EJB local
business methods. The built-in contexts do not propagate across remote method invocations or to asynchronous processes
such as JIMS message listeners or EJB timer service timeouts.

An integrated Web Bean manager may, but is not required to, utilize standard Java EE APIs such as servlet filters and
listeners, JSF phase listeners and EJB interceptors to perform context management. A plugin Web Bean manager must use
only standard Java EE APIs.

JSR-299 Public Review 80

Scopes and contexts

8.5.1. Request context lifecycle

The Web Beans request context is provided by a built-in context object for the built-in scope type
j avax. webbeans. Request Scoped.

* Therequest scope is active during the ser vi ce() method of any Servlet in the web application. The request context is
destroyed at the end of the servlet request, after the Servlet servi ce() method returns.

* Therequest scope is active during any Java EE web service invocation. The reguest context is destroyed after the web
service invocation completes.

* The reguest scope is active during any remote method invocation of any EJB bean, during any call to an EJB timeout
method and during message delivery to any EJB message driven bean. The request context is destroyed after the re-
mote method invocation, timeout or message delivery completes.

Openissue: currently it isimpossible to intercept timeout methods. This needs to be fixed in EJB 3.1.

In a Java EE 5 environment, the Web Bean manager is not required to support an active request context during timeout
method invocation.

Open issue: isthe request context (and application context) active during serviet filter execution?

8.5.2. Session context lifecycle

The Web Beans session context is provided by a built-in context object for the built-in passivating scope type
j avax. webbeans. Sessi onScoped.

The session scope is active during the ser vi ce() method of any servlet in the web application.

The session context is shared between all servlet requests that occur in the same HTTP servlet session. The session context
is destroyed when the HTTPSessi on isinvalidated or times out.

8.5.3. Application context lifecycle

The Web Beans application context is provided by a built-in context object for the built-in scope type
j avax. webbeans. Appl i cat i onScoped.

* Theapplication scopeis active during the ser vi ce() method of any servlet in the web application.
* Theapplication scope is active during any Java EE web service invocation.

e The application scope is aso active during any remote method invocation of any EJB bean, during any call to an EJB
timeout method and during message delivery to any EJB message driven bean.

The application context is shared between all servlet requests, web service invocations, EJB remote method invocations,
EJB timeouts and message deliveries to message driven beans that execute within the same application. The application
context is destroyed when the application is undeployed.

8.5.4. Conversation context lifecycle

The Web Beans conversation context is provided by a built-in context object for the built-in passivating scope type
j avax. webbeans. Conver sati onScoped.

« For aJSF faces request, the context is active from the beginning of the apply request values phase, until the responseis
complete.

» For aJSF non-faces request, the context is active during the render response phase.

The conversation context provides access to state associated with a particular conversation. Every JSF request has an asso-
ciated conversation. This association is managed automatically by the Web Bean manager according to the following
rules:

JSR-299 Public Review 81

Scopes and contexts

* Any JSF request has exactly one associated conversation

« The conversation associated with a JSF request is determined at the end of the restore view phase and does not change
during the request

Any conversation isin one of two states: transient or long-running.

« By default, aconversation is transient
e A transient conversation may be marked long-running by calling Conver sat i on. begi n()

e A transient conversation may be marked transient by calling Conver sati on. end()

All long-running conversations have a string-valued unique identifier, which may be set by the application when the con-
versation is marked long-running, or generated by the Web Bean manager.

The Web Bean manager provides a built-in Web Bean with APl type javax.webbeans. Conversation, Scope
@Request Scoped, deployment type @t andar d and binding type @cur r ent , named j avax. webbeans. conver sat i on.

public interface Conversation {
public void begin();
public void begin(String id);
public void end();
public bool ean isLongRunning();
public String getld();
public | ong getTinmeout();
public void setTineout(long milliseconds);

}

If the conversation associated with the current JSF request is in the transient state at the end of a JSF request, it is des-
troyed, and the conversation context is also destroyed.

If the conversation associated with the current JSF request is in the long-running state at the end of a JSF request, it is not
destroyed. Instead, it may be propagated to other requests according to the following rules:

e Thelong-running conversation context associated with a request that renders a JSF view is automatically propagated to
any faces request (JSF form submission) that originates from that rendered page.

« Thelong-running conversation context associated with a request that results in a JSF redirect (via a navigation rule) is
automatically propagated to the resulting non-faces request, and to any other subsequent request to the same URL. This
isaccomplished via use of a GET request parameter named ci d containing the unique identifier of the conversation.

« Thelong-running conversation associated with a request may be propagated to any non-faces request via use of a GET
request parameter named ci d containing the unique identifier of the conversation. In this case, the application must
manage this request parameter.

When no conversation is propagated to a JSF request, the request is associated with a new transient conversation.
All long-running conversations are scoped to a particular HTTP servlet session and may not cross session boundaries.

In the following cases, a propagated |ong-running conversation cannot be restored and reassociated with the request:

¢ When the HTTP servlet session is invalidated, al long-running conversation contexts created during the current ses-
sion are destroyed.

* The Web Bean manager is permitted to arbitrarily destroy any long-running conversation that is associated with no
current JSF request, in order to conserve resources.

If the propagated conversation cannot be restored, the request is associated with a new transient conversation.

The method Conver sati on. set Ti neout () isa hint to the Web Bean manager that a conversation should not be destroyed
if it has been active within the last given interval in milliseconds.

Open issue: allow the request to be blocked if the conversation cannot be restored.

The Web Bean manager ensures that a long-running conversation may be associated with at most one request at a time, by

JSR-299 Public Review 82

Scopes and contexts

blocking or rejecting concurrent requests.

Open issue: define a mechanism for "blocking” requests. For example, allow the request to be redirected.

8.6. Context management for custom scopes

A custom implementation of Cont ext may be associated with any scope type at any point in the execution of a Web Beans
application, by calling Manager . addCont ext () .

public interface Manager {

publ i c Manager addContext (Context context);

}

For example:

manager . addCont ext (new Met hodCont ext ());

Every time Manager . get | nst ance() iscalled, for example, during instance or EL name resolution, the Web Bean manager
must call Manager . get Cont ext () to retrieve an active context object associated with the Web Bean scope. The get Con-
t ext () method searches for an active context object for the given scope type. If no active context object exists for the giv-
en scope type, get Cont ext () must throw a Cont ext Not Act i veExcept i on. If more than one active context object exists for
the given scope type, get Cont ext () must throw an 111 egal St at eExcept i on.

public interface Manager {

publ i c Context get Context(C ass<? extends Annotation> scopeType);

JSR-299 Public Review 83

Chapter 9. XML based metadata

The web- beans. xm file provides an aternative to the use of Java annotations for Web Bean definition. For example, this
XML declaration defines a simple Web Bean with an injected field and an initializer method:

<myapp: MockAsynchr onousCr edi t Car dPaynent Pr ocessor >
<myapp: Asynchr onous/ >
<myapp: PayBy>CREDI T_CARD</ nmyapp: PayBy>
<Sessi onScoped/ >
<nyf wk: Mock/ >
<myfwk: Servi ce transactional ="true"/>
<Naned>asyncCr edi t Car dPaynent Pr ocessor </ Naned>

<nyapp: synchr onousPr ocessor >
<nyapp: Paynent Pr ocessor >
<myapp: Synchr onous/ >
<myapp: PayBy>CREDI T_CARD</ myapp: PayBy>
</ myapp: Paynent Processor >
<nyapp: synchr onousPr ocessor >

<myapp:init>
<Initializer/>
<nyf wk: Syst enConfi g/ >
</ nyapp:init>

</ myapp: MockAsynchr onousCr edi t Car dPaynent Pr ocessor >

It isthe equivalent to the following declaration using annotations:

@\synchr onous
@rayBy(CREDI T_CARD)
@sessi onScoped
@bck
@ser vi ce(transacti onal =true)
@aned(" asyncCr edi t Car dPaynent Processor ")
cl ass MockAsynchronousCr edi t Car dPaynment Processor {
@ynchronous @PayBy(CREDI T_CARD) Payment Processor synchronousProcessor;

@nitializer void init(SystenConfig config) { ... }

XML-based Web Bean declarations define additional Web Beans—they do not redefine or disable any Web Bean that was
declared via annotations.

Thefile format is typesafe and extensible:

< Multiple namespaces are accommodated, each representing a Java package.
* XML elements belonging to these namespaces represent Java types, fields and methods.

» Each namespace may declare an XML schema.

9.1. XML namespace for a Java package

Every Java package has a corresponding XML namespace. The namespace URN consists of the package name, with the
prefix urn:java:. For example, the package comnydomain.nyapp has the XML namespace
urn:java: com nydomai n. myapp.

<WebBeans xml ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nydomai n. nyapp" >

</ V‘ébééans>

Each namespace may, optionally, have a schema.

<WebBeans xm ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nydomai n. nyapp"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="urn:j ava: j avax. webbeans http://java. sun. conij ee/ web- beans- 1. 0. xsd

JSR-299 Public Review 84

XML based metadata

urn:java: com mydonmai n. nyapp http://nydomai n. com xsd/ myapp- 1. 2. xsd" >

</ WebiBéans>

An XML element belonging to a namespace represents a Java type in the corresponding Java package, or a method or field
of atype in that package. There are exactly ten exceptions to this rule: the root <webBeans> element together with the
<Queue>, <Topic>, <destination>, <connectionFactory>, <val ue>, <Depl oy>, <Interceptors>, <Decorators> and
<Ar r ay> elements in the namespace ur n: j ava: j avax. webbeans do not correspond to Javatypes or members of Javatypes.

A class, interface or annotation type is represented by an element with the same name as the type, in the namespace corres-
ponding to the Java package. For example, the element <List> in the namespace urn:java:java.util represents
java.util.List.

Type parameters may be specified by child elements of the element that represents the type. For example:

<util:List>
<nyapp: Product/ >
</futil:List>

Members of atype may be specified by child elements of the element that represents the type, in the same namespace as
the element that represents the type. For example:

<myapp: Shoppi ngCart >
<nyapp: paynment Processor >

</ nryébb: paynent Processor >
</ myapp: Shoppi ngCart >

Primitive types may be represented by the XML element that represents the corresponding wrapper type in j ava. | ang,
since primitive and wrapper types are considered identical for the purposes of typesafe resolution, and assignable for the
purposes of injection. For example, the element <I nt eger > in the namespace ur n: j ava: j ava. | ang represent both i nt and
java.lang. | nteger.

Java array types may be represented by an <Array> element in the namespace ur n: j ava: j avax. webbeans, with a child
element representing the element type. For example:

<Array>
<myapp: Pr oduct />
</ Array>

The namespace ur n: j ava: j avax. webbeans is called the Web Beans namespace.

If aweb- beans. xm file contains any XML element without a declared namespace, a Defi ni ti onExcept i on is thrown by
the Web Bean manager at initialization time.

9.2. Web Bean declarations

An XML element that appears as a direct child of the root <webBeans> element is interpreted as a Web Bean declaration if
itisnot a<Depl oy>, <l nt er cept or s> Or <Decor at or s> el ement in the Web Beans namespace.

If the XML element is a<Queue> or <Topi ¢c> element in the Web Beans namespace, it declares a IMS endpoint, as defined
in Section 3.5.2, “Declaring a IMS endpoint using XML".

Otherwise, the name of the XML element is interpreted as a Java type name in the package corresponding to the child ele-
ment namespace. The Web Beans manager inspects the Java type and other metadata to determine what kind of Web Bean
is being declared. If no such Java type exists in the classpath, a Nonexi st ent TypeExcept i on is thrown by the Web Bean
manager at initialization time.

« |f thetypeisan EJB bean class, an enterprise Web Bean was declared, as defined in Section 3.3.4, “Declaring an enter-
prise Web Bean using XML".

< |If the typeis a concrete class, is hot an EJB bean class, and is not a parameterized type, a simple Web Bean was de-
clared, as defined in Section 3.2.4, “Declaring a simple Web Bean using XML".

e Otherwise, aDefi nitionExcept i on isthrown by the Web Bean manager at initialization time.

JSR-299 Public Review 85

XML based metadata

For example, the following XML file declares a simple Web Bean with the implementation class
com nydomai n. myapp. Paynent Processor :

<WebBeans xm ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nmydomai n. nyapp"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="urn:j ava:j avax. webbeans http://java. sun. conij ee/ web- beans- 1. 0. xsd
urn:java: com nydonmai n. nyapp http://nydonai n. com xsd/ nyapp- 1. 2. xsd" >
<nyapp: Paynent Pr ocessor >
</ rryéi)i): Paynment Processor >

</ WbBeans>

In addition, inline Web Bean declarations may occur at injection points, as defined in Section 9.6, “Inline Web Bean de-
clarations’. Inline Web Bean declarations always declare simple Web Beans.

In aJava EE 5 environment, the Web Bean manager is not required to support XML -based declaration of enterprise Web
Beans.

9.2.1. Child elements of a Web Bean declaration

The Web Beans manager inspects the direct child elements of the Web Bean declaration. For each child element:

< |If the name of the child element is the name of a Java annotation type in the package corresponding to the child ele-
ment namespace, the Web Bean manager interprets the child element as declaring type-level metadata.

< |If the name of the child element is the name of a Java class or interface in the package corresponding to the child ele-
ment namespace, the Web Bean manager interprets the child element as declaring a parameter of the Web Bean con-
structor.

e Otherwise, if the child element namespace is the same as the namespace of the parent, the Web Bean manager inter-
prets the element as declaring a method or field of the Web Bean.

e Otherwise, aDefi ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

9.2.2. Type-level metadata for a Web Bean

Type-level metadata is specified via direct child elements of the Web Bean declaration that represent Java annotation
types.

The name of the child element is interpreted as the name of a Java annotation type in the package corresponding to the
child element namespace.

For each child element, the Web Bean manager inspects the annotation type:

« |If the annotation type is a deployment type, the deployment type of the Web Bean was declared, as defined in Sec-
tion 2.5.4, “Declaring the deployment type of a Web Bean using XML".

« |f the annotation type is a scope type, the scope of the Web Bean was declared, as defined in Section 2.4.4, “Declaring
the Web Bean scope using XML".

< |If the annotation type is a binding type, a binding type of the Web Bean was declared, as defined in Section 2.3.4,
“Declaring the binding types of a Web Bean using XML".

« |If the annotation type is an interceptor binding type, an interceptor binding type of the Web Bean was declared, as
defined in Section 6.2.6.2, “Binding a Web Beans interceptor using XML”.

e |If the annotation type is a stereotype, a stereotype of the Web Bean was declared, as defined in Section 2.7.3,
“Declaring the stereotypes for aWeb Bean using XML".

e |If the annotation type isj avax. webbeans. Nane, the name of the Web Bean was declared, as defined in Section 2.6.2,
“Declaring the Web Bean name using XML".

JSR-299 Public Review 86

XML based metadata

e If the annotation type is j avax. webbeans. Speci al i zes, the Web Bean was declared to directly specialize the Web
Bean with the same implementation class that was defined using annotations, as specified in Section 3.2.6,
“Specializing a simple Web Bean” and Section 3.3.6, “ Specializing an enterprise Web Bean”.

e |f the annotation type isj avax. webbeans. | nt er cept or, Of j avax. webbeans. Decor at or the Web Bean is an intercept-
or or decorator, as defined in Section 9.4, “Interceptor and decorator declarations”.

* Otherwise, aDefi niti onExcepti on isthrown by the Web Bean manager at initialization time.

9.2.3. Web Bean constructor declarations

The Web Bean constructor for asimple Web Bean is declared by the list of direct child elements of the Web Bean declara-
tion that represent Java class or interface types. The Web Bean manager interprets these elements as declaring parameters
of the constructor.

<myapp: Or der >
<Conver sat i onScoped/ >
<nyapp: Paynent Pr ocessor >
<myapp: Asynchr onous/ >
</ myapp: Paynment Pr ocessor >
<myapp: User/ >
</ nyapp: Or der >

Each constructor parameter declaration is interpreted as an injection point declaration, as specified in Section 9.5,
“Injection point declarations’.

If the simple Web Bean implementation class has exactly one constructor such that:

¢ the constructor has the same number of parameters as the Web Bean declaration has constructor parameter declara-
tions, and

« the Javatype represented by each constructor parameter declaration is assignable to the Java type of the corresponding
constructor parameter

then the element is interpreted to represent that constructor, and that constructor is the Web Bean constructor.

If more than one constructor exists which satisfies these conditions, a Defi ni ti onExcepti on is thrown by the Web Bean
manager at initialization time.

If no constructor of the simple Web Bean implementation class satisfies these conditions, a Nonexi st ent Const r uct or Ex-
cepti on isthrown by the Web Bean manager at initialization time.

For any constructor parameter, the API type declared in XML may be a subtype of the Java parameter type. In this case,
the Web Bean manager will use the API type declared in XML when resolving the dependency.

9.2.4. Fields of a Web Bean

A field of aWeb Bean is declared by a direct child element of the Web Bean declaration. The name of the field is the same
as the name of the element.

If adirect child element of a\Web Bean declaration:

e does not correspond to any Javatype,
e existsin the same namespace as its parent,

* hasno direct child <I nitializer>, <Destructor>, <Produces>, <Di sposes>, <bser ves> Of <Decor at es> element in
the Web Beans namespace, and

< has no direct child element whose name is the name of a Web Beans interceptor binding type in the package corres-
ponding to the child element namespace

then it isinterpreted as afield declaration.

JSR-299 Public Review 87

XML based metadata

If the Web Bean implementation class has afield with the same name as the child element, then the child element is inter-
preted to represent that field.

If the Web Bean implementation class does not have have afield with the specified name, a Nonexi st ent Fi el dExcept i on
isthrown by the Web Bean manager at initialization time.

If more than one child element represents the same field, a Defi ni ti onExcepti on is thrown by the Web Bean manager at
initialization time.

A field declaration may have an arbitrary number of direct child <val ue> elements in the Web Beans namespace.

Alternatively, afield declaration may have a direct child element that is not a <val ue> element. If so, the child element is
interpreted as an injection point declaration, as specified in Section 9.5, “Injection point declarations’. If the declared type
is not assignable to the Java type of the field, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization
time.

If afield declaration has more than one direct child element, and at least one of these elements is not <val ue> element in
the Web Beans namespace, a Def i ni t i onExcept i on isthrown by the Web Bean manager at initialization time.

The API type declared in XML may be a subtype of the Java field type. In this case, the Web Bean manager will use the
API type declared in XML when resolving the dependency.

An element that represents afield may declare an injected field or afield with an initial value.

« |If the element has a type declaration, an injected field was declared, as defined in Section 3.6.2, “Declaring an injected
field using XML".

* Otherwise, afield with aninitial value was declared, as defined in Section 9.2.5, “Field initial value declarations”.

9.2.5. Field initial value declarations

Theinitial value of afield of asimple Web Bean or enterprise Web Bean with any one of the following types may be spe-
cifiedin XML:

e any primitive type

e any enumerated type

* java.lang.String

* java.util.Date

* java.util.Cal endar

* java.lang.d ass

* java.util.List<java.lang. String>

e java.util.List<X>whereXxisanenumerated type.

Theinitial value of thefield is specified in the body of an XML element representing the field.

<nmyapp: Confi g>
<nmyapp: ver si on>1. 2. 5</ nyapp: ver si on>
<nyapp: ti meout >1000</ nyapp: ti neout >
<myapp: adni ni strat or s>
<val ue>j uan</ val ue>
<val ue>ant oni o</ val ue>
<val ue>soni a</ val ue>
<val ue>sar a</ val ue>
</ myapp: adm ni strat or s>
</ nyapp: Confi g>

« Theinitial value of afield of primitive typeis specified using the Java literal syntax for that type.

JSR-299 Public Review 88

XML based metadata

e Theinitial value of afield of typej ava. I ang. Stri ng is specified using the string value.
e Theinitial value of afield of enumerated type is specified using the unqualified name of the enumeration value.

e Theinitial value of afield of typejava.util.Date Or java. util. Cal endar is specified using a format that can be
parsed by j ava. t ext . Dat eFor mat . get Dat eTi nel nst ance() . parse() .

« Theinitial value of afield of typej ava. | ang. O ass is specified using the fully qualified Java class name.

If afield with aninitial value specified in XML is not of one of the listed types, or if theinitial valueis not specified in the
correct format for the type of thefield, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

The initial value of afield of typej ava. util . Li st isspecified by alist of <val ue> elements. The body of the value ele-
ment is specified using the string value or unqualified name of the enumeration value.

If an element representing a field specifies both an initial value and a type declaration, a Def i ni ti onExcepti on isthrown
by the Web Bean manager at initialization time.

9.2.6. Methods of a Web Bean

A method of a Web Bean is declared by a direct child element of the Web Bean declaration. The name of the declared
method is the same as the name of the child element.

If adirect child e ement of a\Web Bean declaration:

» does not correspond to any Javatype,
e existsin the same namespace asits parent, and either

* hasadirect child <Initializer>, <Destructor>, <Produces>, <Di sposes> Or <Cbser ves> element in the Web Beans
namespace, or

« hasadirect child element whose name is the name of a Web Beans interceptor binding type in the package correspond-
ing to the child element namespace

then it isinterpreted as a method declaration.
A method declaration may have any number of direct child elements.

The Web Beans manager inspects the direct child elements of the method declaration. For each child element, the name of
the element is interpreted as a Java type name in the package corresponding to the element's namespace. If no such Java
type exists in the classpath, a Nonexi st ent TypeExcept i on isthrown by the Web Bean manager at initialization time.

e |f thetypeisjavax. webbeans. Di sposes, the Web Bean manager searches for a direct child element of the child ele-
ment and interprets that element as declaring a disposed parameter of the disposal method.

o If thetypeisj avax. webbeans. Qoserves, the Web Bean manager searches for a direct child element of the child ele-
ment that is not an <I| f Exi st s>, <After Transacti onConpl eti on>, <AfterTransacti onSuccess>,
<After Transacti onFai | ure> Of <Bef or eTransact i onConpl eti on> element in the Web Beans namespace, and inter-
prets that element as declaring an event parameter of the observer method.

« If the type is some other Java annotation type, the Web Bean manager interprets the child element as declaring meth-
od-level metadata.

e |f thetypeisaJavaclass or interface, the Web Bean manager interprets the child element as declaring a parameter of
the method.

e Otherwise, aDefi niti onExcepti on isthrown by the Web Bean manager at initialization time.

If a method declaration has more than one direct child element which is an < niti al i zer>, <Dest r uct or >, <Pr oduces>,
<Di sposes> O <(bserves> element in the Web Beans namespace, a Def i ni ti onExcept i on is thrown by the Web Bean
manager at initialization time.

If a<bDi sposes> element does not contain exactly one direct child element, a Defi ni ti onExcept i on is thrown by the Web

JSR-299 Public Review 89

XML based metadata

Bean manager at initialization time.

If an <wserves> element does not contain exactly one direct child element that is not an «<IfExists>,
<Aft er Transacti onConpl et i on>, <AfterTransacti onSuccess>, <AfterTransacti onFail ure> or
<Bef or eTr ansact i onConpl et i on> element in the Web Beans namespace, a Def i ni ti onExcepti on is thrown by the Web
Bean manager at initialization time.

Each method parameter declaration is interpreted as an injection point declaration, as specified in Section 9.5, “Injection
point declarations”.

If the Web Bean implementation class has exactly one method such that:

« the method name is the same as the name of the element that declares the method,
e the method has the same number of parameters as the element that declares the method has child elements, and

« the Java type represented by each method parameter declaration is assignable to the Java type of the corresponding
method parameter

then the element is interpreted to represent that method.

If more than one method exists which satisfies these conditions, aDef i ni ti onExcepti on isthrown by the Web Bean man-
ager at initialization time.

If no method of the Web Bean implementation class satisfies these conditions, a Nonexi st ent Met hodExcept i on iS thrown
by the Web Bean manager at initialization time.

For any method parameter, the API type declared in XML may be a subtype of the Java parameter type. In this case, the
Web Bean manager will use the APl type declared in XML when resolving the dependency.

If more than one child element of a Web Bean declaration represents the same method of the Web Bean implementation
class, aDefiniti onExcepti on isthrown by the Web Bean manager at initialization time.

An element that represents a method may declare an initializer method, a Web Bean remove method, an observer method,
a producer method or a disposal method. Alternatively, or additionally, it may declare method-level interceptor binding
types.

* |f the lement contains achild <I ni ti al i zes> element, an initializer method was declared, as defined in Section 3.7.2,
“Declaring an initializer method using XML".

* |If the element contains a child <Dest r uct or > element, a Web Bean remove method was declared, as defined in Sec-
tion 3.3.5.2, “Declaring a Web Bean remove method using XML.".

e |If the element contains a child <Produces> element, a producer method was declared, as defined in Section 3.4.3,
“Declaring a producer method using XML".

* |If the element contains a child <Di sposes> element in the Web Beans namespace, a disposal method was declared, as
defined in Section 3.4.9, “Declaring a disposal method using XML".

e |f the element contains a child <thser ves> element in the Web Beans namespace, an observer method was declared, as
defined in Section 7.5.3, “ Declaring an observer method using XML".

» If the element contains a child element whose name is the name of a Web Beans interceptor binding type in the pack-
age corresponding to the child element namespace, method-level interceptor binding type was declared, as defined in
Section 6.2.6.2, “Binding a Web Beans interceptor using XML".

9.3. Producer method declarations

A producer method declaration is formed by adding a direct child <Pr oduces> element to an element that represents the
method, as defined in Section 3.4.3, “Declaring a producer method using XML".

<nyapp: get Paynment Pr ocessor >
<Pr oduces>
<nyapp: Paynent Pr ocessor/ >
</ Produces>

JSR-299 Public Review 90

XML based metadata

</ rryéi)i): get Paynent Processor >

9.3.1. Child elements of a producer method declaration

The Web Bean manager inspects the direct child elements of the producer method declaration.

e |f achild element is the <Pr oduces> element in the Web Beans namespace, it declares the return type, binding types
and method-level metadata of the producer method.

< |f the child element name is the name of a Web Beans interceptor binding type in the package corresponding to the
child element namespace, it declares a method-level interceptor binding type.

e Otherwise, the Web Bean manager interprets the child element as declaring a parameter of the producer method.

If there is more than one child <Pr oduces> element in the Web Beans namespace, a Def i ni ti onExcept i on is thrown by
the Web Bean manager at initialization time.

The Web Bean manager inspects the direct child elements of the <pr oduces> element. For each child element, the name of
the element is interpreted as a Java type name in the package corresponding to the child element namespace. If no such
Javatype existsin the classpath, a Nonexi st ent TypeExcept i on isthrown by the Web Bean manager at initialization time.

« |If thetypeisaJavaclass or interface type, the return type of the producer method was declared.
e |f thetypeisaJavaannotation type, it declares method-level metadata of the producer method.
e Otherwise, aDefi niti onExcepti on isthrown by the Web Bean manager at initialization time.

If more than one child element represents a Java class or interface type, or if no child element represents a Java class or in-
terface type, aDef i ni ti onExcepti on isthrown by the Web Bean manager at initialization time.

9.3.2. Return type and binding types of a producer method

Every XML producer method declaration has a direct child <Pr oduces> element. This element must, in turn, have a direct
child element which declares the return type of the producer method and which is interpreted by the Web Bean manager as
atype declaration, as defined in Section 9.7, “ Specifying API types and binding types’.

This type declaration specifies the return type and binding types of the producer method Web Bean. The return type is
used to calculate the set of API types. The return type declared in XML must be a supertype or subtype of the Java method
type. If the declared return type is not a supertype or subtype of the Java method type, a Def i ni ti onExcept i on isthrown
by the Web Bean manager at initialization time.

9.3.3. Method-level metadata for a producer method

Method-level metadata for a producer method declaration is specified via direct child elements of the <pPr oduces> element
that represent Java annotation types.

The name of each child element is interpreted as the name of a Java annotation type in the package corresponding to the
child element namespace. If the declared type is not a Java annotation type, aDef i ni ti onExcept i on isthrown by the Web
Bean manager at initialization time.

The Web Bean manager inspects the annotation type:

« |f the annotation type is a deployment type, the deployment type of the producer method was declared, as defined in
Section 2.5.4, “ Declaring the deployment type of aWeb Bean using XML".

< |If the annotation type is a scope type, the scope of the producer method was declared, as defined in Section 2.4.4,
“Declaring the Web Bean scope using XML".

< |If the annotation type is a stereotype, a stereotype of the producer method was declared, as defined in Section 2.7.3,
“Declaring the stereotypes for aWeb Bean using XML".

JSR-299 Public Review 91

XML based metadata

e |If the annotation type is j avax. webbeans. Name, the name of the producer method was declared, as defined in Sec-
tion 2.6.2, “Declaring the Web Bean name using XML".

e Otherwise, aDefi niti onExcept i on isthrown by the Web Bean manager at initialization time.

9.4. Interceptor and decorator declarations

A simple Web Bean declaration is interpreted as an interceptor or decorator declaration if it contains a direct child
<l nt er cept or > Of <Decor at or > element in the Web Beans namespace.

For example, the following XML file declares an interceptor of class Requi r esTransact i onl nt er cept or , an interceptor of
class Requi resNewTr ansact i onl nt ercept or and a decorator of class Dat aAccessAut hori zati onDecorator, al in the
Java package com nydonai n. nyf wk:

<WebBeans xm ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:java: com nydonmai n. nyapp"
xm ns: myf wk="ur n: j ava: com nmydomai n. myf wk"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="urn:j ava: j avax. webbeans http://java. sun. conij ee/ web- beans- 1. 0. xsd
urn:java: com nmydomai n. mnyfwk http:// mydomai n. conf xsd/ nmyf wk- 1. 0. xsd
urn:java: com nmydonmai n. nyapp http://nydonai n. com xsd/ nyapp- 1. 2. xsd" >

<nmyf wk: Requi resTransact i onl nt er cept or >
<Interceptor/>
<nyfwk: Transacti onal / >

</ nyf wk: Requi resTr ansact i onl nt er cept or >

<nmyf wk: Requi r esNewTr ansact i onl nt er cept or >
<Interceptor/>
<myfwk: Transacti onal requiresNew="true"/>
</ nyf wk: Requi r esNewTr ansact i onl nt er cept or >

<nyf wk: Dat aAccessAut hori zat i onDecor at or >
<Decor at or/ >
<nyf wk: dat aAccess>
<Decor at es>
<nyf wk: Dat aAccess/ >
</ Decor at es>
</ nyf wk: dat aAccess>
<myf wk: Dat aAccessAut hori zat i onDecor at or >

</ WbBeans>

If aWeb Bean declaration that is not a simple Web Bean declaration contains a child <I nt er cept or > Or <Decor at or > €le-
ment, or if an inline Web Bean declaration contains a child <I nt er cept or > Or <Decor at or > element, aDef i ni ti onExcep-
ti on isthrown by the Web Bean manager at initialization time.

If asimple Web Bean declaration contains more than one direct child <I nt er cept or > or <Decor at or > element in the Web
Beans namespace, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

9.4.1. Decorator delegate attribute

Decorator declarations must declare the delegate attribute. A delegate declaration is a direct child element of the decorator
declaration. The name of the delegate attribute is the same as the name of the element.

If adirect child element of a decorator declaration:

e existsin the same namespace as its parent, and
e hasdirect child <Decor at es> element in the Web Beans namespace
then it isinterpreted as a del egate declaration.

If adecorator declaration does not contain exactly one delegate declaration, aDef i ni ti onExcept i on isthrown by the Web
Bean manager at initialization time.

If the Web Bean implementation class has afield with the same name as the child element, then the child element is inter-
preted to represent that field.

JSR-299 Public Review 92

XML based metadata

If the Web Bean implementation class does not have have afield with the specified name, a Nonexi st ent Fi el dExcept i on
isthrown by the Web Bean manager at initialization time.

If adelegate declaration has more than one direct child element, aDefi ni ti onExcept i on isthrown by the Web Bean man-
ager at initialization time. This child element is a <Decor at es> element in the Web Beans namespace. If the <Decor at es>
element does not, in turn, have exactly one direct child element, aDefi ni ti onExcept i on isthrown by the Web Bean man-
ager at initialization time.

The direct child element of the <Decor at es> element is interpreted as a type declaration as specified by Section 9.7,
“Specifying API types and binding types’. If the declared APl type is not assignable to the type of the Java field, a
Def i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

The API type declared in XML may be a subtype of the Java field type. In this case, the Web Bean manager will use the
API type declared in XML when resolving the dependency.

If simple Web Bean declaration that is not a decorator declaration contains a direct child element that in turn contains a
direct child <Decor at es> element, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

9.5. Injection point declarations

An injection point declaration is either:

e atypedeclaration, as defined in Section 9.7, “ Specifying API types and binding types’, or
* aninline Web Bean declaration, as defined in Section 9.6, “Inline Web Bean declarations”.

When the Web Bean manager encounters an injection point declaration, it interprets the name of the element as the name
of a Java class or interface in the package corresponding to the element namespace. If no such Java type exists in the
classpath, a Nonexi st ent TypeExcept i on isthrown by the Web Bean manager at initialization time.

< |If the Java type is a parameterized type, the injection point declaration is a type declaration, and the declared type of
the injection point is the API type of the type declaration, including actual type parameters.

e Otherwise, the Web Bean manager inspects the direct child elements. If the name of any direct child element is the
name of a Web Beans binding type in the package corresponding to the child element namespace, the injection point
declaration is atype declaration, and the declared type of the injection point is the API type of the type declaration.

e Otherwiseg, if any direct child elements exist, the injection point declaration is an inline Web Bean declaration, and the
declared type of the injection point is the implementation class of the Web Bean.

* Otherwise, the injection point declaration is a type declaration, and the declared type of the injection point is the API
type of the type declaration.

9.6. Inline Web Bean declarations

An inline Web Bean declaration is a simple Web Bean declaration, as defined in Section 9.2, “Web Bean declarations’
that occurs as an injection point declaration, instead of as adirect child of the <webBeans> element.

<myapp: Adm n>
<Appl i cati onScoped/ >

<myapp: user name>gavi n</ nyapp: user nane>

<nyapp: nane>
<nyapp: Name>
<nyapp: first Name>Gavi n</ nyapp: fir st Name>
<nyapp: | ast Nanme>Ki ng</ nyapp: | ast Nane>
</ nyapp: Nane>
</ nyapp: nane>

</ myapp: Adm n>

The name of the element is interpreted as the name of a Java class in the package corresponding to the element namespace.
This Java class is the implementation class of the simple Web Bean.

JSR-299 Public Review 93

XML based metadata

Inline Web Bean declarations may not explicitly specify a binding type. If an inline Web Bean declaration explicitly spe-
cifiesabinding type, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

For every inline injection point, the Web Bean manager generates a unique value for an implementation-specific binding
type. (For example, a particular Web Bean manager implementation might generate the vaue
com vendor . webbeans. | nl i ne(i d=12345) at some injection point.) This generated value is the binding type of the injec-
tion point, and the only binding type of the smple Web Bean. The API type of the injection point is the declared imple-
mentation class of the smple Web Bean.

Thus, an inline Web Bean declaration results in a simple Web Bean that is bound only to the injection point at which it
was declared.

9.7. Specifying API types and binding types

Every injection point and delegate attribute defined in XML must explicitly specify an API type and combination of bind-
ing types. XML-based producer method declarations must also explicitly specify the return type (which is used to calculate
the set of API types) and binding types. A type declaration is:

* an element that represents a Java class or interface, or <Arr ay>,

< if the type is a parameterized type, a set of child elements that represent Java classes and/or interfaces, and are inter-
preted as the actual type parameters, or, if the typeis an array type, asingle child element that represents the array ele-
ment type,

« optionaly, aset of child elements that represent Java annotation types, and are interpreted as binding types.
For example, the following XML fragment declares the type Li st <Pr oduct > with binding type @ | .

<util:List>
<myapp: Al | />
<myapp: Pr oduct />
</util:List>

This XML fragment declares the type Pr oduct [] with binding type @vai | abl e.

<Array>
<myapp: Avai | abl e/ >
<myapp: Pr oduct/ >
</ Array>

When the Web Bean manager encounters atype declaration it interprets the element as a Java type:

« |If the element isan <Ar ray> element in the Web Beans namespace, an array type was declared.

¢ Otherwise, the name of the element is interpreted as the name of a Java class or interface in the package corresponding
to the element namespace. If no such Java type exists in the classpath, a Nonexi st ent TypeExcept i on isthrown by the
Web Bean manager at initialization time. If the Java type is not a class or interface type, a Defi ni ti onExcepti on iS
thrown by the Web Bean manager at initialization time.

Next, the Web Bean manager inspects every direct child element of the type declaration. The name of each child element
isinterpreted as the name of a Javatype in the package corresponding to the child element namespace. If no such Javatype
existsin the classpath, a Nonexi st ent TypeExcept i on isthrown by the Web Bean manager at initialization time.

« |If thetypeis aJava annotation type, a binding type was declared.
« If thetypeisaJavaclass or interface type, an actual type parameter or array element type was declared.
e Otherwise, aDefi nitionExcepti on isthrown by the Web Bean manager at initialization time.

If multiple array element types are declared, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization
time.

If the number of declared actual type parameters is not the same as the number of parameters of the Java type, a Defi ni -

JSR-299 Public Review 94

XML based metadata

ti onExcepti on isthrown by the Web Bean manager at initialization time.

If atype parameter of the Java type is bounded, and the corresponding declared actual type parameter does not satisfy the
upper or lower bound, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.

If a binding type declaration declares a Java annotation type that is not a Web Beans binding type, a Defi niti onExcep-
ti on isthrown by the Web Bean manager at initialization time.

If no binding type is declared, the default binding type @ur r ent isassumed.

If the same binding type occurs more than once, a bupl i cat eBi ndi ngTypeExcept i on isthrown by the Web Bean manager
at initialization time.

For fields, type declarations are specified as direct child elements of the field declaration:

<nyapp: O der >
<myapp: payment Pr ocessor >
<nyapp: Paynent Pr ocessor >
<nyapp: PayBy>CHEQUE</ nyapp: PayBy>
</ nmyapp: Paynent Pr ocessor >

</ nyapp: paynent Pr ocessor >

</ nyapp: Or der >

<nyapp: Shoppi ngCart >
<myapp: cat al og>
<util:List>
<nyapp: Al | / >
<nyapp: Product/ >
</util:List>
</ nyapp: cat al og>

</ myapp: Shoppi ngCart >

For methods, the method parameter declarations are type declarations:

<nmyapp: O der >

<nyapp: set Paynment Processor >
<Initializer/>

<nyapp: Paynent Pr ocessor >
<myapp: PayBy>CHEQUE</ nyapp: PayBy>
</ myapp: Paynent Pr ocessor >

<myf wk: Logger/ >
</ nyapp: set Paynment Pr ocessor >

</ nyapp: Or der >

For producer methods, the return type must also be specified:

<app: Shop>
<app: get Avai | abl ePr oduct s>

<Pr oduces>
<Appl i cati onScoped/ >
<Array>
<app: Avai | abl e/ >
<app: Product/ >
</ Array>
</ Produces>

<util:List>
<app: Al l />
<app: Product/ >
</util:List>

</ app: get Avai | abl ePr oduct s>

JSR-299 Public Review 95

XML based metadata

</ app: Shop>

For constructors, the constructor parameter declarations are type declarations:

<myapp: Order>
<Conver sat i onScoped/ >

<nyapp: Paynent Pr ocessor >

<myapp: PayBy>CHEQUE</ nyapp: PayBy>
</ myapp: Paynent Pr ocessor >
<myf wk: Logger/ >

</ nyapp: Or der >

9.8. Annotation members

Any binding type or interceptor binding type declaration must define the value of any annotation member without a default
value, and may additionally define the value of any annotation member with a default value. Annotation member values
are defined by attributes of the XML element which represents the Java annotation.

All attributes of any XML element which corresponds to a Java annotation are interpreted as members of the annotation.
The name of the attribute is interpreted as the name of the corresponding annotation member. The value of the attribute is
interpreted as the value of the annotation member. If there is no annotation member with the same name as the attribute, a
Nonexi st ent Memmber Except i on isthrown by the Web Bean manager at initialization time.

<nyfwk: Dat aAccess transactional ="true"/>

Alternatively, the value of an annotation member named val ue may be specified in the body of the XML element which
corresponds to the Java annotation. If the XML element has a non-empty body and also specifies an attribute named
val ue, aDefi ni ti onExcepti on isthrown by the Web Bean manager at initialization time. If the XML element has a non-
empty body, and there is no annotation member named val ue, & Nonexi st ent Merber Except i on iS thrown by the Web
Bean manager at initialization time.

<myapp: PayBy>CHEQUE</ nyapp: PayBy>

e Thevaue of amember of primitive type is specified using the Java literal syntax for that type.

e Thevaue of amember of typej ava. | ang. St ri ng is specified using the string value.

« Thevaue of amember of enumerated type is specified using the unqualified name of the enumeration value.
¢ Thevaue of amember of typej ava. | ang. d ass is specified using the fully qualified Java class name.

If the member value is not specified in the correct format for the type of the member, a Defi ni ti onExcepti on isthrown
by the Web Bean manager at initialization time.

If an XML element that refers to a Java annotation with a member with no default value does not declare a value for that
member, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initialization time.
9.9. Deployment declarations

The <Depl oy>, <I nt er cept or s> and <Decor at or s> elements in the Web Beans namespace determine which Web Beans,
interceptors and decorators are enabled in a particular deployment.

9.9.1. The <Depl oy> declaration

Each direct child element of a <Depl oy> element is interpreted as the declaring an enabled deployment type, as specified in
Section 2.5.6, “Enabled deployment types’.

For each child element, the name of the child element is interpreted as the name of a Java annotation type in the package
corresponding to the child element namespace. If no such Java type exists in the classpath, a Defi ni ti onException is

JSR-299 Public Review 96

XML based metadata

thrown by the Web Bean manager at initialization time. If the type is not a Web Beans deployment type, aDef i ni ti onEx-
cepti on isthrown by the Web Bean manager at initialization time.

If the same deployment type is declared more than once, a Def i ni ti onExcept i on isthrown by the Web Bean manager at
initialization time.

9.9.2. The <I nterceptors> declaration

Each direct child element of an <I nt er cept or s> element is interpreted as the declaring an enabled interceptor, as specified
in Section 6.2.7, “Interceptor enablement and ordering”.

For each child element, the name of the child element is interpreted as the name of a Java class in the package correspond-
ing to the child element namespace. If no such Java class exists in the classpath, a Def i ni ti onExcepti on isthrown by the
Web Bean manager at initialization time. If the class is not the implementation class of at least one interceptor, a Def i ni -
ti onExcepti on isthrown by the Web Bean manager at initialization time.

If the same interceptor is declared more than once, aDef i ni ti onExcept i on iSthrown by the Web Bean manager at initial-
ization time.

9.9.3. The <Decor at or s> declaration

Each direct child element of a <Decor at or s> element is interpreted as the declaring an enabled decorator, as specified in
Section 6.3.5, “Decorator enablement and ordering”.

For each child element, the name of the child element is interpreted as the name of a Java class in the package correspond-
ing to the child element namespace. If no such Java class exists in the classpath, a Def i ni ti onExcepti on isthrown by the
Web Bean manager at initialization time. If the class is not the implementation class of at least one decorator, a Def i ni -
ti onExcepti on iSthrown by the Web Bean manager at initialization time.

If the same decorator is declared more than once, aDef i ni ti onExcept i on isthrown by the Web Bean manager at initiaiz-
ation time.

JSR-299 Public Review 97

Chapter 10. Packaging and deployment

In EAR or WAR deployments, the Web Bean manager is automatically initialized when the EAR or WAR is deployed by
the Java EE container. In the Java SE environment, the Web Bean manager is automatically initialized when the embed-
dable EJB Lite container isinitialized.

Web Bean discovery is the process of determining:

« What Web Beans, interceptors and decorators exist in the deployment archive

« Which Web Beans, interceptors and decorators are enabled for this deployment

» The precedence of the enabled Web Beans, and the ordering of enabled interceptors and decorators
The Web Bean manager automatically discovers Web Beans when the Web Bean manager initializes.

Web Bean classes must be deployed in an EAR, WAR, EJB-JAR or JAR archive or directory in the application classpath
that has afile named web- beans. xm in the root directory. If Web Beans are deployed to alocation that is not in the applic-
ation classpath, or does not contain a file named web- beans. xm in the root directory, they will not be discovered by the
Web Bean manager.

Additional Web Beans may be registered programatically with the Web Bean manager by the application after the man-
ager initializes.

10.1. Web Bean discovery

When the Web Bean manager isinitialized, it considers:

e any web-beans. xm filein any root directory of the application classpath,
e anyejb-jar.xm filein any root directory of the application classpath that also has aweb- beans. xm file, and
e any Javaclassin any archive or directory in the classpath that has aweb- beans. xni filein the root directory.

The Web Bean manager automatically discovers simple Web Beans (according to the rules of Section 3.2.1, “Which Java
classes are smple Web Beans?') and enterprise Web Beans (according to the rules of Section 3.3.1, “Which EJBs are en-
terprise Web Beans?’) deployed and/or declared in these locations and searches the implementation classes for producer
methods and observer methods declared using annotations.

The Web Bean manager discovers Web Beans and observer methods defined using XML by parsing the web- beans. xm
files according to the rules of Chapter 9, XML based metadata.

The Web Bean manager validates the Web Bean classes and metadata and aborts initialization if any definition errors ex-
ist, as defined in Section 11.1, “Definition errors’.

Next, the Web Bean manager determines which Web Beans, interceptors and decorators are enabled, according to the rules
defined in Section 2.5.6, “Enabled deployment types’, Section 6.2.7, “Interceptor enablement and ordering” and Sec-
tion 6.3.5, “Decorator enablement and ordering”, taking into account any <Depl oy>, <I nt er cept or s> and <Decor at or s>
declarations in the web- beans. xm files.

Finally, the Web Bean manager creates and registers Bean objects (that implement the rules of Chapter 5, Web Bean life-
cycle) and aoser ver objects.

» For each enabled Web Bean that is not an interceptor or decorator, the Web Bean manager creates an instance of Bean,
and registersit by calling Manager . addBean() .

» For each enabled interceptor, the Web Bean manager creates an instance of | nterceptor and registers it by calling
Manager . addl nt er ceptor () .

» For each enabled decorator, the Web Bean manager creates an instance of Decor at or and registers it by calling van-
ager . addDecor at or () .

JSR-299 Public Review 98

Packaging and deployment

« For each observer method of an enabled Web Bean, the Web Bean manager creates an instance of Gbserver that im-
plements the rules of Section 7.5.7, “Observer object for an observer method” and registers it by caling man-
ager . addQoserver ().

The Web Bean manager validates the Web Bean dependencies and specialization and aborts initialization if any deploy-
ment problems exist, as defined in Section 11.2, “Deployment problems’.

10.2. Web Bean registration

The manager API provides methods for registering a new Web Bean with the Web Bean manager.

public interface Manager {
publ i c Manager addBean(Bean<?> bean);
publ i c Manager addlnterceptor(lnterceptor interceptor);

publ i c Manager addDecor at or (Decor at or decorator);

}

These methods may be called at any time by the application or third-party framework.

10.3. EJB lookup

When the Web Bean manager creates a new instance of an enterprise Web Bean, the Web Bean manager obtains the new
instance from the EJB container via JNDI or internal Java EE container APIs.

At initidlization time, the Web Bean manager inspects the EJB bean class annotations to determine the EJB name. The
Web Beans manager uses the EJB name whenever it obtains a new instance of the EJB bean.

TheEnt er pri seBeanLookup interface provides a single method for obtaining EJB bean instances:
public interface EnterpriseBeanLookup {
public Ooject |ookup(String ejbNane);
}
At initialization time, the Web Bean manager must obtain an instance of EnterpriseBeanLookup by calling man-

ager . get | nst anceByType() , passing Ent er pri seBeanLookup asthe API type and @cur r ent asthe only binding type.

The Web Bean manager must call 1 ookup() on this instance whenever it needs to to obtain a new instance of the EJB
bean.

If anull valueisreturned by I ookup(), aCreati onExcept i on isthrown by the Web Bean manager.

All Web Bean managers must provide a built-in Web Bean that implements Ent er pri seBeanLookup.

e A plugin Web Bean manager must include a built-in implementation that attempts to obtain the EJB from JNDI.

e Anintegrated Web Bean manager must include a built-in implementation that uses container-specific APIs or default
JNDI names.

Any built-in implementation of EnterpriseBeanLookup should have deployment type @tandard and binding type
@urrent.

The Ent er pri seBeanLookup. | ookup() method of a built-in implementation for a plugin Web Bean manager obtains EJB
beans by JNDI lookup.

e |f thereisan EJB link for the EJB in theweb. xm file, the Web Bean manager must use the INDI name specified by the
EJB link during all servlet requests to that web application context, and during any invocation of a remote method of
an EJB deployed in the same WAR, any EJB timeout for an EJB deployed in that WAR and any message delivery to a
message driven bean deployed in that WAR.

JSR-299 Public Review 99

Packaging and deployment

e |If thereisan EJB link for the EJB in an ej b-j ar. xn file, the Web Bean manager must use the INDI name specified
by the EJB link during any invocation of a remote method of an EJB deployed in the same EJB-JAR, any EJB timeout
for an EJB deployed in that EJB-JAR and any message delivery to a message driven bean deployed in that EJB-JAR.

e Otherwise, the Web Bean manager must use the portable global INDI name defined by the EJB 3.1 specification.
Open issue: isit possible to compute the portable global INDI name from within the application?

The application may override the built-in Ent er pri seBeanLookup implementation by deploying a simple Web Bean that
implements Ent er pr i seBeanLookup and has the binding type @ur r ent . Thiswill usually be necessary when a plugin Web
Bean manager is used in a Java EE 5 environment. It is never necessary when an integrated Web Bean manager is used.

10.4. Initialization event

Third party frameworks and application components may require notification that the Web Bean manager has been initial-
ized. The Web Bean manager must fire an event when it has fully completed initialization and Web Bean discovery. The
event object must be the Manager object, and the event must have the following binding type:

@i ndi ngType

@Ret ent i on(RUNTI ME)

@arget({ FIELD, PARAMETER })
public @nterface Initialized {}

Any Web Bean may observe this event.

public void managerlnitialized(@hbserves @nitialized Manager manager) { ... }

A third party framework might take advantage of this event to register Web Beans and interceptors with the Web Bean
manager.

The request and application contexts are active when the initialization event isfired.

10.5. Java EE integration

The Web Bean manager integrates with the Java EE container or embeddable EJB Lite implementation via standard Java
EE APIs, such as INDI, Servlet filters and listeners, EJB interceptors, JSF phase listeners and Unified EL resolvers.

When a plugin Web Bean manager is used in a Java EE 5 environment, certain Web Bean manager specific entries may be
required inweb. xm and ej b-j ar. xm . These entries are never needed when an integrated Web Bean manager is used.

Open issue: currently, entries in Java EE XML deployment descriptors are required to register serviet filters, startup
listeners and EJB interceptors. We need a way for a plugin Web Bean manager to register these things programatically, or
using XML embedded in the Web Bean manager JAR.

JSR-299 Public Review 100

Chapter 11. Exceptions

Exceptions thrown by the Web Bean manager fall into three groups:

» Definition errors—occur when a single Web Bean definition violates the rules of this specification

< Deployment problems—occur when there are problems resolving dependencies, or inconsistent specialization, in a par-
ticular deployment

* [Execution errors—occur at runtime

Definition errors are developer errors. They may be detected by tooling at development time, and are also detected by the
Web Bean manager at initialization time. If a definition error exists in a deployment, the deployment will be aborted by the
Web Bean manager.

Deployment problems are detected by the Web Bean manager at initialization time. If a deployment problem exists in a
deployment, the deployment will be aborted by the Web Bean manager.

Execution errors may not be detected until they actually occur at runtime.

All exceptions defined by this specification are runtime exceptions.

11.1. Definition errors

Definition errors are represented by instances of Def i ni ti onExcept i on and its subclasses.

public class DefinitionException extends Runti meException {
public DefinitionException(String nmessage) { ... }
}

This specification defines the following subclasses:

* Nonexi st ent TypeException

* Nonexi st ent Menber Except i on

* Nonexi stent Fi el dException

* Nonexi st ent Met hodExcepti on

* Nonexi st ent Const ruct or Excepti on

Web Bean manager implementations may define their own subclasses of Defi ni ti onExcepti on, and throw an instance of
asubclass anywhere that this specification requires aDef i ni ti onExcept i on to be thrown.

11.2. Deployment problems

Deployment problems are represented by instances of Depl oynent Except i on and its subclasses.

public cl ass Depl oynent Excepti on extends Runti meException {
publ i ¢ Depl oynent Exception(String nessage) { ... }
}

This specification defines the following subclasses:

* Unsati sfi edDependencyExcepti on

* Anbi guousDependencyExcepti on

JSR-299 Public Review 101

Exceptions

* Unserializabl eDependencyExcepti on
* Nul | abl eDependencyExcepti on
* Unproxyabl eDependencyExcepti on

* Inconsistent Speci alizati onException

11.3. Execution errors

Execution errors are represented by instances of Execut i onExcept i on and its subclasses.

public class Executi onException extends Runti meException {

public ExecutionException(String nmessage) { ... }

This specification defines the following subclasses:

* CreationException

* UnrenovedException

e |l egal Product Exception

* (Observer Exception

* DuplicateBi ndi ngTypeExcepti on

* Cont ext Not Acti veException

JSR-299 Public Review 102

	JSR 299: Web Beans
	Table of Contents
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Supported environments
	1.3. Relationship to other specifications
	1.3.1. Relationship to EJB
	1.3.2. Relationship to JSF
	1.3.3. Relationship to Java Servlets
	1.3.4. Relationship to Common Annotations for the Java Platform

	1.4. Introductory examples
	1.4.1. JSF example
	1.4.2. EJB example
	1.4.3. Interceptor example
	1.4.4. Decorator example

	Chapter 2. Web Bean definition
	2.1. Functionality provided by the Web Bean manager to the Web Bean
	2.2. Web Bean API types
	2.3. Binding types
	2.3.1. Default binding type
	2.3.2. Defining binding types
	2.3.3. Declaring the binding types of a Web Bean using annotations
	2.3.4. Declaring the binding types of a Web Bean using XML
	2.3.5. Using binding annotations on injected fields
	2.3.6. Using binding annotations on method or constructor parameters

	2.4. Web Bean scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the Web Bean scope using annotations
	2.4.4. Declaring the Web Bean scope using XML
	2.4.5. Default scope

	2.5. Deployment types
	2.5.1. Built-in deployment types
	2.5.2. Defining new deployment types
	2.5.3. Declaring the deployment type of a Web Bean using annotations
	2.5.4. Declaring the deployment type of a Web Bean using XML
	2.5.5. Default deployment type
	2.5.6. Enabled deployment types
	2.5.7. Deployment type precedence

	2.6. Web Bean names
	2.6.1. Declaring the Web Bean name using annotations
	2.6.2. Declaring the Web Bean name using XML
	2.6.3. Default Web Bean names
	2.6.4. Web Beans with no name

	2.7. Stereotypes
	2.7.1. Defining new stereotypes
	2.7.2. Declaring the stereotypes for a Web Bean using annotations
	2.7.3. Declaring the stereotypes for a Web Bean using XML
	2.7.4. Stereotype restrictions
	2.7.5. Built-in stereotypes

	2.8. Specialization
	2.8.1. Direct and indirect specialization
	2.8.2. Inconsistent specialization

	Chapter 3. Web Bean implementation
	3.1. Restriction upon Web Bean instantiation
	3.2. Simple Web Beans
	3.2.1. Which Java classes are simple Web Beans?
	3.2.2. API types of a simple Web Bean
	3.2.3. Declaring a simple Web Bean using annotations
	3.2.4. Declaring a simple Web Bean using XML
	3.2.5. Web Bean constructors
	3.2.5.1. Declaring a Web Bean constructor using annotations.
	3.2.5.2. Declaring a Web Bean constructor using XML.
	3.2.5.3. Web Bean constructor parameters

	3.2.6. Specializing a simple Web Bean
	3.2.7. Default name for a simple Web Bean

	3.3. Enterprise Web Beans
	3.3.1. Which EJBs are enterprise Web Beans?
	3.3.2. API types of an enterprise Web Bean
	3.3.3. Declaring an enterprise Web Bean using annotations
	3.3.4. Declaring an enterprise Web Bean using XML
	3.3.5. Web Bean remove methods
	3.3.5.1. Declaring a Web Bean remove method using annotations.
	3.3.5.2. Declaring a Web Bean remove method using XML.
	3.3.5.3. Remove method parameters

	3.3.6. Specializing an enterprise Web Bean
	3.3.7. Default name for an enterprise Web Bean
	3.3.8. Enterprise bean proxies

	3.4. Producer methods
	3.4.1. API types of a producer method
	3.4.2. Declaring a producer method using annotations
	3.4.3. Declaring a producer method using XML
	3.4.4. Producer method parameters
	3.4.5. Specializing a producer method
	3.4.6. Disposal methods
	3.4.7. Disposed parameter of a disposal method
	3.4.8. Declaring a disposal method using annotations
	3.4.9. Declaring a disposal method using XML
	3.4.10. Disposal method parameters
	3.4.11. Disposal method resolution
	3.4.12. Default name for a producer method

	3.5. JMS endpoints
	3.5.1. API types of a JMS endpoint
	3.5.2. Declaring a JMS endpoint using XML

	3.6. Injected fields
	3.6.1. Declaring an injected field using annotations
	3.6.2. Declaring an injected field using XML

	3.7. Initializer methods
	3.7.1. Declaring an initializer method using annotations
	3.7.2. Declaring an initializer method using XML
	3.7.3. Initializer method parameters

	3.8. The @New binding type
	3.9. Support for Common Annotations
	3.10. The Bean object for a Web Bean

	Chapter 4. Lookup, dependency injection and EL resolution
	4.1. Unsatisfied and ambiguous dependencies
	4.2. Primitive types and null values
	4.3. Injected reference validity
	4.4. Client proxies
	4.4.1. Unproxyable API types
	4.4.2. Client proxy invocation

	4.5. The default binding type at injection points
	4.6. Generic type literals
	4.7. Annotation type literals
	4.8. The Manager object
	4.9. Instance resolution
	4.9.1. Dynamic lookup
	4.9.2. Typesafe resolution algorithm
	4.9.2.1. Binding annotations with members
	4.9.2.2. Multiple binding annotations

	4.10. EL name resolution
	4.10.1. Name resolution algorithm
	4.10.2. Integration with Unified EL

	Chapter 5. Web Bean lifecycle
	5.1. Creation
	5.2. Destruction
	5.3. Lifecycle of simple Web Beans
	5.4. Lifecycle of stateful session enterprise Web beans
	5.5. Lifecycle of stateless session and singleton enterprise Web Beans
	5.6. Lifecycle of producer methods
	5.7. Lifecycle of JMS endpoints
	5.8. Lifecycle of EJB beans
	5.9. Lifecycle of Servlets

	Chapter 6. Interceptors and decorators
	6.1. Business methods
	6.2. Interceptors
	6.2.1. Business method interceptors
	6.2.2. Lifecycle callback interceptors
	6.2.3. Support for @Interceptors
	6.2.4. Interceptor bindings
	6.2.4.1. Interceptor binding types with additional interceptor bindings
	6.2.4.2. Interceptor bindings for stereotypes

	6.2.5. Web Beans interceptors
	6.2.5.1. Declaring a Web Beans interceptor using annotations
	6.2.5.2. Declaring a Web Beans interceptor using XML

	6.2.6. Binding a Web Beans interceptor to a Web Bean or EJB bean
	6.2.6.1. Binding a Web Beans interceptor using annotations
	6.2.6.2. Binding a Web Beans interceptor using XML

	6.2.7. Interceptor enablement and ordering
	6.2.8. The Interceptor object for an interceptor
	6.2.9. Interceptor resolution
	6.2.9.1. Interceptors with multiple binding types
	6.2.9.2. Interceptor binding types with members

	6.2.10. Interceptor stack creation
	6.2.11. Interceptor invocation

	6.3. Decorators
	6.3.1. Declaring a decorator using annotations
	6.3.2. Declaring a decorator using XML
	6.3.3. Decorator delegate attributes
	6.3.4. Decorated types of a decorator
	6.3.5. Decorator enablement and ordering
	6.3.6. The Decorator object for a decorator
	6.3.7. Decorator resolution
	6.3.8. Decorator stack creation
	6.3.9. Decorator invocation

	Chapter 7. Events
	7.1. Event types and binding types
	7.2. Firing an event via the Manager interface
	7.3. Observing events via the Observer interface
	7.4. Observer invocation
	7.5. Observer methods
	7.5.1. Event parameter of an observer method
	7.5.2. Declaring an observer method using annotations
	7.5.3. Declaring an observer method using XML
	7.5.4. Observer method parameters
	7.5.5. Conditional observers
	7.5.6. Transactional observers
	7.5.7. Observer object for an observer method

	7.6. The Event interface
	7.7. Observer resolution
	7.7.1. Event binding annotations with members
	7.7.2. Multiple event binding annotations

	Chapter 8. Scopes and contexts
	8.1. The Context interface
	8.2. Normal scopes and pseudo-scopes
	8.3. Dependent pseudo-scope
	8.3.1. Dependent objects of a simple or enterprise Web Bean
	8.3.2. Dependent objects of a producer method
	8.3.3. Dependent objects of an EJB bean or Servlet
	8.3.4. Dependent object destruction

	8.4. Passivating scopes and serialization
	8.5. Context management for built-in scopes
	8.5.1. Request context lifecycle
	8.5.2. Session context lifecycle
	8.5.3. Application context lifecycle
	8.5.4. Conversation context lifecycle

	8.6. Context management for custom scopes

	Chapter 9. XML based metadata
	9.1. XML namespace for a Java package
	9.2. Web Bean declarations
	9.2.1. Child elements of a Web Bean declaration
	9.2.2. Type-level metadata for a Web Bean
	9.2.3. Web Bean constructor declarations
	9.2.4. Fields of a Web Bean
	9.2.5. Field initial value declarations
	9.2.6. Methods of a Web Bean

	9.3. Producer method declarations
	9.3.1. Child elements of a producer method declaration
	9.3.2. Return type and binding types of a producer method
	9.3.3. Method-level metadata for a producer method

	9.4. Interceptor and decorator declarations
	9.4.1. Decorator delegate attribute

	9.5. Injection point declarations
	9.6. Inline Web Bean declarations
	9.7. Specifying API types and binding types
	9.8. Annotation members
	9.9. Deployment declarations
	9.9.1. The <Deploy> declaration
	9.9.2. The <Interceptors> declaration
	9.9.3. The <Decorators> declaration

	Chapter 10. Packaging and deployment
	10.1. Web Bean discovery
	10.2. Web Bean registration
	10.3. EJB lookup
	10.4. Initialization event
	10.5. Java EE integration

	Chapter 11. Exceptions
	11.1. Definition errors
	11.2. Deployment problems
	11.3. Execution errors

