
Weld - CDI Reference Implementation

CDI: Contexts and

Dependency Injection

for the Java EE platform

Gavin King

Pete Muir

Jozef Hartinger

Dan Allen

David Allen

Italian Translation: Nicola Benaglia, Francesco Milesi

Spanish Translation: Gladys Guerrero

Korean Translation: Eun-Ju Ki,

Traditional Chinese Translation: Terry Chuang

Simplified Chinese Translation: Sean Wu

iii

A note about naming and nomenclature .. vii

I. Beans ... 1

1. Introduction .. 3

1.1. What is a bean? ... 3

1.2. Getting our feet wet .. 3

2. More about beans ... 7

2.1. The anatomy of a bean .. 7

2.1.1. Bean types, qualifiers and dependency injection .. 8

2.1.2. Scope .. 10

2.1.3. EL name .. 10

2.1.4. Alternatives ... 11

2.1.5. Interceptor binding types ... 11

2.2. What kinds of classes are beans? ... 12

2.2.1. Managed beans .. 12

2.2.2. Session beans ... 13

2.2.3. Producer methods ... 14

2.2.4. Producer fields ... 16

3. JSF web application example ... 17

4. Dependency injection and programmatic lookup .. 21

4.1. Injection points ... 21

4.2. What gets injected ... 22

4.3. Qualifier annotations .. 23

4.4. The built-in qualifiers @Default and @Any ... 24

4.5. Qualifiers with members .. 25

4.6. Multiple qualifiers .. 25

4.7. Alternatives .. 26

4.8. Fixing unsatisfied and ambiguous dependencies .. 26

4.9. Client proxies ... 27

4.10. Obtaining a contextual instance by programmatic lookup ... 28

4.11. The InjectionPoint object ... 29

5. Scopes and contexts .. 33

5.1. Scope types .. 33

5.2. Built-in scopes .. 33

5.3. The conversation scope .. 34

5.3.1. Conversation demarcation ... 34

5.3.2. Conversation propagation .. 35

5.3.3. Conversation timeout ... 36

5.3.4. CDI Conversation filter ... 36

5.3.5. Lazy and eager conversation context initialization ... 37

5.4. The singleton pseudo-scope ... 38

5.5. The dependent pseudo-scope ... 39

5.6. The @New qualifier .. 39

II. Getting Start with Weld, the CDI Reference Implementation ... 41

6. Getting started with Weld .. 43

6.1. Prerequisites .. 43

6.2. Deploying to WildFly .. 43

6.3. Deploying to GlassFish ... 45

6.4. Deploying to Apache Tomcat .. 46

6.5. Deploying to Jetty ... 47

7. Diving into the Weld examples ... 49

7.1. The numberguess example in depth ... 49

7.1.1. The numberguess example in Apache Tomcat or Jetty 53

7.2. The numberguess example for Java SE with Swing .. 54

Weld - CDI Reference Implemen...

iv

7.2.1. Creating the Eclipse project ... 54

7.2.2. Running the example from Eclipse ... 54

7.2.3. Running the example from the command line .. 57

7.2.4. Understanding the code .. 57

7.3. The translator example in depth .. 62

III. Loose coupling with strong typing ... 67

8. Producer methods ... 69

8.1. Scope of a producer method .. 70

8.2. Injection into producer methods ... 70

8.3. Use of @New with producer methods .. 71

8.4. Disposer methods ... 71

9. Interceptors .. 73

9.1. Interceptor bindings ... 73

9.2. Implementing interceptors .. 74

9.3. Enabling interceptors .. 74

9.4. Interceptor bindings with members ... 75

9.5. Multiple interceptor binding annotations ... 76

9.6. Interceptor binding type inheritance .. 77

9.7. Use of @Interceptors .. 77

10. Decorators .. 79

10.1. Delegate object ... 80

10.2. Enabling decorators .. 81

11. Events .. 83

11.1. Event payload ... 83

11.2. Event observers .. 83

11.3. Event producers .. 84

11.4. Conditional observer methods ... 85

11.5. Event qualifiers with members ... 85

11.6. Multiple event qualifiers ... 86

11.7. Transactional observers ... 87

12. Stereotypes ... 89

12.1. Default scope for a stereotype ... 89

12.2. Interceptor bindings for stereotypes .. 90

12.3. Name defaulting with stereotypes ... 90

12.4. Alternative stereotypes .. 90

12.5. Stereotype stacking .. 91

12.6. Built-in stereotypes ... 91

13. Specialization, inheritance and alternatives ... 93

13.1. Using alternative stereotypes .. 93

13.2. A minor problem with alternatives ... 94

13.3. Using specialization .. 95

14. Java EE component environment resources .. 97

14.1. Defining a resource .. 97

14.2. Typesafe resource injection .. 98

IV. CDI and the Java EE ecosystem .. 101

15. Java EE integration ... 103

15.1. Built-in beans .. 103

15.2. Injecting Java EE resources into a bean ... 103

15.3. Calling a bean from a servlet .. 104

15.4. Calling a bean from a message-driven bean .. 104

15.5. JMS endpoints .. 105

15.6. Packaging and deployment ... 106

15.6.1. Explicit bean archive ... 106

v

15.6.2. Implicit bean archive ... 107

15.6.3. What archive is not a bean archive ... 107

15.6.4. Embeddable EJB container ... 107

16. Portable extensions ... 109

16.1. Creating an Extension ... 109

16.2. Container lifecycle events ... 110

16.3. The BeanManager object ... 111

16.4. The CDI class .. 112

16.5. The InjectionTarget interface ... 112

16.6. The Bean interface .. 113

16.7. Registering a Bean .. 114

16.8. Wrapping an AnnotatedType ... 116

16.9. Overriding attributes of a bean by wrapping BeanAttributes 119

16.10. Wrapping an InjectionTarget .. 120

16.11. Overriding InjectionPoint ... 122

16.12. Manipulating interceptors, decorators and alternatives enabled for an application 123

16.13. The Context and AlterableContext interfaces ... 123

17. Next steps ... 125

V. Weld Reference Guide .. 127

18. Application servers and environments supported by Weld .. 129

18.1. Using Weld with WildFly .. 129

18.2. GlassFish ... 129

18.3. Servlet containers (such as Tomcat or Jetty) .. 129

18.3.1. Tomcat ... 130

18.3.2. Jetty ... 130

18.3.3. Bean Archive Isolation ... 132

18.3.4. Implicit Bean Archive Support .. 132

18.4. Java SE .. 132

18.4.1. CDI SE Module ... 133

18.4.2. Bootstrapping CDI SE ... 133

18.4.3. Thread Context ... 135

18.4.4. Setting the Classpath .. 135

18.4.5. Bean Archive Isolation ... 136

18.4.6. Implicit Bean Archive Support .. 136

18.5. OSGi .. 136

19. Configuration ... 137

19.1. Weld configuration .. 137

19.1.1. Relaxed construction .. 137

19.1.2. Concurrent deployment configuration ... 137

19.1.3. Thread pool configuration ... 138

19.1.4. Non-portable mode during application initialization 139

19.1.5. Bounding the cache size for resolved injection points 139

19.1.6. Debugging generated bytecode .. 139

19.1.7. Injectable reference lookup optimization ... 139

19.1.8. Bean identifier index optimization ... 140

19.2. Excluding classes from scanning and deployment ... 140

19.3. Mapping CDI contexts to HTTP requests .. 141

20. Context Management ... 143

20.1. Managing the built in contexts ... 143

A. Integrating Weld into other environments .. 147

A.1. The Weld SPI .. 147

A.1.1. Deployment structure ... 148

A.1.2. EJB descriptors .. 149

Weld - CDI Reference Implemen...

vi

A.1.3. EE resource injection and resolution services .. 149

A.1.4. EJB services .. 150

A.1.5. JPA services .. 151

A.1.6. Transaction Services .. 151

A.1.7. Resource Services .. 151

A.1.8. Web Service Injection Services ... 152

A.1.9. Injection Services .. 152

A.1.10. Security Services ... 153

A.1.11. Initialization and shutdown ... 153

A.1.12. Resource loading .. 153

A.1.13. AnnotationDiscovery ... 154

A.1.14. ClassFileServices .. 154

A.1.15. Registering services ... 155

A.2. The contract with the container ... 155

A.2.1. Classloader isolation .. 155

A.2.2. Servlet ... 155

A.2.3. CDI Conversation Filter ... 155

A.2.4. JSF ... 156

A.2.5. JSP ... 156

A.2.6. Session Bean Interceptor .. 157

A.2.7. The weld-core.jar ... 157

A.2.8. Binding the manager in JNDI .. 157

A.2.9. CDIProvider .. 158

A.2.10. Performing CDI injection on Java EE component classes 158

A.3. Migration notes ... 159

A.3.1. Migration from Weld 1.x to 2.0 .. 159

A.3.2. Migration from Weld 2.0 to 2.1 .. 159

A.3.3. Migration from Weld 2.1 to 2.2 .. 160

vii

A note about naming and nomenclature

Throughout this document, mentions of JSR-299 and JSR-346 appear. JSR is a document of a proposed

specification used in the Java Community Process (JCP). JSRs are somewhat analogous to RFCs used by IETF.

JSR-299 and JSR-346 are the JCP specification names for the 1.0 and 1.1 versions of CDI, respectively.

Shortly before the final draft of JSR-299 was submitted, the specification changed its name from "Web Beans" to

"Java Contexts and Dependency Injection for the Java EE platform", abbreviated CDI. For a brief period after the

renaming, the reference implementation adopted the name "Web Beans". However, this ended up causing more

confusion than it solved and Red Hat decided to change the name of the reference implementation to "Weld".

You may still find other documentation, blogs, forum posts, etc. that use the old nomenclature. Please update any

references you can. The naming game is over.

You’ll also find that some of the functionality that once existed in the specification is now missing, such as defining

beans in XML. These features will be available as portable extensions.

Note that this reference guide was started while changes were still being made to the specification. We’ve done our

best to update it for accuracy. If you discover a conflict between what is written in this guide and the specification,

the specification is the authority—assume it is correct. If you believe you have found an error in the specification,

please report it to the CDI EG.

viii

Part I. Beans
The CDI [http://jcp.org/en/jsr/detail?id=346] specification defines a set of complementary services that help improve

the structure of application code. CDI layers an enhanced lifecycle and interaction model over existing Java

component types, including managed beans and Enterprise Java Beans. The CDI services provide:

• an improved lifecycle for stateful objects, bound to well-defined contexts,

• a typesafe approach to dependency injection,

• object interaction via an event notification facility,

• a better approach to binding interceptors to objects, along with a new kind of interceptor, called a decorator, that

is more appropriate for use in solving business problems, and

• an SPI for developing portable extensions to the container.

The CDI services are a core aspect of the Java EE platform and include full support for Java EE modularity and the

Java EE component architecture. But the specification does not limit the use of CDI to the Java EE environment.

In the Java SE environment, the services might be provided by a standalone CDI implementation like Weld (see

Section 18.4.1, “CDI SE Module”), or even by a container that also implements the subset of EJB defined for

embedded usage by the EJB 3.2 specification. CDI is especially useful in the context of web application development,

but the problems it solves are general development concerns and it is therefore applicable to a wide variety of

application.

An object bound to a lifecycle context is called a bean. CDI includes built-in support for several different kinds of

bean, including the following Java EE component types:

• managed beans, and

• EJB session beans.

Both managed beans and EJB session beans may inject other beans. But some other objects, which are not

themselves beans in the sense used here, may also have beans injected via CDI. In the Java EE platform, the

following kinds of component may have beans injected:

• message-driven beans,

• interceptors,

• servlets, servlet filters and servlet event listeners,

• JAX-WS service endpoints and handlers,

• JAX-RS resources, providers and javax.ws.rs.core.Application subclasses, and

• JSP tag handlers and tag library event listeners.

CDI relieves the user of an unfamiliar API of the need to answer the following questions:

• What is the lifecycle of this object?

• How many simultaneous clients can it have?

• Is it multithreaded?

http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=346

Part I. Beans

• How do I get access to it from a client?

• Do I need to explicitly destroy it?

• Where should I keep the reference to it when I’m not currently using it?

• How can I define an alternative implementation, so that the implementation can vary at deployment time?

• How should I go about sharing this object between other objects?

CDI is more than a framework. It’s a whole, rich programming model. The theme of CDI is loose-coupling with strong

typing. Let’s study what that phrase means.

A bean specifies only the type and semantics of other beans it depends upon. It need not be aware of the actual

lifecycle, concrete implementation, threading model or other clients of any bean it interacts with. Even better, the

concrete implementation, lifecycle and threading model of a bean may vary according to the deployment scenario,

without affecting any client. This loose-coupling makes your code easier to maintain.

Events, interceptors and decorators enhance the loose-coupling inherent in this model:

• event notifications decouple event producers from event consumers,

• interceptors decouple technical concerns from business logic, and

• decorators allow business concerns to be compartmentalized.

What’s even more powerful (and comforting) is that CDI provides all these facilities in a typesafe way. CDI never

relies on string-based identifiers to determine how collaborating objects fit together. Instead, CDI uses the typing

information that is already available in the Java object model, augmented using a new programming pattern, called

qualifier annotations, to wire together beans, their dependencies, their interceptors and decorators, and their event

consumers. Usage of XML descriptors is minimized to truly deployment-specific information.

But CDI isn’t a restrictive programming model. It doesn’t tell you how you should to structure your application into

layers, how you should handle persistence, or what web framework you have to use. You’ll have to decide those

kinds of things for yourself.

CDI even provides a comprehensive SPI, allowing other kinds of object defined by future Java EE specifications or

by third-party frameworks to be cleanly integrated with CDI, take advantage of the CDI services, and interact with

any other kind of bean.

CDI was influenced by a number of existing Java frameworks, including Seam, Guice and Spring. However, CDI has

its own, very distinct, character: more typesafe than Seam, more stateful and less XML-centric than Spring, more

web and enterprise-application capable than Guice. But it couldn’t have been any of these without inspiration from

the frameworks mentioned and lots of collaboration and hard work by the JSR-299 and JSR-346 Expert Groups (EG).

Finally, CDI is a Java Community Process [http://jcp.org] (JCP) standard. Java EE 7 requires that all compliant

application servers provide support for JSR-346 (even in the web profile).

http://jcp.org
http://jcp.org

Chapter 1.

3

Introduction
So you’re keen to get started writing your first bean? Or perhaps you’re skeptical, wondering what kinds of hoops

the CDI specification will make you jump through! The good news is that you’ve probably already written and used

hundreds, perhaps thousands of beans. CDI just makes it easier to actually use them to build an application!

1.1. What is a bean?
A bean is exactly what you think it is. Only now, it has a true identity in the container environment.

Prior to Java EE 6, there was no clear definition of the term "bean" in the Java EE platform. Of course, we’ve been

calling Java classes used in web and enterprise applications "beans" for years. There were even a couple of different

kinds of things called "beans" in EE specifications, including EJB beans and JSF managed beans. Meanwhile, other

third-party frameworks such as Spring and Seam introduced their own ideas of what it meant to be a "bean". What

we’ve been missing is a common definition.

Java EE 6 finally laid down that common definition in the Managed Beans specification. Managed Beans are defined

as container-managed objects with minimal programming restrictions, otherwise known by the acronym POJO (Plain

Old Java Object). They support a small set of basic services, such as resource injection, lifecycle callbacks and

interceptors. Companion specifications, such as EJB and CDI, build on this basic model. But, at last, there’s a uniform

concept of a bean and a lightweight component model that’s aligned across the Java EE platform.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters (or a

constructor designated with the annotation @Inject) is a bean. This includes every JavaBean and every EJB

session bean. If you’ve already got some JavaBeans or session beans lying around, they’re already beans—you

won’t need any additional special metadata.

The JavaBeans and EJBs you’ve been writing every day, up until now, have not been able to take advantage of the

new services defined by the CDI specification. But you’ll be able to use every one of them with CDI—allowing the

container to create and destroy instances of your beans and associate them with a designated context, injecting them

into other beans, using them in EL expressions, specializing them with qualifier annotations, even adding interceptors

and decorators to them—without modifying your existing code. At most, you’ll need to add some annotations.

Now let’s see how to create your first bean that actually uses CDI.

1.2. Getting our feet wet
Suppose that we have two existing Java classes that we’ve been using for years in various applications. The first

class parses a string into a list of sentences:

public class SentenceParser {

 public List<String> parse(String text) { ... }

}

The second existing class is a stateless session bean front-end for an external system that is able to translate

sentences from one language to another:

@Stateless

public class SentenceTranslator implements Translator {

 public String translate(String sentence) { ... }

}

Chapter 1. Introduction

4

Where Translator is the EJB local interface:

@Local

public interface Translator {

 public String translate(String sentence);

}

Unfortunately, we don’t have a class that translates whole text documents. So let’s write a bean for this job:

public class TextTranslator {

 private SentenceParser sentenceParser;

 private Translator sentenceTranslator;

 @Inject

 TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {

 this.sentenceParser = sentenceParser;

 this.sentenceTranslator = sentenceTranslator;

 }

 public String translate(String text) {

 StringBuilder sb = new StringBuilder();

 for (String sentence: sentenceParser.parse(text)) {

 sb.append(sentenceTranslator.translate(sentence));

 }

 return sb.toString();

 }

}

But wait! TextTranslator does not have a constructor with no parameters! Is it still a bean? If you remember,

a class that does not have a constructor with no parameters can still be a bean if it has a constructor annotated

@Inject.

As you’ve guessed, the @Inject annotation has something to do with dependency injection! @Inject may be

applied to a constructor or method of a bean, and tells the container to call that constructor or method when

instantiating the bean. The container will inject other beans into the parameters of the constructor or method.

We may obtain an instance of TextTranslator by injecting it into a constructor, method or field of a bean, or a

field or method of a Java EE component class such as a servlet. The container chooses the object to be injected

based on the type of the injection point, not the name of the field, method or parameter.

Let’s create a UI controller bean that uses field injection to obtain an instance of the TextTranslator, translating

the text entered by a user:

@Named @RequestScoped

public class TranslateController {

 @Inject TextTranslator textTranslator;

 private String inputText;

 private String translation;

 // JSF action method, perhaps

 public void translate() {

Getting our feet wet

5

 translation = textTranslator.translate(inputText);

 }

 public String getInputText() {

 return inputText;

 }

 public void setInputText(String text) {

 this.inputText = text;

 }

 public String getTranslation() {

 return translation;

 }

}

Field injection of TextTranslator instance

Tip

Notice the controller bean is request-scoped and named. Since this combination is so common in

web applications, there’s a built-in annotation for it in CDI that we could have used as a shorthand.

When the (stereotype) annotation @Model is declared on a class, it creates a request-scoped

and named bean.

Alternatively, we may obtain an instance of TextTranslator programmatically from an injected instance of

Instance, parameterized with the bean type:

import javax.enterprise.inject.Instance;

import javax.inject.Inject;

....

@Inject Instance<TextTranslator> textTranslatorInstance;

...

public void translate() {

 textTranslatorInstance.get().translate(inputText);

}

Notice that it isn’t necessary to create a getter or setter method to inject one bean into another. CDI can access an

injected field directly (even if it’s private!), which sometimes helps eliminate some wasteful code. The name of the

field is arbitrary. It’s the field’s type that determines what is injected.

At system initialization time, the container must validate that exactly one bean exists which satisfies each injection

point. In our example, if no implementation of Translator is available—if the SentenceTranslator EJB was

not deployed—the container would inform us of an unsatisfied dependency. If more than one implementation of

Translator were available, the container would inform us of the ambiguous dependency.

Before we get too deep in the details, let’s pause and examine a bean’s anatomy. What aspects of the bean are

significant, and what gives it its identity? Instead of just giving examples of beans, we’re going to define what makes

something a bean.

6

Chapter 2.

7

More about beans
A bean is usually an application class that contains business logic. It may be called directly from Java code, or it

may be invoked via the Unified EL. A bean may access transactional resources. Dependencies between beans are

managed automatically by the container. Most beans are stateful and contextual. The lifecycle of a bean is managed

by the container.

Let’s back up a second. What does it really mean to be contextual? Since beans may be stateful, it matters which

bean instance I have. Unlike a stateless component model (for example, stateless session beans) or a singleton

component model (such as servlets, or singleton beans), different clients of a bean see the bean in different states.

The client-visible state depends upon which instance of the bean the client has a reference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does not control the lifecycle

of the instance by explicitly creating and destroying it. Instead, the scope of the bean determines:

• the lifecycle of each instance of the bean and

• which clients share a reference to a particular instance of the bean.

For a given thread in a CDI application, there may be an active context associated with the scope of the bean. This

context may be unique to the thread (for example, if the bean is request scoped), or it may be shared with certain

other threads (for example, if the bean is session scoped) or even all other threads (if it is application scoped).

Clients (for example, other beans) executing in the same context will see the same instance of the bean. But clients

in a different context may see a different instance (depending on the relationship between the contexts).

One great advantage of the contextual model is that it allows stateful beans to be treated like services! The client

need not concern itself with managing the lifecycle of the bean it’s using, nor does it even need to know what that

lifecycle is. Beans interact by passing messages, and the bean implementations define the lifecycle of their own

state. The beans are loosely coupled because:

• they interact via well-defined public APIs

• their lifecycles are completely decoupled

We can replace one bean with another different bean that implements the same interface and has a different lifecycle

(a different scope) without affecting the other bean implementation. In fact, CDI defines a simple facility for overriding

bean implementations at deployment time, as we will see in Section 4.7, “Alternatives”.

Note that not all clients of a bean are beans themselves. Other objects such as servlets or message-driven beans

—which are by nature not injectable, contextual objects—may also obtain references to beans by injection.

2.1. The anatomy of a bean

Enough hand-waving. More formally, the anatomy of a bean, according to the spec:

A bean comprises the following attributes:

• A (nonempty) set of bean types

• A (nonempty) set of qualifiers

Chapter 2. More about beans

8

• A scope

• Optionally, a bean EL name

• A set of interceptor bindings

• A bean implementation

Furthermore, a bean may or may not be an alternative.

Let’s see what all this new terminology means.

2.1.1. Bean types, qualifiers and dependency injection

Beans usually acquire references to other beans via dependency injection. Any injected attribute specifies a

"contract" that must be satisfied by the bean to be injected. The contract is:

• a bean type, together with

• a set of qualifiers.

A bean type is a user-defined class or interface; a type that is client-visible. If the bean is an EJB session bean, the

bean type is the @Local interface or bean-class local view. A bean may have multiple bean types. For example,

the following bean has four bean types:

public class BookShop

 extends Business

 implements Shop<Book> {

 ...

}

The bean types are BookShop, Business and Shop<Book>, as well as the implicit type java.lang.Object.

(Notice that a parameterized type is a legal bean type).

Meanwhile, this session bean has only the local interfaces BookShop, Auditable and java.lang.Object

as bean types, since the bean class, BookShopBean is not a client-visible type.

@Stateful

public class BookShopBean

 extends Business

 implements BookShop, Auditable {

 ...

}

Note

The bean types of a session bean include local interfaces and the bean class local view (if any).

EJB remote interfaces are not considered bean types of a session bean. You can’t inject an EJB

using its remote interface unless you define a resource, which we’ll meet in Chapter 14, Java EE

component environment resources.

Bean types, qualifiers and dependency injection

9

Bean types may be restricted to an explicit set by annotating the bean with the @Typed annotation and listing the

classes that should be bean types. For instance, the bean types of this bean have been restricted to Shop<Book>,

together with java.lang.Object:

@Typed(Shop.class)

public class BookShop

 extends Business

 implements Shop<Book> {

 ...

}

Sometimes, a bean type alone does not provide enough information for the container to know which

bean to inject. For instance, suppose we have two implementations of the PaymentProcessor

interface: CreditCardPaymentProcessor and DebitPaymentProcessor. Injecting a field of type

PaymentProcessor introduces an ambiguous condition. In these cases, the client must specify some additional

quality of the implementation it is interested in. We model this kind of "quality" using a qualifier.

A qualifier is a user-defined annotation that is itself annotated @Qualifier. A qualifier annotation is an extension of

the type system. It lets us disambiguate a type without having to fall back to string-based names. Here’s an example

of a qualifier annotation:

@Qualifier

@Target({TYPE, METHOD, PARAMETER, FIELD})

@Retention(RUNTIME)

public @interface CreditCard {}

You may not be used to seeing the definition of an annotation. In fact, this might be the first time you’ve encountered

one. With CDI, annotation definitions will become a familiar artifact as you’ll be creating them from time to time.

Note

Pay attention to the names of the built-in annotations in CDI and EJB. You’ll notice that they

are often adjectives. We encourage you to follow this convention when creating your custom

annotations, since they serve to describe the behaviors and roles of the class.

Now that we have defined a qualifier annotation, we can use it to disambiguate an injection point. The following

injection point has the bean type PaymentProcessor and qualifier @CreditCard:

@Inject @CreditCard PaymentProcessor paymentProcessor

For each injection point, the container searches for a bean which satisfies the contract, one which has the bean

type and all the qualifiers. If it finds exactly one matching bean, it injects an instance of that bean. If it doesn’t, it

reports an error to the user.

How do we specify that qualifiers of a bean? By annotating the bean class, of course! The following bean has the

qualifier @CreditCard and implements the bean type PaymentProcessor. Therefore, it satisfies our qualified

injection point:

Chapter 2. More about beans

10

@CreditCard

public class CreditCardPaymentProcessor

 implements PaymentProcessor { ... }

Note

If a bean or an injection point does not explicitly specify a qualifier, it has the default qualifier,

@Default.

That’s not quite the end of the story. CDI also defines a simple resolution rule that helps the container decide what

to do if there is more than one bean that satisfies a particular contract. We’ll get into the details in Chapter 4,

Dependency injection and programmatic lookup.

2.1.2. Scope

The scope of a bean defines the lifecycle and visibility of its instances. The CDI context model is extensible,

accommodating arbitrary scopes. However, certain important scopes are built into the specification, and provided

by the container. Each scope is represented by an annotation type.

For example, any web application may have session scoped bean:

public @SessionScoped

class ShoppingCart implements Serializable { ... }

An instance of a session-scoped bean is bound to a user session and is shared by all requests that execute in the

context of that session.

Note

Keep in mind that once a bean is bound to a context, it remains in that context until the context

is destroyed. There is no way to manually remove a bean from a context. If you don’t want the

bean to sit in the session indefinitely, consider using another scope with a shorted lifespan, such

as the request or conversation scope.

If a scope is not explicitly specified, then the bean belongs to a special scope called the dependent pseudo-scope.

Beans with this scope live to serve the object into which they were injected, which means their lifecycle is bound

to the lifecycle of that object.

We’ll talk more about scopes in Chapter 5, Scopes and contexts.

2.1.3. EL name

If you want to reference a bean in non-Java code that supports Unified EL expressions, for example, in a JSP or

JSF page, you must assign the bean an EL name.

The EL name is specified using the @Named annotation, as shown here:

public @SessionScoped @Named("cart")

Alternatives

11

class ShoppingCart implements Serializable { ... }

Now we can easily use the bean in any JSF or JSP page:

<h:dataTable value="#{cart.lineItems}" var="item">

 ...

</h:dataTable>

Note

The @Named annotation is not what makes the class a bean. Most classes in a bean archive are

already recognized as beans. The @Named annotation just makes it possible to reference the bean

from the EL, most commonly from a JSF view.

We can let CDI choose a name for us by leaving off the value of the @Named annotation:

public @SessionScoped @Named

class ShoppingCart implements Serializable { ... }

The name defaults to the unqualified class name, decapitalized; in this case, shoppingCart.

2.1.4. Alternatives

We’ve already seen how qualifiers let us choose between multiple implementations of an interface at development

time. But sometimes we have an interface (or other bean type) whose implementation varies depending upon the

deployment environment. For example, we may want to use a mock implementation in a testing environment. An

alternative may be declared by annotating the bean class with the @Alternative annotation.

public @Alternative

class MockPaymentProcessor extends PaymentProcessorImpl { ... }

We normally annotate a bean @Alternative only when there is some other implementation of an interface it

implements (or of any of its bean types). We can choose between alternatives at deployment time by selecting an

alternative in the CDI deployment descriptor META-INF/beans.xml of the jar or Java EE module that uses it.

Different modules can specify that they use different alternatives.

We cover alternatives in more detail in Section 4.7, “Alternatives”.

2.1.5. Interceptor binding types

You might be familiar with the use of interceptors in EJB 3. Since Java EE 6, this functionality has been generalized

to work with other managed beans. That’s right, you no longer have to make your bean an EJB just to intercept

its methods. Holler. So what does CDI have to offer above and beyond that? Well, quite a lot actually. Let’s cover

some background.

The way that interceptors were defined in Java EE 5 was counter-intuitive. You were required to specify the

implementation of the interceptor directly on the implementation of the EJB, either in the @Interceptors

Chapter 2. More about beans

12

annotation or in the XML descriptor. You might as well just put the interceptor code in the implementation! Second,

the order in which the interceptors are applied is taken from the order in which they are declared in the annotation

or the XML descriptor. Perhaps this isn’t so bad if you’re applying the interceptors to a single bean. But, if you are

applying them repeatedly, then there’s a good chance that you’ll inadvertently define a different order for different

beans. Now that’s a problem.

CDI provides a new approach to binding interceptors to beans that introduces a level of indirection (and thus control).

We must define an interceptor binding type to describe the behavior implemented by the interceptor.

An interceptor binding type is a user-defined annotation that is itself annotated @InterceptorBinding. It lets

us bind interceptor classes to bean classes with no direct dependency between the two classes.

@InterceptorBinding

@Inherited

@Target({ TYPE, METHOD })

@Retention(RUNTIME)

public @interface Transactional {}

The interceptor that implements transaction management declares this annotation:

public @Transactional @Interceptor

class TransactionInterceptor { ... }

We can apply the interceptor to a bean by annotating the bean class with the same interceptor binding type:

public @SessionScoped @Transactional

class ShoppingCart implements Serializable { ... }

Notice that ShoppingCart and TransactionInterceptor don’t know anything about each other.

Interceptors are deployment-specific. (We don’t need a TransactionInterceptor in our unit tests!) By

default, an interceptor is disabled. We can enable an interceptor using the CDI deployment descriptor META-INF/

beans.xml of the jar or Java EE module. This is also where we specify the interceptor ordering.

We’ll discuss interceptors, and their cousins, decorators, in Chapter 9, Interceptors and Chapter 10, Decorators.

2.2. What kinds of classes are beans?

We’ve already seen two types of beans: JavaBeans and EJB session beans. Is that the whole story? Actually, it’s

just the beginning. Let’s explore the various kinds of beans that CDI implementations must support out-of-the-box.

2.2.1. Managed beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by the Managed

Beans specification. You can explicitly declare a managed bean by annotating the bean class @ManagedBean,

but in CDI you don’t need to. According to the specification, the CDI container treats any class that satisfies the

following conditions as a managed bean:

• It is not a non-static inner class.

Session beans

13

• It is a concrete class, or is annotated @Decorator.

• It is not annotated with an EJB component-defining annotation or declared as an EJB bean class in ejb-

jar.xml.

• It does not implement javax.enterprise.inject.spi.Extension.

• It has an appropriate constructor—either:

• the class has a constructor with no parameters, or

• the class declares a constructor annotated @Inject.

Note

According to this definition, JPA entities are technically managed beans. However, entities have

their own special lifecycle, state and identity model and are usually instantiated by JPA or using

new. Therefore we don’t recommend directly injecting an entity class. We especially recommend

against assigning a scope other than @Dependent to an entity class, since JPA is not able to

persist injected CDI proxies.

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all interfaces

it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

Managed beans support the @PostConstruct and @PreDestroy lifecycle callbacks.

Session beans are also, technically, managed beans. However, since they have their own special lifecycle and take

advantage of additional enterprise services, the CDI specification considers them to be a different kind of bean.

2.2.2. Session beans

Session beans belong to the EJB specification. They have a special lifecycle, state management and concurrency

model that is different to other managed beans and non-managed Java objects. But session beans participate in

CDI just like any other bean. You can inject one session bean into another session bean, a managed bean into a

session bean, a session bean into a managed bean, have a managed bean observe an event raised by a session

bean, and so on.

Note

Message-driven and entity beans are by nature non-contextual objects and may not be injected

into other objects. However, message-driven beans can take advantage of some CDI functionality,

such as dependency injection, interceptors and decorators. In fact, CDI will perform injection into

any session or message-driven bean, even those which are not contextual instances.

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and their

superinterfaces. If the session bean has a bean class local view, the unrestricted set of bean types contains the bean

class and all superclasses. In addition, java.lang.Object is a bean type of every session bean. But remote

interfaces are not included in the set of bean types.

There’s no reason to explicitly declare the scope of a stateless session bean or singleton session bean. The EJB

container controls the lifecycle of these beans, according to the semantics of the @Stateless or @Singleton

declaration. On the other hand, a stateful session bean may have any scope.

Chapter 2. More about beans

14

Stateful session beans may define a remove method, annotated @Remove, that is used by the application to indicate

that an instance should be destroyed. However, for a contextual instance of the bean—an instance under the control

of CDI—this method may only be called by the application if the bean has scope @Dependent. For beans with

other scopes, the application must let the container destroy the bean.

So, when should we use a session bean instead of a plain managed bean? Whenever we need the advanced

enterprise services offered by EJB, such as:

• method-level transaction management and security,

• concurrency management,

• instance-level passivation for stateful session beans and instance-pooling for stateless session beans,

• remote or web service invocation, or

• timers and asynchronous methods,

When we don’t need any of these things, an ordinary managed bean will serve just fine.

Many beans (including any @SessionScoped or @ApplicationScoped beans) are available for concurrent

access. Therefore, the concurrency management provided by EJB 3.2 is especially useful. Most session and

application scoped beans should be EJBs.

Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit from the advanced

container-managed lifecycle defined by the EJB stateless/stateful/singleton model, with its support for passivation

and instance pooling.

Finally, it’s usually obvious when method-level transaction management, method-level security, timers, remote

methods or asynchronous methods are needed.

The point we’re trying to make is: use a session bean when you need the services it provides, not just because

you want to use dependency injection, lifecycle management, or interceptors. Java EE 7 provides a graduated

programming model. It’s usually easy to start with an ordinary managed bean, and later turn it into an EJB just by

adding one of the following annotations: @Stateless, @Stateful or @Singleton.

On the other hand, don’t be scared to use session beans just because you’ve heard your friends say they’re

"heavyweight". It’s nothing more than superstition to think that something is "heavier" just because it’s hosted natively

within the Java EE container, instead of by a proprietary bean container or dependency injection framework that runs

as an additional layer of obfuscation. And as a general principle, you should be skeptical of folks who use vaguely

defined terminology like "heavyweight".

2.2.3. Producer methods

Not everything that needs to be injected can be boiled down to a bean class instantiated by the container using

new. There are plenty of cases where we need additional control. What if we need to decide at runtime which

implementation of a type to instantiate and inject? What if we need to inject an object that is obtained by querying

a service or transactional resource, for example by executing a JPA query?

A producer method is a method that acts as a source of bean instances. The method declaration itself describes

the bean and the container invokes the method to obtain an instance of the bean when no instance exists in the

specified context. A producer method lets the application take full control of the bean instantiation process.

A producer method is declared by annotating a method of a bean class with the @Produces annotation.

import javax.enterprise.inject.Produces;

Producer methods

15

@ApplicationScoped

public class RandomNumberGenerator {

 private java.util.Random random = new java.util.Random(System.currentTimeMillis());

 @Produces @Named @Random int getRandomNumber() {

 return random.nextInt(100);

 }

}

We can’t write a bean class that is itself a random number. But we can certainly write a method that returns a

random number. By making the method a producer method, we allow the return value of the method—in this case

an Integer—to be injected. We can even specify a qualifier—in this case @Random, a scope—which in this

case defaults to @Dependent, and an EL name—which in this case defaults to randomNumber according to the

JavaBeans property name convention. Now we can get a random number anywhere:

@Inject @Random int randomNumber;

Even in a Unified EL expression:

<p>Your raffle number is #{randomNumber}.</p>

A producer method must be a non-abstract method of a managed bean class or session bean class. A producer

method may be either static or non-static. If the bean is a session bean, the producer method must be either a

business method of the EJB or a static method of the bean class.

The bean types of a producer method depend upon the method return type:

• If the return type is an interface, the unrestricted set of bean types contains the return type, all interfaces it extends

directly or indirectly and java.lang.Object.

• If a return type is primitive or is a Java array type, the unrestricted set of bean types contains exactly two types:

the method return type and java.lang.Object.

• If the return type is a class, the unrestricted set of bean types contains the return type, every superclass and all

interfaces it implements directly or indirectly.

Note

Producer methods and fields may have a primitive bean type. For the purpose of resolving

dependencies, primitive types are considered to be identical to their corresponding wrapper types

in java.lang.

If the producer method has method parameters, the container will look for a bean that satisfies the type and qualifiers

of each parameter and pass it to the method automatically—another form of dependency injection.

@Produces Set<Roles> getRoles(User user) {

Chapter 2. More about beans

16

 return user.getRoles();

}

We’ll talk much more about producer methods in Chapter 8, Producer methods.

2.2.4. Producer fields

A producer field is a simpler alternative to a producer method. A producer field is declared by annotating a field of a

bean class with the @Produces annotation—the same annotation used for producer methods.

import javax.enterprise.inject.Produces;

public class Shop {

 @Produces PaymentProcessor paymentProcessor =;

 @Produces @Catalog List<Product> products =;

}

The rules for determining the bean types of a producer field parallel the rules for producer methods.

A producer field is really just a shortcut that lets us avoid writing a useless getter method. However, in addition to

convenience, producer fields serve a specific purpose as an adaptor for Java EE component environment injection,

but to learn more about that, you’ll have to wait until Chapter 14, Java EE component environment resources.

Because we can’t wait to get to work on some examples.

Chapter 3.

17

JSF web application example
Let’s illustrate these ideas with a full example. We’re going to implement user login/logout for an application that

uses JSF. First, we’ll define a request-scoped bean to hold the username and password entered during login, with

constraints defined using annotations from the Bean Validation specification:

@Named @RequestScoped

public class Credentials {

 private String username;

 private String password;

 @NotNull @Length(min=3, max=25)

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

 @NotNull @Length(min=6, max=20)

 public String getPassword() { return password; }

 public void setPassword(String password) { this.password = password; }

}

This bean is bound to the login prompt in the following JSF form:

<h:form>

 <h:panelGrid columns="2" rendered="#{!login.loggedIn}">

 <f:validateBean>

 <h:outputLabel for="username">Username:</h:outputLabel>

 <h:inputText id="username" value="#{credentials.username}"/>

 <h:outputLabel for="password">Password:</h:outputLabel>

 <h:inputSecret id="password" value="#{credentials.password}"/>

 </f:validateBean>

 </h:panelGrid>

 <h:commandButton value="Login" action="#{login.login}" rendered="#{!login.loggedIn}"/>

 <h:commandButton value="Logout" action="#{login.logout}" rendered="#{login.loggedIn}"/>

</h:form>

Users are represented by a JPA entity:

@Entity

public class User {

 private @NotNull @Length(min=3, max=25) @Id String username;

 private @NotNull @Length(min=6, max=20) String password;

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

 public String setPassword(String password) { this.password = password; }

}

(Note that we’re also going to need a persistence.xml file to configure the JPA persistence unit containing

User.)

Chapter 3. JSF web applicatio...

18

The actual work is done by a session-scoped bean that maintains information about the currently logged-in user and

exposes the User entity to other beans:

@SessionScoped @Named

public class Login implements Serializable {

 @Inject Credentials credentials;

 @Inject @UserDatabase EntityManager userDatabase;

 private User user;

 public void login() {

 List<User> results = userDatabase.createQuery(

 "select u from User u where u.username = :username and u.password = :password")

 .setParameter("username", credentials.getUsername())

 .setParameter("password", credentials.getPassword())

 .getResultList();

 if (!results.isEmpty()) {

 user = results.get(0);

 }

 else {

 // perhaps add code here to report a failed login

 }

 }

 public void logout() {

 user = null;

 }

 public boolean isLoggedIn() {

 return user != null;

 }

 @Produces @LoggedIn User getCurrentUser() {

 return user;

 }

}

@LoggedIn and @UserDatabase are custom qualifier annotations:

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, PARAMETER, FIELD})

public @interface LoggedIn {}

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, PARAMETER, FIELD})

public @interface UserDatabase {}

19

We need an adaptor bean to expose our typesafe EntityManager:

class UserDatabaseProducer {

 @Produces @UserDatabase @PersistenceContext

 static EntityManager userDatabase;

}

Now DocumentEditor, or any other bean, can easily inject the current user:

public class DocumentEditor {

 @Inject Document document;

 @Inject @LoggedIn User currentUser;

 @Inject @DocumentDatabase EntityManager docDatabase;

 public void save() {

 document.setCreatedBy(currentUser);

 docDatabase.persist(document);

 }

}

Or we can reference the current user in a JSF view:

<h:panelGroup rendered="#{login.loggedIn}">

 signed in as #{currentUser.username}

</h:panelGroup>

Hopefully, this example gave you a taste of the CDI programming model. In the next chapter, we’ll explore

dependency injection in greater depth.

20

Chapter 4.

21

Dependency injection and

programmatic lookup
One of the most significant features of CDI—certainly the most recognized—is dependency injection; excuse me,

typesafe dependency injection.

4.1. Injection points

The @Inject annotation lets us define an injection point that is injected during bean instantiation. Injection can

occur via three different mechanisms.

Bean constructor parameter injection:

public class Checkout {

 private final ShoppingCart cart;

 @Inject

 public Checkout(ShoppingCart cart) {

 this.cart = cart;

 }

}

A bean can only have one injectable constructor.

Initializer method parameter injection:

public class Checkout {

 private ShoppingCart cart;

 @Inject

 void setShoppingCart(ShoppingCart cart) {

 this.cart = cart;

 }

}

Note

A bean can have multiple initializer methods. If the bean is a session bean, the initializer method

is not required to be a business method of the session bean.

And direct field injection:

Chapter 4. Dependency injecti...

22

public class Checkout {

 private @Inject ShoppingCart cart;

}

Note

Getter and setter methods are not required for field injection to work (unlike with JSF managed

beans).

Dependency injection always occurs when the bean instance is first instantiated by the container. Simplifying just

a little, things happen in this order:

• First, the container calls the bean constructor (the default constructor or the one annotated @Inject), to obtain

an instance of the bean.

• Next, the container initializes the values of all injected fields of the bean.

• Next, the container calls all initializer methods of bean (the call order is not portable, don’t rely on it).

• Finally, the @PostConstruct method, if any, is called.

(The only complication is that the container might call initializer methods declared by a superclass before initializing

injected fields declared by a subclass.)

Note

One major advantage of constructor injection is that it allows the bean to be immutable.

CDI also supports parameter injection for some other methods that are invoked by the container. For instance,

parameter injection is supported for producer methods:

@Produces Checkout createCheckout(ShoppingCart cart) {

 return new Checkout(cart);

}

This is a case where the @Inject annotation is not required at the injection point. The same is true for observer

methods (which we’ll meet in Chapter 11, Events) and disposer methods.

4.2. What gets injected

The CDI specification defines a procedure, called typesafe resolution, that the container follows when identifying the

bean to inject to an injection point. This algorithm looks complex at first, but once you understand it, it’s really quite

intuitive. Typesafe resolution is performed at system initialization time, which means that the container will inform

the developer immediately if a bean’s dependencies cannot be satisfied.

The purpose of this algorithm is to allow multiple beans to implement the same bean type and either:

Qualifier annotations

23

• allow the client to select which implementation it requires using a qualifier or

• allow the application deployer to select which implementation is appropriate for a particular deployment, without

changes to the client, by enabling or disabling an alternative, or

• allow the beans to be isolated into separate modules.

Obviously, if you have exactly one bean of a given type, and an injection point with that same type, then bean A

is going to go into slot A. That’s the simplest possible scenario. When you first start your application, you’ll likely

have lots of those.

But then, things start to get complicated. Let’s explore how the container determines which bean to inject in more

advanced cases. We’ll start by taking a closer look at qualifiers.

4.3. Qualifier annotations

If we have more than one bean that implements a particular bean type, the injection point can specify exactly

which bean should be injected using a qualifier annotation. For example, there might be two implementations of

PaymentProcessor:

@Synchronous

public class SynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

@Asynchronous

public class AsynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

Where @Synchronous and @Asynchronous are qualifier annotations:

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Synchronous {}

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Asynchronous {}

A client bean developer uses the qualifier annotation to specify exactly which bean should be injected.

Using field injection:

@Inject @Synchronous PaymentProcessor syncPaymentProcessor;

Chapter 4. Dependency injecti...

24

@Inject @Asynchronous PaymentProcessor asyncPaymentProcessor;

Using initializer method injection:

@Inject

public void setPaymentProcessors(@Synchronous PaymentProcessor syncPaymentProcessor,

 @Asynchronous PaymentProcessor asyncPaymentProcessor) {

 this.syncPaymentProcessor = syncPaymentProcessor;

 this.asyncPaymentProcessor = asyncPaymentProcessor;

}

Using constructor injection:

@Inject

public Checkout(@Synchronous PaymentProcessor syncPaymentProcessor,

 @Asynchronous PaymentProcessor asyncPaymentProcessor) {

 this.syncPaymentProcessor = syncPaymentProcessor;

 this.asyncPaymentProcessor = asyncPaymentProcessor;

}

Qualifier annotations can also qualify method arguments of producer, disposer and observer methods. Combining

qualified arguments with producer methods is a good way to have an implementation of a bean type selected at

runtime based on the state of the system:

@Produces

PaymentProcessor getPaymentProcessor(@Synchronous PaymentProcessor syncPaymentProcessor,

 @Asynchronous PaymentProcessor asyncPaymentProcessor) {

 return isSynchronous() ? syncPaymentProcessor : asyncPaymentProcessor;

}

If an injected field or a parameter of a bean constructor or initializer method is not explicitly annotated with a qualifier,

the default qualifier,@Default, is assumed.

Now, you may be thinking, "What’s the different between using a qualifier and just specifying the exact

implementation class you want?" It’s important to understand that a qualifier is like an extension of the interface.

It does not create a direct dependency to any particular implementation. There may be multiple alternative

implementations of @Asynchronous PaymentProcessor!

4.4. The built-in qualifiers @Default and @Any

Whenever a bean or injection point does not explicitly declare a qualifier, the container assumes the qualifier

@Default. From time to time, you’ll need to declare an injection point without specifying a qualifier. There’s a

qualifier for that too. All beans have the qualifier` @Any`. Therefore, by explicitly specifying @Any at an injection

point, you suppress the default qualifier, without otherwise restricting the beans that are eligible for injection.

This is especially useful if you want to iterate over all beans with a certain bean type. For example:

import javax.enterprise.inject.Instance;

Qualifiers with members

25

...

@Inject

void initServices(@Any Instance<Service> services) {

 for (Service service: services) {

 service.init();

 }

}

4.5. Qualifiers with members

Java annotations can have members. We can use annotation members to further discriminate a qualifier. This

prevents a potential explosion of new annotations. For example, instead of creating several qualifiers representing

different payment methods, we could aggregate them into a single annotation with a member:

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface PayBy {

 PaymentMethod value();

}

Then we select one of the possible member values when applying the qualifier:

private @Inject @PayBy(CHECK) PaymentProcessor checkPayment;

We can force the container to ignore a member of a qualifier type by annotating the member @Nonbinding.

@Qualifier

@Retention(RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface PayBy {

 PaymentMethod value();

 @Nonbinding String comment() default "";

}

4.6. Multiple qualifiers

An injection point may specify multiple qualifiers:

@Inject @Synchronous @Reliable PaymentProcessor syncPaymentProcessor;

Then only a bean which has both qualifier annotations would be eligible for injection.

Chapter 4. Dependency injecti...

26

@Synchronous @Reliable

public class SynchronousReliablePaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

4.7. Alternatives

Alternatives are beans whose implementation is specific to a particular client module or deployment scenario. This

alternative defines a mock implementation of both @Synchronous PaymentProcessor and @Asynchronous

PaymentProcessor, all in one:

@Alternative @Synchronous @Asynchronous

public class MockPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

By default, @Alternative beans are disabled. We need to enable an alternative in the beans.xml descriptor of

a bean archive to make it available for instantiation and injection. However, this activation only applies to the beans

in that archive. From CDI 1.1 onwards the alternative can be enabled for the whole application using @Priority

annotation.

<beans

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">

 <alternatives>

 <class>org.mycompany.mock.MockPaymentProcessor</class>

 </alternatives>

</beans>

When an ambiguous dependency exists at an injection point, the container attempts to resolve the ambiguity by

looking for an enabled alternative among the beans that could be injected. If there is exactly one enabled alternative,

that’s the bean that will be injected. If there are more beans with priority, the one with the highest priority value is

selected.

4.8. Fixing unsatisfied and ambiguous dependencies

The typesafe resolution algorithm fails when, after considering the qualifier annotations on all beans that implement

the bean type of an injection point and filtering out disabled beans (@Alternative beans which are not explicitly

enabled), the container is unable to identify exactly one bean to inject. The container will abort deployment, informing

us of the unsatisfied or ambiguous dependency.

During the course of your development, you’re going to encounter this situation. Let’s learn how to resolve it.

To fix an unsatisfied dependency, either:

• create a bean which implements the bean type and has all the qualifier types of the injection point,

Client proxies

27

• make sure that the bean you already have is in the classpath of the module with the injection point, or

• explicitly enable an @Alternative bean that implements the bean type and has the appropriate qualifier types,

using beans.xml.

• enable an @Alternative bean that implements the bean type and has the appropriate qualifier types, using

@Priority annotation.

To fix an ambiguous dependency, either:

• introduce a qualifier to distinguish between the two implementations of the bean type,

• exclude one of the beans from discovery (either by means of @Vetoed [http://docs.jboss.org/cdi/api/1.1/javax/

enterprise/inject/Vetoed.html] or beans.xml),

• disable one of the beans by annotating it @Alternative,

• move one of the implementations to a module that is not in the classpath of the module with the injection point, or

• disable one of two @Alternative beans that are trying to occupy the same space, using beans.xml,

• change priority value of one of two @Alternative beans with the @Priority if they have the same highest

priority value.

Just remember: "There can be only one."

On the other hand, if you really do have an optional or multivalued injection point, you should change the type of your

injection point to Instance, as we’ll see in Section 4.10, “Obtaining a contextual instance by programmatic lookup”.

Now there’s one more issue you need to be aware of when using the dependency injection service.

4.9. Client proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance, unless the bean is a dependent

object (scope @Dependent).

Imagine that a bean bound to the application scope held a direct reference to a bean bound to the request scope. The

application-scoped bean is shared between many different requests. However, each request should see a different

instance of the request scoped bean—the current one!

Now imagine that a bean bound to the session scope holds a direct reference to a bean bound to the application

scope. From time to time, the session context is serialized to disk in order to use memory more efficiently. However,

the application scoped bean instance should not be serialized along with the session scoped bean! It can get that

reference any time. No need to hoard it!

Therefore, unless a bean has the default scope @Dependent, the container must indirect all injected references to

the bean through a proxy object. This client proxy is responsible for ensuring that the bean instance that receives

a method invocation is the instance that is associated with the current context. The client proxy also allows beans

bound to contexts such as the session context to be serialized to disk without recursively serializing other injected

beans.

Unfortunately, due to limitations of the Java language, some Java types cannot be proxied by the container. If an

injection point declared with one of these types resolves to a bean with any scope other than @Dependent, the

container will abort deployment, informing us of the problem.

The following Java types cannot be proxied by the container:

• classes which don’t have a non-private constructor with no parameters, and

• classes which are declared final or have a final method,

http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html
http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html
http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html

Chapter 4. Dependency injecti...

28

• arrays and primitive types.

It’s usually very easy to fix an unproxyable dependency problem. If an injection point of type X results in an

unproxyable dependency, simply:

• add a constructor with no parameters to X,

• change the type of the injection point to`Instance<X>`,

• introduce an interface Y, implemented by the injected bean, and change the type of the injection point to Y, or

• if all else fails, change the scope of the injected bean to @Dependent.

Note

Weld also supports a non-standard workaround for this limitation. See the Configuration chapter

for more information.

4.10. Obtaining a contextual instance by programmatic

lookup
In certain situations, injection is not the most convenient way to obtain a contextual reference. For example, it may

not be used when:

• the bean type or qualifiers vary dynamically at runtime, or

• depending upon the deployment, there may be no bean which satisfies the type and qualifiers, or

• we would like to iterate over all beans of a certain type.

In these situations, the application may obtain an instance of the interface Instance, parameterized for the bean

type, by injection:

@Inject Instance<PaymentProcessor> paymentProcessorSource;

The get() method of Instance produces a contextual instance of the bean.

PaymentProcessor p = paymentProcessorSource.get();

Qualifiers can be specified in one of two ways:

• by annotating the Instance injection point, or

• by passing qualifiers to the select() of Event.

Specifying the qualifiers at the injection point is much, much easier:

@Inject @Asynchronous Instance<PaymentProcessor> paymentProcessorSource;

Now, the PaymentProcessor returned by get() will have the qualifier @Asynchronous.

The InjectionPoint object

29

Alternatively, we can specify the qualifier dynamically. First, we add the @Any qualifier to the injection point, to

suppress the default qualifier. (All beans have the qualifier @Any .)

import javax.enterprise.inject.Instance;

...

@Inject @Any Instance<PaymentProcessor> paymentProcessorSource;

Next, we need to obtain an instance of our qualifier type. Since annotations are interfaces, we can’t just write new

Asynchronous(). It’s also quite tedious to create a concrete implementation of an annotation type from scratch.

Instead, CDI lets us obtain a qualifier instance by subclassing the helper class AnnotationLiteral.

class AsynchronousQualifier

extends AnnotationLiteral<Asynchronous> implements Asynchronous {}

In some cases, we can use an anonymous class:

PaymentProcessor p = paymentProcessorSource

 .select(new AnnotationLiteral<Asynchronous>() {});

However, we can’t use an anonymous class to implement a qualifier type with members.

Now, finally, we can pass the qualifier to the select() method of Instance.

Annotation qualifier = synchronously ?

 new SynchronousQualifier() : new AsynchronousQualifier();

PaymentProcessor p = anyPaymentProcessor.select(qualifier).get().process(payment);

4.11. The InjectionPoint object

There are certain kinds of dependent objects (beans with scope @Dependent) that need to know something about

the object or injection point into which they are injected in order to be able to do what they do. For example:

• The log category for a Logger depends upon the class of the object that owns it.

• Injection of a HTTP parameter or header value depends upon what parameter or header name was specified at

the injection point.

• Injection of the result of an EL expression evaluation depends upon the expression that was specified at the

injection point.

A bean with scope @Dependent may inject an instance of InjectionPoint and access metadata relating to

the injection point to which it belongs.

Let’s look at an example. The following code is verbose, and vulnerable to refactoring problems:

Chapter 4. Dependency injecti...

30

Logger log = Logger.getLogger(MyClass.class.getName());

This clever little producer method lets you inject a JDK Logger without explicitly specifying the log category:

import javax.enterprise.inject.spi.InjectionPoint;

import javax.enterprise.inject.Produces;

class LogFactory {

 @Produces Logger createLogger(InjectionPoint injectionPoint) {

 return Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());

 }

}

We can now write:

@Inject Logger log;

Not convinced? Then here’s a second example. To inject HTTP parameters, we need to define a qualifier type:

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface HttpParam {

 @Nonbinding public String value();

}

We would use this qualifier type at injection points as follows:

@HttpParam("username") @Inject String username;

@HttpParam("password") @Inject String password;

The following producer method does the work:

import javax.enterprise.inject.Produces;

import javax.enterprise.inject.spi.InjectionPoint;

class HttpParams

 @Produces @HttpParam("")

 String getParamValue(InjectionPoint ip) {

 ServletRequest request = (ServletRequest) FacesContext.getCurrentInstance().getExternalContext().getRequest();

 return request.getParameter(ip.getAnnotated().getAnnotation(HttpParam.class).value());

 }

The InjectionPoint object

31

}

Note that acquiring of the request in this example is JSF-centric. For a more generic solution you could write your

own producer for the request and have it injected as a method parameter.

Note also that the value() member of the HttpParam annotation is ignored by the container since it is annotated

@Nonbinding.

The container provides a built-in bean that implements the InjectionPoint interface:

public interface InjectionPoint {

 public Type getType();

 public Set<Annotation> getQualifiers();

 public Bean<?> getBean();

 public Member getMember();

 public Annotated getAnnotated();

 public boolean isDelegate();

 public boolean isTransient();

}

32

Chapter 5.

33

Scopes and contexts
So far, we’ve seen a few examples of scope type annotations. The scope of a bean determines the lifecycle of

instances of the bean. The scope also determines which clients refer to which instances of the bean. According to

the CDI specification, a scope determines:

• When a new instance of any bean with that scope is created

• When an existing instance of any bean with that scope is destroyed

• Which injected references refer to any instance of a bean with that scope

For example, if we have a session-scoped bean, CurrentUser, all beans that are called in the context of the same

HttpSession will see the same instance of CurrentUser. This instance will be automatically created the first

time a CurrentUser is needed in that session, and automatically destroyed when the session ends.

Note

JPA entities aren’t a great fit for this model. Entities have their whole own lifecycle and identity

model which just doesn’t map naturally to the model used in CDI. Therefore, we recommend

against treating entities as CDI beans. You’re certainly going to run into problems if you try to give

an entity a scope other than the default scope @Dependent. The client proxy will get in the way

if you try to pass an injected instance to the JPA EntityManager.

5.1. Scope types

CDI features an extensible context model. It’s possible to define new scopes by creating a new scope type annotation:

@ScopeType

@Retention(RUNTIME)

@Target({TYPE, METHOD})

public @interface ClusterScoped {}

Of course, that’s the easy part of the job. For this scope type to be useful, we will also need to define a Context

object that implements the scope! Implementing a Context is usually a very technical task, intended for framework

development only.

We can apply a scope type annotation to a bean implementation class to specify the scope of the bean:

@ClusterScoped

public class SecondLevelCache { ... }

Usually, you’ll use one of CDI’s built-in scopes.

5.2. Built-in scopes

CDI defines four built-in scopes:

Chapter 5. Scopes and contexts

34

• @RequestScoped

• @SessionScoped

• @ApplicationScoped

• @ConversationScoped

For a web application that uses CDI, any servlet request has access to active request, session and application

scopes. Furthermore, since CDI 1.1 the conversation context is active during every servlet request.

The request and application scopes are also active:

• during invocations of EJB remote methods,

• during invocations of EJB asynchronous methods,

• during EJB timeouts,

• during message delivery to a message-driven bean,

• during web service invocations, and

• during @PostConstruct callback of any bean

If the application tries to invoke a bean with a scope that does not have an active context, a

ContextNotActiveException is thrown by the container at runtime.

Managed beans with scope @SessionScoped or @ConversationScoped must be serializable, since the

container passivates the HTTP session from time to time.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so let’s not waste time

discussing them here. One of the scopes, however, is new.

5.3. The conversation scope

The conversation scope is a bit like the traditional session scope in that it holds state associated with a user of the

system, and spans multiple requests to the server. However, unlike the session scope, the conversation scope:

• is demarcated explicitly by the application, and

• holds state associated with a particular web browser tab in a web application (browsers tend to share domain

cookies, and hence the session cookie, between tabs, so this is not the case for the session scope).

A conversation represents a task—a unit of work from the point of view of the user. The conversation context holds

state associated with what the user is currently working on. If the user is doing multiple things at the same time,

there are multiple conversations.

The conversation context is active during any servlet request (since CDI 1.1). Most conversations are destroyed at

the end of the request. If a conversation should hold state across multiple requests, it must be explicitly promoted

to a long-running conversation.

5.3.1. Conversation demarcation

CDI provides a built-in bean for controlling the lifecycle of conversations in a CDI application. This bean may be

obtained by injection:

Conversation propagation

35

@Inject Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation, call the begin()

method from application code. To schedule the current long-running conversation context for destruction at the end

of the current request, call end().

In the following example, a conversation-scoped bean controls the conversation with which it is associated:

import javax.enterprise.inject.Produces;

import javax.inject.Inject;

import javax.persistence.PersistenceContextType.EXTENDED;

@ConversationScoped @Stateful

public class OrderBuilder {

 private Order order;

 private @Inject Conversation conversation;

 private @PersistenceContext(type = EXTENDED) EntityManager em;

 @Produces public Order getOrder() {

 return order;

 }

 public Order createOrder() {

 order = new Order();

 conversation.begin();

 return order;

 }

 public void addLineItem(Product product, int quantity) {

 order.add(new LineItem(product, quantity));

 }

 public void saveOrder(Order order) {

 em.persist(order);

 conversation.end();

 }

 @Remove

 public void destroy() {}

}

This bean is able to control its own lifecycle through use of the Conversation API. But some other beans have

a lifecycle which depends completely upon another object.

5.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form submission) or redirect.

It does not automatically propagate with non-faces requests, for example, navigation via a link.

We can force the conversation to propagate with a non-faces request by including the unique identifier of the

conversation as a request parameter. The CDI specification reserves the request parameter named cid for this

use. The unique identifier of the conversation may be obtained from the Conversation object, which has the EL

bean name javax.enterprise.context.conversation.

Chapter 5. Scopes and contexts

36

Therefore, the following link propagates the conversation:

Add Product

It’s probably better to use one of the link components in JSF 2:

<h:link outcome="/addProduct.xhtml" value="Add Product">

 <f:param name="cid" value="#{javax.enterprise.context.conversation.id}"/>

</h:link>

Tip

The conversation context propagates across redirects, making it very easy to implement the

common POST-then-redirect pattern, without resort to fragile constructs such as a "flash" object.

The container automatically adds the conversation id to the redirect URL as a request parameter.

In certain scenarios it may be desired to suppress propagation of a long-running conversation. The

conversationPropagation request parameter (introduced in CDI 1.1) may be used for this purpose. If the

conversationPropagation request parameter has the value none , the container will not reassociate the

existing conversation but will instead associate the request with a new transient conversation even though the

conversation id was propagated.

5.3.3. Conversation timeout

The container is permitted to destroy a conversation and all state held in its context at any time in order to conserve

resources. A CDI implementation will normally do this on the basis of some kind of timeout—though this is not

required by the specification. The timeout is the period of inactivity before the conversation is destroyed (as opposed

to the amount of time the conversation is active).

The Conversation object provides a method to set the timeout. This is a hint to the container, which is free to

ignore the setting.

conversation.setTimeout(timeoutInMillis);

5.3.4. CDI Conversation filter

The conversation management is not always smooth. For example, if the propagated conversation

cannot be restored, the javax.enterprise.context.NonexistentConversationException

is thrown. Or if there are concurrent requests for a one long-running conversation,

`javax.enterprise.context.BusyConversationException ` is thrown. For such cases, developer has no opportunity

to deal with the exception by default, as the conversation associated with a Servlet request is determined at the

beginning of the request before calling any service() method of any servlet in the web application, even before calling

any of the filters in the web application and before the container calls any ServletRequestListener or AsyncListener

in the web application.

To be allowed to handle the exceptions, a filter defined in the CDI 1.1 with the name ` CDI Conversation Filter `

can be used. By mapping the ` CDI Conversation Filter ` in the web.xml just after some other filters, we are able

Lazy and eager conversation context initialization

37

to catch the exceptions in them since the ordering in the web.xml specifies the ordering in which the filters will be

called (described in the servlet specification).

In the following example, a filter MyFilter checks for the BusyConversationException thrown during the conversation

association. In the web.xml example, the filter is mapped before the CDI Conversation Filter.

public class MyFilter implements Filter {

...

@Override

 public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)

 throws IOException, ServletException {

 try {

 chain.doFilter(request, response);

 } catch (BusyConversationException e) {

 response.setContentType("text/plain");

 response.getWriter().print("BusyConversationException");

 }

 }

...

To make it work, we need to map our MyFilter before the CDI Conversation Filter in the web.xml file.

<filter-mapping>

 <filter-name>My Filter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>CDI Conversation Filter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Tip

The mapping of the CDI Conversation Filter determines when Weld reads the cid

request parameter. This process forces request body parsing. If your application relies on setting

a custom character encoding for the request or parsing the request body itself by reading an

InputStream or Reader, make sure that this is performed in a filter that executes before

the CDI Conversation Filter is executed. See this FAQ page for details [http://weld.cdi-spec.org/

documentation/#3]. Alternatively, the lazy conversation context initialization (see below) may be

used.

5.3.5. Lazy and eager conversation context initialization

Conversation context may be initialized lazily or eagerly.

When initialized lazily, the conversation context (no matter if transient or long-running) is only initialized when

a @ConversationScoped bean is accessed for the first time. At that point, the cid parameter is read

http://weld.cdi-spec.org/documentation/#3
http://weld.cdi-spec.org/documentation/#3
http://weld.cdi-spec.org/documentation/#3

Chapter 5. Scopes and contexts

38

and the conversation is restored. The conversation context may not be initialized at all throughout the request

processing if no conversation state is accessed. Note that if a problem occurs during this delayed initialization,

the conversation state access (bean method invocation) may result in BusyConversationException or

NonexistentConversationException being thrown.

When initialized eagerly, the conversation context is initialized at a predefined time. Either at the beginning of the

request processing before any listener, filter or servlet is invoked or, if the CDI Conversation Filter is

mapped, during execution of this filter.

Conversation context initialization mode may be configured using the

org.jboss.weld.context.conversation.lazy init parameter.

<context-param>

 <param-name>org.jboss.weld.context.conversation.lazy</param-name>

 <param-value>true</param-value>

</context-param>

If the init parameter is not set, the following default behavior applies:

• If the CDI Conversation Filter is mapped, the conversation context is initialized eagerly within this filter

• If an observer for @Initialized(ConversationScoped.class) or

@Destroyed(ConversationScoped.class) event exists in the application, the conversation context is

initialized eagerly

• Otherwise, the conversation context is initialized lazily

5.4. The singleton pseudo-scope

In addition to the four built-in scopes, CDI also supports two pseudo-scopes. The first is the singleton pseudo-scope,

which we specify using the annotation @Singleton.

Note

Unlike the other scopes, which belong to the package javax.enterprise.context, the

@Singleton annotation is defined in the package javax.inject.

You can guess what "singleton" means here. It means a bean that is instantiated once. Unfortunately, there’s a little

problem with this pseudo-scope. Beans with scope @Singleton don’t have a proxy object. Clients hold a direct

reference to the singleton instance. So we need to consider the case of a client that can be serialized, for example,

any bean with scope @SessionScoped or @ConversationScoped, any dependent object of a bean with scope

@SessionScoped or @ConversationScoped, or any stateful session bean.

Now, if the singleton instance is a simple, immutable, serializable object like a string, a number or a date, we probably

don’t mind too much if it gets duplicated via serialization. However, that makes it no stop being a true singleton, and

we may as well have just declared it with the default scope.

There are several ways to ensure that the singleton bean remains a singleton when its client gets serialized:

• have the singleton bean implement writeResolve() and readReplace() (as defined by the Java

serialization specification),

• make sure the client keeps only a transient reference to the singleton bean, or

The dependent pseudo-scope

39

• give the client a reference of type Instance<X> where X is the bean type of the singleton bean.

A fourth, better solution is to instead use @ApplicationScoped, allowing the container to proxy the bean, and

take care of serialization problems automatically.

5.5. The dependent pseudo-scope

Finally, CDI features the so-called dependent pseudo-scope. This is the default scope for a bean which does not

explicitly declare a scope type.

For example, this bean has the scope type @Dependent:

public class Calculator { ... }

An instance of a dependent bean is never shared between different clients or different injection points. It is strictly

a dependent object of some other object. It is instantiated when the object it belongs to is created, and destroyed

when the object it belongs to is destroyed.

If a Unified EL expression refers to a dependent bean by EL name, an instance of the bean is instantiated every

time the expression is evaluated. The instance is not reused during any other expression evaluation.

Note

If you need to access a bean directly by EL name in a JSF page, you probably need to give it a

scope other than @Dependent. Otherwise, any value that gets set to the bean by a JSF input

will be lost immediately. That’s why CDI features the @Model stereotype; it lets you give a bean

a name, and set its scope to @RequestScoped in one stroke. If you need to access a bean that

really has to have the scope @Dependent from a JSF page, inject it into a different bean, and

expose it to EL via a getter method.

Beans with scope @Dependent don’t need a proxy object. The client holds a direct reference to its instance.

CDI makes it easy to obtain a dependent instance of a bean, even if the bean is already declared as a bean with

some other scope type.

5.6. The @New qualifier

The built-in qualifier @New allows us to obtain a dependent object of a specified class.

@Inject @New Calculator calculator;

The class must be a valid managed bean or session bean, but need not be an enabled bean.

This works even if Calculator is already declared with a different scope type, for example:

@ConversationScoped

public class Calculator { ... }

Chapter 5. Scopes and contexts

40

So the following injected attributes each get a different instance of Calculator:

public class PaymentCalc {

 @Inject Calculator calculator;

 @Inject @New Calculator newCalculator;

}

The calculator field has a conversation-scoped instance of Calculator injected. The newCalculator field

has a new instance of Calculator injected, with a lifecycle that is bound to the owning PaymentCalc.

This feature is particularly useful with producer methods, as we’ll see in Chapter 8, Producer methods.

Warning

The @New qualifier was deprecated in CDI 1.1. CDI applications are encouraged to inject

@Dependent scoped beans instead.

Part II. Getting Start with Weld,

the CDI Reference Implementation
Weld, the CDI Reference Implementation (RI), can be downloaded from the download page [http://weld.cdi-spec.org/

download]. Information about the Weld source code repository and instructions about how to obtain and build the

source can be found on the same page.

Weld provides a complete SPI allowing Java EE containers such as WildFly, GlassFish and WebLogic to use Weld

as their built-in CDI implementation. Weld also runs in servlet engines like Tomcat and Jetty, or even in a plain Java

SE environment.

Weld comes with an extensive library of examples, which are a great starting point from which to learn CDI. In

addition, a number of quickstarts featuring CDI can be found at the JBoss Developer site [http://www.jboss.org/

developer/quickstarts.html]

http://weld.cdi-spec.org/download
http://weld.cdi-spec.org/download
http://weld.cdi-spec.org/download
http://www.jboss.org/developer/quickstarts.html
http://www.jboss.org/developer/quickstarts.html
http://www.jboss.org/developer/quickstarts.html

Chapter 6.

43

Getting started with Weld
Weld comes with a number of examples. We recommend you start with examples/jsf/numberguess and

examples/jsf/translator. Numberguess is a web (war) example containing only non-transactional managed

beans. This example can be run on a wide range of servers, including WildFly , GlassFish, Apache Tomcat, Jetty,

Google App Engine, and any compliant Java EE 7 container. Translator is an enterprise (ear) example that contains

session beans. This example must be run on WildFly 8 or better, GlassFish 4 or better, or any compliant Java EE

7 container.

Both examples use JSF 2.2 as the web framework and, as such, can be found in the examples/jsf directory

of the Weld distribution.

6.1. Prerequisites
To run the examples with the provided build scripts, you’ll need the following:

• the latest release of Weld, which contains the examples

• Maven 3, to build and deploy the examples

• a supported runtime environment (minimum versions shown)

• WildFly 8.0.0.Final,

• GlassFish 4.0,

• Apache Tomcat 7 or better (war example only), or

• Jetty 7 or better (war example only)

In the next few sections, you’ll be using the Maven command (mvn) to invoke the Maven project file in each example

to compile, assemble and deploy the example to WildFly and, for the war example, Apache Tomcat. You can also

deploy the generated artifact (war or ear) to any other container that supports Java EE 7, such as GlassFish 4.

The sections below cover the steps for deploying with Maven in detail. Let’s start with WildFly.

6.2. Deploying to WildFly
To deploy the examples to WildFly, you’ll need WildFly 8.0.0.Final [http://wildfly.org/downloads/] or above. The good

news is that there are no additional modifications you have to make to the server. It’s ready to go!

After you have downloaded WildFly, extract it. (We recommended renaming the folder to include the as qualifier so

it’s clear that it’s the application server). You can move the extracted folder anywhere you like. Wherever it lays to

rest, that’s what we’ll call the WildFly installation directory, or JBOSS_HOME.

$> unzip wildfly-8.0.0.Final.zip

$> mv wildfly-8.*/ wildfly-8

In order for the build scripts to know where to deploy the example, you have to tell them where to find your WildFly

installation. Set the JBOSS_HOME environment variable to point to the WildFly installation, e.g.:

$> export JBOSS_HOME=/path/to/wildfly-8

http://wildfly.org/downloads/
http://wildfly.org/downloads/

Chapter 6. Getting started wi...

44

You’re now ready to run your first example!

Switch to the examples/jsf/numberguess directory and execute the Maven deploy target:

$> cd examples/jsf/numberguess

$> mvn jboss-as:run

Note

If you are using Eclipse, you should seriously consider installing the JBoss Tools [http://

www.jboss.org/tools] add-ons, which include a wide variety of tooling for CDI and Java EE

development, as well as an enhanced WildFly server view.

Wait a few seconds for the application to deploy (or the application server to start) and see if you can determine the

most efficient approach to pinpoint the random number at the local URL http://localhost:8080/weld-numberguess.

Note

The Maven WildFly plugin includes additional goals for WildFly to deploy and undeploy the archive.

• mvn wildfly:deploy - deploy the example to a running WildFly instance

• mvn wildfly:undeploy - undeploy the example from a running WildFly instance

• mvn wildfly:redeploy - redeploys the example

For more information on the WildFly Maven plugin see the plugin documentation [https://

docs.jboss.org/wildfly/plugins/maven/latest/].

You can also run functional tests to verify that the example works as expected. Run:

$> mvn verify -Darquillian=wildfly-managed-8

You should see the following output:

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

The second starter example, weld-translator, will translate your text into Latin. (Well, not really, but the stub is

there for you to implement, at least. Good luck!) To try it out, switch to the translator example directory and execute

the deploy target:

$> cd examples/jsf/translator/ear

$> mvn jboss-as:run

http://www.jboss.org/tools
http://www.jboss.org/tools
http://www.jboss.org/tools
http://localhost:8080/weld-numberguess
https://docs.jboss.org/wildfly/plugins/maven/latest/
https://docs.jboss.org/wildfly/plugins/maven/latest/
https://docs.jboss.org/wildfly/plugins/maven/latest/

Deploying to GlassFish

45

Note

The translator uses session beans, which are packaged in an EJB module within an ear. Java EE

7 allows session beans to be deployed in war modules, but that’s a topic for a later chapter.

Again, wait a few seconds for the application to deploy (if you’re really bored, read the log messages), and visit http://

localhost:8080/weld-translator to begin pseudo-translating.

Again, functional tests can be running by executing:

$> cd examples/jsf/translator/ftest

$> mvn verify -Darquillian=wildfly-managed-8

6.3. Deploying to GlassFish

Deploying to GlassFish should be easy and familiar, right? After all, it’s the Java EE 7 reference implementation

and Weld is the CDI reference implementation, meaning Weld gets bundled with GlassFish. So yes, it’s all quite

easy and familiar.

To deploy the examples to GlassFish, you’ll need a GlassFish 4.0 [https://glassfish.java.net/download.html] release.

Select the release that ends in either -unix.sh or -windows.exe depending on your platform. After the

download is complete, execute the installer. On Linux/Unix, you’ll need to first make the script executable.

$> chmod 755 glassfish-4.0-unix.sh

$> ./glassfish-4.0-unix.sh

On Windows you can just click on the executable. Follow the instructions in the installer. It will create a single domain

named domain1. You’ll use that domain to deploy the example. We recommend that you choose 7070 as the main

HTTP port to avoid conflicts with a running instance of WildFly (or Apache Tomcat).

Next, make sure the GLASSFISH_HOME environment variable is set to point to the GlassFish installation.

Now switch to the example directory again and create a new GlassFish domain for the example.

$> cd examples/jsf/numberguess

$> mvn glassfish:create-domain

You are now ready to deploy the example by running:

$> mvn package glassfish:deploy

Once the command completes the application is available at http://localhost:7070/weld-numberguess

The example is deployed using the maven-glassfish-plugin. For more information about the plugin see the

plugin documentation [http://maven-glassfish-plugin.java.net/]

http://localhost:8080/weld-translator
http://localhost:8080/weld-translator
https://glassfish.java.net/download.html
https://glassfish.java.net/download.html
http://localhost:7070/weld-numberguess
http://maven-glassfish-plugin.java.net/
http://maven-glassfish-plugin.java.net/

Chapter 6. Getting started wi...

46

There are alternative ways of,deploying applications to GlassFish either by using the GlassFish Admin Console

[http://localhost:4848] or the asadmin command.

The reason the same artifact can be deployed to both WildFly and GlassFish, without any modifications, is because

all of the features being used are part of the standard platform. And what a capable platform it has become!

6.4. Deploying to Apache Tomcat

Servlet containers are not required to support Java EE services like CDI. However, you can use CDI in a servlet

container like Tomcat by embedding a standalone CDI implementation such as Weld.

Weld comes with servlet integration extension which bootstraps the CDI environment and provides injection into

servlets components. Basically, it emulates some of the work done by the Java EE container, but you don’t get the

enterprise features such as session beans and container-managed transactions.

Note

Note that due to limitations of servlet containers (e.g. read-only JNDI) your application might require

some additional configuration as well (see Section 18.3.1, “Tomcat” and Section 18.3.2, “Jetty”

for more info).

Let’s give the Weld servlet extension a spin on Apache Tomcat. First, you’ll need to download Tomcat 7.0.50 or later

from tomcat.apache.org [http://tomcat.apache.org/download-70.cgi] and extract it.

$> unzip apache-tomcat-7.0.53.zip

The Maven plugin communicates with Tomcat over HTTP, so it doesn’t care where you have installed Tomcat.

However, the plugin configuration assumes you are running Tomcat in its default configuration, with a hostname of

localhost and port 8080. The readme.txt file in the example directory has information about how to modify the

Maven settings to accommodate a different setup.

To allow Maven to communicate with Tomcat over HTTP, edit the conf/tomcat-users.xml file in your Tomcat

installation. For Tomcat 7 and higher add the following line:

<user username="admin" password="" roles="manager-script"/>

Next, start Tomcat. You can either start Tomcat from a Linux shell:

$> cd /path/to/apache-tomcat-7

$> ./bin/start.sh

a Windows command window:

$> cd c:\path\to\apache-tomcat-7\bin

$> start

http://localhost:4848
http://localhost:4848
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi

Deploying to Jetty

47

or you can start the server using an IDE, like Eclipse.

Now you’re ready to deploy the numberguess example to Tomcat!

Change to the examples/jsf/numberguess directory again and run the following Maven command:

$> cd examples/jsf/numberguess

$> mvn clean compile war:exploded tomcat7:deploy -Ptomcat

Once the application is deployed, you can redeploy it using this command:

$> mvn tomcat7:redeploy -Ptomcat

The -Ptomcat argument activates the tomcat profile defined in the Maven POM (pom.xml). Among other things,

this profile activates the Tomcat plugin.

Rather than shipping the container off to a standalone Tomcat installation, you can also execute the application in

an embedded Tomcat 6 container:

$> mvn war:inplace tomcat7:run -Ptomcat

The advantage of using the embedded server is that changes to assets in src/main/webapp take effect

immediately. If a change to a webapp configuration file is made, the application may automatically redeploy

(depending on the plugin configuration). If you make a change to a classpath resource, you need to execute a build:

$> mvn compile war:inplace -Ptomcat

Finally, you can run the functional tests:

$> mvn verify -Darquillian=tomcat-embedded-7 -Ptomcat

There are several other Maven goals that you can use if you are hacking on the example, which are documented

in the example’s README.md file.

6.5. Deploying to Jetty

Warning

Jetty Maven plugin is temporarily unsupported in Weld examples.

If you’ve read through the entire Tomcat section, then you’re all ready to go. The Maven build parallels the embedded

Tomcat deployment. If not, don’t worry. We’ll still go over everything that you need to know again in this section.

Chapter 6. Getting started wi...

48

The Maven POM (pom.xml) includes a profile named jetty that activates the Maven Jetty plugin, which you can

use to start Jetty in embedded mode and deploy the application in place. You don’t need anything else installed

except to have the Maven command (mvn) on your path. The rest will be downloaded from the internet when the

build is run.

To run the weld-numberguess example on Jetty, switch to the example directory and execute the inplace

goal of the Maven war plugin followed by the run goal of the Maven Jetty plugin with the jetty profile enabled,

as follows:

$> cd examples/jsf/numberguess

$> mvn war:inplace jetty:run -Pjetty

The log output of Jetty will be shown in the console. Once Jetty reports that the application has deployed, you can

access it at the following local URL: http://localhost:9090/weld-numberguess. The port is defined in the Maven Jetty

plugin configuration within the jetty profile.

Any changes to assets in src/main/webapp take effect immediately. If a change to a webapp configuration

file is made, the application may automatically redeploy. The redeploy behavior can be fined-tuned in the plugin

configuration. If you make a change to a classpath resource, you need to execute a build and the inplace goal

of the Maven war plugin, again with the jetty profile enabled.

$> mvn compile war:inplace -Pjetty

The war:inplace goal copies the compiled classes and jars inside src/main/webapp, under WEB-INF/

classes and WEB-INF/lib, respectively, mixing source and compiled files. However, the build does work around

these temporary files by excluding them from the packaged war and cleaning them during the Maven clean phase.

Finally, you can run the functional tests:

$> mvn verify -Darquillian=jetty-embedded-7 -Pjetty

Now that you have gotten the starter applications deployed on the server of your choice, you probably want to know

a little bit about how they actually work.

http://localhost:9090/weld-numberguess

Chapter 7.

49

Diving into the Weld examples
It’s time to pull the covers back and dive into the internals of Weld example applications. Let’s start with the simpler

of the two examples, weld-numberguess.

7.1. The numberguess example in depth

In the numberguess application you get 10 attempts to guess a number between 1 and 100. After each attempt,

you’re told whether your guess was too high or too low.

The numberguess example is comprised of a number of beans, configuration files and Facelets (JSF) views,

packaged as a war module. Let’s start by examining the configuration files.

All the configuration files for this example are located in WEB-INF/, which can be found in the src/main/webapp

directory of the example. First, we have the JSF 2.2 version of faces-config.xml. A standardized version

of Facelets is the default view handler in JSF 2.2, so there’s really nothing that we have to configure. Thus, the

configuration consists of only the root element.

<faces-config version="2.2"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

 <name>numberguess</name>

</faces-config>

There’s also an empty beans.xml file, which tells the container to look for beans in this archive and to activate

the CDI services.

Finally, some of the supported servers also need a web.xml which is located in src/main/webapp-

[server]/WEB-INF.

Note

This demo uses JSF 2 as the view framework, but you can use Weld with any servlet-based web

framework, such as JSF 1.2 or Wicket.

Let’s take a look at the main JSF view, src/main/webapp/home.xhtml.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

 <ui:composition template="/template.xhtml">

Chapter 7. Diving into the We...

50

 <ui:define name="content">

 <h1>Guess a number...</h1>

 <h:form id="numberGuess">

 <div style="color: red">

 <h:messages id="messages" globalOnly="false"/>

 <h:outputText id="Higher" value="Higher!" rendered="#{game.guessLower}"/>

 <h:outputText id="Lower" value="Lower!" rendered="#{game.guessHigher}"/>

 </div>

 <div>

 I'm thinking of a number between

 #{game.smallest}

 and #{game.biggest}.

 You have #{game.remainingGuesses} guesses remaining.

 </div>

 <div>

 Your guess:

 <h:inputText id="inputGuess" value="#{game.guess}"

 required="true" size="3" disabled="#{game.guessCorrect}"

 validator="#{game.validateNumberRange}"/>

 <h:commandButton id="guessButton" value="Guess" action="#{game.check}"

 disabled="#{game.guessCorrect}"/>

 </div>

 <div>

 <h:commandButton id="restartButton" value="Reset" action="#{game.reset}" immediate="true"/>

 </div>

 </h:form>

 </ui:define>

 </ui:composition>

</html>

Facelets is the built-in templating language for JSF. Here we are wrapping our page in a template which defines

the layout.

There are a number of messages which can be sent to the user, "Higher!", "Lower!" and "Correct!"

As the user guesses, the range of numbers they can guess gets smaller - this sentence changes to make sure

they know the number range of a valid guess.

This input field is bound to a bean property using a value expression.

A validator binding is used to make sure the user doesn’t accidentally input a number outside of the range in

which they can guess - if the validator wasn’t here, the user might use up a guess on an out of bounds number.

And, of course, there must be a way for the user to send their guess to the server. Here we bind to an action

method on the bean.

The example consists of 4 classes, the first two of which are qualifiers. First, there is the @Random qualifier, used

for injecting a random number:

@Qualifier

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface Random {}

The numberguess example in depth

51

There is also the @MaxNumber qualifier, used for injecting the maximum number that can be injected:

@Qualifier

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface MaxNumber {}

The application-scoped Generator class is responsible for creating the random number, via a producer method.

It also exposes the maximum possible number via a producer method:

@ApplicationScoped

public class Generator implements Serializable {

 private java.util.Random random = new java.util.Random(System.currentTimeMillis());

 private static final int MAX_NUMBER = 100;

 java.util.Random getRandom() {

 return random;

 }

 @Produces

 @Random

 int next() {

 //a number between 1 and 100

 return getRandom().nextInt(MAX_NUMBER - 1) + 1;

 }

 @Produces

 @MaxNumber

 int getMaxNumber() {

 return MAX_NUMBER;

 }

}

The Generator is application scoped, so we don’t get a different random each time.

Note

The package declaration and imports have been excluded from these listings. The complete listing

is available in the example source code.

The final bean in the application is the session-scoped Game class. This is the primary entry point of the application.

It’s responsible for setting up or resetting the game, capturing and validating the user’s guess and providing feedback

to the user with a FacesMessage. We’ve used the post-construct lifecycle method to initialize the game by retrieving

a random number from the @Random Instance<Integer> bean.

You’ll notice that we’ve also added the @Named annotation to this class. This annotation is only required when you

want to make the bean accessible to a JSF view via EL (i.e., #{game}).

Chapter 7. Diving into the We...

52

import javax.enterprise.inject.Instance;

@Named

@SessionScoped

public class Game implements Serializable {

 private static final int DEFAULT_REMAINING_GUESSES = 10;

 private int number;

 private int guess;

 private int smallest;

 private int biggest;

 private int remainingGuesses;

 @Inject

 @MaxNumber

 private int maxNumber;

 @Inject

 @Random

 private Instance<Integer> randomNumber;

 public Game() {

 }

 public int getNumber() {

 return number;

 }

 public int getGuess() {

 return guess;

 }

 public void setGuess(int guess) {

 this.guess = guess;

 }

 public int getSmallest() {

 return smallest;

 }

 public int getBiggest() {

 return biggest;

 }

 public int getRemainingGuesses() {

 return remainingGuesses;

 }

 public void check() {

 if (guess > number) {

 biggest = guess - 1;

 } else if (guess < number) {

 smallest = guess + 1;

 } else if (guess == number) {

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage("Correct!"));

 }

 remainingGuesses--;

The numberguess example in Apache Tomcat or Jetty

53

 }

 @PostConstruct

 public void reset() {

 this.smallest = 0;

 this.guess = 0;

 this.remainingGuesses = DEFAULT_REMAINING_GUESSES;

 this.biggest = maxNumber;

 this.number = randomNumber.get();

 }

 public void validateNumberRange(FacesContext context, UIComponent toValidate, Object value) {

 if (remainingGuesses <= 0) {

 FacesMessage message = new FacesMessage("No guesses left!");

 context.addMessage(toValidate.getClientId(context), message);

 ((UIInput) toValidate).setValid(false);

 return;

 }

 int input = (Integer) value;

 if (input < smallest || input > biggest) {

 ((UIInput) toValidate).setValid(false);

 FacesMessage message = new FacesMessage("Invalid guess");

 context.addMessage(toValidate.getClientId(context), message);

 }

 }

 public boolean isGuessHigher() {

 return guess != 0 && guess > number;

 }

 public boolean isGuessLower() {

 return guess != 0 && guess < number;

 }

 public boolean isGuessCorrect() {

 return guess == number;

 }

}

7.1.1. The numberguess example in Apache Tomcat or Jetty

A couple of modifications must be made to the numberguess artifact in order to deploy it to Tomcat or Jetty. First,

Weld must be deployed as a Web Application library under WEB-INF/lib since the servlet container does not

provide the CDI services. For your convenience we provide a single jar suitable for running Weld in any servlet

container (including Jetty), weld-servlet.jar.

Note

You must also include the jars for JSF, EL, and the common annotations (jsr250-api.jar),

all of which are provided by the Java EE platform (a Java EE application server).

Chapter 7. Diving into the We...

54

Second, we need to explicitly specify the servlet listener in web.xml, again because the container isn’t doing this

stuff for you. The servlet listener boots Weld and controls it’s interaction with requests.

<listener>

 <listener-class>org.jboss.weld.environment.servlet.Listener</listener-class>

</listener>

When Weld boots, it places the javax.enterprise.inject.spi.BeanManager, the portable SPI for

obtaining bean instances, in the ServletContext under a variable name equal to the fully-qualified interface

name. You generally don’t need to access this interface, but Weld makes use of it.

7.2. The numberguess example for Java SE with Swing

This example shows how to use the Weld SE extension in a Java SE based Swing application with no EJB or servlet

dependencies. This example can be found in the examples/se/numberguess folder of the Weld distribution.

7.2.1. Creating the Eclipse project

To use the Weld SE numberguess example in Eclipse, you can either import it as a Maven project if you have the

m2eclipse plugin [http://m2eclipse.sonatype.org/] installed, or generate an Eclipse project and import it.

With m2eclipse installed, you can open any Maven project directly. From within Eclipse, select File -> Import… ->

Existing Maven Projects. Then, browse to the location of the Weld SE numberguess example. You should see that

Eclipse recognizes the Maven project.

Without m2eclipse plugin, you first have to generate an Eclipse project. Switch into the Weld SE numberguess

example folder, then execute the Maven Eclipse plugin, as follows:

mvn eclipse:configure-workspace -Declipse.workspace=/path/to/your/eclipse/workspace

and then

mvn eclipse:eclipse

Then from within Eclipse, select File -> Import… -> Existing Projects into Workspace and browse to the location of

the Weld SE numberguess example.

In both cases, you should now see a project in your workspace called weld-se-numberguess.

It’s time to get the example running!

7.2.2. Running the example from Eclipse

Disable m2eclipse’s Workspace Resolution, to make sure that Eclipse can find StartMain. Right click on the

project, and choose Properties -> Maven, and uncheck Resolve dependencies from Workspace projects:

http://m2eclipse.sonatype.org/
http://m2eclipse.sonatype.org/

Running the example from Eclipse

55

Right click on the project, and choose Run As -> Java Application:

Chapter 7. Diving into the We...

56

Locate the StartMain class:

Running the example from the command line

57

The application should now launch!

7.2.3. Running the example from the command line

• Ensure that Maven 3 is installed and in your PATH

• Ensure that the JAVA_HOME environment variable is pointing to your JDK installation

• Open a command line or terminal window in the examples/se/numberguess directory

• Execute the following command

mvn -Drun

7.2.4. Understanding the code

Let’s have a look at the significant code and configuration files that make up this example.

There is an empty beans.xml file in the root package (src/main/resources/META-INF/beans.xml),

which marks this application as a CDI application.

Chapter 7. Diving into the We...

58

Note

The beans.xml file is no longer required for CDI enablement as of CDI 1.1. CDI is automatically

enabled for archives which don’t contain beans.xml but contain one or more bean classes with

a bean defining annotation, as described in section Section 15.6.2, “Implicit bean archive”.

The game’s main logic is located in Game.java. Here is the code for that class, highlighting the ways in which this

differs from the web application version:

@ApplicationScoped

public class Game {

 public static final int MAX_NUM_GUESSES = 10;

 private Integer number;

 private int guess = 0;

 private int smallest = 0;

 @Inject

 @MaxNumber

 private int maxNumber;

 private int biggest;

 private int remainingGuesses = MAX_NUM_GUESSES;

 private boolean validNumberRange = true;

 @Inject

 Generator rndGenerator;

 public Game() {

 }

 public int getNumber() {

 return number;

 }

 public int getGuess() {

 return guess;

 }

 public void setGuess(int guess) {

 this.guess = guess;

 }

 public int getSmallest() {

 return smallest;

 }

 public int getBiggest() {

 return biggest;

 }

 public int getRemainingGuesses() {

 return remainingGuesses;

 }

Understanding the code

59

 public boolean isValidNumberRange() {

 return validNumberRange;

 }

 public boolean isGameWon() {

 return guess == number;

 }

 public boolean isGameLost() {

 return guess != number && remainingGuesses <= 0;

 }

 public boolean check() {

 boolean result = false;

 if (checkNewNumberRangeIsValid()) {

 if (guess > number) {

 biggest = guess - 1;

 }

 if (guess < number) {

 smallest = guess + 1;

 }

 if (guess == number) {

 result = true;

 }

 remainingGuesses--;

 }

 return result;

 }

 private boolean checkNewNumberRangeIsValid() {

 return validNumberRange = ((guess >= smallest) && (guess <= biggest));

 }

 @PostConstruct

 public void reset() {

 this.smallest = 0;

 this.guess = 0;

 this.remainingGuesses = 10;

 this.biggest = maxNumber;

 this.number = rndGenerator.next();

 System.out.println("psst! the number is " + this.number);

 }

}

The bean is application scoped rather than session scoped, since an instance of a Swing application typically

represents a single 'session'.

Notice that the bean is not named, since it doesn’t need to be accessed via EL.

In Java SE there is no JSF FacesContext to which messages can be added. Instead the Game class provides

additional information about the state of the current game including:

Chapter 7. Diving into the We...

60

• If the game has been won or lost

• If the most recent guess was invalid

This allows the Swing UI to query the state of the game, which it does indirectly via a class called

MessageGenerator, in order to determine the appropriate messages to display to the user during the

game.

Since there is no dedicated validation phase, validation of user input is performed during the check() method.

The reset() method makes a call to the injected rndGenerator in order to get the random number at the

start of each game. Note that it can’t use Instance.get() like the JSF example does because there will

not be any active contexts like there are during a JSF request.

The MessageGenerator class depends on the current instance of Game and queries its state in order to determine

the appropriate messages to provide as the prompt for the user’s next guess and the response to the previous guess.

The code for MessageGenerator is as follows:

public class MessageGenerator {

 @Inject

 private Game game;

 public String getChallengeMessage() {

 StringBuilder challengeMsg = new StringBuilder("I'm thinking of a number between ");

 challengeMsg.append(game.getSmallest());

 challengeMsg.append(" and ");

 challengeMsg.append(game.getBiggest());

 challengeMsg.append(". Can you guess what it is?");

 return challengeMsg.toString();

 }

 public String getResultMessage() {

 if (game.isGameWon()) {

 return "You guessed it! The number was " + game.getNumber();

 } else if (game.isGameLost()) {

 return "You are fail! The number was " + game.getNumber();

 } else if (!game.isValidNumberRange()) {

 return "Invalid number range!";

 } else if (game.getRemainingGuesses() == Game.MAX_NUM_GUESSES) {

 return "What is your first guess?";

 } else {

 String direction = null;

 if (game.getGuess() < game.getNumber()) {

 direction = "Higher";

 } else {

 direction = "Lower";

 }

 return direction + "! You have " + game.getRemainingGuesses() + " guesses left.";

 }

 }

}

Understanding the code

61

The instance of Game for the application is injected here.

The `Game’s state is interrogated to determine the appropriate challenge message …

… and again to determine whether to congratulate, console or encourage the user to continue.

Finally we come to the NumberGuessFrame class which provides the Swing front end to our guessing game.

import javax.enterprise.event.Observes;

public class NumberGuessFrame extends javax.swing.JFrame {

 @Inject

 private Game game;

 @Inject

 private MessageGenerator msgGenerator;

 public void start(@Observes ContainerInitialized event) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 initComponents();

 setVisible(true);

 }

 });

 }

 private void initComponents() {

 borderPanel = new javax.swing.JPanel();

 gamePanel = new javax.swing.JPanel();

 inputsPanel = new javax.swing.JPanel();

 buttonPanel = new javax.swing.JPanel();

 guessButton = new javax.swing.JButton();

 ...

 mainLabel.setText(msgGenerator.getChallengeMessage());

 mainMsgPanel.add(mainLabel);

 messageLabel.setText(msgGenerator.getResultMessage());

 mainMsgPanel.add(messageLabel);

 ...

 }

 private void guessButtonActionPerformed(java.awt.event.ActionEvent evt) {

 int guess = -1;

 try {

 guess = Integer.parseInt(guessText.getText());

 } catch (NumberFormatException nfe) {

 // noop

 }

 game.setGuess(guess);

 game.check();

 refreshUI();

 if (game.isGameWon() || game.isGameLost()) {

Chapter 7. Diving into the We...

62

 switchButtons();

 }

 }

 private void replayBtnActionPerformed(java.awt.event.ActionEvent evt) {

 game.reset();

 refreshUI();

 switchButtons();

 }

 private void switchButtons() {

 CardLayout buttonLyt = (CardLayout) buttonPanel.getLayout();

 buttonLyt.next(buttonPanel);

 }

 private void refreshUI() {

 mainLabel.setText(msgGenerator.getChallengeMessage());

 messageLabel.setText(msgGenerator.getResultMessage());

 guessText.setText("");

 guessesLeftBar.setValue(game.getRemainingGuesses());

 guessText.requestFocus();

 }

 // swing components

 private javax.swing.JPanel borderPanel;

 ...

 private javax.swing.JButton replayBtn;

}

The injected instance of the game (logic and state).

The injected message generator for UI messages.

This application is started in the prescribed Weld SE way, by observing the ContainerInitialized event.

This method initializes all of the Swing components. Note the use of the msgGenerator here.

guessButtonActionPerformed is called when the 'Guess' button is clicked, and it does the following:

• Gets the guess entered by the user and sets it as the current guess in the Game

• Calls game.check() to validate and perform one 'turn' of the game

• Calls refreshUI. If there were validation errors with the input, this will have been captured during

game.check() and as such will be reflected in the messages returned by MessageGenerator and

subsequently presented to the user. If there are no validation errors then the user will be told to guess again

(higher or lower) or that the game has ended either in a win (correct guess) or a loss (ran out of guesses).

• Sets the button’s label based on the game state.

replayBtnActionPerformed simply calls game.reset() to start a new game, refreshes the messages

in the UI and sets the button’s label based on the game state.

7.3. The translator example in depth

The translator example will take any sentences you enter, and translate them to Latin. (Well, not really, but the stub

is there for you to implement, at least. Good luck!)

The translator example in depth

63

The translator example is built as an EAR and contains EJBs. As a result, it’s structure is more complex than the

numberguess example.

Note

Java EE 7, which bundles EJB 3.2, allows you to package EJBs in a WAR, which will make this

structure much simpler! Still, there are other advantages of using an EAR.

First, let’s take a look at the EAR aggregator project, which is located in the example’s ear directory. Maven

automatically generates the application.xml for us from this plugin configuration:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ear-plugin</artifactId>

 <configuration>

 <modules>

 <webModule>

 <groupId>org.jboss.weld.examples.jsf.translator</groupId>

 <artifactId>weld-jsf-translator-war</artifactId>

 <contextRoot>/weld-translator</contextRoot>

 </webModule>

 </modules>

 </configuration>

</plugin>

This configuration overrides the web context path, resulting in this application URL: http://localhost:8080/weld-

translator.

Note

If you weren’t using Maven to generate these files, you would need META-INF/

application.xml:

<application version="7"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/application_7.xsd">

 <display-name>weld-jsf-translator-ear</display-name>

 <description>The Weld JSF translator example (ear)</description>

 <module>

 <web>

 <web-uri>weld-translator.war</web-uri>

 <context-root>/weld-translator</context-root>

 </web>

 </module>

 <module>

 <ejb>weld-translator.jar</ejb>

http://localhost:8080/weld-translator
http://localhost:8080/weld-translator

Chapter 7. Diving into the We...

64

 </module>

</application>

Next, let’s look at the WAR, which is located in the example’s war directory. Just as in the numberguess example,

we have a faces-config.xml for JSF 2.2 and a web.xml (to activate JSF) under WEB-INF, both sourced from

src/main/webapp/WEB-INF.

More interesting is the JSF view used to translate text. Just as in the numberguess example we have a template,

which surrounds the form (omitted here for brevity):

<h:form id="TranslatorMain">

 <table>

 <tr align="center" style="font-weight: bold">

 <td>

 Your text

 </td>

 <td>

 Translation

 </td>

 </tr>

 <tr>

 <td>

 <h:inputTextarea id="text" value="#{translator.text}" required="true" rows="5" cols="80"/>

 </td>

 <td>

 <h:outputText value="#{translator.translatedText}"/>

 </td>

 </tr>

 </table>

 <div>

 <h:commandButton id="button" value="Translate" action="#{translator.translate}"/>

 </div>

</h:form>

The user can enter some text in the left-hand text area, and hit the translate button to see the result to the right.

Finally, let’s look at the EJB module, which is located in the example’s ejb directory. In src/main/resources/

META-INF there is just an empty beans.xml, used to mark the archive as containing beans.

Note

The beans.xml file is no longer required for CDI enablement as of CDI 1.1. CDI is automatically

enabled for archives which don’t contain beans.xml but contain one or more bean classes with

a bean defining annotation, as described in section Section 15.6.2, “Implicit bean archive”.

We’ve saved the most interesting bit for last, the code! The project has two simple beans, SentenceParser and

TextTranslator and two session beans, TranslatorControllerBean and SentenceTranslator.

You should be getting quite familiar with what a bean looks like by now, so we’ll just highlight the most interesting

bits here.

The translator example in depth

65

Both SentenceParser and TextTranslator are dependent beans, and TextTranslator uses constructor

injection:

public class TextTranslator implements Serializable {

 private SentenceParser sentenceParser;

 @EJB private Translator translator;

 @Inject public TextTranslator(SentenceParser sentenceParser) {

 this.sentenceParser = sentenceParser;

 }

 public String translate(String text) {

 StringBuilder sb = new StringBuilder();

 for (String sentence: sentenceParser.parse(text)) {

 sb.append(translator.translate(sentence)).append(". ");

 }

 return sb.toString().trim();

 }

}

TextTranslator uses the simple bean (really just a plain Java class!) SentenceParser to parse the sentence

and then calls on the stateless bean with the local business interface Translator to perform the translation. That’s

where the magic happens. Of course, we couldn’t develop a full translator, but it’s convincing enough to anyone

who doesn’t understand Latin!

@Stateless

public class SentenceTranslator implements Translator {

 public String translate(String sentence) {

 return "Lorem ipsum dolor sit amet";

 }

}

Finally, there is UI orientated controller. This is a request scoped, named, stateful session bean, which injects the

translator. It collects the text from the user and dispatches it to the translator. The bean also has getters and setters

for all the fields on the page.

@Stateful

@RequestScoped

@Named("translator")

public class TranslatorControllerBean implements TranslatorController {

 @Inject private TextTranslator translator;

 private String inputText;

 private String translatedText;

Chapter 7. Diving into the We...

66

 public void translate() {

 translatedText = translator.translate(inputText);

 }

 public String getText() {

 return inputText;

 }

 public void setText(String text) {

 this.inputText = text;

 }

 public String getTranslatedText() {

 return translatedText;

 }

 @Remove public void remove() {}

}

That concludes our short tour of the Weld starter examples. For more information on Weld, please visit http://weld.cdi-

spec.org/.

http://weld.cdi-spec.org/
http://weld.cdi-spec.org/

Part III. Loose coupling

with strong typing
The first major theme of CDI is loose coupling. We’ve already seen three means of achieving loose coupling:

• alternatives enable deployment time polymorphism,

• producer methods enable runtime polymorphism, and

• contextual lifecycle management decouples bean lifecycles.

These techniques serve to enable loose coupling of client and server. The client is no longer tightly bound to an

implementation of an interface, nor is it required to manage the lifecycle of the implementation. This approach lets

stateful objects interact as if they were services.

Loose coupling makes a system more dynamic. The system can respond to change in a well-defined manner. In

the past, frameworks that attempted to provide the facilities listed above invariably did it by sacrificing type safety

(most notably by using XML descriptors). CDI is the first technology, and certainly the first specification in the Java

EE platform, that achieves this level of loose coupling in a typesafe way.

CDI provides three extra important facilities that further the goal of loose coupling:

• interceptors decouple technical concerns from business logic,

• decorators may be used to decouple some business concerns, and

• event notifications decouple event producers from event consumers.

The second major theme of CDI is strong typing. The information about the dependencies, interceptors and

decorators of a bean, and the information about event consumers for an event producer, is contained in typesafe

Java constructs that may be validated by the compiler.

You don’t see string-based identifiers in CDI code, not because the framework is hiding them from you using clever

defaulting rules—so-called "configuration by convention"—but because there are simply no strings there to begin

with!

The obvious benefit of this approach is that any IDE can provide autocompletion, validation and refactoring without

the need for special tooling. But there is a second, less-immediately-obvious, benefit. It turns out that when you start

thinking of identifying objects, events or interceptors via annotations instead of names, you have an opportunity to

lift the semantic level of your code.

CDI encourages you develop annotations that model concepts, for example,

• @Asynchronous,

• @Mock,

• @Secure or

• @Updated,

instead of using compound names like

• asyncPaymentProcessor,

Part III. Loose coupling with...

• mockPaymentProcessor,

• SecurityInterceptor or

• DocumentUpdatedEvent.

The annotations are reusable. They help describe common qualities of disparate parts of the system. They help us

categorize and understand our code. They help us deal with common concerns in a common way. They make our

code more literate and more understandable.

CDI stereotypes take this idea a step further. A stereotype models a common role in your application architecture.

It encapsulates various properties of the role, including scope, interceptor bindings, qualifiers, etc, into a single

reusable package. (Of course, there is also the benefit of tucking some of those annotations away).

We’re now ready to meet some more advanced features of CDI. Bear in mind that these features exist to make our

code both easier to validate and more understandable. Most of the time you don’t ever really need to use these

features, but if you use them wisely, you’ll come to appreciate their power.

Chapter 8.

69

Producer methods
Producer methods let us overcome certain limitations that arise when a container, instead of the application, is

responsible for instantiating objects. They’re also the easiest way to integrate objects which are not beans into the

CDI environment.

According to the spec:

A producer method acts as a source of objects to be injected, where:

• the objects to be injected are not required to be instances of beans, or

• the concrete type of the objects to be injected may vary at runtime, or

• the objects require some custom initialization that is not performed by the bean constructor.

For example, producer methods let us:

• expose a JPA entity as a bean,

• expose any JDK class as a bean,

• define multiple beans, with different scopes or initialization, for the same implementation class, or

• vary the implementation of a bean type at runtime.

In particular, producer methods let us use runtime polymorphism with CDI. As we’ve seen, alternative beans are one

solution to the problem of deployment-time polymorphism. But once the system is deployed, the CDI implementation

is fixed. A producer method has no such limitation:

import javax.enterprise.inject.Produces;

@SessionScoped

public class Preferences implements Serializable {

 private PaymentStrategyType paymentStrategy;

 ...

 @Produces @Preferred

 public PaymentStrategy getPaymentStrategy() {

 switch (paymentStrategy) {

 case CREDIT_CARD: return new CreditCardPaymentStrategy();

 case CHECK: return new CheckPaymentStrategy();

 case PAYPAL: return new PayPalPaymentStrategy();

 default: return null;

 }

 }

}

Consider an injection point:

@Inject @Preferred PaymentStrategy paymentStrategy;

Chapter 8. Producer methods

70

This injection point has the same type and qualifier annotations as the producer method, so it resolves to the producer

method using the usual CDI injection rules. The producer method will be called by the container to obtain an instance

to service this injection point.

8.1. Scope of a producer method
The scope of the producer method defaults to @Dependent, and so it will be called every time the container injects

this field or any other field that resolves to the same producer method. Thus, there could be multiple instances of

the PaymentStrategy object for each user session.

To change this behavior, we can add a @SessionScoped annotation to the method.

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy() {

 ...

}

Now, when the producer method is called, the returned PaymentStrategy will be bound to the session context.

The producer method won’t be called again in the same session.

Note

A producer method does not inherit the scope of the bean that declares the method. There are

two different beans here: the producer method, and the bean which declares it. The scope of the

producer method determines how often the method will be called, and the lifecycle of the objects

returned by the method. The scope of the bean that declares the producer method determines the

lifecycle of the object upon which the producer method is invoked.

8.2. Injection into producer methods
There’s one potential problem with the code above. The implementations of CreditCardPaymentStrategy

are instantiated using the Java new operator. Objects instantiated directly by the application can’t take advantage

of dependency injection and don’t have interceptors.

If this isn’t what we want, we can use dependency injection into the producer method to obtain bean instances:

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,

 CheckPaymentStrategy cps,

 PayPalPaymentStrategy ppps) {

 switch (paymentStrategy) {

 case CREDIT_CARD: return ccps;

 case CHEQUE: return cps;

 case PAYPAL: return ppps;

 default: return null;

 }

}

Wait, what if CreditCardPaymentStrategy is a request-scoped bean? Then the producer method has the

effect of "promoting" the current request scoped instance into session scope. This is almost certainly a bug! The

Use of @New with producer methods

71

request scoped object will be destroyed by the container before the session ends, but the reference to the object

will be left "hanging" in the session scope. This error will not be detected by the container, so please take extra care

when returning bean instances from producer methods!

There’s at least three ways we could go about fixing this bug. We could change the scope of the

CreditCardPaymentStrategy implementation, but this would affect other clients of that bean. A better option

would be to change the scope of the producer method to @Dependent or @RequestScoped.

But a more common solution is to use the special @New qualifier annotation.

8.3. Use of @New with producer methods

Consider the following producer method:

@Produces @Preferred @SessionScoped

public PaymentStrategy getPaymentStrategy(@New CreditCardPaymentStrategy ccps,

 @New CheckPaymentStrategy cps,

 @New PayPalPaymentStrategy ppps) {

 switch (paymentStrategy) {

 case CREDIT_CARD: return ccps;

 case CHEQUE: return cps;

 case PAYPAL: return ppps;

 default: return null;

 }

}

Then a new dependent instance of CreditCardPaymentStrategy will be created, passed to the producer

method, returned by the producer method and finally bound to the session context. The dependent object won’t be

destroyed until the Preferences object is destroyed, at the end of the session.

Warning

The @New qualifier was deprecated in CDI 1.1. CDI applications are encouraged to inject

@Dependent scoped beans instead.

8.4. Disposer methods

Some producer methods return objects that require explicit destruction. For example, somebody needs to close this

JDBC connection:

@Produces @RequestScoped Connection connect(User user) {

 return createConnection(user.getId(), user.getPassword());

}

Destruction can be performed by a matching disposer method, defined by the same class as the producer method:

void close(@Disposes Connection connection) {

 connection.close();

Chapter 8. Producer methods

72

}

The disposer method must have at least one parameter, annotated @Disposes, with the same type and qualifiers

as the producer method. The disposer method is called automatically when the context ends (in this case, at the end

of the request), and this parameter receives the object produced by the producer method. If the disposer method

has additional method parameters, the container will look for a bean that satisfies the type and qualifiers of each

parameter and pass it to the method automatically.

Since CDI 1.1 disposer methods may be used for destroying not only objects produced by producer methods but

also objects producer by producer fields.

Chapter 9.

73

Interceptors
Interceptor functionality is defined in the Java Interceptors specification.

The Interceptors specification defines three kinds of interception points:

• business method interception,

• lifecycle callback interception, and

• timeout method interception (EJB only).

A business method interceptor applies to invocations of methods of the bean by clients of the bean:

public class TransactionInterceptor {

 @AroundInvoke

 public Object manageTransaction(InvocationContext ctx) throws Exception { ... }

}

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container:

public class DependencyInjectionInterceptor {

 @PostConstruct

 public void injectDependencies(InvocationContext ctx) { ... }

}

An interceptor class may intercept both lifecycle callbacks and business methods.

A timeout method interceptor applies to invocations of EJB timeout methods by the container:

public class TimeoutInterceptor {

 @AroundTimeout

 public Object manageTransaction(InvocationContext ctx) throws Exception { ... }

}

9.1. Interceptor bindings

Suppose we want to declare that some of our beans are transactional. The first thing we need is an interceptor

binding type to specify exactly which beans we’re interested in:

@InterceptorBinding

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Transactional {}

Now we can easily specify that our ShoppingCart is a transactional object:

Chapter 9. Interceptors

74

@Transactional

public class ShoppingCart { ... }

Or, if we prefer, we can specify that just one method is transactional:

public class ShoppingCart {

 @Transactional public void checkout() { ... }

}

9.2. Implementing interceptors

That’s great, but somewhere along the line we’re going to have to actually implement the interceptor that provides this

transaction management aspect. All we need to do is create a standard interceptor, and annotate it @Interceptor

and @Transactional.

@Transactional @Interceptor

public class TransactionInterceptor {

 @AroundInvoke

 public Object manageTransaction(InvocationContext ctx) throws Exception { ... }

}

Interceptors can take advantage of dependency injection:

@Transactional @Interceptor

public class TransactionInterceptor {

 @Resource UserTransaction transaction;

 @AroundInvoke

 public Object manageTransaction(InvocationContext ctx) throws Exception { ... }

}

Multiple interceptors may use the same interceptor binding type.

9.3. Enabling interceptors

By default, all interceptors are disabled. We need to enable our interceptor. We can do it using beans.xml

descriptor of a bean archive. However, this activation only applies to the beans in that archive. From CDI 1.1 onwards

the interceptor can be enabled for the whole application using @Priority annotation.

<beans

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

Interceptor bindings with members

75

 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">

 <interceptors>

 <class>org.mycompany.myapp.TransactionInterceptor</class>

 </interceptors>

</beans>

Whoah! Why the angle bracket stew?

Well, having the XML declaration is actually a good thing. It solves two problems:

• it enables us to specify an ordering for the interceptors in our system, ensuring deterministic behavior, and

• it lets us enable or disable interceptor classes at deployment time.

Having two interceptors without @Priority, we could specify that our security interceptor runs before our

transaction interceptor.

<beans

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">

 <interceptors>

 <class>org.mycompany.myapp.SecurityInterceptor</class>

 <class>org.mycompany.myapp.TransactionInterceptor</class>

 </interceptors>

</beans>

Or we could turn them both off in our test environment by simply not mentioning them in beans.xml! Ah, so simple.

It gets quite tricky when used along with interceptors annotated with @Priority. Interceptors enabled using

@Priority are called before interceptors enabled using beans.xml, the lower priority values are called first.

Note

Interceptors with the @Priority that are listed in the beans.xml descriptor will be called twice

in Weld. However, this behaviour is non-portable and this combination should not be used as it

can behave differently in other implementations!

9.4. Interceptor bindings with members

Suppose we want to add some extra information to our @Transactional annotation:

@InterceptorBinding

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Transactional {

 boolean requiresNew() default false;

}

Chapter 9. Interceptors

76

CDI will use the value of requiresNew to choose between two different interceptors,

TransactionInterceptor and RequiresNewTransactionInterceptor.

@Transactional(requiresNew = true) @Interceptor

public class RequiresNewTransactionInterceptor {

 @AroundInvoke

 public Object manageTransaction(InvocationContext ctx) throws Exception { ... }

}

Now we can use RequiresNewTransactionInterceptor like this:

@Transactional(requiresNew = true)

public class ShoppingCart { ... }

But what if we only have one interceptor and we want the container to ignore the value of requiresNew when

binding interceptors? Perhaps this information is only useful for the interceptor implementation. We can use the

@Nonbinding annotation:

@InterceptorBinding

@Target({METHOD, TYPE})

@Retention(RUNTIME)

public @interface Secure {

 @Nonbinding String[] rolesAllowed() default {};

}

9.5. Multiple interceptor binding annotations

Usually we use combinations of interceptor bindings types to bind multiple interceptors to a bean. For example, the

following declaration would be used to bind TransactionInterceptor and SecurityInterceptor to the

same bean:

@Secure(rolesAllowed="admin") @Transactional

public class ShoppingCart { ... }

However, in very complex cases, an interceptor itself may specify some combination of interceptor binding types:

@Transactional @Secure @Interceptor

public class TransactionalSecureInterceptor { ... }

Then this interceptor could be bound to the checkout() method using any one of the following combinations:

public class ShoppingCart {

 @Transactional @Secure public void checkout() { ... }

Interceptor binding type inheritance

77

}

@Secure

public class ShoppingCart {

 @Transactional public void checkout() { ... }

}

@Transactional

public class ShoppingCart {

 @Secure public void checkout() { ... }

}

@Transactional @Secure

public class ShoppingCart {

 public void checkout() { ... }

}

9.6. Interceptor binding type inheritance
One limitation of the Java language support for annotations is the lack of annotation inheritance. Really, annotations

should have reuse built in, to allow this kind of thing to work:

public @interface Action extends Transactional, Secure { ... }

Well, fortunately, CDI works around this missing feature of Java. We may annotate one interceptor binding type with

other interceptor binding types (termed a meta-annotation). The interceptor bindings are transitive — any bean with

the first interceptor binding inherits the interceptor bindings declared as meta-annotations.

@Transactional @Secure

@InterceptorBinding

@Target(TYPE)

@Retention(RUNTIME)

public @interface Action { ... }

Now, any bean annotated @Action will be bound to both TransactionInterceptor and

SecurityInterceptor. (And even TransactionalSecureInterceptor, if it exists.)

9.7. Use of @Interceptors
The @Interceptors annotation defined by the Interceptors specification (and used by the Managed Beans and

EJB specifications) is still supported in CDI.

@Interceptors({TransactionInterceptor.class, SecurityInterceptor.class})

Chapter 9. Interceptors

78

public class ShoppingCart {

 public void checkout() { ... }

}

However, this approach suffers the following drawbacks:

• the interceptor implementation is hardcoded in business code,

• interceptors may not be easily disabled at deployment time, and

• the interceptor ordering is non-global — it is determined by the order in which interceptors are listed at the class

level.

Therefore, we recommend the use of CDI-style interceptor bindings.

Chapter 10.

79

Decorators
Interceptors are a powerful way to capture and separate concerns which are orthogonal to the application (and

type system). Any interceptor is able to intercept invocations of any Java type. This makes them perfect for solving

technical concerns such as transaction management, security and call logging. However, by nature, interceptors

are unaware of the actual semantics of the events they intercept. Thus, interceptors aren’t an appropriate tool for

separating business-related concerns.

The reverse is true of decorators. A decorator intercepts invocations only for a certain Java interface, and is therefore

aware of all the semantics attached to that interface. Since decorators directly implement operations with business

semantics, it makes them the perfect tool for modeling some kinds of business concerns. It also means that a

decorator doesn’t have the generality of an interceptor. Decorators aren’t able to solve technical concerns that cut

across many disparate types. Interceptors and decorators, though similar in many ways, are complementary. Let’s

look at some cases where decorators fit the bill.

Suppose we have an interface that represents accounts:

public interface Account {

 public BigDecimal getBalance();

 public User getOwner();

 public void withdraw(BigDecimal amount);

 public void deposit(BigDecimal amount);

}

Several different beans in our system implement the Account interface. However, we have a common legal

requirement that; for any kind of account, large transactions must be recorded by the system in a special log. This

is a perfect job for a decorator.

A decorator is a bean (possibly even an abstract class) that implements the type it decorates and is annotated

@Decorator.

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 ...

}

The decorator implements the methods of the decorated type that it wants to intercept.

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {

 ...

 }

Chapter 10. Decorators

80

 public void deposit(BigDecimal amount);

 ...

 }

}

Unlike other beans, a decorator may be an abstract class. Therefore, if there’s nothing special the decorator needs

to do for a particular method of the decorated interface, you don’t need to implement that method.

Interceptors for a method are called before decorators that apply to the method.

10.1. Delegate object

Decorators have a special injection point, called the delegate injection point, with the same type as the beans they

decorate, and the annotation @Delegate. There must be exactly one delegate injection point, which can be a

constructor parameter, initializer method parameter or injected field.

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 ...

}

A decorator is bound to any bean which:

• has the type of the delegate injection point as a bean type, and

• has all qualifiers that are declared at the delegate injection point.

This delegate injection point specifies that the decorator is bound to all beans that implement Account:

@Inject @Delegate @Any Account account;

A delegate injection point may specify any number of qualifier annotations. The decorator will only be bound to beans

with the same qualifiers.

@Inject @Delegate @Foreign Account account;

The decorator may invoke the delegate object, which has much the same effect as calling

InvocationContext.proceed() from an interceptor. The main difference is that the decorator can invoke

any business method on the delegate object.

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 @PersistenceContext EntityManager em;

Enabling decorators

81

 public void withdraw(BigDecimal amount) {

 account.withdraw(amount);

 if (amount.compareTo(LARGE_AMOUNT)>0) {

 em.persist(new LoggedWithdrawl(amount));

 }

 }

 public void deposit(BigDecimal amount);

 account.deposit(amount);

 if (amount.compareTo(LARGE_AMOUNT)>0) {

 em.persist(new LoggedDeposit(amount));

 }

 }

}

10.2. Enabling decorators

By default, all decorators are disabled. We need to enable our decorator. We can do it using beans.xml descriptor

of a bean archive. However, this activation only applies to the beans in that archive. From CDI 1.1 onwards the

decorator can be enabled for the whole application using @Priority annotation.

<beans

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">

 <decorators>

 <class>org.mycompany.myapp.LargeTransactionDecorator</class>

 </decorators>

</beans>

This declaration serves the same purpose for decorators that the <interceptors> declaration serves for

interceptors:

• it enables us to specify an ordering for decorators in our system, ensuring deterministic behavior, and

• it lets us enable or disable decorator classes at deployment time.

Decorators enabled using @Priority are called before decorators enabled using beans.xml, the lower priority

values are called first.

Note

Decorators with the @Priority that are listed in the beans.xml descriptor will be called twice

in Weld. However, this behaviour is non-portable and this combination should not be used as it

can behave differently in other implementations!

82

Chapter 11.

83

Events
Dependency injection enables loose-coupling by allowing the implementation of the injected bean type to vary,

either at deployment time or runtime. Events go one step further, allowing beans to interact with no compile time

dependency at all. Event producers raise events that are delivered to event observers by the container.

This basic schema might sound like the familiar observer/observable pattern, but there are a couple of twists:

• not only are event producers decoupled from observers; observers are completely decoupled from producers,

• observers can specify a combination of "selectors" to narrow the set of event notifications they will receive, and

• observers can be notified immediately, or can specify that delivery of the event should be delayed until the end

of the current transaction.

The CDI event notification facility uses more or less the same typesafe approach that we’ve already seen with the

dependency injection service.

11.1. Event payload

The event object carries state from producer to consumer. The event object is nothing more than an instance of

a concrete Java class. (The only restriction is that an event type may not contain type variables). An event may

be assigned qualifiers, which allows observers to distinguish it from other events of the same type. The qualifiers

function like topic selectors, allowing an observer to narrow the set of events it observes.

An event qualifier is just a normal qualifier, defined using @Qualifier. Here’s an example:

@Qualifier

@Target({METHOD, FIELD, PARAMETER, TYPE})

@Retention(RUNTIME)

public @interface Updated {}

11.2. Event observers

An observer method is a method of a bean with a parameter annotated @Observes.

public void onAnyDocumentEvent(@Observes Document document) { ... }

The annotated parameter is called the event parameter. The type of the event parameter is the observed event type,

in this case Document. The event parameter may also specify qualifiers.

public void afterDocumentUpdate(@Observes @Updated Document document) { ... }

An observer method need not specify any event qualifiers—in this case it is interested in only unqualified events of

a particular type. If it does specify qualifiers, it’s only interested in events which have those qualifiers.

The observer method may have additional parameters, which are injection points:

Chapter 11. Events

84

public void afterDocumentUpdate(@Observes @Updated Document document, User user) { ... }

11.3. Event producers

Event producers fire events using an instance of the parameterized Event interface. An instance of this interface

is obtained by injection:

@Inject @Any Event<Document> documentEvent;

A producer raises events by calling the fire() method of the Event interface, passing the event object:

documentEvent.fire(document);

This particular event will be delivered to every observer method that:

• has an event parameter to which the event object (the Document) is assignable, and

• specifies no qualifiers.

The container simply calls all the observer methods, passing the event object as the value of the event parameter.

If any observer method throws an exception, the container stops calling observer methods, and the exception is

rethrown by the fire() method.

Qualifiers can be applied to an event in one of two ways:

• by annotating the Event injection point, or

• by passing qualifiers to the select() of Event.

Specifying the qualifiers at the injection point is far simpler:

@Inject @Updated Event<Document> documentUpdatedEvent;

Then, every event fired via this instance of Event has the event qualifier @Updated. The event is delivered to

every observer method that:

• has an event parameter to which the event object is assignable, and

• does not have any event qualifier except for the event qualifiers that match those specified at the Event injection

point.

The downside of annotating the injection point is that we can’t specify the qualifier dynamically. CDI lets us obtain

a qualifier instance by subclassing the helper class AnnotationLiteral. That way, we can pass the qualifier

to the select() method of Event.

Conditional observer methods

85

documentEvent.select(new AnnotationLiteral<Updated>(){}).fire(document);

Events can have multiple event qualifiers, assembled using any combination of annotations at the Event injection

point and qualifier instances passed to the select() method.

11.4. Conditional observer methods

By default, if there is no instance of an observer in the current context, the container will instantiate the observer in

order to deliver an event to it. This behavior isn’t always desirable. We may want to deliver events only to instances

of the observer that already exist in the current contexts.

A conditional observer is specified by adding receive = IF_EXISTS to the @Observes annotation.

public void refreshOnDocumentUpdate(@Observes(receive = IF_EXISTS) @Updated Document d) { ... }

Note

A bean with scope @Dependent cannot be a conditional observer, since it would never be called!

11.5. Event qualifiers with members

An event qualifier type may have annotation members:

@Qualifier

@Target({METHOD, FIELD, PARAMETER, TYPE})

@Retention(RUNTIME)

public @interface Role {

 RoleType value();

}

The member value is used to narrow the messages delivered to the observer:

public void adminLoggedIn(@Observes @Role(ADMIN) LoggedIn event) { ... }

Event qualifier type members may be specified statically by the event producer, via annotations at the event notifier

injection point:

@Inject @Role(ADMIN) Event<LoggedIn> loggedInEvent;

Alternatively, the value of the event qualifier type member may be determined dynamically by the event producer.

We start by writing an abstract subclass of AnnotationLiteral:

Chapter 11. Events

86

abstract class RoleBinding

 extends AnnotationLiteral<Role>

 implements Role {}

The event producer passes an instance of this class to select():

documentEvent.select(new RoleBinding() {

 public void value() { return user.getRole(); }

}).fire(document);

11.6. Multiple event qualifiers

Event qualifiers may be combined, for example:

@Inject @Blog Event<Document> blogEvent;

...

if (document.isBlog()) blogEvent.select(new AnnotationLiteral<Updated>(){}).fire(document);

An observer method is only notified if all the observed qualifiers are specified when the event is fired. Assume the

following observers in this example:

public void afterBlogUpdate(@Observes @Updated @Blog Document document) { ... }

public void afterDocumentUpdate(@Observes @Updated Document document) { ... }

public void onAnyBlogEvent(@Observes @Blog Document document) { ... }

public void onAnyDocumentEvent(@Observes Document document) { ... }}}

All of these observer methods will be notified.

However, if there were also an observer method:

public void afterPersonalBlogUpdate(@Observes @Updated @Personal @Blog Document document) { ... }

It would not be notified, as @Personal is not a qualifier of the event being fired.

Transactional observers

87

11.7. Transactional observers

Transactional observers receive their event notifications during the before or after completion phase of the

transaction in which the event was raised. For example, the following observer method needs to refresh a query result

set that is cached in the application context, but only when transactions that update the Category tree succeed:

public void refreshCategoryTree(@Observes(during = AFTER_SUCCESS) CategoryUpdateEvent event) { ... }

There are five kinds of transactional observers:

• IN_PROGRESS observers are called immediately (default)

• AFTER_SUCCESS observers are called during the after completion phase of the transaction, but only if the

transaction completes successfully

• AFTER_FAILURE observers are called during the after completion phase of the transaction, but only if the

transaction fails to complete successfully

• AFTER_COMPLETION observers are called during the after completion phase of the transaction

• BEFORE_COMPLETION observers are called during the before completion phase of the transaction

Transactional observers are very important in a stateful object model because state is often held for longer than a

single atomic transaction.

Imagine that we have cached a JPA query result set in the application scope:

import javax.ejb.Singleton;

import javax.enterprise.inject.Produces;

@ApplicationScoped @Singleton

public class Catalog {

 @PersistenceContext EntityManager em;

 List<Product> products;

 @Produces @Catalog

 List<Product> getCatalog() {

 if (products==null) {

 products = em.createQuery("select p from Product p where p.deleted = false")

 .getResultList();

 }

 return products;

 }

}

From time to time, a Product is created or deleted. When this occurs, we need to refresh the Product catalog.

But we should wait until after the transaction completes successfully before performing this refresh!

The bean that creates and deletes `Product`s could raise events, for example:

Chapter 11. Events

88

import javax.enterprise.event.Event;

@Stateless

public class ProductManager {

 @PersistenceContext EntityManager em;

 @Inject @Any Event<Product> productEvent;

 public void delete(Product product) {

 em.delete(product);

 productEvent.select(new AnnotationLiteral<Deleted>(){}).fire(product);

 }

 public void persist(Product product) {

 em.persist(product);

 productEvent.select(new AnnotationLiteral<Created>(){}).fire(product);

 }

 ...

}

And now Catalog can observe the events after successful completion of the transaction:

import javax.ejb.Singleton;

@ApplicationScoped @Singleton

public class Catalog {

 ...

 void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product product) {

 products.add(product);

 }

 void removeProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product product) {

 products.remove(product);

 }

}

Chapter 12.

89

Stereotypes
The CDI specification defines a stereotype as follows:

In many systems, use of architectural patterns produces a set of recurring bean roles. A

stereotype allows a framework developer to identify such a role and declare some common

metadata for beans with that role in a central place.

A stereotype encapsulates any combination of:

• a default scope, and

• a set of interceptor bindings.

A stereotype may also specify that:

• all beans with the stereotype have defaulted bean names, or that

• all beans with the stereotype are alternatives.

A bean may declare zero, one or multiple stereotypes. Stereotype annotations may be applied

to a bean class or producer method or field.

A stereotype is an annotation, annotated @Stereotype, that packages several other annotations. For instance,

the following stereotype identifies action classes in some MVC framework:

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

...

public @interface Action {}

We use the stereotype by applying the annotation to a bean.

@Action

public class LoginAction { ... }

Of course, we need to apply some other annotations to our stereotype or else it wouldn’t be adding much value.

12.1. Default scope for a stereotype

A stereotype may specify a default scope for beans annotated with the stereotype. For example:

@RequestScoped

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

Chapter 12. Stereotypes

90

public @interface Action {}

A particular action may still override this default if necessary:

@Dependent @Action

public class DependentScopedLoginAction { ... }

Naturally, overriding a single default isn’t much use. But remember, stereotypes can define more than just the default

scope.

12.2. Interceptor bindings for stereotypes

A stereotype may specify a set of interceptor bindings to be inherited by all beans with that stereotype.

@RequestScoped

@Transactional(requiresNew=true)

@Secure

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Action {}

This helps us get technical concerns, like transactions and security, even further away from the business code!

12.3. Name defaulting with stereotypes

We can specify that all beans with a certain stereotype have a defaulted EL name when a name is not explicitly

defined for that bean. All we need to do is add an empty @Named annotation:

@RequestScoped

@Transactional(requiresNew=true)

@Secure

@Named

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Action {}

Now, the LoginAction bean will have the defaulted name loginAction.

12.4. Alternative stereotypes

A stereotype can indicate that all beans to which it is applied are `@Alternative`s. An alternative stereotype lets us

classify beans by deployment scenario.

@Alternative

@Stereotype

Stereotype stacking

91

@Retention(RUNTIME)

@Target(TYPE)

public @interface Mock {}

We can apply an alternative stereotype to a whole set of beans, and activate them all with one line of code in

beans.xml.

@Mock

public class MockLoginAction extends LoginAction { ... }

<beans>

 <alternatives>

 <stereotype>org.mycompany.testing.Mock</stereotype>

 </alternatives>

</beans>

12.5. Stereotype stacking

This may blow your mind a bit, but stereotypes may declare other stereotypes, which we’ll call stereotype stacking.

You may want to do this if you have two distinct stereotypes which are meaningful on their own, but in other situation

may be meaningful when combined.

Here’s an example that combines the @Action and @Auditable stereotypes:

@Auditable

@Action

@Stereotype

@Target(TYPE)

@Retention(RUNTIME)

public @interface AuditableAction {}

12.6. Built-in stereotypes

CDI defines one standard stereotype, @Model, which is expected to be used frequently in web applications:

@Named

@RequestScoped

@Stereotype

@Target({TYPE, METHOD, FIELD})

@Retention(RUNTIME)

public @interface Model {}

Instead of using JSF managed beans, just annotate a bean @Model, and use it directly in your JSF view!

92

Chapter 13.

93

Specialization, inheritance and

alternatives
When you first start developing with CDI, you’ll likely be dealing only with a single bean implementation for each

bean type. In this case, it’s easy to understand how beans get selected for injection. As the complexity of your

application grows, multiple occurrences of the same bean type start appearing, either because you have multiple

implementations or two beans share a common (Java) inheritance. That’s when you have to begin studying the

specialization, inheritance and alternative rules to work through unsatisfied or ambiguous dependencies or to avoid

certain beans from being called.

The CDI specification recognizes two distinct scenarios in which one bean extends another:

• The second bean specializes the first bean in certain deployment scenarios. In these

deployments, the second bean completely replaces the first, fulfilling the same role in the

system.

• The second bean is simply reusing the Java implementation, and otherwise bears no relation to

the first bean. The first bean may not even have been designed for use as a contextual object.

The second case is the default assumed by CDI. It’s possible to have two beans in the system with the same part

bean type (interface or parent class). As you’ve learned, you select between the two implementations using qualifiers.

The first case is the exception, and also requires more care. In any given deployment, only one bean can fulfill a given

role at a time. That means one bean needs to be enabled and the other disabled. There are a two modifiers involved:

@Alternative and @Specializes. We’ll start by looking at alternatives and then show the guarantees that

specialization adds.

13.1. Using alternative stereotypes

CDI lets you override the implementation of a bean type at deployment time using an alternative. For example, the

following bean provides a default implementation of the PaymentProcessor interface:

public class DefaultPaymentProcessor

 implements PaymentProcessor {

 ...

}

But in our staging environment, we don’t really want to submit payments to the external system, so we override that

implementation of PaymentProcessor with a different bean:

public @Alternative

class StagingPaymentProcessor

 implements PaymentProcessor {

 ...

}

or

Chapter 13. Specialization, i...

94

public @Alternative

class StagingPaymentProcessor

 extends DefaultPaymentProcessor {

 ...

}

We’ve already seen how we can enable this alternative by listing its class in the beans.xml descriptor.

But suppose we have many alternatives in the staging environment. It would be much more convenient to be able to

enable them all at once. So let’s make @Staging an @Alternative stereotype and annotate the staging beans

with this stereotype instead. You’ll see how this level of indirection pays off. First, we create the stereotype:

@Alternative

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface Staging {}

Then we replace the @Alternative annotation on our bean with @Staging:

@Staging

public class StagingPaymentProcessor

 implements PaymentProcessor {

 ...

}

Finally, we activate the @Staging stereotype in the beans.xml descriptor:

<beans

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">

 <alternatives>

 <stereotype>org.mycompany.myapp.Staging</stereotype>

 </alternatives>

</beans>

Now, no matter how many staging beans we have, they will all be enabled at once.

13.2. A minor problem with alternatives

When we enable an alternative, does that mean the default implementation is disabled? Well, not exactly. If the

default implementation has a qualifier, for instance @LargeTransaction, and the alternative does not, you could

still inject the default implementation.

Using specialization

95

@Inject @LargeTransaction PaymentProcessor paymentProcessor;

So we haven’t completely replaced the default implementation in this deployment of the system. The only way one

bean can completely override a second bean at all injection points is if it implements all the bean types and declares

all the qualifiers of the second bean. However, if the second bean declares a producer method or observer method,

then even this is not enough to ensure that the second bean is never called! We need something extra.

CDI provides a special feature, called specialization, that helps the developer avoid these traps. Specialization is a

way of informing the system of your intent to completely replace and disable an implementation of a bean.

13.3. Using specialization

When the goal is to replace one bean implementation with a second, to help prevent developer error, the first bean

may:

• directly extend the bean class of the second bean, or

• directly override the producer method, in the case that the second bean is a producer method, and then

explicitly declare that it specializes the second bean:

@Alternative @Specializes

public class MockCreditCardPaymentProcessor

 extends CreditCardPaymentProcessor {

 ...

}

When an enabled bean specializes another bean, the other bean is never instantiated or called by the container.

Even if the other bean defines a producer or observer method, the method will never be called.

So why does specialization work, and what does it have to do with inheritance?

Since we’re informing the container that our alternative bean is meant to stand in as a replacement for

the default implementation, the alternative implementation automatically inherits all qualifiers of the default

implementation. Thus, in our example, MockCreditCardPaymentProcessor inherits the qualifiers @Default

and @CreditCard.

Furthermore, if the default implementation declares a bean EL name using @Named, the name is inherited by the

specializing alternative bean.

96

Chapter 14.

97

Java EE component environment

resources
Java EE 5 already introduced some limited support for dependency injection, in the form of component environment

injection. A component environment resource is a Java EE component, for example a JDBC datasource, JMS queue

or topic, JPA persistence context, remote EJB or web service.

Naturally, there is now a slight mismatch with the new style of dependency injection in CDI. Most notably, component

environment injection relies on string-based names to qualify ambiguous types, and there is no real consistency as

to the nature of the names (sometimes a JNDI name, sometimes a persistence unit name, sometimes an EJB link,

sometimes a non-portable "mapped name"). Producer fields turned out to be an elegant adaptor to reduce all this

complexity to a common model and get component environment resources to participate in the CDI system just like

any other kind of bean.

Fields have a duality in that they can both be the target of Java EE component environment injection and be

declared as a CDI producer field. Therefore, they can define a mapping from a string-based name in the component

environment, to a combination of type and qualifiers used in the world of typesafe injection. We call a producer field

that represents a reference to an object in the Java EE component environment a resource.

14.1. Defining a resource

The CDI specification uses the term resource to refer, generically, to any of the following kinds of object which might

be available in the Java EE component environment:

• JDBC `Datasource`s, JMS `Queue`s, `Topic`s and `ConnectionFactory`s, JavaMail `Session`s and other

transactional resources including JCA connectors,

• JPA `EntityManager`s and `EntityManagerFactory`s,

• remote EJBs, and

• web services.

We declare a resource by annotating a producer field with a component environment injection annotation:

@Resource, @EJB, @PersistenceContext, @PersistenceUnit or @WebServiceRef.

@Produces @WebServiceRef(lookup="java:app/service/Catalog")

Catalog catalog;

@Produces @Resource(lookup="java:global/env/jdbc/CustomerDatasource")

@CustomerDatabase Datasource customerDatabase;

@Produces @PersistenceContext(unitName="CustomerDatabase")

@CustomerDatabase EntityManager customerDatabasePersistenceContext;

@Produces @PersistenceUnit(unitName="CustomerDatabase")

Chapter 14. Java EE component...

98

@CustomerDatabase EntityManagerFactory customerDatabasePersistenceUnit;

@Produces @EJB(ejbLink="../their.jar#PaymentService")

PaymentService paymentService;

The field may be static (but not final).

A resource declaration really contains two pieces of information:

• the JNDI name, EJB link, persistence unit name, or other metadata needed to obtain a reference to the resource

from the component environment, and

• the type and qualifiers that we will use to inject the reference into our beans.

Note

It might feel strange to be declaring resources in Java code. Isn’t this stuff that might be

deployment-specific? Certainly, and that’s why it makes sense to declare your resources in a class

annotated @Alternative.

14.2. Typesafe resource injection

These resources can now be injected in the usual way.

@Inject Catalog catalog;

@Inject @CustomerDatabase Datasource customerDatabase;

@Inject @CustomerDatabase EntityManager customerDatabaseEntityManager;

@Inject @CustomerDatabase EntityManagerFactory customerDatabaseEntityManagerFactory;

@Inject PaymentService paymentService;

The bean type and qualifiers of the resource are determined by the producer field declaration.

It might seem like a pain to have to write these extra producer field declarations, just to gain an additional level of

indirection. You could just as well use component environment injection directly, right? But remember that you’re

going to be using resources like the EntityManager in several different beans. Isn’t it nicer and more typesafe

to write

Typesafe resource injection

99

@Inject @CustomerDatabase EntityManager

instead of

@PersistenceContext(unitName="CustomerDatabase") EntityManager

all over the place?

100

Part IV. CDI and the

Java EE ecosystem
The third theme of CDI is integration. We’ve already seen how CDI helps integrate EJB and JSF, allowing EJBs

to be bound directly to JSF pages. That’s just the beginning. The CDI services are integrated into the very core of

the Java EE platform. Even EJB session beans can take advantage of the dependency injection, event bus, and

contextual lifecycle management that CDI provides.

CDI is also designed to work in concert with technologies outside of the platform by providing integration points

into the Java EE platform via an SPI. This SPI positions CDI as the foundation for a new ecosystem of portable

extensions and integration with existing frameworks and technologies. The CDI services will be able to reach a

diverse collection of technologies, such as business process management (BPM) engines, existing web frameworks

and de facto standard component models. Of course, The Java EE platform will never be able to standardize all the

interesting technologies that are used in the world of Java application development, but CDI makes it easier to use

the technologies which are not yet part of the platform seamlessly within the Java EE environment.

We’re about to see how to take full advantage of the Java EE platform in an application that uses CDI. We’ll also

briefly meet a set of SPIs that are provided to support portable extensions to CDI. You might not ever need to use

these SPIs directly, but don’t take them for granted. You will likely be using them indirectly, every time you use a

third-party extension, such as DeltaSpike [http://deltaspike.apache.org/].

http://deltaspike.apache.org/
http://deltaspike.apache.org/

Chapter 15.

103

Java EE integration
CDI is fully integrated into the Java EE environment. Beans have access to Java EE resources and JPA persistence

contexts. They may be used in Unified EL expressions in JSF and JSP pages. They may even be injected into other

platform components, such as servlets and message-driven Beans, which are not beans themselves.

15.1. Built-in beans

In the Java EE environment, the container provides the following built-in beans, all with the qualifier @Default:

• the current JTA UserTransaction,

• a Principal representing the current caller identity,

• the default Bean Validation [http://jcp.org/en/jsr/detail?id=303] ValidationFactory,

• a Validator for the default ValidationFactory,

• HttpServletRequest, HttpSession and ServletContext

Note

The FacesContext is not injectable. You can get at it by calling

FacesContext.getCurrentInstance(). Alternatively you may define the following

producer method:

import javax.enterprise.inject.Produces;

class FacesContextProducer {

 @Produces @RequestScoped FacesContext getFacesContext() {

 return FacesContext.getCurrentInstance();

 }

}

15.2. Injecting Java EE resources into a bean

All managed beans may take advantage of Java EE component environment injection using @Resource, @EJB,

@PersistenceContext, @PersistenceUnit and @WebServiceRef. We’ve already seen a couple of

examples of this, though we didn’t pay much attention at the time:

@Transactional @Interceptor

public class TransactionInterceptor {

 @Resource UserTransaction transaction;

 @AroundInvoke public Object manageTransaction(InvocationContext ctx) throws Exception { ... }

}

@SessionScoped

http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303

Chapter 15. Java EE integration

104

public class Login implements Serializable {

 @Inject Credentials credentials;

 @PersistenceContext EntityManager userDatabase;

 ...

}

The Java EE @PostConstruct and @PreDestroy callbacks are also supported for all managed beans. The

@PostConstruct method is called after all injection has been performed.

Of course, we advise that component environment injection be used to define CDI resources, and that typesafe

injection be used in application code.

15.3. Calling a bean from a servlet

It’s easy to use a bean from a servlet in Java EE. Simply inject the bean using field or initializer method injection.

public class LoginServlet extends HttpServlet {

 @Inject Credentials credentials;

 @Inject Login login;

 @Override

 public void service(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 credentials.setUsername(request.getParameter("username")):

 credentials.setPassword(request.getParameter("password")):

 login.login();

 if (login.isLoggedIn()) {

 response.sendRedirect("/home.jsp");

 }

 else {

 response.sendRedirect("/loginError.jsp");

 }

 }

}

Since instances of servlets are shared across all incoming threads, the bean client proxy takes care of routing

method invocations from the servlet to the correct instances of Credentials and Login for the current request

and HTTP session.

15.4. Calling a bean from a message-driven bean

CDI injection applies to all EJBs, even when they aren’t CDI beans. In particular, you can use CDI injection in

message-driven beans, which are by nature not contextual objects.

You can even use interceptor bindings for message-driven Beans.

@Transactional @MessageDriven

public class ProcessOrder implements MessageListener {

 @Inject Inventory inventory;

 @PersistenceContext EntityManager em;

 public void onMessage(Message message) {

JMS endpoints

105

 ...

 }

}

Please note that there is no session or conversation context available when a message is delivered to a message-

driven bean. Only @RequestScoped and @ApplicationScoped beans are available.

But how about beans which send JMS messages?

15.5. JMS endpoints

Sending messages using JMS can be quite complex, because of the number of different objects you need to

deal with. For queues we have Queue, QueueConnectionFactory, QueueConnection, QueueSession

and QueueSender. For topics we have Topic, TopicConnectionFactory, TopicConnection,

TopicSession and TopicPublisher. Each of these objects has its own lifecycle and threading model that

we need to worry about.

You can use producer fields and methods to prepare all of these resources for injection into a bean:

import javax.jms.ConnectionFactory;

import javax.jms.Queue;

public class OrderResources {

 @Resource(name="jms/ConnectionFactory")

 private ConnectionFactory connectionFactory;

 @Resource(name="jms/OrderQueue")

 private Queue orderQueue;

 @Produces @Order

 public Connection createOrderConnection() throws JMSException {

 return connectionFactory.createConnection();

 }

 public void closeOrderConnection(@Disposes @Order Connection connection)

 throws JMSException {

 connection.close();

 }

 @Produces @Order

 public Session createOrderSession(@Order Connection connection)

 throws JMSException {

 return connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

 }

 public void closeOrderSession(@Disposes @Order Session session)

 throws JMSException {

 session.close();

 }

 @Produces @Order

 public MessageProducer createOrderMessageProducer(@Order Session session)

 throws JMSException {

 return session.createProducer(orderQueue);

 }

Chapter 15. Java EE integration

106

 public void closeOrderMessageProducer(@Disposes @Order MessageProducer producer)

 throws JMSException {

 producer.close();

 }

}

In this example, we can just inject the prepared MessageProducer, Connection or QueueSession:

@Inject Order order;

@Inject @Order MessageProducer producer;

@Inject @Order Session orderSession;

public void sendMessage() {

 MapMessage msg = orderSession.createMapMessage();

 msg.setLong("orderId", order.getId());

 ...

 producer.send(msg);

}

The lifecycle of the injected JMS objects is completely controlled by the container.

15.6. Packaging and deployment

CDI doesn’t define any special deployment archive. You can package CDI beans in JARs, EJB JARs or WARs—

any deployment location in the application classpath. However, the archive must be a "bean archive".

Unlike CDI 1.0, the CDI 1.1 specification recognizes two types of bean archives. The type determines the way the

container discovers CDI beans in the archive.

Note

CDI 1.1 makes use of a new XSD file for beans.xml descriptor: http://xmlns.jcp.org/xml/ns/javaee/

beans_1_1.xsd

15.6.1. Explicit bean archive

An explicit bean archive is an archive which contains a beans.xml file:

• with a version number of 1.1 (or later), with the bean-discovery-mode of all, or,

• like in CDI 1.0 – with no version number, or, that is an empty file.

It behaves just like a CDI 1.0 bean archive – i.e. Weld discovers each Java class, interface or enum in such an

archive.

Note

The beans.xml file must be located at:

• META-INF/beans.xml (for jar archives), or,

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd

Implicit bean archive

107

• WEB-INF/beans.xml or WEB-INF/classes/META-INF/beans.xml (for WAR

archives).

You should never place a beans.xml file in both of the WEB-INF and the WEB-INF/classes/

META-INF directories. Otherwise your application would not be portable.

15.6.2. Implicit bean archive

An implicit bean archive is an archive which contains one or more bean classes with a bean defining annotation,

or one or more session beans. It can also contain a beans.xml file with a version number of 1.1 (or later), with

the bean-discovery-mode of annotated. Weld only discovers Java classes with a bean defining annotation within

an implicit bean archive.

Note

Any scope type is a bean defining annotation. If you place a scope type on a bean class, then

it has a bean defining annotation. See 2.5. Bean defining annotations [http://docs.jboss.org/cdi/

spec/1.1/cdi-spec.html#bean_defining_annotations] to learn more.

15.6.3. What archive is not a bean archive

Although quite obvious, let’s sum it up:

• an archive which contains neither a beans.xml file nor any bean class with a bean defining annotation,

• an archive which contains a beans.xml file with the bean-discovery-mode of none.

Note

For compatibility with CDI 1.0, each Java EE product (WildFly, GlassFish, etc.) must contain an

option to cause an archive to be ignored by the container when no beans.xml is present. Consult

specific Java EE product documentation to learn more about such option.

15.6.4. Embeddable EJB container

In an embeddable EJB container, beans may be deployed in any location in which EJBs may be deployed.

http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_defining_annotations
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_defining_annotations
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_defining_annotations

108

Chapter 16.

109

Portable extensions
CDI is intended to be a foundation for frameworks, extensions and integration with other technologies. Therefore,

CDI exposes a set of SPIs for the use of developers of portable extensions to CDI. For example, the following kinds

of extensions were envisaged by the designers of CDI:

• integration with Business Process Management engines,

• integration with third-party frameworks such as Spring, Seam, GWT or Wicket, and

• new technology based upon the CDI programming model.

More formally, according to the spec:

A portable extension may integrate with the container by:

• Providing its own beans, interceptors and decorators to the container

• Injecting dependencies into its own objects using the dependency injection service

• Providing a context implementation for a custom scope

• Augmenting or overriding the annotation-based metadata with metadata from some other

source

16.1. Creating an Extension

The first step in creating a portable extension is to write a class that implements Extension. This marker interface

does not define any methods, but it’s needed to satisfy the requirements of Java SE’s service provider architecture.

 import javax.enterprise.inject.spi.Extension;

class MyExtension implements Extension { ... }

Next, we need to register our extension as a service provider by creating a file named META-INF/services/

javax.enterprise.inject.spi.Extension, which contains the name of our extension class:

org.mydomain.extension.MyExtension

An extension is not a bean, exactly, since it is instantiated by the container during the initialization process, before

any beans or contexts exist. However, it can be injected into other beans once the initialization process is complete.

@Inject

MyBean(MyExtension myExtension) {

 myExtension.doSomething();

}

And, like beans, extensions can have observer methods. Usually, the observer methods observe container lifecycle

events.

Chapter 16. Portable extensions

110

16.2. Container lifecycle events
During the initialization process, the container fires a series of events, including:

• BeforeBeanDiscovery

• ProcessAnnotatedType and ProcessSyntheticAnnotatedType

• AfterTypeDiscovery

• ProcessInjectionTarget and ProcessProducer

• ProcessInjectionPoint

• ProcessBeanAttributes

• ProcessBean, ProcessManagedBean, ProcessSessionBean, ProcessProducerMethod and

ProcessProducerField

• ProcessObserverMethod

• AfterBeanDiscovery

• AfterDeploymentValidation

Extensions may observe these events:

import javax.enterprise.inject.spi.Extension;

class MyExtension implements Extension {

 void beforeBeanDiscovery(@Observes BeforeBeanDiscovery bbd) {

 Logger.global.debug("beginning the scanning process");

 }

 <T> void processAnnotatedType(@Observes ProcessAnnotatedType<T> pat) {

 Logger.global.debug("scanning type: " + pat.getAnnotatedType().getJavaClass().getName());

 }

 void afterBeanDiscovery(@Observes AfterBeanDiscovery abd) {

 Logger.global.debug("finished the scanning process");

 }

}

In fact, the extension can do a lot more than just observe. The extension is permitted to modify the container’s

metamodel and more. Here’s a very simple example:

import javax.enterprise.inject.spi.Extension;

class MyExtension implements Extension {

 <T> void processAnnotatedType(@Observes @WithAnnotations({Ignore.class}) ProcessAnnotatedType<T> pat) {

 /* tell the container to ignore the type if it is annotated @Ignore */

 if (pat.getAnnotatedType().isAnnotationPresent(Ignore.class)) pat.veto();

 }

The BeanManager object

111

}

Note

The @WithAnnotations annotation causes the container to deliver the ProcessAnnotatedType

events only for the types which contain the specified annotation.

The observer method may inject a BeanManager

<T> void processAnnotatedType(@Observes ProcessAnnotatedType<T> pat, BeanManager beanManager) { ... }

An extension observer method is not allowed to inject any other object.

16.3. The BeanManager object

The nerve center for extending CDI is the BeanManager object. The BeanManager interface lets us obtain beans,

interceptors, decorators, observers and contexts programmatically.

public interface BeanManager {

 public Object getReference(Bean<?> bean, Type beanType, CreationalContext<?> ctx);

 public Object getInjectableReference(InjectionPoint ij, CreationalContext<?> ctx);

 public <T> CreationalContext<T> createCreationalContext(Contextual<T> contextual);

 public Set<Bean<?>> getBeans(Type beanType, Annotation... qualifiers);

 public Set<Bean<?>> getBeans(String name);

 public Bean<?> getPassivationCapableBean(String id);

 public <X> Bean<? extends X> resolve(Set<Bean<? extends X>> beans);

 public void validate(InjectionPoint injectionPoint);

 public void fireEvent(Object event, Annotation... qualifiers);

 public <T> Set<ObserverMethod<? super T>> resolveObserverMethods(T event, Annotation... qualifiers);

 public List<Decorator<?>> resolveDecorators(Set<Type> types, Annotation... qualifiers);

 public List<Interceptor<?>> resolveInterceptors(InterceptionType type, Annotation... interceptorBindings);

 public boolean isScope(Class<? extends Annotation> annotationType);

 public boolean isNormalScope(Class<? extends Annotation> annotationType);

 public boolean isPassivatingScope(Class<? extends Annotation> annotationType);

 public boolean isQualifier(Class<? extends Annotation> annotationType);

 public boolean isInterceptorBinding(Class<? extends Annotation> annotationType);

 public boolean isStereotype(Class<? extends Annotation> annotationType);

 public Set<Annotation> getInterceptorBindingDefinition(Class<? extends Annotation> bindingType);

 public Set<Annotation> getStereotypeDefinition(Class<? extends Annotation> stereotype);

 public boolean areQualifiersEquivalent(Annotation qualifier1, Annotation qualifier2);

 public boolean areInterceptorBindingsEquivalent(Annotation interceptorBinding1, Annotation interceptorBinding2);

 public int getQualifierHashCode(Annotation qualifier);

 public int getInterceptorBindingHashCode(Annotation interceptorBinding);

 public Context getContext(Class<? extends Annotation> scopeType);

 public ELResolver getELResolver();

 public ExpressionFactory wrapExpressionFactory(ExpressionFactory expressionFactory);

 public <T> AnnotatedType<T> createAnnotatedType(Class<T> type);

 public <T> InjectionTarget<T> createInjectionTarget(AnnotatedType<T> type);

 public <T> InjectionTargetFactory<T> getInjectionTargetFactory(AnnotatedType<T> annotatedType);

 public <X> ProducerFactory<X> getProducerFactory(AnnotatedField<? super X> field, Bean<X> declaringBean);

 public <X> ProducerFactory<X> getProducerFactory(AnnotatedMethod<? super X> method, Bean<X> declaringBean);

Chapter 16. Portable extensions

112

 public <T> BeanAttributes<T> createBeanAttributes(AnnotatedType<T> type);

 public BeanAttributes<?> createBeanAttributes(AnnotatedMember<?> type);

 public <T> Bean<T> createBean(BeanAttributes<T> attributes, Class<T> beanClass,

 public <T, X> Bean<T> createBean(BeanAttributes<T> attributes, Class<X> beanClass, ProducerFactory<X> producerFactory);

 public InjectionPoint createInjectionPoint(AnnotatedField<?> field);

 public InjectionPoint createInjectionPoint(AnnotatedParameter<?> parameter);

 public <T extends Extension> T getExtension(Class<T> extensionClass);

}

Any bean or other Java EE component which supports injection can obtain an instance of BeanManager via

injection:

@Inject BeanManager beanManager;

Alternatively, a BeanManager reference may be obtained from CDI via a static method call.

CDI.current().getBeanManager()

Java EE components may obtain an instance of BeanManager from JNDI by looking up the name java:comp/

BeanManager. Any operation of BeanManager may be called at any time during the execution of the application.

Let’s study some of the interfaces exposed by the BeanManager.

16.4. The CDI class
Application components which cannot obtain a BeanManager reference via injection nor JNDI lookup can get the

reference from the javax.enterprise.inject.spi.CDI class via a static method call:

BeanManager manager = CDI.current().getBeanManager();

The CDI class can be used directly to programmatically lookup CDI beans as described in Section 4.10, “Obtaining

a contextual instance by programmatic lookup”

CDI.select(Foo.class).get()

16.5. The InjectionTarget interface
The first thing that a framework developer is going to look for in the portable extension SPI is a way to inject CDI

beans into objects which are not under the control of CDI. The InjectionTarget interface makes this very easy.

Note

We recommend that frameworks let CDI take over the job of actually instantiating the framework-

controlled objects. That way, the framework-controlled objects can take advantage of constructor

injection. However, if the framework requires use of a constructor with a special signature, the

The Bean interface

113

framework will need to instantiate the object itself, and so only method and field injection will be

supported.

import javax.enterprise.inject.spi.CDI;

...

//get the BeanManager

BeanManager beanManager = CDI.current().getBeanManager();

//CDI uses an AnnotatedType object to read the annotations of a class

AnnotatedType<SomeFrameworkComponent> type = beanManager.createAnnotatedType(SomeFrameworkComponent.class);

//The extension uses an InjectionTarget to delegate instantiation, dependency injection

//and lifecycle callbacks to the CDI container

InjectionTarget<SomeFrameworkComponent> it = beanManager.createInjectionTarget(type);

//each instance needs its own CDI CreationalContext

CreationalContext ctx = beanManager.createCreationalContext(null);

//instantiate the framework component and inject its dependencies

SomeFrameworkComponent instance = it.produce(ctx); //call the constructor

it.inject(instance, ctx); //call initializer methods and perform field injection

it.postConstruct(instance); //call the @PostConstruct method

...

//destroy the framework component instance and clean up dependent objects

it.preDestroy(instance); //call the @PreDestroy method

it.dispose(instance); //it is now safe to discard the instance

ctx.release(); //clean up dependent objects

16.6. The Bean interface
Instances of the interface Bean represent beans. There is an instance of Bean registered with the BeanManager

object for every bean in the application. There are even Bean objects representing interceptors, decorators and

producer methods.

The BeanAttributes interface exposes all the interesting things we discussed in Section 2.1, “The anatomy of

a bean”.

public interface BeanAttributes<T> {

 public Set<Type> getTypes();

 public Set<Annotation> getQualifiers();

 public Class<? extends Annotation> getScope();

 public String getName();

 public Set<Class<? extends Annotation>> getStereotypes();

 public boolean isAlternative();

}

The Bean interface extends the BeanAttributes interface and defines everything the container needs to

manage instances of a certain bean.

Chapter 16. Portable extensions

114

public interface Bean<T> extends Contextual<T>, BeanAttributes<T> {

 public Class<?> getBeanClass();

 public Set<InjectionPoint> getInjectionPoints();

 public boolean isNullable();

}

There’s an easy way to find out what beans exist in the application:

Set<Bean<?>> allBeans = beanManager.getBeans(Obect.class, new AnnotationLiteral<Any>() {});

The Bean interface makes it possible for a portable extension to provide support for new kinds of beans, beyond

those defined by the CDI specification. For example, we could use the Bean interface to allow objects managed by

another framework to be injected into beans.

16.7. Registering a Bean

The most common kind of CDI portable extension registers a bean (or beans) with the container.

In this example, we make a framework class, SecurityManager available for injection. To make things a bit

more interesting, we’re going to delegate back to the container’s InjectionTarget to perform instantiation and

injection upon the SecurityManager instance.

import javax.enterprise.inject.spi.Extension;

import javax.enterprise.event.Observes;

import java.lang.annotation.Annotation;

import java.lang.reflect.Type;

import javax.enterprise.inject.spi.InjectionPoint;

...

public class SecurityManagerExtension implements Extension {

 void afterBeanDiscovery(@Observes AfterBeanDiscovery abd, BeanManager bm) {

 //use this to read annotations of the class

 AnnotatedType<SecurityManager> at = bm.createAnnotatedType(SecurityManager.class);

 //use this to instantiate the class and inject dependencies

 final InjectionTarget<SecurityManager> it = bm.createInjectionTarget(at);

 abd.addBean(new Bean<SecurityManager>() {

 @Override

 public Class<?> getBeanClass() {

 return SecurityManager.class;

 }

 @Override

 public Set<InjectionPoint> getInjectionPoints() {

 return it.getInjectionPoints();

 }

 @Override

Registering a Bean

115

 public String getName() {

 return "securityManager";

 }

 @Override

 public Set<Annotation> getQualifiers() {

 Set<Annotation> qualifiers = new HashSet<Annotation>();

 qualifiers.add(new AnnotationLiteral<Default>() {});

 qualifiers.add(new AnnotationLiteral<Any>() {});

 return qualifiers;

 }

 @Override

 public Class<? extends Annotation> getScope() {

 return ApplicationScoped.class;

 }

 @Override

 public Set<Class<? extends Annotation>> getStereotypes() {

 return Collections.emptySet();

 }

 @Override

 public Set<Type> getTypes() {

 Set<Type> types = new HashSet<Type>();

 types.add(SecurityManager.class);

 types.add(Object.class);

 return types;

 }

 @Override

 public boolean isAlternative() {

 return false;

 }

 @Override

 public boolean isNullable() {

 return false;

 }

 @Override

 public SecurityManager create(CreationalContext<SecurityManager> ctx) {

 SecurityManager instance = it.produce(ctx);

 it.inject(instance, ctx);

 it.postConstruct(instance);

 return instance;

 }

 @Override

 public void destroy(SecurityManager instance,

 CreationalContext<SecurityManager> ctx) {

 it.preDestroy(instance);

 it.dispose(instance);

 ctx.release();

 }

 });

 }

Chapter 16. Portable extensions

116

}

But a portable extension can also mess with beans that are discovered automatically by the container.

16.8. Wrapping an AnnotatedType
One of the most interesting things that an extension class can do is process the annotations of a bean class before

the container builds its metamodel.

Let’s start with an example of an extension that provides support for the use of @Named at the package level. The

package-level name is used to qualify the EL names of all beans defined in that package. The portable extension

uses the ProcessAnnotatedType event to wrap the AnnotatedType object and override the value() of

the @Named annotation.

import java.lang.reflect.Type;

import javax.enterprise.inject.spi.Extension;

import java.lang.annotation.Annotation;

...

public class QualifiedNameExtension implements Extension {

 <X> void processAnnotatedType(@Observes ProcessAnnotatedType<X> pat) {

 /* wrap this to override the annotations of the class */

 final AnnotatedType<X> at = pat.getAnnotatedType();

 /* Only wrap AnnotatedTypes for classes with @Named packages */

 Package pkg = at.getJavaClass().getPackage();

 if (!pkg.isAnnotationPresent(Named.class)) {

 return;

 }

 AnnotatedType<X> wrapped = new AnnotatedType<X>() {

 class NamedLiteral extends AnnotationLiteral<Named>

 implements Named {

 @Override

 public String value() {

 Package pkg = at.getJavaClass().getPackage();

 String unqualifiedName = "";

 if (at.isAnnotationPresent(Named.class)) {

 unqualifiedName = at.getAnnotation(Named.class).value();

 }

 if (unqualifiedName.isEmpty()) {

 unqualifiedName = Introspector.decapitalize(at.getJavaClass().getSimpleName());

 }

 final String qualifiedName;

 if (pkg.isAnnotationPresent(Named.class)) {

 qualifiedName = pkg.getAnnotation(Named.class).value()

 + '.' + unqualifiedName;

 }

 else {

 qualifiedName = unqualifiedName;

Wrapping an AnnotatedType

117

 }

 return qualifiedName;

 }

 }

 private final NamedLiteral namedLiteral = new NamedLiteral();

 @Override

 public Set<AnnotatedConstructor<X>> getConstructors() {

 return at.getConstructors();

 }

 @Override

 public Set<AnnotatedField<? super X>> getFields() {

 return at.getFields();

 }

 @Override

 public Class<X> getJavaClass() {

 return at.getJavaClass();

 }

 @Override

 public Set<AnnotatedMethod<? super X>> getMethods() {

 return at.getMethods();

 }

 @Override

 public <T extends Annotation> T getAnnotation(final Class<T> annType) {

 if (Named.class.equals(annType)) {

 return (T) namedLiteral;

 }

 else {

 return at.getAnnotation(annType);

 }

 }

 @Override

 public Set<Annotation> getAnnotations() {

 Set<Annotation> original = at.getAnnotations();

 Set<Annotation> annotations = new HashSet<Annotation>();

 boolean hasNamed = false;

 for (Annotation annotation : original) {

 if (annotation.annotationType().equals(Named.class)) {

 annotations.add(getAnnotation(Named.class));

 hasNamed = true;

 }

 else {

 annotations.add(annotation);

 }

 }

 if (!hasNamed) {

 Package pkg = at.getJavaClass().getPackage();

 if (pkg.isAnnotationPresent(Named.class)) {

 annotations.add(getAnnotation(Named.class));

Chapter 16. Portable extensions

118

 }

 }

 return annotations;

 }

 @Override

 public Type getBaseType() {

 return at.getBaseType();

 }

 @Override

 public Set<Type> getTypeClosure() {

 return at.getTypeClosure();

 }

 @Override

 public boolean isAnnotationPresent(Class<? extends Annotation> annType) {

 if (Named.class.equals(annType)) {

 return true;

 }

 return at.isAnnotationPresent(annType);

 }

 };

 pat.setAnnotatedType(wrapped);

 }

}

Here’s a second example, which adds the @Alternative annotation to any class which implements a certain

Service interface.

import javax.enterprise.inject.spi.Extension;

import java.lang.annotation.Annotation;

...

class ServiceAlternativeExtension implements Extension {

 <T extends Service> void processAnnotatedType(@Observes ProcessAnnotatedType<T> pat) {

 final AnnotatedType<T> type = pat.getAnnotatedType();

 /* if the class implements Service, make it an @Alternative */

 AnnotatedType<T> wrapped = new AnnotatedType<T>() {

 class AlternativeLiteral extends AnnotationLiteral<Alternative> implements Alternative {}

 private final AlternativeLiteral alternativeLiteral = new AlternativeLiteral();

 @Override

 public <X extends Annotation> X getAnnotation(final Class<X> annType) {

 return (X) (annType.equals(Alternative.class) ? alternativeLiteral : type.getAnnotation(annType));

 }

Overriding attributes of a bean by wrapping

BeanAttributes

119

 @Override

 public Set<Annotation> getAnnotations() {

 Set<Annotation> annotations = new HashSet<Annotation>(type.getAnnotations());

 annotations.add(alternativeLiteral);

 return annotations;

 }

 @Override

 public boolean isAnnotationPresent(Class<? extends Annotation> annotationType) {

 return annotationType.equals(Alternative.class) ?

 true : type.isAnnotationPresent(annotationType);

 }

 /* remaining methods of AnnotatedType */

 ...

 }

 pat.setAnnotatedType(wrapped);

 }

}

The AnnotatedType is not the only thing that can be wrapped by an extension.

16.9. Overriding attributes of a bean by wrapping

BeanAttributes

Wrapping an AnnotatedType is a low-level approach to overriding CDI metadata by adding, removing or replacing

annotations. Since version 1.1, CDI provides a higher-level facility for overriding attributes of beans discovered by

the CDI container.

public interface BeanAttributes<T> {

 public Set<Type> getTypes();

 public Set<Annotation> getQualifiers();

 public Class<? extends Annotation> getScope();

 public String getName();

 public Set<Class<? extends Annotation>> getStereotypes();

 public boolean isAlternative();

}

The BeanAttributes interface exposes attributes of a bean. The container fires a ProcessBeanAttributes

event for each enabled bean, interceptor and decorator before this object is registered. Similarly to the

ProcessAnnotatedType, this event allows an extension to modify attributes of a bean or to veto the bean

entirely.

public interface ProcessBeanAttributes<T> {

Chapter 16. Portable extensions

120

 public Annotated getAnnotated();

 public BeanAttributes<T> getBeanAttributes();

 public void setBeanAttributes(BeanAttributes<T> beanAttributes);

 public void addDefinitionError(Throwable t);

 public void veto();

}

The BeanManager provides two utility methods for creating the BeanAttributes object from scratch:

public <T> BeanAttributes<T> createBeanAttributes(AnnotatedType<T> type);

public BeanAttributes<?> createBeanAttributes(AnnotatedMember<?> type);

16.10. Wrapping an InjectionTarget

The InjectionTarget interface exposes operations for producing and disposing an instance of a

component, injecting its dependencies and invoking its lifecycle callbacks. A portable extension may wrap the

InjectionTarget for any Java EE component that supports injection, allowing it to intercept any of these

operations when they are invoked by the container.

Here’s a CDI portable extension that reads values from properties files and configures fields of Java EE components,

including servlets, EJBs, managed beans, interceptors and more. In this example, properties for a class such as

org.mydomain.blog.Blogger go in a resource named org/mydomain/blog/Blogger.properties,

and the name of a property must match the name of the field to be configured. So Blogger.properties could

contain:

firstName=Gavin

lastName=King

The portable extension works by wrapping the containers InjectionTarget and setting field values from the

inject() method.

import javax.enterprise.event.Observes;

import javax.enterprise.inject.spi.Extension;

import javax.enterprise.inject.spi.InjectionPoint;

public class ConfigExtension implements Extension {

 <X> void processInjectionTarget(@Observes ProcessInjectionTarget<X> pit) {

 /* wrap this to intercept the component lifecycle */

 final InjectionTarget<X> it = pit.getInjectionTarget();

 final Map<Field, Object> configuredValues = new HashMap<Field, Object>();

Wrapping an InjectionTarget

121

 /* use this to read annotations of the class and its members */

 AnnotatedType<X> at = pit.getAnnotatedType();

 /* read the properties file */

 String propsFileName = at.getJavaClass().getSimpleName() + ".properties";

 InputStream stream = at.getJavaClass().getResourceAsStream(propsFileName);

 if (stream!=null) {

 try {

 Properties props = new Properties();

 props.load(stream);

 for (Map.Entry<Object, Object> property : props.entrySet()) {

 String fieldName = property.getKey().toString();

 Object value = property.getValue();

 try {

 Field field = at.getJavaClass().getDeclaredField(fieldName);

 field.setAccessible(true);

 if (field.getType().isAssignableFrom(value.getClass())) {

 configuredValues.put(field, value);

 }

 else {

 /* TODO: do type conversion automatically */

 pit.addDefinitionError(new InjectionException(

 "field is not of type String: " + field));

 }

 }

 catch (NoSuchFieldException nsfe) {

 pit.addDefinitionError(nsfe);

 }

 finally {

 stream.close();

 }

 }

 }

 catch (IOException ioe) {

 pit.addDefinitionError(ioe);

 }

 }

 InjectionTarget<X> wrapped = new InjectionTarget<X>() {

 @Override

 public void inject(X instance, CreationalContext<X> ctx) {

 it.inject(instance, ctx);

 /* set the values onto the new instance of the component */

 for (Map.Entry<Field, Object> configuredValue: configuredValues.entrySet()) {

 try {

 configuredValue.getKey().set(instance, configuredValue.getValue());

 }

 catch (Exception e) {

 throw new InjectionException(e);

 }

 }

 }

 @Override

 public void postConstruct(X instance) {

Chapter 16. Portable extensions

122

 it.postConstruct(instance);

 }

 @Override

 public void preDestroy(X instance) {

 it.dispose(instance);

 }

 @Override

 public void dispose(X instance) {

 it.dispose(instance);

 }

 @Override

 public Set<InjectionPoint> getInjectionPoints() {

 return it.getInjectionPoints();

 }

 @Override

 public X produce(CreationalContext<X> ctx) {

 return it.produce(ctx);

 }

 };

 pit.setInjectionTarget(wrapped);

 }

}

16.11. Overriding InjectionPoint

CDI provides a way to override the metadata of an InjectionPoint. This works similarly to how metadata of a

bean may be overridden using BeanAttributes.

For every injection point of each component supporting injection Weld fires an event of type

javax.enterprise.inject.spi.ProcessInjectionPoint

public interface ProcessInjectionPoint<T, X> {

 public InjectionPoint getInjectionPoint();

 public void setInjectionPoint(InjectionPoint injectionPoint);

 public void addDefinitionError(Throwable t);

}

An extension may either completely override the injection point metadata or alter it by wrapping the

InjectionPoint object obtained from ProcessInjectionPoint.getInjectionPoint()

There’s a lot more to the portable extension SPI than what we’ve discussed here. Check out the CDI spec or Javadoc

for more information. For now, we’ll just mention one more extension point.

Manipulating interceptors, decorators and alternatives enabled for an application

123

16.12. Manipulating interceptors, decorators and

alternatives enabled for an application

An event of type javax.enterprise.inject.spi.AfterTypeDiscovery is fired when the container has

fully completed the type discovery process and before it begins the bean discovery process.

public interface AfterTypeDiscovery {

 public List<Class<?>> getAlternatives();

 public List<Class<?>> getInterceptors();

 public List<Class<?>> getDecorators();

 public void addAnnotatedType(AnnotatedType<?> type, String id);

}

This event exposes a list of enabled alternatives, interceptors and decorators. Extensions may manipulate these

collections directly to add, remove or change the order of the enabled records.

In addition, an AnnotatedType can be added to the types which will be scanned during bean discovery, with an

identifier, which allows multiple annotated types, based on the same underlying type, to be defined.

16.13. The Context and AlterableContext interfaces

The Context and AlterableContext interface support addition of new scopes to CDI, or extension of the built-

in scopes to new environments.

public interface Context {

 public Class<? extends Annotation> getScope();

 public <T> T get(Contextual<T> contextual, CreationalContext<T> creationalContext);

 public <T> T get(Contextual<T> contextual);

 boolean isActive();

}

For example, we might implement Context to add a business process scope to CDI, or to add support for the

conversation scope to an application that uses Wicket.

import javax.enterprise.context.spi.Context;

public interface AlterableContext extends Context {

 public void destroy(Contextual<?> contextual);

}

AlterableContext was introduced in CDI 1.1. The destroy method allows an application to remove instances

of contextual objects from a context.

For more information on implementing a custom context see this blog post [http://in.relation.to/Bloggers/

CreatingACustomScope].

http://in.relation.to/Bloggers/CreatingACustomScope
http://in.relation.to/Bloggers/CreatingACustomScope
http://in.relation.to/Bloggers/CreatingACustomScope

124

Chapter 17.

125

Next steps
A lot of additional information on CDI can be found online. Regardless, the CDI specification remains the authority

for information on CDI. The spec is less than 100 pages and is quite readable (don’t worry, it’s not like your Blu-ray

player manual). Of course, it covers many details we’ve skipped over here. The spec is available on the at the JCP

website (CDI 1.0 [http://jcp.org/en/jsr/detail?id=299]) (CDI 1.1 [http://jcp.org/en/jsr/detail?id=346]).

The CDI reference implementation, Weld, is being developed by the Weld team [https://github.com/weld/core/graphs/

contributors]. The team and the CDI spec lead blog at in.relation.to [http://in.relation.to]. This guide was originally

based on a series of blog entries published there while the specification was being developed. It’s probably the best

source of information about the future of CDI and Weld.

We encourage you to follow the weld-dev [https://lists.jboss.org/mailman/listinfo/weld-dev] mailing list and to

get involved in development [http://weld.cdi-spec.org/community/]. If you are reading this guide, you likely have

something to offer.

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=346
https://github.com/weld/core/graphs/contributors
https://github.com/weld/core/graphs/contributors
https://github.com/weld/core/graphs/contributors
http://in.relation.to
http://in.relation.to
https://lists.jboss.org/mailman/listinfo/weld-dev
https://lists.jboss.org/mailman/listinfo/weld-dev
http://weld.cdi-spec.org/community/
http://weld.cdi-spec.org/community/

126

Part V. Weld Reference Guide
Weld is the reference implementation of CDI, and is used by WildFly, GlassFish and WebLogic to provide CDI

services for Java Enterprise Edition (Java EE) applications. Weld also goes beyond the environments and APIs

defined by the CDI specification by providing support for a number of other environments (such as a servlet container

such as Tomcat, or Java SE).

You might also want to check out DeltaSpike [http://deltaspike.apache.org/] project which provides portable

extensions to CDI.

If you want to get started quickly using Weld (and, in turn, CDI) with WildFly, GlassFish or Tomcat and experiment

with one of the examples, take a look at Chapter 6, Getting started with Weld. Otherwise read on for a exhaustive

discussion of using Weld in all the environments and application servers it supports and the Weld extensions.

http://deltaspike.apache.org/
http://deltaspike.apache.org/

Chapter 18.

129

Application servers and

environments supported by Weld
18.1. Using Weld with WildFly

If you are using WildFly 8.0 or better, no additional configuration is required to use Weld (or CDI for that matter).

18.2. GlassFish

Weld is also built into GlassFish from V3 onwards. Since GlassFish V3 is the Java EE 6 reference implementation,

it must support all features of CDI. What better way for GlassFish to support these features than to use Weld, the

CDI reference implementation? Just package up your CDI application and deploy.

18.3. Servlet containers (such as Tomcat or Jetty)

While CDI does not require support for servlet environments, Weld can be used in a servlet container, such as

Tomcat or Jetty.

Note

There is a major limitation to using a servlet container. Weld doesn’t support deploying session

beans, injection using @EJB or`@PersistenceContext`, or using transactional events in servlet

containers. For enterprise features such as these, you should really be looking at a Java EE

application server.

Weld can be used as a library in an web application that is deployed to a Servlet container. You should place weld-

servlet.jar within the WEB-INF/lib directory relative to the web root. weld-servlet.jar is an "uber-jar",

meaning it bundles all the bits of Weld and CDI required for running in a Servlet container, for your convenience.

Alternatively, you can use its component jars. A list of transitive dependencies can be found in the META-INF/

DEPENDENCIES.txt file inside the weld-servlet.jar artifact.

You also need to explicitly specify the servlet listener (used to boot Weld, and control its interaction with requests)

in WEB-INF/web.xml in the web root:

<listener>

 <listener-class>org.jboss.weld.environment.servlet.Listener</listener-class>

</listener>

Actually, you don’t have to register this listener in Servlet 3.x compliant containers which support

javax.servlet.ServletContainerInitializer service properly (e.g. Tomcat 7.0.50). In this

case org.jboss.weld.environment.servlet.EnhancedListener will do all the necessary work

automatically, and what is more important - injection into Listeners will work on some containers as well (see

Section 18.3.1, “Tomcat” and Section 18.3.2, “Jetty” for more info).

The downside of javax.servlet.ServletContainerInitializer approach is that the Weld listener will

be added to the end of the ordered list of discovered listeners. In practice the request and session context will

not be active during ServletRequestListener and HttpSessionListener notifications. Fortunately, it’s

Chapter 18. Application serve...

130

possible to combine the EnhancedListener and the old Listener to fix this problem - simply add the old

Listener to the web.xml as mentioned above. Note that it must be defined before the listeners using request

and session context.

Note

There is quite a special use-case where one more special component must be involved. If you want

the session context to be active during HttpSessionListener.sessionDestroyed()

invocation when the session times out or when all the sessions are destroyed because the

deployment is being removed then org.jboss.weld.servlet.WeldTerminalListener

must be specified as the last one in your web.xml. This listener activates the session context

before other listeners are invoked (note that the listeners are notified in reverse order when a

session is being destroyed).

18.3.1. Tomcat

Since version 2.2.0.Final only Tomcat 7 and 8 are supported.

Tomcat has a read-only JNDI, so Weld can’t automatically bind the BeanManager extension SPI. To bind the

BeanManager into JNDI, you should populate META-INF/context.xml in the web root with the following

contents:

<Context>

 <Resource name="BeanManager"

 auth="Container"

 type="javax.enterprise.inject.spi.BeanManager"

 factory="org.jboss.weld.resources.ManagerObjectFactory"/>

</Context>

and make it available to your deployment by adding this to the bottom of web.xml:

<resource-env-ref>

 <resource-env-ref-name>BeanManager</resource-env-ref-name>

 <resource-env-ref-type>

 javax.enterprise.inject.spi.BeanManager

 </resource-env-ref-type>

</resource-env-ref>

Tomcat only allows you to bind entries to java:comp/env, so the BeanManager will be available at java:comp/

env/BeanManager

Weld also supports Servlet and Filter injection in Tomcat containers. Listener injection should also work on Tomcat

7.0.50 and newer versions.

18.3.2. Jetty

Since version 2.0.2.Final only Jetty 7, 8 and 9 are supported.

To bind the BeanManager into JNDI, you should either populate WEB-INF/jetty-env.xml with the following

contents:

Jetty

131

<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN"

 "http://www.eclipse.org/jetty/configure.dtd">

<Configure id="webAppCtx" class="org.eclipse.jetty.webapp.WebAppContext">

 <New id="BeanManager" class="org.eclipse.jetty.plus.jndi.Resource">

 <Arg> <Ref id="webAppCtx"/> </Arg>

 <Arg>BeanManager</Arg>

 <Arg>

 <New class="javax.naming.Reference">

 <Arg>javax.enterprise.inject.spi.BeanManager</Arg>

 <Arg>org.jboss.weld.resources.ManagerObjectFactory</Arg>

 <Arg/>

 </New>

 </Arg>

 </New>

</Configure>

Or you can configure a special Servlet listener to bind the BeanManager automatically:

<listener>

 <listener-class>org.jboss.weld.environment.servlet.BeanManagerResourceBindingListener</

listener-class>

</listener>

Just like in Tomcat, you need to make the BeanManager available to your deployment by adding this to the bottom

of web.xml:

<resource-env-ref>

 <resource-env-ref-name>BeanManager</resource-env-ref-name>

 <resource-env-ref-type>

 javax.enterprise.inject.spi.BeanManager

 </resource-env-ref-type>

</resource-env-ref>

Jetty only allows you to bind entries to java:comp/env, so the BeanManager will be available at java:comp/

env/BeanManager.

Since Jetty 8 the class org.eclipse.jetty.servlet.ServletContextHandler.Decorator is not

visible from the web application. Therefore, one more step is required - we have to tell Jetty not to hide this system

class.

Simply place the following jetty-context.xml file in the WEB-INF dir:

<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.eclipse.org/jetty/

configure.dtd">

<Configure class="org.eclipse.jetty.webapp.WebAppContext">

 <Set name="serverClasses">

 <Array type="java.lang.String">

 <Item>-org.eclipse.jetty.servlet.ServletContextHandler.Decorator</Item>

 </Array>

Chapter 18. Application serve...

132

 </Set>

</Configure>

See also Jetty Classloading documentation [http://www.eclipse.org/jetty/documentation/current/jetty-

classloading.html#setting-server-classes].

Weld also supports Servlet and Filter injection in Jetty containers. Listener injection should also work on Jetty 9.1.1

and newer versions.

18.3.3. Bean Archive Isolation

By default, bean archive isolation is enabled. It means that alternatives, interceptors and decorators can be selected/

enabled for a bean archive by using a beans.xml descriptor.

This behaviour can be changed by setting the servlet initialization parameter

org.jboss.weld.environment.servlet.archive.isolation to false. In this case, Weld will use a

"flat" deployment structure - all bean classes share the same bean archive and all beans.xml descriptors are

automatically merged into one. Thus alternatives, interceptors and decorators selected/enabled for a bean archive

will be enabled for the whole application.

Note

Bean archive isolation is supported (and enabled by default) from version 2.2.5.Final. Previous

versions only operated with the "flat" deployment structure.

18.3.4. Implicit Bean Archive Support

CDI 1.1 introduced the bean discovery mode of annotated used for implicit bean archives (see also Section 15.6,

“Packaging and deployment”). This mode may bring additional overhead during container bootstrap. Therefore,

Weld Servlet supports the use of Jandex [https://github.com/wildfly/jandex] bytecode scanning library to speed

up the scanning process. Simply put the jandex.jar [http://search.maven.org/#search|gav|1|g%3A%22org.jboss

%22%20AND%20a%3A%22jandex%22] on the classpath. If Jandex is not found on the classpath Weld will use the

Java Reflection as a fallback.

In general, an implicit bean archive does not have to contain a beans.xml descriptor. However, such a bean archive

is not supported by Weld Servlet, i.e. it’s excluded from discovery.

Note

The bean discovery mode of annotated is supported from version 2.2.5.Final. Previous versions

processed implicit bean archives in the same way as explicit bean archives.

18.4. Java SE

In addition to improved integration of the Enterprise Java stack, the "Contexts and Dependency Injection for the Java

EE platform" specification also defines a state of the art typesafe, stateful dependency injection framework, which

can prove useful in a wide range of application types. To help developers take advantage of this, Weld provides a

simple means for being executed in the Java Standard Edition (SE) environment independently of any Java EE APIs.

When executing in the SE environment the following features of Weld are available:

http://www.eclipse.org/jetty/documentation/current/jetty-classloading.html#setting-server-classes
http://www.eclipse.org/jetty/documentation/current/jetty-classloading.html#setting-server-classes
http://www.eclipse.org/jetty/documentation/current/jetty-classloading.html#setting-server-classes
https://github.com/wildfly/jandex
https://github.com/wildfly/jandex
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22

CDI SE Module

133

• Managed beans with @PostConstruct and @PreDestroy lifecycle callbacks

• Dependency injection with qualifiers and alternatives

• @Application, @Dependent and @Singleton scopes

• Interceptors and decorators

• Stereotypes

• Events

• Portable extension support

EJB beans are not supported.

18.4.1. CDI SE Module

Weld provides an extension which will boot a CDI bean manager in Java SE, automatically registering all simple

beans found on the classpath. The command line parameters can be injected using either of the following:

@Inject @Parameters List<String> params;

@Inject @Parameters String[] paramsArray;

The second form is useful for compatibility with existing classes.

Note

The command line parameters do not become available for injection until the

ContainerInitialized event is fired. If you need access to the parameters during

initialization you can do so via the public static String[] getParameters() method

in StartMain.

Here’s an example of a simple CDI SE application:

import javax.inject.Singleton;

@Singleton

public class HelloWorld

{

 public void printHello(@Observes ContainerInitialized event, @Parameters List<String> parameters) {

 System.out.println("Hello " + parameters.get(0));

 }

}

18.4.2. Bootstrapping CDI SE

CDI SE applications can be bootstrapped in the following ways.

Chapter 18. Application serve...

134

18.4.2.1. The ContainerInitialized Event

Thanks to the power of CDI’s typesafe event model, application developers need not write any bootstrapping

code. The Weld SE module comes with a built-in main method which will bootstrap CDI for you and then fire a

ContainerInitialized event. The entry point for your application code would therefore be a simple bean

which observes the ContainerInitialized event, as in the previous example.

In this case your application can be started by calling the provided main method like so:

java org.jboss.weld.environment.se.StartMain <args>

18.4.2.2. Programmatic Bootstrap API

For added flexibility, CDI SE also comes with a bootstrap API which can be called from within your application in

order to initialize CDI and obtain references to your application’s beans and events. The API consists of two classes:

Weld and WeldContainer.

public class Weld

{

 /** Boots Weld and creates and returns a WeldContainer instance, through which

 * beans and events can be accesed. */

 public WeldContainer initialize() {...}

 /** Convenience method for shutting down the container. */

 public void shutdown() {...}

}

public class WeldContainer

{

 /** Provides access to all beans within the application. */

 public Instance<Object> instance() {...}

 /** Provides access to all events within the application. */

 public Event<Object> event() {...}

 /** Provides direct access to the BeanManager. */

 public BeanManager getBeanManager() {...}

}

Here’s an example application main method which uses this API to initialize a bean of type MyApplicationBean.

import org.jboss.weld.environment.se.Weld;

public static void main(String[] args) {

 Weld weld = new Weld();

Thread Context

135

 WeldContainer container = weld.initialize();

 container.instance().select(MyApplicationBean.class).get();

 weld.shutdown();

}

Alternatively the application could be started by firing a custom event which would then be observed by another

simple bean. The following example fires MyEvent on startup.

org.jboss.weld.environment.se.Weld;

public static void main(String[] args) {

 Weld weld = new Weld();

 WeldContainer container = weld.initialize();

 container.event().select(MyEvent.class).fire(new MyEvent());

 weld.shutdown();

}

18.4.3. Thread Context

In contrast to Java EE applications, Java SE applications place no restrictions on developers regarding the

creation and usage of threads. Therefore Weld SE provides a custom scope annotation, @ThreadScoped, and

corresponding context implementation which can be used to bind bean instances to the current thread. It is intended

to be used in scenarios where you might otherwise use ThreadLocal, and does in fact use ThreadLocal under

the hood.

To use the @ThreadScoped annotation you need to enable the RunnableDecorator which 'listens' for all

executions of Runnable.run() and decorates them by setting up the thread context beforehand, bound to the

current thread, and destroying the context afterwards.

<beans>

 <decorators>

 <class>org.jboss.weld.environment.se.threading.RunnableDecorator</class>

 </decorator>

</beans>

Note

It is not necessary to use @ThreadScoped in all multithreaded applications. The thread context

is not intended as a replacement for defining your own application-specific contexts. It is generally

only useful in situations where you would otherwise have used ThreadLocal directly, which are

typically rare.

18.4.4. Setting the Classpath

Weld SE comes packaged as a 'shaded' jar which includes the CDI API, Weld Core and all dependent classes

bundled into a single jar. Therefore the only Weld jar you need on the classpath, in addition to your application’s

classes and dependent jars, is the Weld SE jar. If you are working with a pure Java SE application you launch using

java, this may be simpler for you.

Chapter 18. Application serve...

136

If you prefer to work with individual dependencies, then you can use the weld-core jar which just contains the

Weld SE classes. Of course in this mode you will need to assemble the classpath yourself.

If you work with a dependency management solution such as Maven you can declare a dependency such as:

<dependency>

 <groupId>org.jboss.weld.se</groupId>

 <artifactId>weld-se</artifactId>

</dependency>

18.4.5. Bean Archive Isolation

By default, bean archive isolation is enabled. It means that alternatives, interceptors and decorators can be selected/

enabled for a bean archive by using a beans.xml descriptor.

This behaviour can be changed by providing a system property org.jboss.weld.se.archive.isolation

with value of false. In this case, Weld will use a "flat" deployment structure - all bean classes share the same

bean archive and all beans.xml descriptors are automatically merged into one. Thus alternatives, interceptors and

decorators selected/enabled for a bean archive will be enabled for the whole application.

Note

Bean archive isolation is supported (and enabled by default) from version 2.2.0.Final. Previous

versions only operated with the "flat" deployment structure.

18.4.6. Implicit Bean Archive Support

CDI 1.1 introduced the bean discovery mode of annotated used for implicit bean archives (see also Section 15.6,

“Packaging and deployment”). This mode may bring additional overhead during container bootstrap. Therefore,

Weld Servlet supports the use of Jandex [https://github.com/wildfly/jandex] bytecode scanning library to speed

up the scanning process. Simply put the jandex.jar [http://search.maven.org/#search|gav|1|g%3A%22org.jboss

%22%20AND%20a%3A%22jandex%22] on the classpath. If Jandex is not found on the classpath Weld will use the

Java Reflection as a fallback.

In general, an implicit bean archive does not have to contain a beans.xml descriptor. However, such a bean archive

is not supported by Weld SE, i.e. it’s excluded from discovery.

Note

The bean discovery mode of annotated is supported from version 2.2.0.Final. Previous versions

processed implicit bean archives in the same way as explicit bean archives.

18.5. OSGi

Weld supports OSGi environment through Pax CDI. For more information on using Weld in OSGi environment

check Pax CDI documentation [https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI] . In addition, Weld comes

with a sample application called Paint which demonstrates how to use CDI with OSGi. Check examples/osgi/

README.md for more information.

https://github.com/wildfly/jandex
https://github.com/wildfly/jandex
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI
https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI

Chapter 19.

137

Configuration

19.1. Weld configuration

Weld can be configured per application through the set of properties. All the supported configuration properties are

described in the following subsections.

Each configuration property can be specified (by priority in descending order):

1. In a properties file named weld.properties

2. As a system property

3. By a bootstrap configuration provided by an integrator

If a configuration key is set in multiple sources (e.g. as a system property and in a properties file), the value from

the source with higher priority is taken, other values are ignored. Unsupported configuration keys are ignored. If

an invalid configuration property value is set, the container automatically detects the problem and treats it as a

deployment problem.

19.1.1. Relaxed construction

CDI requires that beans that are normal-scoped, intercepted or decorated always define a no-argument constructor.

This requirement applies even if the bean already defines an @Inject annotated constructor with parameters. This

is purely a technical requirement implied by how Java allocates class instances.

Weld is however able to operate fine even if this requirement is not met. Weld uses special non-portable JVM APIs

that allow it to allocate proxy instances without calling proxy’s constructor. This mode is not enabled by default. It

can be enabled using the following configuration option:

Table 19.1. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.construction.relaxedfalse If set to true, then requirements

on bean constructors are relaxed.

19.1.2. Concurrent deployment configuration

By default Weld supports concurrent loading and deploying of beans. However, in certain deployment scenarios the

default setup may not be appropriate.

Table 19.2. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.bootstrap.concurrentDeploymenttrue If set to false,

ConcurrentDeployer and

ConcurrentValidator will not

be used.

org.jboss.weld.bootstrap.preloaderThreadPoolSizeMath.max(1,

Runtime.getRuntime().availableProcessors()

- 1)

Weld is capable of resolving

observer methods for container

lifecycle events in advance while

bean deployer threads are blocked

Chapter 19. Configuration

138

Configuration key Default value Description

waiting for I/O operations (such

as classloading). This process

is called preloading and leads to

better CPU utilization and faster

application startup time. This

configuration option specifies

the number of threads used for

preloading. If set to 0, preloading is

disabled.

Note

The bootstrap configuration may be altered using the deprecated

org.jboss.weld.bootstrap.properties file located on the classpath (e.g. WEB-INF/

classes/org.jboss.weld.bootstrap.properties in a web archive). The keys are

concurrentDeployment and preloaderThreadPoolSize.

19.1.3. Thread pool configuration

For certain types of tasks Weld uses its own thread pool. The thread pool is represented by the

ExecutorServices service.

Table 19.3. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.executor.threadPoolTypeFIXED The type of the thread pool.

Possible values are: FIXED,

FIXED_TIMEOUT, NONE,

SINGLE_THREAD

org.jboss.weld.executor.threadPoolSizeRuntime.getRuntime().availableProcessors()The number of threads to be used

for bean loading and deployment.

org.jboss.weld.executor.threadPoolKeepAliveTime60 seconds Passed to the constructor of

the ThreadPoolExecutor class,

maximum time that excess idle

threads will wait for new tasks

before terminating.

org.jboss.weld.executor.threadPoolDebugfalse If set to true, debug timing

information is printed to the

standard output.

Note

It’s possible to alter the thread pool configuration using the deprecated

org.jboss.weld.executor.properties file located on the classpath. The

keys are threadPoolType, threadPoolSize, threadPoolKeepAliveTime and

threadPoolDebug.

Non-portable mode during application initialization

139

19.1.4. Non-portable mode during application initialization

By default the application initialization is performed in the portable mode which denotes specification-

compliant behaviour. However it’s also possible to enable the non-portable mode, in which some definition

errors and deployment problems do not cause application initialization to abort. Currently the non-

portable mode allows extension developers to call all the BeanManager’s methods before the

`AfterDeploymentValidation event is fired.

Table 19.4. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.nonPortableModefalse If set to true, the non-portable

mode is enabled.

Note

The main purpose of the non-portable mode is to support some legacy extensions. It’s highly

recommended to use the portable mode whenever possible - non-portable mode may lead to

unexpected behaviour during initialization process.

19.1.5. Bounding the cache size for resolved injection points

Weld caches already resolved injection points in order to resolve them faster in the future. A separate type-safe

resolver exists for beans, decorators, disposers, interceptors and observers. Each of them stores resolved injection

points in its cache, which maximum size is bounded by a default value (common to all of them).

Table 19.5. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.resolution.cacheSize1000 The upper bound of the cache.

19.1.6. Debugging generated bytecode

For debugging purposes, it’s possible to dump the generated bytecode of client proxies and enhanced subclasses

to the filesystem.

Table 19.6. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.proxy.dump The file path where the files should

be stored.

19.1.7. Injectable reference lookup optimization

For certain combinations of scopes, the container is permitted to optimize an injectable

reference lookup. Enabling this feature brings some performance boost but causes

javax.enterprise.context.spi.AlterableContext.destroy() not to work properly for

@ApplicationScoped and @RequestScoped beans. Therefore, the optimization is disabled by default.

Chapter 19. Configuration

140

Table 19.7. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.injection.injectableReferenceOptimizationfalse If set to true, the optimization is

enabled.

19.1.8. Bean identifier index optimization

This optimization is used to reduce the HTTP session replication overhead. However, the inconsistency detection

mechanism may cause problems in some development environments. It’s recommended to disable this optimization

during the development phase.

Table 19.8. Supported configuration properties

Configuration key Default value Description

org.jboss.weld.serialization.beanIdentifierIndexOptimizationtrue (false in weld-servlet) If set to true, the optimization is

enabled.

Note

This optimization is disabled by default in Servlet containers.

19.2. Excluding classes from scanning and deployment
CDI 1.1 allows you to exclude classes in your archive from being scanned, having container lifecycle events

fired, and being deployed as beans. See also 12.4. Bean discovery [http://docs.jboss.org/cdi/spec/1.1/cdi-

spec.html#bean_discovery].

Note

Weld still supports the original non-portable way of excluding classes from discovery. The formal

specification can be found in the xsd, located at http://jboss.org/schema/weld/beans_1_1.xsd.

Unlike Weld, the CDI specification does not support regular expression patterns and ! character

to invert the activation condition.

All the configuration is done in the beans.xml file. For more information see Section 15.6, “Packaging and

deployment”.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee">

 <scan>

 <!-- Don't deploy the classes for the swing app! -->

 <exclude name="com.acme.swing.**" />

 <!-- Don't include GWT support if GWT is not installed -->

 <exclude name="com.acme.gwt.**">

 <if-class-not-available name="com.google.GWT"/>

http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_discovery
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_discovery
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_discovery
http://jboss.org/schema/weld/beans_1_1.xsd

Mapping CDI contexts to HTTP requests

141

 </exclude>

 <!--

 Exclude types from com.acme.verbose package if the system property verbosity

 is set to low

 i.e.

 java ... -Dverbosity=low

 -->

 <exclude name="com.acme.verbose.*">

 <if-system-property name="verbosity" value="low"/>

 </exclude>

 <!--

 Don't include JSF support if Wicket classes are present, and the viewlayer system

 property is set

 -->

 <exclude name="com.acme.jsf.**">

 <if-class-available name="org.apache.wicket.Wicket"/>

 <if-system-property name="viewlayer"/>

 </exclude>

 </scan>

</beans>

In this example we show the most common use cases for exercising fine control over which classes Weld scans.

The first filter excludes all types whose package name starts with com.acme.swing, and in most cases this will

be sufficient for your needs.

However, sometimes it’s useful to be able to activate the filter depending on the environment used. In this case,

Weld allows you to activate (or deactivate) a filter based on either system properties or whether a class is available.

The second filter shows the use case of disabling scanning of certain classes depending on the capabilities of the

environment you deploy to - in this case we are excluding GWT support (all types whose package name starts with

com.acme.gwt) if GWT is not installed.

Note

If you specify just a system property name, Weld will activate the filter if that system property has

been set (with any value). If you also specify the system property value, then Weld will only activate

the filter if the system property’s value matches exactly.

The third filter shows how to exclude all types from a specific package (note the name attribute has suffix ".*").

The fourth filter shows more a advanced configurations, where we use multiple activation conditions to decide

whether to activate the filter.

You can combine as many activation conditions as you like (all must be true for the filter to be activated). If you

want to a filter that is active if any of the activation conditions are true, then you need multiple identical filters, each

with different activation conditions.

19.3. Mapping CDI contexts to HTTP requests

By default, CDI contexts are activated at the beginning of an HTTP request processing and deactivated once the

processing finishes. This may represent an unnecessary overhead in certain situations, for example static resource

serving.

Chapter 19. Configuration

142

Weld allows CDI context support to be mapped to a certain subset of requests only. A regular expression may be

used for filtering HTTP requests that should have CDI contexts active during their processing.

<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/web-

app_3_1.xsd">

 <context-param>

 <param-name>org.jboss.weld.context.mapping</param-name>

 <param-value>.*\.html</param-value>

 </context-param>

</web-app>

Chapter 20.

143

Context Management
20.1. Managing the built in contexts
Weld allows you to easily manage the built in contexts by injecting them and calling lifecycle methods. Weld defines

two types of context, managed and unmanaged. Managed contexts can be activated (allowing bean instances to be

retrieved from the context), invalidated (scheduling bean instances for destruction) and deactivated (stopping bean

instances from being retrieved, and if the context has been invalidated, causing the bean instances to be destroyed).

Unmanaged contexts are always active; some may offer the ability to destroy instances.

Managed contexts can either be bound or unbound. An unbound context is scoped to the thread in which it is activated

(instances placed in the context in one thread are not visible in other threads), and is destroyed upon invalidation and

deactivation. Bound contexts are attached to some external data store (such as the HTTP Session or a manually

propagated map) by associating the data store with the context before calling activate, and dissociating the data

store after calling activate.

Tip

Weld automatically controls context lifecycle in many scenarios such as HTTP requests, EJB

remote invocations, and MDB invocations. Many of the extensions for CDI offer context lifecycle

for other environments, it’s worth checking to see if there is a suitable extension before deciding

to manage the context yourself.

Weld provides a number of built in contexts, which are shown in Table 20.1, “Available Contexts in Weld”.

Table 20.1. Available Contexts in Weld

Scope Qualifiers Context Notes

@Dependent @Default DependentContext The dependent context is

unbound and unmanaged

@RequestScoped @Unbound RequestContext An unbound request

context, useful for testing

@RequestScoped @Bound RequestContext A request context bound

to a manually propagated

map, useful for testing or

non-Servlet environments

@Default BoundRequestContext @RequestScoped @Http

RequestContext A request context bound

to a Servlet request, used

for any Servlet based

request context

@Default HttpRequestContext

@RequestScoped @Ejb RequestContext A request context bound

to a an interceptor’s

invocation context, used

for EJB invocations

outside of Servlet

requests

@Default EjbRequestContext @ConversationScoped @Bound

Chapter 20. Context Management

144

Scope Qualifiers Context Notes

ConversationContext A conversation context

bound to two manually

propagated maps (one

which represents the

request and one which

represents the session),

useful for testing or non-

Servlet environments

@Default BoundConversationContext

@ConversationScoped @Http ConversationContext A conversation context

bound to a Servlet

request, used for

any Servlet based

conversation context

@Default HttpConversationContext@SessionScoped @Bound

SessionContext A session context bound

to a manually propagated

map, useful for testing or

non-Servlet environments

@Default BoundSessionContext

@SessionScoped @Http SessionContext A session context bound

to a Servlet request, used

for any Servlet based

session context

@Default HttpSessionContext @ApplicationScoped @Default

ApplicationContext An application context

backed by an application

scoped singleton, it is

unmanaged and unbound

but does offer an option to

destroy all entries

@SingletonScoped @Default

Unmanaged contexts offer little of interest in a discussion about managing context lifecycles, so from here on in

we will concentrate on the managed contexts (unmanaged contexts of course play a vital role in the functioning of

your application and Weld!). As you can see from the table above, the managed contexts offer a number of different

implementations for the same scope; in general, each flavor of context for a scope has the same API. We’ll walk

through a number of common lifecycle management scenarios below; armed with this knowledge, and the Javadoc,

you should be able to work with any of the context implementations Weld offers.

We’ll start simple with the BoundRequestContext, which you might use to provide the request scope outside

of a Servlet request or EJB Invocation.

 /* Inject the BoundRequestContext. */

 /* Alternatively, you could look this up from the BeanManager */

 @Inject BoundRequestContext requestContext;

 ...

 /* Start the request, providing a data store which will last the lifetime of the request */

 public void startRequest(Map<String, Object> requestDataStore) {

 // Associate the store with the context and activate the context

 requestContext.associate(requestDataStore);

Managing the built in contexts

145

 requestContext.activate();

 }

 /* End the request, providing the same data store as was used to start the request */

 public void endRequest(Map<String, Object> requestDataStore) {

 try {

 /* Invalidate the request (all bean instances will be scheduled for destruction) */

 requestContext.invalidate();

 /* Deactivate the request, causing all bean instances to be destroyed (as the context

 is invalid) */

 requestContext.deactivate();

 } finally {

 /* Ensure that whatever happens we dissociate to prevent any memory leaks */

 requestContext.dissociate(requestDataStore);

 }

 }

The bound session context works in much the same way, excepting that invalidating and deactivating the session

context causes the any conversations in the session to be destroyed as well. The HTTP session context and HTTP

request context also work similarly, and might be of use if you find yourself creating threads from an HTTP request).

The HTTP session context additionally offers a method which can immediately destroy the context.

Note

Weld’s session contexts are "lazy" and don’t require a session to actually exist until a bean instance

must be written.

The conversation context offers a few more options, which we will walk through here.

 @Inject BoundConversationContext conversationContext;

 ...

 /* Start a transient conversation */

 /* Provide a data store which will last the lifetime of the request */

 /* and one that will last the lifetime of the session */

 public void startTransientConversation(Map<String, Object> requestDataStore,

 Map<String, Object> sessionDataStore) {

 resumeOrStartConversation(requestDataStore, sessionDataStore, null);

 }

 /* Start a transient conversation (if cid is null) or resume a non-transient */

 /* conversation. Provide a data store which will last the lifetime of the request */

 /* and one that will last the lifetime of the session */

 public void resumeOrStartConversation(Map<String, Object> requestDataStore,

 Map<String, Object> sessionDataStore,

 String cid) {

 /* Associate the stores with the context and activate the context */

 * BoundRequest just wraps the two datastores */

 conversationContext.associate(new MutableBoundRequest(requestDataStore, sessionDataStore));

 // Pass the cid in

 conversationContext.activate(cid);

 }

Chapter 20. Context Management

146

 /* End the conversations, providing the same data store as was used to start */

 /* the request. Any transient conversations will be destroyed, any newly-promoted */

 /* conversations will be placed into the session */

 public void endOrPassivateConversation(Map<String, Object> requestDataStore,

 Map<String, Object> sessionDataStore) {

 try {

 /* Invalidate the conversation (all transient conversations will be scheduled for

 destruction) */

 conversationContext.invalidate();

 /* Deactivate the conversation, causing all transient conversations to be destroyed */

 conversationContext.deactivate();

 } finally {

 /* Ensure that whatever happens we dissociate to prevent memory leaks*/

 conversationContext.dissociate(new MutableBoundRequest(requestDataStore, sessionDataStore));

 }

 }

The conversation context also offers a number of properties which control the behavior of conversation expiration

(after this period of inactivity the conversation will be ended and destroyed by the container), and the duration of lock

timeouts (the conversation context ensures that a single thread is accessing any bean instances by locking access,

if a lock can’t be obtained after a certain time Weld will error rather than continue to wait for the lock). Additionally,

you can alter the name of the parameter used to transfer the conversation id (by default, cid).

Weld also introduces the notion of a ManagedConversation, which extends the Conversation interface

with the ability to lock, unlock and touch (update the last used timestamp) a conversation. Finally, all non-transient

conversations in a session can be obtained from the conversation context, as can the current conversation.

Note

Weld’s conversations are not assigned ids until they become non-transient.

147

Appendix A. Integrating Weld into

other environments
If you want to use Weld in another environment, you will need to provide certain information to Weld via the integration

SPI. In this Appendix we will briefly discuss the steps needed.

If you are upgrading existing Weld integration to work with Weld 2, see this migration document [https://

community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20].

Note

If you just want to use managed beans, and not take advantage of enterprise services (EE

resource injection, CDI injection into EE component classes, transactional events, support for CDI

services in EJBs) and non-flat deployments, then the generic servlet support provided by the "Weld:

Servlets" extension will be sufficient, and will work in any container supporting the Servlet API.

All SPIs and APIs described have extensive JavaDoc, which spell out the detailed contract between the container

and Weld.

A.1. The Weld SPI
The Weld SPI is located in the weld-spi module, and packaged as weld-spi.jar. Some SPIs are optional,

and should only be implemented if you need to override the default behavior; others are required.

All interfaces in the SPI support the decorator pattern and provide a Forwarding class located in the helpers sub

package. Additional, commonly used, utility classes, and standard implementations are also located in the helpers

sub package.

Weld supports multiple environments. An environment is defined by an implementation of the Environment

interface. A number of standard environments are built in, and described by the Environments enumeration.

Different environments require different services to be present (for example a Servlet container doesn’t require

transaction, EJB or JPA services). By default an EE environment is assumed, but you can adjust the environment

by calling bootstrap.setEnvironment().

Weld uses services to communicate with its environment. A service is a java class that implements the

org.jboss.weld.bootstrap.api.Service interface and is explicitly registered. A service may be BDA-

specific or may be shared across the entire application.

public interface Service {

 public void cleanup();

}

Certain services are only used at bootstrap and need to be cleaned up afterwards in order not to consume memory. A

service that implements the specialized org.jboss.weld.bootstrap.api.BootstrapService interface

receives a cleanupAfterBoot() method invocation once Weld initialization is finished but before the

deployment is put into service.

public interface BootstrapService extends Service {

https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20

Appendix A. Integrating Weld ...

148

 void cleanupAfterBoot();

}

Weld uses a generic-typed service registry to allow services to be registered. All services implement the Service

interface. The service registry allows services to be added and retrieved.

A.1.1. Deployment structure

An application is often comprised of a number of modules. For example, a Java EE deployment may contain a

number of EJB modules (containing business logic) and war modules (containing the user interface). A container

may enforce certain accessibility rules which limit the visibility of classes between modules. CDI allows these same

rules to apply to bean and observer method resolution. As the accessibility rules vary between containers, Weld

requires the container to describe the deployment structure, via the Deployment SPI.

The CDI specification discusses Bean Archives (BAs)—archives which are marked as containing beans which should

be deployed to the CDI container, and made available for injection and resolution. Weld reuses this description and

uses Bean Deployment Archives (BDA) in its deployment structure SPI.

Each deployment exposes the containing BDAs that form a graph. A node in the graph represents a BDA. Directed

edges between nodes designate visibility. Visibility is not transitive (i.e. a bean from BDA A can only see beans in

BDAs with which A is directly connected by a properly oriented edge).

To describe the deployment structure to Weld, the container should provide an implementation of Deployment.

Deployment.getBeanDeploymentArchives() allows Weld to discover the modules which make up

the application. The CDI specification also allows beans to be specified programmatically as part of the

bean deployment. These beans may, or may not, be in an existing BDA. For this reason, Weld will call

Deployment.loadBeanDeploymentArchive(Class clazz) for each programmatically described bean.

As programmatically described beans may result in additional BDAs being added to the graph, Weld will discover

the BDA structure every time an unknown BDA is returned by Deployment.loadBeanDeploymentArchive.

Note

In a strict container, each BDA might have to explicitly specify which other BDAs it can access.

However many containers will allow an easy mechanism to make BDAs bi-directionally accessible

(such as a library directory). In this case, it is allowable (and reasonable) to describe all such

archives as a single, 'virtual' BeanDeploymentArchive.

A container, might, for example, use a flat accessibility structure for the application. In this case,

a single BeanDeploymentArchive would be attached to the Deployment.

BeanDeploymentArchive provides three methods which allow it’s contents to be discovered by

Weld—BeanDeploymentArchive.getBeanClasses() must return all the classes in the BDA,

BeanDeploymentArchive.getBeansXml() must return a data structure representing the beans.xml

deployment descriptor for the archive, and BeanDeploymentArchive.getEjbs() must provide an EJB

descriptor for every EJB in the BDA, or an empty list if it is not an EJB archive.

To aid container integrator, Weld provides a built-in beans.xml parser. To parse a beans.xml into the data-

structure required by BeanDeploymentArchive, the container should call Bootstrap.parse(URL). Weld

can also parse multiple beans.xml files, merging them to become a single data-structure. This can be achieved

by calling Bootstrap.parse(Iterable<URL>).

When multiple beans.xml files are merged, Weld keeps duplicate enabled entries (interceptors, decorators or

alternatives). This may cause validation problems when multiple physical archives which define an overlapping

EJB descriptors

149

enabled entries are merged. A version of the Bootstrap.parse() method that provides control over whether

duplicate enabled entries are remove or not is provided: Bootstrap.parse(Iterable<URL> urls,

boolean removeDuplicates).

BDA X may also reference another BDA Y whose beans can be resolved by, and injected into, any bean in BDA X.

These are the accessible BDAs, and every BDA that is directly accessible by BDA X should be returned. A BDA will

also have BDAs which are accessible transitively, and the transitive closure of the sub-graph of BDA X describes

all the beans resolvable by BDA X.

Note

In practice, you can regard the deployment structure represented by Deployment, and the virtual

BDA graph as a mirror of the classloader structure for a deployment. If a class can from BDA X can

be loaded by another in BDA Y, it is accessible, and therefore BDA Y’s accessible BDAs should

include BDA X.

To specify the directly accessible BDAs, the container should provide an implementation of

BeanDeploymentArchive.getBeanDeploymentArchives().

Note

Weld allows the container to describe a circular graph, and will convert a graph to a tree as part

of the deployment process.

Certain services are provided for the whole deployment, whilst some are provided per-BDA. BDA services are

provided using BeanDeploymentArchive.getServices() and only apply to the BDA on which they are

provided.

The contract for Deployment requires the container to specify the portable extensions (see chapter 12 of the CDI

specification) which should be loaded by the application. To aid the container integrator, Weld provides the method

Bootstrap.loadExtensions(ClassLoader) which will load the extensions for the specified classloader.

A.1.2. EJB descriptors

Weld delegates EJB 3 bean discovery to the container so that it doesn’t duplicate the work done by the EJB container,

and respects any vendor-extensions to the EJB definition.

The EjbDescriptor should return the relevant metadata as defined in the EJB specification. Each business

interface of a session bean should be described using a BusinessInterfaceDescriptor.

A.1.3. EE resource injection and resolution services

All the EE resource services are per-BDA services, and may be provided using one of two methods. Which method

to use is at the discretion of the integrator.

The integrator may choose to provide all EE resource injection services themselves, using another library or

framework. In this case the integrator should use the EE environment, and implement the Section A.1.9, “Injection

Services” SPI.

Alternatively, the integrator may choose to use CDI to provide EE resource injection. In this case, the EE_INJECT

environment should be used, and the integrator should implement the Section A.1.4, “EJB services”, Section A.1.7,

“Resource Services” and Section A.1.5, “JPA services”.

Appendix A. Integrating Weld ...

150

Important

CDI only provides annotation-based EE resource injection; if you wish to provide deployment

descriptor (e.g. ejb-jar.xml) injection, you must use Section A.1.9, “Injection Services”.

If the container performs EE resource injection, the injected resources must be serializable. If EE resource injection

is provided by Weld, the resolved resource must be serializable.

Tip

If you use a non-EE environment then you may implement any of the EE service SPIs, and Weld will

provide the associated functionality. There is no need to implement those services you don’t need!

Weld registers resource injection points with EjbInjectionServices, JpaInjectionServices,

ResourceInjectionServices and JaxwsInjectionServices implementations upfront (at bootstrap).

This allows validation of resource injection points to be performed at boot time rather than runtime. For each resource

injection point Weld obtains a ResourceReferenceFactory which it then uses at runtime for creating resource

references.

public interface ResourceReferenceFactory<T> {

 ResourceReference<T> createResource();

}

A ResourceReference provides access to the resource reference to be injected. Furthermore,

ResourceReference allows resource to be release once the bean that received resource injection is destroyed.

public interface ResourceReference<T> {

 T getInstance();

 void release();

}

A.1.4. EJB services

EJB services are split between two interfaces which are both per-BDA.

EjbServices is used to resolve local EJBs used to back session beans, and must always be provided in

an EE environment. EjbServices.resolveEjb(EjbDescriptor ejbDescriptor) returns a wrapper

—SessionObjectReference—around the EJB reference. This wrapper allows Weld to request a reference

that implements the given business interface, and, in the case of SFSBs, both request the removal of the EJB from

the container and query whether the EJB has been previously removed.

EjbInjectionServices.registerEjbInjectionPoint(InjectionPoint injectionPoint)

registers an @EJB injection point (on a managed bean) and returns a ResourceReferenceFactory as

explained above. This service is not required if the implementation of Section A.1.9, “Injection Services” takes care

of @EJB injection.

JPA services

151

Note

EJBInjectionServices.resolveEjb(InjectionPoint ij), which allows @EJB

injection point to be resolved without prior registration was deprecated in Weld 2

and should no longer be used. An injection point should be registered properly

using EjbInjectionServices.registerEjbInjectionPoint(InjectionPoint

injectionPoint) instead.

A.1.5. JPA services

Just as EJB resolution is delegated to the container, resolution of @PersistenceContext for injection into

managed beans (with the InjectionPoint provided), is delegated to the container.

To allow JPA integration, the JpaServices interface should be implemented. This service is not required if the

implementation of Section A.1.9, “Injection Services” takes care of @PersistenceContext injection.

Note

The following methods were deprecated in Weld 2:

* JpaInjectionServices.resolvePersistenceContext(InjectionPoint

injectionPoint) *

JpaInjectionServices.resolvePersistenceUnit(InjectionPoint

injectionPoint)

An injection point should instead be registered properly using the following methods:

*

JpaInjectionServices.registerPersistenceContextInjectionPoint(InjectionPoint

injectionPoint) *

JpaInjectionServices.registerPersistenceUnitInjectionPoint(InjectionPoint

injectionPoint)

A.1.6. Transaction Services

Weld delegates JTA activities to the container. The SPI provides a couple hooks to easily achieve this with the

TransactionServices interface.

Any javax.transaction.Synchronization implementation may be passed to the

registerSynchronization() method and the SPI implementation should immediately register the

synchronization with the JTA transaction manager used for the EJBs.

To make it easier to determine whether or not a transaction is currently active for the requesting thread, the

isTransactionActive() method can be used. The SPI implementation should query the same JTA transaction

manager used for the EJBs.

A.1.7. Resource Services

The resolution of @Resource (for injection into managed beans) is delegated to the container. You must provide an

implementation of ResourceInjectionServices which provides these operations. This service is not required

if the implementation of Section A.1.9, “Injection Services” takes care of @Resource injection.

Appendix A. Integrating Weld ...

152

Note

The following methods were deprecated in Weld 2:

* ResourceInjectionServices.resolveResource(InjectionPoint

injectionPoint) * ResourceInjectionServices.resolveResource(String

jndiName, String mappedName)

An injection point should instead be registered properly using the following methods:

*

ResourceInjectionServices.registerResourceInjectionPoint(InjectionPoint

injectionPoint) *

ResourceInjectionServices.registerResourceInjectionPoint(String

jndiName, String mappedName)

A.1.8. Web Service Injection Services

The resolution of @WebServiceRef (for injection into managed beans) is delegated to the container. An integrator

must provide an implementation of JaxwsInjectionServices. This service is not required if the implementation

of Section A.1.9, “Injection Services” takes care of @WebServiceRef injection.

A.1.9. Injection Services

An integrator may wish to use InjectionServices to provide additional field or method injection over-and-above

that provided by Weld. An integration into a Java EE environment may use InjectionServices to provide EE

resource injection for managed beans.

InjectionServices provides a very simple contract, the

InjectionServices.aroundInject(InjectionContext ic); interceptor will be called for every

instance that CDI injects, whether it is a contextual instance, or a non-contextual instance injected by

InjectionTarget.inject().

The InjectionContext can be used to discover additional information about the injection being performed,

including the target being injected. ic.proceed() should be called to perform CDI-style injection, and call

initializer methods.

A.1.9.1. Resource injection point validation

For each

• @Resource injection point

• @PersistenceContext injection point

• @PersistenceUnit injection point

• @EJB injection point

• @WebServiceRef injection point

Weld calls the InjectionServices.registerInjectionTarget() method. That allows the integrator to

validate resource injection points before the application is deployed.

Security Services

153

A.1.10. Security Services

In order to obtain the Principal representing the current caller identity, the container should provide an

implementation of SecurityServices.

A.1.11. Initialization and shutdown

The org.jboss.weld.bootstrap.api.Bootstrap interface defines the initialization for Weld,

bean deployment and bean validation. To boot Weld, you must create an instance of

org.jboss.weld.bootstrap.WeldBeansBootstrap (which implements Bootstrap), tell it about the

services in use, and then request the container start.

public interface Bootstrap {

 public Bootstrap startContainer(Environment environment, Deployment deployment);

 public Bootstrap startInitialization();

 public Bootstrap deployBeans();

 public Bootstrap validateBeans();

 public Bootstrap endInitialization();

 public void shutdown();

 public WeldManager getManager(BeanDeploymentArchive beanDeploymentArchive);

 public BeansXml parse(URL url);

 public BeansXml parse(Iterable<URL> urls);

 public BeansXml parse(Iterable<URL> urls, boolean removeDuplicates);

 public Iterable<Metadata<Extension>> loadExtensions(ClassLoader classLoader);

}

The bootstrap is split into phases, container initialization, bean deployment, bean validation and shutdown.

Initialization will create a manager, and add the built-in contexts, and examine the deployment structure. Bean

deployment will deploy any beans (defined using annotations, programmatically, or built in). Bean validation will

validate all beans.

To initialize the container, you call Bootstrap.startInitialization(). Before calling

startInitialization(), you must register any services required by the environment. You can do this by

calling, for example, bootstrap.getManager().getServices().add(JpaServices.class, new

MyJpaServices()). You must also provide the application context bean store.

Having called startInitialization(), the Manager for each BDA can be obtained by calling

Bootstrap.getManager(BeanDeploymentArchive bda).

To deploy the discovered beans, call Bootstrap.deployBeans().

To validate the deployed beans, call Bootstrap.validateBeans().

To place the container into a state where it can service requests, call Bootstrap.endInitialization()

To shutdown the container you call Bootstrap.shutdown(). This allows the container to perform any cleanup

operations needed.

A.1.12. Resource loading

Weld needs to load classes and resources from the classpath at various times. By default, they are

loaded from the Thread Context ClassLoader if available, if not the same classloader that was used to

load Weld, however this may not be correct for some environments. If this is case, you can implement

org.jboss.weld.resources.spi.ResourceLoader.

Appendix A. Integrating Weld ...

154

import org.jboss.weld.bootstrap.api.Service;

public interface ResourceLoader extends Service {

 public Class<?> classForName(String name);

 public URL getResource(String name);

 public Collection<URL> getResources(String name);

}

A.1.13. AnnotationDiscovery

The optional AnnotationDiscovery service has been deprecated and is not used by Weld since Weld 2.2.

Integrators are encouraged to implement ClassFileServices instead.

A.1.14. ClassFileServices

Integrators with bytecode-scanning capabilities may implement an optional ClassFileServices service.

Bytecode-scanning is used by some application servers to speed up deployment. Compared to loading a class using

ClassLoader, bytecode-scanning allows to obtain only a subset of the Java class file metadata (e.g. annotations,

class hierarchy, etc.) which is usually loaded much faster. This allows the container to scan all classes initially by

a bytecode scanner and then use this limited information to decide which classes need to be fully loaded using

ClassLoader. Jandex [https://github.com/wildfly/jandex] is an example of a bytecode-scanning utility.

ClassFileServices may be used by an integrator to provide container’s bytecode-scanning capabilities to Weld.

If present, Weld will try to use the service to avoid loading of classes that do not need to be loaded. These are

classes that:

• are not CDI managed beans [http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#what_classes_are_beans] and

• are not assignable to any ProcessAnnotatedType observer

This usually yields improved bootstrap performance especially in large deployments with a lot of classes in explicit

bean archives.

public interface ClassFileServices extends BootstrapService {

 ClassFileInfo getClassFileInfo(String className);

}

public interface ClassFileInfo {

 String getClassName();

 String getSuperclassName();

 boolean isAnnotationDeclared(Class<? extends Annotation> annotationType);

 boolean containsAnnotation(Class<? extends Annotation> annotationType);

 int getModifiers();

 boolean hasCdiConstructor();

 boolean isAssignableFrom(Class<?> javaClass);

 boolean isAssignableTo(Class<?> javaClass);

 boolean isVetoed();

 boolean isTopLevelClass();

https://github.com/wildfly/jandex
https://github.com/wildfly/jandex
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#what_classes_are_beans
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#what_classes_are_beans

Registering services

155

See the JavaDoc for more details.

A.1.15. Registering services

The standard way for an integrator to provide Service implementations is via the deployment structure.

Alternatively, services may be registered using the ServiceLoader [http://docs.oracle.com/javase/7/docs/api/java/

util/ServiceLoader.html] mechanism. This is useful e.g. for a library running in weld-servlet environment. Such

library may provide TransactionServices implementation which would not otherwise be provided by weld-

servlet.

A service implementation should be listed in a file named META-INF/services/

org.jboss.weld.bootstrap.api.Service

A service implementation can override another service implementation. The priority of a service implementation is

determined from the javax.annotation.Priority annotation. Service implementations with higher priority

have precedence. A service implementation that does not define priority explicitly is given implicit priority of 4500.

A.2. The contract with the container

There are a number of requirements that Weld places on the container for correct functioning that fall outside

implementation of APIs.

A.2.1. Classloader isolation

If you are integrating Weld into an environment that supports deployment of multiple applications, you must enable,

automatically, or through user configuration, classloader isolation for each CDI application.

A.2.2. Servlet

If you are integrating Weld into a Servlet environment you must register

org.jboss.weld.servlet.WeldInitialListener and

org.jboss.weld.servlet.WeldTerminalListener as Servlet listeners, either automatically, or through

user configuration, for each CDI application which uses Servlet.

You must ensure that WeldListener is called before any other application-defined listener is called and that

WeldTerminalListener is called only after all application-defined listeners have been called.

You must ensure that WeldListener.contextInitialized() is called after beans are deployed is complete

(Bootstrap.deployBeans() has been called).

A.2.3. CDI Conversation Filter

A CDI implementation is required to provide a Servlet filter named ``CDI Conversation Filter''. The filter may be

mapped by an application in the web descriptor. That allows application to place another filter around the CDI filter

for dealing with exceptions.

Weld provides this filter with a fully qualified class name of`org.jboss.weld.servlet.ConversationFilter`.

If the application contains a filter mapping for a filter named CDI Conversation Filter'', the

integrator is required to register org.jboss.weld.servlet.ConversationFilter as

a filter with CDI Conversation Filter'' as its filter name. If no such mapping exists in the application, the

integrator is not required to register the filter. In that case, WeldListener will take care of conversation context

activation/deactivation at the beginning of HTTP request processing.

http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html

Appendix A. Integrating Weld ...

156

A.2.4. JSF

If you are integrating Weld into a JSF environment you must register

org.jboss.weld.el.WeldELContextListener as an EL Context listener.

If you are integrating Weld into a JSF environment you must register

org.jboss.weld.jsf.ConversationAwareViewHandler as a delegating view handler.

If you are integrating Weld into a JSF environment you must obtain the bean manager for the module and then

call BeanManager.wrapExpressionFactory(), passing Application.getExpressionFactory()

as the argument. The wrapped expression factory must be used in all EL expression evaluations performed by JSF

in this web application.

If you are integrating Weld into a JSF environment you must obtain the bean manager for the module and then

call BeanManager.getELResolver(), The returned EL resolver should be registered with JSF for this web

application.

Tip

There are a number of ways you can obtain the bean manager for the module. You could call

Bootstrap.getManager(), passing in the BDA for this module. Alternatively, you could use

the injection into Java EE component classes, or look up the bean manager in JNDI.

If you are integrating Weld into a JSF environment you must register

org.jboss.weld.servlet.ConversationPropagationFilter as a Servlet listener, either

automatically, or through user configuration, for each CDI application which uses JSF. This filter can be registered

for all Servlet deployment safely.

Note

Weld only supports JSF 1.2 and above.

Note

org.jboss.weld.jsf.WeldPhaseListener was deprecated in Weld 2 and is no longer

present in Weld.

Note

org.jboss.weld.servlet.ConversationPropagationFilter was deprecated and

should no longer be used.

A.2.5. JSP

If you are integrating Weld into a JSP environment you must register

org.jboss.weld.el.WeldELContextListener as an EL Context listener.

Session Bean Interceptor

157

If you are integrating Weld into a JSP environment you must obtain the bean manager for the module and then

call BeanManager.wrapExpressionFactory(), passing Application.getExpressionFactory()

as the argument. The wrapped expression factory must be used in all EL expression evaluations performed by JSP.

If you are integrating Weld into a JSP environment you must obtain the bean manager for the module and then

call BeanManager.getELResolver(), The returned EL resolver should be registered with JSP for this web

application.

Tip

There are a number of ways you can obtain the bean manager for the module. You could call

Bootstrap.getManager(), passing in the BDA for this module. Alternatively, you could use

the injection into Java EE component classes, or look up the bean manager in JNDI.

A.2.6. Session Bean Interceptor

org.jboss.weld.ejb.SessionBeanInterceptor takes care of activating the request scope around EJB

method invocations in a non-servlet environment, such as message-driven bean invocation, @Asynchronous

invocation or @Timeout. If you are integrating Weld into an EJB environment you must register the aroundInvoke

method of SessionBeanInterceptor as a EJB around-invoke interceptor for all EJBs in the application, either

automatically, or through user configuration, for each CDI application which uses enterprise beans.

If you are running in a EJB 3.2 environment, you should register this as an around-timeout interceptor as well.

In addition, since CDI 1.1 the aroundInvoke method of SessionBeanInterceptor should be invoked around

@PostConstruct callbacks of EJBs.

Important

You must register the SessionBeanInterceptor as the inner most interceptor in the stack

for all EJBs.

A.2.7. The weld-core.jar

Weld can reside on an isolated classloader, or on a shared classloader. If you choose to use an isolated classloader,

the default SingletonProvider, IsolatedStaticSingletonProvider, can be used. If you choose to

use a shared classloader, then you will need to choose another strategy.

You can provide your own implementation of Singleton and SingletonProvider and register it for use using

SingletonProvider.initialize(SingletonProvider provider).

Weld also provides an implementation of Thread Context Classloader per application strategy, via the

TCCLSingletonProvider.

A.2.8. Binding the manager in JNDI

You should bind the bean manager for the bean deployment archive into JNDI at java:comp/BeanManager.

The type should be javax.enterprise.inject.spi.BeanManager. To obtain the correct bean manager

for the bean deployment archive, you may call bootstrap.getBeanManager(beanDeploymentArchive)

Appendix A. Integrating Weld ...

158

A.2.9. CDIProvider

CDI 1.1 provides a simplified approach to accessing the BeanManager / CDI container from components

that do not support injection. This is done by the CDI class API. The integrating part can either use

org.jboss.weld.AbstractCDI or org.jboss.weld.SimpleCDI provided by Weld core and register it

using javax.enterprise.inject.spi.CDIProvider file that is visible to the CDI API classes or use the

CDI.setCDIProvider(CDIProvider provider) method method early in the deployment.

Alternatively, an integrating part may provide a specialized implementation such as the one provided by WildFly

integration [https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/org/jboss/as/weld/WeldProvider.java].

A.2.10. Performing CDI injection on Java EE component

classes

The CDI specification requires the container to provide injection into non-contextual resources for all Java EE

component classes. Weld delegates this responsibility to the container. This can be achieved using the CDI defined

InjectionTarget SPI. Furthermore, you must perform this operation on the correct bean manager for the bean

deployment archive containing the EE component class.

The CDI specification also requires that a ProcessInjectionTarget event is fired for every Java EE

component class. Furthermore, if an observer calls ProcessInjectionTarget.setInjectionTarget()

the container must use the specified injection target to perform injection.

To help the integrator, Weld provides WeldManager.fireProcessInjectionTarget() which returns the

InjectionTarget to use.

// Fire ProcessInjectionTarget, returning the InjectionTarget

// to use

InjectionTarget it = weldBeanManager.fireProcessInjectionTarget(clazz);

// Per instance required, create the creational context

CreationalContext<?> cc = beanManager.createCreationalContext(null);

// Produce the instance, performing any constructor injection required

Object instance = it.produce();

// Perform injection and call initializers

it.inject(instance, cc);

// Call the post-construct callback

it.postConstruct(instance);

// Call the pre-destroy callback

it.preDestroy(instance);

// Clean up the instance

it.dispose();

cc.release();

The container may intersperse other operations between these calls. Further, the integrator may choose to implement

any of these calls in another manner, assuming the contract is fulfilled.

When performing injections on EJBs you must use the Weld-defined SPI, WeldManager. Furthermore, you must

perform this operation on the correct bean manager for the bean deployment archive containing the EJB.

https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/org/jboss/as/weld/WeldProvider.java
https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/org/jboss/as/weld/WeldProvider.java
https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/org/jboss/as/weld/WeldProvider.java

Migration notes

159

// Obtain the EjbDescriptor for the EJB

// You may choose to use this utility method to get the descriptor

EjbDescriptor<?> ejbDescriptor = beanManager.getEjbDescriptor(ejbName);

// Get an the Bean object

Bean<?> bean = beanManager.getBean(ejbDescriptor);

// Create the injection target

InjectionTarget it = deploymentBeanManager.createInjectionTarget(ejbDescriptor);

// Per instance required, create the creational context

CreationalContext<?> cc = deploymentBeanManager.createCreationalContext(bean);

// Perform injection and call initializers

it.inject(instance, cc);

// You may choose to have CDI call the post construct and pre destroy

// lifecycle callbacks

// Call the post-construct callback

it.postConstruct(instance);

// Call the pre-destroy callback

it.preDestroy(instance);

// Clean up the instance

it.dispose();

cc.release();

A.3. Migration notes

This part of the appendix documents the changes in Weld across major and minor releases that an integrator should

be aware of. These changes mostly touch changes in the SPI or in the container contract.

A.3.1. Migration from Weld 1.x to 2.0

All the changes are documented in this external migration document [https://community.jboss.org/wiki/

WeldIntegratorGuide-ChangesForWeld20].

A.3.2. Migration from Weld 2.0 to 2.1

A.3.2.1. Logging

Weld no longer uses slf4j for logging. Instead, jboss-logging [http://search.maven.org/#search%7Cga

%7C1%7Cjboss-logging] is now used as a logging facade.

A.3.2.2. HttpContextActivationFilter

A new service named HttpContextActivationFilter [http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/

servlet/spi/HttpContextActivationFilter.html] was added to the Weld SPI. This optional service allows an integrator

to decide if CDI contexts should be activated or not for a given HTTP request. By default, CDI contexts are always

active but this hook allows an integrator to eliminate the overhead of CDI context activation for certain types of

requests where CDI is known not to be needed (e.g. request for a static resource).

https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
http://search.maven.org/#search%7Cga%7C1%7Cjboss-logging
http://search.maven.org/#search%7Cga%7C1%7Cjboss-logging
http://search.maven.org/#search%7Cga%7C1%7Cjboss-logging
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/servlet/spi/HttpContextActivationFilter.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/servlet/spi/HttpContextActivationFilter.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/servlet/spi/HttpContextActivationFilter.html

Appendix A. Integrating Weld ...

160

Note that when the service is provided, user configuration [#context.mapping] is overriden.

A.3.2.3. Non-portable mode

The BootstrapConfiguration [http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/spi/

BootstrapConfiguration.html#isNonPortableModeEnabled%28%29] service now allows the non-portable mode

[#non-portable.mode] to be enabled by the integrator.

A.3.2.4. Singleton SPI

Since Weld 2.1 the Singleton SPI [http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/api/

Singleton.html] requires the singleton to be identified by a String context id. This allows multiple Weld containers

to run at the same time in environments where the TCCL cannot be used to distinguish the containers (e.g. OSGi

environment).

The integrator should:

• implement the new methods

• use WeldBootstrap.startContainer(String contextId, Environment environment, Deployment deployment) to start

Weld

• eliminate all Container.instance() calls and replace them with Container.instance(String contextId)

A.3.2.5. Weld-OSGi bundle

The Weld-OSGi bundle does no include Weld’s runtime dependencies anymore. Therefore, it is possible to deploy

the following artifacts in order to satisfy Weld’s dependencies:

group id artifact id version

org.jboss.logging jboss-logging 3.1.3.GA

com.google.guava guava 13.0.1

javax.enterprise cdi-api 1.1-20130918

javax.annotation javax.annotation-api 1.2

javax.interceptor javax.interceptor-api 1.2

org.apache.geronimo.specs geronimo-el_2.2_spec 1.0.3

A.3.3. Migration from Weld 2.1 to 2.2

• The definition of a bean defining annotation was altered in CDI 1.2. See the specification [http://cdi-spec.org] for

more information.

• A new WeldInjectionTargetBuilder [http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/

manager/api/WeldInjectionTargetBuilder.html] SPI was added. The SPI allows an integrator to obtain a customized

InjectionTarget implementation using the builder pattern.

• The AnnotationDiscovery service [#annotationDiscovery] was deprecated in favor of

ClassFileServices [#classFileServices] . * http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/

bootstrap/api/CDI11Bootstrap.html#startContainer(java.lang.String, org.jboss.weld.bootstrap.api.Environment,

org.jboss.weld.bootstrap.spi.Deployment)[CDIBootstrap.startContainer()] method, which allows a

container identifier to be passed as a parameter, was added.

#context.mapping
#context.mapping
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/spi/BootstrapConfiguration.html#isNonPortableModeEnabled%28%29
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/spi/BootstrapConfiguration.html#isNonPortableModeEnabled%28%29
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/spi/BootstrapConfiguration.html#isNonPortableModeEnabled%28%29
#non-portable.mode
#non-portable.mode
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/api/Singleton.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/api/Singleton.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/api/Singleton.html
http://cdi-spec.org
http://cdi-spec.org
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/manager/api/WeldInjectionTargetBuilder.html
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/manager/api/WeldInjectionTargetBuilder.html
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/manager/api/WeldInjectionTargetBuilder.html
#annotationDiscovery
#annotationDiscovery
#classFileServices
#classFileServices
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/bootstrap/api/CDI11Bootstrap.html#startContainer(java.lang.String
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/bootstrap/api/CDI11Bootstrap.html#startContainer(java.lang.String

Migration from Weld 2.1 to 2.2

161

• The contract of the SessionObjectReference.getBusinessObject() [http://docs.jboss.org/weld/

javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject(java.lang.Class)]

method was altered. Weld may now call this method passing in a remote view of a session bean.

• The CDI provider implementation [#cdiProvider] was reimplemented and is no longer compatible with the previous

version.

http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject(java.lang.Class)
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject(java.lang.Class)
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject(java.lang.Class)
#cdiProvider
#cdiProvider

162

	Weld - CDI Reference Implementation
	Table of Contents
	A note about naming and nomenclature
	Part I. Beans
	Chapter 1. Introduction
	1.1. What is a bean?
	1.2. Getting our feet wet

	Chapter 2. More about beans
	2.1. The anatomy of a bean
	2.1.1. Bean types, qualifiers and dependency injection
	2.1.2. Scope
	2.1.3. EL name
	2.1.4. Alternatives
	2.1.5. Interceptor binding types

	2.2. What kinds of classes are beans?
	2.2.1. Managed beans
	2.2.2. Session beans
	2.2.3. Producer methods
	2.2.4. Producer fields

	Chapter 3. JSF web application example
	Chapter 4. Dependency injection and programmatic lookup
	4.1. Injection points
	4.2. What gets injected
	4.3. Qualifier annotations
	4.4. The built-in qualifiers @Default and @Any
	4.5. Qualifiers with members
	4.6. Multiple qualifiers
	4.7. Alternatives
	4.8. Fixing unsatisfied and ambiguous dependencies
	4.9. Client proxies
	4.10. Obtaining a contextual instance by programmatic lookup
	4.11. The InjectionPoint object

	Chapter 5. Scopes and contexts
	5.1. Scope types
	5.2. Built-in scopes
	5.3. The conversation scope
	5.3.1. Conversation demarcation
	5.3.2. Conversation propagation
	5.3.3. Conversation timeout
	5.3.4. CDI Conversation filter
	5.3.5. Lazy and eager conversation context initialization

	5.4. The singleton pseudo-scope
	5.5. The dependent pseudo-scope
	5.6. The @New qualifier

	Part II. Getting Start with Weld, the CDI Reference Implementation
	Chapter 6. Getting started with Weld
	6.1. Prerequisites
	6.2. Deploying to WildFly
	6.3. Deploying to GlassFish
	6.4. Deploying to Apache Tomcat
	6.5. Deploying to Jetty

	Chapter 7. Diving into the Weld examples
	7.1. The numberguess example in depth
	7.1.1. The numberguess example in Apache Tomcat or Jetty

	7.2. The numberguess example for Java SE with Swing
	7.2.1. Creating the Eclipse project
	7.2.2. Running the example from Eclipse
	7.2.3. Running the example from the command line
	7.2.4. Understanding the code

	7.3. The translator example in depth

	Part III. Loose coupling with strong typing
	Chapter 8. Producer methods
	8.1. Scope of a producer method
	8.2. Injection into producer methods
	8.3. Use of @New with producer methods
	8.4. Disposer methods

	Chapter 9. Interceptors
	9.1. Interceptor bindings
	9.2. Implementing interceptors
	9.3. Enabling interceptors
	9.4. Interceptor bindings with members
	9.5. Multiple interceptor binding annotations
	9.6. Interceptor binding type inheritance
	9.7. Use of @Interceptors

	Chapter 10. Decorators
	10.1. Delegate object
	10.2. Enabling decorators

	Chapter 11. Events
	11.1. Event payload
	11.2. Event observers
	11.3. Event producers
	11.4. Conditional observer methods
	11.5. Event qualifiers with members
	11.6. Multiple event qualifiers
	11.7. Transactional observers

	Chapter 12. Stereotypes
	12.1. Default scope for a stereotype
	12.2. Interceptor bindings for stereotypes
	12.3. Name defaulting with stereotypes
	12.4. Alternative stereotypes
	12.5. Stereotype stacking
	12.6. Built-in stereotypes

	Chapter 13. Specialization, inheritance and alternatives
	13.1. Using alternative stereotypes
	13.2. A minor problem with alternatives
	13.3. Using specialization

	Chapter 14. Java EE component environment resources
	14.1. Defining a resource
	14.2. Typesafe resource injection

	Part IV. CDI and the Java EE ecosystem
	Chapter 15. Java EE integration
	15.1. Built-in beans
	15.2. Injecting Java EE resources into a bean
	15.3. Calling a bean from a servlet
	15.4. Calling a bean from a message-driven bean
	15.5. JMS endpoints
	15.6. Packaging and deployment
	15.6.1. Explicit bean archive
	15.6.2. Implicit bean archive
	15.6.3. What archive is not a bean archive
	15.6.4. Embeddable EJB container

	Chapter 16. Portable extensions
	16.1. Creating an Extension
	16.2. Container lifecycle events
	16.3. The BeanManager object
	16.4. The CDI class
	16.5. The InjectionTarget interface
	16.6. The Bean interface
	16.7. Registering a Bean
	16.8. Wrapping an AnnotatedType
	16.9. Overriding attributes of a bean by wrapping BeanAttributes
	16.10. Wrapping an InjectionTarget
	16.11. Overriding InjectionPoint
	16.12. Manipulating interceptors, decorators and alternatives enabled for an application
	16.13. The Context and AlterableContext interfaces

	Chapter 17. Next steps

	Part V. Weld Reference Guide
	Chapter 18. Application servers and environments supported by Weld
	18.1. Using Weld with WildFly
	18.2. GlassFish
	18.3. Servlet containers (such as Tomcat or Jetty)
	18.3.1. Tomcat
	18.3.2. Jetty
	18.3.3. Bean Archive Isolation
	18.3.4. Implicit Bean Archive Support

	18.4. Java SE
	18.4.1. CDI SE Module
	18.4.2. Bootstrapping CDI SE
	18.4.2.1. The ContainerInitialized Event
	18.4.2.2. Programmatic Bootstrap API

	18.4.3. Thread Context
	18.4.4. Setting the Classpath
	18.4.5. Bean Archive Isolation
	18.4.6. Implicit Bean Archive Support

	18.5. OSGi

	Chapter 19. Configuration
	19.1. Weld configuration
	19.1.1. Relaxed construction
	19.1.2. Concurrent deployment configuration
	19.1.3. Thread pool configuration
	19.1.4. Non-portable mode during application initialization
	19.1.5. Bounding the cache size for resolved injection points
	19.1.6. Debugging generated bytecode
	19.1.7. Injectable reference lookup optimization
	19.1.8. Bean identifier index optimization

	19.2. Excluding classes from scanning and deployment
	19.3. Mapping CDI contexts to HTTP requests

	Chapter 20. Context Management
	20.1. Managing the built in contexts

	Appendix A. Integrating Weld into other environments
	A.1. The Weld SPI
	A.1.1. Deployment structure
	A.1.2. EJB descriptors
	A.1.3. EE resource injection and resolution services
	A.1.4. EJB services
	A.1.5. JPA services
	A.1.6. Transaction Services
	A.1.7. Resource Services
	A.1.8. Web Service Injection Services
	A.1.9. Injection Services
	A.1.9.1. Resource injection point validation

	A.1.10. Security Services
	A.1.11. Initialization and shutdown
	A.1.12. Resource loading
	A.1.13. AnnotationDiscovery
	A.1.14. ClassFileServices
	A.1.15. Registering services

	A.2. The contract with the container
	A.2.1. Classloader isolation
	A.2.2. Servlet
	A.2.3. CDI Conversation Filter
	A.2.4. JSF
	A.2.5. JSP
	A.2.6. Session Bean Interceptor
	A.2.7. The weld-core.jar
	A.2.8. Binding the manager in JNDI
	A.2.9. CDIProvider
	A.2.10. Performing CDI injection on Java EE component classes

	A.3. Migration notes
	A.3.1. Migration from Weld 1.x to 2.0
	A.3.2. Migration from Weld 2.0 to 2.1
	A.3.2.1. Logging
	A.3.2.2. HttpContextActivationFilter
	A.3.2.3. Non-portable mode
	A.3.2.4. Singleton SPI
	A.3.2.5. Weld-OSGi bundle

	A.3.3. Migration from Weld 2.1 to 2.2

