Weld - JSR-299 Reference Implementation

JSR-299: The new Java
standard for dependency
Injection and contextual

lifecycle management

Gavin King
Pete Muir
Dan Allen

David Allen
Italian Translation: Nicola Benaglia, Francesco Milesi
Spanish Translation: Gladys Guerrero
Korean Translation: Eun-Ju Ki,
Traditional Chinese Translation: Terry Chuang
Simplified Chinese Translation: Sean Wu

A note about naming and NOMENCIALUIE i e aiea s vii

L BB .ttt e 1
B o o o [T { e ¥ o 3
1.1 WHAL IS @ DBANT ..ottt e 3

1.2, GettiNg OUI fEEE WL ... e et 3

2. MOFE BDOUL DBANS ..t 7
2.1. The anatomy Of @ DEaN ... 7

2.1.1. Bean types, qualifiers and dependency injectionccoovviiiiiiiiiiiiiiiienanns 8

0 S T o o1 10

2,03, EL NAME o 10

2.1, AREINALIVES ..ttt 11

2.1.5. Interceptor DINAING tYPESvineie e 11

2.2. What kinds of classes are beans?ccoiiiii i 12
2.2.1. MANAGEA DBANS ...\ .ttt 12

2.2.2. SESSION DBANS ...ttt 13

2.2.3. Producer MethOdSouiuiiitii e 14

2.2.4. ProducCer fIells ... 16

3. JSF web application @XamPle ... 17
4. Dependency injection and programmatic [0OKUPo.eiiiiiii i e 21
T 1 1=t o T T oo 1 21

4.2. What gets INJECIEAottt et e e e 23

4.3, Qualifier @anNOTALIONSot 23

4.4. The built-in qualifiers @Default and @ANY ... e 25

4.5. Qualifiers With MEMDEIS e 25

4.6. MUltiple qUAlIIEIS ... e 26

A7, ARBINALIVES ..ottt e 26

4.8. Fixing unsatisfied and ambiguous dependenciesc.coviiiiiiii i 27

e O 1= L A o (0)= 27

4.10. Obtaining a contextual instance by programmatic [00KUp ... 28

4.11. The INjectionPoiNt ODJECEo.uit e 30

SRS Tolo] o [T Ir= o (o B od o] | {=)¢ K- 33
L0 S Tolo o 1< Y 0 1= N 33

LI = 1 1 T Yoo o= 33

5.3. The CONVEISAtION SCOPE ..uviutntiteit et ettt ettt e et et et et a e e aaeeenes 34

5.3.1. Conversation demarCationcoueoriiiiiterii e 35

5.3.2. Conversation Propagationo.eveeouiieeie e 35

5.3.3. CoNnVersation tIMEOUL ...ttt e 36

5.4. The SiNGIEtON PSEUAO-SCOPE ...ttt ittt e ettt e eneas 36

5.5. The dependent PSEUAO-SCOPEttt e e e 37

5.6. The @NEW QUAlITIEr ... e 37

1. Weld, the CDI Reference Implementationo e 39
6. Getting started With Weld ... e 41
(S0 N o =1 £ [U £ (= P 41

6.2. DeployiNg 10 JBOSS AS ... ittt e 41

6.3. Deploying t0 GIasSFISh ... 43

6.4. Deploying t0 APache TOMCALovuiiti i aees 44

6.4.1. Deploying With ANt e 44

6.4.2. Deploying With MaVEN ... 45

6.5, DEPIOYING 10 JOtY .t e e 46

7. Diving into the Weld eXamples ... e 49
7.1. The numberguess example in depth ... e 49

7.1.1. The numberguess example in Apache Tomcat or Jettycooeviviiiiiiiinninnnn.. 54

7.2. The numberguess example for Apache Wicket ... 54

Weld - JSR-299 Reference Impl...

7.2.1. Creating the EClipSe ProOjeCtuiiuii e 55

7.2.2. Running the example from ECliPSec.oiiiiiiii e 57

7.2.3. Running the example from the command line in JBoss AS or Tomcat................... 57

7.2.4. Understanding the COOecoiiiiiii e 57

7.3. The numberguess example for Java SE with SWINg ..o 59

7.4. The translator example in depth ... 64

IIl. Loose coupling With StrONG tYPINGuee e e e et e e e 69
8. Producer MethOOS ...t e 71
8.1. Scope of a producer MEthOMooiniii e e 72

8.2. Injection into producer MEtNOASoiinii e 72

8.3. Use of @New with producer methods ..o e 73

8.4. DiSPOSEr METNOUS ...\ttt e e e 73

L I (L] (o] =] o) (o] < T TN 75
9.1, INterceptor DINAINGSot e e e 75

9.2, IMplementing INTEICEPLOLSttt e e e e aaens 76

LS O = o= Lo [T o T) (=T (o1=Y o (o] £ 76

9.4. Interceptor bindings With MEMDEIS ... e 77

9.5. Multiple interceptor binding annotationscouiiiiiiiii 78

9.6. Interceptor binding type INhertanCeo e 79

9.7. USE Of @INIEICEPIOTIS ...ttt ittt ettt e 79

O =T ot o] = o P 81
10.1. DEIEGALE ODJECL ...ttt et e e e 82

O o = o] [T To e [=Toto] = (o] £ P 83

BT =Y o | 85
110, EVENE PAYIOA ..ot e 85

11.2. EVENE ODSEIVEIS ...ttt 85

R T Y =T o | o] (o Lo [F o= = P 86

11.4. Conditional observer Methodscoviiirii i 87

11.5. Event qualifiers With MembErS ... e 87

11.6. Multiple event qQUAlIfIErS ... 88

11.7. Transactional ODSEIVEISt e e 88

S (=T =0 7/ 0 1= 91
12.1. Default SCOPE fOr @ StEIrEOLYPEttt e e aens 91

12.2. Interceptor biNndings fOr StErEOtYPESiieii i 92

12.3. Name defaulting with StEreotyPesSo.uiitii e 92

12,4, AREINALIVE SEEIEOLYPES ..t ettt ettt ettt e e e ettt ans 92

12.5. Stereotype SLACKINGottt et et e 93

12.6. BUI-IN St IO Y PES .ttt ettt et 93

13. Specialization, inheritance and alterNatives 95
13.1. Using alternative StEIrEOLYPESttt ettt 95

13.2. A minor problem with alternativeso 96

13.3. USING SPECIALIZALIONuti i 97

14. Java EE component enVirONMENT FESOUTCESuuuiiuuii ittt et et et et e e e e e aaeans 99
14.1. DEfiNING @ FESOUICE ...ttt ettt et et ettt ettt e et et et et et et e e e e rteanenaennans 99

14.2. Typesafe reSource iNJECHION ... e 100

IV. CDI and the Java EE ©COSYSIEIMttt ettt rae e 103
15, Java EE INteQrationttt et et ettt et et et 105
15.1. BUI-IN DEANS ..ot 105

15.2. Injecting Java EE resources into @ bean ..o 105

15.3. Calling @ bean from @ Servleto 106

15.4. Calling a bean from a message-driven beano 106

15.5. IMS ENUPOINTS ..ttt ittt e ettt e 107

15.6. Packaging and deploymento i 108

16, POrtabl e EXE BN S 0N S oot it 109

16.1. Creating an EXIENSIONttt ettt et et 109

16.2. Container lifECYCle BVENLS 110

16.3. The BeanManager ODJECEot 111

16.4. The InjectionTarget INtErfaceooiiiiii i e 111

16.5. The Bean INtEIfaCEc.oiiiriii e 112

16.6. REQISLEIING @ BOANuitii ittt et et 113

16.7. Wrapping an AnNOtateadTYPeu ettt 114

16.8. Wrapping an INJeCtiONTAIQe!oui e e eeens 117

16.9. The Context INTEITACEot e 119

A = G B (=T o P 121
V. WEIH TEIBIEBNCE ...t e e e 123
18. Application servers and environments supported by Weld ... 125
18.1. Using Weld With JBOSS ASuiiiiitiiti et 125

18.2. GlaSSFISN .ot e 125

18.3. Servlet containers (such as Tomecat Or JEttY)couvvriiiiiiii i 125

R TR T I o1 [| PP 126

18,32, JOY ettt 127

L18.4. JAVA SE ..ot 127
18.4.1. CDI SE MOUUIE ...ttt e 128

18.4.2. Bootstrapping CDI SE ... 128

18.4.3. Thread CONEXEttt et neeas 130

18.4.4. Setting the Classpatho 130

19. CDI extensions available as part of Weldoiiiiiiii s 131
B IR V= o [o T o [131

20. ARLEINALIVE VIBW J8Y IS L.ttt ettt ettt 133
20.1. Wicket CDI INtegrationo..eiueie ettt et et e e e e e teaaeanes 133
20.1.1. The WebAPPHCAtioN ClasSouviuiiiiii e 133

20.1.2. Conversations With WICKELcouiiii e 133

A. Integrating Weld into other enVIFONMENTSottt e 135
AL The Wl SPI .o e e 135
A.1.1. DeploymeNnt SITUCIUIEuiitii ettt e et aeenees 135

F N N =N | = R o [=EY o]] o) (o] £ TR 136

A.1.3. EE resource injection and resolution SEIVICESociiviiiiiniiiiieieieaeanens 137

AL EJB SEIVICES ...ttt ittt et et e ettt e 137

AL, JPA SEIVICES ..ttt 137

A.L.6. TranSACON SEIVICESuvtitiitt ittt et eeenees 138

ALT7. RESOUICE SEIVICES ...ttt ittt ettt ettt 138

A.L.8. INJECLION SEIVICES ...ttt e et as 138

AL, SECUMLY SEIVICES .. uuiittiti ittt ettt et 138

A.1.10. Bean Validation SEeIrVICESuiuiititi e 138

A.1.11. Identifying the BDA being addressedccoviiiiiiiiiiiiiiiii i 138

A L.12. THE DEAN SEOME .. .vti ittt 139

A.1.13. The application CONEXEouiit ittt ee s 139

A.1.14. Initialization and ShUtdOWNt 139

A.1.15. ReSOUICE 10A0ING ... uuiitit ittt 139

A.2. The contract with the Container e 139

vi

A note about naming and nomenclature

Shortly before the final draft of JSSR-299 was submitted, the specification changed its name from "Web Beans" to
"Java Contexts and Dependency Injection for the Java EE platform", abbreviated CDI. For a brief period after the
renaming, the reference implementation adopted the name "Web Beans". However, this ended up causing more
confusion than it solved and Red Hat decided to change the name of the reference implementation to "Weld".
You may still find other documentation, blogs, forum posts, etc. that use the old nomenclature. Please update any
references you can. The naming game is over.

You'll also find that some of the functionality that once existed in the specification is now missing, such as defining
beans in XML. These features will be available as portable extensions for CDI in the Weld project, and perhaps
other implementations.

Note that this reference guide was started while changes were still being made to the specification. We've done our
best to update it for accuracy. If you discover a conflict between what is written in this guide and the specification,
the specification is the authority—assume it is correct. If you believe you have found an error in the specification,
please report it to the JSR-299 EG.

vii

viii

Part |. Beans

The JSR-299 [http://jcp.org/en/jsr/detail?id=299] specification (CDI) defines a set of complementary services that
help improve the structure of application code. CDI layers an enhanced lifecycle and interaction model over existing
Java component types, including managed beans and Enterprise Java Beans. The CDI services provide:

« an improved lifecycle for stateful objects, bound to well-defined contexts,

» atypesafe approach to dependency injection,

 object interaction via an event naotification facility,

* a better approach to binding interceptors to objects, along with a new kind of interceptor, called a decorator, that
is more appropriate for use in solving business problems, and

» an SPI for developing portable extensions to the container.

The CDI services are a core aspect of the Java EE platform and include full support for Java EE modularity and the
Java EE component architecture. But the specification does not limit the use of CDI to the Java EE environment.
In the Java SE environment, the services might be provided by a standalone CDI implementation like Weld (see
Section 18.4.1, “CDI SE Module”), or even by a container that also implements the subset of EJB defined for
embedded usage by the EJB 3.1 specification. CDl is especially useful in the context of web application development,
but the problems it solves are general development concerns and it is therefore applicable to a wide variety of
application.

An object bound to a lifecycle context is called a bean. CDI includes built-in support for several different kinds of
bean, including the following Java EE component types:

¢ managed beans, and

» EJB session beans.

Both managed beans and EJB session beans may inject other beans. But some other objects, which are not
themselves beans in the sense used here, may also have beans injected via CDI. In the Java EE platform, the
following kinds of component may have beans injected:

* message-driven beans,

* interceptors,

* servlets, servlet filters and servlet event listeners,

» JAX-WS service endpoints and handlers, and

» JSP tag handlers and tag library event listeners.

CDl relieves the user of an unfamiliar API of the need to answer the following questions:

* What is the lifecycle of this object?
* How many simultaneous clients can it have?
¢ Is it multithreaded?

* How do | get access to it from a client?

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299

Part I. Beans

« Do | need to explicitly destroy it?

* Where should | keep the reference to it when I'm not currently using it?

* How can | define an alternative implementation, so that the implementation can vary at deployment time?
» How should | go about sharing this object between other objects?

CDl is more than a framework. It's a whole, rich programming model. The theme of CDI is loose-coupling with strong
typing. Let's study what that phrase means.

A bean specifies only the type and semantics of other beans it depends upon. It need not be aware of the actual
lifecycle, concrete implementation, threading model or other clients of any bean it interacts with. Even better, the
concrete implementation, lifecycle and threading model of a bean may vary according to the deployment scenario,
without affecting any client. This loose-coupling makes your code easier to maintain.

Events, interceptors and decorators enhance the loose-coupling inherent in this model:

 event notifications decouple event producers from event consumers,
« interceptors decouple technical concerns from business logic, and
 decorators allow business concerns to be compartmentalized.

What's even more powerful (and comforting) is that CDI provides all these facilities in a typesafe way. CDI never
relies on string-based identifiers to determine how collaborating objects fit together. Instead, CDI uses the typing
information that is already available in the Java object model, augmented using a new programming pattern, called
qualifier annotations, to wire together beans, their dependencies, their interceptors and decorators, and their event
consumers. Usage of XML descriptors is minimized to truly deployment-specific information.

But CDI isn't a restrictive programming model. It doesn't tell you how you should to structure your application into
layers, how you should handle persistence, or what web framework you have to use. You'll have to decide those
kinds of things for yourself.

CDI even provides a comprehensive SPI, allowing other kinds of object defined by future Java EE specifications or
by third-party frameworks to be cleanly integrated with CDI, take advantage of the CDI services, and interact with
any other kind of bean.

CDl was influenced by a number of existing Java frameworks, including Seam, Guice and Spring. However, CDI has
its own, very distinct, character: more typesafe than Seam, more stateful and less XML-centric than Spring, more
web and enterprise-application capable than Guice. But it couldn't have been any of these without inspiration from
the frameworks mentioned and lots of collaboration and hard work by the JSR-299 Expert Group (EG).

Finally, CDI is a Java Community Process [http://jcp.org] (JCP) standard. Java EE 6 requires that all compliant
application servers provide support for JISR-299 (even in the web profile).

http://jcp.org
http://jcp.org

Chapter 1.

Introduction

So you're keen to get started writing your first bean? Or perhaps you're skeptical, wondering what kinds of hoops
the CDI specification will make you jump through! The good news is that you've probably already written and used
hundreds, perhaps thousands of beans. CDI just makes it easier to actually use them to build an application!

1.1. What is a bean?

A bean is exactly what you think it is. Only now, it has a true identity in the container environment.

Prior to Java EE 6, there was no clear definition of the term "bean" in the Java EE platform. Of course, we've been
calling Java classes used in web and enterprise applications "beans" for years. There were even a couple of different
kinds of things called "beans" in EE specifications, including EJB beans and JSF managed beans. Meanwhile, other
third-party frameworks such as Spring and Seam introduced their own ideas of what it meant to be a "bean". What
we've been missing is a common definition.

Java EE 6 finally lays down that common definition in the Managed Beans specification. Managed Beans are defined
as container-managed objects with minimal programming restrictions, otherwise known by the acronym POJO (Plain
Old Java Object). They support a small set of basic services, such as resource injection, lifecycle callbacks and
interceptors. Companion specifications, such as EJB and CDI, build on this basic model. But, at last, there's a uniform
concept of a bean and a lightweight component model that's aligned across the Java EE platform.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters (or a
constructor designated with the annotation @ nj ect) is a bean. This includes every JavaBean and every EJB
session bean. If you've already got some JavaBeans or session beans lying around, they're already beans—you
won't need any additional special metadata. There's just little one thing you need to do before you can start injecting
them into stuff: you need to put them in an archive (a jar, or a Java EE module such as a war or EJB jar) that contains
a special marker file: META- | NF/ beans. xm .

The JavaBeans and EJBs you've been writing every day, up until now, have not been able to take advantage of the
new services defined by the CDI specification. But you'll be able to use every one of them with CDI—allowing the
container to create and destroy instances of your beans and associate them with a designated context, injecting them
into other beans, using them in EL expressions, specializing them with qualifier annotations, even adding interceptors
and decorators to them—uwithout modifying your existing code. At most, you'll need to add some annotations.

Now let's see how to create your first bean that actually uses CDI.

1.2. Getting our feet wet

Suppose that we have two existing Java classes that we've been using for years in various applications. The first
class parses a string into a list of sentences:

public class SentenceParser {
public List<String> parse(String text) { ... }

The second existing class is a stateless session bean front-end for an external system that is able to translate
sentences from one language to another:

@t at el ess
public class SentenceTranslator inplenents Translator {

Chapter 1. Introduction

public String translate(String sentence) { ... }

Where Tr ansl at or is the EJB local interface:

@.ocal
public interface Translator {
public String translate(String sentence);

Unfortunately, we don't have a class that translates whole text documents. So let's write a bean for this job:

public class TextTranslator {
private SentenceParser sentenceParser;
private Transl ator sentenceTransl ator;

@ nj ect

Text Tr ansl at or (Sent encePar ser sentenceParser, Translator sentenceTranslator) {
thi s. sentenceParser = sentenceParser;
this.sentenceTransl ator = sentenceTransl ator;

public String translate(String text) {
StringBuil der sb = new StringBuilder();
for (String sentence: sentenceParser.parse(text)) {
sb. append(sent enceTr ansl at or. transl at e(sent ence));

}

return sh.toString();

But wait! Text Tr ansl at or does not have a constructor with no parameters! Is it still a bean? If you remember,
a class that does not have a constructor with no parameters can still be a bean if it has a constructor annotated
@nj ect .

As you've guessed, the @ nj ect annotation has something to do with dependency injection! @ nj ect may be
applied to a constructor or method of a bean, and tells the container to call that constructor or method when
instantiating the bean. The container will inject other beans into the parameters of the constructor or method.

We may obtain an instance of Text Tr ansl| at or by injecting it into a constructor, method or field of a bean, or a
field or method of a Java EE component class such as a servlet. The container chooses the object to be injected
based on the type of the injection point, not the name of the field, method or parameter.

Let's create a Ul controller bean that uses field injection to obtain an instance of the Text Tr ansl at or , translating
the text entered by a user:

@lamed @Request Scoped
public class TranslateController {

@nj ect TextTransl ator textTranslator; 1

private String inputText;

Getting our feet wet

private String translation;
/1 JSF action nethod, perhaps

public void translate() {
transl ation = textTransl ator.transl ate(i nput Text);

public String getlnputText() {
return inputText;

public void setlnputText(String text) {
this.inputText = text;

public String getTranslation() {
return transl ation;

‘1. Field injection of Text Tr ansl at or instance

Tip

Notice the controller bean is request-scoped and named. Since this combination is so common in
web applications, there's a built-in annotation for it in CDI that we could have used as a shorthand.
When the (stereotype) annotation @vbdel is declared on a class, it creates a request-scoped
and named bean.

Alternatively, we may obtain an instance of Text Tr ansl at or programmatically from an injected instance of
| nst ance, parameterized with the bean type:

@nj ect | nstance<Text Transl at or> text Transl at or | nst ance;

public void translate() {
text Transl at or I nstance. get ().transl ate(i nput Text);

Notice that it isn't necessary to create a getter or setter method to inject one bean into another. CDI can access an
injected field directly (even if it's private!), which sometimes helps eliminate some wasteful code. The name of the
field is arbitrary. It's the field's type that determines what is injected.

At system initialization time, the container must validate that exactly one bean exists which satisfies each injection
point. In our example, if no implementation of Tr ansl at or is available—if the Sent enceTr ansl at or EJB was
not deployed—the container would inform us of an unsatisfied dependency. If more than one implementation of
Tr ansl at or were available, the container would inform us of the ambiguous dependency.

Before we get too deep in the details, let's pause and examine a bean's anatomy. What aspects of the bean are
significant, and what gives it its identity? Instead of just giving examples of beans, we're going to define what makes
something a bean.

Chapter 2.

More about beans

A bean is usually an application class that contains business logic. It may be called directly from Java code, or it
may be invoked via the Unified EL. A bean may access transactional resources. Dependencies between beans are
managed automatically by the container. Most beans are stateful and contextual. The lifecycle of a bean is always
managed by the container.

Let's back up a second. What does it really mean to be contextual? Since beans may be stateful, it matters which
bean instance | have. Unlike a stateless component model (for example, stateless session beans) or a singleton
component model (such as servlets, or singleton beans), different clients of a bean see the bean in different states.
The client-visible state depends upon which instance of the bean the client has a reference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does not control the lifecycle
of the instance by explicitly creating and destroying it. Instead, the scope of the bean determines:

« the lifecycle of each instance of the bean and
» which clients share a reference to a particular instance of the bean.

For a given thread in a CDI application, there may be an active context associated with the scope of the bean. This
context may be unique to the thread (for example, if the bean is request scoped), or it may be shared with certain
other threads (for example, if the bean is session scoped) or even all other threads (if it is application scoped).

Clients (for example, other beans) executing in the same context will see the same instance of the bean. But clients
in a different context may see a different instance (depending on the relationship between the contexts).

One great advantage of the contextual model is that it allows stateful beans to be treated like services! The client
need not concern itself with managing the lifecycle of the bean it's using, nor does it even need to know what that
lifecycle is. Beans interact by passing messages, and the bean implementations define the lifecycle of their own
state. The beans are loosely coupled because:

« they interact via well-defined public APIs
« their lifecycles are completely decoupled

We can replace one bean with another different bean that implements the same interface and has a different lifecycle
(a different scope) without affecting the other bean implementation. In fact, CDI defines a simple facility for overriding
bean implementations at deployment time, as we will see in Section 4.7, “Alternatives”.

Note that not all clients of a bean are beans themselves. Other objects such as servlets or message-driven beans
—uwhich are by nature not injectable, contextual objects—may also obtain references to beans by injection.

2.1. The anatomy of a bean

Enough hand-waving. More formally, the anatomy of a bean, according to the spec:

A bean comprises the following attributes:

* A (nonempty) set of bean types
« A (nonempty) set of qualifiers

* A scope

e Optionally, a bean EL name

» A set of interceptor bindings

Chapter 2. More about beans

« A bean implementation
Furthermore, a bean may or may not be an alternative.

Let's see what all this new terminology means.

2.1.1. Bean types, qualifiers and dependency injection

Beans usually acquire references to other beans via dependency injection. Any injected attribute specifies a
"contract" that must be satisfied by the bean to be injected. The contract is:

« abean type, together with
» a set of qualifiers.

A bean type is a user-defined class or interface; a type that is client-visible. If the bean is an EJB session bean, the
bean type is the @.ocal interface or bean-class local view. A bean may have multiple bean types. For example,
the following bean has four bean types:

public class BookShop
ext ends Busi ness
i npl enent s Shop<Book> {

The bean types are Book Shop, Busi ness and Shop<Book>, as well as the implicit type j ava. | ang. Obj ect .
(Notice that a parameterized type is a legal bean type).

Meanwhile, this session bean has only the local interfaces Book Shop, Audi t abl e and j ava. | ang. Obj ect
as bean types, since the bean class, BookShopBean is not a client-visible type.

@t at ef ul
public class BookShopBean
ext ends Busi ness
i mpl enent s BookShop, Auditable {

Note

j=do

The bean types of a session bean include local interfaces and the bean class local view (if any).
EJB remote interfaces are not considered bean types of a session bean. You can't inject an EJB
using its remote interface unless you define a resource, which we'll meet in

Bean types may be restricted to an explicit set by annotating the bean with the @yped annotation and listing the
classes that should be bean types. For instance, the bean types of this bean have been restricted to Shop<Book>,
together with j ava. | ang. Obj ect :

@vyped(Shop. cl ass)

Bean types, qualifiers and dependency injection

public class BookShop
ext ends Busi ness
i npl enents Shop<Book> {

Sometimes, a bean type alone does not provide enough information for the container to know which
bean to inject. For instance, suppose we have two implementations of the Paynent Processor
interface: Cr edi t Car dPaynent Processor and Debi t Paynent Processor. Injecting a field of type
Paynent Pr ocessor introduces an ambiguous condition. In these cases, the client must specify some additional
quality of the implementation it is interested in. We model this kind of "quality" using a qualifier.

A qualifier is a user-defined annotation that is itself annotated @Qual i f er . A qualifier annotation is an extension of
the type system. It lets us disambiguate a type without having to fall back to string-based names. Here's an example
of a qualifier annotation:

@ualifier

@ar get ({ TYPE, METHOD, PARAVETER, FIELD})
@Ret ent i on(RUNTI MVE)

public @nterface CreditCard {}

You may not be used to seeing the definition of an annotation. In fact, this might be the first time you've encountered
one. With CDI, annotation definitions will become a familiar artifact as you'll be creating them from time to time.

Tip

Pay attention to the names of the built-in annotations in CDI and EJB. You'll notice that they
are often adjectives. We encourage you to follow this convention when creating your custom
annotations, since they serve to describe the behaviors and roles of the class.

Now that we have defined a qualifier annotation, we can use it to disambiguate an injection point. The following
injection point has the bean type Paynment Pr ocessor and qualifier @r edi t Car d:

@nject @reditCard Paynent Processor payment Processor

For each injection point, the container searches for a bean which satisfies the contract, one which has the bean
type and all the qualifiers. If it finds exactly one matching bean, it injects an instance of that bean. If it doesn't, it
reports an error to the user.

How do we specify that qualifiers of a bean? By annotating the bean class, of course! The following bean has the
qualifier @r edi t Car d and implements the bean type Paynment Pr ocessor . Therefore, it satisfies our qualified
injection point:

Chapter 2. More about beans

@reditCard
public class CreditCardPaynent Processor
i npl enents Payment Processor { ... }

That's not quite the end of the story. CDI also defines a simple resolution rule that helps the container decide what
to do if there is more than one bean that satisfies a particular contract. We'll get into the details in Chapter 4,
Dependency injection and programmatic lookup.

2.1.2. Scope

The scope of a bean defines the lifecycle and visibility of its instances. The CDI context model is extensible,
accommodating arbitrary scopes. However, certain important scopes are built into the specification, and provided
by the container. Each scope is represented by an annotation type.

For example, any web application may have session scoped bean:

publ i c @essi onScoped
cl ass ShoppingCart inplenents Serializable { ... }

An instance of a session-scoped bean is bound to a user session and is shared by all requests that execute in the
context of that session.

If a scope is not explicitly specified, then the bean belongs to a special scope called the dependent pseudo-scope.
Beans with this scope live to serve the object into which they were injected, which means their lifecycle is bound
to the lifecycle of that object.

We'll talk more about scopes in Chapter 5, Scopes and contexts.

2.1.3. EL name

If you want to reference a bean in non-Java code that supports Unified EL expressions, for example, in a JSP or
JSF page, you must assign the bean an EL name.

The EL name is specified using the @\amed annotation, as shown here:

public @bessi onScoped @\aned("cart")

Alternatives

cl ass ShoppingCart inplenents Serializable { ... }
Now we can easily use the bean in any JSF or JSP page:

<h: dat aTabl e val ue="#{cart.lineltens}" var="itenl>

</ h: dat aTabl e>

° Note

The @aned annotation is not what makes the class a bean. Most classes in a bean archive are
already recognized as beans. The @Naned annotation just makes it possible to reference the bean
from the EL, most commonly from a JSF view.

We can let CDI choose a name for us by leaving off the value of the @Naned annotation:

publ i c @bessi onScoped @\aned
cl ass ShoppingCart inplenments Serializable { ... }

The name defaults to the unqualified class name, decapitalized; in this case, shoppi ngCart .

2.1.4. Alternatives

We've already seen how qualifiers let us choose between multiple implementations of an interface at development
time. But sometimes we have an interface (or other bean type) whose implementation varies depending upon the
deployment environment. For example, we may want to use a mock implementation in a testing environment. An
alternative may be declared by annotating the bean class with the @\l t er nat i ve annotation.

public @\ ternative
cl ass MockPaynent Processor extends Paynent Processorlnpl { ... }

We normally annotate a bean @\l t er nat i ve only when there is some other implementation of an interface it
implements (or of any of its bean types). We can choose between alternatives at deployment time by selecting an
alternative in the CDI deployment descriptor META- | NF/ beans. xmi of the jar or Java EE module that uses it.
Different modules can specify that they use different alternatives.

We cover alternatives in more detail in Section 4.7, “Alternatives”.

2.1.5. Interceptor binding types

You might be familiar with the use of interceptors in EJB 3.0. In Java EE 6, this functionality has been generalized
to work with other managed beans. That's right, you no longer have to make your bean an EJB just to intercept
its methods. Holler. So what does CDI have to offer above and beyond that? Well, quite a lot actually. Let's cover
some background.

The way that interceptors were defined in Java EE 5 was counter-intuitive. You were required to specify the
implementation of the interceptor directly on the implementation of the EJB, either in the @ nt erceptors

11

Chapter 2. More about beans

annotation or in the XML descriptor. You might as well just put the interceptor code in the implementation! Second,
the order in which the interceptors are applied is taken from the order in which they are declared in the annotation
or the XML descriptor. Perhaps this isn't so bad if you're applying the interceptors to a single bean. But, if you are
applying them repeatedly, then there's a good chance that you'll inadvertently define a different order for different
beans. Now that's a problem.

CDI provides a new approach to binding interceptors to beans that introduces a level of indirection (and thus control).
We must define an interceptor binding type to describe the behavior implemented by the interceptor.

An interceptor binding type is a user-defined annotation that is itself annotated @ nt er cept or Bi ndi ng. It lets
us bind interceptor classes to bean classes with no direct dependency between the two classes.

@ nt er cept or Bi ndi ng

@ nherited

@arget({ TYPE, METHOD })

@Ret ent i on(RUNTI VE)

public @nterface Transactional {}

The interceptor that implements transaction management declares this annotation:

public @ransactional @ nterceptor
class Transactionlnterceptor { ... }

We can apply the interceptor to a bean by annotating the bean class with the same interceptor binding type:

publ i c @bessi onScoped @ransacti onal
cl ass ShoppingCart inplenents Serializable { ... }

Notice that Shoppi ngCart and Tr ansact i onl nt er cept or don't know anything about each other.

Interceptors are deployment-specific. (We don't need a Tr ansacti onl nt er cept or in our unit tests!) By
default, an interceptor is disabled. We can enable an interceptor using the CDI deployment descriptor META- | NF/
beans. xm of the jar or Java EE module. This is also where we specify the interceptor ordering.

We'll discuss interceptors, and their cousins, decorators, in Chapter 9, Interceptors and Chapter 10, Decorators.

2.2. What kinds of classes are beans?

We've already seen two types of beans: JavaBeans and EJB session beans. Is that the whole story? Actually, it's
just the beginning. Let's explore the various kinds of beans that CDI implementations must support out-of-the-box.

2.2.1. Managed beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by the Managed
Beans specification. You can explicitly declare a managed bean by annotating the bean class @/anagedBean, but
in CDI you don't need to. According to the specification, the CDI container treats any class that satisfies the following
conditions as a managed bean:

* Itis not a non-static inner class.

12

Session beans

« Itis a concrete class, or is annotated @ecor at or .

« It is not annotated with an EJB component-defining annotation or declared as an EJB bean
classinej b-jar.xm .

« It does not implement j avax. ent er pri se. i nj ect. spi . Ext ensi on.
« It has an appropriate constructor—either:

« the class has a constructor with no parameters, or

« the class declares a constructor annotated @ nj ect .

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all interfaces
it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @ependent .
Managed beans support the @ost Const r uct and @r eDest r oy lifecycle callbacks.

Session beans are also, technically, managed beans. However, since they have their own special lifecycle and take
advantage of additional enterprise services, the CDI specification considers them to be a different kind of bean.

2.2.2. Session beans

Session beans belong to the EJB specification. They have a special lifecycle, state management and concurrency
model that is different to other managed beans and non-managed Java objects. But session beans participate in
CDI just like any other bean. You can inject one session bean into another session bean, a managed bean into a
session bean, a session bean into a managed bean, have a managed bean observe an event raised by a session
bean, and so on.

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and their
superinterfaces. If the session bean has a bean class local view, the unrestricted set of bean types contains the bean
class and all superclasses. In addition, j ava. | ang. Obj ect is a bean type of every session bean. But remote
interfaces are not included in the set of bean types.

There's no reason to explicitly declare the scope of a stateless session bean or singleton session bean. The EJB
container controls the lifecycle of these beans, according to the semantics of the @5t at el ess or @i ngl et on
declaration. On the other hand, a stateful session bean may have any scope.

Chapter 2. More about beans

Stateful session beans may define a remove method, annotated @Renove, that is used by the application to indicate
that an instance should be destroyed. However, for a contextual instance of the bean—an instance under the control
of CDI—this method may only be called by the application if the bean has scope @ependent . For beans with
other scopes, the application must let the container destroy the bean.

So, when should we use a session bean instead of a plain managed bean? Whenever we need the advanced
enterprise services offered by EJB, such as:

« method-level transaction management and security,

* concurrency management,

* instance-level passivation for stateful session beans and instance-pooling for stateless session beans,
* remote or web service invocation, or

« timers and asynchronous methods,

When we don't need any of these things, an ordinary managed bean will serve just fine.

Many beans (including any @essi onScoped or @\ppl i cat i onScoped beans) are available for concurrent
access. Therefore, the concurrency management provided by EJB 3.1 is especially useful. Most session and
application scoped beans should be EJBs.

Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit from the advanced
container-managed lifecycle defined by the EJB stateless/stateful/singleton model, with its support for passivation
and instance pooling.

Finally, it's usually obvious when method-level transaction management, method-level security, timers, remote
methods or asynchronous methods are needed.

The point we're trying to make is: use a session bean when you need the services it provides, not just because
you want to use dependency injection, lifecycle management, or interceptors. Java EE 6 provides a graduated
programming model. It's usually easy to start with an ordinary managed bean, and later turn it into an EJB just by
adding one of the following annotations: @5t at el ess, @t at ef ul or @i ngl et on.

On the other hand, don't be scared to use session beans just because you've heard your friends say they're
"heavyweight". It's nothing more than superstition to think that something is "heavier" just because it's hosted natively
within the Java EE container, instead of by a proprietary bean container or dependency injection framework that runs
as an additional layer of obfuscation. And as a general principle, you should be skeptical of folks who use vaguely
defined terminology like "heavyweight".

2.2.3. Producer methods

Not everything that needs to be injected can be boiled down to a bean class instantiated by the container using
new. There are plenty of cases where we need additional control. What if we need to decide at runtime which
implementation of a type to instantiate and inject? What if we need to inject an object that is obtained by querying
a service or transactional resource, for example by executing a JPA query?

A producer method is a method that acts as a source of bean instances. The method declaration itself describes
the bean and the container invokes the method to obtain an instance of the bean when no instance exists in the
specified context. A producer method lets the application take full control of the bean instantiation process.

A producer method is declared by annotating a method of a bean class with the @r oduces annotation.

@\ppl i cati onScoped

14

Producer methods

public class RandomNunber Gener at or {
private Random random = new Randon{SystemcurrentTimeMIlis());

@r oduces @aned @andom i nt get RandomNunber () {
return random next | nt (100);

We can't write a bean class that is itself a random number. But we can certainly write a method that returns a
random number. By making the method a producer method, we allow the return value of the method—in this case
an | nt eger —to be injected. We can even specify a qualifier—in this case @andom a scope—which in this
case defaults to @ependent , and an EL name—which in this case defaults to r andonNunber according to the
JavaBeans property name convention. Now we can get a random number anywhere:

@nj ect @andom int randomNurber ;
Even in a Unified EL expression:
<p>Your raffle nunmber is #{randomN\unber}.</p>

A producer method must be a non-abstract method of a managed bean class or session bean class. A producer
method may be either static or non-static. If the bean is a session bean, the producer method must be either a
business method of the EJB or a static method of the bean class.

The bean types of a producer method depend upon the method return type:

« Ifthe return type is an interface, the unrestricted set of bean types contains the return type, all interfaces it extends
directly or indirectly and j ava. | ang. Qbj ect .

« If a return type is primitive or is a Java array type, the unrestricted set of bean types contains exactly two types:
the method return type and j ava. | ang. Qbj ect .

« If the return type is a class, the unrestricted set of bean types contains the return type, every superclass and all
interfaces it implements directly or indirectly.

i Note

Producer methods and fields may have a primitive bean type. For the purpose of resolving
dependencies, primitive types are considered to be identical to their corresponding wrapper types
injava. | ang.

If the producer method has method parameters, the container will look for a bean that satisfies the type and qualifiers
of each parameter and pass it to the method automatically—another form of dependency injection.

@r oduces Set <Rol es> get Rol es(User user) {
return user.get Rol es();

15

Chapter 2. More about beans

We'll talk much more about producer methods in Chapter 8, Producer methods.

2.2.4. Producer fields

A producer field is a simpler alternative to a producer method. A producer field is declared by annotating a field of a
bean class with the @r oduces annotation—the same annotation used for producer methods.

public class Shop {
@r oduces Paynent Processor paynent Processor =;
@r oduces @at al og Li st<Product> products =;

The rules for determining the bean types of a producer field parallel the rules for producer methods.

A producer field is really just a shortcut that lets us avoid writing a useless getter method. However, in addition to
convenience, producer fields serve a specific purpose as an adaptor for Java EE component environment injection,
but to learn more about that, you'll have to wait until Chapter 14, Java EE component environment resources.
Because we can't wait to get to work on some examples.

16

Chapter 3.

JSF web application example

Let's illustrate these ideas with a full example. We're going to implement user login/logout for an application that
uses JSF. First, we'll define a request-scoped bean to hold the username and password entered during login, with
constraints defined using annotations from the Bean Validation specification:

@Naned @Request Scoped

public class Credentials {
private String usernamne;
private String password;

@t Nul | @engt h(nmi n=3, max=25)
public String getUsername() { return usernane; }
public void setUsernane(String usernane) { this.username = usernane; }

@t Nul | @engt h(nmi n=6, max=20)
public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

This bean is bound to the login prompt in the following JSF form:

<h: forne
<h: panel Grid col ums="2" rendered="#{!1o0gi n. | oggedl n}">
<f:val i dat eBean>
<h: out put Label for="usernane">User nane: </ h: out put Label >
<h: i nput Text id="usernane" val ue="#{credential s.usernane}"/>
<h: out put Label for="password">Password: </ h: out put Label >
<h: i nput Secret id="password" val ue="#{credentials. password}"/>
</ f:val i dat eBean>
</ h: panel G'i d>
<h: commandBut t on val ue="Logi n" action="#{login.login}" rendered="#{!1o0gin.|oggedl n}"/>
<h: commandBut t on val ue="Logout" action="#{| ogi n.|ogout}" rendered="#{| ogi n.| oggedl n}"/>
</ h:fornp

Users are represented by a JPA entity:

@Entity

public class User {
private @lotNull @ength(m n=3, max=25) @d String usernane;
private @otNull @ength(m n=6, max=20) String password;

public String getUsernanme() { return usernane; }
public void setUsernane(String usernane) { this.username = usernane; }
public String setPassword(String password) { this.password = password; }

(Note that we're also going to need a per si st ence. xnl file to configure the JPA persistence unit containing
User.)

17

Chapter 3. JSF web applicatio...

The actual work is done by a session-scoped bean that maintains information about the currently logged-in user and
exposes the User entity to other beans:

@essi onScoped @aned
public class Login inplenments Serializable {

@nject Credentials credentials;
@nj ect @serDat abase EntityManager user Dat abase;

private User user;

public void login() {
Li st <User> resul ts = userDat abase. creat eQuery(
"select u from User u where u.usernane = :usernane and u.password = :password")
. set Paranet er ("usernane”, credentials. getUsernane())
. set Paranet er ("password", credential s.getPassword())
.getResul tList();

if ('results.isEnpty()) {
user = results.get(0);

}
el se {

/| perhaps add code here to report a failed login
}

public void logout() {
user = null;

public bool ean isLoggedln() {
return user != null;

@roduces @oggedln User getCurrentUser() {
return user;

@.oggedl n and @Jser Dat abase are custom qualifier annotations:

@ualifier

@Ret ent i on(RUNTI ME)

@arget ({ TYPE, METHOD, PARAMETER FI ELD})
public @nterface Loggedln {}

@ualifier

@ret ent i on(RUNTI ME)

@ar get ({ METHOD, PARAMETER, FI ELD})
public @nterface UserDatabase {}

18

We need an adaptor bean to expose our typesafe Ent i t yManager :

cl ass User Dat abaseProducer {
@r oduces @Jser Dat abase @Per si st enceCont ext
static EntityManager user Dat abase;

Now Docunent Edi t or, or any other bean, can easily inject the current user:

public class Document Editor {
@ nj ect Docunent docunent;
@nject @oggedln User currentUser;
@ nj ect @ocunent Dat abase EntityManager docDat abase;

public void save() {
docunent . set Cr eat edBy(current User) ;
docDat abase. per si st (docunent) ;

Or we can reference the current user in a JSF view:

<h: panel Group rendered="#{l ogi n. | oggedl n}">
signed in as #{currentUser. usernane}
</ h: panel G oup>

Hopefully, this example gave you a taste of the CDI programming model. In the next chapter, we'll explore
dependency injection in greater depth.

19

20

Chapter 4.

Dependency injection and
programmatic lookup

One of the most significant features of CDI—certainly the most recognized—is dependency injection; excuse me,
typesafe dependency injection.

4.1. Injection points

The @ nj ect annotation lets us define an injection point that is injected during bean instantiation. Injection can
occur via three different mechanisms.

Bean constructor parameter injection:

public class Checkout {
private final ShoppingCart cart;
@nj ect

publ i ¢ Checkout (Shoppi ngCart cart) {
this.cart = cart;

Initializer method parameter injection:

public class Checkout {
private ShoppingCart cart;
@ nj ect

voi d set Shoppi ngCart (Shoppi ngCart cart) {
this.cart = cart;

21

Chapter 4. Dependency injecti...

And direct field injection:

public class Checkout {

private @nject ShoppingCart cart;

-

Dependency injection always occurs when the bean instance is first instantiated by the container. Simplifying just
a little, things happen in this order:

« First, the container calls the bean constructor (the default constructor or the one annotated @ nj ect), to obtain
an instance of the bean.

« Next, the container initializes the values of all injected fields of the bean.

Next, the container calls all initializer methods of bean (the call order is not portable, don't rely on it).
« Finally, the @ost Const r uct method, if any, is called.

(The only complication is that the container might call initializer methods declared by a superclass before initializing
injected fields declared by a subclass.)

Tip

One major advantage of constructor injection is that it allows the bean to be immutable.

CDI also supports parameter injection for some other methods that are invoked by the container. For instance,
parameter injection is supported for producer methods:

@r oduces Checkout createCheckout (ShoppingCart cart) {
return new Checkout (cart);

This is a case where the @ nj ect annotation is not required at the injection point. The same is true for observer
methods (which we'll meet in Chapter 11, Events) and disposer methods.

22

What gets injected

4.2. What gets injected

The CDI specification defines a procedure, called typesafe resolution, that the container follows when identifying the
bean to inject to an injection point. This algorithm looks complex at first, but once you understand it, it's really quite
intuitive. Typesafe resolution is performed at system initialization time, which means that the container will inform
the developer immediately if a bean's dependencies cannot be satisfied.

The purpose of this algorithm is to allow multiple beans to implement the same bean type and either:

« allow the client to select which implementation it requires using a qualifier or

« allow the application deployer to select which implementation is appropriate for a particular deployment, without
changes to the client, by enabling or disabling an alternative, or

« allow the beans to be isolated into separate modules.

Obviously, if you have exactly one bean of a given type, and an injection point with that same type, then bean A
is going to go into slot A. That's the simplest possible scenario. When you first start your application, you'll likely
have lots of those.

But then, things start to get complicated. Let's explore how the container determines which bean to inject in more
advanced cases. We'll start by taking a closer look at qualifiers.

4.3. Qualifier annotations

If we have more than one bean that implements a particular bean type, the injection point can specify exactly
which bean should be injected using a qualifier annotation. For example, there might be two implementations of
Payment Processor:

@ynchronous

public class SynchronousPaynent Processor inplenments Paynent Processor {
public void process(Paynment paynent) { ... }

}

@\synchronous

public class AsynchronousPaynent Processor inplenents Payment Processor {
public void process(Paynment paynent) { ... }

}

Where @ynchr onous and @\synchr onous are qualifier annotations:

@ualifier

@Ret ent i on(RUNTI ME)

@rar get ({ TYPE, METHOD, FIELD, PARAMETER})
public @nterface Synchronous {}

@ualifier

23

Chapter 4. Dependency injecti...

@Ret ent i on(RUNTI VE)
@ar get ({ TYPE, METHOD, FIELD, PARAVETER})
public @nterface Asynchronous {}

A client bean developer uses the qualifier annotation to specify exactly which bean should be injected.

Using field injection:

@nj ect @ynchronous Paynent Processor syncPaynent Processor;
@nj ect @synchronous Paynent Processor asyncPayment Processor;

Using initializer method injection:

@ nj ect
public void setPaynment Processors(@ynchronous Paynent Processor syncPaynent Processor,
@synchronous Payment Processor asyncPaynent Processor) {
t hi s. syncPaynent Processor = syncPaynent Processor;
t hi s. asyncPaynent Processor = asyncPaynent Processor;

Using constructor injection:

@ nj ect
publ i ¢ Checkout (@ynchronous Paynent Processor syncPaynent Processor,
@\synchronous Paynent Processor asyncPaynent Processor) {
t hi s. syncPaynent Processor = syncPaynent Processor;
t hi s. asyncPaynent Processor = asyncPaynent Processor;

Qualifier annotations can also qualify method arguments of producer, disposer and observer methods. Combining
qualified arguments with producer methods is a good way to have an implementation of a bean type selected at
runtime based on the state of the system:

@r oduces
Paynent Processor get Paynent Processor (@ynchr onous Paynent Processor syncPaynent Processor,
@\ synchronous Paynent Processor asyncPaynent Processor) {
return i sSynchronous() ? syncPaynent Processor : asyncPaynent Processor;

If an injected field or a parameter of a bean constructor or initializer method is not explicitly annotated with a qualifier,
the default qualifier, @ef aul t , is assumed.

Now, you may be thinking, "What's the different between using a qualifier and just specifying the exact implementation
class you want?" It's important to understand that a qualifier is like an extension of the interface. It does not
create a direct dependency to any particular implementation. There may be multiple alterative implementations of
@\synchronous Paynent Processor!

24

The built-in qualifiers @Default and @Any

4.4. The built-in qualifiers aefraut and any

Whenever a bean or injection point does not explicitly declare a qualifier, the container assumes the qualifier
@ef aul t . From time to time, you'll need to decare an injection point without specifying a qualifier. There's a
qualifier for that too. All beans have the qualifier @GAny. Therefore, by explicitly specifying @Any at an injection point,
you suppress the default qualifier, without otherwise restricting the beans that are eligible for injection.

Tip

This is especially useful if you want to iterate over all beans with a certain bean type. For example:

@ nj ect

voi d initServices(@ny |nstance<Service> services) {
for (Service service: services) {

service.init();

4.5. Qualifiers with members

Java annotations can have members. We can use annotation members to further discriminate a qualifier. This
prevents a potential explosion of new annotations. For example, instead of creating several qualifiers representing
different payment methods, we could aggregate them into a single annotation with a member:

@ualifier
@Ret ent i on(RUNTI MVE)
@ar get ({ METHOD, FIELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue();

Then we select one of the possible member values when appling the qualifier:

private @nject @ayBy(CHECK) Paynent Processor checkPaynent;

We can force the container to ignore a member of a qualifier type by annotating the member @Nonbi ndi ng.

@ualifier
@=et ent i on(RUNTI MVE)
@ar get ({ METHOD, FIELD, PARAMETER, TYPE})
public @nterface PayBy {
Payment Met hod val ue() ;
@wonbi nding String comment () default "*;

25

Chapter 4. Dependency injecti...

4.6. Multiple qualifiers

An injection point may specify multiple qualifiers:
@ nj ect @ynchronous @rel i abl e Paynent Processor syncPaynent Processor
Then only a bean which has both qualifier annotations would be eligible for injection.

@ynchronous @rel i abl e
public class SynchronousRel i abl ePaynent Processor inpl enents Paynent Processor {
public void process(Paynent payment) { ... }

4.7. Alternatives

Alternatives are beans whose implementation is specific to a particular client module or deployment scenario. This
alternative defines a mock implementation of both @y nchr onous Paymnent Processor and @\synchr onous
Payment Pr ocessor, all in one:

@\ ternative @ynchronous @synchronous
public class MdckPaynent Processor inplenents Payment Processor {
public void process(Paynment paynment) { ... }

By default, @A\l t er nat i ve beans are disabled. We need to enable an alternative in the beans. xm descriptor
of a bean archive to make it available for instantiation and injection. This activation only applies to the beans in
that archive.

<beans
xm ns="http://java. sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://java. sun.com xm / ns/j avaee
http://java. sun. com xm / ns/j avaee/ beans_1_0. xsd" >
<al ternatives>
<cl ass>or g. nyconpany. nock. MockPaynent Pr ocessor </ cl ass>
</alternatives>
</ beans>

When an ambiguous dependency exists at an injection point, the container attempts to resolve the ambiguity by
looking for an enabled alternative among the beans that could be injected. If there is exactly one enabled alternative,
that's the bean that will be injected.

26

Fixing unsatisfied and ambiguous dependencies

4.8. Fixing unsatisfied and ambiguous dependencies

The typesafe resolution algorithm fails when, after considering the qualifier annotations on all beans that implement
the bean type of an injection point and filtering out disabled beans (@\ t er nat i ve beans which are not explicitly
enabled), the container is unable to identify exactly one bean to inject. The container will abort deployment, informing
us of the unsatisfied or ambiguous dependency.

During the course of your development, you're going to encounter this situation. Let's learn how to resolve it.

To fix an unsatisfied dependency, either:

* create a bean which implements the bean type and has all the qualifier types of the injection point,
* make sure that the bean you already have is in the classpath of the module with the injection point, or

- explicitly enable an @\l t er nat i ve bean that implements the bean type and has the appropriate qualifier types,
using beans. xm .

To fix an ambiguous dependency, either:

« introduce a qualifier to distinguish between the two implementations of the bean type,

« disable one of the beans by annotating it @\l t er nat i ve,

* move one of the implementations to a module that is not in the classpath of the module with the injection point, or
« disable one of two @Al t er nat i ve beans that are trying to occupy the same space, using beans. xni .

See this FAQ [http://sfwk.org/Documentation/
HowDoAResolveAnAmbiguousResolutionExceptionBetweenAProducerMethodAndARawType] for step-by-step
instructions for how to resolve an ambigous resolution exception between a raw bean type and a producer method
that returns the same bean type.

Tip

Just remember: "There can be only one."

On the other hand, if you really do have an optional or multivalued injection point, you should change the type of your
injection pointto | nst ance, as we'll see in Section 4.10, “Obtaining a contextual instance by programmatic lookup”.

Now there's one more issue you need to be aware of when using the dependency injection service.

4.9. Client proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance, unless the bean is a dependent
object (scope @ependent).

Imagine that a bean bound to the application scope held a direct reference to a bean bound to the request scope. The
application-scoped bean is shared between many different requests. However, each request should see a different
instance of the request scoped bean—the current one!

Now imagine that a bean bound to the session scope holds a direct reference to a bean bound to the application
scope. From time to time, the session context is serialized to disk in order to use memory more efficiently. However,
the application scoped bean instance should not be serialized along with the session scoped bean! It can get that
reference any time. No need to hoard it!

27

http://sfwk.org/Documentation/HowDoAResolveAnAmbiguousResolutionExceptionBetweenAProducerMethodAndARawType
http://sfwk.org/Documentation/HowDoAResolveAnAmbiguousResolutionExceptionBetweenAProducerMethodAndARawType
http://sfwk.org/Documentation/HowDoAResolveAnAmbiguousResolutionExceptionBetweenAProducerMethodAndARawType

Chapter 4. Dependency injecti...

Therefore, unless a bean has the default scope @ependent , the container must indirect all injected references to
the bean through a proxy object. This client proxy is responsible for ensuring that the bean instance that receives
a method invocation is the instance that is associated with the current context. The client proxy also allows beans
bound to contexts such as the session context to be serialized to disk without recursively serializing other injected
beans.

Unfortunately, due to limitations of the Java language, some Java types cannot be proxied by the container. If an
injection point declared with one of these types resolves to a bean with any scope other than @ependent , the
container will abort deployment, informing us of the problem.

The following Java types cannot be proxied by the container:

« classes which don't have a non-private constructor with no parameters, and

« classes which are declared f i nal or have a fi nal method,

« arrays and primitive types.

It's usually very easy to fix an unproxyable dependency problem. If an injection point of type X results in an
unproxyable dependency, simply:

¢ add a constructor with no parameters to X,

« change the type of the injection point to | nst ance<X>,

« introduce an interface Y, implemented by the injected bean, and change the type of the injection point to Y, or

« if all else fails, change the scope of the injected bean to @ependent .

4.10. Obtaining a contextual instance by programmatic
lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For example, it may
not be used when:

« the bean type or qualifiers vary dynamically at runtime, or

« depending upon the deployment, there may be no bean which satisfies the type and qualifiers, or

« we would like to iterate over all beans of a certain type.

In these situations, the application may obtain an instance of the interface | nst ance, parameterized for the bean
type, by injection:

28

Obtaining a contextual instance by programmatic lookup

@ nj ect | nstance<Paynent Processor > paynent Processor Sour ce;

The get () method of | nst ance produces a contextual instance of the bean.

Paynent Processor p = paynent Processor Sour ce. get () ;

Qualifiers can be specified in one of two ways:

* by annotating the | nst ance injection point, or
* by passing qualifiers to the sel ect () of Event.

Specifying the qualifiers at the injection point is much, much easier:

@ nj ect @synchronous | nstance<Paynent Processor> paynent Processor Sour ce;

Now, the Paynent Pr ocessor returned by get () will have the qualifier @Asynchr onous.

Alternatively, we can specify the qualifier dynamically. First, we add the @\ny qualifier to the injection point, to
suppress the default qualifier. (All beans have the qualifier @GAny.)

@nject @ny |nstance<Paynent Processor> paynment Processor Sour ce;

Next, we need to obtain an instance of our qualifier type. Since annotatons are interfaces, we can't just write new
Asynchr onous() . It's also quite tedious to create a concrete implementation of an annotation type from scratch.
Instead, CDI lets us obtain a qualifier instance by subclassing the helper class Annot ati onLi teral .

abstract class AsynchronousQualifier
ext ends Annot ati onLiteral <Asynchronous> i npl enents Asynchronous {}

In some cases, we can use an anonymous class:

Paynment Processor p = payment Processor Sour ce
.sel ect (new Annot ati onLi teral <Asynchronous>() {});

° Note

We can't use an anonymous class to implement a qualifier type with members.

Now, finally, we can pass the qualifier to the sel ect () method of | nst ance.

29

Chapter 4. Dependency injecti...

Annotation qualifier = synchronously ?
new SynchronousQualifier() : new AsynchronousQualifier();
Paynent Processor p = anyPaynent Processor. sel ect (qualifier).get().process(paynent);

4.11. The injectionpoint ObjeCt

There are certain kinds of dependent objects (beans with scope @ependent) that need to know something about
the object or injection point into which they are injected in order to be able to do what they do. For example:

» The log category for a Logger depends upon the class of the object that owns it.

* Injection of a HTTP parameter or header value depends upon what parameter or header name was specified at
the injection point.

« Injection of the result of an EL expression evaluation depends upon the expression that was specified at the
injection point.

A bean with scope @ependent may inject an instance of | nj ect i onPoi nt and access metadata relating to
the injection point to which it belongs.

Let's look at an example. The following code is verbose, and vulnerable to refactoring problems:
Logger | og = Logger. getLogger (Myd ass. cl ass. get Nanme());
This clever little producer method lets you inject a JDK Logger without explicitly specifying the log category:

cl ass LogFactory {

@r oduces Logger createlLogger(InjectionPoint injectionPoint) {
return Logger. getLogger (injectionPoint.getMenber().getDeclaringC ass().getNane());

We can now write:
@nj ect Logger |og;
Not convinced? Then here's a second example. To inject HTTP parameters, we need to define a qualifier type:

@Bi ndi ngType
@ret ent i on(RUNTI ME)
@arget ({ TYPE, METHOD, FIELD, PARAMETER})
public @nterface HtpParam {
@Nonbi ndi ng public String value();

30

The InjectionPoint object

We would use this qualifier type at injection points as follows:

@Ht t pPar an(" usernanme") String usernang;
@t t pPar am(" password") String password,;

The following producer method does the work:

class HttpParans

@roduces @ttt pParan("")
String get ParanVal ue(Servl et Request request,
return request.getParaneter (i p.getAnnotated().getAnnotation(HttpParam class).value());

I nj ecti onPoi nt

ip {

(Note that the val ue() member of the Ht t pPar amannotation is ignored by the container since it is annotated
@\onbi ndi ng.)

The container provides a built-in bean that implements the | nj ect i onPoi nt interface:

public i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

nterface |njectionPoint {

Cc
Cc
Cc
Cc
Cc
Cc
Cc

Type get Type();

Set <Annot ati on> get Qualifiers();
Bean<?> get Bean();

Menber get Menber () ;

Annot at ed get Annot at ed();

bool ean i sDel egate();

bool ean i sTransient();

31

32

Chapter 5.

Scopes and contexts

So far, we've seen a few examples of scope type annotations. The scope of a bean determines the lifecycle of
instances of the bean. The scope also determines which clients refer to which instances of the bean. According to
the CDI specification, a scope determines:

* When a new instance of any bean with that scope is created

* When an existing instance of any bean with that scope is destroyed

» Which injected references refer to any instance of a bean with that scope

For example, if we have a session-scoped bean, Cur r ent User , all beans that are called in the context of the same
Ht t pSessi on will see the same instance of Cur r ent User . This instance will be automatically created the first
time a Cur r ent User is needed in that session, and automatically destroyed when the session ends.

Tip

JPA entities aren't a great fit for this model. Entities have their whole own lifecycle and identity
model which just doesn't map naturally to the model used in CDI. Therefore, we recommend
against treating entities as CDI beans. You're certainly going to run into problems if you try to give
an entity a scope other than the default scope @ependent . The client proxy will get in the way
if you try to pass an injected instance to the JPA Ent i t yManager .

5.1. Scope types

CDl features an extensible context model. It's possible to define new scopes by creating a new scope type annotation:

@copeType

@Ret ent i on(RUNTI ME)

@rar get ({ TYPE, METHOD})

public @nterface O usterScoped {}

Of course, that's the easy part of the job. For this scope type to be useful, we will also need to define a Cont ext
object that implements the scope! Implementing a Cont ext is usually a very technical task, intended for framework
development only. You can expect an implementation of the business scope, for instance, in a future version of Seam.

We can apply a scope type annotation to a bean implementation class to specify the scope of the bean:

@@ ust er Scoped
public class SecondLevel Cache { ... }

Usually, you'll use one of CDI's built-in scopes.

5.2. Built-in scopes

CDI defines four built-in scopes:

33

Chapter 5. Scopes and contexts

e @Request Scoped

» @essi onScoped

e @\pplicationScoped
e @onver sati onScoped

For a web application that uses CDI:

« any servlet request has access to active request, session and application scopes, and, additionally

« any JSF request has access to an active conversation scope.

° Note

A CDI extension can implement support for the conversation scope in other web framewaorks.

The request and application scopes are also active:

* during invocations of EJB remote methods,

* during invocations of EJB asynchronous methods,
 during EJB timeouts,

» during message delivery to a message-driven bean,

« during message delivery to a MessagelLi st ener, and
 during web service invocations.

If the application tries to invoke a bean with a scope that does not have an active context, a
Cont ext Not Act i veExcept i on is thrown by the container at runtime.

Managed beans with scope @essi onScoped or @onver sat i onScoped must be serializable, since the
container passivates the HTTP session from time to time.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so let's not waste time
discussing them here. One of the scopes, however, is new.

5.3. The conversation scope

The conversation scope is a bit like the traditional session scope in that it holds state associated with a user of the
system, and spans multiple requests to the server. However, unlike the session scope, the conversation scope:

« is demarcated explicitly by the application, and

» holds state associated with a particular web browser tab in a JSF application (browsers tend to share domain
cookies, and hence the session cookie, between tabs, so this is not the case for the session scope).

A conversation represents a task—a unit of work from the point of view of the user. The conversation context holds
state associated with what the user is currently working on. If the user is doing multiple things at the same time,
there are multiple conversations.

34

Conversation demarcation

The conversation context is active during any JSF request. Most conversations are destroyed at the end of the
request. If a conversation should hold state across multiple requests, it must be explicitly promoted to a long-running
conversation.

5.3.1. Conversation demarcation

CDI provides a built-in bean for controlling the lifecycle of conversations in a JSF application. This bean may be
obtained by injection:

@nj ect Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation, call the begi n()
method from application code. To schedule the current long-running conversation context for destruction at the end
of the current request, call end() .

In the following example, a conversation-scoped bean controls the conversation with which it is associated:

@onver sati onScoped @t at ef ul
public class OrderBuilder {
private Order order;
private @nject Conversation conversation;
private @ersistenceContext(type = EXTENDED) EntityManager em

@r oduces public Oder getOrder() {
return order;

public Order createOrder() {
order = new Order();
conver sation. begi n();
return order;

public void addLi neltenm(Product product, int quantity) {
order. add(new Linelten(product, quantity));

public void saveOrder(Order order) {
em persi st (order);
conversation. end();

@Renmove
public void destroy() {}

This bean is able to control its own lifecycle through use of the Conver sat i on API. But some other beans have
a lifecycle which depends completely upon another object.

5.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form submission) or redirect.
It does not automatically propagate with non-faces requests, for example, navigation via a link.

35

Chapter 5. Scopes and contexts

We can force the conversation to propagate with a non-faces request by including the unique identifier of the
conversation as a request parameter. The CDI specification reserves the request parameter named ci d for this
use. The unique identifier of the conversation may be obtained from the Conver sat i on object, which has the EL
bean name conver sat i on.

Therefore, the following link propagates the conversation:

Add Product

It's probably better to use one of the link components in JSF 2:

<h:1ink outcone="/addProduct.xhtm val ue="Add Product">
<f:param nane="ci d" val ue="#{conversation.id}"/>
</ h:link>

Tip

The conversation context propagates across redirects, making it very easy to implement the
common POST-then-redirect pattern, without resort to fragile constructs such as a "flash" object.
The container automatically adds the conversation id to the redirect URL as a request parameter.

5.3.3. Conversation timeout

The container is permitted to destroy a conversation and all state held in its context at any time in order to conserve
resources. A CDI implementation will normally do this on the basis of some kind of timeout—though this is not
required by the specification. The timeout is the period of inactivity before the conversation is destroyed (as opposed
to the amount of time the conversation is active).

The Conver sat i on object provides a method to set the timeout. This is a hint to the container, which is free to
ignore the setting.

conversation. set Ti neout (ti meoutInM11is);

5.4. The singleton pseudo-scope

In addition to the four built-in scopes, CDI also supports two pseudo-scopes. The first is the singleton pseudo-scope,
which we specify using the annotation @i ngl et on.

You can guess what "singleton" means here. It means a bean that is instantiated once. Unfortunately, there's a little
problem with this pseudo-scope. Beans with scope @i ngl et on don't have a proxy object. Clients hold a direct

36

The dependent pseudo-scope

reference to the singleton instance. So we need to consider the case of a client that can be serialized, for example,
any bean with scope @essi onScoped or @Conver sat i onScoped, any dependent object of a bean with scope
@bessi onScoped or @onver sat i onScoped, or any stateful session bean.

Now, if the singleton instance is a simple, immutable, serializable object like a string, a number or a date, we probably
don't mind too much if it gets duplicated via serialization. However, that makes it no stop being a true singleton, and
we may as well have just declared it with the default scope.

There are several ways to ensure that the singleton bean remains a singleton when its client gets serialized:

» have the singleton bean implement writ eResol ve() and readRepl ace() (as defined by the Java
serialization specification),

» make sure the client keeps only a transient reference to the singleton bean, or
« give the client a reference of type | nst ance<X> where Xis the bean type of the singleton bean.

A fourth, better solution is to instead use @\ppl i cat i onScoped, allowing the container to proxy the bean, and
take care of serialization problems automatically.

5.5. The dependent pseudo-scope

Finally, CDI features the so-called dependent pseudo-scope. This is the default scope for a bean which does not
explicitly declare a scope type.

For example, this bean has the scope type @ependent :
public class Calculator { ... }

An instance of a dependent bean is never shared between different clients or different injection points. It is strictly
a dependent object of some other object. It is instantiated when the object it belongs to is created, and destroyed
when the object it belongs to is destroyed.

If a Unified EL expression refers to a dependent bean by EL name, an instance of the bean is instantiated every
time the expression is evaluated. The instance is not reused during any other expression evaluation.

Tip

If you need to access a bean directly by EL name in a JSF page, you probably need to give it a
scope other than @ependent . Otherwise, any value that gets set to the bean by a JSF input
will be lost immediately. That's why CDI features the @vbdel stereotype; it lets you give a bean
a name, and set its scope to @Request Scoped in one stroke. If you need to access a bean that
really has to have the scope @ependent from a JSF page, inject it into a different bean, and
expose it to EL via a getter method.

Beans with scope @ependent don't need a proxy object. The client holds a direct reference to its instance.

CDI makes it easy to obtain a dependent instance of a bean, even if the bean is already declared as a bean with
some other scope type.

5.6. The eew qualifier

The built-in qualifier @New allows us to obtain a dependent object of a specified class.

37

Chapter 5. Scopes and contexts

@nj ect @New Cal cul ator cal cul ator;

The class must be a valid managed bean or session bean, but need not be an enabled bean.

This works even if Cal cul at or is already declared with a different scope type, for example:

@Conver sat i onScoped
public class Calculator { ... }

So the following injected attributes each get a different instance of Cal cul at or :

public class Payment Cal ¢ {
@nj ect Cal culator calcul ator;
@nj ect @ew Cal cul ator newCal cul at or;

The cal cul at or field has a conversation-scoped instance of Cal cul at or injected. The newCal cul at or field
has a new instance of Cal cul at or injected, with a lifecycle that is bound to the owning Paynent Cal c.

This feature is particularly useful with producer methods, as we'll see in the next chapter.

38

Part Il. Weld, the CDI
Reference Implementation

Weld, the JSR-299 Reference Implementation (RI), is being developed as part of the Seam project [http://
seamframework.org/Weld]. You can download the latest community release of Weld from the download page [http://
seamframework.org/Download]. Information about the Weld source code repository and instructions about how to
obtain and build the source can be found on the same page.

Weld provides a complete SPI allowing Java EE containers such as JBoss AS and GlassFish to use Weld as their
built-in CDI implementation. Weld also runs in servlet engines like Tomcat and Jetty, or even in a plain Java SE
environment.

Weld comes with an extensive library of examples, which are a great starting point from which to learn CDI.

http://seamframework.org/Weld
http://seamframework.org/Weld
http://seamframework.org/Weld
http://seamframework.org/Download
http://seamframework.org/Download
http://seamframework.org/Download

Chapter 6.

Getting started with Weld

Weld comes with two starter example applications, in addition to more specialized examples. The first, wel d-
nunber guess, is a web (war) example containing only non-transactional managed beans. This example can be
run on a wide range of servers, including JBoss AS, GlassFish, Apache Tomcat, Jetty, Google App Engine, and
any compliant Java EE 6 container. The second example, wel d-t ransl at or, is an enterprise (ear) example
that contains session beans. This example must be run on JBoss AS 6.0, Glassfish 3.0 or any compliant Java EE
6 container.

Both examples use JSF 2.0 as the web framework and, as such, can be found in the exanpl es/ j sf directory
of the Weld distribution.

6.1. Prerequisites

To run the examples with the provided build scripts, you'll need the following:

« the latest release of Weld, which contains the examples
* Ant 1.7.0, to build and deploy the examples
* a supported runtime environment (minimum versions shown)
e JBoss AS 6.0.0,
» GlassFish 3.0,
» Apache Tomcat 6.0.x (war example only), or
o Jetty 6.1.x (war example only)

 (optionally) Maven 2.x, to run the examples in an embedded servlet container

Note

)

You'll need a full install of Ant 1.7.0. Some linux distributions only supply a partial installation of
Ant which cause the build to fail. If you encounter problems, verify that ant-nodeps.jar is on the
classpath.

In the next few sections, you'll be using the Ant command (ant) to invoke the Ant build script in each example to
compile, assemble and deploy the example to JBoss AS and, for the war example, Apache Tomcat. You can also
deploy the generated artifact (war or ear) to any other container that supports Java EE 6, such as GlassFish 3.

If you have Maven installed, you can use the Maven command (mvn) to compile and assemble the standalone
artifact (war or ear) and, for the war example, run it in an embedded container.

The sections below cover the steps for deploying with both Ant and Maven in detail. Let's start with JBoss AS.

6.2. Deploying to JBoss AS

To deploy the examples to JBoss AS, you'll need JBoss AS 6.0.0 [http://jboss.org/jbossas/] or above. If a release of
the JBoss AS 6.0 line isn't yet available, you can download a nightly snapshot [http://hudson.jboss.org/hudson/view/
JB0ss%20AS/job/JBoss-AS-6.0.x/]. The reason JBoss AS 6.0.0 or above is required is because it's the first release

41

http://jboss.org/jbossas/
http://jboss.org/jbossas/
http://hudson.jboss.org/hudson/view/JBoss%20AS/job/JBoss-AS-6.0.x/
http://hudson.jboss.org/hudson/view/JBoss%20AS/job/JBoss-AS-6.0.x/
http://hudson.jboss.org/hudson/view/JBoss%20AS/job/JBoss-AS-6.0.x/

Chapter 6. Getting started wi...

that has both CDI and Bean Validation support built-in, making it close enough to Java EE 6 to run the examples.
The good news is that there are no additional modifications you have to make to the server. It's ready to go!

After you have downloaded JBoss AS, extract it. (We recommended renaming the folder to include the as qualifier
so it's clear that it's the application server). You can move the extracted folder anywhere you like. Wherever it lays
to rest, that's what we'll call the JBoss AS installation directory, or JBOSS_HOME.

$> unzip jboss-6.0.*.zip
$> nv j boss-6.0.*/ jboss-as-6.0

In order for the build scripts to know where to deploy the example, you have to tell them where to find your JBoss AS
installation (i.e., JBOSS_HQOVE). Create a new file named | ocal . bui | d. properti es inthe examples directory
of the Weld distribution and assign the path of your JBoss AS installation to the property key j boss. hone, as
follows:

j boss. hone=/ pat h/ t o/ j boss-as-6.0

You're now ready to deploy your first example!

Switch to the exanpl es/ j sf/ nunber guess directory and execute the Ant depl oy target:

$> cd exanpl es/j sf/ nunberguess
$> ant depl oy

If you haven't already, start JBoss AS. You can either start JBoss AS from a Linux shell:

$> cd /path/to/jboss-as-6.0
$> ./bin/run.sh

a Windows command window:

$> cd c:\path\to\jboss-as-6.0\bin
$> run

or you can start the server using an IDE, like Eclipse.

° Note

If you are using Eclipse, you should seriously consider installing the [http://
www.jboss.org/tools] add-ons, which include a wide variety of tooling for JSR-299 and Java EE
development, as well as an enhanced JBoss AS server view.

Wait a few seconds for the application to deploy (or the application server to start) and see if you can determine the
most efficient approach to pinpoint the random number at the local URL http://localhost:8080/weld-numberguess.

42

http://www.jboss.org/tools
http://www.jboss.org/tools
http://www.jboss.org/tools
http://localhost:8080/weld-numberguess

Deploying to GlassFish

Tip

The Ant build script includes additional targets for JBoss AS to deploy and undeploy the archive
in either exploded or packaged format and to tidy things up.

ant restart -deploy the example in exploded format to JBoss AS

ant expl ode - update an exploded example, without restarting the deployment
ant depl oy - deploy the example in compressed jar format to JBoss AS

ant undepl oy - remove the example from JBoss AS

ant cl ean - clean the example

The second starter example, wel d- t r ansl at or, will translate your text into Latin. (Well, not really, but the stub is
there for you to implement, at least. Good luck!) To try it out, switch to the translator example directory and execute
the deploy target:

$> cd exanpl es/jsf/transl ator
$> ant depl oy

Again, wait a few seconds for the application to deploy (if you're really bored, read the log messages), and visit http://
localhost:8080/weld-translator to begin pseudo-translating.

6.3. Deploying to GlassFish

Deploying to GlassFish should be easy, right? After all, it's the Java EE 6 reference implementation. Since it's the
Java EE 6 reference implementation, that means it also bundles the JSR-299 reference implementation, Weld! So
yes, it's very easy.

To deploy the examples to GlassFish, you'll need the final GlassFish V3 [https://glassfish.dev.java.net/] release
(the preview release won't do). If the final release isn't yet available, you can download a promoted build [http://
download.java.net/glassfish/v3/promoted/] in the meantime. Select the b69 preview release or above that ends in
either - uni x. sh or - wi ndows. exe depending on your platform. After the download is complete, execute the
installer. On Linux/Unix, you'll need to first make the script executable.

$> chnod 755 gl assfish-v3-b69-uni x. sh
$> ./ gl assfi sh-v3-b69- uni x. sh

On Windows you can just click on the executable. Follow the instructions in the installer. It will create a single domain
named donmai nl. You'll use that domain to deploy the example. We recommend that you choose 7070 as the main
HTTP port to avoid conflicts with a running instance of JBoss AS (or Apache Tomcat).

43

http://localhost:8080/weld-translator
http://localhost:8080/weld-translator
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/
http://download.java.net/glassfish/v3/promoted/
http://download.java.net/glassfish/v3/promoted/
http://download.java.net/glassfish/v3/promoted/

Chapter 6. Getting started wi...

If you've deployed either of the starter examples, wel d- nunber guess or wel d- t r ansl at or, to JBoss AS,
then you already have the deployable artifact you need. If not, switch to either of the two directories and build it.

$> cd exanpl es/j sf/nunberguess (or exanples/jsf/translator)
$> ant package

The deployable archive for the wel d- nunber guess, named wel d- nunber guess. war, ends up in
the example's target directory. The archive for the wel d-transl ator example, named wel d-
transl at or. ear, ends up in the example's ear / t ar get directory. All you need to do now is deploy them to
GlassFish.

You deploy applications to GlassFish using the GlassFish Admin Console [http://localhost:4848]. To get the Admin
Console running, you need to start a GlassFish domain, in our case domai nl. Switch to the bi n folder in the
directory where you installed GlassFish and execute the following command:

$> asadmin start-donai n domai nl

After a few seconds you can visit the Admin Console in the browser at the URL http://localhost:4848. In the tree on the
left-hand side of the page, click on "Applications", then click on the "Deploy..." button under the heading "Applications"
and select the deployable artifact for either of the two examples. The deployer should recognize that you have
selected a Java EE artifact and allow you to start it. You can see the examples running at either http://localhost:7070/
weld-numberguess or http://localhost:7070/weld-translator, depending on which example you deployed.

The reason the same artifact can be deployed to both JBoss AS and GlassFish, without any modifications, is because
all of the features being used are part of the standard platform. And what a capable platform it has become!

6.4. Deploying to Apache Tomcat

Servlet containers are not required to support Java EE services like CDI. However, you can use CDI in a servlet
container like Tomcat by embedding a standalone CDI implementation such as Weld.

Weld comes with a servlet listener which bootstraps the CDI environment, registers the BeanManager in JNDI and
provides injection into servlets. Basically, it emulates some of the work done by the Java EE container. (But you
don't get enterprise features such as session beans and container-managed transactions.)

Let's give the Weld servlet extension a spin on Apache Tomcat. First, you'll need to download Tomcat 6.0.18 or later
from tomcat.apache.org [http://tomcat.apache.org/download-60.cgi] and extract it.

$> unzi p apache-tontat-6.0.18.zip

You have two choices for how you can deploy the application to Tomcat. You can deploy it by pushing the artifact
to the hot deploy directory using Ant or you can deploy to the server across HTTP using a Maven plugin. The Ant
approach doesn't require that you have Maven installed, so we'll start there. If you want to use Maven, you can
just skip ahead.

6.4.1. Deploying with Ant

In order for Ant to push the artifact to the Tomcat hot deploy directory, it needs to know where the Tomcat installation
is located. Again, we need to set a property in the | ocal . bui | d. properti es file in the examples directory of

44

http://localhost:4848
http://localhost:4848
http://localhost:4848
http://localhost:7070/weld-numberguess
http://localhost:7070/weld-numberguess
http://localhost:7070/weld-translator
http://tomcat.apache.org/download-60.cgi
http://tomcat.apache.org/download-60.cgi

Deploying with Maven

the Weld distribution. If you haven't yet created this file, do so now. Then assign the path of your Tomcat installation
to the property key t ontat . hone.

tontat . home=/ pat h/ t o/ apache-t ontat - 6

Now you're ready to deploy the numberguess example to Tomcat!

Change to the exanpl es/ j sf/ nunber guess directory again and run the Ant depl oy target for Tomcat:

$> cd exanpl es/j sf/nunber guess
$> ant tontat. depl oy

Tip

The Ant build script includes additional targets for Tomcat to deploy and undeploy the archive in
either exploded or packaged format. They are the same target names used for JBoss AS, prefixed
with "tomcat.".

ant toncat.restart -deploy the example in exploded format to Tomcat
ant tontat.expl ode - update an exploded example, without restarting the deployment
ant tonctat. depl oy - deploy the example in compressed jar format to Tomcat

ant tonctat. undepl oy - remove the example from Tomcat

If you haven't already, start Tomcat. You can either start Tomcat from a Linux shell:

$> cd /path/to/ apache-tontat -6
$> ./bin/start.sh

a Windows command window:

$> cd c:\path\to\apache-tontat-6\bin
$> start

or you can start the server using an IDE, like Eclipse.

Wait a few seconds for the application to deploy (or the application server to start) and see if you can figure out the
most efficient approach to pinpoint the random number at the local URL http://localhost:8080/weld-numberguess!

6.4.2. Deploying with Maven

You can also deploy the application to Tomcat using Maven. This section is a bit more advanced, so skip it unless
you're itching to use Maven natively. Of course, you'll first need to make sure that you have Maven installed on your
path, similar to how you setup Ant.

45

http://localhost:8080/weld-numberguess

Chapter 6. Getting started wi...

The Maven plugin communicates with Tomcat over HTTP, so it doesn't care where you have installed Tomcat.
However, the plugin configuration assumes you are running Tomcat in its default configuration, with a hostname of
localhost and port 8080. The r eadne. t xt file in the example directory has information about how to modify the
Maven settings to accommodate a different setup.

To allow Maven to communicate with Tomcat over HTTP, edit the conf / t ontat - user s. xnl file in your Tomcat
installation and add the following line:

<user usernane="adm n" password="" rol es="nanager"/>

Restart Tomcat. You can now deploy the application to Tomcat with Maven using this command:
$> nvn conpil e war: expl oded tontat: expl oded - Ptontat

Once the application is deployed, you can redeploy it using this command:

$> nvn tontat:redepl oy -Ptoncat

The - Pt ontat argument activates thet ontat profile defined in the Maven POM (pom xm). Among other things,
this profile activates the Tomcat plugin.

Rather than shipping the container off to a standalone Tomcat installation, you can also execute the application in
an embedded Tomcat 6 container:

$> nvn war:inplace tontat:run -Ptontat

The advantage of using the embedded server is that changes to assets in src/ mai n/ webapp take effect
immediately. If a change to a webapp configuration file is made, the application may automatically redeploy
(depending on the plugin configuration). If you make a change to a classpath resource, you need to execute a build:

$> nvn conpil e war:inplace -Ptontat

There are several other Maven goals that you can use if you are hacking on the example, which are documented
in the example's r eadmne. t xt file.

6.5. Deploying to Jetty

Support for Jetty in the examples is a more recent addition. Since Jetty is traditionally used with Maven, there are
no Ant targets. You must invoke the Maven build directly to deploy the examples to Jetty out of the box. Also, only
the wel d- nunber guess example is configured for Jetty support at the time of writing.

If you've read through the entire Tomcat section, then you're all ready to go. The Maven build parallels the embedded
Tomcat deployment. If not, don't worry. We'll still go over everything that you need to know again in this section.

46

Deploying to Jetty

The Maven POM (pom xm) includes a profile named j et t y that activates the Maven Jetty plugin, which you can
use to start Jetty in embedded mode and deploy the application in place. You don't need anything else installed
except to have the Maven command (mvn) on your path. The rest will be downloaded from the internet when the
build is run.

To run the wel d- nunber guess example on Jetty, switch to the example directory and execute the i npl ace
goal of the Maven war plugin followed by the r un goal of the Maven Jetty plugin with the j et t y profile enabled,
as follows:

$> cd exanpl es/j sf/ nunberguess
$> nvn war:inplace jetty:run -Pjetty

The log output of Jetty will be shown in the console. Once Jetty reports that the application has deployed, you can
access it at the following local URL: http://localhost:9090/weld-numberguess. The port is defined in the Maven Jetty
plugin configuration within the j et t y profile.

Any changes to assets in sr ¢/ mai n/ webapp take effect immediately. If a change to a webapp configuration
file is made, the application may automatically redeploy. The redeploy behavior can be fined-tuned in the plugin
configuration. If you make a change to a classpath resource, you need to execute a build and the i npl ace goal
of the Maven war plugin, again with the j et t y profile enabled.

$> nmvn conpile war:inplace -Pjetty

The war : i npl ace goal copies the compiled classes and jars inside sr ¢/ mai n/ webapp, under V\EB- | NF/
cl asses and VEB- | NF/ | i b, respectively, mixing source and compiled files. However, the build does work around
these temporary files by excluding them from the packaged war and cleaning them during the Maven clean phase.

You have two options if you want to run the example on Jetty from the IDE. You can either install the m2eclispe[link]
plugin and run the goals as described above. Your other option is to start the Jetty container from a Java application.

First, initialize the Eclipse project:

$> nvn clean eclipse:clean eclipse:eclipse -Pjetty-ide

Next, assemble all the necessary resources under sr ¢/ mai n/ webapp:

$> nvn war:inplace -Pjetty-ide

Now, you are ready to run the server in Eclipse. Import the project into your Eclipse workspace using "“Import
Existing Project into Workspace. Then, find the start class in src/j etty/j ava and run its main method as a
Java Application. Jetty will launch. You can view the application at the following local URL: http://localhost:8080. Pay
particular attention to the port in the URL and the lack of a trailing context path.

Now that you have gotten the starter applications deployed on the server of your choice, you probably want to know
a little bit about how they actually work.

47

http://localhost:9090/weld-numberguess
http://localhost:8080

48

Chapter 7.

Diving into the Weld examples

It's time to pull the covers back and dive into the internals of Weld example applications. Let's start with the simpler
of the two examples, wel d- nunber guess.

7.1. The numberguess example in depth

In the numberguess application you get 10 attempts to guess a number between 1 and 100. After each attempt,
you're told whether your guess was too high or too low.

The numberguess example is comprised of a number of beans, configuration files and Facelets (JSF) views,
packaged as a war module. Let's start by examining the configuration files.

All the configuration files for this example are located in VEB- | NF/ , which can be found in the sr ¢/ mai n/ webapp
directory of the example. First, we have the JSF 2.0 version of f aces- confi g. xm . A standardized version
of Facelets is the default view handler in JSF 2.0, so there's really nothing that we have to configure. Thus, the
configuration consists of only the root element.

<faces-config version="2.0"
xm ns="http://java. sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenaLocat i on="
http://java. sun.com xm / ns/j avaee
http://java. sun.com xm / ns/j avaee/ web-facesconfig_2_0.xsd">
</ faces-config>

There's also an empty beans. xm file, which tells the container to look for beans in this application and to activate
the CDI services.

Finally, there's the familiar web. xm :

<web- app version="2.5"
xm ns="http://java. sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://java. sun. com’ xm / ns/j avaee
http://java. sun.com xm / ns/j avaee/ web-app_2_5. xsd" >

<di spl ay- nane>wel d-j sf - nunber guess- war </ di spl ay- nane>
<description>Weld JSF nunber guess exanpl e (war)</description>

<servl et>
<servl et - nane>Faces Servl et </servl et-nane>
<servl et -cl ass>j avax. f aces. webapp. FacesServl et </ servl et - cl ass>
<l oad- on- st art up>1</| oad- on-startup>

</ servl et>

<servl et - mappi ng>
<servl et - nane>Faces Servl et</servl et-nane>
<url-pattern>*.jsf</url-pattern>

</ servl et - mappi ng>

49

Chapter 7. Diving into the We...

3
<cont ext - par an>
<par am nane>j avax. f aces. DEFAULT_SUFFI X</ par am nane>
<par am val ue>. xht ml </ par am val ue>
</ cont ext - par an>
ey

<sessi on-confi g>
<sessi on-ti neout >10</ sessi on-ti meout >
</ sessi on-confi g>

</ web- app>

Enable and initialize the JSF servlet
Configure requests for URLs ending in . j sf to be handled by JSF

Tell JSF that we will be giving our JSF views (Facelets templates) an extension of . xht m

®@@06

Configure a session timeout of 10 minutes

Let's take a look at the main JSF view, sr ¢/ mai n/ webapp/ home. xht m .

<! DOCTYPE html PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional //EN'
"http://ww. w3. org/ TR/ xht ml 1/ DTD/ xht m 1-transi ti onal . dtd">
<htm xm ns="http://ww.w3. or g/ 1999/ xht m "
xm ns:ui ="http://java. sun.com j sf/facel ets"
xm ns: h="http://java.sun.conm jsf/htm"
xm ns: f="http://java. sun.com j sf/core">

<ui : conposi tion tenplate="/tenplate. xhtm "> ®
<ui : defi ne nane="content">
<hl>Cuess a nunber...</hl>
<h: f or m i d="nunber Guess" >

<div style="color: red"> @
<h: messages i d="messages" gl obal Onl y="fal se"/>
<h: out put Text id="Hi gher" val ue="Hi gher!"
render ed="#{ gane. nunber gt gane.guess and gane.guess ne 0}"/>
<h: out put Text id="Lower" val ue="Lower!"
render ed="#{ gane. nunber |t gane. guess and gane.guess ne 0}"/>
</ div>

<di v> 3
I'"'mthinking of a number between #{gane.snuallest} and #{gane. bi ggest}.
You have #{gamne.remai ni ngGuesses} guesses remaini ng.

</ di v>

<di v>
Your guess:

50

The numberguess example in depth

<h: i nput Text id="input Guess" val ue="#{gane. guess}" 4

size="3" required="true" disabl ed="#{gane. nunber eq gane. guess}"

val i dat or =" #{ gane. val i dat eNunber Range}"/ > 5

<h: coomandBut t on i d="guessButton" val ue="Guess" 8

action="#{gane. check}" di sabl ed="#{gane. nunber eq gane. guess}"/>
</div>
<di v>

<h: commandButton id="restartButton" val ue="Reset" action="#{ganme.reset}" immedi ate="true"/>
</div>
</ h: fornpr
</ ui : defi ne>
</ ui : conposi ti on>
</htm >

1, Facelets is the built-in templating language for JSF. Here we are wrapping our page in a template which defines
the layout.
2. There are a number of messages which can be sent to the user, "Higher!", "Lower!" and "Correct!"

a. As the user guesses, the range of numbers they can guess gets smaller - this sentence changes to make sure
they know the number range of a valid guess.
4 This input field is bound to a bean property using a value expression.

5 A validator binding is used to make sure the user doesn't accidentally input a number outside of the range in
which they can guess - if the validator wasn't here, the user might use up a guess on an out of bounds number.

& And, of course, there must be a way for the user to send their guess to the server. Here we bind to an action
method on the bean.

The example exists of 4 classes, the first two of which are qualifiers. First, there is the @Randomqualifier, used for
injecting a random number:

@ualifier

@arget({ TYPE, METHOD, PARAMETER, FIELD })
@Ret ent i on(RUNTI VE)

public @nterface Random {}

There is also the @vaxNunber qualifier, used for injecting the maximum number that can be injected:

@ualifier

@arget({ TYPE, METHOD, PARAMETER, FIELD })
@ret ent i on(RUNTI ME)

public @nterface MaxNunmber {}

The application-scoped Gener at or class is responsible for creating the random number, via a producer method.
It also exposes the maximum possible number via a producer method:

@\ppl i cati onScoped
public class Generator inplenents Serializable {

private java.util.Randomrandom = new java. util.Randon(SystemcurrentTimeMIlis());

51

Chapter 7. Diving into the We...

private int nmaxNunber = 100;

java. util.Random get Random() {
return random

@r oduces @andom int next() {
return get Randon() . next | nt (maxNunber);

@r oduces @mbxNunber int get MaxNumber () {
return maxNunber ;

The Gener at or is application scoped, so we don't get a different random each time.

° Note

The package declaration and imports have been excluded from these listings. The complete listing
is available in the example source code.

The final bean in the application is the session-scoped Gane class. This is the primary entry point of the application.
It's responsible for setting up or resetting the game, capturing and validating the user's guess and providing feedback
to the user with a FacesMessage. We've used the post-construct lifecycle method to initialize the game by retrieving
a random number from the @Random | nst ance<I nt eger > bean.

You'll notice that we've also added the @Naned annotation to this class. This annotation is only required when you
want to make the bean accessible to a JSF view via EL (i.e., #{game}).

@\aned
@pessi onScoped
public class Gane inplenents Serializable {

private int nunber;

private int guess;

private int snallest;

private int biggest;

private int renaini ngGuesses;

@nj ect @baxNunber private int maxNunber;
@ nj ect @andom | nst ance<I nt eger > randonmNunber ;

public Game() {}

public void check() {
if (guess > nunber) {
bi ggest = guess - 1;
}
else if (guess < nunber) {
smal | est = guess + 1;

52

The numberguess example in depth

else if (guess == nunber) {

}

FacesCont ext . get Current | nstance().addMessage(nul |, new FacesMessage("Correct!"));

remai ni ngGuesses- - ;

@ost Const ruct
public void reset() {

thi
thi
thi
thi
thi

public
if

s.smal lest = 0;

s.guess = O;

s. remai ni ngGuesses = 10;

s. bi ggest = nmaxNunber ;

s. nunber = randomNunber. get();

voi d val i dat eNunber Range(FacesCont ext context, Ul Conponent toValidate, Object val ue) {
(renmi ni ngQuesses <= 0) {

FacesMessage nmessage = new FacesMessage("No guesses left!");

cont ext . addMessage(toVal i date. getClientld(context), nessage);

((U I nput) toValidate).setValid(false);

return;

}

int input = (Integer) val ue;

if (input < snallest ||

FacesMessage nessage

public int getNunber() {

return nunber;

public int getGuess() {
return guess;

input > biggest) {
((Ulnput) toValidate).setValid(false);

public void setGuess(int guess) {

this.guess = guess;

public int getSmallest() {
return small est;

public int getBiggest() {
return biggest;

public int getRemaini ngGuesses() {

return renaini ngGuesses;

new FacesMessage("Invalid guess");
cont ext . addMessage(toVal i date. getd i entld(context),

nmessage) ;

53

Chapter 7. Diving into the We...

7.1.1. The numberguess example in Apache Tomcat or Jetty

A couple of modifications must be made to the numberguess artifact in order to deploy it to Tomcat or Jetty. First,
Weld must be deployed as a Web Application library under VEB- | NF/ | i b since the servlet container does not
provide the CDI services. For your convenience we provide a single jar suitable for running Weld in any servlet
container (including Jetty), wel d- servl et . j ar.

Tip

You must also include the jars for JSF, EL, and the common annotations (j sr 250- api . j ar),
all of which are provided by the Java EE platform (a Java EE application server). Are you starting
to appreciate why a Java EE platform is worth using?

Second, we need to explicitly specify the servlet listener in web. xm , again because the container isn't doing this
stuff for you. The servlet listener boots Weld and controls it's interaction with requests.

<l'i stener>
<l istener-class>org.jboss.wel d. environnment.servlet.Listener</|istener-class>
</listener>

When Weld boots, it places the j avax. ent erpri se.inject. spi.BeanManager, the portable SPI for
obtaining bean instances, in the ServletContext under a variable name equal to the fully-qualified interface name.
You generally don't need to access this interface, but Weld makes use of it.

7.2. The numberguess example for Apache Wicket

Weld includes a number of portable extensions for JSR-299, including an extension for Wicket, which allows you to
inject beans into Wicket components and leverage the conversation context. In this section, we'll walk you through
the Wicket version of the numberguess example.

Tip

You may want to review the Wicket documentation at http://wicket.apache.org/ before reading this
section, if you aren't already familiar with the framework.

Wicket is another environment that relies on the Weld servlet extension. The use of Jetty [http://jetty.mortbay.org] is
common in the Wicket community, and is thus chosen here as the runtime container. You've seen already that Jetty
is perfectly capable of running CDI applications with Weld add-ons, and this environment is no different.

54

http://wicket.apache.org/
http://jetty.mortbay.org
http://jetty.mortbay.org

Creating the Eclipse project

7.2.1. Creating the Eclipse project

To use the Wicket example in Eclipse, you have one of two choices. You can either use a Maven plugin to
generate a regular Eclipse Web project, or you can open the example natively using the m2eclipse plugin [http://
m2eclipse.sonatype.org/]. Since the Weld source code relies so heavily on Maven, we encourage you to bite the
bullet and adopt the m2eclipse plugin. Both approaches are described here for your convenience..

If you have m2eclipse installed, you can open any Maven project directly. From within Eclipse, select File -> Import...
-> Maven Projects. Then, browse to the location of the Wicket numberguess example. You should see that Eclipse
recognizes the existence of a Maven project.

= Import Maven projects

Maven Projects

select Maven projects

Root Directory: |/home/dallen/sources/weld-1.0.0-CR1/examples/wicket/numt

Projects:

fpom.xml - org.jboss weld . examples:weld-wicket-numberguess:1.0.0-1

Add project(s) to working set

¢ Advanced

@ < Back [

This will create a project in your workspace called wel d- wi cket - nunber guess.

55

http://m2eclipse.sonatype.org/
http://m2eclipse.sonatype.org/
http://m2eclipse.sonatype.org/

Chapter 7. Diving into the We...

You'll notice after importing, the project has a build error. That's because we need to enable a Maven profile. Right-
click on the project and select Properties, then select the Maven tab in the window that appears. In the form field
labeled "Active Maven Profiles (comma separated):", type j et t y. That will enable some extra dependencies that
allow the project to compile. Additionally, uncheck the box labeled "Skip Maven compile plugin when processing
resources (recommended)". That solves an incompatiblity between the m2eclipse plugin and the Maven enforcer
plugin that we use for the Weld project. Now, you're ready to develop!

Note

j=deo

Be sure to uncheck the box "Skip Maven compile plugin when processing resources
(recommended)" in the Maven properties screen or else the example might not run in Eclipse
because beans.xml will be missing from the classpath! See the [https://
issues.sonatype.org/browse/MNGECLIPSE-768] issue report for details.

If you are not using the m2eclipse plugin, you have to follow different steps to import the project. First, switch into
the Wicket numberguess example, then execute the Maven Eclipse plugin with the jetty profile activated, as follows:

$> cd exanpl es/ wi cket/ nunber guess
m/n -Pjetty eclipse:eclipse

Then, from Eclipse, choose File -> Import... -> General -> Existing Projects into Workspace, select the root directory
of the numberguess example, and click Finish. This will create a project in your workspace called wel d- wi cket -
nunber guess.

Ell;ﬁ webbeans-wicket-numberquess [examples/tronkwicket numberguess |
=55 srcjmainyjava
EI_EE arg.jboss, webbeans, examples, wicket
; EE, Game.java 2434 4/16/09 10:09 AM cpopetz
EE, Generator.java 2434 4/16/02 10:09 &M cpopetz
EE, HomePage java 2434 4/16/09 10:09 AM cpopetz
EE, MaxMumber java #4534 4/16/09 10;09 AM cpopekz
EE, Random.java #4534 4/16/09 10:0%9 AM cpopetz

EE, Samplefpplication.java 2454 4/16/09 10:0% AM cpopetz
- EE, HomePage, html 2434 4/16/09 10:02 48 cpopetz
EIE% src/main)resources

,3",:, beans.xml 2434 4/16/09 10:09 AM cpopetz
|_T=E. logdi. properties 2434 4/16/09 10:09 A1 cpopetz

E% srofkestfiava

EIEE org, jboss, webbeans, examples, wicket

EE, Skart.java 2434 4/16/09 10:09 AM cpopetz

~BEh JRE System Library [jdk1.6.0_07]
B Referenced Libraries
- src

= karget
2 build,xml 2447 4/16/09 2:48 PM cpopetz
e Tg& pom.ml 2451 4/ 16/02 341 PM cpopetz

------ EE, readme, txt 2440 4/16/09 11:55 AM pete,muin@jboss,org

o

It's time to get the example running!

56

https://issues.sonatype.org/browse/MNGECLIPSE-768
https://issues.sonatype.org/browse/MNGECLIPSE-768
https://issues.sonatype.org/browse/MNGECLIPSE-768

Running the example from Eclipse

7.2.2. Running the example from Eclipse

This project follows the wi cket - qui ckst art approach of creating an instance of Jetty in the St art class. So
running the example is as simple as right-clicking on that Start class in sr ¢/ t est / j ava in the Package Explorer
and choosing Run as Java Application. You should see console output related to Jetty starting up; then visit able
http://localhost:9090 to view the app. To debug choose Debug as Java Application instead.

7.2.3. Running the example from the command line in JBoss AS
or Tomcat

This example can also be deployed from the command line in a (similar to the other examples). Assuming you have
set up the | ocal . bui | d. properti es file in the exanpl es directory to specify the location of JBoss AS or
Tomcat, as previously described, you can run:

$> ant depl oy
to deploy the example to JBoss AS, and:
$> ant toncat.depl oy

to deploy the example to Tomcat. You can then access application at http://localhost:8080/weld-numberguess-
wicket.

Alternatively, you can run the application in place on an embedded Jetty container using the following Maven
command:

$> nvn jetty:run -Pjetty

Enough toying with deployment, let's dive into the code.

7.2.4. Understanding the code

The code in the wicket numberguess example is very similar to the JSF-based numberguess example. The business
layer is identical! Where things differ is in view binding. JSF uses Unified EL expressions to bind XML-based view
layer components in JSF views to beans. In contrast, Wicket defines its components in Java. These Java-based
view components have a one-to-one mapping with HTML elements in an adjacent (pure) HTML file. All view logic,
including binding of components to models and controlling the response of view actions, is handled in Java.

The integration of Weld with Wicket takes advantage of the same qualifier annotations used in your business layer
to provide injection into your WebPage subclass (or into other custom Wicket component subclasses).

Here's where things differ from the JSF numberguess example:

« Each wicket application must have a Wel dAppl i cati on subclass. In our case, our application class is
Number GuessAppl i cati on:

public class Nunber GuessApplicati on extends Wel dApplication {

57

http://localhost:9090
http://localhost:8080/weld-numberguess-wicket
http://localhost:8080/weld-numberguess-wicket

Chapter 7. Diving into the We...

@verride public O ass getHonmePage() {

return HonePage. cl ass;

This class specifies which page Wicket should treat as our home page, in our case, HomePage. cl ass

« In HomePage, we see typical Wicket code to set up page elements. The bit that is interesting is the injection of

the Gane bean:

@nj ect Game gane;

The Gane bean is can then be used, for example, by the code for submitting a guess:

final

protected void onSubmit (A axRequest Target target,

Conponent guessButton = new Aj axButton("GuessButton") {
Form form {

if (gane.check()) {
info("Correct!");
set Vi si bl e(fal se);
pronpt. set Vi si bl e(fal se);
guesslLabel . set Vi si bl e(f al se);
i nput Guess. set Vi si bl e(fal se);

}

el se if (gane.get Renai ni ngGuesses() == 0) {
info("Sorry, the answer was " + gane. get Nunber());
set Vi si bl e(fal se);
guesslLabel . set Vi si bl e(fal se);
i nput Guess. set Vi si bl e(fal se);

}

el se if (game.getNunber() > gane.get Guess()) {
info("H gher!");

}

el se if (gane.get Nunber() < gane.getGuess()) {
info("Lower");

}

target.addConponent (form;

* The example uses AJAX for processing of button events, and dynamically hides buttons that are no longer relevant,

for example when the user has won the game.

58

The numberguess example for Java SE with Swing

« In order to activate Wicket for this webapp, the Wicket filter is added to web. xmi , and our application class is
specified in web. xm :

<filter>
<filter-name>Wcket Filter</filter-nane>
<filter-class>org.apache. w cket.protocol.http. WcketFilter</filter-class>
<i nit-paran>
<par am nane>appl i cat i onCl assName</ par am nane>
<par am val ue>or g. j boss. wel d. exanpl es. w cket . Nunber GuessAppl i cati on</ par am val ue>
</init-paran>
</filter>

<filter-nmappi ng>
<filter-nane>Wcket Filter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

The servlet listener is still required, as in the Tomcat example, to bootstrap CDI when Jetty starts and to hook CDI
into the Jetty servlet request and session lifecycles. However, rather than putting it into the web.xml, it is placed
into an override file, sr ¢/ mai n/ webapp/ WEB- | NF/ j et t y- addi ti ons-t o-web. xnl , that is passed to
Jetty as an extra descriptor to be appended to the web. xm configuration.

<web- app version="2.4" ...>
<l'i stener>
<listener-class>org.jboss. wel d. environnent. servl et.Listener</listener-class>
</listener>
</ web- app>

7.3. The numberguess example for Java SE with Swing

This example shows how to use the Weld SE extension to in a Java SE based Swing application with no EJB or servlet
dependencies. This example can be found in the exanpl es/ se/ nunber guess folder of the Weld distribution.

To run the example:

» Ensure that Maven 2 (version 2.0.10+) is installed and in your PATH
« Ensure that the JAVA HOVE environment variable is pointing to your JDK installation
« Open a command line or terminal window in the exanpl es/ se/ nunber guess directory

» Execute the following command

mvn -Drun

Let's have a look at the significant code and configuration files that make up this example.

As usual, there is an empty beans. xm file in the root package (sr ¢/ mai n/ r esour ces/ beans. xm), which
marks this application as a CDI application.

The game's main logic is located in Gane. j ava. Here is the code for that class, highlighting the ways in which this
differs from the web application version:

59

Chapter 7. Diving into the We...

@\ppl i cati onScoped

public class Ganme

{

public static final int MAX NUM GUESSES = 10;

private |nteger nunber;
private int guess = 0;
private int smallest = 0;

@ nj ect
@mbxNunber
private int maxNunber;

private int biggest;
private int remai ni ngGuesses = MAX_NUM GUESSES;
private bool ean val i dNumber Range = true;

@ nj ect
Cener ator rndCenerat or;

public Gane()

{
}

publ i c bool ean i sVal i dNunber Range()

{

return val i dNunber Range;
}
publ i c bool ean i sGameWn()
{

return guess == nunber;
}
publ i c bool ean isGaneLost ()
{

return guess != nunber && renmini ngQuesses <= 0;
}

publ i c bool ean check()

{

bool ean result = false;

i f (checkNewNunber Rangel sVal i d())
{

if (guess > nunber)

{
bi ggest = guess - 1;

i f (guess < nunber)

{

snal | est = guess + 1;

60

The numberguess example for Java SE with Swing

}
i f (guess == nunber)
{
result = true;
}
remai ni ngGuesses- - ;
}
return result;
}
private bool ean checkNewNunber Rangel sVal i d()
{
return val i dNunber Range = ((guess >= snallest) && (guess <= biggest));
} =

@Post Const ruct
public void reset()

{
this.smallest = 0;
this.guess = 0;
t hi s. renai ni ngGuesses = 10;
thi s. bi ggest = maxNunber;
this.nunber = rndGenerator. next();
}

The bean is application scoped rather than session scoped, since an instance of a Swing application typically
represents a single 'session’.
Notice that the bean is not named, since it doesn't need to be accessed via EL.

In Java SE there is no JSF FacesCont ext towhich messages can be added. Instead the Gane class provides
additional information about the state of the current game including:

* If the game has been won or lost
« If the most recent guess was invalid

This allows the Swing Ul to query the state of the game, which it does indirectly via a class called
MessageGener at or, in order to determine the appropriate messages to display to the user during the game.
Since there is no dedicated validation phase, validation of user input is performed during the check () method.

Ther eset () method makes a call to the injected r ndGener at or in order to get the random number at the
start of each game. Note that it can't use | nst ance. get () like the JSF example does because there will
not be any active contexts like there are during a JSF request.

The MessageCener at or class depends on the current instance of Gane and queries its state in order to determine
the appropriate messages to provide as the prompt for the user's next guess and the response to the previous guess.
The code for MessageCener at or is as follows:

public class MessageCener at or

@ nj ect 1

61

Chapter 7. Diving into the We...

private Ganme gane;

public String getChal | engeMessage() 2
{
StringBuil der chal |l engeMsg = new StringBuilder("I'mthinking of a nunber between ");
chal | engeMsg. append(gane. get Smal | est());
chal | engeMsg. append(” and ");
chal | engeMsg. append(gane. get Bi ggest ());
chal | engeMsg. append(". Can you guess what it is?");

return chal |l engeMsg.toString();

}
public String getResult Message() 3
{
if (gane.isGameWn())
{
return "You guessed it! The nunber was " + gane. get Nunber();
}
else if (gane.isGneLost())
{
return "You are fail! The nunber was " + gane. get Nunber();
}
else if (!gane.isValidNunber Range())
{
return "Invalid nunber range!";
}
el se if (gane.get Renmi ni ngQuesses() == Ganme. MAX_NUM GUESSES)
{
return "What is your first guess?";
}
el se
{
String direction = null;
i f (gane.get Guess() < gane.get Nunber())
{
direction = "Hi gher";
}
el se
{
direction = "Lower";
}
return direction + "! You have " + gane.get Renai ni ngGuesses() + " guesses left.";
}
}

1, The instance of Gamne for the application is injected here.
2. The Gane's state is interrogated to determine the appropriate challenge message ...

3 ... and again to determine whether to congratulate, console or encourage the user to continue.

Finally we come to the Nurber GuessFr ane class which provides the Swing front end to our guessing game.

62

The numberguess example for Java SE with Swing

public class Nunmber GuessFrane extends javax.sw ng. JFrane

{

@nj ect E
private Gane gane;

@ nj ect 2
private MessageGenerator nmsgGenerator;

public void start(@bserves Containerlnitialized event) 3
{

pri

pri

pri
{

pri

j ava. awt . Event Queue. i nvokelLat er (new Runnabl e()

{
public void run()
{
i ni t Conponents();
set Visible(true);
}
b

vate void initConponents() 4
butt onPanel = new j avax.sw ng. JPanel ();

mai nMsgPanel = new j avax. swi ng. JPanel ();

mai nLabel = new j avax. swi ng. JLabel ();

nessagelLabel = new j avax. swi ng. JLabel ();

guessText = new j avax.sw ng. JText Fi el d();

mai nLabel . set Text (nmsgGener at or . get Chal | engeMessage()) ;

mai nMsgPanel . add(mai nLabel) ;

nmessagelabel . set Text (msgGener at or . get Resul t Message()) ;

mai nMsgPanel . add(messagelLabel) ;

vate void guessButtonActionPerforned(java.aw.event.ActionEvent evt) 5
int guess = Integer.parselnt(guessText.getText());

gane. set Quess(guess);

gane. check();

refreshul ();

vate voi d repl ayBt nActi onPerfornmed(j ava. awt . event. Acti onEvent evt)
gane.reset(); 8

refreshu ();

vate void refreshUl () {
mai nLabel . set Text (msgGener at or. get Chal | engeMessage());
nmessagelabel . set Text (nsgCGener at or. get Resul t Message());
guessText.setText("");

63

Chapter 7. Diving into the We...

7.

guesseslLef t Bar. set Val ue(gane. get Remai ni ngGuesses())
guessText . request Focus()

/1 sw ng conponents
private javax.sw ng.JPanel border Panel

private javax.sw ng.JButton replayBtn

The injected instance of the game (logic and state).

The injected message generator for Ul messages.

This application is started in the prescribed Weld SE way, by observing the Cont ai ner I ni ti al i zed event.
This method initializes all of the Swing components. Note the use of the nsgGener at or here.

guessBut t onAct i onPer f or ned is called when the 'Guess' button is clicked, and it does the following:

» Gets the guess entered by the user and sets it as the current guess in the Gane
 Calls gane. check() to validate and perform one 'turn' of the game

» Calls refreshUl . If there were validation errors with the input, this will have been captured during
gane. check() and as such will be reflected in the messages returned by MessageGener at or and
subsequently presented to the user. If there are no validation errors then the user will be told to guess again
(higher or lower) or that the game has ended either in a win (correct guess) or a loss (ran out of guesses).

repl ayBt nActi onPer f or ned simply calls gane. reset () to start a new game and refreshes the

messages in the Ul.

4. The translator example in depth

The translator example will take any sentences you enter, and translate them to Latin. (Well, not really, but the stub
is there for you to implement, at least. Good luck!)

The translator example is built as an ear and contains EJBs. As a result, it's structure is more complex than the
numberguess example.

° Note

Java EE 6, which bundles EJB 3.1, allows you to package EJBs in a war, which will make this
structure much simpler! Still, there are other advantages of using an ear.

First, let's take a look at the ear aggregator, which is located in the example's ear directory. Maven automatically
generates the appl i cati on. xm for us from this plugin configuration:

<pl ugi n>

<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-ear-plugin</artifactld>
<confi guration>
<nodul es>
<webModul e>
<groupl d>org. j boss. wel d. exanpl es. j sf. transl at or </ gr oupl d>

64

The translator example in depth

<artifactld>weld-jsf-translator-war</artifactld>
<cont ext Root >/ wel d-transl at or </ cont ext Root >
</ webMbdul e>
</ modul es>
</ configuration>
</ pl ugi n>

This configuration overrides the web context path, resulting in this application URL: http://localhost:8080/weld-
translator.

Tip

If you weren't using Maven to generate these files, you would need META-I| NF/
application. xn :

<application version="5"
xm ns="http://java. sun. com xm / ns/ j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenaLocat i on="
http://java. sun.com xm / ns/j avaee
http://java. sun.com xm / ns/j avaee/ appl i cati on_5. xsd" >

<di spl ay- nane>wel d-j sf-transl at or - ear </ di spl ay- nane>
<description>The Wl d JSF transl ator exanple (ear)</description>

<nmodul e>
<web>
<web-uri >wel d-transl at or.war </ web-uri >
<cont ext - root >/ wel d-transl at or </ cont ext - r oot >
</ web>
</ modul e>
<nodul e>
<ej b>wel d-transl ator.jar</ejb>
</ modul e>
</ application>

Next, lets look at the war, which is located in the example's war directory. Just as in the numberguess example, we
have a f aces- confi g. xm for JSF 2.0 and a web. xml (to activate JSF) under WEB-INF, both sourced from
src/ mai n/ webapp/ VEEB- | NF.

More interesting is the JSF view used to translate text. Just as in the numberguess example we have a template,
which surrounds the form (ommitted here for brevity):

<h:formid="transl ator">

<t abl e>
<tr align="center" style="font-weight: bold">
<t d>
Your text
</td>
<t d>

Transl ati on

65

http://localhost:8080/weld-translator
http://localhost:8080/weld-translator

Chapter 7. Diving into the We...

</td>
</tr>
<tr>

<t d>

<h:input Textarea id="text" value="#{translator.text}" required="true" rows="5" col s="80"/>
</td>
<t d>
<h: out put Text val ue="#{transl ator.transl atedText}"/>
</td>
</tr>
</t abl e>
<di v>
<h: conmandBut t on i d="button" val ue="Transl ate" action="#{translator.transl ate}"/>
</ di v>

</ h: forne

The user can enter some text in the left-hand textarea, and hit the translate button to see the result to the right.

Finally, let's look at the EJB module, which is located in the example's €] b directory. In sr ¢/ mai n/ r esour ces/
META- | NF there is just an empty beans. xml , used to mark the archive as containing beans.

We've saved the most interesting bit to last, the code! The project has two simple beans, Sent encePar ser and
Text Tr ansl at or and two session beans, Tr ansl at or Cont r ol | er Bean and Sent enceTr ansl at or.
You should be getting quite familiar with what a bean looks like by now, so we'll just highlight the most interesting
bits here.

Both Sent encePar ser and Text Tr ansl| at or are dependent beans, and Text Tr ansl| at or uses constructor
injection:

public class TextTranslator inplenents Serializable {
private SentenceParser sentenceParser;
@JB private Translator translator;

@nj ect public TextTransl ator(SentenceParser sentenceParser) {
thi s. sentenceParser = sentenceParser;

public String translate(String text) {
StringBuilder sb = new StringBuilder();
for (String sentence: sentenceParser.parse(text)) {
sb. append(transl ator.transl ate(sentence)).append(". ");

}
return sb.toString().trim);

Text Tr ansl at or uses the simple bean (really just a plain Java class!) Sent encePar ser to parse the sentence
and then calls on the stateless bean with the local business interface Tr ansl| at or to perform the translation. That's
where the magic happens. Of course, we couldn't develop a full translator, but it's convincing enough to anyone
who doesn't understand Latin!

66

The translator example in depth

@bt at el ess
public class SentenceTranslator inplenents Translator {

public String translate(String sentence) {
return "Loremipsum dolor sit amet";

Finally, there is Ul orientated controller. This is a request scoped, hamed, stateful session bean, which injects the
translator. It collects the text from the user and dispatches it to the translator. The bean also has getters and setters
for all the fields on the page.

@t at ef ul
@Request Scoped
@Nanmed("transl ator")
public class Transl atorControllerBean inplenents TranslatorController {
@nject private TextTransl ator translator;
private String inputText;
private String translatedText;
public void translate() {

transl atedText = translator.transl ate(inputText);

public String getText() {
return inputText;

public void setText(String text) {
this.inputText = text;

public String getTransl atedText () {
return transl at edText ;

@Renmove public void renove() {}

That concludes our short tour of the Weld starter examples. For more information on Weld, please visit http://
www.seamframework.org/Weld.

67

http://www.seamframework.org/Weld
http://www.seamframework.org/Weld

68

Part Ill. Loose coupling
with strong typing

The first major theme of CDI is loose coupling. We've already seen three means of achieving loose coupling:

* alternatives enable deployment time polymorphism,
 producer methods enable runtime polymorphism, and
» contextual lifecycle management decouples bean lifecycles.

These techniques serve to enable loose coupling of client and server. The client is no longer tightly bound to an
implementation of an interface, nor is it required to manage the lifecycle of the implementation. This approach lets
stateful objects interact as if they were services.

Loose coupling makes a system more dynamic. The system can respond to change in a well-defined manner. In
the past, frameworks that attempted to provide the facilities listed above invariably did it by sacrificing type safety
(most notably by using XML descriptors). CDI is the first technology, and certainly the first specification in the Java
EE platform, that achieves this level of loose coupling in a typesafe way.

CDI provides three extra important facilities that further the goal of loose coupling:

* interceptors decouple technical concerns from business logic,
» decorators may be used to decouple some business concerns, and
 event notifications decouple event producers from event consumers.

The second major theme of CDI is strong typing. The information about the dependencies, interceptors and
decorators of a bean, and the information about event consumers for an event producer, is contained in typesafe
Java constructs that may be validated by the compiler.

You don't see string-based identifiers in CDI code, not because the framework is hiding them from you using clever
defaulting rules—so-called "configuration by convention"—but because there are simply no strings there to begin
with!

The obvious benefit of this approach is that any IDE can provide autocompletion, validation and refactoring without
the need for special tooling. But there is a second, less-immediately-obvious, benefit. It turns out that when you start
thinking of identifying objects, events or interceptors via annotations instead of names, you have an opportunity to
lift the semantic level of your code.

CDI encourages you develop annotations that model concepts, for example,

e @synchronous,
+ @ck,

e @decure or

+ @Jpdat ed,

instead of using compound names like

+ asyncPaynment Processor,

Part Ill. Loose coupling with...

« mockPaynent Pr ocessor,
e Securitylnterceptor or
« Documnent Updat edEvent .

The annotations are reusable. They help describe common qualities of disparate parts of the system. They help us
categorize and understand our code. They help us deal with common concerns in a common way. They make our
code more literate and more understandable.

CDI stereotypes take this idea a step further. A stereotype models a common role in your application architecture.
It encapsulates various properties of the role, including scope, interceptor bindings, qualifiers, etc, into a single
reusable package. (Of course, there is also the benefit of tucking some of those annotations away).

We're now ready to meet some more advanced features of CDI. Bear in mind that these features exist to make our
code both easier to validate and more understandable. Most of the time you don't ever really need to use these
features, but if you use them wisely, you'll come to appreciate their power.

Chapter 8.

Producer methods

Producer methods let us overcome certain limitations that arise when a container, instead of the application, is
responsible for instantiating objects. They're also the easiest way to integrate objects which are not beans into the
CDI environment.

According to the spec:

A producer method acts as a source of objects to be injected, where:

 the objects to be injected are not required to be instances of beans,
« the concrete type of the objects to be injected may vary at runtime or
« the objects require some custom initialization that is not performed by the bean constructor

For example, producer methods let us:

* expose a JPA entity as a bean,

» expose any JDK class as a bean,

« define multiple beans, with different scopes or initialization, for the same implementation class, or
« vary the implementation of a bean type at runtime.

In particular, producer methods let us use runtime polymorphism with CDI. As we've seen, alternative beans are one
solution to the problem of deployment-time polymorphism. But once the system is deployed, the CDI implementation
is fixed. A producer method has no such limitation:

@Bessi onScoped
public class Preferences inplenents Serializable {
private Paynent StrategyType paynent Str at egy;

@°r oduces @referred
public Paynent Strategy getPaynent Strategy() {
swi tch (paynment Strategy) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHECK: return new CheckPaynent Strategy();
case PAYPAL: return new PayPal Paynent Strategy();
default: return null;

Consider an injection point:
@nject @referred Paynent Strategy paynent Strat egy;

This injection point has the same type and qualifier annotations as the producer method, so it resolves to the producer
method using the usual CDI injection rules. The producer method will be called by the container to obtain an instance
to service this injection point.

71

Chapter 8. Producer methods

8.1. Scope of a producer method

The scope of the producer method defaults to @ependent , and so it will be called every time the container injects
this field or any other field that resolves to the same producer method. Thus, there could be multiple instances of
the Paynment St r at egy object for each user session.

To change this behavior, we can add a @essi onScoped annotation to the method.

@roduces @referred @essi onScoped
public Paynent Strategy get Paynment Strategy() {

Now, when the producer method is called, the returned Paymnent St r at egy will be bound to the session context.
The producer method won't be called again in the same session.

i Note

A producer method does not inherit the scope of the bean that declares the method. There are
two different beans here: the producer method, and the bean which declares it. The scope of the
producer method determines how often the method will be called, and the lifecycle of the objects
returned by the method. The scope of the bean that declares the producer method determines the
lifecycle of the object upon which the producer method is invoked.

8.2. Injection into producer methods

There's one potential problem with the code above. The implementations of Cr edi t Car dPaynent St r at egy
are instantiated using the Java new operator. Objects instantiated directly by the application can't take advantage
of dependency injection and don't have interceptors.

If this isn't what we want, we can use dependency injection into the producer method to obtain bean instances:

@roduces @referred @essi onScoped
publ i c Paynment Strategy getPayment Strategy(CreditCardPaynment Strategy ccps,
CheckPaynent Strat egy cps,
PayPal Payrment St rat egy ppps) {
swi tch (paynent Strategy) {
case CREDI T_CARD: return ccps;
case CHEQUE: return cps;
case PAYPAL: return ppps;
default: return null;

Wait, what if Cr edi t Car dPaynent St r at egy is a request-scoped bean? Then the producer method has the
effect of "promoting" the current request scoped instance into session scope. This is almost certainly a bug! The
request scoped object will be destroyed by the container before the session ends, but the reference to the object
will be left "hanging" in the session scope. This error will not be detected by the container, so please take extra care
when returning bean instances from producer methods!

72

Use of @New with producer methods

There's at least three ways we could go about fixing this bug. We could change the scope of the
Cr edi t Car dPaynent St r at egy implementation, but this would affect other clients of that bean. A better option
would be to change the scope of the producer method to @ependent or @Request Scoped.

But a more common solution is to use the special @New qualifier annotation.

8.3. Use of a@ew With producer methods

Consider the following producer method:

@roduces @referred @essi onScoped
public Payment Strategy getPaynent Strat egy(@ew Credit CardPaynent Strat egy ccps,
@\ew CheckPaynent Strat egy cps,
@New PayPal Paynent Strategy ppps) {
switch (paynent Strategy) {
case CREDI T_CARD: return ccps;
case CHEQUE: return cps;
case PAYPAL: return ppps;
default: return null;

Then a new dependent instance of Cr edi t Car dPayment St r at egy will be created, passed to the producer
method, returned by the producer method and finally bound to the session context. The dependent object won't be
destroyed until the Pr ef er ences object is destroyed, at the end of the session.

8.4. Disposer methods

Some producer methods return objects that require explicit destruction. For example, somebody needs to close this
JDBC connection:

@°r oduces @Request Scoped Connection connect (User user) {
return createConnection(user.getld(), user.getPassword());

Destruction can be performed by a matching disposer method, defined by the same class as the producer method:

voi d cl ose(@i sposes Connecti on connection) {
connection. cl ose();

The disposer method must have at least one parameter, annotated @i sposes, with the same type and qualifiers
as the producer method. The disposer method is called automatically when the context ends (in this case, at the end
of the request), and this parameter receives the object produced by the producer method. If the disposer method
has additional method parameters, the container will look for a bean that satisfies the type and qualifiers of each
parameter and pass it to the method automatically.

73

74

Chapter 9.

Interceptors

Interceptor functionality is defined in the Java Interceptors specification. CDI enhances this functionality with a more
sophisticated, semantic, annotation-based approach to binding interceptors to beans.

The Interceptors specification defines two kinds of interception points:

* business method interception, and
« lifecycle callback interception.
In addition, the EJB specification defines timeout method interception.

A business method interceptor applies to invocations of methods of the bean by clients of the bean:

public class Transactionlnterceptor {
@\r oundl nvoke
public Object manageTransaction(lnvocati onContext ctx) throws Exception { ... }

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container:

public class Dependencyl nj ectionlnterceptor {
@pPost Const ruct
public void injectDependenci es(lnvocationContext ctx) { ... }

An interceptor class may intercept both lifecycle callbacks and business methods.

A timeout method interceptor applies to invocations of EJB timeout methods by the container:

public class Tinmeoutlnterceptor {
@\ oundTi nmeout
public Object manageTransaction(lnvocationContext ctx) throws Exception { ... }

9.1. Interceptor bindings

Suppose we want to declare that some of our beans are transactional. The first thing we need is an interceptor
binding type to specify exactly which beans we're interested in:

@ nt er cept or Bi ndi ng

@rar get ({ METHOD, TYPE})

@Ret ent i on(RUNTI ME)

public @nterface Transactional {}

75

Chapter 9. Interceptors

Now we can easily specify that our Shoppi ngCart is a transactional object:

@r ansacti ona
public class ShoppingCart { ... }

Or, if we prefer, we can specify that just one method is transactional:

public class ShoppingCart {
@ransactional public void checkout() { ... }

9.2. Implementing interceptors

That's great, but somewhere along the line we're going to have to actually implement the interceptor that provides this
transaction management aspect. All we need to do is create a standard interceptor, and annotate it @ nt er cept or
and @Tr ansacti onal .

@ransacti onal @ nterceptor
public class Transactionlnterceptor {
@\r oundl nvoke
public Object manageTransaction(lnvocationContext ctx) throws Exception { ... }

Interceptors can take advantage of dependency injection:

@ransacti onal @ nterceptor
public class Transactionlnterceptor {

@Resour ce User Transaction transaction

@\r oundl nvoke
public Object manageTransaction(lnvocati onContext ctx) throws Exception { ... }

Multiple interceptors may use the same interceptor binding type.

9.3. Enabling interceptors

By default, all interceptors are disabled. We need to enable our interceptor in the beans. xm descriptor of a bean
archive. This activation only applies to the beans in that archive.

<beans
xm ns="http://java.sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="

76

Interceptor bindings with members

http://java. sun.com xm / ns/j avaee
http://java. sun.com xm / ns/javaee/ beans_1_0. xsd" >
<i nterceptors>
<cl ass>or g. nyconpany. nyapp. Transacti onl nt ercept or </ cl ass>
</interceptors>
</ beans>

Whoah! Why the angle bracket stew?

Well, having the XML declaration is actually a good thing. It solves two problems:

* it enables us to specify a total ordering for all the interceptors in our system, ensuring deterministic behavior, and
* itlets us enable or disable interceptor classes at deployment time.

For example, we could specify that our security interceptor runs before our transaction interceptor.

<beans
xm ns="http://java.sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://java. sun.com xm / ns/j avaee
http://java.sun.com xm / ns/javaeel/ beans_1_0. xsd" >
<i nterceptors>
<cl ass>or g. nyconpany. nyapp. Securi tylnterceptor</class>
<cl ass>org. nyconpany. nyapp. Transacti onl nt er cept or </ cl ass>
</interceptors>
</ beans>

Or we could turn them both off in our test environment by simply not mentioning them in beans. xm ! Ah, so simple.

9.4. Interceptor bindings with members

Suppose we want to add some extra information to our @ ansact i onal annotation:

@ nt er cept or Bi ndi ng
@rar get ({ METHOD, TYPE})
@Ret ent i on(RUNTI ME)
public @nterface Transactional {
bool ean requiresNew() default false

CDI will use the value of requiresNew to choose between two different interceptors,
Transact i onl nt er cept or and Requi r esNewTr ansact i onl nt ercept or.

@ransactional (requi resNew = true) @ nterceptor
public class Requi resNewTransactionl nterceptor {
@\r oundl nvoke
public Object manageTransaction(lnvocationContext ctx) throws Exception { ... }

77

Chapter 9. Interceptors

Now we can use Requi r esNewTr ansact i onl nt er cept or like this:

@ransactional (requi resNew = true)
public class ShoppingCart { ... }

But what if we only have one interceptor and we want the container to ignore the value of r equi r esNew when
binding interceptors? Perhaps this information is only useful for the interceptor implementation. We can use the
@\onbi ndi ng annotation:

@ nt er cept or Bi ndi ng
@rar get ({ METHOD, TYPE})
@Ret ent i on(RUNTI MVE)
public @nterface Secure {
@\onbi nding String[] rol esAllowed() default {};

9.5. Multiple interceptor binding annotations

Usually we use combinations of interceptor bindings types to bind multiple interceptors to a bean. For example, the
following declaration would be used to bind Tr ansact i onl nt er cept or and Securi tyl nt er cept or to the
same bean:

@ecur e(rol esAl | oned="adni n") @ransacti onal
public class ShoppingCart { ... }

However, in very complex cases, an interceptor itself may specify some combination of interceptor binding types:

@ransacti onal @ecure @ nterceptor
public class Transactional Securelnterceptor { ... }

Then this interceptor could be bound to the checkout () method using any one of the following combinations:

public class ShoppingCart {

@ransactional @ecure public void checkout() { ... }
}
@ecur e
public class ShoppingCart {
@ransactional public void checkout() { ... }
}

@r ansact i onal

78

Interceptor binding type inheritance

public class ShoppingCart {
@ecure public void checkout() { ... }

@r ansacti onal @becure
public class ShoppingCart {
public void checkout() { ... }

9.6. Interceptor binding type inheritance

One limitation of the Java language support for annotations is the lack of annotation inheritance. Really, annotations
should have reuse built in, to allow this kind of thing to work:

public @nterface Action extends Transactional, Secure { ... }

Well, fortunately, CDI works around this missing feature of Java. We may annotate one interceptor binding type with
other interceptor binding types (termed a meta-annotation). The interceptor bindings are transitive — any bean with
the first interceptor binding inherits the interceptor bindings declared as meta-annotations.

@r ansacti onal @becure

@ nt er cept or Bi ndi ng

@rar get (TYPE)

@Ret ent i on(RUNTI VE)

public @nterface Action { ... }

Now, any bean annotated @A\ction will be bound to both Transactionlnterceptor and
Securitylnterceptor.(Andeven Transacti onal Secur el nt er cept or , if it exists.)

9.7. Use of @nterceptors

The @ nt er cept or s annotation defined by the interceptor specification (and used by the managed bean and EJB
specifications) is still supported in CDI.

@nterceptors({Transactionlnterceptor.class, Securitylnterceptor.class})
public class ShoppingCart {
public void checkout() { ... }

However, this approach suffers the following drawbacks:

* the interceptor implementation is hardcoded in business code,
* interceptors may not be easily disabled at deployment time, and

« the interceptor ordering is non-global — it is determined by the order in which interceptors are listed at the class
level.

79

Chapter 9. Interceptors

Therefore, we recommend the use of CDI-style interceptor bindings.

80

Chapter 10.

Decorators

Interceptors are a powerful way to capture and separate concerns which are orthogonal to the application (and
type system). Any interceptor is able to intercept invocations of any Java type. This makes them perfect for solving
technical concerns such as transaction management, security and call logging. However, by nature, interceptors
are unaware of the actual semantics of the events they intercept. Thus, interceptors aren't an appropriate tool for
separating business-related concerns.

The reverse is true of decorators. A decorator intercepts invocations only for a certain Java interface, and is therefore
aware of all the semantics attached to that interface. Since decorators directly implement operations with business
semantics, it makes them the perfect tool for modeling some kinds of business concerns. It also means that a
decorator doesn't have the generality of an interceptor. Decorators aren't able to solve technical concerns that cut
across many disparate types. Interceptors and decorators, though similar in many ways, are complementary. Let's
look at some cases where decorators fit the bill.

Suppose we have an interface that represents accounts:

public interface Account {
publ i c Bi gDeci mal get Bal ance();
public User getOwner();
public void withdraw Bi gDeci mal anount);
public void deposit(BigDeci nal anpunt);

Several different beans in our system implement the Account interface. However, we have a common legal
requirement that; for any kind of account, large transactions must be recorded by the system in a special log. This
is a perfect job for a decorator.

A decorator is a bean (possibly even an abstract class) that implements the type it decorates and is annotated
@ecor at or.

@ecor at or
public abstract class LargeTransacti onDecor at or
i npl enents Account {

The decorator implements the methods of the decorated type that it wants to intercept.

@ecor at or
public abstract class LargeTransacti onDecor ator
i mpl enents Account {
@nject @el egate @ny Account account;

@er si stenceCont ext EntityManager em

public void withdraw Bi gDeci mal anopunt) {

81

Chapter 10. Decorators

public void deposit(Bi gDeci mal anpunt);

Unlike other beans, a decorator may be an abstract class. Therefore, if there's nothing special the decorator needs
to do for a particular method of the decorated interface, you don't need to implement that method.

Interceptors for a method are called before decorators that apply to the method.

10.1. Delegate object

Decorators have a special injection point, called the delegate injection point, with the same type as the beans they
decorate, and the annotation @el egat e. There must be exactly one delegate injection point, which can be a
constructor parameter, initializer method parameter or injected field.

@ecor at or
public abstract class LargeTransacti onDecor ator
i mpl enents Account {
@nject @el egate @ny Account account;

A decorator is bound to any bean which:

* has the type of the delegate injection point as a bean type, and
* has all qualifiers that are declared at the delegate injection point.

This delegate injection point specifies that the decorator is bound to all beans that implement Account :
@nj ect @el egate @ny Account account;

A delegate injection point may specify any number of qualifier annotations. The decorator will only be bound to beans
with the same qualifiers.

@nj ect @el egate @oreign Account account;

The decorator may invoke the delegate object, which has much the same effect as calling
I nvocat i onCont ext . proceed() from an interceptor. The main difference is that the decorator can invoke
any business method on the delegate object.

@ecor at or
public abstract class LargeTransacti onDecor at or
i npl enents Account {
@nj ect @el egate @ny Account account;

@er si st enceCont ext EntityManager em

82

Enabling decorators

public void withdraw Bi gDeci mal anopunt) {
account . wi t hdraw(anount) ;
if (anopunt.conpareTo(LARGE_AMOUNT) >0) {
em persi st(new LoggedW t hdraw (anount));

public void deposit(Bi gDeci mal anpunt);
account . deposi t (anount) ;
if (anount.conpareTo(LARGE_AMOUNT) >0) {
em persi st (new LoggedDeposit (anmount));

10.2. Enabling decorators

By default, all decorators are disabled. We need to enable our decorator in the beans. xm descriptor of a bean
archive. This activation only applies to the beans in that archive.

<beans
xm ns="http://java. sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://java. sun.com xm / ns/j avaee
http://java.sun.com xm / ns/javaee/ beans_1_0. xsd" >
<decor at or s>
<cl ass>or g. nyconpany. myapp. Lar geTr ansact i onDecor at or </ c|l ass>
</ decor at or s>
</ beans>

This declaration serves the same purpose for decorators that the <i nt er cept or s> declaration serves for
interceptors:

« it enables us to specify a total ordering for all decorators in our system, ensuring deterministic behavior, and

* itlets us enable or disable decorator classes at deployment time.

83

84

Chapter 11.

Events

Dependency injection enables loose-coupling by allowing the implementation of the injected bean type to vary, either
a deployment time or runtime. Events go one step further, allowing beans to interact with no compile time dependency
at all. Event producers raise events that are delivered to event observers by the container.

This basic schema might sound like the familiar observer/observable pattern, but there are a couple of twists:

* not only are event producers decoupled from observers; observers are completely decoupled from producers,
» observers can specify a combination of "selectors" to narrow the set of event notifications they will receive, and

« observers can be notified immediately, or can specify that delivery of the event should be delayed until the end
of the current transaction.

The CDI event notification facility uses more or less the same typesafe approach that we've already seen with the
dependency injection service.

11.1. Event payload

The event object carries state from producer to consumer. The event object is nothing more than an instance of
a concrete Java class. (The only restriction is that an event type may not contain type variables). An event may
be assigned qualifiers, which allows observers to distinguish it from other events of the same type. The qualifiers
function like topic selectors, allowing an observer to narrow the set of events it observes.

An event qualifier is just a normal qualifier, defined using @ual i fi er . Here's an example:

@ualifier

@rar get ({ FI ELD, PARAVETER})
@Ret ent i on(RUNTI ME)

public @nterface Updated {}

11.2. Event observers

An observer method is a method of a bean with a parameter annotated @bser ves.
public void onAnyDocunent Event (@hbserves Docunent docunent) { ... }

The annotated parameter is called the event parameter. The type of the event parameter is the observed event type,
in this case Docunent . The event parameter may also specify qualifiers.

public void afterDocunment Updat e(@bserves @Jpdated Docunment docunent) { ... }

An observer method need not specify any event qualifiers—in this case it is interested in all events of a particular
type. If it does specify qualifiers, it's only interested in events which have those qualifiers.

The observer method may have additional parameters, which are injection points:

85

Chapter 11. Events

public void afterDocunent Updat e(@bserves @Jpdated Docunment docunent, User user) { ... }

11.3. Event producers

Event producers fire events using an instance of the parameterized Event interface. An instance of this interface
is obtained by injection:

@nj ect @\ny Event <Docunent > docunent Event;

A producer raises events by calling the fi r e() method of the Event interface, passing the event object:
docunent Event . fire(docunent);

This particular event will be delivered to every observer method that:

 has an event parameter to which the event object (the Docunent) is assignable, and
« specifies no qualifiers.

The container simply calls all the observer methods, passing the event object as the value of the event parameter.
If any observer method throws an exception, the container stops calling observer methods, and the exception is
rethrown by the fi r e() method.

Qualifiers can be applied to an event in one of two ways:

* by annotating the Event injection point, or
* by passing qualifiers to the sel ect () of Event.

Specifying the qualifiers at the injection point is far simpler:
@ nj ect @Jpdat ed Event <Docunent > docunent Updat edEvent ;

Then, every event fired via this instance of Event has the event qualifier @Jpdat ed. The event is delivered to
every observer method that:

* has an event parameter to which the event object is assignable, and

» does not have any event qualifier except for the event qualifiers that match those specified at the Event injection
point.

The downside of annotating the injection point is that we can't specify the qualifier dynamically. CDI lets us obtain
a qualifier instance by subclassing the helper class Annot at i onLi t er al . That way, we can pass the qualifier
to the sel ect () method of Event .

86

Conditional observer methods

docunent Event . sel ect (new Annot ati onLi teral <Updated>(){}).fire(document);

Events can have multiple event qualifiers, assembled using any combination of annotations at the Event injection
point and qualifier instances passed to the sel ect () method.

11.4. Conditional observer methods

By default, if there is no instance of an observer in the current context, the container will instantiate the observer in
order to deliver an event to it. This behavior isn't always desirable. We may want to deliver events only to instances
of the observer that already exist in the current contexts.

A conditional observer is specified by adding r ecei ve = | F_EXI STSto the @bser ves annotation.
public void refreshOnDocunent Updat e(@bserves(recei ve = | F_EXI STS) @Jpdat ed Docunent d) { ... }

A bean with scope @ependent cannot be a conditional observer, since it would never be called!

11.5. Event qualifiers with members

An event qualifier type may have annotation members:
@ualifier

@rar get ({ PARAVETER, FI ELD})

@Ret ent i on(RUNTI VE)

public @nterface Role {
Rol eType val ue();

The member value is used to narrow the messages delivered to the observer:
public void adm nLoggedl n(@bserves @Rol e(ADM N) Loggedin event) { ... }

Event qualifier type members may be specified statically by the event producer, via annotations at the event notifier
injection point:

@nj ect @Rol e(ADM N) Event <Logged| n> | oggedl| nEvent ;

Alternatively, the value of the event qualifier type member may be determined dynamically by the event producer.
We start by writing an abstract subclass of Annot ati onLi teral :

abstract class Rol eBi ndi ng
ext ends Annot ati onLi t er al <Rol e>
i npl enents Role {}

87

Chapter 11. Events

The event producer passes an instance of this class to sel ect () :

docunent Event . sel ect (new Rol eBi ndi ng() {
public void value() { return user.getRole(); }
}).fire(docunent);

11.6. Multiple event qualifiers

Event qualifier types may be combined, for example:

@nject @l og Event <Docunent > bl ogEvent ;

if (docunent.isBlog()) blogEvent.select(new AnnotationLiteral <Updated>(){}).fire(docunent);

When this event occurs, all of the following observer methods will be notified:

public void afterBl ogUpdat e(@bserves @Jpdated @l og Docunent docunent) { ... }
public void afterDocunent Updat e(@bserves @Jpdated Docunment docunent) { ... }
public void onAnyBl ogEvent (@bserves @Bl og Docunment docunent) { ... }

public void onAnyDocunent Event (@bserves Docunment docunent) { ... }}}

11.7. Transactional observers

Transactional observers receive their event notifications during the before or after completion phase of the
transaction in which the event was raised. For example, the following observer method needs to refresh a query result
set that is cached in the application context, but only when transactions that update the Cat egor y tree succeed:

public void refreshCategoryTree(@hbserves(during = AFTER_SUCCESS) Cat egor yUpdat eEvent event) {

There are five kinds of transactional observers:

* | N_PROCGESS observers are called immediately (default)

AFTER_SUCCESS observers are called during the after completion phase of the transaction, but only if the
transaction completes successfully

88

Transactional observers

 AFTER FAI LURE observers are called during the after completion phase of the transaction, but only if the
transaction fails to complete successfully

« AFTER_COWVPLETI ON observers are called during the after completion phase of the transaction
« BEFORE_COMPLETI ON observers are called during the before completion phase of the transaction

Transactional observers are very important in a stateful object model because state is often held for longer than a
single atomic transaction.

Imagine that we have cached a JPA query result set in the application scope:

@\ppl i cati onScoped @i ngl et on
public class Catal og {

@er si stenceCont ext EntityManager em
Li st <Product > products;

@r oduces @at al og
Li st <Product > get Catal og() {
if (products==null) {
products = emcreateQuery("select p from Product p where p.deleted = fal se")
.getResul tList();
}

return products;

From time to time, a Pr oduct is created or deleted. When this occurs, we need to refresh the Pr oduct catalog.
But we should wait until after the transaction completes successfully before performing this refresh!

The bean that creates and deletes Pr oduct s could raise events, for example:

@t at el ess

public class ProductManager {
@ersi st enceCont ext EntityManager em
@nj ect @ny Event <Product> product Event;

public void del ete(Product product) {
em del et e(product);
product Event . sel ect (new Annot ati onLiteral <Del eted>(){}).fire(product);

public void persist(Product product) {
em per si st (product);
product Event . sel ect (new Annot ati onLiteral <Created>(){}).fire(product);

And now Cat al og can observe the events after successful completion of the transaction:

89

Chapter 11. Events

@\ppl i cati onScoped @i ngl et on
public class Catal og {

voi d addProduct (@bser ves(during
product s. add(product);

voi d addProduct (@bser ves(during
product s. renove(product) ;

AFTER_SUCCESS) @reated Product product) {

AFTER_SUCCESS) @pel eted Product product) {

90

Chapter 12.

Stereotypes

The CDI specification defines a stereotype as follows:

In many systems, use of architectural patterns produces a set of recurring bean roles. A
stereotype allows a framework developer to identify such a role and declare some common
metadata for beans with that role in a central place.

A stereotype encapsulates any combination of:

» adefault scope, and
 a set of interceptor bindings.

A stereotype may also specify that:

« all beans with the stereotype have defaulted bean EL names, or that
« all beans with the stereotype are alternatives.

A bean may declare zero, one or multiple stereotypes. Stereotype annotations may be applied
to a bean class or producer method or field.

A stereotype is an annotation, annotated @5t er eot ype, that packages several other annotations. For instance,
the following stereotype identifies action classes in some MVC framework:

@5t er eot ype
@Ret ent i on(RUNTI ME)
@rar get (TYPE)

public @nterface Action {}
We use the stereotype by applying the annotation to a bean.

@\ction
public class LoginAction { ... }

Of course, we need to apply some other annotations to our stereotype or else it wouldn't be adding much value.

12.1. Default scope for a stereotype

A stereotype may specify a default scope for beans annotated with the stereotype. For example:

@Request Scoped

@5t er eot ype

@Ret ent i on(RUNTI VE)
@rar get (TYPE)

91

Chapter 12. Stereotypes

public @nterface Action {}
A particular action may still override this default if necessary:

@ependent @Action
public class Dependent ScopedLogi nAction { ... }

Naturally, overriding a single default isn't much use. But remember, stereotypes can define more than just the default
scope.

12.2. Interceptor bindings for stereotypes

A stereotype may specify a set of interceptor bindings to be inherited by all beans with that stereotype.

@Request Scoped

@ ansacti onal (requi resNew=true)
@ecur e

@t er eot ype

@Ret ent i on(RUNTI VE)

@rar get (TYPE)

public @nterface Action {}

This helps us get technical concerns, like transactions and security, even further away from the business code!

12.3. Name defaulting with stereotypes

We can specify that all beans with a certain stereotype have a defaulted EL hame when a name is not explicitly
defined for that bean. All we need to do is add an empty @Nared annotation:

@Request Scoped

@ ansacti onal (requi resNew=t r ue)
@ecur e

@\aned

@bt er eot ype

@ret ent i on(RUNTI ME)

@rar get (TYPE)

public @nterface Action {}

Now, the Logi nAct i on bean will have the defaulted name | ogi nAct i on.

12.4. Alternative stereotypes

A stereotype can indicate that all beans to which it is applied are @\l t er nat i ves. An alternative stereotype lets
us classify beans by deployment scenario.

@\ ternative
@5t er eot ype

92

Stereotype stacking

@Ret ent i on(RUNTI VE)
@rar get (TYPE)
public @nterface Mck {}

We can apply an alternative stereotype to a whole set of beans, and activate them all with one line of code in
beans. xnm .

@mbck
public class MbckLogi nAction extends LoginAction { ... }

12.5. Stereotype stacking

This may blow your mind a bit, but stereotypes may declare other stereotypes, which we'll call stereotype stacking.
You may want to do this if you have two distinct stereotypes which are meaningful on their own, but in other situation
may be meaningful when combined.

Here's an example that combines the @Act i on and @Audi t abl e stereotypes:

@\udi t abl e

@\ction

@5t er eot ype

@rar get (TYPE)

@ret ent i on(RUNTI ME)

public @nterface Auditabl eAction {}

12.6. Built-in stereotypes

We've already met two standard stereotypes defined by the CDI specification: @ nt er cept or and @ecor at or .

CDI defines one further standard stereotype, @/bdel , which is expected to be used frequently in web applications:

@\aned

@Request Scoped

@5t er eot ype

@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI VE)

public @nterface Mdel {}

Instead of using JSF managed beans, just annotate a bean @/bdel , and use it directly in your JSF view!

93

94

Chapter 13.

Specialization, inheritance and
alternatives

When you first start developing with CDI, you'll likely be dealing only with a single bean implementation for each
bean type. In this case, it's easy to understand how beans get selected for injection. As the complexity of your
application grows, multiple occurrences of the same bean type start appearing, either because you have multiple
implementations or two beans share a common (Java) inheritance. That's when you have to begin studying the
specialization, inheritance and alternative rules to work through unsatisfied or ambiguous dependencies or to avoid
certain beans from being called.

The CDI specification recognizes two distinct scenarios in which one bean extends another:

* The second bean specializes the first bean in certain deployment scenarios. In these
deployments, the second bean completely replaces the first, fulfilling the same role in the
system.

» The second bean is simply reusing the Java implementation, and otherwise bears no relation to
the first bean. The first bean may not even have been designed for use as a contextual object.

The second case is the default assumed by CDI. It's possible to have two beans in the system with the same part
bean type (interface or parent class). As you've learned, you select between the two implementations using qualifiers.

The first case is the exception, and also requires more care. In any given deployment, only one bean can fulfill a given
role at a time. That means one bean needs to be enabled and the other disabled. There are a two modifiers involved:
@\ ternative and @peci al i zes. We'll start by looking at alternatives and then show the guarantees that
specialization adds.

13.1. Using alternative stereotypes

CDlI lets you override the implementation of a bean type at deployment time using an alternative. For example, the
following bean provides a default implementation of the Payment Pr ocessor interface:

public class Defaul t Paynent Processor
i npl enents Payment Processor {

But in our staging environment, we don't really want to submit payments to the external system, so we override that
implementation of Paynment Pr ocessor with a different bean:

public @\ ternative
cl ass St agi ngPaynment Processor
i npl enents Payment Processor {

or

95

Chapter 13. Specialization, i...

public @\ ternative
cl ass St agi ngPaynent Processor
ext ends Def aul t Paynent Processor {

We've already seen how we can enable this alternative by listing its class in the beans. xm descriptor.

But suppose we have many alternatives in the staging environment. It would be much more convenient to be able to
enable them all at once. So let's make @bt agi ng an @Al t er nat i ve stereotype and annotate the staging beans
with this stereotype instead. You'll see how this level of indirection pays off. First, we create the stereotype:

@\ ternative

@bt er eot ype

@Ret ent i on(RUNTI ME)

@rar get (TYPE)

public @nterface Staging {}

Then we replace the @\l t er nat i ve annotation on our bean with @5t agi ng:

@Bt agi ng
public class Stagi ngPaynent Processor
i npl enents Payment Processor {

Finally, we activate the @bt agi ng stereotype in the beans. xm descriptor:

<beans
xm ns="http://java. sun. com xm / ns/ j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://java. sun. comf xm / ns/j avaee
http://java. sun.com xm / ns/j avaee/ beans_1_0. xsd" >
<alternatives>
<stereotype>org. nyconpany. myapp. St agi ng</ st er eot ype>
</alternatives>
</ beans>

Now, no matter how many staging beans we have, they will all be enabled at once.

13.2. A minor problem with alternatives

When we enable an alternative, does that mean the default implementation is disabled? Well, not exactly. If the
default implementation has a qualifier, for instance @.ar geTr ansact i on, and the alternative does not, you could
still inject the default implementation.

96

Using specialization

@nj ect @argeTransaction Paynent Processor paynent Processor;

So we haven't completely replaced the default implementation in this deployment of the system. The only way one
bean can completely override a second bean at all injection points is if it implements all the bean types and declares
all the qualifiers of the second bean. However, if the second bean declares a producer method or observer method,
then even this is not enough to ensure that the second bean is never called! We need something extra.

CDI provides a special feature, called specialization, that helps the developer avoid these traps. Specialization is a
way of informing the system of your intent to completely replace and disable an implementation of a bean.

13.3. Using specialization

When the goal is to replace one bean implementation with a second, to help prevent developer error, the first bean
may:

« directly extend the bean class of the second bean, or

« directly override the producer method, in the case that the second bean is a producer method, and then

explicitly declare that it specializes the second bean:

@\ ternative @bpecializes
public class MyckCredit CardPayment Processor
ext ends Credit CardPaynent Processor {

When an enabled bean specializes another bean, the other bean is never instantiated or called by the container.
Even if the other bean defines a producer or observer method, the method will never be called.

So why does specialization work, and what does it have to do with inheritance?

Since we're informing the container that our alternative bean is meant to stand in as a replacement for
the default implementation, the alternative implementation automatically inherits all qualifiers of the default
implementation. Thus, in our example, MockCr edi t Car dPaynent Pr ocessor inherits the qualifiers @ef aul t
and @r edi t Car d.

Furthermore, if the default implementation declares a bean EL name using @Naned, the name is inherited by the
specialized alternative bean.

97

98

Chapter 14.

Java EE component environment
resources

Java EE 5 already introduced some limited support for dependency injection, in the form of component environment
injection. A component environment resource is a Java EE component, for example a JDBC datasource, JMS queue
or topic, JPA persistence context, remote EJB or web service.

Naturally, there is now a slight mismatch with the new style of dependency injection in CDI. Most notably, component
environment injection relies on string-based names to qualify ambiguous types, and there is no real consistency as
to the nature of the names (sometimes a JNDI hame, sometimes a persistence unit name, sometimes an EJB link,
sometimes a nonportable "mapped name"). Producer fields turned out to be an elegant adaptor to reduce all this
complexity to a common model and get component environment resources to participate in the CDI system just like
any other kind of bean.

Fields have a duality in that they can both be the target of Java EE component environment injection and be
declared as a CDI producer field. Therefore, they can define a mapping from a string-based name in the component
environment, to a combination of type and qualifiers used in the world of typesafe injection. We call a producer field
that represents a reference to an object in the Java EE component environment a resource.

14.1. Defining a resource

The CDI specification uses the term resource to refer, generically, to any of the following kinds of object which might
be available in the Java EE component environment:

- JDBC Dat asour ces, JMS Queues, Topi ¢cs and Connecti onFact orys, JavaMail Sessi ons and other
transactional resources including JCA connectors,

-« JPAENtityManagersand EntityManager Fact orys,
* remote EJBs, and
* web services

We declare a resource by annotating a producer field with a component environment injection annotation:
@Resour ce, @JB, @&er si st enceCont ext, @&er si stenceUnit or @ébSer vi ceRef .

@roduces @ebServi ceRef (1 ookup="j ava: app/ servi ce/ Cat al 0g")
Cat al og cat al og;

@r oduces @resour ce(| ookup="j ava: gl obal / env/j dbc/ Cust oner Dat asour ce")
@ust oner Dat abase Dat asour ce cust oner Dat abase;

@°r oduces @ersi st enceCont ext (uni t Nane="Cust oner Dat abase")
@ust oner Dat abase EntityManager custoner Dat abasePersi st enceCont ext ;

@°r oduces @Per si st enceUnit (unit Name="Cust oner Dat abase")

99

Chapter 14. Java EE component...

@cust oner Dat abase EntityManager Fact ory cust onmer Dat abasePer si st enceUnit;

@°roduces @EJB(ej bLi nk="../their.|ar#Paynent Service")
Paynment Servi ce paynent Servi ce;

The field may be static (but not final).

A resource declaration really contains two pieces of information:

» the JNDI name, EJB link, persistence unit name, or other metadata needed to obtain a reference to the resource
from the component environment, and

« the type and qualifiers that we will use to inject the reference into our beans.

Tip

It might feel strange to be declaring resources in Java code. Isn't this stuff that might be
deployment-specific? Certainly, and that's why it makes sense to declare your resources in a class
annotated @\l t er nat i ve.

14.2. Typesafe resource injection

These resources can now be injected in the usual way.

@ nj ect Catal og catal og;

@ nj ect @cust onmer Dat abase Dat asour ce cust oner Dat abase;

@ nj ect @ustoner Dat abase EntityManager custoner Dat abaseEntityManager ;

@ nj ect @ustoner Dat abase EntityManager Fact ory cust oner Dat abaseEnt it yManager Factory;

@ nj ect Paynent Servi ce paymnent Servi ce;

The bean type and qualifiers of the resource are determined by the producer field declaration.

It might seem like a pain to have to write these extra producer field declarations, just to gain an additional level of
indirection. You could just as well use component environment injection directly, right? But remember that you're
going to be using resources like the Ent i t yManager in several different beans. Isn't it nicer and more typesafe
to write

100

Typesafe resource injection

@nj ect @ust oner Dat abase EntityManager

instead of

@er si st enceCont ext (uni t Nane=" Cust omer Dat abase") EntityManager

all over the place?

101

102

Part IV. CDI and the
Java EE ecosystem

The third theme of CDI is integration. We've already seen how CDI helps integrate EJB and JSF, allowing EJBs
to be bound directly to JSF pages. That's just the beginning. The CDI services are integrated into the very core of
the Java EE platform. Even EJB session beans can take advantage of the dependency injection, event bus, and
contextual lifecycle management that CDI provides.

CDl is also designed to work in concert with technologies outside of the platform by providing integration points
into the Java EE platform via an SPI. This SPI positions CDI as the foundation for a new ecosystem of portable
extensions and integration with existing frameworks and technologies. The CDI services will be able to reach a
diverse collection of technologies, such as business process management (BPM) engines, existing web frameworks
and de facto standard component models. Of course, The Java EE platform will never be able to standardize all the
interesting technologies that are used in the world of Java application development, but CDI makes it easier to use
the technologies which are not yet part of the platform seamlessly within the Java EE environment.

We're about to see how to take full advantage of the Java EE platform in an application that uses CDI. We'll also
briefly meet a set of SPIs that are provided to support portable extensions to CDI. You might not ever need to use
these SPIs directly, but don't take them for granted. You will likely be using them indirectly, every time you use a
third-party extension, such as Seam.

Chapter 15.

Java EE integration

CDl is fully integrated into the Java EE environment. Beans have access to Java EE resources and JPA persistence
contexts. They may be used in Unified EL expressions in JSF and JSP pages. They may even be injected into other
platform components, such as servlets and message-driven Beans, which are not beans themselves.

15.1. Built-in beans

In the Java EE environment, the container provides the following built-in beans, all with the qualifier @ef aul t :

« the current JTA User Tr ansact i on,
e aPrincipal representing the current caller identity,

« the default Bean Validation [http://jcp.org/en/jsr/detail?id=303] Val i dat i onFact ory, and

e aVal i dat or for the default Val i dati onFactory.

Tip

Oh, you really want to inject the FacesCont ext ? Alright then, try this producer method:

cl ass FacesCont ext Producer {
@r oduces @Request Scoped FacesCont ext get FacesContext() {
return FacesContext.getCurrentlnstance();

}

15.2. Injecting Java EE resources into a bean

All managed beans may take advantage of Java EE component environment injection using @esour ce, @JB,
@Per si st enceCont ext, @eri stenceUnit and @\ébServi ceRef. We've already seen a couple of
examples of this, though we didn't pay much attention at the time:

@ransactional @ nterceptor
public class Transactionlnterceptor {
@Resour ce User Transacti on transaction;

105

http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303

Chapter 15. Java EE integration

@\ oundl nvoke public Obj ect manageTransaction(lnvocationContext ctx) throws Exception { ... }

@Bessi onScoped

public class Login inplenments Serializable {
@nject Credentials credentials;
@er si stenceCont ext EntityManager user Dat abase;

The Java EE @o0st Construct and @r eDest r oy callbacks are also supported for all managed beans. The
@Post Const ruct method is called after all injection has been performed.

Of course, we advise that component environment injection be used to define CDI resources, and that typesafe
injection be used in application code.

15.3. Calling a bean from a servlet

It's easy to use a bean from a servlet in Java EE 6. Simply inject the bean using field or initializer method injection.

public class Login extends HttpServlet {
@nject Credentials credentials;
@nject Login |ogin;

@verride
public void service(HttpServl et Request request, HttpServl et Response response)
throws Servl et Exception, | OException {
credenti al s. set User nane(r equest . get Par anet er ("user nane")):
credenti al s. set Passwor d(request. get Paranet er (" password")):
login.login();
if (login.isLoggedin()) {
response. sendRedi rect ("/ hone. jsp");

}
el se {

response. sendRedi rect ("/1 ogi nError.jsp");
}

Since instances of servlets are shared across all incoming threads, the bean client proxy takes care of routing
method invocations from the servlet to the correct instances of Cr edent i al s and Logi n for the current request
and HTTP session.

15.4. Calling a bean from a message-driven bean

CDl injection applies to all EJBs, even when they aren't managed beans. In particular, you can use CDI injection in
message-driven beans, which are by nature not contextual objects.

You can even use CDI interceptor bindings for message-driven Beans.

106

JMS endpoints

@ransacti onal @essageDriven

public class ProcessOrder inplenents MessagelLi stener {
@nject Inventory inventory;
@er si st enceCont ext EntityManager em

public void onMessage(Message nessage) {

Please note that there is no session or conversation context available when a message is delivered to a message-
driven bean. Only @Request Scoped and @\pp! i cat i onScoped beans are available.

But how about beans which send JMS messages?

15.5. JMS endpoints

Sending messages using JMS can be quite complex, because of the number of different objects you need to
deal with. For queues we have Queue, QueueConnecti onFact ory, QueueConnecti on, QueueSessi on
and QueueSender. For topics we have Topi c, Topi cConnecti onFactory, Topi cConnecti on,
Topi cSessi on and Topi cPubl i sher . Each of these objects has its own lifecycle and threading model that
we need to worry about.

You can use producer fields and methods to prepare all of these resources for injection into a bean:

public class O derResources {
@Resour ce(nane="j ns/ Connect i onFact ory")
private ConnectionFactory connectionFactory;

@resour ce(nane="j s/ Or der Queue")
private Queue order Queue;

@roduces @ der Connecti on
publ i c Connection createO derConnection() throws JMSException {
return connectionFactory. creat eConnection();

}

public void closeO derConnection(@i sposes @ der Connecti on Connection connecti on)
throws JMSException {
connection. cl ose();

@°r oduces @ der Sessi on
public Session createO der Sessi on(@ der Connecti on Connecti on connecti on)
throws JMSException {
return connection. createSession(true, Session. AUTO ACKNOALEDGE) ;

public void closeOr derSessi on(@i sposes @ der Sessi on Sessi on sessi on)
throws JMSException {
session. cl ose();

@r oduces @ der MessagePr oducer
publ i c MessageProducer createO der MessageProducer (@x der Sessi on Sessi on sessi on)

107

Chapter 15. Java EE integration

throws JMSException {
return session. createProducer (order Queue);

public void cl oseOr der MessageProducer (@i sposes @ der MessageProducer MessageProducer producer)
throws JMSException {
producer. cl ose();

In this example, we can just inject the prepared MessagePr oducer , Connect i on or QueueSessi on:

@nject Oder order;
@nj ect @ der MessageProducer MessageProducer producer;
@nj ect @rderSessi on QueueSessi on order Sessi on;

public void sendMessage() {
MapMessage nmsg = order Sessi on. cr eat eMapMessage() ;
nsg. set Long("orderld", order.getld());

producer. send(nsg) ;

The lifecycle of the injected JMS objects is completely controlled by the container.

15.6. Packaging and deployment

CDI doesn't define any special deployment archive. You can package beans injars, ejb jars or wars—any deployment
location in the application classpath. However, the archive must be a "bean archive". That means each archive that
contains beans must include a file named beans. xm in the META- | NF directory of the classpath or WEB- | NF
directory of the web root (for war archives). The file may be empty. Beans deployed in archives that do not have a
beans. xm file will not be available for use in the application.

In an embeddable EJB container, beans may be deployed in any location in which EJBs may be deployed. Again,
each location must contain a beans. xm file.

108

Chapter 16.

Portable extensions

CDl is intended to be a foundation for frameworks, extensions and integration with other technologies. Therefore,
CDI exposes a set of SPIs for the use of developers of portable extensions to CDI. For example, the following kinds
of extensions were envisaged by the designers of CDI:

« integration with Business Process Management engines,

* integration with third-party frameworks such as Spring, Seam, GWT or Wicket, and
* new technology based upon the CDI programming model.

More formally, according to the spec:

A portable extension may integrate with the container by:

« Providing its own beans, interceptors and decorators to the container
« Injecting dependencies into its own objects using the dependency injection service
» Providing a context implementation for a custom scope

» Augmenting or overriding the annotation-based metadata with metadata from some other
source

16.1. Creating adlN Extension

The first step in creating a portable extension is to write a class that implements Ext ensi on. This marker interface
does not define any methods, but it's needed to satisfy the requirements of Java SE's service provider architecture.

cl ass MyExtension inplenents Extension { ... }

Next, we need to register our extension as a service provider by creating a file named META- | NF/ ser vi ces/
javax.enterprise.inject.spi.Extension, which contains the name of our extension class:

or g. mydomai n. ext ensi on. M/Ext ensi on

An extension is not a bean, exactly, since it is instantiated by the container during the initialization process, before
any beans or contexts exist. However, it can be injected into other beans once the initialization process is complete.

@ nj ect
MyBean(MyExt ensi on nyExt ensi on) {
nmyExt ensi on. doSoret hi ng() ;

And, like beans, extensions can have observer methods. Usually, the observer methods observe container lifecycle
events.

109

Chapter 16. Portable extensions

16.2. Container lifecycle events

During the initialization process, the container fires a series of events, including:

« Bef or eBeanDi scovery

« ProcessAnnot at edType

« Processl njectionTarget and ProcessProducer
» ProcessBean and ProcessCbser ver Met hod

« AfterBeanDi scovery

« AfterDepl oynment Val i dati on

Extensions may observe these events:

cl ass MyExtension inplenments Extension {
voi d bef or eBeanDi scover y(@bserves BeforeBeanDi scovery bbd) {

Logger . gl obal . debug("begi nni ng the scanni ng process");

<T> voi d processAnnot at edType(@bserves ProcessAnnot at edType<T> pat) {
Logger. gl obal . debug("scanni ng type: " + pat.getAnnot atedType(). getJavad ass().get Narme());

voi d afterBeanDi scovery(@bserves AfterBeanD scovery abd) {
Logger . gl obal . debug("fi ni shed the scanning process");

In fact, the extension can do a lot more than just observe. The extension is permitted to modify the container's
metamodel and more. Here's a very simple example:

cl ass MyExtension inplenents Extension {

<T> voi d processAnnot at edType(@bserves ProcessAnnot at edType<T> pat) {
/ltell the container to ignore the type if it is annotated @gnore
if (pat.getAnnotatedType().isAnnotionPresent(lgnore.class)) pat.veto();

The observer method may inject a BeanManager

<T> voi d processAnnot at edType(@bserves ProcessAnnot at edType<T> pat, BeanManager beanManager) {

110

The BeanManager object

16.3. The BeanManager ObjeCt

The nerve center for extending CDI is the BeanManager object. The BeanManager interface lets us obtain beans,
interceptors, decorators, observers and contexts programmatically.

public i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

nterface BeanManager {

C
Cc
Cc
C
C
Cc
Cc
C
Cc
Cc
Cc
C
C
Cc
Cc
C
C
Cc
Cc
C
C
Cc
Cc
C
C

Obj ect get Ref erence(Bean<?> bean, Type beanType, Creational Context<?> ctx);

bj ect getlnjectabl eReference(lnjectionPoint ij, Creational Context<?> ctx);
<T> Creational Cont ext <T> creat eCreati onal Cont ext (Cont ext ual <T> cont extual) ;
Set <Bean<?>> get Beans(Type beanType, Annotation... qualifiers);

Set <Bean<?>> get Beans(Stri ng nane);

Bean<?> get Passi vati onCapabl eBean(String id);

<X> Bean<? extends X> resol ve(Set <Bean<? extends X>> beans);
voi d val i date(lnjectionPoint injectionPoint);

void fireEvent (Cbject event, Annotation... qualifiers);

<T> Set <Observer Met hod<? super T>> resol veCbserver Met hods(T event, Annotation... qualifiers);

Li st <Decor at or <?>> resol veDecor at or s(Set <Type> types, Annotation... qualifiers);

Li st<I nterceptor<?>> resol velnterceptors(lntercepti onType type, Annotation... interceptorBindings);

bool ean i sScope(C ass<? extends Annotati on> annotati onType);

bool ean i sNor mal Scope(Cl ass<? extends Annotation> annotationType);

bool ean i sPassi vati ngScope(C ass<? extends Annotati on> annotati onType);

bool ean i sQualifier(d ass<? extends Annotation> annotationType);

bool ean i sl nterceptorBindi ng(C ass<? extends Annotation> annotati onType);

bool ean isStereotype(Cd ass<? extends Annotation> annotati onType);

Set <Annot ati on> get | nt er cept or Bi ndi ngDefi ni ti on(C ass<? extends Annotation> bi ndi ngType) ;
Set <Annot at i on> get St er eot ypeDefini ti on(Cd ass<? extends Annotation> stereotype);
Cont ext get Cont ext (O ass<? extends Annotation> scopeType);

ELResol ver get ELResol ver();

Expr essi onFact ory w apExpr essi onFact or y(Expressi onFactory expressi onFactory);
<T> Annot at edType<T> cr eat eAnnot at edType(d ass<T> type);

<T> | njectionTarget <T> createlnjectionTarget (Annot at edType<T> type);

Any bean or other Java EE component which supports injection can obtain an instance of BeanManager via

injection:

@ nj ect BeanManager beanManager ;

Java EE components may obtain an instance of BeanManager from JNDI by looking up the name j ava: conp/
BeanManager . Any operation of BeanManager may be called at any time during the execution of the application.

Let's study some of the interfaces exposed by the BeanManager .

16.4. The | nj ecti onTar get interface

The first thing that a framework developer is going to look for in the portable extension SPI is a way to inject CDI
beans into objects which are not under the control of CDI. The | nj ect i onTar get interface makes this very easy.

111

Chapter 16. Portable extensions

Tip

We recommend that frameworks let CDI take over the job of actually instantiating the framework-
controlled objects. That way, the framework-controlled objects can take advantage of constructor
injection. However, if the framework requires use of a constructor with a special signature, the
framework will need to instatiate the object itself, and so only method and field injection will be
supported.

//get the BeanManager from JNDI
BeanManager beanManager = (BeanManager) new I niti al Context ().l ookup("java: conp/ BeanManager");

/1 CDI uses an Annot at edType object to read the annotations of a class
Annot at edType<SoneFr anewor kConponent > t ype = beanManager. cr eat eAnnot at edType(SomeFr amewor kConponent . cl ass) ;

/1 The extension uses an InjectionTarget to delegate instantiation, dependency injection
/land lifecycle callbacks to the CDI container
I nj ecti onTar get <SonmeFr anmewor kConponent > it = beanManager. createl nj ecti onTarget (type);

/'l each instance needs its own CDI Creational Context
Creational Context ctx = beanManager. createCreational Context(null);

/linstantiate the framework conponent and inject its dependencies

SonmeFr anewor kConponent instance = it.produce(ctx); //call the constructor
it.inject(instance, ctx); //call initializer nethods and performfield injection
it.postConstruct(instance); //call the @PostConstruct method

//destroy the framework conponent instance and clean up dependent objects
it.preDestroy(instance); //call the @PreDestroy nethod
it.dispose(instance); //it is now safe to discard the instance
ctx.release(); //clean up dependent objects

16.5. The sean interface

Instances of the interface Bean represent beans. There is an instance of Bean registered with the BeanManager
object for every bean in the application. There are even Bean objects representing interceptors, decorators and
producer methods.

The Bean interface exposes all the interesting things we dicussed in Section 2.1, “The anatomy of a bean”.

public interface Bean<T> extends Contextual <T> {

public Set<Type> get Types();
publ i c Set <Annot ati on> getQualifiers();
public O ass<? extends Annotation> get Scope();
public String getNanme();
public Set<C ass<? extends Annotation>> get Stereotypes();
public O ass<?> getBeanCd ass();
public bool ean isAl ternative();
publ i c bool ean isNullable();
€

public Set<lnjectionPoint> getlnjectionPoints();

112

Registering a Bean

There's an easy way to find out what beans exist in the application:
Set <Bean<?>> al | Beans = beanManager . get Beans(Obect . cl ass, new Annot ati onLiteral <Any>() {});

The Bean interface makes it possible for a portable extension to provide support for new kinds of beans, beyond
those defined by the CDI specification. For example, we could use the Bean interface to allow objects managed by
another framework to be injected into beans.

16.6. Registering a sean

The most common kind of CDI portable extension registers a bean (or beans) with the container.

In this example, we make a framework class, Secur i t yManager available for injection. To make things a bit
more interesting, we're going to delegate back to the container's | nj ect i onTar get to perform instantiation and
injection upon the Secur i t yManager instance.

public class SecurityManager Extension inplenents Extension {
voi d afterBeanDi scovery(@hbserves AfterBeanD scovery abd, BeanManager bnm) {

//use this to read annotations of the class
Annot at edType<Securi t yManager > at = bm creat eAnnot at edType(Securit yManager. cl ass);

/luse this to instantiate the class and inject dependencies
final InjectionTarget<SecurityManager> it = bmcreatelnjectionTarget(at);

abd. addBean(new Bean<SecurityManager>() {

@verride
public C ass<?> getBeanC ass() {
return SecurityManager. cl ass;

@verride
public Set<InjectionPoint> getlnjectionPoints() {
return it.getlnjectionPoints();

@verride
public String getName() {
return "securityManager";

@verride

public Set<Annotation> getQualifiers() {
Set <Annot ation> qualifiers = new HashSet <Annot ati on>();
qualifiers.add(new AnnotationLiteral <Default>() {});
qual i fiers.add(new Annotati onLiteral <Any>() {});
return qualifiers;

113

Chapter 16. Portable extensions

@verride
public O ass<? extends Annotation> get Scope() {
return SessionScoped. cl ass;

@verride
public Set<d ass<? extends Annotation>> getStereotypes() {
return Collections.enptySet();

@verride

public Set<Type> get Types() {
Set <Type> types = new HashSet <Type>();
types. add(SecurityManager. cl ass);
types. add(Qbj ect . cl ass);
return types;

@verride
public boolean isAternative() {
return fal se;

@verride
public bool ean isNullable() {
return fal se;

}
@verride
public SecurityManager create(Creational Context<SecurityManager> ctx) {
SecurityManager instance = it.produce(ctx);
it.inject(instance, ctx);
it.postConstruct (instance);
return instance;
}
@verride

public void destroy(SecurityManager instance,
Cr eat i onal Cont ext <SecurityManager > ctx) {
it.preDestroy(instance);
it.dispose(instance);
ctx. rel ease();

)

But a portable extension can also mess with beans that are discovered automatically by the container.

16.7. Wrapping adl Annot at edType

One of the most interesting things that an extension class can do is process the annotations of a bean class before
the container builds its metamodel.

114

Wrapping an AnnotatedType

Let's start with an example of an extension that provides support for the use of @aned at the package level. The
package-level name is used to qualify the EL names of all beans defined in that package. The portable extension
uses the ProcessAnnot at edType event to wrap the Annot at edType object and override the val ue() of
the @Nanmed annotation.

public class QualifiedNanmeExtension inplenments Extension {
<X> voi d processAnnot at edType(@bserves ProcessAnnot at edType<X> pat) {

//wap this to override the annotations of the class
final AnnotatedType<X> at = pat.get Annot atedType();

Annot at edType<X> wrapped = new Annot at edType<X>() {

@verride
publ i c Set <Annot at edConst r uct or <X>> get Constructors() {
return at.getConstructors();

@verride
publ i c Set <Annot at edFi el d<? super X>> getFields() {
return at.getFields();

@verride
public O ass<X> getJavaC ass() {
return at.getJavaC ass();

@verride
publ i c Set <Annot at edMet hod<? super X>> get Met hods() {
return at.get Methods();

@verride
public <T extends Annotati on> T get Annotation(final Cl ass<T> annType) {
if (Named.cl ass. equal s(annType)) {
cl ass NamedLi teral
extends Annot ati onLi t eral <Named>
i mpl enents Nanmed {
@verride
public String value() {
Package pkg = at.getd ass().get Package();
String unqualifiedNane = at.get Annot ati on(Naned. cl ass) . val ue();
final String qualifiedNang;
if (pkg.isAnnotationPresent(Naned.class)) {
qual i fi edNanme = pkg. get Annot ati on(Naned. cl ass) . val ue()

+ '.' + unqualifiedName;
}
el se {
qual i fi edNanme = unqual i fi edNaneg;
}

return qualifiedNane;

}

return (T) new NanedLiteral ();

115

Chapter 16. Portable extensions

el se {
return at.get Annotati on(annType);
}
}
@verride

public Set<Annotati on> getAnnotations() {
return at.getAnnotations();

@verride
public Type get BaseType() {
return at.getBaseType();

@verride
public Set<Type> get TypeC osure() {
return at.get Typed osure();

@verride
publ i c bool ean i sAnnot ati onPresent (C ass<? extends Annotati on> annType) {
return at.isAnnotationPresent (annType);
b

pat . set Annot at edType(w apped) ;

Here's a second example, which adds the @\l t er nat i ve annotation to any class which implements a certain
Ser vi ce interface.

class ServiceAlternativeExtension inplenents Extension {
<T> voi d processAnnot at edType(@bserves ProcessAnnot at edType<T> pat) {
final AnnotatedType<T> type = pat.get Annot at edType();
if (Service.class.isAssignabl eFron{ type.getJavaC ass())) {

/1if the class inplenments Service, nmake it an @\ ternative
Annot at edType<T> w apped = new Annot at edType<T>() {

@verride
publ i c bool ean i sAnnot ati onPresent (O ass<? extends Annotati on> annotationType) {
return annotati onType. equal s(Alternative.class) ?
true : type.isAnnotationPresent(annotationType);

[/ remai ni ng net hods of Annot at edType

116

Wrapping an InjectionTarget

pat . set Annot at edType(wr apped) ;

The Annot at edType is not the only thing that can be wrapped by an extension.

16.8. Wrapping an injectionTar get

The | njectionTarget interface exposes operations for producing and disposing an instance of a
component, injecting its dependencies and invoking its lifecycle callbacks. A portable extension may wrap the

I nj ecti onTar get for any Java EE component that supports injection, allowing it to intercept any of these

operations when they are invoked by the container.

Here's a CDI portable extension that reads values from properties files and configures fields of Java EE components,
including servlets, EJBs, managed beans, interceptors and more. In this example, properties for a class such as
org. mydomai n. bl og. Bl ogger go in a resource named or g/ mydonai n/ bl og/ Bl ogger . properti es,
and the name of a property must match the name of the field to be configured. So Bl ogger . pr operti es could

contain:

firstName=Gavin
| ast Nane=Ki ng

The portable extension works by wrapping the containers | nj ecti onTar get and setting field values from the

i nj ect () method.

public class ConfigExtension inplenents Extension {

<X> voi d processlnjectionTarget (@bserves ProcesslnjectionTarget<X> pit) {

//wap this to intercept the conponent l|ifecycle
final InjectionTarget<X> it = pit.getlnjectionTarget();

final Map<Field, Object> configuredVal ues = new HashMap<Fi el d, Object>();

/luse this to read annotations of the class and its nenbers
Annot at edType<X> at = pit.get Annot at edType();

//read the properties file

String propsFileNane = at.getC ass().getSinpl eNane() + ".properties";
I nput Stream stream = at. get Javad ass() . get Resour ceAsSt r ean(propsFi | eNang) ;

if (stream =null) {

try {
Properties props = new Properties();
props. | oad(strean);

for (Map. Entry<Cbject, Object> property : props.entrySet()) {

String fieldNane = property. getKey().toString();
Obj ect value = property. getVal ue();
try {

Field field = at.getJavaCd ass().getField(fiel dNane);

117

Chapter 16. Portable extensions

field. set Accessi bl e(true);
if (field. getType().isAssignableFron{ value.getCass())) {
configuredVal ues. put (field, value);

}
el se {
// TODO do type conversion automatically
pit.addDefinitionError(new InjectionException(
"field is not of type String: " + field));
}

}
catch (NoSuchFi el dException nsfe) {
pi t.addDefinitionError(nsfe);

}
finally {

stream cl ose();
}

}
catch (1 OException ioe) {
pi t.addDefinitionError(ioe);

I nj ectionTarget <X> wapped = new | nj ectionTarget<X>() {

@verride
public void inject(X instance, Creational Context<X> ctx) {
it.inject(instance, ctx);

//set the values onto the new instance of the conponent
for (Map. Entry<Field, Object> configuredVal ue: configuredVal ues.entrySet()) {
try {
confi guredVal ue. get Key() . set (i nstance, confi guredVal ue. getVal ue());
}
catch (Exception e) {
throw new | nj ecti onException(e);

@verride
public void postConstruct (X instance) {
i t.post Construct(instance);

@verride
public void preDestroy(X instance) {
i t.di spose(instance);

@verride
public void dispose(X instance) {
i t.di spose(instance);

@verride
public Set<InjectionPoint> getlnjectionPoints() {
return it.getlnjectionPoints();

118

The Context interface

@verride
public X produce(Creational Context<X> ctx) {
return it.produce(ctx);

%

pi t.setlnjectionTarget (w apped);

There's a lot more to the portable extension SPI than what we've discussed here. Check out the CDI spec or Javadoc
for more information. For now, we'll just mention one more extension point.

16.9. The wntext interface

The Cont ext interface supports addition of new scopes to CDI, or extension of the built-in scopes to new
environments.

public interface Context {
public C ass<? extends Annotation> get Scope();
public <T> T get(Contextual <T> contextual, Creational Context<T> creational Context);
public <T> T get(Contextual <T> contextual);
bool ean i sActive();

For example, we might implement Cont ext to add a business process scope to CDI, or to add support for the
conversation scope to an application that uses Wicket.

119

120

Chapter 17.

Next steps

Because CDI is so new, there's not yet a lot of information available online. That will change over time. Regardless,
the CDI specification remains the authority for information on CDI. The spec is less than 100 pages and is quite
readable (don't worry, it's not like your Blu-ray player manual). Of course, it covers many details we've skipped over
here. The spec is available on the JSR-299 page [http://jcp.org/en/jsr/detail?id=299] at the JCP website.

The CDI reference implementation, Weld, is being developed at the Seam project [http://seamframework.org/Weld].
The RI development team and the CDI spec lead blog at in.relation.to [http://in.relation.to]. This guide was originally
based on a series of blog entries published there while the specification was being developed. It's probably the best
source of information about the future of CDI, Weld and Seam.

We encourage you to follow the weld-dev [https://lists.jboss.org/mailman/listinfo/weld-dev] mailing list and to get
involved in development [http://seamframework.org/Weld/Development]. If you are reading this guide, you likely have
something to offer.

We are eager to find volunteers to help revise, proofread or translate this guide. The first step is getting the source
of this guide checked out. To build against the trunk (latest source), follow these steps:

» Checkout source from http://anonsvn.jboss.org/repos/weld/doc/trunk/reference using SVN

$> svn co http://anonsvn. jboss. org/repos/wel d/ doc/trunk/reference wel d-reference

* Edit the pom xn1 file in the root of the checkout and remove the "- SNAPSHOT" from the version element (so
you don't have to build other Weld modules).

* Build using Maven 2

$> nvn

o Note
If you experience an out of memory error, try setting this environment variable: MAVEN _OPTS=-

Xnmx1024m

» The PDF version of the reference guide will appear the current directory. You can find the HTML version in
t ar get / docbook/ publ i sh/ en-US/ ht m .

We look forward to your participation!

121

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://seamframework.org/Weld
http://seamframework.org/Weld
http://in.relation.to
http://in.relation.to
https://lists.jboss.org/mailman/listinfo/weld-dev
https://lists.jboss.org/mailman/listinfo/weld-dev
http://seamframework.org/Weld/Development
http://seamframework.org/Weld/Development
http://anonsvn.jboss.org/repos/weld/doc/trunk/reference

122

Part V. Weld reference

Weld is the reference implementation of JSR-299, and is used by JBoss AS and Glassfish to provide CDI services
for Java Enterprise Edition (Java EE) applications. Weld also goes beyond the environments and APIs defined by
the JSR-299 specification by providing support for a number of other environments (such as a servlet container such
as Tomcat, or Java SE) and additional APIs and modules (such as logging and bean utilities).

Some of the extensions in Weld are portable across JSR-299 implementations (like the logging and bean utilities)
and some are specific to Weld (such as the servlet container support). Weld also provides an SPI on which to build
extensions, so there are several layers involved.

If you want to get started quickly using Weld (and, in turn, CDI) with JBoss AS, GlassFish or Tomcat and experiment
with one of the examples, take a look at Chapter 6, Getting started with Weld. Otherwise read on for a exhaustive
discussion of using Weld in all the environments and application servers it supports and the Weld extensions.

Chapter 18.

Application servers and
environments supported by Weld

18.1. Using Weld with JBoss AS

If you are using JBoss AS 6.0, no additional configuration is required to use Weld (or CDI for that matter). All you
need to do is make your application a bean bean archive by adding META- | NF/ beans. xnl to the classpath or
V\EB- | NF/ beans. xm to the web root!

Unfortunately, you can't use Weld with earlier versions of JBoss AS since they are missing key libraries. If you want
to learn how to upgrade the built-in support on JBoss AS 6.0, then read on.

Upgrading the Weld add-on is easy. The Weld distribution has a build that can take care of this task for
you in a single command. First, we need to tell Weld where JBoss AS is located. Create a new file named
| ocal . bui |l d. properti es inthe examples directory of the Weld distribution and assign the path of your JBoss
AS installation to the property key j boss. homne, as follows:

j boss. hone=/ pat h/ t o/ j boss-as-5. x
Now we can install the Weld deployer from the j boss- as directory of the Weld distribution:

$> cd j boss-as
$> ant update

Note

j=do

A new deployer, wel d. depl oyer is added to JBoss AS. This adds supports for JSR-299
deployments to JBoss AS, and allows Weld to query the EJB 3 container and discover which EJBs
are installed in your application. It also performs an upgrade of the Javassist library, if necessary.

18.2. GlassFish

Weld is also built into GlassFish from V3 onwards. Since GlassFish V3 is the Java EE 6 reference implementation,
it must support all features of CDI. What better way for GlassFish to support these features than to use Weld, the
JSR-299 reference implementation? Just package up your CDI application and deploy.

18.3. Servlet containers (such as Tomcat or Jetty)

While JSR-299 does not require support for servlet environments, Weld can be used in any servlet container, such
as Tomcat 6.0 or Jetty 6.1.

125

Chapter 18. Application serve...

Weld should be used as a web application library in a servlet container. You should place wel d- servl et. j ar
in WEB- | NF/ | i b in the web root. wel d- servl et . j ar is an "uber-jar", meaning it bundles all the bits of Weld
and CDI required for running in a servlet container, provided for your convenience. Alternatively, you could use its
component jars:

e jsr299-api.jar

« weld-api.jar

e wel d-spi.jar

e weld-core.jar

- wel d- 1 oggi ng. j ar

- weld-servlet-int.jar

e javassist.jar

e domdj . jar

e googl e-col l ections.jar

You also need to explicitly specify the servlet listener (used to boot Weld, and control its interaction with requests)
in \EB- | NF/ web. xm in the web root:

<l'i stener>
<l istener-class>org.jboss.wel d. environment.servlet.Listener</listener-class>
</listener>

18.3.1. Tomcat

Tomcat has a read-only JNDI, so Weld can't automatically bind the BeanManager extension SPI. To bind the
BeanManager into JNDI, you should populate META- | NF/ cont ext . xm in the web root with the following
contents:

<Cont ext >
<Resour ce nanme="BeanManager"
aut h="Cont ai ner"
type="j avax. enterprise.inject.spi.BeanManager"
factory="org.jboss. wel d. resour ces. Manager Cbj ect Fact ory"/ >
</ Cont ext >

and make it available to your deployment by adding this to the bottom of web. xm :

126

Jetty

<resource-env-ref>
<r esour ce- env-r ef - name>BeanManager </ r esour ce- env-r ef - nane>
<resource-env-ref-type>
javax. enterprise.inject.spi.BeanManager
</ resource-env-ref-type>
</ resource-env-ref>

Tomcat only allows you to bind entries to j ava: conp/ env, so the BeanManager will be available atj ava: conp/
env/ BeanManager

Weld also supports Servlet injection in Tomcat. To enable this, place the wel d-t ontat - support.jar in
$TOMCAT_HOVE/ | i b, and add the following to META- | NF/ cont ext . xm :

<Li stener className="org.]j boss.wel d. environnent.tontat. Wl dLi fecycl eLi stener"/>

18.3.2. Jetty

Like Tomcat, Jetty has a read-only JNDI, so Weld can't automatically bind the Manager. To bind the Manager to
JNDI, you should populate VEB- | NF/ j et t y- env. xmi with the following contents:

<! DOCTYPE Configure PUBLIC "-//NMort Bay Consulting//DTD Confi gure//EN'
“http://jetty.nortbay. org/configure.dtd">
<Configure id="webAppCtx" class="org. nortbay.jetty.webapp. WebAppCont ext ">
<New i d="BeanManager" cl ass="org. nortbay.jetty. plus. nam ng. Resource">
<Ar g><Ref id="webAppCt x"/></Arg>
<Ar g>BeanManager </ Ar g>
<Ar g>
<New cl ass="j avax. nam ng. Ref erence" >
<Arg>j avax. enterprise.inject.spi.BeanManager </ Ar g>
<Arg>org. j boss. wel d. resour ces. Manager Obj ect Fact ory</ Ar g>
<Arg/>
</ New>
</ Ar g>
</ New>
</ Confi gure>

Notice that Jetty doesn't not have built-in support for an j avax. nam ng. spi . Obj ect Fact ory like Tomcat, so
it's necessary to manually create the j avax. nam ng. Ref er ence to wrap around it.

Jetty only allows you to bind entries to j ava: conp/ env, so the BeanManager will be available at j ava: conp/
env/ BeanManager

Weld does not currently support Servlet injection in Jetty.

18.4. Java SE

In addition to improved integration of the Enterprise Java stack, the "Contexts and Dependency Injection for the Java
EE platform" specification also defines a state of the art typesafe, stateful dependency injection framework, which
can prove useful in a wide range of application types. To help developers take advantage of this, Weld provides a
simple means for being executed in the Java Standard Edition (SE) environment independently of any Java EE APIs.

127

Chapter 18. Application serve...

When executing in the SE environment the following features of Weld are available:

« Managed beans with @Post Const r uct and @°r eDest r oy lifecycle callbacks
« Dependency injection with qualifiers and alternatives

e @pplication, @ependent and @i ngl et on scopes

« Interceptors and decorators

« Stereotypes

* Events

« Portable extension support

EJB beans are not supported.

18.4.1. CDI SE Module

Weld provides an extension which will boot a CDI bean manager in Java SE, automatically registering all simple
beans found on the classpath. The command line parameters can be injected using either of the following:

@nject @araneters List<String> parans;

@nject @Paraneters String[] paransArray;

The second form is useful for compatibility with existing classes.

Here's an example of a simple CDI SE application:

@i ngl eton
public class Hellowrld
{

public void printHell o(@bserves Containerlnitialized event, @Paranmeters List<String> paraneters) {
Systemout.printin("Hello " + paraneters.get(0));

18.4.2. Bootstrapping CDI SE

CDI SE applications can be bootstrapped in the following ways.

128

Bootstrapping CDI SE

18.4.2.1. The Containerlnitialized Event

Thanks to the power of CDI's typesafe event model, application developers need not write any bootstrapping
code. The Weld SE module comes with a built-in main method which will bootstrap CDI for you and then fire a
Contai nerlnitialized event. The entry point for your application code would therefore be a simple bean

which observes the Cont ai ner I ni ti al i zed event, as in the previous example.

In this case your application can be started by calling the provided main method like so:

java org.]jboss.wel d. envi ronnents. se. Start Mai n <args>

18.4.2.2. Programatic Bootstrap API

For added flexibility, CDI SE also comes with a bootstrap API which can be called from within your application in
order to initialize CDI and obtain references to your application's beans and events. The API consists of two classes:

Wl d and Wl dCont ai ner .

public class Wld

{
/** Boots Weld and creates and returns a Wl dCont ai ner instance, through which
* beans and events can be accesed. */
public WeldContainer initialize() {...}
/** Conveni ence nethod for shutting down the container. */
public void shutdown() {...}
}

public class Wl dCont ai ner

{
/** Provides access to all beans within the application. */
public I nstance<Object> instance() {...}
/** Provides access to all events within the application. */
public Event<Cbject> event() {...}
/** Provides direct access to the BeanManager. */
publ i c BeanManager get BeanManager() {...}

}

Here's an example application main method which uses this API to initialize a bean of type My Appl i cat i onBean.

public static void main(String[] args) {
Wel dCont ai ner wel d = new Vel d().initialize();
wel d. i nstance(). sel ect (M/Appl i cati onBean. cl ass). get();
wel d. shut down() ;

129

Chapter 18. Application serve...

Alternatively the application could be started by firing a custom event which would then be observed by another
simple bean. The following example fires MyEvent on startup.

public static void main(String[] args) {
Wl dCont ai ner weld = new Wl d().initialize();
wel d. event (). sel ect (M/Event. cl ass).fire(new MyEvent())
wel d. shut down() ;

18.4.3. Thread Context

In contrast to Java EE applications, Java SE applications place no restrictions on developers regarding the
creation and usage of threads. Therefore Weld SE provides a custom scope annotation, @ hr eadScoped, and
corresponding context implementation which can be used to bind bean instances to the current thread. It is intended
to be used in scenarios where you might otherwise use Thr eadLocal , and does in fact use Thr eadLocal under
the hood.

To use the @ThreadScoped annotation you need to enable the Runnabl eDecor at or which 'listens' for all
executions of Runnabl e. run() and decorates them by setting up the thread context beforehand, bound to the
current thread, and destroying the context afterwards.

<beans>
<decor at or s>
<decor at or >org. j boss. wel d. envi ronment . se. t hr eadi ng. Runnabl eDecor at or </ decor at or >
</ decor at or >
</ beans>

° Note

It is not necessary to use @ThreadScoped in all multithreaded applications. The thread context is
not intended as a replacement for defining your own application-specific contexts. It is generally
only useful in situtations where you would otherwise have used ThreadLocal directly, which are
typically rare.

18.4.4. Setting the Classpath

Weld SE comes packaged as a 'shaded' jar which includes the CDI API, Weld Core and all dependant classes
bundled into a single jar. Therefore the only Weld jar you need on the classpath, in addition to your application's
classes and dependant jars, is the Weld SE jar.

130

Chapter 19.

CDI extensions available as part of
Weld

) Important

These modules are usable on any JSR-299 implementation, not just Weld!

19.1. Weld Logger

Adding logging to your application is now even easier with simple injection of a logger object into any CDI bean.
Simply create an injection point of type or g. sl f 4] . Logger and an appropriate logger object will be injected into
any instance of the bean.

inport org.slf4j.Logger
inmport javax.inject.lnject;

public class Checkout {
private @nject Logger |og;

public void invoiceltens() {
Shoppi ngCart cart;

| og. debug("Itens invoiced for {}", cart);

The example shows how objects can be interpolated into a message. If you use this approach, you do not need to
surround a call to the logger with a condition likei f (| 0og. i sDebugEnabl ed()) toavoid string concatenation.

i Note

You can add Weld logging to your project by including weld-logger.jar, sl4j-api.jar and sl4j-jdk14.jar
to your project. Alternatively, express a dependency on the or g. j boss. wel d: wel d- | ogger
Maven artifact.

If you are using Weld as your JSR-299 implementation, there's no need to include sl4j as it's
already included (and used internally).

131

132

Chapter 20.

Alternative view layers

20.1. Wicket CDI integration

Weld provides integration between the Apache Wicket web framework and CDI. This functionality is provided by the
wel d- wi cket extension module, which naturally must be on the classpath of the Wicket application.

This section describes some of the utilities provided by the Wicket extension module to support the CDI integration.

20.1.1. The WebAppl i cation class

Each wicket application must have a WebApplication subclass; Weld provides, for your
utility, a subclass of this which sets up the Wicket CDI integration. You should subclass
org.j boss. wel d. wi cket . Wl dAppl i cati on.

° Note

If you would prefer not to subclass Wel dAppl i cati on, you can manually add a (small!)
number of overrides and listeners to your own W\ebAppl i cat i on subclass. The JavaDocs of
Wl dAppl i cat i ondetail this.

For example:

public class Sanpl eApplication extends Wel dApplication {
@verride
public O ass getHomePage() {
return HonePage. cl ass;

20.1.2. Conversations with Wicket

Wicket can also take advantage of the conversation scope from CDI, provided by the Wicket extension module. This
module takes care of:

» Setting up the conversation context at the beginning of a Wicket request, and tearing it down afterwards

« Storing the id of any long-running conversation in Wicket's metadata when the page response is complete

« Activating the correct long-running conversation based upon which page is being accessed

» Propagating the conversation context for any long-running conversation to new pages

20.1.2.1. Starting and stopping conversations in Wicket

As in JSF applications, a conversation always exists for any request to Wicket, but its lifetime is only that of the
current request unless it is marked as long-running. The boundaries of a long-running conversation are controlled in
the same way as in JSF applications, by injecting the Conver sat i on instance and invoking either the begi n()
or end() methods:

133

Chapter 20. Alternative view ...

private @nject Conversation conversation;

/] begin a conversation
conver sati on. begi n();

/1 end a conversation
conversation. end();

20.1.2.2. Long running conversation propagation in Wicket

When a conversation is marked as long-running, the id of that conversation will be stored in Wicket's metadata for the
current page. If anew page is created and set as the response target through set ResponsePage() , this new page
will also participate in this conversation. This occurs for both directly instantiated pages (set ResponsePage(nhew
O her Page())), as well as for bookmarkable pages created with set ResponsePage(O her Page. cl ass)
where Ot her Page. cl ass is mounted as bookmarkable from your WebAppl i cat i on subclass (or through
annotations). In the latter case, because the new page instance is not created until after a redirect, the conversation
id will be propagated through a request parameter, and then stored in page metadata after the redirect.

134

Appendix A. Integrating Weld into
other environments

If you want to use Weld in another environment, you will need to provide certain information to Weld via the integration
SPI. In this Appendix we will briefly discuss the steps needed.

Enterprise Services

If you just want to use managed beans, and not take advantage of enterprise services (EE
resource injection, CDI injection into EE component classes, transactional events, support for CDI
services in EJBs) and non-flat deployments, then the generic servlet support provided by the "Weld:
Servlets" extension will be sufficient, and will work in any container supporting the Servlet API.

All SPIs and APIs described have extensive JavaDoc, which spell out the detailed contract between the container
and Weld.

A.1. The Weld SPI

The Weld SPI is located in the wel d- spi module, and packaged as wel d- spi . j ar. Some SPIs are optional,
and should only be implemented if you need to override the default behavior; others are required.

Allinterfaces in the SPI support the decorator pattern and provide a For war di ng class located in the hel per s sub
package. Additional, commonly used, utility classes, and standard implementations are also located in the hel per s
sub package.

Weld supports multiple environments. An environment is defined by an implementation of the Envi r onnment
interface. A number of standard environments are built in, and described by the Envi r onment s enumeration.
Different environments require different services to be present (for example a Servlet container doesn't require
transaction, EJB or JPA services). By default an EE environment is assumed, but you can adjust the environment
by calling boot st rap. set Envi ronnment () .

Weld uses a generic-typed service registry to allow services to be registered. All services implement the Ser vi ce
interface. The service registry allows services to be added and retrieved.

A.1.1. Deployment structure

An application is often comprised of a number of modules. For example, a Java EE deployment may contain a
number of EJB modules (containing business logic) and war modules (containing the user interface). A container
may enforce certain accessibility rules which limit the visibility of classes between modules. CDI allows these same
rules to apply to bean and observer method resolution. As the accessibility rules vary between containers, Weld
requires the container to describe the deployment structure, via the Depl oynent SPI.

The CDI specification discusses Bean Deployment Archives (BDAs)—archives which are marked as containing
beans which should be deployed to the CDI container, and made available for injection and resolution. Weld reuses
this description of Bean Deployment Archives in its deployment structure SPI. Each deployment exposes the BDAs
which it contains; each BDA may also reference other which it can access. Together, the transitive closure of this
graph forms the beans which are deployed in the application.

To describe the deployment structure to Weld, the container should provide an implementation of Depl oymnent .
Depl oynent . get BeanDepl oynent Ar chi ves() allows Weld to discover the modules which make up
the application. The CDI specification also allows beans to be specified programmatically as part of the

135

Appendix A. Integrating Weld ...

bean deployment. These beans may, or may not, be in an existing BDA. For this reason, Weld will call
Depl oynent . | oadBeanDepl oynent Archi ve(d ass cl azz) for each programmatically described bean.

As programmatically described beans may result in additional BDAs being added to the graph, Weld will discover
the BDA structure every time an unknown BDA is returned by Depl oynent . | oadBeanDepl oynent Ar chi ve.

BeanDepl oynent Ar chi ve provides three methods which allow it's contents to be discovered by
Weld—BeanDepl oynment Ar chi ve. get BeanCl asses() must return all the classes in the BDA,
BeanDepl oynent Ar chi ve. get BeansXm () must return all the deployment descriptors in the archive, and
BeanDepl oynent Ar chi ve. get Ej bs() must provide an EJB descriptor for every EJB in the BDA, or an empty
list if it is not an EJB archive.

BDA X may also reference another BDA Y whose beans can be resolved by, and injected into, any bean in BDA X.
These are the accessible BDAs, and every BDA that is directly accessible by BDA X should be returned. A BDA will
also have BDAs which are accessible transitively, and the transitive closure of the sub-graph of BDA X describes
all the beans resolvable by BDA X.

Matching the classloader structure for the deployment

In practice, you can regard the deployment structure represented by Depl oynent , and the virtual
BDA graph as a mirror of the classloader structure for a deployment. If a class can from BDA X can
be loaded by another in BDA Y, it is accessible, and therefore BDA Y's accessible BDAs should
include BDA X.

To specify the directly accessible BDAs, the container should provide an implementation of
BeanDepl oynent Ar chi ve. get BeanDepl oynent Ar chi ves().

Tip

Weld allows the container to describe a circular graph, and will convert a graph to a tree as part
of the deployment process.

Certain services are provided for the whole deployment, whilst some are provided per-BDA. BDA services are
provided using BeanDepl oynent Ar chi ve. get Servi ces() and only apply to the BDA on which they are
provided.

A.1.2. EJB descriptors

Weld delegates EJB 3 bean discovery to the container so that it doesn't duplicate the work done by the EJB container,
and respects any vendor-extensions to the EJB definition.

136

EE resource injection and resolution services

The Ej bDescr i pt or should return the relevant metadata as defined in the EJB specification. Each business
interface of a session bean should be described using a Busi nessl nt er f aceDescri ptor.

A.1.3. EE resource injection and resolution services

All the EE resource services are per-BDA services, and may be provided using one of two methods. Which method
to use is at the discretion of the integrator.

The integrator may choose to provide all EE resource injection services themselves, using another library or
framework. In this case the integrator should use the EE environment, and implement the Section A.1.8, “Injection
Services” SPI.

Alternatively, the integrator may choose to use CDI to provide EE resource injection. In this case, the EE_| NJECT
environment should be used, and the integrator should implement the Section A.1.4, “EJB services” [137],
Section A.1.7, “Resource Services” and Section A.1.5, “JPA services”.

, Important

CDI only provides annotation-based EE resource injection; if you wish to provide deployment
descriptor (e.g. €] b-j ar . xm) injection, you must use Section A.1.8, “Injection Services”.

If the container performs EE resource injection, the injected resources must be serializable. If EE resource injection
is provided by Weld, the resolved resource must be serializable.

Tip

If you use a non-EE environment then you may implement any of the EE service SPIs, and Weld will
provide the associated functionality. There is no need to implement those services you don't need!

A.1.4. EJB services

EJB services are split between two interfaces which are both per-BDA.

EJBSer vi ces is used to resolve local EJBs used to back session beans, and must always be provided in
an EE environment. EJBSer vi ces. resol veEj b(Ej bDescri ptor ej bDescri ptor) returns a wrapper
—Sessi onObj ect Ref er ence—around the EJB reference. This wrapper allows Weld to request a reference
that implements the given business interface, and, in the case of SFSBs, both request the removal of the EJB from
the container and query whether the EJB has been previously removed.

EJBResol uti onServi ces. resol veEj b(I njectionPoint ij) allows the resolution of @JB (for
injection into managed beans). This service is not required if the implementation of Section A.1.8, “Injection Services”
takes care of @JB injection.

A.1.5. JPA services

Just as EJB resolution is delegated to the container, resolution of @er si st enceCont ext for injection into
managed beans (with the | nj ect i onPoi nt provided), is delegated to the container.

To allow JPA integration, the JpaSer vi ces interface should be implemented. This service is not required if the
implementation of Section A.1.8, “Injection Services” takes care of @er si st enceCont ext injection.

137

Appendix A. Integrating Weld ...

A.1.6. Transaction Services

Weld delegates JTA activities to the container. The SPI provides a couple hooks to easily achieve this with the
Transacti onSer vi ces interface.

Any javax.transaction. Synchronization implementaton may be passed to the
regi ster Synchroni zati on() method and the SPI implementation should immediately register the
synchronization with the JTA transaction manager used for the EJBs.

To make it easier to determine whether or not a transaction is currently active for the requesting thread, the
i sTransacti onActi ve() method can be used. The SPlimplementation should query the same JTA transaction
manager used for the EJBs.

A.1.7. Resource Services

The resolution of @Resour ce (for injection into managed beans) is delegated to the container. You must provide
an implementation of Resour ceSer vi ces which provides these operations. This service is not required if the
implementation of Section A.1.8, “Injection Services” takes care of @Resour ce injection.

A.1.8. Injection Services

An integrator may wishtouse | nj ect i onSer vi ces to provide additional field or method injection over-and-above
that provided by Weld. An integration into a Java EE environment may use | nj ect i onSer vi ces to provide EE
resource injection for managed beans.

I nj ecti onServices provides a very simple contract, the
I nj ecti onServices. aroundl nj ect (I njectionContext ic); intercepter will be called for every
instance that CDI injects, whether it is a contextual instance, or a non-contextual instance injected by
I njectionTarget.inject().

The | nj ecti onCont ext can be used to discover additional information about the injection being performed,
including the t ar get being injected. i c. pr oceed() should be called to perform CDI-style injection, and call
initializer methods.

A.1.9. Security Services

In order to obtain the Pri nci pal representing the current caller identity, the container should provide an
implementation of Securi t yServi ces.

A.1.10. Bean Validation Services

In order to obtain the default Val i dat or Fact ory for the application deployment, the container should provide
an implementation of Val i dat i onSer vi ces.

A.1.11. Identifying the BDA being addressed

When a client makes a request to an application which uses Weld, the request may be addressed at any of the BDAs
in the application deployment. To allow Weld to correctly service the request, it needs to know which BDA the request
is addressed at. Where possible, Weld will provide some context, but use of these by the integrator is optional.

Tip

Most Servlet contains use a classloader-per-war, this may provide a good way to identify the BDA
in use for web requests.

138

The bean store

When Weld needs to identify the BDA, it will use one of these services, depending on what is servicing the request:

Servl et Servi ces. get BeanDepl oynent Ar chi ve(Ser vl et Cont ext ct x)
Identify the war in use. The Ser vl et Cont ext is provided for additional context.

A.1.12. The bean store

Weld uses a map like structure to store bean instances - or g. j boss. wel d. cont ext . api . BeanSt or e. You
may find or g. j boss. wel d. cont ext . api . hel pers. Concur r ent Ha.shMapBeanSt or e useful.

A.1.13. The application context

Weld expects the Application Server or other container to provide the storage for each application's context.
The or g. j boss. wel d. cont ext . api . BeanSt or e should be implemented to provide an application scoped
storage.

A.1.14. Initialization and shutdown

The org.]jboss.wel d. boot strap. api . Bootstrap interface defines the initialization for Weld,
bean deployment and bean Vvalidation. To boot Weld, you must create an instance of
org.j boss. wel d. boot st rap. Wl dBeansBoot st rap (which implements Boost r ap), tell it about the
services in use, and then request the container start.

The bootstrap is split into phases, container initialization, bean deployment, bean validation and shutdown.
Initialization will create a manager, and add the built-in contexts, and examine the deployment structure. Bean
deployment will deploy any beans (defined using annotations, programtically, or built in). Bean validation will validate
all beans.

To initialize the container, you call Bootstrap.startlnitialization(). Before calling
startlnitialization(), you must register any services required by the environment. You can
do this by calling, for example, boot strap. get Servi ces().add(JpaServi ces. cl ass, new
MyJpaSer vi ces()) . You must also provide the application context bean store.

Having called startlnitialization(), the Manager for each BDA can be obtained by calling
Boot st rap. get Manager (BeanDepl oynent Ar chi ve bda) .

To deploy the discovered beans, call Boot st r ap. depl oyBeans() .
To validate the deployed beans, call Boot st r ap. val i dat eBeans() .
To place the container into a state where it can service requests, call Boot strap. endl ni ti al i zation()

To shutdown the container you call Boot st r ap. shut down() . This allows the container to perform any cleanup
operations needed.

A.1.15. Resource loading

Weld needs to load classes and resources from the classpath at various times. By default, they are
loaded from the Thread Context ClassLoader if available, if not the same classloader that was used to
load Weld, however this may not be correct for some environments. If this is case, you can implement
org.j boss. wel d. spi . Resour ceLoader.

A.2. The contract with the container

There are a number of requirements that Weld places on the container for correct functioning that fall outside
implementation of APIs.

139

Appendix A. Integrating Weld ...

Classloader isolation

If you are integrating Weld into an environment that supports deployment of multiple applications, you must
enable, automatically, or through user configuation, classloader isolation for each CDI application.

Servlet

JSF

JSP

If you are integrating Weld into a Servlet environment you must register
org.j boss. wel d. servl et. Wl dLi st ener as a Servlet listener, either automatically, or through user
configuration, for each CDI application which uses Servlet.

You must ensure that that Wel dLi st ener. contextInitialized() is called after beans are deployed
is complete (Boot st r ap. depl oyBeans() has been called).

If you are integrating Weld into a JSF environment you must register
org.j boss. wel d. j sf. Wl dPhaselLi st ener as a phase listener.

If you are integrating Weld into a JSF environment you must register
org.j boss. wel d. el . Wl dELCont ext Li st ener as an EL Context listener.

If you are integrating Weld into a JSF environment you must register
org. j boss. wel d. j sf. Conver sati onAwar eVi ewHandl er as a delegating view handler.

If you are integrating Weld into a JSF environment you must obtain the bean
manager for the module and then call BeanManager.w apExpressi onFactory(), passing
Appl i cati on. get Expressi onFact ory() as the argument. The wrapped expression factory must be
used in all EL expression evaluations performed by JSF in this web application.

If you are integrating Weld into a JSF environment you must obtain the bean manager for the module and then
call BeanManager . get ELResol ver (), The returned EL resolver should be registered with JSF for this
web application.

Tip

There are a number of ways you can obtain the bean manager for the module. You could call
Boot st r ap. get Manager (), passing in the BDA for this module. Alternatively, you could
use the injection into Java EE component classes, or look up the bean manager in JNDI.

If you are integrating ~ Weld into a JSF environment you must register
org.j boss. wel d. servl et. Conversati onPropagationFilter as a Servlet listener, either
automatically, or through user configuration, for each CDI application which uses JSF. This filter can be
registered for all Servlet deployment safely.

If you are integrating Weld into a JSP environment you must register
org.j boss. wel d. el . Wl dELCont ext Li st ener as an EL Context listener.

If you are integrating Weld into a JSP environment you must obtain the bean
manager for the module and then call BeanManager.w apExpressi onFactory(), passing

140

The contract with the container

Appl i cati on. get Expressi onFact ory() as the argument. The wrapped expression factory must be
used in all EL expression evaluations performed by JSP.

If you are integrating Weld into a JSP environment you must obtain the bean manager for the module and then
call BeanManager . get ELResol ver (), The returned EL resolver should be registered with JSP for this
web application.

Tip

There are a number of ways you can obtain the bean manager for the module. You could call
Boot st rap. get Manager (), passing in the BDA for this module. Alternatively, you could
use the injection into Java EE component classes, or look up the bean manager in JNDI.

Session Bean Interceptor
If you are integrating Weld into an EJB environment you must register the ar oundl nvoke method of
org.j boss. wel d. ej b. Sessi onBeanl nt er cept or as a EJB around-invoke interceptor for all EJBs
in the application, either automatically, or through user configuration, for each CDI application which uses
enterprise beans. If you are running in a EJB 3.1 environment, you should register this as an around-timeout
interceptor as well.

’ Important

You must register the Sessi onBeanl nt er cept or as the inner most interceptor in the
stack for all EJBs.

The wel d- core.jar
Weld can reside on an isolated classloader, or on a shared classloader. If you choose to use an isolated
classloader, the default Si ngl et onPr ovi der, | sol at edSt ati cSi ngl et onPr ovi der, can be used.
If you choose to use a shared classloader, then you will need to choose another strategy.

You can provide your own implementation of Si ngl et on and Si ngl et onPr ovi der and register it for use
using Si ngl et onProvi der.initialize(SingletonProvider provider).

Weld also provides an implementation of Thread Context Classloader per application strategy, via the
TCCLSI ngl et onProvi der.

Binding the manager in JNDI
You should bind the bean manager for the bean deployment archive into JNDI at
j ava: conp/ Manager. The type should be javax.enterprise.inject.spi.BeanManager.
To obtain the correct bean manager for the bean deployment archive, you may call
boot st rap. get BeanManager (beanDepl oynent Ar chi ve)

Performing CDI injection on Java EE component classes
The CDI specification requires the container to provide injection into non-contextual resources for all Java EE
component classes. Weld delegates this responsibility to the container. This can be achieved using the CDI
defined | nj ect i onTar get SPI. Furthermore, you must perform this operation on the correct bean manager
for the bean deployment archive containing the EE component class.

The CDI specification also requires that a ProcesslnjectionTarget event is
fired for every Java EE component class. Furthermore, if an observer calls
Processl nj ectionTarget.setlnjecti onTarget () the container must use the specified injection
target to perform injection.

141

Appendix A. Integrating Weld ...

To help the integrator, Weld provides | dManager . fi reProcessl nj ecti onTar get () which returns
the I nj ecti onTar get to use.

/1l Fire ProcesslnjectionTarget, returning the InjectionTarget
/] to use
InjectionTarget it = wel dBeanManager. fireProcesslnjectionTarget(clazz);

/'l Per instance required, create the creational context
Creati onal Cont ext <?> cc = beanManager . creat eCreati onal Context (null);

/1 Produce the instance, perforning any constructor injection required
Obj ect instance = it.produce();

/1 Performinjection and call initializers
it.inject(instance, cc);

/1 Call the post-construct callback
it.post Construct (i nstance);

/1 Call the pre-destroy callback
it.preDestroy(instance);

/1 Clean up the instance
it.dispose();
cc.rel ease();

The container may intersperse other operations between these calls. Further, the integrator may choose to
implement any of these calls in another manner, assuming the contract is fulfilled.

When performing injections on EJBs you must use the Weld-defined SPI, Wel dManager . Furthermore, you
must perform this operation on the correct bean manager for the bean deployment archive containing the EJB.

/] Cbtain the E bDescriptor for the EJB
/1 You may choose to use this utility method to get the descriptor
Ej bDescri pt or<?> ej bDescri ptor = beanManager. get Ej bDescri pt or (ej bNang) ;

/] CGet an the Bean obj ect
Bean<?> bean = beanManager . get Bean(ej bDescriptor);

/1l Create the injection target
InjectionTarget it = depl oynent BeanManager. creat el nj ecti onTar get (ej bDescri ptor);

/1 Per instance required, create the creational context
Creati onal Cont ext <?> cc = depl oynent BeanManager . cr eat eCr eat i onal Cont ext (bean) ;

/1 Performinjection and call initializers
it.inject(instance, cc);

/1 You may choose to have CDI call the post construct and pre destroy
/1 lifecycle callbacks

/1 Call the post-construct callback
it.postConstruct(instance);

[/l Call the pre-destroy callback

142

The contract with the container

11
it

. preDestroy(instance);

Clean up the instance

. di spose();
cc.

rel ease();

143

144

	Weld - JSR-299 Reference Implementation
	Table of Contents
	A note about naming and nomenclature
	Part I. Beans
	Chapter 1. Introduction
	1.1. What is a bean?
	1.2. Getting our feet wet

	Chapter 2. More about beans
	2.1. The anatomy of a bean
	2.1.1. Bean types, qualifiers and dependency injection
	2.1.2. Scope
	2.1.3. EL name
	2.1.4. Alternatives
	2.1.5. Interceptor binding types

	2.2. What kinds of classes are beans?
	2.2.1. Managed beans
	2.2.2. Session beans
	2.2.3. Producer methods
	2.2.4. Producer fields

	Chapter 3. JSF web application example
	Chapter 4. Dependency injection and programmatic lookup
	4.1. Injection points
	4.2. What gets injected
	4.3. Qualifier annotations
	4.4. The built-in qualifiers @Default and @Any
	4.5. Qualifiers with members
	4.6. Multiple qualifiers
	4.7. Alternatives
	4.8. Fixing unsatisfied and ambiguous dependencies
	4.9. Client proxies
	4.10. Obtaining a contextual instance by programmatic lookup
	4.11. The InjectionPoint object

	Chapter 5. Scopes and contexts
	5.1. Scope types
	5.2. Built-in scopes
	5.3. The conversation scope
	5.3.1. Conversation demarcation
	5.3.2. Conversation propagation
	5.3.3. Conversation timeout

	5.4. The singleton pseudo-scope
	5.5. The dependent pseudo-scope
	5.6. The @New qualifier

	Part II. Weld, the CDI Reference Implementation
	Chapter 6. Getting started with Weld
	6.1. Prerequisites
	6.2. Deploying to JBoss AS
	6.3. Deploying to GlassFish
	6.4. Deploying to Apache Tomcat
	6.4.1. Deploying with Ant
	6.4.2. Deploying with Maven

	6.5. Deploying to Jetty

	Chapter 7. Diving into the Weld examples
	7.1. The numberguess example in depth
	7.1.1. The numberguess example in Apache Tomcat or Jetty

	7.2. The numberguess example for Apache Wicket
	7.2.1. Creating the Eclipse project
	7.2.2. Running the example from Eclipse
	7.2.3. Running the example from the command line in JBoss AS or Tomcat
	7.2.4. Understanding the code

	7.3. The numberguess example for Java SE with Swing
	7.4. The translator example in depth

	Part III. Loose coupling with strong typing
	Chapter 8. Producer methods
	8.1. Scope of a producer method
	8.2. Injection into producer methods
	8.3. Use of @New with producer methods
	8.4. Disposer methods

	Chapter 9. Interceptors
	9.1. Interceptor bindings
	9.2. Implementing interceptors
	9.3. Enabling interceptors
	9.4. Interceptor bindings with members
	9.5. Multiple interceptor binding annotations
	9.6. Interceptor binding type inheritance
	9.7. Use of @Interceptors

	Chapter 10. Decorators
	10.1. Delegate object
	10.2. Enabling decorators

	Chapter 11. Events
	11.1. Event payload
	11.2. Event observers
	11.3. Event producers
	11.4. Conditional observer methods
	11.5. Event qualifiers with members
	11.6. Multiple event qualifiers
	11.7. Transactional observers

	Chapter 12. Stereotypes
	12.1. Default scope for a stereotype
	12.2. Interceptor bindings for stereotypes
	12.3. Name defaulting with stereotypes
	12.4. Alternative stereotypes
	12.5. Stereotype stacking
	12.6. Built-in stereotypes

	Chapter 13. Specialization, inheritance and alternatives
	13.1. Using alternative stereotypes
	13.2. A minor problem with alternatives
	13.3. Using specialization

	Chapter 14. Java EE component environment resources
	14.1. Defining a resource
	14.2. Typesafe resource injection

	Part IV. CDI and the Java EE ecosystem
	Chapter 15. Java EE integration
	15.1. Built-in beans
	15.2. Injecting Java EE resources into a bean
	15.3. Calling a bean from a servlet
	15.4. Calling a bean from a message-driven bean
	15.5. JMS endpoints
	15.6. Packaging and deployment

	Chapter 16. Portable extensions
	16.1. Creating an Extension
	16.2. Container lifecycle events
	16.3. The BeanManager object
	16.4. The InjectionTarget interface
	16.5. The Bean interface
	16.6. Registering a Bean
	16.7. Wrapping an AnnotatedType
	16.8. Wrapping an InjectionTarget
	16.9. The Context interface

	Chapter 17. Next steps
	Part V. Weld reference
	Chapter 18. Application servers and environments supported by Weld
	18.1. Using Weld with JBoss AS
	18.2. GlassFish
	18.3. Servlet containers (such as Tomcat or Jetty)
	18.3.1. Tomcat
	18.3.2. Jetty

	18.4. Java SE
	18.4.1. CDI SE Module
	18.4.2. Bootstrapping CDI SE
	18.4.2.1. The ContainerInitialized Event
	18.4.2.2. Programatic Bootstrap API

	18.4.3. Thread Context
	18.4.4. Setting the Classpath

	Chapter 19. CDI extensions available as part of Weld
	19.1. Weld Logger

	Chapter 20. Alternative view layers
	20.1. Wicket CDI integration
	20.1.1. The WebApplication class
	20.1.2. Conversations with Wicket
	20.1.2.1. Starting and stopping conversations in Wicket
	20.1.2.2. Long running conversation propagation in Wicket

	Appendix A. Integrating Weld into other environments
	A.1. The Weld SPI
	A.1.1. Deployment structure
	A.1.2. EJB descriptors
	A.1.3. EE resource injection and resolution services
	A.1.4. EJB services
	A.1.5. JPA services
	A.1.6. Transaction Services
	A.1.7. Resource Services
	A.1.8. Injection Services
	A.1.9. Security Services
	A.1.10. Bean Validation Services
	A.1.11. Identifying the BDA being addressed
	A.1.12. The bean store
	A.1.13. The application context
	A.1.14. Initialization and shutdown
	A.1.15. Resource loading

	A.2. The contract with the container

