
Weld-OSGi - Weld OSGi integration

Design specification

Mathieu Ancelin

<mathieu.ancelin@serli.com>

Matthieu Clochard

<matthieu.clochard@serli.com>





iii

Preface .............................................................................................................................  v

1. About naming and references ................................................................................. v

1.1. References .................................................................................................  v

1.2. Bundle types ..............................................................................................  v

2. What is this specification for ? ................................................................................ v

2.1. Contracts ....................................................................................................  v

2.2. What is Weld-OSGi ? .................................................................................. v

2.3. Third party dependencies and environment ..................................................  vi

I. Architecture of Weld-OSGi ..............................................................................................  1

1. Framework organization ......................................................................................  3

2. Extension part .....................................................................................................  7

2.1. API bundle .................................................................................................  7

2.2. Extension bundle: the puppet master ...........................................................  7

3. Integration part ....................................................................................................  9

3.1. SPI bundle .................................................................................................  9

3.2. Integration bundle: provide Weld containers .................................................  9

4. Weld-OSGi features ...........................................................................................  11

5. Weld-OSGi workflow ..........................................................................................  13

6. Bean bundles life cycle .....................................................................................  15

7. Bean bundle characteristics ..............................................................................  19

7.1. The META-INF/bean.xml file ......................................................................  19

7.2. The Embedded-CDIContainer META-INF/Manifest.MF header .....................  19

II. Programming model of Weld-OSGi ...............................................................................  21

8. CDI activation in bean bundles .......................................................................... 23

9. Service auto publication and injection ..............................................................  25

9.1. Service bean and auto-published OSGi service description ..........................  25

9.2. OSGi service auto-publication with Publish annotation .................................  25

9.2.1. Service type resolution ...................................................................  26

9.2.2. Service type blacklist ......................................................................  26

9.3. OSGiService annotated or Service<T> typed injection points ........................ 26

9.4. OSGiServiceBean and OSGiServiceProviderBean ....................................... 27

9.5. Clearly specify a service implementation ....................................................  27

9.5.1. Link between qualifiers and OSGi LDAP properties ........................... 28

9.5.2. Filter and Properties qualifiers .........................................................  29

9.5.3. Filter and Properties stereotypes .....................................................  30

9.5.4. Final LDAP filter .............................................................................  31

9.5.5. Using service filtering .....................................................................  32

9.6. Bean disambiguation and annotated type processing ................................... 33

9.6.1. Examples ....................................................................................... 34

9.6.2. Justification ....................................................................................  35

9.7. Contextual services ...................................................................................  36

9.7.1. OSGi service scopes ......................................................................  36

9.8. Required services .....................................................................................  36

9.9. Inaccessible service at runtime ..................................................................  37



Weld-OSGi - Weld OSGi integration

iv

10. Weld-OSGi events ............................................................................................  39

10.1. CDI container lifecycle events ..................................................................  39

10.2. Bundle lifecycle events ............................................................................  39

10.3. Service lifecyle events .............................................................................  40

10.4. Bean bundle required service dependency validation events ......................  41

10.5. Intra and inter bundles communication events ...........................................  41

11. OSGi facilitation ...............................................................................................  43

11.1. Service registry .......................................................................................  43

11.2. OSGi utilities ........................................................................................... 43

11.3. The registration .......................................................................................  44



v

Preface

1. About naming and references

1.1. References

This document uses both CDI and OSGi specification documentations as technical references.

You may refer to these documents for a better understanding of CDI and OSGi functionality,

references and naming conventions. Weld-OSGi comes with other documentations and you may

refer to API JavaDoc and user manual for a better understanding of Weld-OSGi.

1.2. Bundle types

This document discerns different bundle types for OSGi environment using Weld-OSGi:

• Bundle refers to any bundle deployable in the OSGi environment as a Java archive containing

OSGi marker headers in its META-INF/Manifest.MF file.

• Bean bundle refers to any bundle deployable in the OSGi environment and managable by Weld-

OSGi as a bundle containing CDI marker file META-INF/bean.xml.

• Regular bundle refers to any bundle deployable in the OSGi environment and not manageable

by Weld-OSGi as a bundle not containing CDI marker file.

2. What is this specification for ?

2.1. Contracts

This specification defines:

• The architecture, organization and workflow of the Weld-OSGi framework.

• The programming model for, and responsibilities of, application developer who uses the Weld-

OSGi framework.

• The programming model for, and responsibilities of, vendor who provides the compatibility of

another CDI implementation.

TODO table of content presentation

2.2. What is Weld-OSGi ?

Weld-OSGi is an extension to the Weld project as a framework for developing applications in OSGi

environment. Weld-OSGi aims at:

• Providing a support for OSGi environments to the Weld project.



Preface

vi

• Addressing the OSGi complexity using the CDI programming model.

Weld-OSGi is a group of four bundles deployable in any OSGi environment. It allows the usage

of bean bundles in these OSGi environments.

2.3. Third party dependencies and environment

Weld-OSGi may run into an OSGi environment, therefore it requires an OSGi implementation

framework to run in (such as Apache Felix, Equinox, Knopflerfish ...).

Weld-OSGi logs its operations using the SLF4J logging facade and the LogBack logging

implementation.

Weld-OSGi is a part of the Weld project and may use any of the Weld project dependencies.



Part I. Architecture of Weld-OSGi





Chapter 1.

3

Framework organization
Weld-OSGi is composed of five bundles:

• The API bundle that describes the programming model and the OSGi extension mechanism.

• The SPI bundle that describes the CDI implementation hooking mechanism.

• The third party API bundle that provides all the needed third party API.

• The extension bundle that extends the OSGi environment by managing bean bundles,

• The integration bundle that provides OSGi ready Weld containers to the extension bundle.

Note that as Weld-OSGi runs in an OSGi environment and it is implicit that there is an OSGi core

bundle too. This one provides OSGi features for all other bundles, including bean bundles. But

it is not an actual part of Weld-OSGi.



Chapter 1. Framework organization

4



5

This figure shows the five bundles of Weld-OSGi and the links between them.

Figure 1.1. The five bundles of Weld-OSGi

These bundles could regroup in two part (as shown in the figure above):

• Extension part: this part represents the actual OSGi extension. It detects and manages bean

bundles and provides the programming model. This part is more described in chapter 2.

• Integration part: this part represents the Weld integration. It provides all the Weld containers

needed by the extension part and defines how these containers should hook up with bean

bundles. This part is more described in chapter 3.

• The third party API bundle : this bundle does not actually belong to a part.



6



Chapter 2.

7

Extension part

2.1. API bundle

The extension API defines all the features provided to OSGi environment using CDI specification.

It exposes all the new utilities and defines the behavior of the extension bundle.

It exposes all the interfaces, events and annotations usable by a developers in order to develop its

client bean bundles. It defines the programming model of bean bundle. Mostly it is about publishing

and consuming injectable services in a CDI way.

It also describes the object the extension bundle needs to orchestrate bean bundles.

So this is where to search for new usages of OSGi.

2.2. Extension bundle: the puppet master

The extension bundle is the orchestrator of Weld-OSGi. It may be used by any application that

requires Weld-OSGi. It may be just started at the beginning of a Weld-OSGi application. It requires

the extension API bundle as a dependency.

The extension bundle is the heart of Weld-OSGi applications. Once it is started, provided that

it finds a started integration bundle, it manages all the bean bundles. It is in charge of service

automatic publishing, service injections, CDI event notifications and bundle communications.

It runs in background, it just need to be started with the OSGi environment, then everything is

transparent to the user. Client bean bundles do not have to do anything in order to use Weld-

OSGi functionality.

In order to perform injections, the extension bundle searches for a CDI compliant container service

provider once it is started. Thus it can only work coupled with a bundle providing such a service:

the integration bundle.

The extension bundle provides an extension to OSGi as an extender pattern. The extension bundle

(the extender) tracks for bean bundles (the extensions) to be started. Then CDI utilities are enabled

for these bean bundles over OSGi environment.

The extension bundle works that way:

BEGIN

    start

    WHILE ! integration_bundle.isStarted

        wait

    END_WHILE

    obtain_container_factory

    FOR bean_bundle : started_bundles



Chapter 2. Extension part

8

        manage_bean_bundle

        provide_container

    END_FOR

    WHILE integration_bundle.isStarted

        wait_event

        OnBeanBundleStart

            manage_bean_bundle

            provide_container

        OnBeanBundleStop

            unmanage_bean_bundle

    END_WHILE

    stop

    FOR bean_bundle : managed_bundles

        unmanage_bean_bundle

        stop_bean_bundle

    END_FOR

END

So this is where the magic happens and where OSGi applications become much more simple.



Chapter 3.

9

Integration part

3.1. SPI bundle

The SPI bundle defines how a CDI container, such as Weld, should bootstrap with the extension

bundle. So any CDI environment implementation could be used by the extension bundle

transparently. The CDI compliant container may be provided using an integration bundle.

This aims at providing the minimum integration in order to start a CDI compliant container with

every managed bean bundle. Then the extension bundle can get a CDI container to provide to

every one of its managed bean bundle.

Moreover, the integration API allows to mix CDI compliant container in the same application by

providing an embedded mode. In this mode a bean bundle is decoupled from the extension bundle

and is managed on its own. Thus various implementations of CDI container can be used or the

behavior of a particular bean bundle can be particularized.

All this bootstrapping mechanism works using the service layer of OSGi. A CDI compliant

integration bundle may provide a service that allows the extension bundle to obtain a new

container for every bean bundle.

So this is where to search to make Weld-OSGi use a specific CDI compliant container.

3.2. Integration bundle: provide Weld containers

The integration bundle is responsible for providing Weld containers to the extension bundle. It

may be started with the extension bundle and publish a CDI container factory service. It requires

the integration API bundle as a dependency.

The integration bundle may work this way:

BEGIN

    start

    register_container_factory_service

    WHILE true

        wait

        OnContainerRequest

            provide_container

    END_WHILE

    unregister_container_factory_service

END



10



Chapter 4.

11

Weld-OSGi features
As an extension to OSGi, Weld-OSGi provides several features :

• Complete integration with OSGi world by the use of extender pattern and extension bundle.

Thus complete compatibility with already existing tools.

• Non intruding, configurable and customizable behavior in new or upgraded application. Simple

configuration and usage with annotations, completely xml free.

• Full internal CDI support for bean bundles: injection, producers, interceptors, decorators ...

• Lot of ease features for OSGi usages: injectable services, event notifications, inter-bundle

communication ...

• OSGi and CDI compliance all along the way ensuring compatibility with all CDI compliant

container and easy application realisation or portage.



12



Chapter 5.

13

Weld-OSGi workflow



Chapter 5. Weld-OSGi workflow

14

This figure shows the steps of the Weld-OSGi starting and stopping protocol. Between

step 8 and step 11 the framework is in stable state and manages bean bundles.

Figure 5.1. Weld-OSGi framework start and stop protocol



Chapter 6.

15

Bean bundles life cycle
This section presents the lifecycle of a bean bundle and how it impacts CDI and OSGi regular

behaviors. Mostly bean bundles follow the same lifecycle than a regular bundle. There are only

two new possible states and they do not modify the behavior from OSGi side.



Chapter 6. Bean bundles life ...

16



17

This figure shows the two new states a bean bundle can be in.

These states are triggered by two new events and address the CDI

container dependency resolution (i.e. services annotated @Required).

Figure 6.1. The bean bundle lifecycle

The regular OSGi lifecycle is not modified by the new Weld-OSGi states as they have the same

meaning than the ACTIVE state from an OSGi point of view. They only add information about the

validation of required service availability.



18



Chapter 7.

19

Bean bundle characteristics
There are very few things to do in order to obtain a bean bundle from a bean archive or a bundle.

Mostly it is just adding the missing marker files and headers in the archive:

• Make a bean archive a bean bundle by adding special OSGi marker headers in its META-INF/

Manifest.MF file.

• Or, in the other way, make a bundle a bean bundle by adding a META-INF/bean.xml file.

Thus a bean bundle has both META-INF/bean.xml file and OSGi marker headers in its META-

INF/Manifest.MF file.

However there is a few other information that Weld-OSGi might need in order to perform a correct

extension. In particular a bean bundle can not be manage by the extension bundle but by his own

embedded CDI container. For that there is a new manifest header.

7.1. The META-INF/bean.xml file

The beans.xml file follows no particular rules and should be the same as in a native CDI

environment. Thus it can be completely empty or declare interceptors, decorators or alternatives

as a regular CDI beans.xml file.

There will be no different behavior with a classic bean archive except for Weld-OSGi extension

new utilities. But these don't need any modification on the META-INF/bean.xml file.

7.2. The Embedded-CDIContainer META-INF/Manifest.MF header

This header prevents the extension bundle to automatically manage the bean bundle that set

this manifest header to true. So the bean bundle can be managed more finely by the user or

use a different CDI container. If this header is set to false or it is not present in the META-INF/

Manifest.MF file then the bean bundle will be automatically managed by the extension bundle

(if it is started).



20



Part II. Programming

model of Weld-OSGi





Chapter 8.

23

CDI activation in bean bundles
Weld-OSGi detects a bundle as a bean bundle if:

• it possesses a META-INF/beans.xml file at its root path

• or/and it possesses one or more inner jar or zip files that possesses a META-INF/beans.xml

file at their root paths

The managed set of bean classes of a bean class contains all the class file under all META-INF/

beans.xml root paths.

CDI and Weld-OSGi features are enabled for all these manageable paths.

Everything possible in CDI application is possible in bean bundle. They can take advantage

of injection, producers, interceptors, decorators and alternative. But influence boundary of the

CDI compliant container stay within the bean bundle managed paths for classic CDI usages. So

external dependencies cannot be injected and interceptor, decorator or alternative of another bean

bundle cannot be used (yet interceptors, decorators and alternatives still need to be declares in

the bean bundle bean.xml file).

That is all we will say about classic CDI usages, please report to CDI documentation for more

information.



24



Chapter 9.

25

Service auto publication and

injection

9.1. Service bean and auto-published OSGi service

description

A Weld-OSGi auto-published service is described by these attributes (and their equivalents for

a regular OSGi service):

• A (nonempty) set of service contracts (service class names)

• A set of qualifiers (service properties)

• A scope

• A Publish annotated CDI bean instance (service instance)

A Weld-OSGi service bean is described by these attributes (and their equivalents for OSGi service

lookup):

• An OSGiService annotated or Service<T> typed injection point

• A type (lookup type)

• A Filter qualifier (lookup LDAP filter)

• A (possibly empty) set of reachable instance (lookup result)

9.2. OSGi service auto-publication with Publish annotation

Annotate a CDI bean class with a Publish annotation makes Weld-OSGi register this bean as

a OSGi service.

Such a service is accessible through Weld-OSGi service injection and OSGi classic mechanisms.

Automatically publish a new service implementation:

@Publish

public class MyServiceImpl implements MyService {

}

However, such an implementation also provides a regular CDI managed bean, so MyServiceImpl

can also be injected using CDI within the bean bundle.



Chapter 9. Service auto publi...

26

9.2.1. Service type resolution

Weld-OSGi auto-published service get their types from the following algorithm:

• If a (nonempty) contract list is provided (as an array of Class) with the Publish annotation the

service is registered for all these types. This is how define a contract list:

@Publish(contracts = {

        MyService.class,

        AbstractClass.class

})

public class MyServiceImpl extends AbstractClass implements MyService, OtherInterface {

}

The implementation class may be assignable for all of the contract types. If not, Weld-OSGi

detects the problem and treats it as an error.

• Else if the implementation class possesses a (nonempty) list of non-blacklisted interfaces the

service is registered for all these interface types.The blacklist is described below.

• Else if the implementation class possesses a non-blacklisted superclass, the service is

registered for this superclass type.

• Last if the implementation class has neither contract nor non-blacklisted interface or superclass,

the service is register with is the implementation class type.

9.2.2. Service type blacklist

TODO

9.3. OSGiService annotated or Service<T> typed injection points

An OSGiService annotated or a Service<T> typed injection point is managed by Weld-OSGi

through the creation of a new service bean. OSGiService annotation and Service<T> type are

exclusive on injection point. If an injection point has both, Weld-OSGi detects the problem and

treats it as an error.

• Direct injection with OSGiService annotation and OSGiServiceBean:

@Inject @OSGiService MyService service;

Such an injection point (an OSGi service injection point) will match an unique Weld-OSGi

OSGiServiceBean.



OSGiServiceBean and OSGiServiceProviderBean

27

For every different OSGi service injection point an unique OSGiServiceBean is generated by

Weld-OSGi.

• Injection using programmatic lookup with Service<T> type and OSGiServiceProviderBean:

@Inject Service<MyService> services;

Such an injection point (an OSGi service provider injection point) will match an unique Weld-

OSGi OSGiServiceProviderBean.

For every different OSGi service provider injection point an unique OSGiServiceProviderBean

is generated by Weld-OSGi.

OSGiService annotated or a Service<T> typed injection points are not eligible to regular CDI

injection.

9.4. OSGiServiceBean and OSGiServiceProviderBean

OSGiServiceBean injects an instance of the first service implementation matching the injection

point.

OSGiServiceProviderBean injects a service provider (as a Service<T>) for all the service

implementations matching the injection point.

Service provider allows to over-specify the matching service implementation set with additional

OSGi service properties.

Service provider does not allow to subtype the matching service implementation set.

Service provider allows to instantiate the first service implementation matching the (possibly) over-

specified injection point.

Service implementation are searched into the OSGi service registry, it may be:

• A Weld-OSGi auto-published service

• A regular OSGi service

9.5. Clearly specify a service implementation

Qualifier annotations might be used for both specifying auto-published services and service

injection points. Such qualifiers should be seen as OSGi service properties, thus every set of

qualifiers corresponds to a set of OSGi service properties and so to a OSGi service LDAP filter.

However qualifiers keep a regular meaning for the CDI generated bean of an auto-published

service class.



Chapter 9. Service auto publi...

28

9.5.1. Link between qualifiers and OSGi LDAP properties

A qualifier will generate an OSGi service property for each of its valued element (an element with

a default value is always considered valued) following these rules:

• A valued element generates a property with this template:

decapitalized_qualifier_name.decapitalized_element_name=element_value.toString()

@MyQualifier(lang="EN", country="US")

will generate:

(myqualifier.lang=EN)

(myqualifier.country=US)

• A non valued element with a default value generates a property with this template:

decapitalized_qualifier_name.decapitalized_element_name=element_default_value.toString()

@MyQualifier(lang="EN")

will generate:

(myqualifier.lang=EN)

(myqualifier.country=US) //admitting US is the default value for the element country

• A non valued element with no default value generates a property with this template:

decapitalized_qualifier_name.decapitalized_element_name=*

@MyQualifier(lang="EN")

will generate:



Filter and Properties qualifiers

29

(myqualifier.lang=EN)

(myqualifier.country=*) //admitting there is no default value for the element country

• A qualifier with no element generates a property with this template:

decapitalized_qualifier_name=*

@MyQualifier()

will generate:

(myqualifier=*)

• Some qualifiers follow a specific processing:

• OSGiService qualifier will not generate any service property

• Required qualifier will not generate any service property

• Default qualifier will not generate any service property

• Any qualifier will not generate any service property

• Filter and Properties qualifiers processing is described below

9.5.2. Filter and Properties qualifiers

Filter qualifier allows to specify a OSGi LDAP filter for a OSGiServiceBean or a

OSGiServiceProducerBean injection point.

A Filter qualifier generates a "as it is" OSGi LDAP filter.

Properties qualifier allows to specify OSGi LDAP properties for a auto-published service class

or for a OSGiServiceBean or a OSGiServiceProducerBean injection point.

A Properties qualifier generates a property for every one of its Property annotation with this

template:

Property.name()=Property.value()



Chapter 9. Service auto publi...

30

@Properties({@Property(name = "lang", value = "EN")

             @Property(name = "country", value = "US"

})

will generate:

(lang=EN)

(country=US)

If a Filter qualifier is used on a bean class, Weld-OSGi detects the problem and treats it as

an error.

It is discouraged to use the Properties qualifier on a bean that might be use as a regular CDI

bean.

9.5.3. Filter and Properties stereotypes

An annotation annotated with a Filter qualifier is considered similar to the Filter qualifier alone.

An annotation annotated with a Properties qualifier is considered similar to the Properties

qualifier alone.

Declaring a filter stereotype:

@Filter("name=1")

public @Interface Name1 {

}

@Inject @Name1 Service<MyService> named1Services;

is similar to:

@Inject @Filter("name=1") Service<MyService> named1Services;

Declaring a properties stereotype:

@Properties({@Property(name = "name", value = "1")})

public @Interface Name1 {



Final LDAP filter

31

}

@Publish

@Name1 

public class MyServiceImpl implements MyService {

}

is similar to:

@Publish

@Properties({@Property(name = "name", value = "1")})

public class MyServiceImpl implements MyService {

}

9.5.4. Final LDAP filter

Weld-OSGi processes all the OSGi LDAP properties (from regular qualifiers and Properties

qualifier) and provided OSGi LDAP filter (from Filter qualifier) to generate a global OSGi LDAP

filter as:

• With multiple OSGi LDAP properties and a provided OSGi LDAP filter

(& provided_ldap_filter (ldap_property_1) (ldap_property_2) ... (ldap_property_i) )

• With multiple OSGi LDAP properties and no provided OSGi LDAP filter

(& (ldap_property_1) (ldap_property_2) ... (ldap_property_i) )

• With one OSGi LDAP properties and a provided OSGi LDAP filter

(& provided_ldap_filter (ldap_property) )

• With one OSGi LDAP properties and no provided OSGi LDAP filter

(ldap_property)



Chapter 9. Service auto publi...

32

• With no OSGi LDAP properties and a provided OSGi LDAP filter

provided_ldap_filter

• With no OSGi LDAP properties and no provided OSGi LDAP filter

null

Weld-OSGi never ensure that the provided OSGi LDAP properties, neither the provided OSGi

LDAP filter, neither the generated OSGi LDAP filter are valid.

9.5.5. Using service filtering

• On an auto-published service class:

@Publish

@AnyQualifier

public class MyServiceQualifiedImpl implements MyService {

}

Will generate an AnyQualifier qualified regular CDI bean and register an OSGi service with

the property (anyqualifier=*).

• On an OSGi service injection point:

@Inject @OSGiService @AnyQualifier MyService qualifiedService;

@Inject @AnyQualifier Service<MyService> qualifiedServices;

Will generate an OSGiServiceBean and an OSGiServiceProducerBean looking up for OSGi

services with the property (anyqualifier=*).

• With an OSGiServiceProducerBean:

services.select(new AnnotationLiteral<AnyQualifier>() {}).get().deSomething();

Will over-specify the valid service implementation set to those matching the property

(anyqualifier=*).

• Using the special Properties qualifier:



Bean disambiguation and annotated type processing

33

@Publish

@Properties({@Property(name = "country", value = "US")

             @Property(name = "lang", value = "EN")

})

public class MyServiceQualifiedImpl implements MyService {

}

Will generate an Properties(...) qualified regular CDI bean and register an OSGi service

with the properties (lang=EN) and (country=US).

• Using the special Filter qualifier:

@Inject @OSGiService @Filter("(&(lang=EN)(country=US))") MyService qualifiedService;

@Inject @Filter("(&(lang=EN)(country=US))") Service<MyService> qualifiedServices;

Will generate an OSGiServiceBean and an OSGiServiceProducerBean looking up for OSGi

services matching the OSGi LDAP filter (&(lang=EN)(country=US)).

9.6. Bean disambiguation and annotated type

processing

Weld-OSGi ensures that every OSGiService annotated or Service<T> typed injection point

matches an unique OSGiServiceBean or OSGiServiceProviderBean.

Therefore, for every bean bundle Weld-OSGi:

• Processes annotated types

• Wraps every OSGiService annotated injection point

OSGiService annotated injection points are wrapped as:

@Inject @OSGiService @Filter(Calculated_filter) Type var_name;

The global OSGi LDAP filter of the final Filter qualifier is calculated from:

• The original set of qualifiers (except OSGiService and Filter)

• The OSGi LDAP filter value of the original Filter qualifier



Chapter 9. Service auto publi...

34

• The set of properties of the original Filter annotation

9.6.1. Examples

•
@Inject @OSGiService MyService qualifiedService;

will become:

@Inject @OSGiService @Filter("") MyService qualifiedService;

•
@Inject @OSGiService @AnyQualifier MyService qualifiedService;

will become:

@Inject @OSGiService @Filter("(anyqualifier=*)") MyService qualifiedService;

•
@Inject @OSGiService @AnyQualifier Service<MyService> qualifiedServices;

will generate an error.

•
@Inject

 @OSGiService @AnyQualifier @Filter(value="(lang=EN)",properties={"country=US","currency=*"})

 MyService qualifiedService;

will become:

@Inject @OSGiService @Filter("(&(anyqualifier=*)(lang=EN)(country=US)(currency=*))

 MyService qualifiedService;



Justification

35

9.6.2. Justification



Chapter 9. Service auto publi...

36

This figure show the need for a annotated type processing in order to remove the ambiguous

dependency between regular CDI and Weld-OSGi injection points.

Figure 9.1. Annotated type processing justification

9.7. Contextual services

An auto-published service instance is a CDI contextual instance, so:

• The instance injected through a OSGiService annotated or Service<T> typed injection point

might be a CDI contextual instance

• The instance obtained through a regular OSGi service checkout might be a CDI contextual

instance

• In either cases Weld-OSGi ensures that the injected or obtained instance is contextual if no

similar service is published using regular OSGi mechanism

It is discouraged to use regular OSGi service publication mechanisms in a Weld-OSGi application.

9.7.1. OSGi service scopes

A CDI scope might be precised for every auto-published service class:

• If no scope is provided Dependent is assumed, granting a capacity similar to regular OSGi

service

• Only one scope may be precised for every auto-published service class

• The scope is shared by both generated regular CDI bean and OSGi service

• The available scopes are: Dependent, Singleton, ApplicationScoped, SessionScoped,

ConversationScoped and RequestScoped

• Other scope or pseudo-scope may not be supported by Weld-OSGi

@Publish

@ApplicationScoped

public class MyServiceImpl implements MyService {

    @Override

    public void doSomething() {

    }

}

9.8. Required services

A OSGiService annotated or Service<T> typed injection point might be annotated Required



Inaccessible service at runtime

37

• with no influence on this injection point

• with influence on the Valid and Invalid events management in the current bean bundle

9.9. Inaccessible service at runtime

OSGiServiceBean and OSGiServiceProviderBeans bean instances are dynamically obtained as

OSGi service instance.

No instance might be available at runtime due to OSGi dynamism, in such case a

OSGiServiceUnavailableException is thrown with any OSGiServiceBean method call or the

OSGiServiceProviderBeans get method call.



38



Chapter 10.

39

Weld-OSGi events
Weld-OSGi provides numerous events about OSGi events and bean bundle lifecycle events. It

also allows decoupled bean bundle communication.

All these features uses CDI events mechanisms:

• These events may be listened with a Observes annotated parameter method

public void bindBundle(@Observes AbstractBundleEvent event) {

}

• These events may be fired with the regular CDI mechanisms

BeanManager beanManager;

...

beanManager.fireEvent(new

 BundleContainerEvents.BundleContainerInitialized(bundle.getBundleContext()));

Event<Object> event;

...

event.select(AbstractBundleEvent.class).fire(new BundleInstalled(bundle));

10.1. CDI container lifecycle events

Weld-OSGi provides a CDI event notification for bean bundle about bean bundle CDI container

lifecycle events:

• A BundleContainerInitialized event is fired every time a bean bundle CDI container is

initialized

• A BundleContainerShutdown event is fired every time a bean bundle CDI container is

shutdown

10.2. Bundle lifecycle events

Weld-OSGi provides a CDI event notification for bean bundle about bundle lifecycle events:

• Such an event is fired every time the correspondent OSGi bundle event is fired



Chapter 10. Weld-OSGi events

40

• All bundle lifecycle events may be listened using the AbstractBundleEvent event

• Specific bundle lifecycle events are: BundleInstalled, BundleUninstalled,

BundleLazyActivation, BundleResolved, BundleUnresolved, BundleUpdated,

BundleStarted, BundleStarting, BundleStopped and BundleStopping

It is possible to filter the listened source bundle by bundle symbolic name and version (optional)

public void bindBundle(@Observes @BundleName("com.sample.gui") @BundleVersion("4.2.1")

 AbstractBundleEvent event) {

}

public void bindBundle(@Observes @BundleName("com.sample.gui") BundleInstalled event) {

}

Only the events from the corresponding bundle are listened.

If a BundleVersion annotation is provided without a BundleName annotation Weld-OSGi detects

the problem and treats it as an error.

10.3. Service lifecyle events

Weld-OSGi provides a CDI event notification for bean bundle about service lifecycle events:

• Such an event is fired every time the correspondent OSGi service event is fired

• All service lifecycle events may be listen using the AbstractServiceEvent event

• Specific bundle lifecycle events are: ServiceArrival, ServiceDeparture and

ServiceChanged

It is possible to filter the listened source service by specification and or OSGi LDAP properties

and filter

public void bindService(@Observes @Specification(MyService.class) AbstractServiceEvent

 event) {

}

public void bindService(@Observes @AnyQualifier ServiceArrival event) {

}

public void bindService(@Observes @Specification(MyService.class) @Filter("(&(lang=EN)

(country=US))") ServiceChanged event) {

}

Only the corresponding service events are listened.



Bean bundle required service dependency validation events

41

10.4. Bean bundle required service dependency

validation events

Weld-OSGi provides a CDI event notification for bean bundle about bean bundle required service

dependency validation:

• A Valid event is fired every time a bean bundle got all its required service dependency validated

• A Invalid event is fired every time a bean bundle got one of its required service dependency

invalidated

10.5. Intra and inter bundles communication events

Weld-OSGi provides a way to communicate within and between bean bundles:

• A InterBundleEvent is fired by a bean bundle

@Inject Event<InterBundleEvent> event;

MyMessage myMessage = new MyMessage();

event.fire(new InterBundleEvent(myMessage));

• A InterBundleEvent may be listened by every active bean bundle

It is possible to filter the listened source message by message type and ignoring the events from

the current bundle

public void listenAllEventsFromOtherBundles(@Observes @Sent InterBundleEvent event) {

}

public void listenMyMessageEvents(@Observes @Specification(MyMessage.class)

 InterBundleEvent event) {

}

public void listenMyMessageEventsFromOtherBundles(@Observes @Sent

 @Specification(MyMessage.class) InterBundleEvent event) {

}

Only the corresponding events are listened.



42



Chapter 11.

43

OSGi facilitation

11.1. Service registry

Weld-OSGi allows bean bundles to directly interact with the OSGi service registry by getting a

ServiceRegistry bean:

@Inject ServiceRegistry registry;

This bean is injectable everywhere into a bean bundle.

It allows to:

• Register a service implementation

• Obtain a service provider as a Service<T>

• Obtain all existing registrations

• Obtain a specific set of registrations

11.2. OSGi utilities

Weld-OSGi allows to obtain, by injection into bean bundles, some of the useful objects of the

OSGi environment:

• The current bundle

@Inject Bundle bundle;

• The current bundle context

@Inject BundleContext bundleContext;

• The current bundle headers

@Inject @BundleHeaders Map<String,String>metadata;

• A specific current bundle header



Chapter 11. OSGi facilitation

44

@Inject @BundleHeader("Bundle-SymbolicName") String symbolicName;

• A specific current bundle resource file

@Inject @BundleDataFile("test.txt") File file;

It is possible to precise an external bundle by bundle symbolic name and version(optional)

@Inject @BundleName("com.sample.gui") @BundleVersion("4.2.1") bundle;

@Inject @BundleName("com.sample.gui") bundle;

@Inject @BundleName("com.sample.gui") @BundleVersion("4.2.1") BundleContext

 bundleContext;

@Inject @BundleName("com.sample.gui") @BundleVersion("4.2.1") @BundleHeaders

 Map<String,String>metadata;

@Inject @BundleName("com.sample.gui") @BundleVersion("4.2.1") @BundleHeader("Bundle-

SymbolicName") String symbolicName;

@Inject @BundleName("com.sample.gui") @BundleVersion("4.2.1") @BundleDataFile("test.txt")

 File file;

If a BundleVersion annotation is provided without a BundleName annotation Weld-OSGi detects

the problem and treats it as an error.

11.3. The registration

Weld-OSGi allows to obtain, by injection into bean bundles, Registration<T> of a specific type.

A registration object represent all the bindings between a service contract class and its OSGi

ServiceRegistration.

@Inject Registration<MyService> registrations;



The registration

45

It is possible to filter the obtained bindings by specifying OSGi LDAP properties and filter.

@Inject @AnyQualifier Registration<MyService> qualifiedRegistrations;

@Inject @Filter("(&(lang=EN)(country=US))") Registration<MyService> qualifiedRegistrations;

A Registration<T> allows to:

• Iterate over the contained bindings

• Select a subset of the bindings using OSGi LDAP properties and filter

• Obtain a service provider, as a Service<T> for the current bindings

• Unregister all the services for the current bindings



46


	Weld-OSGi - Weld OSGi integration
	Table of Contents
	Preface
	1. About naming and references
	1.1. References
	1.2. Bundle types

	2. What is this specification for ?
	2.1. Contracts
	2.2. What is Weld-OSGi ?
	2.3. Third party dependencies and environment


	Part I. Architecture of Weld-OSGi
	Chapter 1. Framework organization
	Chapter 2. Extension part
	2.1. API bundle
	2.2. Extension bundle: the puppet master

	Chapter 3. Integration part
	3.1. SPI bundle
	3.2. Integration bundle: provide Weld containers

	Chapter 4. Weld-OSGi features
	Chapter 5. Weld-OSGi workflow
	Chapter 6. Bean bundles life cycle
	Chapter 7. Bean bundle characteristics
	7.1. The META-INF/bean.xml file
	7.2. The Embedded-CDIContainer META-INF/Manifest.MF header


	Part II. Programming model of Weld-OSGi
	Chapter 8. CDI activation in bean bundles
	Chapter 9. Service auto publication and injection
	9.1. Service bean and auto-published OSGi service description
	9.2. OSGi service auto-publication with Publish annotation
	9.2.1. Service type resolution
	9.2.2. Service type blacklist

	9.3. OSGiService annotated or Service<T> typed injection points
	9.4. OSGiServiceBean and OSGiServiceProviderBean
	9.5. Clearly specify a service implementation
	9.5.1. Link between qualifiers and OSGi LDAP properties
	9.5.2. Filter and Properties qualifiers
	9.5.3. Filter and Properties stereotypes
	9.5.4. Final LDAP filter
	9.5.5. Using service filtering

	9.6. Bean disambiguation and annotated type processing
	9.6.1. Examples
	9.6.2. Justification

	9.7. Contextual services
	9.7.1. OSGi service scopes

	9.8. Required services
	9.9. Inaccessible service at runtime

	Chapter 10. Weld-OSGi events
	10.1. CDI container lifecycle events
	10.2. Bundle lifecycle events
	10.3. Service lifecyle events
	10.4. Bean bundle required service dependency validation events
	10.5. Intra and inter bundles communication events

	Chapter 11. OSGi facilitation
	11.1. Service registry
	11.2. OSGi utilities
	11.3. The registration



