Weld 3.0.0.Alphal5 - CDI
Reference Implementation

CDI. Contexts and Dependency
Injection for the Java EE platform

by Gavin King, Pete Muir, Jozef Hartinger, Martin Kouba, Dan Allen, and David Allen

and thanks to Nicola Benaglia, Gladys Guerrero, Eun-
Ju Ki,, Terry Chuang, Francesco Milesi, and Sean Wu

I =TT [L RPN 1
I 1 1 o To U o o1 I 5
1.1 What iS @ DEANT ... 5

1.2. Getting OUr fEET WL ...eeei it 5

2. MOre aboUt DEANS ...oouuiiiii e 9
2.1. The anatomy of @ DeaNooooiiiiiiii 10
2.1.1. Bean types, qualifiers and dependency injectionccccceeevnnn. 10

2.0 2, S0P ettt 13

2.0.3. EL NAIME oo 13

A N | (=14 o= L1 = 2P 14

2.1.5. Interceptor biNdiNG tYPES ...vvvniiiiieiie e 14

2.2. What kinds of classes are beans?co.oveviiiiiiiiiiii e 16
2.2.1. Managed bBEaANSiiiiiiii i 16

2.2.2. SESSION DEANS ...iiiiiii e 17

2.2.3. Producer MethOodScooviviiiiiiiiiiiie e 18

2.2.4. Producer fIeldsSooeeiiii e 20

3. JSF web application eXample ... 21
4. Dependency injection and programmatic I00KUPc.ovviiiiiiiiiiiiiiniiiieeeenenn, 25
o O 1 1= Tox 1 o T o T 1) 25

4.2. What gets iNJECLEAciiiiiiieiii e 27

4.3, Qualifier anNOtAtIONScciuuiiiiiiei e 27

4.4. The built-in qualifiers @Default and @ANYccoeviiiiiiiiiiii e, 29

4.5, Qualifiers With MEMDBEIS ..o 29

4.6. Multiple qQUANIFIES i e 30

o N | (=T 0 P 1)Y= PP 31

4.8. Fixing unsatisfied and ambiguous dependenciesocceuviiveiiiiinneerinnnnnnn. 31

e T O 1T o | o] (0 {1 P 32
4.10. Obtaining a contextual instance by programmatic I00KUpcccceeevvennnnn. 33
4.11. The InjectionPoint ObJECtc.uviiiii 35

5. SCOPES AN CONLEXES ..iiiiiiiiiiiiti et et e et e e et eeeees 39
D . SCOPE LY PS ittt 39

5.2, BUIIE-IN SCOPES ..ot 40

5.3. The CONVErSAtiON SCOPE ...cccvuiiiiiieiiiieiii et ee e e e e e e et e e e e e et e e eeees 40
5.3.1. Conversation demarCationccoevuuiieiiiieiiiieiiin e e e 41

5.3.2. Conversation propagationccceeeiiiiiiiiiieiii e 42

5.3.3. Conversation tiMEOULcooiuiiiiie e 43

5.3.4. CDI Conversation filterccoiiiiiiiiiiei e 43

5.3.5. Lazy and eager conversation context initialization 44

5.4. The sSingleton PSEUAO-SCOPEuuiiiuiiiiieiie et e e e e e e e e e eaaas 45

5.5. The dependent PSEUdO-SCOPEuiiiiriniiiiiiiiie ettt 46

5.6. The @NEeW qQUAIIFIETccuuiiii e e 47

Il. Getting Start with Weld, the CDI Reference Implementationcccceeviiiiiiiieiiiiinneeenns 49
6. Getting started wWith Weld ... 51

Weld 3.0.0.Alphal5 - CDI Refe...

6.1, Prer@QUISITESiiieii ettt 51

6.2. Deploying to WIIAFIYoiiii e e 51

6.3. Deploying t0 GIassFiShccoouiiiiii 54

6.4. Deploying to Apache TOMCALccoovuiiiiiiiiiie e e 55

6.5. DePIOYING 10 JELLY ...ovuniiiiiiiie e 57

7. Diving into the Weld eXxamples ..o e 59
7.1. The numberguess example in depthcooooiiiiiiiii 59
7.1.1. The numberguess example in Apache Tomcat or Jetty 64

7.2. The numberguess example for Java SE with SWINGcciiiiiiiinnennn, 65
7.2.1. Creating the EClipSe ProjeCtveviviiiiiiiiii e, 65

7.2.2. Running the example from EClipSeccoiiiiiiiiiiiiiiiiie e, 66

7.2.3. Running the example from the command lineccooocoveeeen. 68

7.2.4. Understanding the Codecoiiiiiiiiiiiiiii e 68

7.3. The translator example in depth ..o, 74

[ll. Loose coupling With Strong tYPINGoeeeeuiiiiiii et e 79
8. Producer Methodso.uuiiiii e 81
8.1. Scope of a producer Methodooiiiiiiiiiii e 82

8.2. Injection into producer Methodscocvviiiiiiiii e 82

8.3. Use of @New with producer methodscoooeiiiiiiiiiiiiii e, 83

8.4. Disposer MethOdSocvuiiiiii i 84

L R L] (=T fod =T o] (o] = TP UPR PP 85
9.1. Interceptor BINAINGScoovniiiiiii e 85

9.2. Implementing iNLErCEPIOISuu it 86

9.3. ENabling INtErCEPLOIS ...cvvniii i e 87

9.4. Interceptor bindings With MEMDErS ...t 88

9.5. Multiple interceptor binding annotationsccociveiiiiiiii i, 89

9.6. Interceptor binding type iNheritancecoiiieiiiiiiiii e 90

9.7. USe Of @INEICEPIONS ..uuiiitiiiii e e e e e e e e eanes 90

O B =T ot o - (o] =PSRRI 93
10.1. Delegate ObJECT ...ccvuiiii e 94
10.2. EN@ADIING TECOTALOISiieeiieiiiiie ettt 95

R T | S PP 97
11.2. EVENE PAYIOAeeniiiiii e 97
11.2. EVENE ODSEIVEIS ..ovuiiiiiiiiiiee ettt e e e et s e e e e e e e eanes 97
11.3. EVENE PrOAUCETS ...ttt ettt e e e e e b 98
11.4. Conditional observer methodsoovviiiiiiiiiiiiiii e 99
11.5. Event qualifiers with memberscoooiiiiiiiiii e 100
11.6. Multiple event qUAlIfIErSocovuiiiiiii i 101
11.7. Transactional ODSEIVEISiiiuiiii e 101

T (=T £ =T) Y ¢ 12T PP 105
12.1. Default ScOpe fOr @ StEreOtYPEovvevenieiiiii e 105
12.2. Interceptor bindings for StEreotyPeSoevvviiiiiiiciiic e 106
12.3. Name defaulting with StEreotypescc.uiiviiiiiiiiiiiiice e 106
12.4. ARErNAtiVE SLEIEOLYPES ..ucvvviiiii e e e e e e aa e 107

12.5. Stereotype StACKINGcoeuuuieiiiii ettt 107

12.6. BUIlt-in StErEOLYPES . cvvniiiiiii e 108
13. Specialization, inheritance and alternativesccoovvviiiiii i 109
13.1. Using alternative StEreotyPESccvvuiiiiiieeiii e e e e 109
13.2. A minor problem with alternativesccoooeiiiiiiiiii 111
13.3. USiNg SPECIaliZatiONcccuuiiiiiieiii e e e 111
14. Java EE component enviroNMeNt rESOUICEScceuuuiiieiineeeeiiiieeeeninaeeeeninaaees 113
14.1. DEefiNiNGg @ FESOUICE ...ccvuiiiiieii e ee et e e et e e e e e et e e et e e et eeaneees 113
14.2. Typesafe resource iNJECHIONviiiiiiiiiiiii e 114
IV. CDI and the Java EE @COSYSIEIMcivuiiiiii i e e e e e e e e e e e e e e aanees 117
15. Java EE iNtEGIatiOnc..u.iiiiiiiiiiiiii ettt et e e e 119
15.1. BUIlt-iN DEANS ..oovniiei i 119
15.2. Injecting Java EE resources into a beancccoovviiiiiniiiiiiiniiiiiineeeeeen 119
15.3. Calling a bean from a Servletc.coviiiiiiii i 120
15.4. Calling a bean from a message-driven beanccccovvviiiiiiiiiiiin e, 121
15.5. IMS NAPOINES ...vuiiiiiiiiii e e e e e e e e e et e e e aaa s 121
15.6. Packaging and deploymeENntccouuiiiiiiiiiiiiii e 123
15.6.1. Explicit bean arcChiveccoooviiiiiiiii e, 123
15.6.2. Implicit bean archiveccooiiiiiiii 123
15.6.3. What archive is not a bean archiveccccooveeviiiniiiiinneeci, 124
15.6.4. Embeddable EJB CONtAINETocvuviiiiiiiii e 124
16. POrtable eXtENSIONS ... 125
16.1. Creating an EXIENSIONuiiiiiiiiiiii e 125
16.2. Container lifeCyCle BVENTScoiiiiiiiii e 126
16.3. The BeanManager ODJECTccoouuiiiiiiiiiiie e 127
16.4. THE CDI CIASS ..uuiiiiiiiiieiiiie ettt e et e e 129
16.5. The InjectionTarget iNterfaceoooeeiiiiiiiiiieie e 129
16.6. The Bean iNterfacecoooeivuiiiiiiiii e e e e 130
16.7. RegiStering @ BEANccceuuiiiiiiiii et 131
16.8. Wrapping an AnNotatedTYPEcvvuiiiiiiiiii e e e e e e e 133
16.9. Overriding attributes of a bean by wrapping BeanAttributes 137
16.10. Wrapping an INJeCtioNTargetcocvuuieiiiiiiiiiieiie e e e e e s 138
16.11. Overriding INJECHIONPOINTuuiiiiiiii e 141
16.12. Manipulating interceptors, decorators and alternatives enabled for an
APPLICALION ..oeiee i 141
16.13. The Context and AlterableContext interfacescccooeevvvieiiiiiiiineeneinnnnn. 142
L7 N XL S S ittt 143
V. Weld REfErENCE GUIAEcoeeveieiiiiiee ittt e e e e e era s 145
18. Application servers and environments supported by Weldccooeeees 147
18.1. Using Weld with WIIAFlYooiiiii e 147
18.2. GIASSFISN ..euiieiii e 147
18.3. Servlet containers (such as Tomcat or Jetty)cooevviveiiiiiiiiiiiiiiiccieeeiees 147
S TR 700 B o 3 o | PP 149
18.3.2, JBHY toiieiii e 150

Weld 3.0.0.Alphal5 - CDI Refe...

18.3.3. UNUEIOW ..evneiiiiiie et e e e e e e e e e eees 153

18.3.4. WIlAFIY WED ...oviiiiiiii e e 154

18.3.5. Bean Archive ISOlationccoovuiiiiiiiiiieii e 154

18.3.6. Implicit Bean Archive SUPPOITcocvviiiiiiiieii e 154

L18.4. JAVA SE ...oiiiiiiii i 155
18.4.1. CDI SE MOAUIE ...ouuiiiiiiiieii et 155

18.4.2. Bootstrapping CDI SEc.ouiiiiiiiiieiii e 156

18.4.3. Thread CONEXEuuieiiiiiii e e 159

18.4.4. Setting the Classpathcooouiiiiiiiiiii e 160

18.4.5. Bean Archive ISOIationccoooviiiiiiiiiiiiieee e 160

18.4.6. Implicit Bean Archive SUPPOItoveiiiiiiiiiiiiieec e 161

ST © 1] 1 PP 161

19. CONFIQUIALION L.uiiiiii ettt e e ettt e e e enb e e e eaa e eeees 163
19.1. Weld configurationc.oeiiiiiiiiiieiie e e e e e e e e e 163
19.1.1. Relaxed CONSIIUCLIONc.uuiiiiiieiiieie e 163

19.1.2. Concurrent deployment configurationcccoeeeeeiiiiieiineeinneennn, 163

19.1.3. Thread pool configurationccccoeveiiiinniiiii e, 164

19.1.4. Non-portable mode during application initialization 166

19.1.5. Bounding the cache size for resolved injection points 166

19.1.6. Debugging generated bytecodec.coeeviviiiiiiiiiin i, 166

19.1.7. Injectable reference lookup optimizationcccoeeviiiiviinieiininnen. 167

19.1.8. Bean identifier index optimizationcccoveviiiiiiiiieiiii e 167

19.1.9. Development MOTEiiiiiiiiiiiei e 167

19.2. Excluding classes from scanning and deploymentc..ccoeveviieeinnns 168
19.3. Mapping CDI contexts to0 HTTP requeSstSoovevviiiieiiiiieieii e 170

b2 TR o Yo [1o o TR PP 171
20.1. Java EE CONAINEISccuuniiiiieeiieee e e e e et e e e e en s 171
20.2. SerVIet CONLAINEISiiiiiiieeiei e e e e e e e eeereaeaees 171
20.3. WEIL SE ..ot 171

21. DEeVElOPMENT MOTE ...ciiiiiiii e e 173
21.1. How to enable the development modecccooviiiiiiiiiiiiiin e, 173
21.1.1. Web applicationcccouiiiiiiiiiii e 173

21.0.2. WEID SE ..o 174

21.1.3. Is The Development Mode Enabled?c.ccoiveiiiiiiiiiiineeennn, 174

21.2. DeVEIOPMENL TOOIS ...ciiiiiiieeiiii ettt e 174
2120, PrODE it 174

22. Context ManAgEMENTiiii it e 175
22.1. Managing the built in CONEXESviiiiiiiiic e 175

A. Integrating Weld into other environmentscooouiiiiiiiiiiieiiiiin e 181
AL The WEIA SPI oeeiii e 181
A.1.1. Deployment SIUCTUIEoieeuuniiiiii et 182

y N R N | o (1Yol] o] o] = 184

A.1.3. EE resource injection and resolution ServiCesccccoevvvvevineeennnn. 185

ALA EJIB SEIVICES ..iiiiiiiiieeiiie ettt e et e e et e e et e eaaa e e 186

Vi

AL, JPA SEIVICES oottt ettt e aens 187

A.1.6. TranSaCLON SEIVICESiiiiiriiieeiiiiiee et e et e et e e e et e e eaiaaeaens 187
A.L.7. RESOUICE SEIVICES ..vuuiiiiieiiiieii et e e e e e e s e e e e e e et e e e e eeanes 187
A.1.8. Web Service INJection SErviCescociviieiiiieiiiieiii e 188
A.1.9. INJECHION SEIVICES ...ciiiiiiiiii et 188
A.1.10. SECUINLY SEIVICES ..ovuniiiiieiiii et eaa s 189
A.1.11. Initialization and Shutdowncooiiiiiiiii e 189
A.1.12. ReSOUrce 10adingccuveiiiioiiiieeie e 190
A.1.13. ANNOLAtIONDISCOVETYiiiiiiiieiiiii ettt 190
A.1.14. ClasSFIlESEIVICESccuuuiiiiiiiiieeiiii e 190
A.1.15. REQISIENNG SEIVICESciiiiiiieiiiiiie ettt 191
A.2. The contract with the CONtaINErocoviiiiiiiiiii e 191
A.2.1. Classloader iSolationocuoveiiiieiiiiiiiiee e e 192
AL2.2. SEIVIBL oo 192
A.2.3. CDI Conversation Filterccocouiiiiiiiiiie e 192
A2 A, IS e 192
AL 2. . ISP 193
A.2.6. Session Bean INterCeptorccuvveiiieiiiiiciie e 194
A2.7. The WEld-COre.Jaruii i 194
A.2.8. Binding the manager in INDIcccooiviiiiiiiii e, 195
A.2.9. CDIPIOVIAEL ...uiieiiei et e e e e e ees 195
A.2.10. Performing CDI injection on Java EE component classes 195
A.2.11. Around-construct iNterCePLioNoveveeueieriiiiiieieii e 197
A.2.12. Probe Development Tool (Optional)cocoeeeiiiiiiiiiieineciieeeieeens 197
A.3. MIgration NOLESuiiiiiiiei et eeneas 198
A.3.1. Migration from Weld 1.X t0 2.0coooviiiiiiiieii e, 198
A.3.2. Migration from Weld 2.0 t0 2.1ccouoiiiiiiiiiiiiii e 198
A.3.3. Migration from Weld 2.1 10 2.2coviiiiiiiiii e 199
A.3.4. Migration from Weld 2.2 10 2.3 ..o 200

Vii

viii

A note about naming and nomenclature

Throughout this document, mentions of JSR-299 and JSR-346 appear. JSR is a document
of a proposed specification used in the Java Community Process (JCP). JSRs are somewhat
analogous to RFCs used by IETF. JSR-299 and JSR-346 are the JCP specification names for the
1.0 and 1.1 versions of CDI, respectively.

Shortly before the final draft of JSR-299 was submitted, the specification changed its name
from "Web Beans" to "Java Contexts and Dependency Injection for the Java EE platform",
abbreviated CDI. For a brief period after the renaming, the reference implementation adopted
the name "Web Beans". However, this ended up causing more confusion than it solved and Red
Hat decided to change the name of the reference implementation to "Weld". You may still find
other documentation, blogs, forum posts, etc. that use the old nomenclature. Please update any
references you can. The naming game is over.

You'll also find that some of the functionality that once existed in the specification is now missing,
such as defining beans in XML. These features will be available as portable extensions.

Note that this reference guide was started while changes were still being made to the specification.
We’'ve done our best to update it for accuracy. If you discover a conflict between what is written
in this guide and the specification, the specification is the authority—assume it is correct. If you
believe you have found an error in the specification, please report it to the CDI EG.

Part |. Beans

The CDI [http://jcp.org/enl/jsr/detail?id=346] specification defines a set of complementary services
that help improve the structure of application code. CDI layers an enhanced lifecycle and
interaction model over existing Java component types, including managed beans and Enterprise
Java Beans. The CDI services provide:

« an improved lifecycle for stateful objects, bound to well-defined contexts,

» atypesafe approach to dependency injection,

 object interaction via an event naotification facility,

» a better approach to binding interceptors to objects, along with a new kind of interceptor, called
a decorator, that is more appropriate for use in solving business problems, and

an SPI for developing portable extensions to the container.

The CDI services are a core aspect of the Java EE platform and include full support for Java EE
modularity and the Java EE component architecture. But the specification does not limit the use
of CDI to the Java EE environment. In the Java SE environment, the services might be provided
by a standalone CDI implementation like Weld (see Section 18.4.1, “CDI SE Module”), or even
by a container that also implements the subset of EJB defined for embedded usage by the EJB
3.2 specification. CDI is especially useful in the context of web application development, but the
problems it solves are general development concerns and it is therefore applicable to a wide
variety of application.

An object bound to a lifecycle context is called a bean. CDI includes built-in support for several
different kinds of bean, including the following Java EE component types:

* managed beans, and

» EJB session beans.

Both managed beans and EJB session beans may inject other beans. But some other objects,
which are not themselves beans in the sense used here, may also have beans injected via CDI.
In the Java EE platform, the following kinds of component may have beans injected:

* message-driven beans,

* interceptors,

* servlets, servlet filters and servlet event listeners,

« JAX-WS service endpoints and handlers,

* JAX-RS resources, providers and j avax. ws. rs. cor e. Appl i cat i on subclasses, and

http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=346

Part I. Beans

» JSP tag handlers and tag library event listeners.

CDl relieves the user of an unfamiliar API of the need to answer the following questions:

« What is the lifecycle of this object?

* How many simultaneous clients can it have?

¢ Is it multithreaded?

» How do I get access to it from a client?

* Do | need to explicitly destroy it?

* Where should | keep the reference to it when I’'m not currently using it?

 How can | define an alternative implementation, so that the implementation can vary at
deployment time?

» How should | go about sharing this object between other objects?

CDI is more than a framework. It's a whole, rich programming model. The theme of CDI is loose-
coupling with strong typing. Let’s study what that phrase means.

A bean specifies only the type and semantics of other beans it depends upon. It need not be aware
of the actual lifecycle, concrete implementation, threading model or other clients of any bean it
interacts with. Even better, the concrete implementation, lifecycle and threading model of a bean
may vary according to the deployment scenario, without affecting any client. This loose-coupling
makes your code easier to maintain.

Events, interceptors and decorators enhance the loose-coupling inherent in this model:

 event notifications decouple event producers from event consumers,
« interceptors decouple technical concerns from business logic, and
« decorators allow business concerns to be compartmentalized.

What's even more powerful (and comforting) is that CDI provides all these facilities in a typesafe
way. CDI never relies on string-based identifiers to determine how collaborating objects fit
together. Instead, CDI uses the typing information that is already available in the Java object
model, augmented using a new programming pattern, called qualifier annotations, to wire together
beans, their dependencies, their interceptors and decorators, and their event consumers. Usage
of XML descriptors is minimized to truly deployment-specific information.

But CDI isn't a restrictive programming model. It doesn’t tell you how you should to structure your
application into layers, how you should handle persistence, or what web framework you have to
use. You'll have to decide those kinds of things for yourself.

CDI even provides a comprehensive SPI, allowing other kinds of object defined by future Java EE
specifications or by third-party frameworks to be cleanly integrated with CDI, take advantage of
the CDI services, and interact with any other kind of bean.

CDl was influenced by a number of existing Java frameworks, including Seam, Guice and Spring.
However, CDI has its own, very distinct, character: more typesafe than Seam, more stateful and
less XML-centric than Spring, more web and enterprise-application capable than Guice. But it
couldn’t have been any of these without inspiration from the frameworks mentioned and lots of
collaboration and hard work by the JSR-299 and JSR-346 Expert Groups (EG).

Finally, CDl is a Java Community Process [http://jcp.org] (JCP) standard. Java EE 7 requires that
all compliant application servers provide support for JSR-346 (even in the web profile).

http://jcp.org
http://jcp.org

Chapter 1.

Chapter 1. Introduction

So you're keen to get started writing your first bean? Or perhaps you're skeptical, wondering
what kinds of hoops the CDI specification will make you jump through! The good news is that
you've probably already written and used hundreds, perhaps thousands of beans. CDI just makes
it easier to actually use them to build an application!

1.1. What is a bean?

A bean is exactly what you think it is. Only now, it has a true identity in the container environment.

Prior to Java EE 6, there was no clear definition of the term "bean" in the Java EE platform.
Of course, we’ve been calling Java classes used in web and enterprise applications "beans" for
years. There were even a couple of different kinds of things called "beans” in EE specifications,
including EJB beans and JSF managed beans. Meanwhile, other third-party frameworks such as
Spring and Seam introduced their own ideas of what it meant to be a "bean". What we’ve been
missing is a common definition.

Java EE 6 finally laid down that common definition in the Managed Beans specification. Managed
Beans are defined as container-managed objects with minimal programming restrictions,
otherwise known by the acronym POJO (Plain Old Java Object). They support a small set
of basic services, such as resource injection, lifecycle callbacks and interceptors. Companion
specifications, such as EJB and CDI, build on this basic model. But, at last, there’s a uniform
concept of a bean and a lightweight component model that's aligned across the Java EE platform.

With very few exceptions, almost every concrete Java class that has a constructor with no
parameters (or a constructor designated with the annotation @ nj ect) is a bean. This includes
every JavaBean and every EJB session bean. If you've already got some JavaBeans or session
beans lying around, they're already beans—you won't need any additional special metadata.

The JavaBeans and EJBs you've been writing every day, up until now, have not been able to
take advantage of the new services defined by the CDI specification. But you'll be able to use
every one of them with CDI—allowing the container to create and destroy instances of your beans
and associate them with a designated context, injecting them into other beans, using them in EL
expressions, specializing them with qualifier annotations, even adding interceptors and decorators
to them—without modifying your existing code. At most, you'll need to add some annotations.

Now let's see how to create your first bean that actually uses CDI.

1.2. Getting our feet wet

Suppose that we have two existing Java classes that we've been using for years in various
applications. The first class parses a string into a list of sentences:

public class SentenceParser ({
public List<String> parse(String text) { ... }

Chapter 1. Introduction

The second existing class is a stateless session bean front-end for an external system that is able
to translate sentences from one language to another:

@t at el ess

public class SentenceTransl ator inplements Translator {
public String translate(String sentence) { ... }

}

Where Tr ansl at or is the EJB local interface:

@ocal
public interface Translator ({
public String translate(String sentence);

Unfortunately, we don’t have a class that translates whole text documents. So let's write a bean
for this job:

public class Text Transl ator {
private SentenceParser sentenceParser;
private Transl ator sentenceTransl ator;

@ nj ect
Text Tr ansl at or (Sent encePar ser sent enceParser, Transl ator sentenceTransl ator) {
t hi s. sentenceParser = sentencePar ser;
thi s. sent enceTransl at or = sentenceTransl at or;

public String translate(String text) {
StringBuil der sb = new StringBuilder();
for (String sentence: sentenceParser.parse(text)) {
sb. append(sent enceTransl ator. transl at e(sentence));

}
return sh.toString();

But wait! Text Tr ansl at or does not have a constructor with no parameters! Is it still a bean? If
you remember, a class that does not have a constructor with no parameters can still be a bean
if it has a constructor annotated @ nj ect .

Getting our feet wet

As you've guessed, the @ nj ect annotation has something to do with dependency injection!
@ nj ect may be applied to a constructor or method of a bean, and tells the container to call that
constructor or method when instantiating the bean. The container will inject other beans into the
parameters of the constructor or method.

We may obtain an instance of Text Tr ansl at or by injecting it into a constructor, method or field
of a bean, or a field or method of a Java EE component class such as a servlet. The container
chooses the object to be injected based on the type of the injection point, not the name of the
field, method or parameter.

Let's create a Ul controller bean that uses field injection to obtain an instance of the
Text Tr ansl at or, translating the text entered by a user:

@aned @Request Scoped
public class TranslateController {

@nj ect Text Transl ator textTransl ator; 9

private String inputText;
private String translation;

/1 JSF action nethod, perhaps

public void translate() ({
translation = textTransl ator.transl ate(i nput Text);

public String getlnput Text () {
return inputText;

public void setlnputText(String text) ({
this.inputText = text;

public String getTranslation() ({
return transl ation;

© Field injection of Text Transl at or instance

Tip

Notice the controller bean is request-scoped and named. Since this combination
is so common in web applications, there's a built-in annotation for it in CDI that

Chapter 1. Introduction

we could have used as a shorthand. When the (stereotype) annotation @bdel is

declared on a class, it creates a request-scoped and named bean.

Alternatively, we may obtain an instance of Text Tr ansl at or programmatically from an injected
instance of | nst ance, parameterized with the bean type:

i nport javax.enterprise.inject.|nstance
i mport javax.inject.Inject;

@ nj ect | nstance<Text Transl at or > text Transl at or | nst ance;

public void translate() {
text Transl at or I nst ance. get (). transl at e(i nput Text);

Notice that it isn't necessary to create a getter or setter method to inject one bean into another.
CDI can access an injected field directly (even if it's private!), which sometimes helps eliminate
some wasteful code. The name of the field is arbitrary. It's the field’'s type that determines what
is injected.

At system initialization time, the container must validate that exactly one bean exists which
satisfies each injection point. In our example, if no implementation of Tr ansl at or is available—if
the Sent enceTr ansl at or EJB was not deployed—the container would inform us of an unsatisfied
dependency. If more than one implementation of Tr ans| at or were available, the container would
inform us of the ambiguous dependency.

Before we get too deep in the details, let's pause and examine a bean’s anatomy. What aspects
of the bean are significant, and what gives it its identity? Instead of just giving examples of beans,
we're going to define what makes something a bean.

Chapter 2.

Chapter 2. More about beans

A bean is usually an application class that contains business logic. It may be called directly from
Java code, or it may be invoked via the Unified EL. A bean may access transactional resources.
Dependencies between beans are managed automatically by the container. Most beans are
stateful and contextual. The lifecycle of a bean is managed by the container.

Let's back up a second. What does it really mean to be contextual? Since beans may be stateful, it
matters which bean instance | have. Unlike a stateless component model (for example, stateless
session beans) or a singleton component model (such as servlets, or singleton beans), different
clients of a bean see the bean in different states. The client-visible state depends upon which
instance of the bean the client has a reference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does
not control the lifecycle of the instance by explicitly creating and destroying it. Instead, the scope
of the bean determines:

« the lifecycle of each instance of the bean and
» which clients share a reference to a particular instance of the bean.

For a given thread in a CDI application, there may be an active context associated with the scope
of the bean. This context may be unique to the thread (for example, if the bean is request scoped),
or it may be shared with certain other threads (for example, if the bean is session scoped) or even
all other threads (if it is application scoped).

Clients (for example, other beans) executing in the same context will see the same instance of the
bean. But clients in a different context may see a different instance (depending on the relationship
between the contexts).

One great advantage of the contextual model is that it allows stateful beans to be treated like
services! The client need not concern itself with managing the lifecycle of the bean it's using, nor
does it even need to know what that lifecycle is. Beans interact by passing messages, and the bean
implementations define the lifecycle of their own state. The beans are loosely coupled because:

« they interact via well-defined public APIs
« their lifecycles are completely decoupled

We can replace one bean with another different bean that implements the same interface and has
a different lifecycle (a different scope) without affecting the other bean implementation. In fact,
CDI defines a simple facility for overriding bean implementations at deployment time, as we will
see in Section 4.7, “Alternatives”.

Note that not all clients of a bean are beans themselves. Other objects such as servlets or
message-driven beans—which are by nature not injectable, contextual objects—may also obtain
references to beans by injection.

Chapter 2. More about beans

2.1. The anatomy of a bean

Enough hand-waving. More formally, the anatomy of a bean, according to the spec:

A bean comprises the following attributes:

« A (nonempty) set of bean types

A (nonempty) set of qualifiers

e Ascope

Optionally, a bean EL name

A set of interceptor bindings
* A bean implementation
Furthermore, a bean may or may not be an alternative.

Let's see what all this new terminology means.

2.1.1. Bean types, qualifiers and dependency injection

Beans usually acquire references to other beans via dependency injection. Any injected attribute
specifies a "contract" that must be satisfied by the bean to be injected. The contract is:

* a bean type, together with
 a set of qualifiers.

A bean type is a user-defined class or interface; a type that is client-visible. If the bean is an EJB
session bean, the bean type is the @ocal interface or bean-class local view. A bean may have
multiple bean types. For example, the following bean has four bean types:

public class BookShop
ext ends Busi ness
i mpl ement s Shop<Book> {

The bean types are BookShop, Business and Shop<Book>, as well as the implicit type
j ava. | ang. Obj ect . (Notice that a parameterized type is a legal bean type).

Meanwhile, this session bean has only the local interfaces BookShop, Auditable and
j ava. |l ang. Obj ect as bean types, since the bean class, BookShopBean is not a client-visible type.

10

Bean types, qualifiers and dependency injection

@5t at ef ul
public class BookShopBean
ext ends Busi ness
i npl ements BookShop, Auditable {

@ Note

The bean types of a session bean include local interfaces and the bean class
local view (if any). EJB remote interfaces are not considered bean types of a
session bean. You can't inject an EJB using its remote interface unless you define
a resource, which we’ll meet in

Bean types may be restricted to an explicit set by annotating the bean with the @yped annotation
and listing the classes that should be bean types. For instance, the bean types of this bean have
been restricted to Shop<Book>, together with j ava. | ang. Qoj ect :

@yped(Shop. cl ass)
public class BookShop
ext ends Busi ness
i mpl ement s Shop<Book> {

Sometimes, a bean type alone does not provide enough information for the container to
know which bean to inject. For instance, suppose we have two implementations of the
Payment Processor interface: Credit Car dPaynent Processor and Debi t Paynment Processor .
Injecting a field of type Paynment Processor introduces an ambiguous condition. In these cases,
the client must specify some additional quality of the implementation it is interested in. We model
this kind of "quality" using a qualifier.

A qualifier is a user-defined annotation that is itself annotated @ual i f i er . A qualifier annotation
is an extension of the type system. It lets us disambiguate a type without having to fall back to
string-based names. Here's an example of a qualifier annotation:

@ualifier

@rarget ({ TYPE, METHOD, PARAMETER, FIlELD})
@ret ent i on(RUNTI ME)

public @nterface CreditCard {}

11

Chapter 2. More about beans

You may not be used to seeing the definition of an annotation. In fact, this might be the first time
you've encountered one. With CDI, annotation definitions will become a familiar artifact as you'll
be creating them from time to time.

Now that we have defined a qualifier annotation, we can use it to disambiguate an injection point.
The following injection point has the bean type Paynment Pr ocessor and qualifier @r edi t Car d:

@nj ect @reditCard Paynment Processor paynent Processor

For each injection point, the container searches for a bean which satisfies the contract, one which
has the bean type and all the qualifiers. If it finds exactly one matching bean, it injects an instance
of that bean. If it doesn't, it reports an error to the user.

How do we specify that qualifiers of a bean? By annotating the bean class, of course! The
following bean has the qualifier @r edi t Car d and implements the bean type Paynent Pr ocessor .
Therefore, it satisfies our qualified injection point:

@reditCard
public class CreditCardPaynent Processor
i mpl enent s Paynent Processor { ... }

That's not quite the end of the story. CDI also defines a simple resolution rule that helps the
container decide what to do if there is more than one bean that satisfies a particular contract. We'll
get into the details in Chapter 4, Dependency injection and programmatic lookup.

Scope

2.1.2. Scope

The scope of a bean defines the lifecycle and visibility of its instances. The CDI context model is
extensible, accommodating arbitrary scopes. However, certain important scopes are built into the
specification, and provided by the container. Each scope is represented by an annotation type.

For example, any web application may have session scoped bean:

public @essi onScoped
cl ass ShoppingCart inplenents Serializable { ... }

An instance of a session-scoped bean is bound to a user session and is shared by all requests
that execute in the context of that session.

@ Note
Keep in mind that once a bean is bound to a context, it remains in that context
until the context is destroyed. There is no way to manually remove a bean from a
context. If you don’t want the bean to sit in the session indefinitely, consider using
another scope with a shorted lifespan, such as the request or conversation scope.

If a scope is not explicitly specified, then the bean belongs to a special scope called the dependent
pseudo-scope. Beans with this scope live to serve the object into which they were injected, which
means their lifecycle is bound to the lifecycle of that object.

We'll talk more about scopes in Chapter 5, Scopes and contexts.

2.1.3. EL name

If you want to reference a bean in non-Java code that supports Unified EL expressions, for
example, in a JSP or JSF page, you must assign the bean an EL name.

The EL name is specified using the @aned annotation, as shown here:

publ i c @bessi onScoped @laned("cart")
cl ass Shoppi ngCart inplenments Serializable { ... }

Now we can easily use the bean in any JSF or JSP page:

<h: dat aTabl e value="#{cart.lineltens}" var="itenl>

</ h: dat aTabl e>

13

Chapter 2. More about beans

@ Note

The @aned annotation is not what makes the class a bean. Most classes in a
bean archive are already recognized as beans. The @anmed annotation just makes
it possible to reference the bean from the EL, most commonly from a JSF view.

We can let CDI choose a hame for us by leaving off the value of the @aned annotation:

publ i c @bessi onScoped @\aned
cl ass Shoppi ngCart inplenments Serializable { ... }

The name defaults to the unqualified class name, decapitalized; in this case, shoppi ngCart .

2.1.4. Alternatives

We've already seen how qualifiers let us choose between multiple implementations of an
interface at development time. But sometimes we have an interface (or other bean type) whose
implementation varies depending upon the deployment environment. For example, we may want
to use a mock implementation in a testing environment. An alternative may be declared by
annotating the bean class with the @\ t er nat i ve annotation.

public @\ ternative
cl ass MockPaynent Processor extends Paynent Processorlinpl { ... }

We normally annotate a bean @\ t er nati ve only when there is some other implementation of
an interface it implements (or of any of its bean types). We can choose between alternatives
at deployment time by selecting an alternative in the CDI deployment descriptor META- | NF/
beans. xnl of the jar or Java EE module that uses it. Different modules can specify that they use
different alternatives.

We cover alternatives in more detail in Section 4.7, “Alternatives”.

2.1.5. Interceptor binding types

You might be familiar with the use of interceptors in EJB 3. Since Java EE 6, this functionality has
been generalized to work with other managed beans. That’s right, you no longer have to make
your bean an EJB just to intercept its methods. Holler. So what does CDI have to offer above and
beyond that? Well, quite a lot actually. Let’s cover some background.

The way that interceptors were defined in Java EE 5 was counter-intuitive. You were required to
specify the implementation of the interceptor directly on the implementation of the EJB, either in
the @ nt er cept or s annotation or in the XML descriptor. You might as well just put the interceptor

14

Interceptor binding types

code in the implementation! Second, the order in which the interceptors are applied is taken from
the order in which they are declared in the annotation or the XML descriptor. Perhaps this isn't so
bad if you're applying the interceptors to a single bean. But, if you are applying them repeatedly,
then there’'s a good chance that you'll inadvertently define a different order for different beans.
Now that's a problem.

CDI provides a new approach to binding interceptors to beans that introduces a level of
indirection (and thus control). We must define an interceptor binding type to describe the behavior
implemented by the interceptor.

An interceptor binding type is a user-defined annotation that is itself annotated
@nterceptorBinding. It lets us bind interceptor classes to bean classes with no direct
dependency between the two classes.

@ nt er cept or Bi ndi ng

@nherited

@rarget({ TYPE, METHOD })

@Ret ent i on(RUNTI MVE)

public @nterface Transactional {}

The interceptor that implements transaction management declares this annotation:

public @ransactional @ nterceptor
class Transactionlnterceptor { ... }

We can apply the interceptor to a bean by annotating the bean class with the same interceptor
binding type:

publ i c @bessi onScoped @r ansacti onal
cl ass ShoppingCart inplenments Serializable { ... }

Notice that Shoppi ngCart and Tr ansact i onl nt er cept or don’t know anything about each other.

Interceptors are deployment-specific. (We don’'t need a Transacti onl nt er cept or in our unit
tests!) By default, an interceptor is disabled. We can enable an interceptor using the CDI
deployment descriptor META- | NF/ beans. xnl of the jar or Java EE module. This is also where we
specify the interceptor ordering.

We'll discuss interceptors, and their cousins, decorators, in Chapter 9, Interceptors and
Chapter 10, Decorators.

15

Chapter 2. More about beans

2.2. What kinds of classes are beans?

We've already seen two types of beans: JavaBeans and EJB session beans. Is that the
whole story? Actually, it's just the beginning. Let's explore the various kinds of beans that CDI
implementations must support out-of-the-box.

2.2.1. Managed beans

A managed beanis a Java class. The basic lifecycle and semantics of a managed bean are defined
by the Managed Beans specification. You can explicitly declare a managed bean by annotating
the bean class @managedBean, but in CDI you don’t need to. According to the specification, the
CDI container treats any class that satisfies the following conditions as a managed bean:

« |t is not a non-static inner class.
 |tis a concrete class, or is annotated @ecor at or .

« It is not annotated with an EJB component-defining annotation or declared as an EJB bean
classinejb-jar.xnl.

It does not implement j avax. ent er pri se. i nj ect . spi . Ext ensi on.
« It has an appropriate constructor—either:
« the class has a constructor with no parameters, or

* the class declares a constructor annotated @ nj ect .

@ Note
According to this definition, JPA entities are technically managed beans. However,
entities have their own special lifecycle, state and identity model and are usually
instantiated by JPA or using new. Therefore we don’t recommend directly injecting
an entity class. We especially recommend against assigning a scope other than
@ependent to an entity class, since JPA is not able to persist injected CDI proxies.

The unrestricted set of bean types for a managed bean contains the bean class, every superclass
and all interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @ependent .
Managed beans support the @ost Const ruct and @r eDest r oy lifecycle callbacks.

Session beans are also, technically, managed beans. However, since they have their own special
lifecycle and take advantage of additional enterprise services, the CDI specification considers
them to be a different kind of bean.

16

Session beans

2.2.2. Session beans

Session beans belong to the EJB specification. They have a special lifecycle, state management
and concurrency model that is different to other managed beans and non-managed Java objects.
But session beans participate in CDI just like any other bean. You can inject one session bean
into another session bean, a managed bean into a session bean, a session bean into a managed
bean, have a managed bean observe an event raised by a session bean, and so on.

@ Note
Message-driven and entity beans are by nature non-contextual objects and may
not be injected into other objects. However, message-driven beans can take
advantage of some CDI functionality, such as dependency injection, interceptors
and decorators. In fact, CDI will perform injection into any session or message-
driven bean, even those which are not contextual instances.

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and
their superinterfaces. If the session bean has a bean class local view, the unrestricted set of bean
types contains the bean class and all superclasses. In addition, j ava. | ang. Obj ect is a bean type
of every session bean. But remote interfaces are not included in the set of bean types.

There’s no reason to explicitly declare the scope of a stateless session bean or singleton session
bean. The EJB container controls the lifecycle of these beans, according to the semantics of the
@t at el ess or @i ngl et on declaration. On the other hand, a stateful session bean may have
any scope.

Stateful session beans may define a remove method, annotated @Renove, that is used by the
application to indicate that an instance should be destroyed. However, for a contextual instance of
the bean—an instance under the control of CDI—this method may only be called by the application
if the bean has scope @ependent. For beans with other scopes, the application must let the
container destroy the bean.

So, when should we use a session bean instead of a plain managed bean? Whenever we need
the advanced enterprise services offered by EJB, such as:

« method-level transaction management and security,
e concurrency management,

« instance-level passivation for stateful session beans and instance-pooling for stateless session
beans,

* remote or web service invocation, or

« timers and asynchronous methods,

17

Chapter 2. More about beans

When we don't need any of these things, an ordinary managed bean will serve just fine.

Many beans (including any @essi onScoped or @ppl i cati onScoped beans) are available for
concurrent access. Therefore, the concurrency management provided by EJB 3.2 is especially
useful. Most session and application scoped beans should be EJBs.

Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit from
the advanced container-managed lifecycle defined by the EJB stateless/stateful/singleton model,
with its support for passivation and instance pooling.

Finally, it's usually obvious when method-level transaction management, method-level security,
timers, remote methods or asynchronous methods are needed.

The point we're trying to make is: use a session bean when you need the services it provides, not
just because you want to use dependency injection, lifecycle management, or interceptors. Java
EE 7 provides a graduated programming model. It's usually easy to start with an ordinary managed
bean, and later turn it into an EJB just by adding one of the following annotations: @5t at el ess,
@5t at ef ul or @i ngl et on.

On the other hand, don't be scared to use session beans just because you've heard your friends
say they're "heavyweight". It's nothing more than superstition to think that something is "heavier"
just because it's hosted natively within the Java EE container, instead of by a proprietary bean
container or dependency injection framework that runs as an additional layer of obfuscation. And
as a general principle, you should be skeptical of folks who use vaguely defined terminology like
"heavyweight".

2.2.3. Producer methods

Not everything that needs to be injected can be boiled down to a bean class instantiated by the
container using new. There are plenty of cases where we need additional control. What if we need
to decide at runtime which implementation of a type to instantiate and inject? What if we need
to inject an object that is obtained by querying a service or transactional resource, for example
by executing a JPA query?

A producer method is a method that acts as a source of bean instances. The method declaration
itself describes the bean and the container invokes the method to obtain an instance of the bean
when no instance exists in the specified context. A producer method lets the application take full
control of the bean instantiation process.

A producer method is declared by annotating a method of a bean class with the @r oduces
annotation.
i mport javax.enterprise.inject.Produces;

@\ppl i cati onScoped
public cl ass RandomNunber Gener at or {

18

Producer methods

private java.util.Random random = new java. util.Random SystemcurrentTimeM Ilis());

@°r oduces @Named @Random i nt get RandomNunber () {
return random next | nt (100);

We can't write a bean class that is itself a random number. But we can certainly write a method
that returns a random number. By making the method a producer method, we allow the return
value of the method—in this case an | nt eger —to be injected. We can even specify a qualifier—in
this case @andom a scope—which in this case defaults to @ependent , and an EL nhame—which
in this case defaults to randomNunber according to the JavaBeans property name convention.
Now we can get a random number anywhere:

@ nj ect @andom i nt randomNunber ;
Even in a Unified EL expression:
<p>Your raffle nunmber is #{randomN\unber}. </ p>

A producer method must be a non-abstract method of a managed bean class or session bean
class. A producer method may be either static or non-static. If the bean is a session bean, the
producer method must be either a business method of the EJB or a static method of the bean class.

The bean types of a producer method depend upon the method return type:

« If the return type is an interface, the unrestricted set of bean types contains the return type, all
interfaces it extends directly or indirectly and j ava. | ang. Obj ect .

* If a return type is primitive or is a Java array type, the unrestricted set of bean types contains
exactly two types: the method return type and j ava. | ang. Qbj ect.

« If the return type is a class, the unrestricted set of bean types contains the return type, every
superclass and all interfaces it implements directly or indirectly.

@ Note

Producer methods and fields may have a primitive bean type. For the purpose
of resolving dependencies, primitive types are considered to be identical to their
corresponding wrapper types in j ava. | ang.

19

Chapter 2. More about beans

If the producer method has method parameters, the container will look for a bean that satisfies
the type and qualifiers of each parameter and pass it to the method automatically—another form
of dependency injection.

@r oduces Set <Rol es> get Rol es(User user) {
return user. getRol es();

We'll talk much more about producer methods in Chapter 8, Producer methods.

2.2.4. Producer fields

A producer field is a simpler alternative to a producer method. A producer field is declared by
annotating a field of a bean class with the @r oduces annotation—the same annotation used for
producer methods.

i mport javax.enterprise.inject.Produces;

public class Shop {
@°r oduces Paynent Processor payment Processor =;
@r oduces @cat al og List<Product> products =;

The rules for determining the bean types of a producer field parallel the rules for producer methods.

A producer field is really just a shortcut that lets us avoid writing a useless getter method. However,
in addition to convenience, producer fields serve a specific purpose as an adaptor for Java EE
component environment injection, but to learn more about that, you'll have to wait until Chapter 14,
Java EE component environment resources. Because we can't wait to get to work on some
examples.

20

Chapter 3.

Chapter 3. JSF web application
example

Let’s illustrate these ideas with a full example. We're going to implement user login/logout for
an application that uses JSF. First, we'll define a request-scoped bean to hold the username
and password entered during login, with constraints defined using annotations from the Bean
Validation specification:

@\aned @Request Scoped

public class Credentials {
private String usernane;
private String password;

@Not Nul I @-engt h(m n=3, max=25)
public String getUsername() { return usernanme; }
public void setUsernane(String usernane) { this.usernane = usernane; }

@Not Nul I @-engt h(m n=6, max=20)
public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

This bean is bound to the login prompt in the following JSF form:

<h: f or >
<h: panel Gid colums="2" rendered="#{!I ogi n. | oggedl n}" >
<f:val i dat eBean>
<h: out put Label for="user name">User nane: </ h: out put Label >
<h: i nput Text id="usernanme" val ue="#{credential s.usernane}"/>
<h: out put Label for="password">Passwor d: </ h: out put Label >
<h:input Secret id="password" val ue="#{credential s. password}"/>
</f:val i dat eBean>
</ h: panel G'i d>
<h: commandBut t on val ue="Logi n" action="#{login.login}" rendered="#{!
| ogi n. | oggedi n}"/ >

<h: commandBut t oval ue="Logoutdcti on="#{| ogi n. | ogout }r'ender ed="#{| ogi n. | oggedI n}"/

>
</ h: fornp

Users are represented by a JPA entity:

21

Chapter 3. JSF web applicatio...

@ntity
public class User {

private @lot Nul | @ength(mi n=3, max=25) @d String usernane;
private @otNull @ength(m n=6, nmax=20) String password;

public String getUsernanme() { return usernanme; }
public void setUsernane(String usernane) { this.username = usernane; }
public String setPassword(String password) { this.password = password; }

(Note that we're also going to need a per si st ence. xnl file to configure the JPA persistence unit
containing User .)

The actual work is done by a session-scoped bean that maintains information about the currently
logged-in user and exposes the User entity to other beans:

@bessi onScoped @\aned
public class Login inplenents Serializable {

@nject Credentials credentials;
@ nj ect @Jser Dat abase EntityManager user Dat abase;

private User user;

public void login() {
Li st <User> results = userDat abase. creat eQuery(
"select u from User u where u.usernane = :usernanme and u.password
: password")
. set Paramet er ("usernane", credential s. getUsername())
. set Paramet er ("password", credential s. getPassword())
.getResul tList();

if (!results.isEnmpty()) {
user = results.get(0);

}
el se {

/'l perhaps add code here to report a failed | ogin
}

public void | ogout () {
user = null;

public bool ean isLoggedln() {
return user !'= null;

22

@r oduces @oggedln User getCurrentUser() {
return user;

@oggedl n and @Jser Dat abase are custom qualifier annotations:

@ualifier

@Ret ent i on(RUNTI ME)

@rarget ({ TYPE, METHOD, PARAMETER, FIELD})
public @nterface Loggedln {}

@ualifier

@Ret ent i on(RUNTI MVE)

@ar get ({ METHOD, PARAMETER, FI ELD})
public @nterface UserDatabase {}

We need an adaptor bean to expose our typesafe Ent i t yManager :

cl ass User Dat abaseProducer {
@r oduces @Jser Dat abase @Per si st enceCont ext
static EntityManager userDat abase;

Now Document Edi t or, or any other bean, can easily inject the current user:

public class Docunent Edi tor {
@ nj ect Document docunent;
@nj ect @uoggedln User currentUser;
@ nj ect @ocunent Dat abase EntityManager docDat abase;

public void save() {

docunent . set Creat edBy(current User) ;
docDat abase. persi st (docunent) ;

Or we can reference the current user in a JSF view:

23

Chapter 3. JSF web applicatio...

<h: panel G oup rendered="#{l ogi n. | oggedl n}" >
signed in as #{currentUser. usernane}
</ h: panel G oup>

Hopefully, this example gave you a taste of the CDI programming model. In the next chapter, we’ll
explore dependency injection in greater depth.

24

Chapter 4.

Chapter 4. Dependency injection
and programmatic lookup

One of the most significant features of CDI—certainly the most recognized—is dependency
injection; excuse me, typesafe dependency injection.

4.1. Injection points

The @ nj ect annotation lets us define an injection point that is injected during bean instantiation.
Injection can occur via three different mechanisms.

Bean constructor parameter injection:

public class Checkout {
private final ShoppingCart cart;
@ nj ect

publ i ¢ Checkout (Shoppi ngCart cart) {
this.cart = cart;

A bean can only have one injectable constructor.

Initializer method parameter injection:

public class Checkout {
private ShoppingCart cart;
@ nj ect

voi d set Shoppi ngCart (Shoppi ngCart cart) {
this.cart = cart;

25

Chapter 4. Dependency injecti...

And direct field injection:

public class Checkout {

private @nject ShoppingCart cart;

—

Dependency injection always occurs when the bean instance is first instantiated by the container.
Simplifying just a little, things happen in this order:

First, the container calls the bean constructor (the default constructor or the one annotated
@ nj ect), to obtain an instance of the bean.

Next, the container initializes the values of all injected fields of the bean.

Next, the container calls all initializer methods of bean (the call order is not portable, don't rely
on it).

Finally, the @ost Const ruct method, if any, is called.

(The only complication is that the container might call initializer methods declared by a superclass
before initializing injected fields declared by a subclass.)

CDI also supports parameter injection for some other methods that are invoked by the container.
For instance, parameter injection is supported for producer methods:

What gets injected

@r oduces Checkout createCheckout (ShoppingCart cart) {
return new Checkout (cart);

This is a case where the @ nj ect annotation is not required at the injection point. The same is
true for observer methods (which we’ll meet in Chapter 11, Events) and disposer methods.

4.2. What gets injected

The CDI specification defines a procedure, called typesafe resolution, that the container follows
when identifying the bean to inject to an injection point. This algorithm looks complex at first,
but once you understand it, it's really quite intuitive. Typesafe resolution is performed at system
initialization time, which means that the container will inform the developer immediately if a bean’s
dependencies cannot be satisfied.

The purpose of this algorithm is to allow multiple beans to implement the same bean type and
either:

« allow the client to select which implementation it requires using a qualifier or

- allow the application deployer to select which implementation is appropriate for a particular
deployment, without changes to the client, by enabling or disabling an alternative, or

- allow the beans to be isolated into separate modules.

Obviously, if you have exactly one bean of a given type, and an injection point with that same
type, then bean A is going to go into slot A. That's the simplest possible scenario. When you first
start your application, you'll likely have lots of those.

But then, things start to get complicated. Let’s explore how the container determines which bean
to inject in more advanced cases. We'll start by taking a closer look at qualifiers.

4.3. Qualifier annotations

If we have more than one bean that implements a particular bean type, the injection point can
specify exactly which bean should be injected using a qualifier annotation. For example, there
might be two implementations of Paynent Pr ocessor :

@ynchr onous
public class SynchronousPaynent Processor inplenments Payment Processor {
public void process(Paynent paynent) { ... }

@\synchr onous
public class AsynchronousPaynent Processor inplenments Paynent Processor {

27

Chapter 4. Dependency injecti...

public void process(Payment paynent) { ... }

Where @ynchr onous and @synchr onous are qualifier annotations:

@ualifier

@Ret ent i on(RUNTI ME)

@ar get ({ TYPE, METHOD, FIELD, PARANVETER})
public @nterface Synchronous {}

@ualifier

@Ret ent i on(RUNTI MVE)

@ar get ({ TYPE, METHOD, FIELD, PARAMVETER})
public @nterface Asynchronous {}

A client bean developer uses the qualifier annotation to specify exactly which bean should be
injected.

Using field injection:

@ nj ect @ynchronous Paynent Processor syncPaynent Processor;
@ nj ect @\synchronous Paynent Processor asyncPayment Processor;

Using initializer method injection:

@ nj ect
public void set Paynent Processor s(@ynchronous Paynent Processor syncPaynent Processor,
@\synchr onous Paynent Processor asyncPayment Processor) {
t hi s. syncPayment Processor = syncPaynment Processor;
t hi s. asyncPayment Processor = asyncPayment Processor;

Using constructor injection:

@ nj ect
publ i c Checkout (@ynchronous Paynent Processor syncPaynent Processor,
@synchronous Paynent Processor asyncPaynent Processor) {
t hi s. syncPayment Processor = syncPaynent Processor;
t hi s. asyncPayment Processor = asyncPayment Processor;

28

The built-in qualifiers @Default and @Any

Qualifier annotations can also qualify method arguments of producer, disposer and observer
methods. Combining qualified arguments with producer methods is a good way to have an
implementation of a bean type selected at runtime based on the state of the system:

@°r oduces
Paynment Processor get Paynent Processor (@ynchronous Paynent Processor syncPaynent Processor,
@\synchr onous Payment Processor asyncPaynment Processor) {
return i sSynchronous() ? syncPaynent Processor : asyncPayment Processor;

If an injected field or a parameter of a bean constructor or initializer method is not explicitly
annotated with a qualifier, the default qualifier,@ef aul t , is assumed.

Now, you may be thinking, "What's the different between using a qualifier and just specifying
the exact implementation class you want?" It's important to understand that a qualifier is like an
extension of the interface. It does not create a direct dependency to any particular implementation.
There may be multiple alternative implementations of @synchr onous Paynent Processor !

4.4. The built-in qualifiers aefaut and any

Whenever a bean or injection point does not explicitly declare a qualifier, the container assumes
the qualifier @ef aul t. From time to time, you'll need to declare an injection point without
specifying a qualifier. There's a qualifier for that too. All beans have the qualifier’ @Any".
Therefore, by explicitly specifying @ny at an injection point, you suppress the default qualifier,
without otherwise restricting the beans that are eligible for injection.

This is especially useful if you want to iterate over all beans with a certain bean type. For example:

i mport javax.enterprise.inject.!|nstance;

@ nj ect
voi d initServices(@\ny |nstance<Service> services) {
for (Service service: services) {
service.init();

4.5. Qualifiers with members

Java annotations can have members. We can use annotation members to further discriminate a
qualifier. This prevents a potential explosion of new annotations. For example, instead of creating

29

Chapter 4. Dependency injecti...

several qualifiers representing different payment methods, we could aggregate them into a single
annotation with a member:

@ualifier
@Ret ent i on(RUNTI MVE)
@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue();

Then we select one of the possible member values when applying the qualifier:
private @nject @ayBy(CHECK) Payment Processor checkPayment;

We can force the container to ignore a member of a qualifier type by annotating the member
@\onbi ndi ng.

@ualifier
@ret ent i on(RUNTI ME)
@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue();
@Nonbi ndi ng String comment () default

4.6. Multiple qualifiers

An injection point may specify multiple qualifiers:
@ nj ect @ynchronous @Rel i abl e Paynment Processor syncPaynent Processor;
Then only a bean which has both qualifier annotations would be eligible for injection.

@ynchronous @rel i abl e
public class SynchronousRel i abl ePaynent Processor i npl enents Paynment Processor {
public void process(Paynent paynent) { ... }

30

Alternatives

4.7. Alternatives

Alternatives are beans whose implementation is specific to a particular client module or
deployment scenario. This alternative defines a mock implementation of both @ynchronous
Paynent Processor and @synchronous Paynent Processor, all in one:

@\ ternative @ynchronous @A\synchronous
public class MckPaynent Processor inpl enents Paynent Processor {
public void process(Paynent paynent) { ... }

By default, @l t er nat i ve beans are disabled. We need to enable an alternative in the beans. xml
descriptor of a bean archive to make it available for instantiation and injection. However, this
activation only applies to the beans in that archive. From CDI 1.1 onwards the alternative can be
enabled for the whole application using @ri ori t y annotation.

<beans
xm ns="http://xm ns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="
http://xm ns.jcp.org/ xm /ns/javaee
http://xmns.jcp.org/ xm/ns/javaeel/ beans_1 1.xsd">
<alternatives>
<cl ass>or g. myconpany. nock. MockPaynent Pr ocessor </ cl ass>
</al ternatives>
</ beans>

When an ambiguous dependency exists at an injection point, the container attempts to resolve the
ambiguity by looking for an enabled alternative among the beans that could be injected. If there is
exactly one enabled alternative, that's the bean that will be injected. If there are more beans with
priority, the one with the highest priority value is selected.

4.8. Fixing unsatisfied and ambiguous dependencies

The typesafe resolution algorithm fails when, after considering the qualifier annotations on
all beans that implement the bean type of an injection point and filtering out disabled beans
(@ t er nat i ve beans which are not explicitly enabled), the container is unable to identify exactly
one bean to inject. The container will abort deployment, informing us of the unsatisfied or
ambiguous dependency.

During the course of your development, you’re going to encounter this situation. Let's learn how
to resolve it.

To fix an unsatisfied dependency, either:

31

Chapter 4. Dependency injecti...

« create a bean which implements the bean type and has all the qualifier types of the injection
point,

« make sure that the bean you already have is in the classpath of the module with the injection
point, or

« explicitly enable an @\ t er nat i ve bean that implements the bean type and has the appropriate
qualifier types, using beans. xm .

* enable an @ t er nat i ve bean that implements the bean type and has the appropriate qualifier
types, using @ri ori ty annotation.

To fix an ambiguous dependency, either:

* introduce a qualifier to distinguish between the two implementations of the bean type,

« exclude one of the beans from discovery (either by means of @Vetoed [http://docs.jboss.org/
cdi/api/l.1l/javax/enterprise/inject/Vetoed.html] or beans. xm),

« disable one of the beans by annotating it @\ t er nati ve,

« move one of the implementations to a module that is not in the classpath of the module with
the injection point, or

 disable one of two @\ ternative beans that are trying to occupy the same space, using
beans. xm ,

» change priority value of one of two @l t er nat i ve beans with the @i ori ty if they have the
same highest priority value.

Just remember: "There can be only one."

On the other hand, if you really do have an optional or multivalued injection point, you should
change the type of your injection point to | nst ance, as we'll see in Section 4.10, “Obtaining a
contextual instance by programmatic lookup”.

Now there’s one more issue you need to be aware of when using the dependency injection service.

4.9. Client proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance, unless the
bean is a dependent object (scope @ependent).

Imagine that a bean bound to the application scope held a direct reference to a bean bound
to the request scope. The application-scoped bean is shared between many different requests.
However, each request should see a different instance of the request scoped bean—the current
onel!

Now imagine that a bean bound to the session scope holds a direct reference to a bean bound to
the application scope. From time to time, the session context is serialized to disk in order to use

32

http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html
http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html
http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html

Obtaining a contextual instance by programmatic lookup

memory more efficiently. However, the application scoped bean instance should not be serialized
along with the session scoped bean! It can get that reference any time. No need to hoard it!

Therefore, unless a bean has the default scope @ependent, the container must indirect all
injected references to the bean through a proxy object. This client proxy is responsible for ensuring
that the bean instance that receives a method invocation is the instance that is associated with
the current context. The client proxy also allows beans bound to contexts such as the session
context to be serialized to disk without recursively serializing other injected beans.

Unfortunately, due to limitations of the Java language, some Java types cannot be proxied by the
container. If an injection point declared with one of these types resolves to a bean with any scope
other than @ependent , the container will abort deployment, informing us of the problem.

The following Java types cannot be proxied by the container:

« classes which don’t have a non-private constructor with no parameters, and
« classes which are declared f i nal or have a fi nal method,
« arrays and primitive types.

It's usually very easy to fix an unproxyable dependency problem. If an injection point of type X
results in an unproxyable dependency, simply:

» add a constructor with no parameters to X,
« change the type of the injection point to’Instance<X>",

« introduce an interface Y, implemented by the injected bean, and change the type of the injection
pointto Y, or

« if all else fails, change the scope of the injected bean to @ependent .

@ Note
Weld also supports a non-standard workaround for this limitation. See
for more information.

4.10. Obtaining a contextual instance by programmatic
lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For
example, it may not be used when:

« the bean type or qualifiers vary dynamically at runtime, or

» depending upon the deployment, there may be no bean which satisfies the type and qualifiers, or

33

Chapter 4. Dependency injecti...

» we would like to iterate over all beans of a certain type.

In these situations, the application may obtain an instance of the interface |nstance,

parameterized for the bean type, by injection:

@ nj ect | nst ance<Paynent Processor > payment Processor Sour ce;

The get () method of I nst ance produces a contextual instance of the bean.

Payment Processor p = payment Processor Sour ce. get () ;

Qualifiers can be specified in one of two ways:

* by annotating the | nst ance injection point, or
by passing qualifiers to the sel ect () of Event.

Specifying the qualifiers at the injection point is much, much easier:

@ nj ect @\synchronous | nstance<Paynment Processor> paynent Processor Sour ce;

Now, the Payment Pr ocessor returned by get () will have the qualifier @synchr onous.

Alternatively, we can specify the qualifier dynamically. First, we add the @ny qualifier to the

injection point, to suppress the default qualifier. (All beans have the qualifier @ny .)

i mport javax.enterprise.inject.!|nstance;

@nj ect @ny | nstance<Paynent Processor> paynent Processor Sour ce;

Next, we need to obtain an instance of our qualifier type. Since annotations are interfaces, we
can't just write new Asynchronous() . It's also quite tedious to create a concrete implementation
of an annotation type from scratch. Instead, CDI lets us obtain a qualifier instance by subclassing
the helper class Annot ati onLiteral .

cl ass AsynchronousQualifier
ext ends Annot ati onLiteral <Asynchronous> i npl enents Asynchronous {}

In some cases, we can use an anonymous class:

34

The InjectionPoint object

Paynment Processor p = paynent Processor Sour ce
. sel ect (new Annot ati onLi t eral <Asynchronous>() {});

However, we can’t use an anonymous class to implement a qualifier type with members.

Now, finally, we can pass the qualifier to the sel ect () method of | nst ance.

Annot ation qualifier = synchronously ?
new SynchronousQualifier() : new AsynchronousQualifier();
Paynent Processor p = anyPaynment Processor. sel ect (qualifier).get().process(paynent);

4.11. The nj ect i onPoi nt ObjeCt

There are certain kinds of dependent objects (beans with scope @ependent) that need to know
something about the object or injection point into which they are injected in order to be able to
do what they do. For example:

» The log category for a Logger depends upon the class of the object that owns it.

« Injection of a HTTP parameter or header value depends upon what parameter or header name
was specified at the injection point.

« Injection of the result of an EL expression evaluation depends upon the expression that was
specified at the injection point.

A bean with scope @ependent may inject an instance of | nj ecti onPoi nt and access metadata
relating to the injection point to which it belongs.

Let’s look at an example. The following code is verbose, and vulnerable to refactoring problems:
Logger | og = Logger. get Logger (MyC ass. cl ass. get Nane());

This clever little producer method lets you inject a JDK Logger without explicitly specifying the
log category:

i mport javax.enterprise.inject.spi.lnjectionPoint;
i nport javax.enterprise.inject.Produces;
cl ass LogFactory {

@°r oduces Logger createlLogger(lnjectionPoint injectionPoint) {

return Logger.getLogger (injectionPoint.getMenber().getDeclaringC ass().getName());

35

Chapter 4. Dependency injecti...

We can now write:

@ nj ect Logger |og;

Not convinced? Then here’s a second example. To inject HTTP parameters, we need to define
a qualifier type:

@ualifier
@Ret ent i on(RUNTI MVE)
@arget ({ TYPE, METHOD, FIELD, PARAMETER})
public @nterface HtpParam {
@Nonbi ndi ng public String val ue();

We would use this qualifier type at injection points as follows:

@t t pPar am(" usernane") @nject String usernang;
@+t t pPar am(" password") @nject String password;

The following producer method does the work:
i nport javax.enterprise.inject.Produces;
i mport javax.enterprise.inject.spi.lnjectionPoint;

cl ass HttpParans

@°r oduces @Htt pParam("")

String get ParanVal ue(lnjectionPoint ip) {
Servl et Request request = (Servl et Request) FacesContext.getCurrentlnstance(). get External
return request.getParaneter(ip.getAnnotated().get Annotati on(HttpParam cl ass).val ue());

Note that acquiring of the request in this example is JSF-centric. For a more generic solution you
could write your own producer for the request and have it injected as a method parameter.

Note also that the val ue() member of the Ht t pPar amannotation is ignored by the container since
it is annotated @onbi ndi ng.

36

The InjectionPoint object

The container provides a built-in bean that implements the | nj ect i onPoi nt interface:

public i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

nterface |njectionPoint {

Cc
Cc
Cc
Cc
Cc
Cc
Cc

Type get Type();

Set <Annot ati on> get Qualifiers();
Bean<?> get Bean();

Menber get Menber () ;

Annot at ed get Annot at ed() ;

bool ean isDel egate();

bool ean i sTransi ent ();

37

38

Chapter 5.

Chapter 5. Scopes and contexts

So far, we've seen a few examples of scope type annotations. The scope of a bean determines
the lifecycle of instances of the bean. The scope also determines which clients refer to which
instances of the bean. According to the CDI specification, a scope determines:

« When a new instance of any bean with that scope is created
« When an existing instance of any bean with that scope is destroyed
« Which injected references refer to any instance of a bean with that scope

For example, if we have a session-scoped bean, Current User, all beans that are called in the
context of the same Ht t pSessi on will see the same instance of Curr ent User . This instance will
be automatically created the first time a Cur r ent User is needed in that session, and automatically
destroyed when the session ends.

@ Note
JPA entities aren’t a great fit for this model. Entities have their whole own lifecycle
and identity model which just doesn’t map naturally to the model used in CDI.
Therefore, we recommend against treating entities as CDI beans. You're certainly
going to run into problems if you try to give an entity a scope other than the default
scope @ependent . The client proxy will get in the way if you try to pass an injected
instance to the JPA Ent i t yManager .

5.1. Scope types

CDI features an extensible context model. It's possible to define new scopes by creating a new
scope type annotation:

@copeType

@ret ent i on(RUNTI ME)

@rar get ({ TYPE, METHOD})

public @nterface C usterScoped {}

Of course, that's the easy part of the job. For this scope type to be useful, we will also need to
define a Cont ext object that implements the scope! Implementing a Cont ext is usually a very
technical task, intended for framework development only.

We can apply a scope type annotation to a bean implementation class to specify the scope of
the bean:

39

Chapter 5. Scopes and contexts

@ ust er Scoped
public class SecondLevel Cache { ... }

Usually, you’ll use one of CDI’s built-in scopes.

5.2. Built-in scopes
CDI defines four built-in scopes:

* @Request Scoped

* @essi onScoped

e @\ppl i cationScoped
* @onversationScoped

For a web application that uses CDI, any servlet request has access to active request, session and
application scopes. Furthermore, since CDI 1.1 the conversation context is active during every
servlet request.

The request and application scopes are also active:
« during invocations of EJB remote methods,

« during invocations of EJB asynchronous methods,

during EJB timeouts,

» during message delivery to a message-driven bean,
 during web service invocations, and

 during @Post Const ruct callback of any bean

If the application tries to invoke a bean with a scope that does not have an active context, a
Cont ext Not Act i veExcept i on is thrown by the container at runtime.

Managed beans with scope @essi onScoped or @onver sati onScoped must be serializable,
since the container passivates the HTTP session from time to time.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so let's
not waste time discussing them here. One of the scopes, however, is new.

5.3. The conversation scope

The conversation scope is a bit like the traditional session scope in that it holds state associated
with a user of the system, and spans multiple requests to the server. However, unlike the session
scope, the conversation scope:

* is demarcated explicitly by the application, and

40

Conversation demarcation

 holds state associated with a particular web browser tab in a web application (browsers tend
to share domain cookies, and hence the session cookie, between tabs, so this is not the case
for the session scope).

A conversation represents a task—a unit of work from the point of view of the user. The
conversation context holds state associated with what the user is currently working on. If the user
is doing multiple things at the same time, there are multiple conversations.

The conversation context is active during any servlet request (since CDI 1.1). Most conversations
are destroyed at the end of the request. If a conversation should hold state across multiple
requests, it must be explicitly promoted to a long-running conversation.

5.3.1. Conversation demarcation

CDiI provides a built-in bean for controlling the lifecycle of conversations in a CDI application. This
bean may be obtained by injection:

@ nj ect Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation,
call the begi n() method from application code. To schedule the current long-running conversation
context for destruction at the end of the current request, call end() .

In the following example, a conversation-scoped bean controls the conversation with which it is
associated:

i nport javax.enterprise.inject.Produces;
i mport javax.inject.Inject;
i mport javax. persi stence. Persi st enceCont ext Type. EXTENDED;

@Conver sati onScoped @t at ef ul
public class OrderBuilder {
private Order order;
private @nject Conversation conversation;
private @persistenceContext(type = EXTENDED) EntityManager em

@°roduces public Order getOder() {
return order;

public Order createOder() {
order = new Order();
conversati on. begin();
return order;

41

Chapter 5. Scopes and contexts

public void addLi neltem Product product, int quantity) {
order. add(new Lineltem(product, quantity));

public void saveOrder (O der order) ({
em persi st (order);
conversation. end();

@Renove
public void destroy() {}

This bean is able to control its own lifecycle through use of the Conver sat i on API. But some other
beans have a lifecycle which depends completely upon another object.

5.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form
submission) or redirect. It does not automatically propagate with non-faces requests, for example,
navigation via a link.

We can force the conversation to propagate with a non-faces request by including
the unique identifier of the conversation as a request parameter. The CDI specification
reserves the request parameter named cid for this use. The unique identifier of the
conversation may be obtained from the Conversati on object, which has the EL bean name
j avax. enterprise.context.conversation.

Therefore, the following link propagates the conversation:

<a href ="/ addPr oduct . j sp?
ci d=#{j avax. enterpri se. context.conversation.id}">Add Product

It's probably better to use one of the link components in JSF 2:

<h: i nk outcone="/addProduct.xhtm " val ue="Add Product">
<f:param nane="ci d" val ue="#{j avax. enterprise. context.conversation.id}"/>
</ h:link>

Tip

The conversation context propagates across redirects, making it very easy to
implement the common POST-then-redirect pattern, without resort to fragile

42

Conversation timeout

constructs such as a "flash" object. The container automatically adds the

conversation id to the redirect URL as a request parameter.

In certain scenarios it may be desired to suppress propagation of a long-running conversation.
The conver sat i onPr opagat i on request parameter (introduced in CDI 1.1) may be used for this
purpose. If the conver sat i onPr opagat i on request parameter has the value none , the container
will not reassociate the existing conversation but will instead associate the request with a new
transient conversation even though the conversation id was propagated.

5.3.3. Conversation timeout

The container is permitted to destroy a conversation and all state held in its context at any time in
order to conserve resources. A CDI implementation will normally do this on the basis of some kind
of timeout—though this is not required by the specification. The timeout is the period of inactivity
before the conversation is destroyed (as opposed to the amount of time the conversation is active).

The Conver sati on object provides a method to set the timeout. This is a hint to the container,
which is free to ignore the setting.

conversation.setTi meout (timeoutIlnMIlis);

5.3.4. CDI Conversation filter

The conversation management is not always smooth. For example, if the propagated conversation
cannot be restored, the javax. enterprise. cont ext. Nonexi st ent Conver sati onExcepti on
is thrown. Or if there are concurrent requests for a one long-running conversation,
‘javax.enterprise.context.BusyConversationException " is thrown. For such cases, developer has
no opportunity to deal with the exception by default, as the conversation associated with a Servlet
request is determined at the beginning of the request before calling any service() method of any
servlet in the web application, even before calling any of the filters in the web application and
before the container calls any ServletRequestListener or AsyncListener in the web application.

To be allowed to handle the exceptions, a filter defined in the CDI 1.1 with the name ~ CDI
Conversation Filter * can be used. By mapping the * CDI Conversation Filter ~ in the web.xml
just after some other filters, we are able to catch the exceptions in them since the ordering in
the web.xml specifies the ordering in which the filters will be called (described in the servlet
specification).

In the following example, a filter MyFilter checks for the BusyConversationException thrown
during the conversation association. In the web.xml example, the filter is mapped before the CDI
Conversation Filter.

public class MyFilter inplements Filter {

43

Chapter 5. Scopes and contexts

@verride
public void doFilter(Servl et Request request, Servl et Response response, FilterChain chain)
throws | CException, ServletException {

try {
chai n. doFi |l ter(request, response);

} catch (BusyConversati onException e) {
response. set Cont ent Type("text/plain");
response. getWiter().print("BusyConversati onException");

To make it work, we need to map our MyFilter before the CDI Conversation Filter in the web.xml
file.

<filter-mppi ng>
<filter-name>My Filter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

<filter-mappi ng>
<filter-name>CDI Conversation Filter</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

Tip

The mapping of the CDI Conversation Filter determines when Weld reads
the ci d request parameter. This process forces request body parsing. If your
application relies on setting a custom character encoding for the request or parsing
the request body itself by reading an I nput St r eam or Reader, make sure that
this is performed in a filter that executes before the CDI Conversation Filter is
executed. See this FAQ page for details [http://weld.cdi-spec.org/documentation/
#3]. Alternatively, the lazy conversation context initialization (see below) may be
used.

5.3.5. Lazy and eager conversation context initialization

Conversation context may be initialized lazily or eagerly.

When initialized lazily, the conversation context (no matter if transient or long-running) is only
initialized when a @onver sat i onScoped bean is accessed for the first time. At that point, the ci d

44

http://weld.cdi-spec.org/documentation/#3
http://weld.cdi-spec.org/documentation/#3
http://weld.cdi-spec.org/documentation/#3

The singleton pseudo-scope

parameter is read and the conversation is restored. The conversation context may not be initialized
at all throughout the request processing if no conversation state is accessed. Note that if a problem
occurs during this delayed initialization, the conversation state access (bean method invocation)
may result in BusyConver sati onException or Nonexi st ent Conver sati onExcepti on being
thrown.

When initialized eagerly, the conversation context is initialized at a predefined time. Either at the
beginning of the request processing before any listener, filter or servlet is invoked or, if the CDI
Conversation Filter is mapped, during execution of this filter.

Conversation context initialization = mode may be configured using the
org.j boss. wel d. cont ext . conversati on. | azy init parameter.

<cont ext - par an>
<par am name>or g. j boss. wel d. cont ext. conversati on. | azy</ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

If the init parameter is not set, the following default behavior applies:

« If the CDI Conversation Filter is mapped, the conversation context is initialized eagerly
within this filter

« Otherwise, the conversation context is initialized lazily

5.4. The singleton pseudo-scope

In addition to the four built-in scopes, CDI also supports two pseudo-scopes. The first is the
singleton pseudo-scope, which we specify using the annotation @i ngl et on.

@ Note
Unlike the other scopes, which belong to the package
javax. enterprise. context, the @5ingl eton annotation is defined in the
package j avax. i nj ect .

You can guess what "singleton" means here. It means a bean that is instantiated once.
Unfortunately, there’s a little problem with this pseudo-scope. Beans with scope @5i ngl et on
don’t have a proxy object. Clients hold a direct reference to the singleton instance. So we
need to consider the case of a client that can be serialized, for example, any bean with
scope @essi onScoped Or @onver sat i onScoped, any dependent object of a bean with scope
@sessi onScoped Or @onver sat i onScoped, or any stateful session bean.

45

Chapter 5. Scopes and contexts

Now, if the singleton instance is a simple, immutable, serializable object like a string, a number or
a date, we probably don’t mind too much if it gets duplicated via serialization. However, that makes
it no stop being a true singleton, and we may as well have just declared it with the default scope.

There are several ways to ensure that the singleton bean remains a singleton when its client gets
serialized:

« have the singleton bean implement wri t eResol ve() and r eadRepl ace() (as defined by the
Java serialization specification),

* make sure the client keeps only a transient reference to the singleton bean, or
« give the client a reference of type I nst ance<X> where X is the bean type of the singleton bean.

A fourth, better solution is to instead use @\ppl i cati onScoped, allowing the container to proxy
the bean, and take care of serialization problems automatically.

5.5. The dependent pseudo-scope

Finally, CDI features the so-called dependent pseudo-scope. This is the default scope for a bean
which does not explicitly declare a scope type.

For example, this bean has the scope type @ependent :
public class Calculator { ... }

An instance of a dependent bean is never shared between different clients or different injection
points. It is strictly a dependent object of some other object. It is instantiated when the object it
belongs to is created, and destroyed when the object it belongs to is destroyed.

If a Unified EL expression refers to a dependent bean by EL name, an instance of the bean is
instantiated every time the expression is evaluated. The instance is not reused during any other
expression evaluation.

@ Note

If you need to access a bean directly by EL name in a JSF page, you probably need
to give it a scope other than @ependent . Otherwise, any value that gets set to the
bean by a JSF input will be lost immediately. That's why CDI features the @wbdel
stereotype; it lets you give a bean a name, and set its scope to @equest Scoped
in one stroke. If you need to access a bean that really has to have the scope
@ependent from a JSF page, inject it into a different bean, and expose it to EL
via a getter method.

46

The @New qualifier

Beans with scope @ependent don’t need a proxy object. The client holds a direct reference to
its instance.

CDI makes it easy to obtain a dependent instance of a bean, even if the bean is already declared
as a bean with some other scope type.

5.6. The eew qualifier

The built-in qualifier @New allows us to obtain a dependent object of a specified class.
@ nj ect @ew Cal cul ator cal cul ator;

The class must be a valid managed bean or session bean, but need not be an enabled bean.

This works even if Cal cul at or is already declared with a different scope type, for example:

@Conver sat i onScoped
public class Calculator { ... }

So the following injected attributes each get a different instance of Cal cul at or:

public class PaynentCalc {
@nj ect Cal cul ator cal cul ator;
@ nj ect @lew Cal cul at or newCal cul at or;

The cal cul ator field has a conversation-scoped instance of Cal cul ator injected. The
newCal cul at or field has a new instance of Cal cul at or injected, with a lifecycle that is bound
to the owning Paynent Cal c.

This feature is particularly useful with producer methods, as we’ll see in Chapter 8, Producer
methods.

Warning

The @ew qualifier was deprecated in CDI 1.1. CDI applications are encouraged to
inject @Dependent scoped beans instead.

47

48

Part Il. Getting Start with Weld,
the CDI Reference Implementation

Weld, the CDI Reference Implementation (RI), can be downloaded from the download page [http://
weld.cdi-spec.org/download]. Information about the Weld source code repository and instructions
about how to obtain and build the source can be found on the same page.

Weld provides a complete SPI allowing Java EE containers such as WildFly, GlassFish and
WebLogic to use Weld as their built-in CDI implementation. Weld also runs in servlet engines like
Tomcat and Jetty, or even in a plain Java SE environment.

Weld comes with an extensive library of examples, which are a great starting point from which to
learn CDI. In addition, a number of quickstarts featuring CDI can be found at the JBoss Developer
site [http://www.jboss.org/developer/quickstarts.html]

http://weld.cdi-spec.org/download
http://weld.cdi-spec.org/download
http://weld.cdi-spec.org/download
http://www.jboss.org/developer/quickstarts.html
http://www.jboss.org/developer/quickstarts.html
http://www.jboss.org/developer/quickstarts.html

Chapter 6.

Chapter 6. Getting started with
Weld

Weld comes with a number of examples. We recommend you start with exanpl es/j sf/
nunber guess and exanpl es/ j sf/transl at or . Numberguess is a web (war) example containing
only non-transactional managed beans. This example can be run on a wide range of servers,
including WildFly , GlassFish, Apache Tomcat, Jetty, Google App Engine, and any compliant
Java EE 7 container. Translator is an enterprise (ear) example that contains session beans. This
example must be run on WildFly 8 or better, GlassFish 4 or better, or any compliant Java EE 7
container.

Both examples use JSF 2.2 as the web framework and, as such, can be found in the exanpl es/
j sf directory of the Weld distribution.

6.1. Prerequisites

To run the examples with the provided build scripts, you'll need the following:

« the latest release of Weld, which contains the examples
« Maven 3, to build and deploy the examples

* a supported runtime environment (minimum versions shown)

WildFly 8.0.0.Final,

GlassFish 4.0,

» Apache Tomcat 7 or better (war example only), or

Jetty 9 or better (war example only)

In the next few sections, you'll be using the Maven command (nvn) to invoke the Maven project
file in each example to compile, assemble and deploy the example to WildFly and, for the war
example, Apache Tomcat. You can also deploy the generated artifact (war or ear) to any other
container that supports Java EE 7, such as GlassFish 4.

The sections below cover the steps for deploying with Maven in detail. Let’s start with WildFly.

6.2. Deploying to WildFly

To deploy the examples to WildFly, you'll need WildFly 8.0.0.Final [http://wildfly.org/downloads/]
or above. The good news is that there are no additional modifications you have to make to the
server. It's ready to go!

51

http://wildfly.org/downloads/
http://wildfly.org/downloads/

Chapter 6. Getting started wi...

After you have downloaded WildFly, extract it. (We recommended renaming the folder to include
the as qualifier so it's clear that it's the application server). You can move the extracted folder
anywhere you like. Wherever it lays to rest, that's what we’ll call the WildFly installation directory,
or JBOSS_HOME.

$> unzip wildfly-8.0.0.Final.zip
$> nv wildfly-8.*/ wildfly-8

In order for the build scripts to know where to deploy the example, you have to tell them where
to find your WildFly installation. Set the JBOSS_HOVE environment variable to point to the WildFly
installation, e.g.:

$> export JBOSS HOVE=/path/to/w |l dfly-8

You're now ready to run your first example!

Switch to the exanpl es/ j sf/ nunber guess directory and execute the Maven depl oy target:

$> cd exanpl es/j sf/ nunber guess
$> nmvn j boss-as: run

JBoss Tools

Wait a few seconds for the application to deploy (or the application server to start) and see if you
can determine the most efficient approach to pinpoint the random number at the local URL http://
localhost:8080/weld-numberguess.

http://www.jboss.org/tools
http://www.jboss.org/tools
http://localhost:8080/weld-numberguess
http://localhost:8080/weld-numberguess

Deploying to WildFly

plugin documentation

You can also run functional tests to verify that the example works as expected. Run:

$> nmvn verify -Darquillian=wi | dfly-mnaged-8

You should see the following output:

Tests run: 2, Failures: 0, Errors: 0, Skipped: O

The second starter example, wel d- t r ansl at or , will translate your text into Latin. (Well, not really,
but the stub is there for you to implement, at least. Good luck!) To try it out, switch to the translator
example directory and execute the deploy target:

$> cd exanpl es/jsf/transl at or/ ear
$> nmvn j boss-as: run

Again, wait a few seconds for the application to deploy (if you're really bored, read the log
messages), and visit http://localhost:8080/weld-translator to begin pseudo-translating.

Again, functional tests can be running by executing:

$> cd exanpl es/jsf/translator/ftest
$> mvn verify -Darquillian=w | dfly-nmnaged-8

53

https://docs.jboss.org/wildfly/plugins/maven/latest/
https://docs.jboss.org/wildfly/plugins/maven/latest/
http://localhost:8080/weld-translator

Chapter 6. Getting started wi...

6.3. Deploying to GlassFish

Deploying to GlassFish should be easy and familiar, right? After all, it's the Java EE 7 reference
implementation and Weld is the CDI reference implementation, meaning Weld gets bundled with
GlassFish. So yes, it's all quite easy and familiar.

To deploy the examples to GlassFish, you'll need a GlassFish 4.0 [https://glassfish.java.net/
download.html] release. Select the release that ends in either -uni x. sh or -wi ndows. exe
depending on your platform. After the download is complete, execute the installer. On Linux/Unix,
you'll need to first make the script executable.

$> chnod 755 gl assfish-4.0-unix. sh
$> . /gl assfish-4.0-unix. sh

On Windows you can just click on the executable. Follow the instructions in the installer. It will
create a single domain named domai n1. You'll use that domain to deploy the example. We
recommend that you choose 7070 as the main HTTP port to avoid conflicts with a running instance
of WildFly (or Apache Tomcat).

Next, make sure the GLASSFI SH HOME environment variable is set to point to the GlassFish
installation.

Now switch to the example directory again and create a new GlassFish domain for the example.

$> cd exanpl es/j sf/ nunber guess
$> nvn gl assfish: create-domain

You are now ready to deploy the example by running:
$> nvn package gl assfi sh: depl oy

Once the command completes the application is available at http://localhost:7070/weld-
numberguess

The example is deployed using the maven- gl assfi sh- pl ugi n. For more information about the
plugin see the plugin documentation [http://maven-glassfish-plugin.java.net/]

There are alternative ways of,deploying applications to GlassFish either by using the GlassFish
Admin Console [http://localhost:4848] or the asadni n command.

The reason the same artifact can be deployed to both WildFly and GlassFish, without any
modifications, is because all of the features being used are part of the standard platform. And
what a capable platform it has become!

54

https://glassfish.java.net/download.html
https://glassfish.java.net/download.html
https://glassfish.java.net/download.html
http://localhost:7070/weld-numberguess
http://localhost:7070/weld-numberguess
http://maven-glassfish-plugin.java.net/
http://maven-glassfish-plugin.java.net/
http://localhost:4848
http://localhost:4848
http://localhost:4848

Deploying to Apache Tomcat

6.4. Deploying to Apache Tomcat

Servlet containers are not required to support Java EE services like CDI. However, you can use
CDI in a servlet container like Tomcat by embedding a standalone CDI implementation such as
Weld.

Weld comes with servlet integration extension which bootstraps the CDI environment and provides
injection into servlets components. Basically, it emulates some of the work done by the Java EE
container, but you don’t get the enterprise features such as session beans and container-managed
transactions.

@ Note

Note that due to limitations of servlet containers (e.g. read-only JNDI) your
application might require some additional configuration as well (see
and for more info).

Let's give the Weld servlet extension a spin on Apache Tomcat. First, you'll need to download
Tomcat 7.0.50 or later from tomcat.apache.org [http://tomcat.apache.org/download-70.cgi] and
extract it.

$> unzi p apache-tontat-7.0.53.zip

The Maven plugin communicates with Tomcat over HTTP, so it doesn’t care where you have
installed Tomcat. However, the plugin configuration assumes you are running Tomcat in its default
configuration, with a hostname of localhost and port 8080. The r eadne. t xt file in the example
directory has information about how to modify the Maven settings to accommodate a different
setup.

To allow Maven to communicate with Tomcat over HTTP, edit the conf/t ontat - users. xni file
in your Tomcat installation. For Tomcat 7 and higher add the following line:

<user usernane="adm n" password="" rol es="nanager-script"/>
Next, start Tomcat. You can either start Tomcat from a Linux shell:

$> cd /path/to/ apache-toncat-7
$> ./bin/start.sh

a Windows command window:

55

http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi

Chapter 6. Getting started wi...

$> cd c:\path\to\apache-tontat-7\bin
$> start

or you can start the server using an IDE, like Eclipse.
Now you're ready to deploy the numberguess example to Tomcat!

Change to the exanpl es/jsf/ nunber guess directory again and run the following Maven
command:

$> cd exanmpl es/j sf/ number guess
$> nmvn cl ean conpil e war: expl oded tontat 7: depl oy - Ptontat

Once the application is deployed, you can redeploy it using this command:

$> nvn toncat 7: redepl oy -Ptoncat

The - Ptonctat argument activates the t ontat profile defined in the Maven POM (pom xni).
Among other things, this profile activates the Tomcat plugin.

Rather than shipping the container off to a standalone Tomcat installation, you can also execute
the application in an embedded Tomcat 6 container:

$> nvn war:inplace tontat7:run -Ptontat

The advantage of using the embedded server is that changes to assets in src/ mai n/ webapp
take effect immediately. If a change to a webapp configuration file is made, the application
may automatically redeploy (depending on the plugin configuration). If you make a change to a
classpath resource, you need to execute a build:

$> nmvn conpil e war:inplace -Ptontat

Finally, you can run the functional tests:

$> nvn verify -Darquillian=tontat-enbedded-7 -Ptontat

There are several other Maven goals that you can use if you are hacking on the example, which
are documented in the example’s README. nd file.

56

Deploying to Jetty

6.5. Deploying to Jetty

A Warning

Jetty Maven plugin is temporarily unsupported in Weld examples.

If you've read through the entire Tomcat section, then you're all ready to go. The Maven build
parallels the embedded Tomcat deployment. If not, don’t worry. We'll still go over everything that
you need to know again in this section.

The Maven POM (pom xni) includes a profile named j et t y that activates the Maven Jetty plugin,
which you can use to start Jetty in embedded mode and deploy the application in place. You don't
need anything else installed except to have the Maven command (mvn) on your path. The rest will
be downloaded from the internet when the build is run.

To run the wel d- nunber guess example on Jetty, switch to the example directory and execute the
i npl ace goal of the Maven war plugin followed by the r un goal of the Maven Jetty plugin with
the j et t y profile enabled, as follows:

$> cd exanpl es/j sf/ nunber guess
$> nvn war:inplace jetty:run -Pjetty

The log output of Jetty will be shown in the console. Once Jetty reports that the application has
deployed, you can access it at the following local URL: http://localhost:9090/weld-numberguess.
The port is defined in the Maven Jetty plugin configuration within the j et t y profile.

Any changes to assets in src/ mai n/ webapp take effect immediately. If a change to a webapp
configuration file is made, the application may automatically redeploy. The redeploy behavior can
be fined-tuned in the plugin configuration. If you make a change to a classpath resource, you need
to execute a build and the i npl ace goal of the Maven war plugin, again with the j etty profile
enabled.

$> nvn conpile war:inplace -Pjetty

The war: i npl ace goal copies the compiled classes and jars inside src/ mai n/ webapp, under
VEB- | NF/ cl asses and VWEB- | NF/ | i b, respectively, mixing source and compiled files. However,
the build does work around these temporary files by excluding them from the packaged war and
cleaning them during the Maven clean phase.

Finally, you can run the functional tests:

57

http://localhost:9090/weld-numberguess

Chapter 6. Getting started wi...

$> nvn verify -Darquillian=jetty-enbedded-7 -Pjetty

Now that you have gotten the starter applications deployed on the server of your choice, you
probably want to know a little bit about how they actually work.

58

Chapter 7.

Chapter 7. Diving into the Weld
examples

It's time to pull the covers back and dive into the internals of Weld example applications. Let's
start with the simpler of the two examples, wel d- nunber guess.

7.1. The numberguess example in depth

In the numberguess application you get 10 attempts to guess a number between 1 and 100. After
each attempt, you're told whether your guess was too high or too low.

The numberguess example is comprised of a number of beans, configuration files and Facelets
(JSF) views, packaged as a war module. Let's start by examining the configuration files.

All the configuration files for this example are located in VEB- | NF/ , which can be found in the src/
mai n/ webapp directory of the example. First, we have the JSF 2.2 version of f aces- confi g. xm .
A standardized version of Facelets is the default view handler in JSF 2.2, so there’s really nothing
that we have to configure. Thus, the configuration consists of only the root element.

<faces-config versi on="2. 2"
xm ns="http://xmns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocat i on="
http://xmns.jcp.org/xm/ns/javaee
http://xmns.jcp.org/ xm /ns/javaeel/ web-facesconfig 2 2. xsd">

<name>nunber guess</ nane>
</ faces-config>

There’s also an empty beans. xni file, which tells the container to look for beans in this archive
and to activate the CDI services.

Finally, some of the supported servers also need aweb. xnml whichislocated in sr c/ mai n/ webapp-
[server]/VEB- | NF.

@ Note
This demo uses JSF 2 as the view framework, but you can use Weld with any
servlet-based web framework, such as JSF 1.2 or Wicket.

Let's take a look at the main JSF view, sr c/ mai n/ webapp/ horme. xht ni .

59

Chapter 7. Diving into the We...

<I DOCTYPE htnml PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional//EN'
"http://ww. w3. org/ TR/ xhtml 1/ DTD/ xht m 1-transi tional . dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns:ui ="http://java. sun. conl j sf/facel ets"
xm ns: h="http://java. sun.conljsf/htm"
xm ns: f="http://java. sun. conijsf/core">

<ui : conposi tion tenpl ate="/tenplate. xhtm "> 9
<ui : defi ne nane="content">
<hl>Cuess a nunber...</hl>
<h: form i d="nunber Cuess" >
<div style="color: red">

<h: nessages id="nessages" gl obal Onl y="fal se"/> 2]
<h: out put Text id="H gher" val ue="Hi gher!" rendered="#{gane. guessLower}"/>

<h: out put Text id="Lower" val ue="Lower!" rendered="#{ganme. guessHi gher}"/>
</ di v>

<di v>
I"'m thinking of a nurmber between
#{ gane. snmal | est } </ span>
and #{ gane. bi ggest } </ span>

You have #{gane.remai ni ngGuesses} guesses renmi ni ng. 9
</ di v>

<di v>
Your guess:
<h: i nput Text id="inputGuess" val ue="#{gane. guess}"
requi red="true" size="3" disabl ed="#{gane. guessCorrect}"

val i dat or =" #{ gane. val i dat eNunber Range}"/> @ 5]

<h: commandBut t on i d="guessButton" val ue="Cuess" action="#{gane. check}"

di sabl ed="#{ gane. guessCorrect}"/> 6
</ di v>
<di v>

<h: commandBut t drd="r est art But t oval ue="Resetdct i on="#{gane. reset Ji'medi at e="true"/

>
</ di v>
</ h:fornr
</ ui : defi ne>
</ ui : conposi tion>
</htm >

60

The numberguess example in depth

f Facelets is the built-in templating language for JSF. Here we are wrapping our page in a
template which defines the layout.

A There are a number of messages which can be sent to the user, "Higher!", "Lower!" and
"Correct!"

© As the user guesses, the range of numbers they can guess gets smaller - this sentence
changes to make sure they know the number range of a valid guess.

M This input field is bound to a bean property using a value expression.

A Avalidator binding is used to make sure the user doesn’t accidentally input a number outside
of the range in which they can guess - if the validator wasn't here, the user might use up a
guess on an out of bounds number.

™ And, of course, there must be a way for the user to send their guess to the server. Here we
bind to an action method on the bean.

The example consists of 4 classes, the first two of which are qualifiers. First, there is the @andom
qualifier, used for injecting a random number:

@ualifier

@arget ({ TYPE, METHOD, PARANVETER, FIELD })
@Ret ent i on(RUNTI ME)

public @nterface Random {}

There is also the @mxNunber qualifier, used for injecting the maximum number that can be
injected:

@ualifier

@arget ({ TYPE, METHOD, PARAMETER, FIELD })
@Ret ent i on(RUNTI MVE)

public @nterface MaxNumber {}

The application-scoped Gener at or class is responsible for creating the random number, via a
producer method. It also exposes the maximum possible number via a producer method:

@\ppl i cati onScoped
public class Generator inplenents Serializable {
private java.util.Randomrandom = new java. util.Randon{SystemcurrentTimneMI1lis());

private static final int MAX_NUMBER = 100;

java. util.Random get Randon() {
return random

61

Chapter 7. Diving into the We...

@r oduces

@Random
int next() {
//a nunmber between 1 and 100
return get Randon(). nextlnt (MAX_NUMBER - 1) + 1;

@°r oduces

@mBxNunmber

i nt get MaxNurmber () {
return MAX_NUMBER,

The Gener at or is application scoped, so we don't get a different random each time.

@ Note
The package declaration and imports have been excluded from these listings. The
complete listing is available in the example source code.

The final bean in the application is the session-scoped Gane class. This is the primary entry point
of the application. It's responsible for setting up or resetting the game, capturing and validating
the user’s guess and providing feedback to the user with a FacesMessage. We've used the post-
construct lifecycle method to initialize the game by retrieving a random number from the @Random
I nst ance<I nt eger > bean.

You'll notice that we've also added the @aned annotation to this class. This annotation is only
required when you want to make the bean accessible to a JSF view via EL (i.e., #{game}).

i nport javax.enterprise.inject.|nstance;

@\aned
@sessi onScoped
public class Ganme inplenents Serializable {

private static final int DEFAULT_REMAI NIl NG GUESSES = 10;

private int nunber;

private int guess;

private int smallest;

private int biggest;

private int remaini ngGuesses;

@ nj ect
@/mbxNunmber

62

The numberguess example in depth

private int maxNunber;

@ nj ect
@andom
private |nstance<l|nteger> randomNunber;

public Game() ({
}

public int getNumber() {
return nunber;

public int getGuess() {
return guess;

public void setGuess(int guess) {
thi s. guess = guess;

public int getSmallest() {
return snmall est;

public int getBiggest() {
return biggest;

public int getRemaini ngGuesses() {
return remai ni ngGuesses;

public void check() {
if (guess > nunber) {
bi ggest = guess - 1;
} else if (guess < number) {
smal | est = guess + 1;
} else if (guess == nunber) {
FacesCont ext . get Current | nst ance() . addMessage(nul |,

}

remai ni ngGuesses- -;

@ost Const ruct
public void reset() {
this.small est = 0;
thi s.guess = 0;
t hi s. remai ni ngGuesses = DEFAULT_REMAI NI NG_GUESSES;

new FacesMessage("Correct!"));

63

Chapter 7. Diving into the We...

t hi s. bi ggest = naxNunber;
thi s. number = randomNunber. get ();

public void vali dat eNunber Range(FacesCont ext context, U Conponent toValidate, Object val ue)
i f (renminingGuesses <= 0) {
FacesMessage nessage = new FacesMessage("No guesses left!");
cont ext . addMessage(toVal i date. getCli entl d(context), nessage);
((U'lnput) toValidate).setValid(false);
return;

}

int input = (Integer) val ue;

if (input < snallest || input > biggest) {
((U'lnput) toValidate).setValid(false);

FacesMessage nessage = new FacesMessage("Invalid guess");
cont ext . addMessage(toVal i date. getCli entld(context), nessage);

publ i ¢ bool ean i sGuessHi gher() {
return guess != 0 & guess > nunber;

publi ¢ bool ean i sGuessLower () {
return guess != 0 & guess < nunber;

publi ¢ bool ean i sGuessCorrect () {
return guess == nunber;

7.1.1. The numberguess example in Apache Tomcat or Jetty

A couple of modifications must be made to the numberguess artifact in order to deploy it to Tomcat
or Jetty. First, Weld must be deployed as a Web Application library under VEB- | NF/ | i b since the
servlet container does not provide the CDI services. For your convenience we provide a single jar
suitable for running Weld in any servlet container (including Jetty), wel d- ser vl et - shaded.

@ Note
You must also include the jars for JSF, EL, and the common annotations (j sr 250-
api . j ar), all of which are provided by the Java EE platform (a Java EE application
server).

64

The numberguess example for Java SE with Swing

Second, we need to explicitly specify the servlet listener in web. xmi , again because the container
isn't doing this stuff for you. The servlet listener boots Weld and controls it's interaction with
requests.

<l i stener>
<l istener-class>org.jboss.wel d. environnent.servlet.Listener</l|istener-class>
</listener>

When Weld boats, it places the j avax. ent er pri se. i nj ect. spi . BeanManager , the portable SPI
for obtaining bean instances, in the Ser vl et Cont ext under a variable name equal to the fully-
qualified interface name. You generally don't need to access this interface, but Weld makes use
of it.

7.2. The numberguess example for Java SE with Swing

This example shows how to use the Weld SE extension in a Java SE based Swing application with
no EJB or servlet dependencies. This example can be found in the exanpl es/ se/ nunber guess
folder of the Weld distribution.

7.2.1. Creating the Eclipse project

To use the Weld SE numberguess example in Eclipse, you can either import it as a Maven project
if you have the m2eclipse plugin [http://m2eclipse.sonatype.org/] installed, or generate an Eclipse
project and import it.

With m2eclipse installed, you can open any Maven project directly. From within Eclipse, select File
-> Import... -> Existing Maven Projects. Then, browse to the location of the Weld SE numberguess
example. You should see that Eclipse recognizes the Maven project.

Without m2eclipse plugin, you first have to generate an Eclipse project. Switch into the Weld SE
numberguess example folder, then execute the Maven Eclipse plugin, as follows:

mvn ecl i pse: confi gure-wor kspace - Decl i pse. wor kspace=/ pat h/ t o/ your/ ecl i pse/
wor kspace

and then
nmvn ecli pse: eclipse
Then from within Eclipse, select File -> Import... -> Existing Projects into Workspace and browse

to the location of the Weld SE numberguess example.

In both cases, you should now see a project in your workspace called wel d- se- nunber guess.

65

http://m2eclipse.sonatype.org/
http://m2eclipse.sonatype.org/

Chapter 7. Diving into the We...

It's time to get the example running!

7.2.2. Running the example from Eclipse

Disable m2eclipse’s Workspace Resolution, to make sure that Eclipse can find St ar t Mai n. Right
click on the project, and choose Properties -> Maven, and uncheck Resolve dependencies from

Workspace projects:

Properties for weld-se-numberguess

Maven

Resource
Builders Active Maven Profiles (comma separated):

CDI| Settings
Drools

FingBugs [Resolve dependencies from Workspace projects

FreeMarker Context
FGoogle
Hibernate Settings
JAutodoc
Java Build Path
P Java Code Style
P Java Compiler
P Java Editor
Javadoc Location
I Mawven
Module Assembly
Project Archives
Project References
Run/Debug Settings
Seam Settings
Server
Task Repository
Task Tags
TestNG
=Validation
WikiText

N

f
| Restore Defaults | [

Apply

@

oy

Cancel

X Kk
A

OK

L

Right click on the project, and choose Run As -> Java Application:

4 _; > JBOSS5 - WELD @ Convert to Drools Project |
1 Run As v
Debug As 3
Profile As 3

1 Run on Server

: | 2 Java Applet
4 "—% numberguess 6018 [JB v F'F'. .
+ &8 src/main/java 5059 3 Java Application
4 Maven assembly:assembly

5 Maven build

» [src/main/resources Validate

(£ src/test/java 2394 | () Generate rebelaml

2 RAEHE

Locate the St art Mai n class:

Alt+Shift+X, R
Alt+5Shift+X, A
Alt+Shift+X,]

Alt+Shift+X, M

66

’

Running the example from Eclipse

| Select Java Application
Select type (7 = any character, * = any 5String, TZ = TimeZone): -

Matching items:

(2 StartMain - urg.jboss.weid.en?'rmnment,seél

-

et | LT 1 L L e e e

E";'.. Compiler - javassist.iools.reflect
@E CtClass - javassist

@b Dump - javassist.tools

G}. Loader - javassist.tools.reflect
& Loader - javassist

@ Viewer - javassist.tools.web

@& Webserver - javassist.tools.web

ﬁframedump - javassist.tools

orgjboss.weld.environment.se

@ oK Cancel

The application should now launch!

I'm thinking of a number between 0 and 100. Can you guess what itis?
What is your first guess?

| | | uess |

Guesses remaining: [T

[% Problems (@ Javadec f-TIJ JUnit (E Console 52 ™ m X 5 | Ek &8 & @ll et B -y g
StartMain (1) [Java Application] C:\powerlogic\jcompany55\javatbinjavaw.exe (23/04/2010 14:16:08)
82 [main] INFO org.jboss.weld.Version - WELD-000%00 1.0.1 (Final) -
123 [main] INFO org.jboss.weld.Bootstrap - WELD-000101 Transactional services not available. Injection of @Inject
1142 [main] WARN org.jboss.interceptor.model.InterceptionTypeRegistry - Class 'javax.eib.PostActivate' not found,
1142 [main] WARN org.jboss.interceptor.model.InterceptionTypeRegistry - Class 'javax.ejb.PrePassivate' not found,
psst! the number is 93

5 a r 1 s

67

Chapter 7. Diving into the We...

7.2.3. Running the example from the command line

» Ensure that Maven 3 is installed and in your PATH
» Ensure that the JAVA_HOVE environment variable is pointing to your JDK installation
» Open a command line or terminal window in the exanpl es/ se/ nunber guess directory

» Execute the following command

m/n -Drun

7.2.4. Understanding the code

Let’s have a look at the significant code and configuration files that make up this example.

There is an empty beans.xm file in the root package (src/ main/resources/ META- | NF/
beans. xn), which marks this application as a CDI application.

Section 15.6.2, “Implicit bean archive”

The game’s main logic is located in Gane. j ava. Here is the code for that class, highlighting the
ways in which this differs from the web application version:

@\ppl i cati onScoped L1]

public class Gane { @
public static final int MAX_NUM GUESSES = 10;

private |nteger nunber;
private int guess = O;
private int snmallest = 0;

@ nj ect
@/mbxNunmber
private int maxNunber;

private int biggest;
private int renmaini ngGuesses = MAX_NUM GUESSES;
private bool ean val i dNunber Range = true;

68

Understanding the code

@ nj ect
Cener at or rndGener at or;

public Game() {
}

public int getNumber() {
return nunber;

public int getGuess() {
return guess;

public void setGuess(int guess) ({
thi s. guess = guess;

public int getSmallest() {
return smal | est;

public int getBiggest() {
return biggest;

public int getRemaini ngGuesses() {
return remai ni ngGuesses;

publ i ¢ bool ean isVal i dNunber Range() ({ 3
return val i dNunber Range;

publ i c bool ean i sGameWon() {
return guess == nunber;

publ i c bool ean isGaneLost () {
return guess != nunber && renmai ni ngGuesses <= 0;

publ i c bool ean check() { @
bool ean result = fal se;

i f (checkNewNunber Rangel sValid()) {
if (guess > nunber) {
bi ggest = guess - 1;

69

Chapter 7. Diving into the We...

if (guess < nunber) {
smal | est = guess + 1;

i f (guess == nunber) {
result = true;

remai ni ngGuesses- -;
return result;

private bool ean checkNewNunber Rangel sVal i d() {
return val i dNunber Range = ((guess >= snmllest) && (guess <= biggest));

@Post Const ruct

public void reset() o

this.small est
thi s.guess = 0;
t hi s. remai ni ngGuesses = 10;

t hi s. bi ggest = nmaxNunber;

t hi s. number = rndGenerator. next();

Systemout. println("psst! the nunber is " + this.nunber);

{
0;

The bean is application scoped rather than session scoped, since an instance of a Swing
application typically represents a single session.
Notice that the bean is not named, since it doesn’t need to be accessed via EL.

In Java SE there is no JSF FacesCont ext to which messages can be added. Instead the
Gane class provides additional information about the state of the current game including:

* If the game has been won or lost
* If the most recent guess was invalid

This allows the Swing Ul to query the state of the game, which it does indirectly via a class
called MessageGener at or, in order to determine the appropriate messages to display to
the user during the game.
Since there is no dedicated validation phase, validation of user input is performed during the
check() method.

70

Understanding the code

A Thereset() method makes a call to the injected r ndGener at or in order to get the random
number at the start of each game. Note thatitcan'tuse | nst ance. get () like the JSF example
does because there will not be any active contexts like there are during a JSF request.

The MessageGener at or class depends on the current instance of Gane and queries its state in
order to determine the appropriate messages to provide as the prompt for the user’'s next guess
and the response to the previous guess. The code for MessageGener at or is as follows:

public class MessageCenerator {

@ nj ect L1
private Gane gane;

public String getChall engeMessage() ({ 2]
StringBuil der chal | engeMsg = new StringBuilder("l'mthinking of a nunber
between ");
chal | engeMsg. append(gane. get Smal | est());
chal | engeMsg. append(" and ");
chal | engeMsg. append(gane. get Bi ggest ()) ;
chal | engeMsg. append(". Can you guess what it is?");

return chal | engeMsg. toString();

public String getResult Message() { 3]
if (gane.isGanewn()) ({
return "You guessed it! The nunber was " + gane. get Nunber();
} else if (gane.isGnelLost()) {
return "You are fail! The nunber was " + gane. get Nunber();
} else if (!game.isValidNunberRange()) {
return "lnvalid nunber range!";
} else if (gane.get Remai ni ngGuesses() == Ganme. MAX_NUM GUESSES) {
return "What is your first guess?';
} else {
String direction = null;

i f (gane.get Quess() < gane.get Nunber()) {

direction = "Higher";
} else {
direction = "Lower";
}
return direction + "! You have " + gane. get Renai ni ngGuesses() + "

guesses left.";

}

71

Chapter 7. Diving into the We...

£ The instance of Gane for the application is injected here.
M The Gane's state is interrogated to determine the appropriate challenge message ...

A ... and again to determine whether to congratulate, console or encourage the user to
continue.

Finally we come to the Nunber GuessFrane class which provides the Swing front end to our
guessing game.

i mport javax.enterprise.event. Cbserves;

public class Number GuessFranme extends javax.sw ng.JFranme {
@ nj ect

private Gane gane; 9

@ nj ect

private MessageGenerator nmsgCenerator; 2

public void start(@bserves Containerlnitialized event) { 3
j ava. awt . Event Queue. i nvokelLat er (new Runnabl e() {
public void run() {
i ni t Conponents();
set Vi si bl e(true);

1),

private void initConponents() { &

bor der Panel = new j avax. sw ng. JPanel ();
ganePanel = new j avax. swi ng. JPanel ();

i nput sPanel = new j avax. sw ng. JPanel ();
butt onPanel = new javax.sw ng. JPanel ();

guessButton = new j avax. swi ng. JButton();

mai nLabel . set Text (nmsgGener at or . get Chal | engeMessage()) ;
mai nMsgPanel . add(mai nLabel) ;

messagelabel . set Text (nsgGener at or . get Resul t Message()) ;
mai nMsgPanel . add(messagelLabel) ;

private void guessButtonActionPerformed(java. awmt.event. Acti onEvent evt) ({ L5
int guess = -1,

try {

72

Understanding the code

=

9

guess = I nteger. parsel nt(guessText.get Text());
} catch (Nunber For mat Exception nfe) {
/1 noop

gane. set GQuess(guess);
gane. check();
refreshul ();

if (gane.isGaneWn() || gane.isGanelLost()) {
swi tchButtons();

private void repl ayBt nActi onPerformed(java. am . event. Acti onEvent evt) { 6
gane.reset ();
refreshu ();
swi tchButtons();

private void switchButtons() {
CardLayout buttonLyt = (CardLayout) buttonPanel.getLayout();
butt onLyt . next (buttonPanel);

private void refreshU () {
mai nLabel . set Text (nmsgGener at or . get Chal | engeMessage()) ;
nmessagelabel . set Text (nsgGener at or . get Resul t Message()) ;
guessText.set Text ("");
guesseslLeft Bar. set Val ue(gane. get Remai ni ngGQuesses());
guessText . request Focus();

/1 swi ng conmponents
private javax.sw ng.JPanel borderPanel ;

private javax.sw ng.JButton repl ayBtn;

The injected instance of the game (logic and state).
The injected message generator for Ul messages.

This application is started in the prescribed Weld SE way, by observing the
Containerlnitializedevent.
This method initializes all of the Swing components. Note the use of the nsgGener at or here.

guessBut t onAct i onPer f or ned is called when the Guess button is clicked, and it does the
following:

73

Chapter 7. Diving into the We...

0

» Gets the guess entered by the user and sets it as the current guess in the Gane

» Calls gare. check() to validate and perform one turn of the game

» Calls refreshu . If there were validation errors with the input, this will have been
captured during game. check() and as such will be reflected in the messages returned
by MessageGener at or and subsequently presented to the user. If there are no validation
errors then the user will be told to guess again (higher or lower) or that the game has ended

either in a win (correct guess) or a loss (ran out of guesses).

» Sets the button’s label based on the game state.

repl ayBt nAct i onPer f or med simply calls gane. reset () to start a new game, refreshes the

messages in the Ul and sets the button’s label based on the game state.

7.3. The translator example in depth

The translator example will take any sentences you enter, and translate them to Latin. (Well, not

really, but the stub is there for you to implement, at least. Good luck!)

The translator example is built as an EAR and contains EJBs. As a result, it's structure is more

complex than the numberguess example.

First, let's take a look at the EAR aggregator project, which is located in the example’'s
ear directory. Maven automatically generates the application. xm for us from this plugin

@ Note
Java EE 7, which bundles EJB 3.2, allows you to package EJBs in a WAR, which
will make this structure much simpler! Still, there are other advantages of using

an EAR.

configuration:

<pl ugi n>

<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-ear-plugin</artifactld>
<confi gurati on>
<nodul es>
<webModul e>
<groupl d>org. j boss. wel d. exanpl es. j sf. transl at or </ gr oupl d>
<artifactld>weld-jsf-translator-war</artifactld>
<cont ext Root >/ wel d- t ransl at or </ cont ext Root >
</ webModul e>
</ nodul es>
</ configuration>

74

The translator example in depth

</ pl ugi n>

This configuration overrides the web context path, resulting in this application URL: http://
localhost:8080/weld-translator.

<application version="7"
xm ns="http://xm ns.jcp.org/ xm /ns/javaee"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
http://xm ns.jcp.org/ xm/ns/javaee
http://xm ns.jcp.org/ xm /ns/javaee/ application_7.xsd">

<di spl ay- nanme>wel d-j sf-transl at or - ear </ di spl ay- nane>
<description>The Weld JSF transl ator exanple (ear)</description>

<nodul e>
<web>
<web-uri>wel d-transl at or. war </ web-uri >
<cont ext - r oot >/ wel d-transl at or </ cont ext - r oot >
</ web>
</ modul e>
<nmodul e>
<ej b>wel d-transl ator.jar</ej b>
</ nodul e>
</ appl i cation>

Next, let's look at the WAR, which is located in the example’s war directory. Just as in the
numberguess example, we have a faces-confi g. xm for JSF 2.2 and a web. xm (to activate
JSF) under WEB-INF, both sourced from sr c/ mai n/ webapp/ \EB- | NF.

More interesting is the JSF view used to translate text. Just as in the numberguess example we
have a template, which surrounds the form (omitted here for brevity):

<h: form i d="Transl at or Mai n" >

<t abl e>
<tr align="center" style="font-weight: bold">
<t d>

Your text

75

http://localhost:8080/weld-translator
http://localhost:8080/weld-translator

Chapter 7. Diving into the We...

</td>
<t d>
Transl ati on
</td>
</tr>
<tr>
<t d>

<h: i nput Text ar ead="t ext Val ue="#{transl at or. text}Fequi red="truel ows="5to0l s="80"/
>
</td>
<td>
<h: out put Text val ue="#{transl ator.transl atedText}"/>
</td>
</[tr>
</t abl e>
<di v>

<h: conmandBut t oni d="but t on" val ue="Transl ate" acti on="#{transl ator. transl ate}"/
>

</ di v>

</ h:fornme

The user can enter some text in the left-hand text area, and hit the translate button to see the
result to the right.

Finally, let's look at the EJB module, which is located in the example’s ej b directory. In sr ¢/ mai n/
r esour ces/ META- | NF there is just an empty beans. xm , used to mark the archive as containing
beans.

Section 15.6.2, “Implicit bean archive”

We've saved the most interesting bit for last, the code! The project has two simple beans,
Sent encePar ser and Text Tr ansl at or and two session beans, Tr ans! at or Cont r ol | er Bean and
Sent enceTr ansl at or. You should be getting quite familiar with what a bean looks like by now,
so we'll just highlight the most interesting bits here.

Both Sent encePar ser and Text Tr ansl at or are dependent beans, and Text Tr ansl at or uses
constructor injection:

76

The translator example in depth

public class TextTranslator inplenments Serializable {
private SentenceParser sentenceParser;
@JB private Translator translator;

@nj ect public TextTransl at or (Sent enceParser sentenceParser) ({
t hi s. sentenceParser = sentenceParser;

public String translate(String text) {
StringBuil der sb = new StringBuilder();
for (String sentence: sentenceParser.parse(text)) {
sb. append(transl ator.transl ate(sentence)). append(". ");

}
return sh.toString().trinm();

Text Tr ansl at or uses the simple bean (really just a plain Java class!) Sent encePar ser to parse
the sentence and then calls on the stateless bean with the local business interface Tr ansl at or
to perform the translation. That's where the magic happens. Of course, we couldn’t develop a full
translator, but it's convincing enough to anyone who doesn’t understand Latin!

@t at el ess
public class SentenceTransl ator inplenments Translator {

public String translate(String sentence) {
return "Loremipsumdolor sit anmet"”;

Finally, there is Ul orientated controller. This is a request scoped, named, stateful session bean,
which injects the translator. It collects the text from the user and dispatches it to the translator.
The bean also has getters and setters for all the fields on the page.

@t at ef ul

@Request Scoped

@\anmed("transl ator™)

public class Transl atorControll erBean inplenments Transl atorController {

@nject private Text Transl ator transl ator;

77

Chapter 7. Diving into the We...

private String inputText;
private String transl at edText;
public void translate() {

transl atedText = translator.transl ate(i nput Text);

public String getText() {
return input Text;

public void setText(String text) {
this.inputText = text;

public String getTransl atedText() {
return transl at edText;

@Renove public void renove() {}

That concludes our short tour of the Weld starter examples. For more information on Weld, please
visit http://weld.cdi-spec.org/.

78

http://weld.cdi-spec.org/

Part Ill. Loose coupling
with strong typing

The first major theme of CDI is loose coupling. We've already seen three means of achieving
loose coupling:

« alternatives enable deployment time polymorphism,
» producer methods enable runtime polymorphism, and
 contextual lifecycle management decouples bean lifecycles.

These techniques serve to enable loose coupling of client and server. The client is no longer
tightly bound to an implementation of an interface, nor is it required to manage the lifecycle of the
implementation. This approach lets stateful objects interact as if they were services.

Loose coupling makes a system more dynamic. The system can respond to change in a well-
defined manner. In the past, frameworks that attempted to provide the facilities listed above
invariably did it by sacrificing type safety (most notably by using XML descriptors). CDI is the first
technology, and certainly the first specification in the Java EE platform, that achieves this level
of loose coupling in a typesafe way.

CDI provides three extra important facilities that further the goal of loose coupling:

* interceptors decouple technical concerns from business logic,
 decorators may be used to decouple some business concerns, and
 event notifications decouple event producers from event consumers.

The second major theme of CDI is strong typing. The information about the dependencies,
interceptors and decorators of a bean, and the information about event consumers for an event
producer, is contained in typesafe Java constructs that may be validated by the compiler.

You don't see string-based identifiers in CDI code, not because the framework is hiding them from
you using clever defaulting rules—so-called "configuration by convention"—but because there are
simply no strings there to begin with!

The obvious benefit of this approach is that any IDE can provide autocompletion, validation and
refactoring without the need for special tooling. But there is a second, less-immediately-obvious,
benefit. It turns out that when you start thinking of identifying objects, events or interceptors via
annotations instead of names, you have an opportunity to lift the semantic level of your code.

CDI encourages you develop annotations that model concepts, for example,

e @\synchronous,

Part Ill. Loose coupling with...

e @bck,
e @secure or

* @Jpdat ed,

instead of using compound names like

e asyncPaynent Processor,
* nockPaynent Processor,
e Securitylnterceptor or
e Document Updat edEvent .

The annotations are reusable. They help describe common qualities of disparate parts of the
system. They help us categorize and understand our code. They help us deal with common
concerns in a common way. They make our code more literate and more understandable.

CDI stereotypes take this idea a step further. A stereotype models a common role in your
application architecture. It encapsulates various properties of the role, including scope, interceptor
bindings, qualifiers, etc, into a single reusable package. (Of course, there is also the benefit of
tucking some of those annotations away).

We’'re now ready to meet some more advanced features of CDI. Bear in mind that these features
exist to make our code both easier to validate and more understandable. Most of the time you
don't ever really need to use these features, but if you use them wisely, you'll come to appreciate
their power.

Chapter 8.

Chapter 8. Producer methods

Producer methods let us overcome certain limitations that arise when a container, instead of
the application, is responsible for instantiating objects. They're also the easiest way to integrate
objects which are not beans into the CDI environment.

According to the spec:

A producer method acts as a source of objects to be injected, where:

« the objects to be injected are not required to be instances of beans, or
« the concrete type of the objects to be injected may vary at runtime, or

* the objects require some custom initialization that is not performed by the bean
constructor.

For example, producer methods let us:

» expose a JPA entity as a bean,
» expose any JDK class as a bean,

« define multiple beans, with different scopes or initialization, for the same implementation class,
or

 vary the implementation of a bean type at runtime.

In particular, producer methods let us use runtime polymorphism with CDI. As we've seen,
alternative beans are one solution to the problem of deployment-time polymorphism. But once the
system is deployed, the CDI implementation is fixed. A producer method has no such limitation:

i mport javax.enterprise.inject.Produces;

@essi onScoped
public class Preferences inplenments Serializable {
private Paynment StrategyType paynent Strat egy;

@r oduces @referred
publ i c Paynent Strat egy getPaynment Strategy() {
switch (paynment Strategy) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHECK: return new CheckPayment Strategy();
case PAYPAL: return new PayPal Paynent Strategy();
default: return null;

81

Chapter 8. Producer methods

Consider an injection point:

@nject @referred Paynent Strategy paynent Strat egy;

This injection point has the same type and qualifier annotations as the producer method, so it
resolves to the producer method using the usual CDI injection rules. The producer method will be
called by the container to obtain an instance to service this injection point.

8.1. Scope of a producer method

The scope of the producer method defaults to @ependent , and so it will be called every time the
container injects this field or any other field that resolves to the same producer method. Thus,
there could be multiple instances of the Payment St r at egy object for each user session.

To change this behavior, we can add a @essi onScoped annotation to the method.

@roduces @referred @essi onScoped
publ i c Paynent Strategy getPaynent Strategy() {

Now, when the producer method is called, the returned Paynent St r at egy will be bound to the
session context. The producer method won't be called again in the same session.

8.2. Injection into producer methods

There’s one potential problem with the code above. The implementations of
Cr edi t Car dPaynent Str at egy are instantiated using the Java new operator. Objects instantiated

82

Use of @New with producer methods

directly by the application can't take advantage of dependency injection and don't have
interceptors.

If this isn’t what we want, we can use dependency injection into the producer method to obtain
bean instances:

@roduces @referred @essi onScoped
publi ¢ Paynent Strat egy get Payment Strat egy(Credit CardPaynent Strategy ccps,
CheckPayment St r at egy cps,
PayPal Payment St r at egy ppps) {
switch (paynment Strategy) {
case CREDI T_CARD:. return ccps;
case CHEQUE: return cps;
case PAYPAL: return ppps;
default: return null;

Wait, what if Cr edi t Car dPaynment St r at egy is a request-scoped bean? Then the producer method
has the effect of "promoting" the current request scoped instance into session scope. This is
almost certainly a bug! The request scoped object will be destroyed by the container before the
session ends, but the reference to the object will be left "hanging" in the session scope. This error
will not be detected by the container, so please take extra care when returning bean instances
from producer methods!

There’s at least three ways we could go about fixing this bug. We could change the scope
of the Credi t Car dPaynent St rat egy implementation, but this would affect other clients of that
bean. A better option would be to change the scope of the producer method to @ependent or
@Request Scoped.

But a more common solution is to use the special @ew qualifier annotation.

8.3. Use of aew With producer methods

Consider the following producer method:

@roduces @referred @essi onScoped
publ i c Paynent Strategy get Paynment Strat egy(@lew Credi t Car dPaynent Strat egy ccps,
@\ew CheckPaynent Strat egy cps,
@\ew PayPal Paynent Strat egy ppps) {
switch (paynment Strategy) {
case CREDI T_CARD: return ccps;
case CHEQUE: return cps;
case PAYPAL: return ppps;
default: return null;

83

Chapter 8. Producer methods

Then a new dependent instance of Cr edi t Car dPaynent St r at egy will be created, passed to the
producer method, returned by the producer method and finally bound to the session context. The
dependent object won’t be destroyed until the Pr ef er ences object is destroyed, at the end of the
session.

Warning

The @New qualifier was deprecated in CDI 1.1. CDI applications are encouraged
to inject @Dependent scoped beans instead.

8.4. Disposer methods

Some producer methods return objects that require explicit destruction. For example, somebody
needs to close this JDBC connection:

@r oduces @Request Scoped Connection connect (User user) {
return createConnection(user.getld(), user.getPassword());

Destruction can be performed by a matching disposer method, defined by the same class as the
producer method:

voi d cl ose(@i sposes Connecti on connection) {
connection. cl ose();

The disposer method must have at least one parameter, annotated @i sposes, with the same
type and qualifiers as the producer method. The disposer method is called automatically when
the context ends (in this case, at the end of the request), and this parameter receives the object
produced by the producer method. If the disposer method has additional method parameters, the
container will look for a bean that satisfies the type and qualifiers of each parameter and pass it
to the method automatically.

Since CDI 1.1 disposer methods may be used for destroying not only objects produced by
producer methods but also objects producer by producer fields.

84

Chapter 9.

Chapter 9. Interceptors

Interceptor functionality is defined in the Java Interceptors specification.

The Interceptors specification defines three kinds of interception points:

» business method interception,

* lifecycle callback interception, and

« timeout method interception (EJB only).

A business method interceptor applies to invocations of methods of the bean by clients of the bean:
public class Transactionlnterceptor {

@\ oundl nvoke
publ i ¢ Obj ect manageTransacti on(l nvocati onCont ext ctx) throws Exception{ ... }

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container:

public cl ass Dependencyl njectionlnterceptor {
@Post Construct
public void injectDependenci es(lnvocationContext ctx) { ... }

An interceptor class may intercept both lifecycle callbacks and business methods.

A timeout method interceptor applies to invocations of EJB timeout methods by the container:

public class Tinmeoutlnterceptor {
@\r oundTi neout
publ i c Obj ect manageTransacti on(l nvocati onCont ext ctx) throws Exception { ... }

9.1. Interceptor bindings

Suppose we want to declare that some of our beans are transactional. The first thing we need is
an interceptor binding type to specify exactly which beans we're interested in:

@ nt er cept or Bi ndi ng

85

Chapter 9. Interceptors

@rar get ({ METHOD, TYPE})
@Ret ent i on(RUNTI ME)
public @nterface Transactional {}

Now we can easily specify that our Shoppi ngCart is a transactional object:

@r ansact i onal
public class ShoppingCart { ... }

Or, if we prefer, we can specify that just one method is transactional:

public class Shoppi ngCart {
@ransactional public void checkout() { ... }

9.2. Implementing interceptors

That's great, but somewhere along the line we're going to have to actually implement the
interceptor that provides this transaction management aspect. All we need to do is create a
standard interceptor, and annotate it @ nt er cept or and @r ansact i onal .

@ransactional @ nterceptor
public class Transactionlnterceptor {
@\r oundl nvoke
publ i c Obj ect manageTransacti on(l nvocati onCont ext ctx) throws Exception { ... }

Interceptors can take advantage of dependency injection:

@ransacti onal @ nterceptor
public class Transactionlnterceptor {

@Resource User Transacti on transacti on;

@Ar oundl nvoke
publ i c Obj ect nmanageTransaction(lnvocati onContext ctx) throws Exception {

Multiple interceptors may use the same interceptor binding type.

86

Enabling interceptors

9.3. Enabling interceptors

By default, all interceptors are disabled. We need to enable our interceptor. We can do it using
beans. xnl descriptor of a bean archive. However, this activation only applies to the beans in that
archive. From CDI 1.1 onwards the interceptor can be enabled for the whole application using
@vriority annotation.

<beans
xm ns="http://xmns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocat i on="
http://xmns.jcp.org/ xm/ns/javaee
http://xm ns.jcp.org/ xm /ns/javaeel/ beans_1_1. xsd">
<i nt er cept or s>
<cl ass>or g. myconmpany. myapp. Tr ansacti onl nt er cept or </ cl ass>
</interceptors>
</ beans>

Whoah! Why the angle bracket stew?

Well, having the XML declaration is actually a good thing. It solves two problems:

« it enables us to specify an ordering for the interceptors in our system, ensuring deterministic
behavior, and

« it lets us enable or disable interceptor classes at deployment time.

Having two interceptors without @ri ority, we could specify that our security interceptor runs
before our transaction interceptor.

<beans
xm ns="http://xmns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://xmns.jcp.org/ xm/ns/javaee
http://xm ns.jcp.org/ xm /ns/javaeel/ beans_1_1. xsd">
<i nt er cept or s>
<cl ass>or g. myconmpany. myapp. Securityl nterceptor</class>
<cl ass>or g. nyconpany. nyapp. Tr ansact i onl nt er cept or </ cl ass>
</interceptors>
</ beans>

Or we could turn them both off in our test environment by simply not mentioning them in
beans. xnl ! Ah, so simple.

87

Chapter 9. Interceptors

It gets quite tricky when used along with interceptors annotated with @riority. Interceptors
enabled using @riority are called before interceptors enabled using beans. xni , the lower
priority values are called first.

@ Note

Interceptors with the @ri ori ty that are listed in the beans. xm descriptor will be
called twice in Weld. However, this behaviour is non-portable and this combination
should not be used as it can behave differently in other implementations!

9.4. Interceptor bindings with members

Suppose we want to add some extra information to our @r ansact i onal annotation:

@ nt er cept or Bi ndi ng
@rar get ({ METHOD, TYPE})
@ret ent i on(RUNTI ME)
public @nterface Transactional {
bool ean requiresNew() default false;

CDI will use the value of requiresNew to choose between two different interceptors,
Transacti onl nt er cept or and Requi r esNewTr ansact i onl nt er cept or .

@ransactional (requiresNew = true) @ nterceptor
public class RequiresNewTransacti onl nterceptor {
@A\r oundl nvoke
publ i ¢ Obj ect manageTransacti on(l nvocati onCont ext ctx) throws Exception{ ... }

Now we can use Requi r esNewTr ansact i onl nt er cept or like this:

@ransactional (requi resNew = true)
public class ShoppingCart { ... }

But what if we only have one interceptor and we want the container to ignore the value of
r equi r esNewwhen binding interceptors? Perhaps this information is only useful for the interceptor
implementation. We can use the @lonbi ndi ng annotation:

@ nt er cept or Bi ndi ng

88

Multiple interceptor binding annotations

@rar get ({ METHOD, TYPE})
@Ret ent i on(RUNTI ME)
public @nterface Secure {
@\onbi nding String[] rol esAl |l owed() default {};

9.5. Multiple interceptor binding annotations

Usually we use combinations of interceptor bindings types to bind multiple interceptors to a bean.
For example, the following declaration would be used to bind Transacti onl nt ercept or and
Securi tyl nterceptor to the same bean:

@ecure(rol esAl |l oned="adm n") @ransacti onal
public class ShoppingCart { ... }

However, in very complex cases, an interceptor itself may specify some combination of interceptor
binding types:

@ransacti onal @ecure @ nterceptor
public class Transactional Securelnterceptor { ... }

Then this interceptor could be bound to the checkout () method using any one of the following
combinations:

public class Shoppi ngCart {

@ransacti onal @ecure public void checkout() { ... }
}
@ecure
public class Shoppi ngCart {
@ransactional public void checkout() { ... }
}

@ransacti onal
public class Shoppi ngCart {
@pecure public void checkout() { ... }

89

Chapter 9. Interceptors

@ransacti onal @secure
public class Shoppi ngCart {
public void checkout() { ... }

9.6. Interceptor binding type inheritance

One limitation of the Java language support for annotations is the lack of annotation inheritance.
Really, annotations should have reuse built in, to allow this kind of thing to work:

public @nterface Action extends Transactional, Secure { ... }

Well, fortunately, CDI works around this missing feature of Java. We may annotate one interceptor
binding type with other interceptor binding types (termed a meta-annotation). The interceptor
bindings are transitive — any bean with the first interceptor binding inherits the interceptor bindings
declared as meta-annotations.

@r ansacti onal @Becure

@ nt er cept or Bi ndi ng

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action { ... }

Now, any bean annotated @\ction will be bound to both Transactionlnterceptor and
Securityl nterceptor. (And even Transact i onal Secur el nt er cept or, if it exists.)

9.7. Use of @nterceptors

The @nterceptors annotation defined by the Interceptors specification (and used by the
Managed Beans and EJB specifications) is still supported in CDI.

@nterceptors({Transactionlnterceptor.class, Securitylnterceptor.class})
public class Shoppi ngCart {
public void checkout() { ... }

However, this approach suffers the following drawbacks:

« the interceptor implementation is hardcoded in business code,

* interceptors may not be easily disabled at deployment time, and

90

Use of @Interceptors

« the interceptor ordering is non-global — it is determined by the order in which interceptors are
listed at the class level.

Therefore, we recommend the use of CDI-style interceptor bindings.

91

92

Chapter 10.

Chapter 10. Decorators

Interceptors are a powerful way to capture and separate concerns which are orthogonal to the
application (and type system). Any interceptor is able to intercept invocations of any Java type.
This makes them perfect for solving technical concerns such as transaction management, security
and call logging. However, by nature, interceptors are unaware of the actual semantics of the
events they intercept. Thus, interceptors aren’t an appropriate tool for separating business-related
concerns.

The reverse is true of decorators. A decorator intercepts invocations only for a certain Java
interface, and is therefore aware of all the semantics attached to that interface. Since decorators
directly implement operations with business semantics, it makes them the perfect tool for modeling
some kinds of business concerns. It also means that a decorator doesn’t have the generality of
an interceptor. Decorators aren’t able to solve technical concerns that cut across many disparate
types. Interceptors and decorators, though similar in many ways, are complementary. Let’s look
at some cases where decorators fit the bill.

Suppose we have an interface that represents accounts:

public interface Account {
publ i ¢ Bi gDeci mal getBal ance();
public User getOaner();
public void withdrawBi gDeci mal anount);
public void deposit(Bi gDeci mal amount);

Several different beans in our system implement the Account interface. However, we have a
common legal requirement that; for any kind of account, large transactions must be recorded by
the system in a special log. This is a perfect job for a decorator.

A decorator is a bean (possibly even an abstract class) that implements the type it decorates and
is annotated @ecor at or .

@ecor at or
public abstract class LargeTransacti onDecor at or
i mpl ements Account {

The decorator implements the methods of the decorated type that it wants to intercept.

@ecor at or
public abstract class LargeTransacti onDecor at or

93

Chapter 10. Decorators

i mpl ements Account {
@nj ect @el egate @\ny Account account;

@er si st enceCont ext EntityManager em

public void withdrawBi gDeci mal anmount) {

public void deposit(Bi gDeci mal anpunt);

Unlike other beans, a decorator may be an abstract class. Therefore, if there’'s nothing special
the decorator needs to do for a particular method of the decorated interface, you don’t need to
implement that method.

Interceptors for a method are called before decorators that apply to the method.

10.1. Delegate object

Decorators have a special injection point, called the delegate injection point, with the same type
as the beans they decorate, and the annotation @el egat e. There must be exactly one delegate
injection point, which can be a constructor parameter, initializer method parameter or injected field.

@ecor at or
public abstract class LargeTransacti onDecor at or
i mpl ements Account {
@nj ect @el egate @\ny Account account;

A decorator is bound to any bean which:

* has the type of the delegate injection point as a bean type, and
« has all qualifiers that are declared at the delegate injection point.
This delegate injection point specifies that the decorator is bound to all beans that implement

Account :

@nj ect @el egate @ny Account account;

94

Enabling decorators

A delegate injection point may specify any number of qualifier annotations. The decorator will only
be bound to beans with the same qualifiers.

@ nj ect @el egate @oreign Account account;

The decorator may invoke the delegate object, which has much the same effect as calling
I nvocat i onCont ext . proceed() from an interceptor. The main difference is that the decorator
can invoke any business method on the delegate object.

@ecor at or
public abstract class LargeTransacti onDecor at or
i mpl ements Account {
@nj ect @el egate @\ny Account account;

@er si st enceCont ext EntityManager em

public void withdraw Bi gDeci mal amount) {
account . w t hdr am(anount) ;
i f (anount.conpareTo(LARGE_AMOUNT) >0) {
em persist(new LoggedWthdraw (anount));

public void deposit(Bi gDeci nal anount);
account . deposi t (anmount) ;
i f (anount.conpareTo(LARGE_AMOUNT) >0) {
em persi st(new LoggedDeposit(amunt));

10.2. Enabling decorators

By default, all decorators are disabled. We need to enable our decorator. We can do it using
beans. xnml descriptor of a bean archive. However, this activation only applies to the beans in
that archive. From CDI 1.1 onwards the decorator can be enabled for the whole application using
@vriority annotation.

<beans
xm ns="http://xm ns.jcp.org/xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="
http://xm ns.jcp.org/ xm/ns/javaee
http://xmns.jcp.org/xm/ns/javaeel/ beans_1_1. xsd">

95

Chapter 10. Decorators

<decor at or s>
<cl ass>or g. nyconpany. nyapp. Lar geTr ansact i onDecor at or </ cl ass>
</ decor at or s>
</ beans>

This declaration serves the same purpose for decorators that the <i nt er cept or s> declaration
serves for interceptors:

« itenables us to specify an ordering for decorators in our system, ensuring deterministic behavior,
and

« it lets us enable or disable decorator classes at deployment time.

Decorators enabled using @i ori ty are called before decorators enabled using beans. xni , the
lower priority values are called first.

96

Chapter 11.

Chapter 11. Events

Dependency injection enables loose-coupling by allowing the implementation of the injected bean
type to vary, either at deployment time or runtime. Events go one step further, allowing beans to
interact with no compile time dependency at all. Event producers raise events that are delivered
to event observers by the container.

This basic schema might sound like the familiar observer/observable pattern, but there are a
couple of twists:

« not only are event producers decoupled from observers; observers are completely decoupled
from producers,

« observers can specify a combination of "selectors" to narrow the set of event natifications they
will receive, and

» observers can be notified immediately, or can specify that delivery of the event should be
delayed until the end of the current transaction.

The CDI event notification facility uses more or less the same typesafe approach that we've
already seen with the dependency injection service.

11.1. Event payload

The event object carries state from producer to consumer. The event object is nothing more than
an instance of a concrete Java class. (The only restriction is that an event type may not contain
type variables). An event may be assigned qualifiers, which allows observers to distinguish it from
other events of the same type. The qualifiers function like topic selectors, allowing an observer
to narrow the set of events it observes.

An event qualifier is just a normal qualifier, defined using @ual i fi er. Here’s an example:

@ualifier

@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
@ret ent i on(RUNTI ME)

public @nterface Updated {}

11.2. Event observers

An observer method is a method of a bean with a parameter annotated @bser ves.

public voi d onAnyDocunent Event (@bserves Document docunent) { ... }

97

Chapter 11. Events

The annotated parameter is called the event parameter. The type of the event parameter is the
observed event type, in this case Docunent . The event parameter may also specify qualifiers.

public void afterDocunent Updat e(@bserves @Jpdated Docunment docunent) { ... }

An observer method need not specify any event qualifiers—in this case it is interested in every
event whose type is assignable to the observed event type. Such observer will trigger on both
events shown below:

@nj ect @ny Event<Document> docunent Event ;
@ nj ect @pdat ed Event <Docunent > anot her Docunment Event ;

If the observer does specify qualifiers, it will be notified of an event if the event object is assignable
to the observed event type, and if the set of observed event qualifiers is a subset of all the event
qualifiers of the event.

The observer method may have additional parameters, which are injection points:

public void afterDocunent Updat e(@bserves @Jpdat ed Docunent docunent, User user) {

11.3. Event producers

Event producers fire events using an instance of the parameterized Event interface. An instance
of this interface is obtained by injection:

@ nject @ny Event<Docunent> docunent Event;

A producer raises events by calling the fi re() method of the Event interface, passing the event
object:

docurnent Event . fire(docunent);

This particular event will be delivered to every observer method that:

* has an event parameter to which the event object (the Docunent) is assignable, and

« specifies no qualifiers.

98

Conditional observer methods

The container simply calls all the observer methods, passing the event object as the value of the
event parameter. If any observer method throws an exception, the container stops calling observer
methods, and the exception is rethrown by the fire() method.

Qualifiers can be applied to an event in one of two ways:

* by annotating the Event injection point, or
by passing qualifiers to the sel ect () of Event.

Specifying the qualifiers at the injection point is far simpler:

@ nj ect @)pdat ed Event <Docunent > documnent Updat edEvent ;

Then, every event fired via this instance of Event has the event qualifier @pdat ed. The event is
delivered to every observer method that:

« has an event parameter to which the event object is assignable, and

» does not have any event qualifier except for the event qualifiers that match those specified at
the Event injection point.

The downside of annotating the injection point is that we can’t specify the qualifier dynamically.
CDI lets us obtain a qualifier instance by subclassing the helper class Annot ati onLi t eral . That
way, we can pass the qualifier to the sel ect () method of Event .

docunent Event . sel ect (new Annot ati onLi teral <Updated>(){}).fire(docunent);

Events can have multiple event qualifiers, assembled using any combination of annotations at the
Event injection point and qualifier instances passed to the sel ect () method.

11.4. Conditional observer methods

By default, if there is no instance of an observer in the current context, the container will instantiate
the observer in order to deliver an event to it. This behavior isn’t always desirable. We may want
to deliver events only to instances of the observer that already exist in the current contexts.

A conditional observer is specified by adding r ecei ve = | F_EXI STSto the @bser ves annotation.

public void refreshOnDocunent Updat e(@bserves(receive = | F_EXI STS) @Jpdat ed Docunent d) {

99

Chapter 11. Events

@ Note

A bean with scope @ependent cannot be a conditional observer, since it would
never be called!

11.5. Event qualifiers with members

An event qualifier type may have annotation members:

@ualifier
@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
@ret ent i on(RUNTI ME)
public @nterface Role {
Rol eType val ue();

The member value is used to narrow the messages delivered to the observer:
public void adm nLoggedl n(@bserves @Rol e(ADM N) Loggedln event) { ... }

Event qualifier type members may be specified statically by the event producer, via annotations
at the event notifier injection point:

@ nj ect @Rol e(ADM N) Event <Logged! n> | oggedl nEvent ;

Alternatively, the value of the event qualifier type member may be determined dynamically by the
event producer. We start by writing an abstract subclass of Annot ati onLiteral :

abstract class Rol eBi ndi ng
ext ends Annot ati onLiteral <Rol e>
i mpl enents Role {}

The event producer passes an instance of this class to sel ect () :

docunent Event . sel ect (new Rol eBi ndi ng() {
public void value() { return user.getRole(); }
}).fire(docunent);

100

Multiple event qualifiers

11.6. Multiple event qualifiers

Event qualifiers may be combined, for example:

@nj ect @l og Event <Document > bl ogEvent;

i f (document.isBlog()) blogEvent.sel ect(new Annotati onLiteral <Updated>(){}).fire(docunent);

An observer method is only notified if all the observed qualifiers are specified when the event is
fired. Assume the following observers in this example:

public void afterBl ogUpdat e(@bserves @pdated @l og Docunment docurent) { ... }
public void afterDocunent Updat e(@bserves @Jpdated Docunent docunent) { ... }
public void onAnyBl ogEvent (@bserves @l og Docunment docunent) { ... }

public void onAnyDocunent Event (@bserves Docurment document) { ... }}}

All of these observer methods will be notified.

However, if there were also an observer method:

public void afterPersonal Bl ogUpdat e(@bserves @Jpdated @ersonal @l og Docunment docunent) {

It would not be notified, as @er sonal is not a qualifier of the event being fired.

11.7. Transactional observers

Transactional observers receive their event notifications during the before or after completion
phase of the transaction in which the event was raised. For example, the following observer
method needs to refresh a query result set that is cached in the application context, but only when
transactions that update the Cat egory tree succeed:

public void refreshCategoryTree(@bserves(during = AFTER_SUCCESS) Cat egoryUpdat eEvent event) {

101

Chapter 11. Events

There are five kinds of transactional observers:

* | N_PROGRESS observers are called immediately (default)

e AFTER_SUCCESS observers are called during the after completion phase of the transaction, but
only if the transaction completes successfully

e AFTER_FAI LURE observers are called during the after completion phase of the transaction, but
only if the transaction fails to complete successfully

e AFTER _COVPLETI ON observers are called during the after completion phase of the transaction
« BEFORE_COWPLETI ONobservers are called during the before completion phase of the transaction

Transactional observers are very important in a stateful object model because state is often held
for longer than a single atomic transaction.

Imagine that we have cached a JPA query result set in the application scope:

i mport javax.ejb. Singleton;
i nport javax.enterprise.inject.Produces;

@\ppl i cati onScoped @i ngl et on
public class Catal og {

@er si st enceCont ext EntityManager em
Li st <Product > products;

@°r oduces @cat al og
Li st <Product > get Catal og() {
if (products==null) {
products = emcreateQuery("select p from Product p where p.deleted
= fal se")
.getResul tList();

}

return products;

From time to time, a Product is created or deleted. When this occurs, we need to refresh the
Product catalog. But we should wait until after the transaction completes successfully before
performing this refresh!

The bean that creates and deletes "Product’s could raise events, for example:

i mport javax.enterprise.event. Event;

102

Transactional observers

@t at el ess
public class Product Manager {
@er si st enceCont ext EntityManager em
@nj ect @ny Event <Product > product Event;

public void del ete(Product product) {

em del et e(product);
product Event . sel ect (new Annot ati onLiteral <Del eted>(){}).fire(product);

public void persist(Product product) {
em persi st (product);
product Event . sel ect (new Annot ati onLiteral <Created>(){}).fire(product);

And now Cat al og can observe the events after successful completion of the transaction:

i mport javax.ejb. Singleton;

@\ppl i cati onScoped @i ngl et on
public class Catal og {

voi d addPr oduct (@bserves(duri ng = AFTER_SUCCESS) @or eat ed Product product) {
product s. add(pr oduct);

voi d renoveProduct (@bserves(during = AFTER_SUCCESS) @el et ed Product product) {
products. renmove(product);

103

104

Chapter 12.

Chapter 12. Stereotypes

The CDI specification defines a stereotype as follows:

In many systems, use of architectural patterns produces a set of recurring bean
roles. A stereotype allows a framework developer to identify such a role and
declare some common metadata for beans with that role in a central place.

A stereotype encapsulates any combination of:

 adefault scope, and
* a set of interceptor bindings.

A stereotype may also specify that:

- all beans with the stereotype have defaulted bean names, or that
« all beans with the stereotype are alternatives.

A bean may declare zero, one or multiple stereotypes. Stereotype annotations
may be applied to a bean class or producer method or field.

A stereotype is an annotation, annotated @t er eot ype, that packages several other annotations.
For instance, the following stereotype identifies action classes in some MVC framework:

@5t er eot ype
@ret ent i on(RUNTI ME)

@rar get (TYPE)

public @nterface Action {}
We use the stereotype by applying the annotation to a bean.

@\ction
public class LoginAction { ... }

Of course, we need to apply some other annotations to our stereotype or else it wouldn’t be adding
much value.

12.1. Default scope for a stereotype

A stereotype may specify a default scope for beans annotated with the stereotype. For example:

105

Chapter 12. Stereotypes

@Request Scoped

@5t er eot ype
@Ret ent i on(RUNTI ME)

@rar get (TYPE)
public @nterface Action {}

A particular action may still override this default if necessary:

@ependent @Action
public cl ass Dependent ScopedLogi nAction { ... }

Naturally, overriding a single default isn't much use. But remember, stereotypes can define more
than just the default scope.

12.2. Interceptor bindings for stereotypes

A stereotype may specify a set of interceptor bindings to be inherited by all beans with that
stereotype.

@Request Scoped
@ransacti onal (requi resNew=true)
@pecure

@3t er eot ype
@Ret ent i on(RUNTI ME)

@rar get (TYPE)
public @nterface Action {}

This helps us get technical concerns, like transactions and security, even further away from the
business code!

12.3. Name defaulting with stereotypes

We can specify that all beans with a certain stereotype have a defaulted EL name when a name
is not explicitly defined for that bean. All we need to do is add an empty @aned annotation:

@Request Scoped

@ransacti onal (requi resNew=t rue)
@becure

@\aned

@5t er eot ype

@ret ent i on(RUNTI ME)

@rar get (TYPE)

106

Alternative stereotypes

public @nterface Action {}

Now, the Logi nAct i on bean will have the defaulted name | ogi nAct i on.

12.4. Alternative stereotypes

A stereotype can indicate that all beans to which it is applied are "@Alternative’s. An alternative
stereotype lets us classify beans by deployment scenario.

@\ ternative

@3t er eot ype
@Ret ent i on(RUNTI MVE)

@rar get (TYPE)
public @nterface Mck {}

We can apply an alternative stereotype to a whole set of beans, and activate them all with one
line of code in beans. xn .

@mbck

public class MyckLogi nActi on extends Logi nAction { ... }

<beans>
<alternatives>
<st er eot ype>or g. nyconpany. t esti ng. Mock</ st er eot ype>
</alternatives>
</ beans>

12.5. Stereotype stacking

This may blow your mind a bit, but stereotypes may declare other stereotypes, which we’ll call
stereotype stacking. You may want to do this if you have two distinct stereotypes which are
meaningful on their own, but in other situation may be meaningful when combined.

Here’s an example that combines the @\ct i on and @udi t abl e stereotypes:

@\udi t abl e

@\ction

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Auditabl eAction {}

107

Chapter 12. Stereotypes

12.6. Built-in stereotypes

CDI defines one standard stereotype, @bdel , which is expected to be used frequently in web
applications:

@\aned

@request Scoped

@5t er eot ype

@rarget ({ TYPE, METHOD, FI ELD})
@Ret ent i on(RUNTI ME)

public @nterface Mdel {}

Instead of using JSF managed beans, just annotate a bean @mbdel , and use it directly in your
JSF view!

108

Chapter 13.

Chapter 13. Specialization,
Inheritance and alternatives

When you first start developing with CDI, you'll likely be dealing only with a single bean
implementation for each bean type. In this case, it's easy to understand how beans get selected for
injection. As the complexity of your application grows, multiple occurrences of the same bean type
start appearing, either because you have multiple implementations or two beans share a common
(Java) inheritance. That's when you have to begin studying the specialization, inheritance and
alternative rules to work through unsatisfied or ambiguous dependencies or to avoid certain beans
from being called.

The CDI specification recognizes two distinct scenarios in which one bean extends another:

» The second bean specializes the first bean in certain deployment scenarios.
In these deployments, the second bean completely replaces the first, fulfilling
the same role in the system.

» The second bean is simply reusing the Java implementation, and otherwise
bears no relation to the first bean. The first bean may not even have been
designed for use as a contextual object.

The second case is the default assumed by CDI. It's possible to have two beans in the system
with the same part bean type (interface or parent class). As you've learned, you select between
the two implementations using qualifiers.

The first case is the exception, and also requires more care. In any given deployment, only one
bean can fulfill a given role at a time. That means one bean needs to be enabled and the other
disabled. There are a two modifiers involved: @\ t ernati ve and @peci al i zes. We'll start by
looking at alternatives and then show the guarantees that specialization adds.

13.1. Using alternative stereotypes

CDI lets you override the implementation of a bean type at deployment time using an alternative.
For example, the following bean provides a default implementation of the Paynent Processor
interface:

public cl ass Defaul t Payment Processor
i mpl ement s Paynent Processor {

But in our staging environment, we don't really want to submit payments to the external system,
so we override that implementation of Paynent Pr ocessor with a different bean:

109

Chapter 13. Specialization, i...

public @\ ternative
cl ass St agi ngPaynent Processor
i mpl ements Paynent Processor {

or

public @\ ternative
cl ass St agi ngPaynent Processor
ext ends Def aul t Paynment Processor {

We've already seen how we can enable this alternative by listing its class in the beans. xni
descriptor.

But suppose we have many alternatives in the staging environment. It would be much more
convenient to be able to enable them all at once. So let's make @bt agi ng an @\ ternative
stereotype and annotate the staging beans with this stereotype instead. You'll see how this level
of indirection pays off. First, we create the stereotype:

@\ ternative

@5t er eot ype

@Ret ent i on(RUNTI ME)

@rar get (TYPE)

public @nterface Staging {}

Then we replace the @\ t er nat i ve annotation on our bean with @t agi ng:

@5t agi ng
public class Stagi ngPayment Processor
i mpl ements Paynent Processor {

Finally, we activate the @t agi ng stereotype in the beans. xm descriptor:

<beans
xm ns="http://xmns.jcp.org/xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

110

A minor problem with alternatives

xsi : schemalLocati on="
http://xm ns.jcp.org/ xm /ns/javaee
http://xmns.jcp.org/ xm/ns/javaeel/ beans_1_1. xsd">
<alternatives>
<st ereot ype>org. myconpany. nyapp. St agi ng</ st er eot ype>
</alternatives>
</ beans>

Now, no matter how many staging beans we have, they will all be enabled at once.

13.2. A minor problem with alternatives

When we enable an alternative, does that mean the default implementation is disabled? Well, not
exactly. If the default implementation has a qualifier, for instance @ar geTr ansacti on, and the
alternative does not, you could still inject the default implementation.

@ nj ect @argeTransacti on Paynment Processor paynent Processor;

So we haven’t completely replaced the default implementation in this deployment of the system.
The only way one bean can completely override a second bean at all injection points is if it
implements all the bean types and declares all the qualifiers of the second bean. However, if the
second bean declares a producer method or observer method, then even this is not enough to
ensure that the second bean is never called! We need something extra.

CDI provides a special feature, called specialization, that helps the developer avoid these traps.
Specialization is a way of informing the system of your intent to completely replace and disable
an implementation of a bean.

13.3. Using specialization

When the goal is to replace one bean implementation with a second, to help prevent developer
error, the first bean may:
« directly extend the bean class of the second bean, or

« directly override the producer method, in the case that the second bean is a producer method,
and then

explicitly declare that it specializes the second bean:
@\ ternative @ppecializes

public class MckCredit CardPaynment Processor
ext ends Credit CardPaymnment Processor {

111

Chapter 13. Specialization, i...

When an enabled bean specializes another bean, the other bean is never instantiated or called
by the container. Even if the other bean defines a producer or observer method, the method will
never be called.

So why does specialization work, and what does it have to do with inheritance?

Since we're informing the container that our alternative bean is meant to stand in as a replacement
for the default implementation, the alternative implementation automatically inherits all qualifiers
of the default implementation. Thus, in our example, MockCr edi t Car dPaynent Pr ocessor inherits
the qualifiers @ef aul t and @r edi t Car d.

Furthermore, if the default implementation declares a bean EL name using @\aned, the name is
inherited by the specializing alternative bean.

112

Chapter 14.

Chapter 14. Java EE component
environment resources

Java EE 5 already introduced some limited support for dependency injection, in the form of
component environment injection. A component environment resource is a Java EE component,
for example a JDBC datasource, JMS queue or topic, JPA persistence context, remote EJB or
web service.

Naturally, there is now a slight mismatch with the new style of dependency injection in CDI. Most
notably, component environment injection relies on string-based names to qualify ambiguous
types, and there is no real consistency as to the nature of the names (sometimes a JNDI name,
sometimes a persistence unit name, sometimes an EJB link, sometimes a non-portable "mapped
name"). Producer fields turned out to be an elegant adaptor to reduce all this complexity to a
common model and get component environment resources to participate in the CDI system just
like any other kind of bean.

Fields have a duality in that they can both be the target of Java EE component environment
injection and be declared as a CDI producer field. Therefore, they can define a mapping from a
string-based name in the component environment, to a combination of type and qualifiers used in
the world of typesafe injection. We call a producer field that represents a reference to an object
in the Java EE component environment a resource.

14.1. Defining a resource

The CDI specification uses the term resource to refer, generically, to any of the following kinds of
object which might be available in the Java EE component environment:

« JDBC "Datasource’s, JMS "Queue’s, "Topic's and "ConnectionFactory’s, JavaMail “Session’s
and other transactional resources including JCA connectors,

JPA “EntityManager's and "EntityManagerFactory’s,

remote EJBs, and
* web services.

We declare a resource by annotating a producer field with a component environment injection
annotation: @Resour ce, @JB, @&er si st enceCont ext, @er si st enceUnit or @¥bSer vi ceRef .

@r oduces @ebServi ceRef (1 ookup="j ava: app/ servi ce/ Cat al og")
Cat al og cat al og;

@r oduces @Resour ce(l ookup="j ava: gl obal / env/j dbc/ Cust oner Dat asour ce")

113

Chapter 14. Java EE component...

@ust omer Dat abase Dat asour ce cust oner Dat abase;

@r oduces @rersi st enceCont ext (uni t Name=" Cust oner Dat abase")
@cust oner Dat abase EntityManager customer Dat abasePer si st enceCont ext ;

@roduces @Persi stenceUnit (unitNanme="Cust oner Dat abase")
@cCust oner Dat abase EntityManager Fact ory cust oner Dat abasePer si st enceUni t;

@r oduces @JB(ejbLink="../their.jar#Paynment Service")
Paynent Ser vi ce paymnent Servi ce;

The field may be static (but not final).

A resource declaration really contains two pieces of information:

« the JNDI name, EJB link, persistence unit name, or other metadata needed to obtain a reference
to the resource from the component environment, and

« the type and qualifiers that we will use to inject the reference into our beans.

@ Note
It might feel strange to be declaring resources in Java code. Isn't this stuff that
might be deployment-specific? Certainly, and that’s why it makes sense to declare
your resources in a class annotated @\ t er nati ve.

14.2. Typesafe resource injection

These resources can now be injected in the usual way.

@nj ect Catal og catal og;
@ nj ect @ust oner Dat abase Dat asour ce cust oner Dat abase;

@ nj ect @ust oner Dat abase EntityManager custoner Dat abaseEntityManager;

114

Typesafe resource injection

@ nj ect @ust oner Dat abase EntityManager Fact ory cust omer Dat abaseEnt it yManager Fact ory;

@ nj ect Payment Servi ce payment Servi ce;

The bean type and qualifiers of the resource are determined by the producer field declaration.

It might seem like a pain to have to write these extra producer field declarations, just to gain an
additional level of indirection. You could just as well use component environment injection directly,

right? But remember that you're going to be using resources like the Enti t yManager in several
different beans. Isn't it nicer and more typesafe to write

@ nj ect @ust oner Dat abase EntityManager

instead of

@er si st enceCont ext (uni t Nane=" Cust oner Dat abase") EntityManager

all over the place?

115

116

Part IV. CDI and the
Java EE ecosystem

The third theme of CDI is integration. We've already seen how CDI helps integrate EJB and JSF,
allowing EJBs to be bound directly to JSF pages. That's just the beginning. The CDI services are
integrated into the very core of the Java EE platform. Even EJB session beans can take advantage
of the dependency injection, event bus, and contextual lifecycle management that CDI provides.

CDI is also designed to work in concert with technologies outside of the platform by providing
integration points into the Java EE platform via an SPI. This SPI positions CDI as the foundation
for a new ecosystem of portable extensions and integration with existing frameworks and
technologies. The CDI services will be able to reach a diverse collection of technologies, such as
business process management (BPM) engines, existing web frameworks and de facto standard
component models. Of course, The Java EE platform will never be able to standardize all the
interesting technologies that are used in the world of Java application development, but CDI makes
it easier to use the technologies which are not yet part of the platform seamlessly within the Java
EE environment.

We’'re about to see how to take full advantage of the Java EE platform in an application that uses
CDI. We'll also briefly meet a set of SPIs that are provided to support portable extensions to CDI.
You might not ever need to use these SPIs directly, but don't take them for granted. You will likely
be using them indirectly, every time you use a third-party extension, such as DeltaSpike [http://
deltaspike.apache.org/].

http://deltaspike.apache.org/
http://deltaspike.apache.org/
http://deltaspike.apache.org/

Chapter 15.

Chapter 15. Java EE integration

CDl is fully integrated into the Java EE environment. Beans have access to Java EE resources and
JPA persistence contexts. They may be used in Unified EL expressions in JSF and JSP pages.
They may even be injected into other platform components, such as servlets and message-driven
Beans, which are not beans themselves.

15.1. Built-in beans

In the Java EE environment, the container provides the following built-in beans, all with the qualifier
@efaul t:

* the current JTA User Tr ansact i on,

e aPrincipal representing the current caller identity,

the default Bean Validation [http://jcp.org/en/jsr/detail?id=303] Val i dat i onFact ory,

e aVal i dat or for the default val i dati onFact ory,

e HttpServl et Request, Htt pSessi on and Ser vl et Cont ext

i mport javax.enterprise.inject.Produces;

cl ass FacesCont ext Producer {
@r oduces @Request Scoped FacesCont ext get FacesContext () {
return FacesContext.getCurrentlnstance();

15.2. Injecting Java EE resources into a bean

All managed beans may take advantage of Java EE component environment injection using
@Resource, @JB, @%ersistenceContext, @ersistenceUnit and @\ebServi ceRef. We've
already seen a couple of examples of this, though we didn’t pay much attention at the time:

119

http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303

Chapter 15. Java EE integration

@ransacti onal @ nterceptor
public class Transactionlnterceptor {
@Resource UserTransaction transaction;

@\r oundl nvoke public Object manageTransacti on(lnvocati onContext ctx) throws Exception {

@sessi onScoped

public class Login inplenents Serializable {
@nject Credentials credentials;
@rer si st enceCont ext EntityManager user Dat abase;

The Java EE @ost Const ruct and @r eDest r oy callbacks are also supported for all managed
beans. The @ost Const ruct method is called after all injection has been performed.

Of course, we advise that component environment injection be used to define CDI resources, and
that typesafe injection be used in application code.

15.3. Calling a bean from a servlet

It's easy to use a bean from a servlet in Java EE. Simply inject the bean using field or initializer
method injection.

public class LoginServlet extends HttpServlet {
@nject Credentials credentials;
@nj ect Login |ogin;

@verride
public void service(HttpServl et Request request, HttpServl et Response response)
throws Servl et Exception, |OException {
credenti al s. set User nanme(r equest . get Par anet er ("user nane")):
credenti al s. set Passwor d(request. get Paranet er ("password")):
| ogin.login();
if (login.isLoggedin()) {
response. sendRedi rect ("/ home. j sp");

}
el se {

response. sendRedi rect ("/1 ogi nError.jsp");
}

120

Calling a bean from a message-driven bean

Since instances of servlets are shared across all incoming threads, the bean client proxy takes
care of routing method invocations from the servlet to the correct instances of Cr edent i al s and
Logi n for the current request and HTTP session.

15.4. Calling a bean from a message-driven bean

CDl injection applies to all EJBs, even when they aren’t CDI beans. In particular, you can use CDI
injection in message-driven beans, which are by nature not contextual objects.

You can even use interceptor bindings for message-driven Beans.

@ransacti onal @skessageDriven

public class ProcessOrder inplements MessagelLi stener {
@nject Inventory inventory;
@rer si st enceCont ext EntityManager em

public void onMessage(Message nmessage) ({

Please note that there is no session or conversation context available when a message is delivered
to a message-driven bean. Only @Request Scoped and @\ppl i cat i onScoped beans are available.

But how about beans which send JMS messages?

15.5. JMS endpoints

Sending messages using JMS can be quite complex, because of the number of different objects
you need to deal with. For queues we have Queue, QueueConnect i onFact ory, QueueConnect i on,
QueueSessi on and QueueSender. For topics we have Topic, Topi cConnectionFactory,
Topi cConnecti on, Topi cSessi on and Topi cPubl i sher. Each of these objects has its own
lifecycle and threading model that we need to worry about.

You can use producer fields and methods to prepare all of these resources for injection into a bean:

i mport javax.]j ns. Connecti onFactory;
i mport javax.j ns. Queue;

public class O derResources ({
@Resour ce(name="j s/ Connect i onFact ory")
private ConnectionFactory connecti onFactory;

@Resour ce(name="j ns/ Or der Queue")
private Queue order Queue;

121

Chapter 15. Java EE integration

@r oduces @ der
publ i ¢ Connection createO derConnection() throws JMSException {
return connectionFactory. createConnection();

}

public void cl oseO der Connecti on(@i sposes @ der Connection connecti on)
throws JMSException {
connecti on. cl ose();

@°r oduces @D der
public Session createO der Sessi on(@x der Connection connection)
throws JMsSException {
return connection. createSession(true, Session. AUTO ACKNOALEDGE) ;

public void cl oseO der Sessi on(@i sposes @x der Sessi on session)
throws JVMSException {
sessi on. cl ose();

@r oduces @ der
publ i c MessageProducer createO der MessageProducer (@r der Sessi on session)
throws JVMSException {
return session.createProducer (order Queue);

public void cl oseO der MessageProducer (@i sposes @x der MessageProducer producer)
throws JMsSException {
producer. cl ose();

In this example, we can just inject the prepared MessagePr oducer , Connect i on or QueueSessi on:

@nject Oder order;
@nject @rder MessageProducer producer;
@nject @rder Session orderSession;

public void sendMessage() {
MapMessage nsg = order Sessi on. cr eat eMapMessage() ;

nsg. set Long("orderld", order.getld());

producer. send(nsg) ;

The lifecycle of the injected JMS objects is completely controlled by the container.

122

Packaging and deployment

15.6. Packaging and deployment

CDI doesn't define any special deployment archive. You can package CDI beans in JARs, EJB
JARs or WARs—any deployment location in the application classpath. However, the archive must
be a "bean archive".

Unlike CDI 1.0, the CDI 1.1 specification recognizes two types of bean archives. The type
determines the way the container discovers CDI beans in the archive.

http://xmins.jcp.org/
xml/ns/javaee/beans_1 1.xsd

15.6.1. Explicit bean archive

An explicit bean archive is an archive which contains a beans. xni file:

 with a version number of 1.1 (or later), with the bean-discovery-mode of al |, or,
« like in CDI 1.0 — with no version number, or, that is an empty file.

It behaves just like a CDI 1.0 bean archive — i.e. Weld discovers each Java class, interface or
enum in such an archive.

15.6.2. Implicit bean archive

An implicit bean archive is an archive which contains one or more bean classes with a bean
defining annotation, or one or more session beans. It can also contain a beans. xnl file with a
version number of 1.1 (or later), with the bean-discovery-mode of annot at ed. Weld only discovers
Java classes with a bean defining annotation within an implicit bean archive.

123

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd

Chapter 15. Java EE integration

2.5. Bean defining annotations

15.6.3. What archive is not a bean archive

Although quite obvious, let's sum it up:

« an archive which contains neither a beans. xm file nor any bean class with a bean defining
annotation,

 an archive which contains a beans. xnm file with the bean-discovery-mode of none.

15.6.4. Embeddable EJB container

In an embeddable EJB container, beans may be deployed in any location in which EJBs may be
deployed.

124

http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_defining_annotations
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_defining_annotations
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_defining_annotations

Chapter 16.

Chapter 16. Portable extensions

CDI is intended to be a foundation for frameworks, extensions and integration with other
technologies. Therefore, CDI exposes a set of SPIs for the use of developers of portable
extensions to CDI. For example, the following kinds of extensions were envisaged by the designers
of CDI:

* integration with Business Process Management engines,

« integration with third-party frameworks such as Spring, Seam, GWT or Wicket, and
« new technology based upon the CDI programming model.

More formally, according to the spec:

A portable extension may integrate with the container by:

* Providing its own beans, interceptors and decorators to the container

« Injecting dependencies into its own objects using the dependency injection
service

» Providing a context implementation for a custom scope

« Augmenting or overriding the annotation-based metadata with metadata from
some other source

16.1. Creating an extension

The first step in creating a portable extension is to write a class that implements Ext ensi on. This
marker interface does not define any methods, but it's needed to satisfy the requirements of Java
SE’s service provider architecture.

i mport javax.enterprise.inject.spi.Extension;
cl ass MyExtension inplenents Extension { ... }
Next, we need to register our extension as a service provider by creating a file named META-

I NF/ servi ces/javax. enterpri se.inject. spi.Extensi on, which contains the name of our
extension class:

or g. nydonai n. ext ensi on. MyExt ensi on

125

Chapter 16. Portable extensions

An extension is not a bean, exactly, since it is instantiated by the container during the initialization
process, before any beans or contexts exist. However, it can be injected into other beans once
the initialization process is complete.

@ nj ect
MyBean(MyExt ensi on nyExt ensi on) {
my Ext ensi on. doSoret hi ng() ;

And, like beans, extensions can have observer methods. Usually, the observer methods observe
container lifecycle events.

16.2. Container lifecycle events

During the initialization process, the container fires a series of events, including:

* Bef or eBeanDi scovery

e ProcessAnnot at edType and Pr ocessSynt het i cAnnot at edType
e After TypeDi scovery

* ProcesslnjectionTarget and ProcessProducer

* ProcesslnjectionPoint

* ProcessBeanAttri butes

e ProcessBean, ProcessManagedBean, ProcessSessi onBean, ProcessProducer Met hod and
Pr ocessProducer Fi el d

* ProcessObserver Met hod
* AfterBeanDi scovery
e AfterDepl oynent Val i dati on

Extensions may observe these events:

i mport javax.enterprise.inject.spi.Extension;
cl ass MyExt ensi on inpl enents Extension {
voi d bef oreBeanDi scovery(@hbserves BeforeBeanD scovery bbd) {

Logger. gl obal . debug(" begi nni ng the scanni ng process");

<T> voi d processAnnot at edType(@bserves ProcessAnnot at edType<T> pat) {

126

The BeanManager object

Logger. gl obal . debug(" scanni ng type:
+ pat. get Annot at edType() . get JavaCl ass(). get Nane());
}

voi d afterBeanDi scovery(@hbserves AfterBeanDi scovery abd) ({
Logger. gl obal . debug("fi ni shed the scanni ng process");

In fact, the extension can do a lot more than just observe. The extension is permitted to modify
the container's metamodel and more. Here's a very simple example:
i nport javax.enterprise.inject.spi.Extension;
cl ass MyExtension inplenments Extension {
<T> voi d processAnnot at edType(@lbserves @V thAnnotations({lgnore.class}) ProcessAnnot at edTyy

/* tell the container to ignore the type if it is annotated @gnore */
if (pat.getAnnot atedType().i sAnnotati onPresent(lgnore.class)) pat.veto();

@ Note
The @V thAnnotations annotation causes the container to deliver the
ProcessAnnotatedType events only for the types which contain the specified
annotation.

The observer method may inject a BeanManager
<T> voi d processAnnot at edType(@bserves ProcessAnnot at edType<T> pat, BeanManager beanManager) ({

An extension observer method is not allowed to inject any other object.

16.3. The BeanManager ObjeCt

The nerve center for extending CDI is the BeanManager object. The BeanManager interface lets
us obtain beans, interceptors, decorators, observers and contexts programmatically.

public interface BeanManager {

127

Chapter 16. Portable extensions

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Ohj ect get Ref er ence(Bean<?> bean, Type beanType, Creational Context<?> ctx);
hj ect getlnjectabl eReference(lnjectionPoint ij, Creational Context<?> ctx);
<T> Creational Cont ext <T> creat eCreati onal Cont ext (Cont ext ual <T> cont extual);
Set <Bean<?>> get Beans(Type beanType, Annotation... qualifiers);

Set <Bean<?>> get Beans(Stri ng nane);

Bean<?> get Passi vati onCapabl eBean(String id);

<X> Bean<? extends X> resol ve(Set <Bean<? extends X>> beans);

voi d val idate(lnjectionPoint injectionPoint);

void fireEvent ((bject event, Annotation... qualifiers);

<T> Set <Cbserver Met hod<? super T>> resol veCbserver Met hods(T event, Annotation... qual
Li st <Decor at or <?>> resol veDecor at or s(Set <Type> types, Annotation... qualifiers);

Li st <l nt ercept or <?>> resol vel nterceptors(lnterceptionType type, Annotation... interce

bool ean i sScope(d ass<? extends Annotation> annotati onType);
bool ean i sNor mal Scope(Cl ass<? ext ends Annotati on> annotati onType);

publ i c bool ean i sPassi vati ngScope(Cl ass<? ext ends Annot ati on> annot ati onType);

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

O O 0o 0o o0 o0 0O o0 0O o0 o0 o0 00 o000 0 0 00 0 0 0

bool ean isQualifier(d ass<? extends Annotation> annotati onType);

bool ean i sl nterceptorBi ndi ng(Cl ass<? extends Annotati on> annotationType);

bool ean i sStereotype(d ass<? extends Annotati on> annotati onType);

Set <Annot at i on> get | nt er cept or Bi ndi ngDefi ni ti on(C ass<? extends Annot ati on> bi ndi ngTy
Set <Annot ati on> get St er eot ypeDefi niti on(C ass<? extends Annotati on> stereotype);

bool ean areQualifiersEquival ent (Annotation qualifierl, Annotation qualifier2);

bool ean arel nter cept or Bi ndi ngsEqui val ent (Annot ati on i nterceptorBi ndingl, Annotation i
int getQualifierHashCode(Annotation qualifier);

i nt getlnterceptorBi ndi ngHashCode(Annot ati on i nt er cept or Bi ndi ng) ;

Cont ext get Cont ext (Cl ass<? extends Annotati on> scopeType);

ELResol ver get ELResol ver();

Expr essi onFact ory wr apExpressi onFact or y(Expressi onFact ory expressi onFactory);

<T> Annot at edType<T> cr eat eAnnot at edType(d ass<T> type);

<T> | nj ecti onTarget <T> createl nj ecti onTarget (Annot at edType<T> type);

<T> | nj ectionTarget Fact ory<T> get | nj ecti onTar get Fact or y(Annot at edType<T> annot at edTyy
<X> Producer Fact or y<X> get Producer Fact or y(Annot at edFi el d<? super X> field, Bean<X> d¢
<X> Producer Fact or y<X> get Producer Fact or y(Annot at edMet hod<? super X> net hod, Bean<X>
<T> BeanAttri but es<T> creat eBeanAttri butes(Annot at edType<T> type);

BeanAt tri but es<?> creat eBeanAttri but es(Annot at edMenber <?> type);

<T> Bean<T> creat eBean(BeanAttri butes<T> attributes, C ass<T> beand ass,

<T, X> Bean<T> creat eBean(BeanAttributes<T> attributes, O ass<X> beanC ass, Producer}
I nj ecti onPoi nt createlnjectionPoi nt (Annot at edFi el d<?> fi el d);

I nj ecti onPoi nt createl njectionPoi nt (Annot at edPar amet er <?> par aneter);

<T extends Extension> T get Extensi on(Cl ass<T> extensi onC ass);

Any bean or other Java EE component which supports injection can obtain an instance of
BeanManager Via injection:

@ nj ect BeanManager beanManager;

128

The CDI class

Alternatively, a BeanManager reference may be obtained from CDI via a static method call.

CDl . current (). get BeanManager ()

Java EE components may obtain an instance of BeanManager from JNDI by looking up the name
j ava: conp/ BeanManager . Any operation of BeanManager may be called at any time during the
execution of the application.

Let’s study some of the interfaces exposed by the BeanManager .

16.4. The o class

Application components which cannot obtain a BeanManager reference via injection nor JNDI
lookup can get the reference from the j avax. enterprise.inject.spi.CD class via a static
method call:

BeanManager nanager = CDI.current().get BeanManager();

The CDI class can be used directly to programmatically lookup CDI beans as described in
Section 4.10, “Obtaining a contextual instance by programmatic lookup”

CDI . sel ect (Foo. cl ass). get ()

16.5. The nj ecti onTar get interface

The first thing that a framework developer is going to look for in the portable extension SPI is a way
to inject CDI beans into objects which are not under the control of CDI. The I nj ecti onTar get
interface makes this very easy.

i nport javax.enterprise.inject.spi.CD;

129

Chapter 16. Portable extensions

[/ get the BeanManager
BeanManager beanManager = CDI . current().get BeanManager () ;

/1 CDI uses an Annot atedType object to read the annotations of a class
Annot at edType<SoneFr amewor kConponent > type = beanManager. cr eat eAnnot at edType(SormreFr anewor kConpc

// The extension uses an InjectionTarget to delegate instantiation, dependency
i njection
/land lifecycle callbacks to the CDI container
I nj ecti onTar get <SoneFr amewor kConmponent > it = beanManager. cr eat el nj ecti onTarget (type);

[/ each instance needs its own CDI Creational Context
Creational Context ctx = beanManager. creat eCreati onal Context(null);

/linstantiate the framework conponent and inject its dependencies

SoneFr anewor kConmponent instance = it.produce(ctx); //call the constructor
it.inject(instance, ctx); //call initializer nethods and performfield injection
it.postConstruct(instance); //call the @ostConstruct method

//destroy the framework conponent instance and cl ean up dependent objects
it.preDestroy(instance); //call the @reDestroy nethod
it.dispose(instance); //it is now safe to discard the instance
ctx.release(); //clean up dependent objects

16.6. The gean interface

Instances of the interface Bean represent beans. There is an instance of Bean registered with the
BeanManager object for every bean in the application. There are even Bean objects representing
interceptors, decorators and producer methods.

The BeanAttri but es interface exposes all the interesting things we discussed in Section 2.1,
“The anatomy of a bean”.

public interface BeanAttri butes<T> {

public Set<Type> get Types();

public Set<Annotation> getQualifiers();

public C ass<? extends Annotation> get Scope();

public String getNanme();

public Set<C ass<? extends Annotation>> get Stereotypes();
public bool ean isAlternative();

130

Registering a Bean

The Bean interface extends the BeanAtt ri but es interface and defines everything the container
needs to manage instances of a certain bean.

public interface Bean<T> extends Contextual <T> BeanAttri butes<T> {
public O ass<?> getBeand ass();
publ i c Set<lnjectionPoint> getlnjectionPoints();
publ i c bool ean isNullable();

There’s an easy way to find out what beans exist in the application:
Set <Bean<?>> al | Beans = beanManager . get Beans(Obect . cl ass, new Annotati onLiteral <Any>() {});

The Bean interface makes it possible for a portable extension to provide support for new kinds
of beans, beyond those defined by the CDI specification. For example, we could use the Bean
interface to allow objects managed by another framework to be injected into beans.

16.7. Registering a sean

The most common kind of CDI portable extension registers a bean (or beans) with the container.

In this example, we make a framework class, Securit yManager available for injection. To make
things a bit more interesting, we’re going to delegate back to the container’s | nj ecti onTar get to
perform instantiation and injection upon the Securi t yManager instance.

i nport javax.enterprise.inject.spi.Extension;

i mport javax.enterprise.event. Cbserves;

i mport java.l ang. annot ati on. Annot ati on;

i mport java.lang.refl ect. Type;

i nport javax.enterprise.inject.spi.lnjectionPoint;

public class SecurityManager Ext ensi on i npl enents Extension {

voi d afterBeanDi scovery(@bserves AfterBeanDi scovery abd, BeanManager bm {

//use this to read annotations of the class
Annot at edType<Securit yManager > at = bm creat eAnnot at edType(Securi t yManager. cl ass);

/luse this to instantiate the class and inject dependencies
final InjectionTarget<SecurityManager> it = bmcreatelnjectionTarget(at);

abd. addBean(new Bean<SecurityManager>() {

131

Chapter 16. Portable extensions

@verride
public O ass<?> getBeand ass() {
return SecurityManager. cl ass;

@verride
public Set<InjectionPoint> getlnjectionPoints() {
return it.getlnjectionPoints();

@verride
public String getName() {
return "securityManager";

@verride

publ i c Set<Annotation> getQualifiers() {
Set <Annot ati on> qualifiers = new HashSet <Annot ati on>();
qualifiers.add(new AnnotationLiteral <Default>() {});
qualifiers.add(new AnnotationLiteral <Any>() {});
return qualifiers;

@verride
public Cl ass<? extends Annotation> get Scope() ({
return ApplicationScoped. cl ass;

@verride
public Set<C ass<? extends Annotati on>> get Stereotypes() {
return Col |l ections. enptySet();

@verride

public Set<Type> get Types() {
Set <Type> types = new HashSet <Type>();
types. add(SecurityManager. cl ass);
types. add(Qoj ect . cl ass);
return types;

@verride
public boolean isAlternative() ({
return fal se;

@verride
publ i c bool ean isNullable() {
return fal se;

132

Wrapping an AnnotatedType

@verride

public SecurityManager create(Creational Context<SecurityManager> ctx) {

SecurityManager instance = it.produce(ctx);
it.inject(instance, ctx);

i t.postConstruct (instance);

return instance;

@verride

public void destroy(SecurityManager instance,

Creati onal Cont ext <SecurityManager> ctx) {

it.preDestroy(instance);
i t.di spose(instance);
ctx. rel ease();

})

But a portable extension can also mess with beans that are discovered automatically by the

container.

16.8. Wrapping adlN Annot at edType

One of the most interesting things that an extension class can do is process the annotations of a

bean class before the container builds its metamodel.

Let's start with an example of an extension that provides support for the use of @aned at the
package level. The package-level name is used to qualify the EL names of all beans defined
in that package. The portable extension uses the ProcessAnnot at edType event to wrap the

Annot at edType object and override the val ue() of the @laned annotation.

i mport java.lang.refl ect. Type;
i mport javax.enterprise.inject.spi.Extension;
i mport java.l ang. annot ati on. Annot ati on;

public class QualifiedNaneExtension inplenments Extension {

<X> voi d processAnnot at edType(@lbserves ProcessAnnot at edType<X> pat) {

/* wap this to override the annotations of the class */
final AnnotatedType<X> at = pat.get Annot at edType();

133

Chapter 16. Portable extensions

/[* Only wap Annot at edTypes for classes with @lanmed packages */
Package pkg = at.getJavad ass().get Package();
if (!pkg.isAnnotationPresent(Naned.class)) {

return;

Annot at edType<X> wr apped = new Annot at edType<X>() {

cl ass NanedLiteral extends AnnotationLiteral <Naned>
i mpl emrents Naned {
@erride
public String value() {
Package pkg = at.getJavad ass(). get Package();

String unqualifiedNane = "";
if (at.isAnnotationPresent(Nanmed.class)) {
unqual i fi edNane = at. get Annot ati on(Naned. cl ass) . val ue();

i f (unqualifiedName.isEmpty()) {
unqual i fi edNane = I ntrospector.decapitalize(at.getJavaC ass(). getSi npl e

final String qualifiedNang;
if (pkg.isAnnotationPresent(Naned.class)) {
qual i fi edName = pkg. get Annot ati on(Naned. cl ass) . val ue()

+ '.' + unqualifiedNane;
}
el se {
qual i fi edName = unqual i fi edNane;
}
return qualifiedName;
}

}
private final NanmedLiteral namedLiteral = new NanedLiteral ();
@verride

publ i ¢ Set <Annot at edConst ruct or <X>> get Constructors() {
return at.getConstructors();

@verride
publ i ¢ Set <Annot at edFi el d<? super X>> getFields() {
return at.getFields();

134

Wrapping an AnnotatedType

@verride
public O ass<X> getJavad ass() {
return at.getJavad ass();

@verride
publ i c Set <Annot at edMet hod<? super X>> get Met hods() {

return at.getMethods();

@verride
public <T extends Annotation> T get Annot ati on(final C ass<T> annType) {

i f (Naned. cl ass. equal s(annType)) {
return (T) nanedLiteral;

}

el se {
return at.getAnnotation(annType);

@verride
publ i ¢ Set <Annot ati on> get Annot ati ons() {
Set <Annot ati on> original = at.getAnnotations();
Set <Annot ati on> annot ati ons = new HashSet <Annot ati on>();

bool ean hasNaned = fal se;

for (Annotation annotation : original) {

i f (annotation.annotati onType().equal s(Naned. cl ass)) {
annot at i ons. add(get Annot ati on(Naned. cl ass));
hasNaned = true;

}

el se {
annot at i ons. add(annot ati on);

if (!hasNaned) {
Package pkg = at.getJavad ass().get Package();
i f (pkg.isAnnotationPresent(Naned. cl ass)) {
annot at i ons. add(get Annot ati on(Nanmed. cl ass));

return annotations;

@verride
public Type get BaseType() {

135

Chapter 16. Portable extensions

return at.getBaseType();

@verride
public Set<Type> get Typed osure() {
return at.get Typed osure();

@verride
publ i ¢ bool ean i sAnnot ati onPresent (C ass<? extends Annot ati on> annType) {
i f (Naned. cl ass. equal s(annType)) {
return true;

}
return at.isAnnotationPresent (annType);
iE

pat . set Annot at edType(wr apped) ;

Here’'s a second example, which adds the @A ternative annotation to any class which
implements a certain Ser vi ce interface.

i mport javax.enterprise.inject.spi.Extension;
i mport java.lang. annotati on. Annot ati on;
cl ass ServiceAlternativeExtension inplenments Extension {
<T extends Service> voi d processAnnot at edType(@bserves ProcessAnnot at edType<T> pat) {
final AnnotatedType<T> type = pat.get Annot at edType();

/* if the class inplenments Service, nmake it an @\ ternative */
Annot at edType<T> wr apped = new Annot at edType<T>() {

class AlternativeLiteral extends AnnotationLiteral <Al ternative> inplenents Alternative

private final AlternativeLiteral alternativeLiteral = new AlternativelLiteral ();
@verride
public <X extends Annotation> X get Annotation(final Cass<X> annType) {

return (X) (annType. equal s(Alternative.class) ? alternativeLiteral : type.getAnnot
}

136

Overriding attributes of a bean by wrapping BeanAttributes

@verride

publ i c Set <Annot ati on> get Annotations() {
Set <Annot ati on> annot ati ons = new HashSet <Annot ati on>(t ype. get Annot ati ons());
annot ati ons. add(al ternativeLiteral);
return annot ations;

@verride
publ i ¢ bool ean i sAnnot ati onPresent (C ass<? extends Annotati on> annotationType) {
return annotationType. equal s(Al ternative.class) ?
true : type.isAnnotationPresent (annotationType);

/* remaini ng met hods of Annot at edType */

pat . set Annot at edType(wr apped) ;

The Annot at edType is not the only thing that can be wrapped by an extension.

16.9. Overriding attributes of a bean by wrapping

BeanAttri butes

Wrapping an Annot at edType is a low-level approach to overriding CDI metadata by adding,
removing or replacing annotations. Since version 1.1, CDI provides a higher-level facility for
overriding attributes of beans discovered by the CDI container.
public interface BeanAttributes<T> {

public Set<Type> get Types();

public Set<Annotation> getQualifiers();

public C ass<? extends Annotation> get Scope();

public String getNanme();

public Set<C ass<? extends Annotation>> get Stereotypes();

public boolean isAlternative();

137

Chapter 16. Portable extensions

The BeanAttributes interface exposes attributes of a bean. The container fires a
ProcessBeanAttri butes event for each enabled bean, interceptor and decorator before this
object is registered. Similarly to the ProcessAnnot at edType, this event allows an extension to
modify attributes of a bean or to veto the bean entirely.
public interface ProcessBeanAttributes<T> {

publi ¢ Annot ated get Annot at ed();

public BeanAttri butes<T> getBeanAttributes();

public void setBeanAttri butes(BeanAttri butes<T> beanAttri butes);

public void addDefinitionError(Throwable t);

public void veto();

The BeanManager provides two utility methods for creating the BeanAttri but es object from
scratch:

public <T> BeanAttributes<T> createBeanAttri butes(AnnotatedType<T> type);

publ i c BeanAttributes<?> createBeanAttri butes(Annotat edMenber <?> type);

16.10. Wrapping aln I njectionTarget

The I nj ecti onTar get interface exposes operations for producing and disposing an instance of
a component, injecting its dependencies and invoking its lifecycle callbacks. A portable extension
may wrap the I nj ecti onTar get for any Java EE component that supports injection, allowing it
to intercept any of these operations when they are invoked by the container.

Here’s a CDI portable extension that reads values from properties files and configures fields of
Java EE components, including servlets, EJBs, managed beans, interceptors and more. In this
example, properties for a class such as or g. nydonai n. bl og. Bl ogger go in a resource named
or g/ nydomai n/ bl og/ Bl ogger . properti es, and the name of a property must match the name
of the field to be configured. So Bl ogger . properti es could contain:

firstNanme=Gavi n

138

Wrapping an InjectionTarget

| ast Nane=Ki ng

The portable extension works by wrapping the containers | nj ecti onTar get and setting field
values from the i nj ect () method.

i nport javax.enterprise.event. Cbserves;
i mport javax.enterprise.inject.spi.Extension;
i mport javax.enterprise.inject.spi.lnjectionPoint;

public class Confi gExtension inplenents Extension {
<X> voi d processlnjectionTarget (@bserves ProcesslnjectionTarget<X> pit) {

/* wap this to intercept the conponent |ifecycle */
final InjectionTarget<X> it = pit.getlnjectionTarget();

final Map<Field, Cbject> configuredVal ues = new HashMap<Fi el d, Cbj ect>();

/* use this to read annotations of the class and its nenbers */
Annot at edType<X> at = pit.get Annot at edType();

/* read the properties file */
String propsFil eName = at. getJavaC ass().get Si npl eNanme() + ".properties”;
I nput Streamstream= at. get JavaCl ass() . get Resour ceAsSt r ean(pr opsFi | eNan®e) ;
if (stream =null) {

try {
Properties props = new Properties();
props. | oad(stream;
for (Map. Entry<Chject, Cbject> property : props.entrySet()) {
String fiel dName = property.getKey().toString();
hj ect value = property. getVal ue();
try {
Field field = at. getJavad ass() . get Decl aredFi el d(fi el dNan®e) ;
field.setAccessible(true);
if (field.getType().isAssignabl eFron(value.getdass())) {
confi guredVal ues. put (field, value);

}
el se {
/[* TODO do type conversion autonmatically */
pit.addDefinitionError(new Injecti onExcepti on(
"field is not of type String: " + field));
}

}
catch (NoSuchFi el dException nsfe) {

pi t.addDefinitionError(nsfe);

139

Chapter 16. Portable extensions

finally {
stream cl ose();

}
catch (1 CException ioe) {

pi t.addDefinitionError(ioe);

I nj ecti onTar get <X> wrapped = new | nj ectionTarget <X>() {

@verride
public void inject(X instance, Creational Context<X> ctx) {
it.inject(instance, ctx);

/* set the values onto the new i nstance of the conponent */
for (Map. Entry<Field, Object> configuredValue: configuredVal ues.entrySet()) ({
try {
confi guredVal ue. get Key() . set (i nstance, confi guredVal ue. getVal ue());
}
catch (Exception e) {
throw new | nj ecti onException(e);

@verride
public void postConstruct (X instance) {
i t.postConstruct(instance);

@verride
public void preDestroy(X instance) {
i t.di spose(instance);

@verride
public void dispose(X instance) ({
i t.di spose(instance);

@verride
public Set<InjectionPoint> getlnjectionPoints() {
return it.getlnjectionPoints();

@verride
public X produce(Creational Cont ext<X> ctx) {

140

Overriding InjectionPoint

return it.produce(ctx);

be

pit.setlnjectionTarget(w apped);

16.11. Overriding I nj ecti onPoi nt

CDI provides a way to override the metadata of an | nj ect i onPoi nt . This works similarly to how
metadata of a bean may be overridden using BeanAt tri but es.

For every injection point of each component supporting injection Weld fires an event of type
javax.enterprise.inject.spi.ProcesslnjectionPoint

public interface ProcesslnjectionPoint<T, X> {
public InjectionPoint getlnjectionPoint();
public void setlnjectionPoint(lnjectionPoint injectionPoint);
public void addDefinitionError(Throwable t);

An extension may either completely override the injection point metadata or alter it by wrapping
the I nj ecti onPoi nt object obtained from Pr ocessl nj ecti onPoi nt. get | nj ecti onPoi nt ()

There’s a lot more to the portable extension SPI than what we've discussed here. Check out the
CDI spec or Javadoc for more information. For now, we’ll just mention one more extension point.

16.12. Manipulating interceptors, decorators and
alternatives enabled for an application

An event of type javax.enterprise.inject.spi.AfterTypeDiscovery is fired when the
container has fully completed the type discovery process and before it begins the bean discovery
process.

public interface AfterTypeDi scovery {
public List<d ass<?>> getAlternatives();
public List<C ass<?>> getlnterceptors();
public List<C ass<?>> getDecorators();
public void addAnnot at edType(Annot at edType<?> type, String id);

141

Chapter 16. Portable extensions

This event exposes a list of enabled alternatives, interceptors and decorators. Extensions may
manipulate these collections directly to add, remove or change the order of the enabled records.

In addition, an Annot at edType can be added to the types which will be scanned during bean
discovery, with an identifier, which allows multiple annotated types, based on the same underlying
type, to be defined.

16.13. The context and aterabiecontext INterfaces

The Context and Alterabl eContext interface support addition of new scopes to CDI, or
extension of the built-in scopes to new environments.

public interface Context {
public C ass<? extends Annotation> get Scope();
public <T> T get (Contextual <T> contextual, Creational Context<T> creational Context);
public <T> T get (Contextual <T> contextual);
bool ean isActive();

For example, we might implement Cont ext to add a business process scope to CDI, or to add
support for the conversation scope to an application that uses Wicket.

i mport javax.enterprise.context.spi.Context;

public interface Alterabl eContext extends Context {
public void destroy(Contextual <?> contextual);

Al t er abl eCont ext was introduced in CDI 1.1. The destroy method allows an application to
remove instances of contextual objects from a context.

For more information on implementing a custom context see this blog post [http://in.relation.to/
Bloggers/CreatingACustomScope].

142

http://in.relation.to/Bloggers/CreatingACustomScope
http://in.relation.to/Bloggers/CreatingACustomScope
http://in.relation.to/Bloggers/CreatingACustomScope

Chapter 17.

Chapter 17. Next steps

A lot of additional information on CDI can be found online. Regardless, the CDI specification
remains the authority for information on CDI. The spec is less than 100 pages and is quite readable
(don’t worry, it's not like your Blu-ray player manual). Of course, it covers many details we've
skipped over here. The spec is available on the at the JCP website (CDI 1.0 [http://jcp.org/enl/jsr/
detail?id=299]) (CDI 1.1 [http://jcp.org/en/jsr/detail?id=346]).

The CDI reference implementation, Weld, is being developed by the Weld team [https://
github.com/weld/core/graphs/contributors]. The team and the CDI spec lead blog at in.relation.to
[http://in.relation.to]. This guide was originally based on a series of blog entries published there
while the specification was being developed. It's probably the best source of information about
the future of CDI and Weld.

We encourage you to follow the weld-dev [https:/lists.jboss.org/mailman/listinfo/weld-dev] mailing
list and to get involved in development [http://weld.cdi-spec.org/community/]. If you are reading
this guide, you likely have something to offer.

143

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=346
https://github.com/weld/core/graphs/contributors
https://github.com/weld/core/graphs/contributors
https://github.com/weld/core/graphs/contributors
http://in.relation.to
http://in.relation.to
https://lists.jboss.org/mailman/listinfo/weld-dev
https://lists.jboss.org/mailman/listinfo/weld-dev
http://weld.cdi-spec.org/community/
http://weld.cdi-spec.org/community/

144

Part V. Weld Reference Guide

Weld is the reference implementation of CDI, and is used by WildFly, GlassFish and WebLogic to
provide CDI services for Java Enterprise Edition (Java EE) applications. Weld also goes beyond
the environments and APIs defined by the CDI specification by providing support for a number of
other environments (such as a servlet container such as Tomcat, or Java SE).

You might also want to check out DeltaSpike [http://deltaspike.apache.org/] project which provides
portable extensions to CDI.

If you want to get started quickly using Weld (and, in turn, CDI) with WildFly, GlassFish or
Tomcat and experiment with one of the examples, take a look at Chapter 6, Getting started with
Weld. Otherwise read on for a exhaustive discussion of using Weld in all the environments and
application servers it supports and the Weld extensions.

http://deltaspike.apache.org/
http://deltaspike.apache.org/

Chapter 18.

Chapter 18. Application servers and
environments supported by Weld

18.1. Using Weld with WildFly

WildFly 8 and newer come with pre-configured Weld. There is no configuration needed to use
Weld (or CDI for that matter). You may still want to fine-tune Weld with additional configuration
settings.

18.2. GlassFish

Weld is also built into GlassFish from V3 onwards. Since GlassFish V3 is the Java EE reference
implementation, it supports all features of CDI. What better way for GlassFish to support these
features than to use Weld, the CDI reference implementation? Just package up your CDI
application and deploy.

18.3. Servlet containers (such as Tomcat or Jetty)

While CDI does not require support for servlet environments, Weld can be used in a servlet
container, such as Tomcat or Jetty.

@ Note
There is a major limitation to using a servlet container; Weld doesn’t support
deploying session beans, injection using @JB or @er si st enceCont ext , Or using
transactional events in servlet containers. For enterprise features such as these,
you should really be looking at a Java EE application server.

Weld can be used as a library in an web application that is deployed to a Servlet container. You
should add the wel d- ser vl et - cor e as a dependency to your project:

<dependency>
<groupl d>org. j boss. wel d. servl et </ groupl d>
<artifactld>wel d-servlet-core</artifactld>
<version>3. 0. 0. Al phal5</version>

</ dependency>

All the necessary dependencies (CDI API, Weld core) will be fetched transitively.

Alternatively, there is a shaded version with all the dependencies in a single jar file which is
available as:

147

Chapter 18. Application serve...

<dependency>
<groupl d>org. j boss. wel d. servl et </ groupl d>
<artifact|d>wel d-servl et-shaded</artifactld>
<ver si on>3. 0. 0. Al phal5</versi on>

</ dependency>

In general, weld-servlet uses ServletContainerlnitializer [http://docs.oracle.com/javaee/7/api/
javax/servlet/ServletContainerlnitializer.html] mechanism to hook into the life cycle of Servlet 3.x
compatible containers.

In special cases when your Servlet container does not support Ser vl et Cont ai ner I ni tial i zer
or you need more control over the ordering of listeners (e.g. move Weld's listener) to the beginning
of the list so that CDI context are active during invocation of other listeners) you can register
Weld’s listener manually in the VEB- | NF/ web. xni file of the application:

<listener>
<l'i stener-class>org.jboss.wel d. environnent. servl et. Listener</|istener-class>
</listener>

When working with multiple deployments in servlet environment, Weld Servlet allows to define
context identifier per application deployed. Each different context identifier will create a new Weld
container instance. If not specified, Weld falls back to the default value - STATI C_| NSTANCE. While
using custom identifiers is neither required nor commonly used, it certainly has some use-cases.
For instance managing several deployments with Arquillian Tomcat container. Setting the identifier
is as simple as adding one context parameter into web. xni :

<cont ext - par an>
<par am nane>WELD_CONTEXT_| D_KEY</ par am nane>
<par am val ue>cust onVal ue</ par am val ue>

</ cont ext - par an>

148

http://docs.oracle.com/javaee/7/api/javax/servlet/ServletContainerInitializer.html
http://docs.oracle.com/javaee/7/api/javax/servlet/ServletContainerInitializer.html
http://docs.oracle.com/javaee/7/api/javax/servlet/ServletContainerInitializer.html

Tomcat

18.3.1. Tomcat

Tomcat 7 and 8 are supported. Context activation/deactivation and dependency injection into
Servlets and Filters works out of the box. Injection into Servlet listeners works on Tomcat 7.0.50
and newer.

18.3.1.1. Binding BeanManager to JNDI

What does not work out of the box is binding BeanManager to JNDI. Tomcat has a read-only JNDI,
so Weld can’t automatically bind the BeanManager extension SPI. To bind the BeanManager into
JNDI, you should populate META- I NF/ cont ext . xm in the web root with the following contents:

<Cont ext >
<Resour ce nanme="BeanManager"
aut h="Cont ai ner"
type="j avax. enterprise.inject.spi.BeanManager"
factory="org.jboss. wel d. resources. Manager Obj ect Factory"/ >
</ Cont ext >

and make it available to your deployment by adding this to the bottom of web. xm :

<r esour ce- env-ref >
<resour ce- env-r ef - nane>BeanManager </ r esour ce- env- r ef - name>
<resource-env-ref-type>
javax. enterprise.inject.spi.BeanManager
</resource-env-ref-type>
</ resource-env-ref>

Tomcat only allows you to bind entries to j ava: conp/ env, so the BeanManager will be available
at j ava: conp/ env/ BeanManager

18.3.1.2. Embedded Tomcat

With embedded Tomcat it is necessary to register Weld'’s listener programmatically:

public class Main {

public static void main(String[] args) throws ServletException, LifecycleException {
Tonctat tonctat = new Tontat();
Context <ctx = tonctat.addContext("/", new File("src/min/
resources") . get Absol utePat h());

Toncat . addServl et (ctx, "hello", HelloWwrldServlet.class.getNane());
ct x. addSer vl et Mappi ng("/*", "hello");

149

Chapter 18. Application serve...

/'l ctx.addApplicationListener(Listener.class. getNane()); 9

tontat.start();
toncat.getServer().await();

public static class Hell oWwrldServlet extends H tpServlet {

@ nj ect
private BeanManager manager;

@verride

protected void doGet (HttpServl et Request req, HttpServl et Response resp) throws Servletb
resp. set Cont ent Type("text/plain");
resp.getWiter().append("Hello from" + manager);

£ Weld'sorg.jboss. wel d. envi ronnent . servl et. Li st ener registered programmatically

18.3.2. Jetty

Jetty 9.3.6 and newer are supported. Context activation/deactivation and dependency injection
into Servlets and Filters works out of the box. Injection into Servlet listeners works on Jetty 9.1.1
and newer.

18.3.2.1. Class Loading

No further configuration is needed when starting Jetty as an embedded webapp server from
within another Java program. However, if you're using a Jetty standalone instance one more
configuration step is required.

The reason is that since Jetty 8 some internal classes are not visible from the web
application. See also Setting Server Classes [http://www.eclipse.org/jetty/documentation/current/
jetty-classloading.html#setting-server-classes]. Therefore, we have to tell Jetty not to hide the
system classes which Weld integration code is using. Unfortunately, it's not so simple. The
only workaround is to use a Jetty Deployable Descriptor XML File [http://www.eclipse.org/jetty/
documentation/current/configuring-specific-webapp-deployment.html] (this is a Jetty 9 feature, in
Jetty 8 a similar feature is incorporated - ContextProvider [http://wiki.eclipse.org/Jetty/Feature/
ContextDeployer]). For instance, if there is an application archive named wel d- nunber guess. war
deployed in the webapps directory, an XML descriptor named wel d- nunber guess. xml should be
created in the same directory (the file should have the same base name as the war - see alse
the scanning rules described in Jetty docs [http://www.eclipse.org/jetty/documentation/current/
deployment-architecture.html#default-web-app-provider]):

150

http://www.eclipse.org/jetty/documentation/current/jetty-classloading.html#setting-server-classes
http://www.eclipse.org/jetty/documentation/current/jetty-classloading.html#setting-server-classes
http://www.eclipse.org/jetty/documentation/current/jetty-classloading.html#setting-server-classes
http://www.eclipse.org/jetty/documentation/current/configuring-specific-webapp-deployment.html
http://www.eclipse.org/jetty/documentation/current/configuring-specific-webapp-deployment.html
http://www.eclipse.org/jetty/documentation/current/configuring-specific-webapp-deployment.html
http://wiki.eclipse.org/Jetty/Feature/ContextDeployer
http://wiki.eclipse.org/Jetty/Feature/ContextDeployer
http://wiki.eclipse.org/Jetty/Feature/ContextDeployer
http://www.eclipse.org/jetty/documentation/current/deployment-architecture.html#default-web-app-provider
http://www.eclipse.org/jetty/documentation/current/deployment-architecture.html#default-web-app-provider
http://www.eclipse.org/jetty/documentation/current/deployment-architecture.html#default-web-app-provider

Jetty

<?xm version="1.0"?>
<I DOCTYPE Configure PUBLIC "-//Mrt Bay Consulting//DTD Configure//EN" "http://
www. ecl i pse.org/jetty/configure_9 0.dtd">
<Configure class="org.eclipse.jetty.webapp. WebAppCont ext ">
<Set nane="cont ext Pat h" >/ wel d- nunber guess</ Set >
<Set nanme="war " ><Property nane="j etty. webapps" defaul t="."/>/wel d-
nunber guess. war </ Set >
<Cal | nanme="prependServerd ass" >
<Arg>-org.eclipse.jetty. server. handl er. Cont ext Handl er </ Ar g>
</Call >
<Cal | nanme="prependServerC ass" >
<Arg>-org.eclipse.jetty.servlet.FilterHol der</Arg>
</Call>
<Cal | name="prependServerC ass" >
<Arg>-org.eclipse.jetty.servl et. Servl et Cont ext Handl er </ Ar g>
</Cal | >
<Cal | nanme="prependServerd ass" >
<Arg>-org.eclipse.jetty.servlet. Servl et Hol der </ Arg>
</Call>
</ Confi gur e>

Tip

Jetty distributions (from version 9.2.4) contain a dedicated
CDIl/Weld module [http://www.eclipse.org/jetty/documentation/current/
framework-weld.html] which allows to deploy a CDI application without bundling
the Weld Servlet integration code.

18.3.2.2. Binding BeanManager to JNDI

To bind the BeanManager into JNDI, you should either populate VEB- | NF/ j et t y- env. xm with
the following contents:

<! DOCTYPE Configure PUBLIC "-//Mrt Bay Consulting//DTD Configure//EN'
"http://ww. eclipse.org/jetty/configure.dtd">

<Confi gure id="webAppCt x" class="org. eclipse.jetty.webapp. WebAppCont ext ">
<New i d="BeanManager" cl ass="org.eclipse.jetty.plus.jndi.Resource">

<Arg> <Ref id="webAppCtx"/> </Arg>

<Ar g>BeanManager </ Ar g>

<Ar g>

<New cl ass="j avax. nam ng. Ref er ence" >

<Arg>j avax. enterprise.inject.spi.BeanManager </ Ar g>
<Ar g>org. j boss. wel d. resour ces. Manager Obj ect Fact ory</ Ar g>

151

http://www.eclipse.org/jetty/documentation/current/framework-weld.html
http://www.eclipse.org/jetty/documentation/current/framework-weld.html
http://www.eclipse.org/jetty/documentation/current/framework-weld.html

Chapter 18. Application serve...

<Arg/ >
</ New>
</ Ar g>
</ New>
</ Confi gur e>

Or you can configure a special Servlet listener to bind the BeanManager automatically:

<listener>

<li stener-
cl ass>org. j boss. wel d. envi ronment . servl et. BeanManager Resour ceBi ndi ngLi st ener </
i stener-class>
</listener>

Just like in Tomcat, you need to make the BeanManager available to your deployment by adding
this to the bottom of web. xni :

<resource-env-ref>
<r esour ce- env-ref - nane>BeanManager </ r esour ce- env- r ef - nane>
<resource-env-ref-type>
javax.enterprise.inject.spi.BeanManager
</ resource-env-ref-type>
</ resource-env-ref>

Jetty only allows you to bind entries to j ava: conp/ env, so the BeanManager will be available at

j ava: conp/ env/ BeanManager .

18.3.2.3. Embedded Jetty

When starting embedded Jetty programmatically from the main method it is necessary to register
Weld's listener:

public class Main {

public static void main(String[] args) throws Exception {
Server jetty = new Server (8080);
WebAppCont ext context = new WebAppCont ext () ;
cont ext. set ContextPath("/");
cont ext . set Resour ceBase("src/ mai n/ resour ces");
jetty. set Handl er (cont ext);
cont ext . addServl et (Hel | owbrl dServl et. class, "/*");

cont ext . addEvent Li st ener (new Li stener()); L1

152

Undertow

jetty.start();
jetty.join();

public static class Hell owrl dServl et extends HttpServlet {
@ nj ect BeanManager manager;

protected void doGet (HttpServl et Request req, HttpServl et Response resp) throws ServletBb
resp. set Cont ent Type("text/plain");
resp.getWiter().append("Hello from" + manager);

£ Weld'sorg.jboss. wel d. envi ronnent . servl et. Li st ener registered programmatically:

18.3.3. Undertow

Weld supports context activation/deactivation and dependency injection into Servlets when
running on Undertow. Injection into Filters and Servlet listeners is not currently supported. Weld'’s
listener needs to be registered programmatically:

public class Main {

public static void main(String[] args) throws Servl et Exception {
Depl oynent I nfo servl et Buil der = Servl ets. depl oynent ()

. set Cl assLoader (Mai n. cl ass. get A assLoader ())
. set Resour ceManager (new C assPat hResour ceManager (Mai n. cl ass. get Cl assLoader ()))
.set ContextPath("/")
. set Depl oyrment Name("test. war")

.addServl et (Servl ets.servlet("hello", Hel | owr| dServl et. cl ass) . addMappi ng("/

"))

. addLi stener(Servl ets.|istener(Listener.class)); 9

Depl oynent Manager manager = Servl ets. defaul t Cont ai ner (). addDepl oynment (ser vl et Bui | der) ;
manager . depl oy() ;

Ht t pHandl er servl et Handl er = manager.start();

Pat hHandl er path = Handl ers. path(Handl ers.redirect("/")).addPrefixPath("/", servletHanc
Undert ow server = Undertow. buil der().addH t pLi stener (8080, "l ocal host").setHandl er(patt
server.start();

public static class Hell owrl dServl et extends HttpServlet {

153

Chapter 18. Application serve...

@ nj ect BeanManager nanager;

protected void doGet (HttpServl et Request req, HttpServl et Response resp) throws ServletB
resp. set Cont ent Type("text/plain");
resp.getWiter().append("Hello from" + manager);

© Weld'sorg.jboss. wel d. environnent . servl et. Li st ener registered programmatically:

18.3.4. WildFly Web

WildFly Web is a lightweight Servlet container that uses Undertow. Weld supports context
activation/deactivation and dependency injection into Servlets. Injection into Filters and Servlet
listeners is not currently supported. Weld integration is started automatically when weld-servlet
is part of your application.

18.3.5. Bean Archive Isolation

By default, bean archive isolation is enabled. It means that alternatives, interceptors and
decorators can be selected/enabled for a bean archive by using a beans.xml descriptor.

This behaviour can be changed by setting the servlet initialization parameter
org.jboss.wel d. environnent. servl et. archive.isol ati on to false. In this case, Weld will
use a "flat" deployment structure - all bean classes share the same bean archive and all beans.xml
descriptors are automatically merged into one. Thus alternatives, interceptors and decorators
selected/enabled for a bean archive will be enabled for the whole application.

@ Note
Bean archive isolation is supported (and enabled by default) from version
2.2.5.Final. Previous versions only operated with the "flat" deployment structure.

18.3.6. Implicit Bean Archive Support

CDI 1.1 introduced the bean discovery mode of annotated used for implicit bean
archives (see also Section 15.6, “Packaging and deployment”). This mode may bring
additional overhead during container bootstrap. Therefore, Weld Servlet supports the use of
Jandex [https://github.com/wildfly/jandex] bytecode scanning library to speed up the scanning
process. Simply put the jandex.jar [http://search.maven.org/#search|gav|l|g%3A%220rg.jboss
%22%20AND%20a%3A%22jandex%22] on the classpath. If Jandex is not found on the classpath
Weld will use the Java Reflection as a fallback.

154

https://github.com/wildfly/jandex
https://github.com/wildfly/jandex
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22

Java SE

In general, an implicit bean archive does not have to contain a beans.xml descriptor. However,
such a bean archive is not supported by Weld Servlet, i.e. it's excluded from discovery.

. Note
G
The bean discovery mode of annot at ed is supported from version 2.2.5.Final.
Previous versions processed implicit bean archives in the same way as explicit
bean archives.

18.4. Java SE

In addition to improved integration of the Enterprise Java stack, the "Contexts and Dependency
Injection for the Java EE platform" specification also defines a state of the art typesafe, stateful
dependency injection framework, which can prove useful in a wide range of application types. To
help developers take advantage of this, Weld provides a simple means for being executed in the
Java Standard Edition (SE) environment independently of any Java EE APIs.

When executing in the SE environment the following features of Weld are available:

Managed beans with @ost Const ruct and @r eDest r oy lifecycle callbacks
« Dependency injection with qualifiers and alternatives

e @\pplication, @ependent and @i ngl et on scopes

* Interceptors and decorators

« Stereotypes

e Events

» Portable extension support

EJB beans are not supported.

18.4.1. CDI SE Module

Weld provides an extension which will boot a CDI bean manager in Java SE, automatically
registering all simple beans found on the classpath. The command line parameters can be injected
using either of the following:

@nject @araneters List<String> parans;

@nject @Paraneters String[] paransArray;

155

Chapter 18. Application serve...

The second form is useful for compatibility with existing classes.

Here’s an example of a simple CDI SE application:

i mport javax.inject.Singleton;

@i ngl et on
public class Hellowrld
{

public void printHell o(@bserves Containerlnitialized event, @araneters List<String> parant
Systemout.printin("Hello " + paraneters.get(0));

—

18.4.2. Bootstrapping CDI SE

CDI SE applications can be bootstrapped in the following ways.

18.4.2.1. The containerinitialized Event

Thanks to the power of CDI's typesafe event model, application developers need not write any
bootstrapping code. The Weld SE module comes with a built-in main method which will bootstrap
CDI for you and then fire a Cont ai ner I nitial i zed event. The entry point for your application
code would therefore be a simple bean which observes the Cont ai nerlniti al i zed event, as in
the previous example.

In this case your application can be started by calling the provided main method like so:

Bootstrapping CDI SE

java org.jboss.wel d.environnent. se. StartMin <args>

18.4.2.2. Programmatic Bootstrap API

For added flexibility, CDI SE also comes with a bootstrap APl which can be called from within your
application in order to initialize CDI and obtain references to your application’s beans and events.

The API consists of two classes: Wl d and Wl dCont ai ner .

[** A buil der used to bootsrap a Weld SE container. */
public class Weld

{

/** Boots Wl d and creates and returns a Wl dCont ai ner i nstance, through which

* pbeans and events can be accesed. */
public Wel dContainer initialize() {...}

/

** Conveni ence nethod for shutting down all the containers initialized by a specific builder ir

public void shutdown() {...}

/** Represents a Weld SE container. */

public class Wl dContainer inplenents javax.enterprise.inject.|nstance<Object>

{

/** Provides access to all events within the application.

public Event<Object> event() {...}

/** Provides direct access to the BeanManager. */
publ i c BeanManager get BeanManager() {...}

/** Returns the identifier of the container */
String getld() {...}

/** Shuts down the container. */
public void shutdown() {...}

** Returns the running container with the specified identifier or

public static Wel dContainer instance(String id) {...}

*/

nul |

/
if no such container

157

exi

Chapter 18. Application serve...

Here’s an example application main method which uses this API to bootsrap a Wedl SE container
and call a business method of a bean MyAppl i cat i onBean.

i mport org.jboss.weld.environment. se. Wl d;

public static void main(String[] args) {
Veld weld = new Wl d();
Wel dCont ai ner container = weld.initialize();
cont ai ner. sel ect (MyAppl i cati onBean. cl ass) . get (). cal | Busi nessMet hod();
cont ai ner. shut down() ;

Alternatively the application could be started by firing a custom event which would then be
observed by another simple bean. The following example fires MyEvent on startup.

org.j boss. wel d. envi ronment . se. Wl d;

public static void main(String[] args) {
Veld weld = new Wl d();
Wl dCont ai ner container = weld.initialize();
contai ner.event().sel ect(MEvent.class).fire(new MyEvent ());
/1 When all observer nmethods are notified the contai ner shuts down
cont ai ner. shut down() ;

Because Wl dCont ai ner implements Aut od oseabl e, it can be used within a try-with-resources
block. Should the execution get out of the code block, the Weld instance is shut down and all
managed instances are safely destroyed. Here is an example using the above code but leaving
out the shut down() method:

org. j boss. wel d. envi ronnment . se. Wl d;

public static void main(String[] args) {
Wl d weld = new Vel d();
try (Wel dContai ner container = weld.initialize()) {
cont ai ner. sel ect (MyAppl i cati onBean. cl ass). get (). cal | Busi nessMet hod() ;

In case of more complex scenarios, it might be handy to gain higher level of control over the
bootstraping process. Using the builder, it is possible to disable automatic scanning and to
explicitly select classes/packages which will be managed by Weld. Interceptors, decorators and

158

Thread Context

extensions can be defined in the very same manner. Last but not least, builder can be used to set
Weld-specific configuration. Following example demonstrates these features:

Wl d weld = new Wl d()
. di sabl eDi scovery()
. packages(Min. cl ass, Utils.class)
.interceptors(Transactional |l nterceptor.class)
. property("org.jboss.wel d.construction.rel axed", true);

try (Wel dContai ner container = weld.initialize()) {
MyBean bean = contai ner. sel ect (MyBean. cl ass). get();
System out . printl| n(bean. conput eResul t());

Furthermore, it is also possible to create several independent Weld instances. Code snippet below
shows how achieve that:

Vel d weld = new Wl d()
. di sabl eDi scovery();

wel d. cont ai nerl d("one") . beanCl asses(My/Bean. cl ass).initialize();
wel d. cont ai nerld("two") . beanC asses(Q herBean. cl ass).initialize();

MyBean bean = Wl dCont ai ner.instance("one"). sel ect (My/Bean. cl ass).get();
System out . printl| n(bean. comput eResul t());

/1 Shutdown the first container
Wl dCont ai ner. i nst ance("one"). shutdown();

[/ Shutdown all the containers initialized by the builder instance
wel d. shut down() ;

18.4.3. Thread Context

In contrast to Java EE applications, Java SE applications place no restrictions on developers
regarding the creation and usage of threads. Therefore Weld SE provides a custom scope
annotation, @hr eadScoped, and corresponding context implementation which can be used to
bind bean instances to the current thread. It is intended to be used in scenarios where you might
otherwise use Thr eadLocal , and does in fact use Thr eadLocal under the hood.

To use the @hr eadScoped annotation you need to enable the Runnabl eDecor at or which listens
for all executions of Runnabl e.run() and decorates them by setting up the thread context
beforehand, bound to the current thread, and destroying the context afterwards.

159

Chapter 18. Application serve...

<beans>
<decor at or s>
<cl ass>org.j boss. wel d. envi ronnment . se. t hr eadi ng. Runnabl eDecor at or </ cl ass>
</ decor at or >
</ beans>

@ Note
It is not necessary to use @hr eadScoped in all multithreaded applications. The
thread context is not intended as a replacement for defining your own application-
specific contexts. It is generally only useful in situations where you would otherwise
have used Thr eadLocal directly, which are typically rare.

18.4.4. Setting the Classpath

Weld SE comes packaged as a shaded jar which includes the CDI API, Weld Core and all
dependent classes bundled into a single jar. Therefore the only Weld jar you need on the
classpath, in addition to your application’s classes and dependent jars, is the Weld SE jar. If you
are working with a pure Java SE application you launch using j ava, this may be simpler for you.

If you prefer to work with individual dependencies, then you can use the wel d- se- cor e jar which
just contains the Weld SE classes. Of course in this mode you will need to assemble the classpath
yourself.

If you work with a dependency management solution such as Maven you can declare a
dependency such as:

<dependency>
<groupl d>org. j boss. wel d. se</ gr oupl d>
<artifact|d>wel d-se-shaded</artifactld>
</ dependency>

18.4.5. Bean Archive Isolation

By default, bean archive isolation is enabled. It means that alternatives, interceptors and
decorators can be selected/enabled for a bean archive by using a beans.xml descriptor.

This behaviour can be changed by providing a system property
org. jboss.wel d. se. archi ve. i sol ati on with value of fal se. In this case, Weld will use a
"flat" deployment structure - all bean classes share the same bean archive and all beans.xml
descriptors are automatically merged into one. Thus alternatives, interceptors and decorators
selected/enabled for a bean archive will be enabled for the whole application.

160

Implicit Bean Archive Support

18.4.6. Implicit Bean Archive Support

CDI 1.1 introduced the bean discovery mode of annotated used for implicit bean
archives (see also Section 15.6, “Packaging and deployment”). This mode may bring
additional overhead during container bootstrap. Therefore, Weld Servlet supports the use of
Jandex [https://github.com/wildfly/jandex] bytecode scanning library to speed up the scanning
process. Simply put the jandex.jar [http://search.maven.org/#search|gav|1|g%3A%220rg.jboss
%22%20AND%20a%3A%22jandex%22] on the classpath. If Jandex is not found on the classpath
Weld will use the Java Reflection as a fallback.

In general, an implicit bean archive does not have to contain a beans.xml descriptor. However,
such a bean archive is not supported by Weld SE, i.e. it's excluded from discovery.

18.5. OSGi

Weld supports OSGi environment through Pax CDI. For more information on using Weld in
OSGi environment check Pax CDI documentation [https://ops4jl.jira.com/wiki/display/PAXCDI/
Pax+CDI] . In addition, Weld comes with a sample application called Paint which demonstrates
how to use CDI with OSGi. Check exanpl es/ osgi / README. md for more information.

161

https://github.com/wildfly/jandex
https://github.com/wildfly/jandex
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
http://search.maven.org/#search|gav|1|g%3A%22org.jboss%22%20AND%20a%3A%22jandex%22
https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI
https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI
https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI

162

Chapter 19.

Chapter 19. Configuration

19.1. Weld configuration

Weld can be configured per application through the set of properties. All the supported
configuration properties are described in the following subsections.

Each configuration property can be specified (by priority in descending order):

1. In a properties file named wel d. properti es
2. As a system property
3. By a bootstrap configuration provided by an integrator

If a configuration key is set in multiple sources (e.g. as a system property and in a properties
file), the value from the source with higher priority is taken, other values are ignored. Unsupported
configuration keys are ignored. If an invalid configuration property value is set, the container
automatically detects the problem and treats it as a deployment problem.

19.1.1. Relaxed construction

CDI requires that beans that are normal-scoped, intercepted or decorated always define a no-
argument constructor. This requirement applies even if the bean already defines an @ nj ect
annotated constructor with parameters. This is purely a technical requirement implied by how Java
allocates class instances.

Weld is however able to operate fine even if this requirement is not met. Weld uses special non-
portable JVM APIs that allow it to allocate proxy instances without calling proxy’s constructor. This
mode is not enabled by default. It can be enabled using the following configuration option:

Table 19.1. Supported configuration properties

Configuration key Default value Description

org.j boss. wel d. const ruct i ofialsel @selin weld-se) If setto true, then
requirements on bean
constructors are relaxed.

Note that relaxed construction is enabled by default in Weld SE.

19.1.2. Concurrent deployment configuration

By default Weld supports concurrent loading and deploying of beans. However, in certain
deployment scenarios the default setup may not be appropriate.

163

Chapter 19. Configuration

Table 19.2. Supported configuration properties

Configuration key Default value Description

org. j boss. wel d. boot st rap. ¢orusur r ent Depl oynent If set to false,
Concur r ent Depl oyer and
Concurrent Val i dat or will
not be used.

org.j boss. wel d. boot st rap. piilt badex{Hr, eadPool Si ze Weld is capable of resolving

Runti me. get Runti me() . avai | atblisePver asathosis)for

- 1) container lifecycle events in
advance while bean deployer
threads are blocked waiting
for 1/0 operations (such as
classloading). This process is
called preloading and leads
to better CPU utilization and
faster application startup time.
This configuration option
specifies the number of
threads used for preloading.
If set to O, preloading is
disabled.

@ Note
The bootstrap configuration may be altered using the deprecated
org. j boss. wel d. boot st rap. properti es file located on the classpath (e.g. WEB-
I NF/ cl asses/ org. j boss. wel d. boot st rap. properties in a web archive). The
keys are concur r ent Depl oyment and pr el oader Thr eadPool Si ze.

19.1.3. Thread pool configuration

For certain types of tasks Weld uses its own thread pool. The thread pool is represented by the
Execut or Servi ces service.

First of all, let's see what types of thread pools are available:

Thread pool type Description

FI XED Uses a fixed number of threads. The number
of threads remains the same throughout the
application.

FI XED_TI MEQUT Uses a fixed number of threads. A thread
will be stopped after a configured period of
inactivity.

164

Thread pool configuration

Thread pool type Description

SI NGLE_THREAD A single-threaded thread pool
NONE No executor is used by Weld
COMVON The default ForkJoinPool.commonPool()

is used by Weld. See link [https://
docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ForkJoinPool.html#commonPool--]
for more details

Now let's see how to configure Weld to use a particular thread pool type:

Table 19.3. Supported configuration properties

Configuration key Default value Description

org.j boss. wel d. execut or. t hiréad@Pool Type The type of the thread pool.
Possible values are: FI XED,
FI XED_TI MECUT, NONE,

S| NGLE_THREAD and COMVON

org.j boss. wel d. execut or . t hiReadPoel. ez ®unt i ne() . avai | difleeRuodearsof #rpads to be
used for bean loading and
deployment. Only used by
FI XED and FI XED_TI MEQUT.

org.j boss. wel d. execut or . t hiasEoohdeepAl i veTi me Passed to the constructor
of the ThreadPoolExecutor
class, maximum time that
excess idle threads will
wait for new tasks before
terminating. Only used by
FI XED_TI MEQUT.

org. j boss. wel d. execut or . t hfalséPool Debug If set to true, debug timing
information is printed to the
standard output.

@ Note

It's possible to alter the thread pool configuration using the deprecated
org.j boss. wel d. execut or. properties file located on the classpath. The
keys are t hreadPool Type, t hreadPool Si ze, t hr eadPool KeepAl i veTi ne and
t hr eadPool Debug.

165

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool--

Chapter 19. Configuration

19.1.4. Non-portable mode during application initialization

By default the application initialization is performed in the portable mode which denotes
specification-compliant behaviour. However it's also possible to enable the non-portable mode, in
which some definition errors and deployment problems do not cause application initialization to
abort. Currently the non-portable mode allows extension developers to call all the BeanManager 's
methods before the Af t er Depl oyrent Val i dat i on event is fired.

Table 19.4. Supported configuration properties

Configuration key Default value Description

org.j boss. wel d. nonPort abl efalée If setto t rue, the non-
portable mode is enabled.

@ Note
The main purpose of the non-portable mode is to support some legacy extensions.
It's highly recommended to use the portable mode whenever possible - non-
portable mode may lead to unexpected behaviour during initialization process.

19.1.5. Bounding the cache size for resolved injection points

Weld caches already resolved injection points in order to resolve them faster in the future. A
separate type-safe resolver exists for beans, decorators, disposers, interceptors and observers.
Each of them stores resolved injection points in its cache, which maximum size is bounded by a
default value (common to all of them).

Table 19.5. Supported configuration properties

Configuration key Default value Description
org.j boss. wel d. resol uti on, 653365 ze The upper bound of the
cache.

19.1.6. Debugging generated bytecode

For debugging purposes, it's possible to dump the generated bytecode of client proxies and
enhanced subclasses to the filesystem.

Table 19.6. Supported configuration properties

Configuration key Default value Description

org.j boss. wel d. proxy. dunp The file path where the files
should be stored.

166

Injectable reference lookup optimization

19.1.7. Injectable reference lookup optimization

For certain combinations of scopes, the container is permitted to optimize an injectable
reference lookup. Enabling this feature brings some performance boost but causes
javax. enterprise. context.spi.Alterabl eContext.destroy() not to work properly for
@\ppl i cati onScoped and @Request Scoped beans. Therefore, the optimization is disabled by
default.

Table 19.7. Supported configuration properties

Configuration key Default value Description

org.j boss.wel d.injection.ifalet abl eRef erenceOpt i ni zatlf set to t r ue, the optimization
is enabled.

19.1.8. Bean identifier index optimization

This optimization is used to reduce the HTTP session replication overhead. However, the
inconsistency detection mechanism may cause problems in some development environments. It's
recommended to disable this optimization during the development phase.

Table 19.8. Supported configuration properties

Configuration key Default value Description

org.jboss. wel d. seri al i zat i druebfatgedemwicid-weraigdk Opt i rif set tmnr ue, the optimization

is enabled.
E] Note
This optimization is disabled by default in

19.1.9. Development Mode

Some features of the development mode may have negative impact on the performance and/
or functionality of the application. The following configuration properties allow to tune or disable
these features, e.g. to specify the set of components which will be monitored.

Table 19.9. Supported configuration properties

Configuration Tool Default value Description

key

org.j boss. wel d. plPodiee i nvocat i onNoni t or . excl udeTypeegular expression. If a non-empty
string and the base type for an
AnnotatedType or a declaring type
for an AnnotatedMember matches

167

Chapter 19. Configuration

Configuration

key

Tool

Default value

Description

this pattern the type is excluded
from monitoring.

org.j boss.

wel d.

piPotiee i nvocat i on

Nbtue t or . ski pJavalBesetrtoopent | e JavaBean

accessor methods are not
monitored.

org.j boss.

wel d.

piPodiee event Moni t

dr. excl udeType

A regular expression. If a non-
empty string and the runtime class
of the event object matches this
pattern the event is excluded from
monitoring.

org.j boss.

org.j boss.

wel d.

wel d.

piPodiee event Moni t

piP odiee enbed! nf oS

dalseont ai ner Li f edfysétetevenus all the container

Sy et

lifecycle events are monitored
during bootstrap.

If set to t r ue an informative HTML
shippet will be added to every HTTP
response with Content-Type of
value text/htm .

org.j boss.

wel d.

piPodiee j nkSupport

false

If setto t r ue one or more MBean
components may be registered

so that it's possible to use JMX to
access the Probe development tool
data.

Tip

To

disable

the

monitoring entirely

org. j boss. wel d. probe. i nvocat i onMbni t or. excl udeType

org. j boss. wel d. probe. event Moni t or. excl udeType properties to . *.

19.2. Excluding classes from scanning and deployment

CDI 1.1 allows you to exclude classes in your archive from being scanned, having container
lifecycle events fired, and being deployed as beans. See also 12.4. Bean discovery [http://
docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_discovery].

168

http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_discovery
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_discovery
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#bean_discovery
http://jboss.org/schema/weld/beans_1_1.xsd

Excluding classes from scanning and deployment

jboss.org/schema/weld/beans_1_1.xsd

All the configuration is done in the beans. xn file. For more information see Section 15.6,
“Packaging and deployment”.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://xmns.jcp.org/xm/ns/javaee">

<scan>

<I-- Don't deploy the classes for the swi ng app! -->
<excl ude name="com acme. swi ng. **" />

<l-- Don't include GM support if GM is not installed -->
<excl ude name="com acne. gwt . **">

<i f-cl ass-not-avai | abl e nane="com googl e. GM™"/ >
</ excl ude>

<l--

Excl ude types from com acne. ver bose package if the system property

verbosity is set to | ow
i.e.
java ... -Dverbosity=low

-->
<excl ude nane="com acne. ver bose. *" >

<if-system property name="verbosity" val ue="1ow'/>
</ excl ude>

<I--
Don't include JSF support if Wcket classes are present, and
the view ayer system
property is set

-->
<excl ude nane="com acne.jsf.**">

<i f-cl ass-avail abl e name="or g. apache. wi cket. Wcket "/ >

<if-system property name="view ayer"/>
</ excl ude>

</ scan>

</ beans>
In this example we show the most common use cases for exercising fine control over which classes

Weld scans. The first filter excludes all types whose package name starts with com acne. swi ng,
and in most cases this will be sufficient for your needs.

169

http://jboss.org/schema/weld/beans_1_1.xsd

Chapter 19. Configuration

However, sometimes it's useful to be able to activate the filter depending on the environment used.
In this case, Weld allows you to activate (or deactivate) a filter based on either system properties
or whether a class is available. The second filter shows the use case of disabling scanning of
certain classes depending on the capabilities of the environment you deploy to - in this case we
are excluding GWT support (all types whose package name starts with com acne. gwt) if GWT
is not installed.

@ Note
If you specify just a system property name, Weld will activate the filter if that system
property has been set (with any value). If you also specify the system property
value, then Weld will only activate the filter if the system property’s value matches

exactly.

The third filter shows how to exclude all types from a specific package (note the nane attribute
has suffix ".*").

The fourth filter shows more a advanced configurations, where we use multiple activation
conditions to decide whether to activate the filter.

You can combine as many activation conditions as you like (all must be true for the filter to be
activated). If you want to a filter that is active if any of the activation conditions are true, then you
need multiple identical filters, each with different activation conditions.

19.3. Mapping CDI contexts to HTTP requests

By default, CDI contexts are activated at the beginning of an HTTP request processing and
deactivated once the processing finishes. This may represent an unnecessary overhead in certain
situations, for example static resource serving.

Weld allows CDI context support to be mapped to a certain subset of requests only. A regular
expression may be used for filtering HTTP requests that should have CDI contexts active during
their processing.

<web-app version="3.1" xm ns="http://xm ns.jcp.org/xm/ns/javaeel"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemalLocati on="http://xm ns.jcp.org/ xm /ns/javaee http://xmns.jcp.org/
xm / ns/j avaee/ web-app_3_1. xsd">

<cont ext - par an»
<par am nane>or g. j boss. wel d. cont ext . mappi ng</ par am nane>
<par am val ue>. *\ . ht ml </ param val ue>

</ cont ext - par an>

</ web- app>

170

Chapter 20.

Chapter 20. Logging

Weld is using JBoss Logging [https://developer.jboss.org/wiki/JBossLoggingTooling], an
abstraction layer which provides support for the internationalization and localization of log
messages and exception messages. However, JBoss Logging itself does not write any log
messages. Instead, it only constructs a log message and delegates to one of the supported logging
frameworks.

The supported "back-end" frameworks include:

1. jboss-logmanager [https://developer.jboss.org/wiki/StandaloneJBossLogManager]
2. Log4j [http:/llogging.apache.org/log4j/2.x/]

3. SLF4J [http://www.slf4).org/]

4. JDK logging

A system property or g. j boss. | oggi ng. provi der may be used to specify the logging framework
directly. Supported values are j boss, j dk, | og4j and sl f 4j . If this system property is not set,
JBoss Logging will attempt to find the logging frameworks from the above-mentioned list on the
classpath - the first one found is taken.

20.1. Java EE containers

If using Weld with a Java EE container (e.g. WildFly) the logging configuration is under
the direction of the container. You should follow the container-specific guides to change the
configuration (e.g. WildFly - Logging Configuration [https://docs.jboss.org/author/display/WFLY8/
Logging+Configuration]).

20.2. Servlet containers

Unlike the case of Java EE containers a web application deployed to a servlet container usually
bundles a logging framework and possibly some configuration file. In this case, the configuration
is in hands of the application developer (provided the bundled framework is supported by JBoss

Logging).

If no logging framework is bundled follow the container-specific guides to change the configuration
(e.g. Logging in Tomcat [http://tomcat.apache.org/tomcat-8.0-doc/logging.html]).

20.3. Weld SE

This is very similar to servlet containers except the class loading is usually even less complicated.

171

https://developer.jboss.org/wiki/JBossLoggingTooling
https://developer.jboss.org/wiki/JBossLoggingTooling
https://developer.jboss.org/wiki/StandaloneJBossLogManager
https://developer.jboss.org/wiki/StandaloneJBossLogManager
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://www.slf4j.org/
http://www.slf4j.org/
https://docs.jboss.org/author/display/WFLY8/Logging+Configuration
https://docs.jboss.org/author/display/WFLY8/Logging+Configuration
https://docs.jboss.org/author/display/WFLY8/Logging+Configuration
http://tomcat.apache.org/tomcat-8.0-doc/logging.html
http://tomcat.apache.org/tomcat-8.0-doc/logging.html

Chapter 20. Logging

Tip

If you just want to see the debug log messages as quickly as possible in Weld
SE try this:

1. add org.slf4j:slf4j-simple on the classpath and remove other SLF4J bindings,
2. set the "back-end" framework to sl f 4j ,

3. and change the level for or g. j boss. wel d, e.g.:

m/n cl ean test -Dtest=M/Wel dSETest -
Dor g. j boss. | oggi ng. provi der=sl f4j -
Dor g. sl f4j . si npl eLogger . | og. org. j boss. wel d=debug

172

Chapter 21.

Chapter 21. Development Mode

Weld comes with a special mode for application development. When enabled, certain built-in tools
which facilitate the development of CDI applications, are available.

@ Note
The development mode should not be used in production as it may have
negative impact on the performance of the application. Make sure to disable the
development mode before deploying to production.

Warning

Not all environments and containers may support the development mode and all
tools. Check the tools details and the container documentation.

21.1. How to enable the development mode

21.1.1. Web application

For a web application, set the Servlet initialization parameter or g. j boss. wel d. devel opnment to
true:

<web-app version="3.1" xm ns="http://xm ns.jcp.org/ xm/ns/javaeel"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocation="http://xm ns.jcp.org/xm/ns/javaee http://xm ns.jcp.org/
xm / ns/j avaee/ web-app_3_1. xsd">

<cont ext - par an>
<par am nanme>or g. j boss. wel d. devel opnent </ par am nane>
<par am val ue>t rue</ par am val ue>

</ cont ext - par an>

</ web- app>

@ Note
An integrator is allowed to specify an alternative way of enabling the development
mode.

173

Chapter 21. Development Mode

21.1.2. Weld SE

For a Java SE application, set the system property or g. j boss. wel d. devel oprment to t rue:

java -cp myCool App.jar -Dorg.jboss.wel d. devel opnment =true com foo. MyMai n

21.1.3. Is The Development Mode Enabled?

You should see the following log message during initialization of your application:

Wel d Devel opnent Mode: ENABLED

Di sable this node in production - it may have negative inpact on
per f ormance and/ or represent a potential security risk

21.2. Development Tools

21.2.1. Probe

This tool allows to inspect the application CDI components at runtime. See also the
demo application hosted on OpenShift [http://probe-weld.itos.redhat.com/weld-numberguess/
weld-probe].

JSON data are available through the REST API, eventually (if JMX support is enabled) through
the MXBean of name or g. j boss. wel d. probe: t ype=JsonDat a, cont ext =I Dwhere ID should be
replaced with an idenfitier of an application.

However, a default Ul - HTML client (single-page application) is only available in a
web application at {webappCont ext Pat h}/wel d- probe, €.g. http://1 ocal host: 8080/ wel d-
nunmber guess/ wel d- pr obe.

Right now, the integration is provided for WildFly 10, Tomcat and Jetty (Weld Servlet) and Weld
SE.

Tip

There are some configuration properties which allow to tune or disable Probe
features, e.g. to restrict the set of components which will be monitored. See also
Section 19.1.9, “Development Mode”.

174

http://probe-weld.itos.redhat.com/weld-numberguess/weld-probe
http://probe-weld.itos.redhat.com/weld-numberguess/weld-probe
http://probe-weld.itos.redhat.com/weld-numberguess/weld-probe

Chapter 22.

Chapter 22. Context Management

22.1. Managing the built in contexts

Weld allows you to easily manage the built in contexts by injecting them and calling lifecycle
methods. Weld defines two types of context, managed and unmanaged. Managed contexts can
be activated (allowing bean instances to be retrieved from the context), invalidated (scheduling
bean instances for destruction) and deactivated (stopping bean instances from being retrieved,
and if the context has been invalidated, causing the bean instances to be destroyed). Unmanaged
contexts are always active; some may offer the ability to destroy instances.

Managed contexts can either be bound or unbound. An unbound context is scoped to the thread in
which it is activated (instances placed in the context in one thread are not visible in other threads),
and is destroyed upon invalidation and deactivation. Bound contexts are attached to some external
data store (such as the HTTP Session or a manually propagated map) by associating the data
store with the context before calling activate, and dissociating the data store after calling activate.

Tip

Weld automatically controls context lifecycle in many scenarios such as HTTP
requests, EJB remote invocations, and MDB invocations. Many of the extensions
for CDI offer context lifecycle for other environments, it's worth checking to see if
there is a suitable extension before deciding to manage the context yourself.

Weld provides a number of built in contexts, which are shown in Table 22.1, “Available Contexts
in Weld”.

Table 22.1. Available Contexts in Weld

Scope Qualifiers Context Notes

@ependent @ef aul t Dependent Cont ext The dependent
context is unbound
and unmanaged

@Request Scoped @nbound Request Cont ext An unbound request
context, useful for
testing

@Request Scoped @ound Request Cont ext A request context

bound to a manually
propagated map,
useful for testing

or non-Servlet
environments

@ef aul t BoundRequest Cont ext

175

Chapter 22. Context Management

Scope Qualifiers
@Request Scoped @ttp
@ef aul t
@Request Scoped @b
@ef aul t

@Conver sat i onScoped @ound

@ef aul t

@Conver sat i onScoped @ttt p

@ef aul t
@Bessi onScoped @ound

@ef aul t
@Bessi onScoped @ttp

@ef aul t

@\ppl i cati onScoped @ef aul t

Context

Request Cont ext

Ht t pRequest Cont ext

Request Cont ext

Ej bRequest Cont ext

Conver sat i onCont ext

Notes

A request context
bound to a Servlet
request, used for any
Servlet based request
context

A request context
bound to a an
interceptor’'s
invocation context,
used for EJB
invocations outside of
Servlet requests

A conversation
context bound to two

BoundConver sat i onConlrn%tua"y propagated

Conver sat i onCont ext

Ht t pConver sat i onContgéI;

Sessi onCont ext

BoundSessi onCont ext

Sessi onCont ext

Ht t pSessi onCont ext

Appl i cati onCont ext

maps (one which
represents the
request and one
which represents the
session), useful for
testing or non-Servlet
environments

A conversation
context bound to a
vlet request, used
for any Servlet based
conversation context

A session context
bound to a manually
propagated map,
useful for testing

or non-Servlet
environments

A session context
bound to a Servlet
request, used for any
Servlet based session
context

An application
context backed
by an application

176

Managing the built in contexts

Scope Qualifiers Context Notes
scoped singleton, it
is unmanaged and
unbound but does
offer an option to
destroy all entries

@si ngl et onScoped @ef aul t Si ngl et onCont ext A singleton context
backed by an
application scoped
singleton, it is
unmanaged and
unbound but does
offer an option to
destroy all entries

Unmanaged contexts offer little of interest in a discussion about managing context lifecycles, so
from here on in we will concentrate on the managed contexts (unmanaged contexts of course play
a vital role in the functioning of your application and Weld!). As you can see from the table above,
the managed contexts offer a number of different implementations for the same scope; in general,
each flavor of context for a scope has the same API. We'll walk through a number of common
lifecycle management scenarios below; armed with this knowledge, and the Javadoc, you should
be able to work with any of the context implementations Weld offers.

We'll start simple with the BoundRequest Cont ext, which you might use to provide the request
scope outside of a Servlet request or EJB Invocation.

/* I'nject the BoundRequest Context. */
/* Alternatively, you could |ook this up fromthe BeanManager */
@ nj ect BoundRequest Cont ext request Cont ext ;

/* Start the request, providing a data store which will last the lifetinme
of the request */
public void startRequest(Map<String, Object> requestDataStore) {
/'l Associate the store with the context and activate the context
request Cont ext . associ at e(request Dat aSt ore) ;
request Cont ext . activate();

/* End the request, providing the sane data store as was used to start the
request */
public void endRequest (Map<Stri ng, Object> requestDataStore) {
try {
/* Invalidate the request (all bean instances will be schedul ed for
destruction) */

177

Chapter 22. Context Management

request Cont ext . i nvalidate();

/* Deactivate the request, causing all bean instances to be destroyed
(as the context is invalid) */

r equest Cont ext . deacti vate();

} finally {
/* Ensure that whatever happens we dissociate to prevent any nenory

| eaks */

r equest Cont ext . di ssoci at e(request Dat aSt or e) ;

The bound session context works in much the same way, excepting that invalidating and
deactivating the session context causes the any conversations in the session to be destroyed
as well. The HTTP session context and HTTP request context also work similarly, and might be
of use if you find yourself creating threads from an HTTP request). The HTTP session context
additionally offers a method which can immediately destroy the context.

Note

Weld’s session contexts are "lazy" and don’t require a session to actually exist until
a bean instance must be written.

The conversation context offers a few more options, which we will walk through here.

@ nj ect BoundConver sati onCont ext conversati onCont ext ;

/* Start a transient conversation */
/* Provide a data store which will last the l[ifetinme of the request */
/* and one that will last the lifetinme of the session */
public void startTransi ent Conversati on(Map<Stri ng, Object> requestDataStore,
Map<String, Object> sessionDataStore) {
resumeOr St art Conver sati on(request Dat aSt ore, sessionDataStore, null);

}
/* Start a transient conversation (if cidis null) or resunme a non-transi ent */
/* conversation. Provide a data store which will last the lifetine of the
request */
/* and one that will last the lifetine of the session */

public void resuneOr Start Conversation(Map<String, Object> requestDataStore,
Map<String, Object> sessionbDataStore,
String cid) {
/* Associate the stores with the context and activate the context */
* BoundRequest just waps the two datastores */
conver sati onCont ext . associ at e(new Mit abl eBoundRequest (request Dat aSt ore, sessi onDat aSt or e)

178

Managing the built in contexts

/] Pass the cid in
conversationContext. activate(cid);

}
/* End the conversations, providing the sane data store as was used to start */
/* the request. Any transient conversations will be destroyed, any new y-
pronoted */
/* conversations will be placed into the session */

public void endOr Passi vat eConversati on(Map<String, Object> requestDataStore,
Map<String, Object> sessionDataStore) {

try {
/* Invalidate the conversation (all transient conversations wll be

schedul ed for destruction) */
conversationContext.invalidate();
/* Deactivate the conversation, causing all transient conversations
to be destroyed */
conver sati onCont ext . deacti vate();
} finally {
/* Ensure that whatever happens we di ssociate to prevent nmenory | eaks*/
conver sati onCont ext . di ssoci at e(new Miut abl eBoundRequest (r equest Dat aSt ore, sessi onDat aSt

The conversation context also offers a number of properties which control the behavior of
conversation expiration (after this period of inactivity the conversation will be ended and destroyed
by the container), and the duration of lock timeouts (the conversation context ensures that a single
thread is accessing any bean instances by locking access, if alock can’t be obtained after a certain
time Weld will error rather than continue to wait for the lock). Additionally, you can alter the name
of the parameter used to transfer the conversation id (by default, ci d).

Weld also introduces the notion of a ManagedConver sat i on, which extends the Conver sati on
interface with the ability to lock, unlock and touch (update the last used timestamp) a conversation.
Finally, all non-transient conversations in a session can be obtained from the conversation context,
as can the current conversation.

@ Note
Weld’s conversations are not assigned ids until they become non-transient.

179

180

Appendix A. Integrating Weld into
other environments

If you want to use Weld in another environment, you will need to provide certain information to
Weld via the integration SPI. In this Appendix we will briefly discuss the steps needed.

If you are upgrading existing Weld integration to work with Weld 2, see this migration document
[https://lcommunity.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20].

@ Note
If you just want to use managed beans, and not take advantage of enterprise
services (EE resource injection, CDI injection into EE component classes,
transactional events, support for CDI services in EJBs) and non-flat deployments,
then the generic servlet support provided by the "Weld: Servlets" extension will be
sufficient, and will work in any container supporting the Servlet API.

All SPIs and APIs described have extensive JavaDoc, which spell out the detailed contract
between the container and Weld.

A.1l. The Weld SPI

The Weld SPI is located in the wel d- spi module, and packaged as wel d- spi . j ar. Some SPIs
are optional, and should only be implemented if you need to override the default behavior; others
are required.

All interfaces in the SPI support the decorator pattern and provide a Forwardi ng class
located in the hel pers sub package. Additional, commonly used, utility classes, and standard
implementations are also located in the hel per s sub package.

Weld supports multiple environments. An environment is defined by an implementation of
the Environment interface. A number of standard environments are built in, and described
by the Environnents enumeration. Different environments require different services to be
present (for example a Servlet container doesn’t require transaction, EJB or JPA services).
By default an EE environment is assumed, but you can adjust the environment by calling
boot strap. set Envi ronnent ().

Weld uses services to communicate with its environment. A service is a java class that implements
the org.j boss. wel d. boot st rap. api . Servi ce interface and is explicitly registered. A service
may be BDA-specific or may be shared across the entire application.

public interface Service {
public void cleanup();

181

https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20

Appendix A. Integrating Weld ...

Certain services are only used at bootstrap and need to be cleaned up
afterwards in order not to consume memory. A service that implements the
specialized org.jboss. wel d. boot st rap. api . Boot strapServi ce interface receives a
cl eanupAft er Boot () method invocation once Weld initialization is finished but before the
deployment is put into service.

public interface BootstrapService extends Service {
voi d cl eanupAfterBoot ();

Weld uses a generic-typed service registry to allow services to be registered. All services
implement the Ser vi ce interface. The service registry allows services to be added and retrieved.

A.1.1. Deployment structure

An application is often comprised of a number of modules. For example, a Java EE deployment
may contain a number of EJB modules (containing business logic) and war modules (containing
the user interface). A container may enforce certain accessibility rules which limit the visibility of
classes between modules. CDI allows these same rules to apply to bean and observer method
resolution. As the accessibility rules vary between containers, Weld requires the container to
describe the deployment structure, via the Depl oynent SPI.

The CDI specification discusses Bean Archives (BAs)—archives which are marked as containing
beans which should be deployed to the CDI container, and made available for injection and
resolution. Weld reuses this description and uses Bean Deployment Archives (BDA) in its
deployment structure SPI.

Each deployment exposes the containing BDAs that form a graph. A node in the graph represents
a BDA. Directed edges between nodes designate visibility. Visibility is not transitive (i.e. a bean
from BDA A can only see beans in BDAs with which A is directly connected by a properly oriented
edge).

To describe the deployment structure to Weld, the container should provide an implementation of
Depl oynent . Depl oynent . get BeanDepl oynent Ar chi ves() allows Weld to discover the modules
which make up the application. The CDI specification also allows beans to be specified
programmatically as part of the bean deployment. These beans may, or may not, be in an existing
BDA. For this reason, Weld will call Depl oynent . | oadBeanDepl oynent Ar chi ve(d ass cl azz)
for each programmatically described bean.

As programmatically described beans may result in additional BDAs being added to the
graph, Weld will discover the BDA structure every time an unknown BDA is returned by
Depl oynent . | oadBeanDepl oynent Ar chi ve.

182

Deployment structure

BeanDepl oynent Ar chi ve provides three methods which allow it's contents to be discovered
by Weld—BeanDepl oyment Ar chi ve. get BeanCl asses() must return all the classes in the
BDA, BeanDepl oynent Ar chi ve. get BeansXnl () must return a data structure representing the
beans. xm deployment descriptor for the archive, and BeanDepl oynent Ar chi ve. get Ej bs()
must provide an EJB descriptor for every EJB in the BDA, or an empty list if it is not an EJB archive.

To aid container integrator, Weld provides a built-in beans. xm parser. To parse a beans. xni
into the data-structure required by BeanDepl oynent Archi ve, the container should call
Boot st r ap. par se(URL) . Weld can also parse multiple beans. xni files, merging them to become
a single data-structure. This can be achieved by calling Boot st r ap. parse(|terabl e<URL>).

When multiple beans. xn files are merged, Weld keeps duplicate enabled entries (interceptors,
decorators or alternatives). This may cause validation problems when multiple physical archives
which define an overlapping enabled entries are merged. A version of the Boot st r ap. par se()
method that provides control over whether duplicate enabled entries are remove or not is provided:
Boot strap. parse(lterabl e<URL> urls, bool ean renoveDuplicates).

BDA X may also reference another BDA Y whose beans can be resolved by, and injected into,
any bean in BDA X. These are the accessible BDAs, and every BDA that is directly accessible by
BDA X should be returned. A BDA will also have BDAs which are accessible transitively, and the
transitive closure of the sub-graph of BDA X describes all the beans resolvable by BDA X.

To specify the directly accessible BDAs, the container should provide an implementation of
BeanDepl oynent Ar chi ve. get BeanDepl oynent Ar chi ves() .

183

Appendix A. Integrating Weld ...

@ Note
Weld allows the container to describe a circular graph, and will convert a graph to
a tree as part of the deployment process.

Certain services are provided for the whole deployment, whilst some are provided per-BDA. BDA
services are provided using BeanDepl oynent Ar chi ve. get Ser vi ces() and only apply to the BDA
on which they are provided.

The contract for Depl oyment requires the container to specify the portable extensions (see chapter
12 of the CDI specification) which should be loaded by the application. To aid the container
integrator, Weld provides the method Boot st r ap. | oadExt ensi ons(C assLoader) which will
load the extensions for the specified classloader.

A.1.1.1. EE Modules

In Java EE environment, description of each Java EE module that contains bean archives
deployment should be provided. This applies to:

web modules (wars)

EJB modules

» connector modules (rar)

« application client modules
 enterprise archive libraries (ear/lib)

For each such module the integrator should create an instance of the EEModul eDescri pt or which
describes the module. EEMbdul eDescri pt or | npl is provided for convenience.

An EEMbdul eDescr i pt or instance that represents a given module should be registered as a per
bean archive service in each BeanDepl oynment Ar chi ve that belongs to the given module. This
applies both to physical bean archives deployed within the given module and also to logical bean
archives that belong to the module. Bean archives that are not part of a Java EE module (e.g.
built-in server libraries) are not required to have a EEMbdul eDescri pt or service registered.

A.1.2. EJB descriptors

Weld delegates EJB 3 bean discovery to the container so that it doesn’t duplicate the work done
by the EJB container, and respects any vendor-extensions to the EJB definition.

The Ej bDescriptor should return the relevant metadata as defined in the EJB
specification. Each business interface of a session bean should be described using a

Busi nessl nt er f aceDescri ptor.

184

EE resource injection and resolution services

By default, Weld uses the EJB component class when creating new EJB instances. This
may not always be desired especially if the EJB container uses subclassing internally.
In such scenario, the EJB container requires that the subclass it generated is used for
creating instances instead of the component class. An integrator can communicate such
layout to Weld by additionally implementing the optional Subcl assedConponent Descri pt or
interface in the Ej bDescri pt or implementation. The return value of
the SubclassedComponentDescriptor.getComponentSubclass() [http://docs.jboss.org/weld/
javadoc/2.2/weld-spi/org/jboss/weld/ejb/spi/
SubclassedComponentDescriptor.html#getComponentSubclass--] method determines which
class will be used by Weld when creating new EJB instances.

A.1.3. EE resource injection and resolution services

All the EE resource services are per-BDA services, and may be provided using one of two
methods. Which method to use is at the discretion of the integrator.

The integrator may choose to provide all EE resource injection services themselves, using another
library or framework. In this case the integrator should use the EE environment, and implement
the Section A.1.9, “Injection Services” SPI.

Alternatively, the integrator may choose to use CDI to provide EE resource injection. In this
case, the EE_I NJECT environment should be used, and the integrator should implement the
Section A.1.4, “EJB services”, Section A.1.7, “Resource Services” and Section A.1.5, “JPA
services”.

Important

CDI only provides annotation-based EE resource injection; if you wish to provide
deployment descriptor (e.g. ej b-j ar. xm) injection, you must use Section A.1.9,
“Injection Services”.

If the container performs EE resource injection, the injected resources must be serializable. If EE
resource injection is provided by Weld, the resolved resource must be serializable.

Tip

If you use a non-EE environment then you may implement any of the EE service
SPIs, and Weld will provide the associated functionality. There is no need to
implement those services you don’t need!

Weld registers resource injection points with Ej bl nj ecti onSer vi ces, Jpal nj ect i onSer vi ces,
Resour cel nj ectionServi ces and JaxwslnjectionServices implementations upfront (at
bootstrap). This allows validation of resource injection points to be performed at boot time rather

185

http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/spi/SubclassedComponentDescriptor.html#getComponentSubclass--
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/spi/SubclassedComponentDescriptor.html#getComponentSubclass--
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/spi/SubclassedComponentDescriptor.html#getComponentSubclass--
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/spi/SubclassedComponentDescriptor.html#getComponentSubclass--

Appendix A. Integrating Weld ...

than runtime. For each resource injection point Weld obtains a Resour ceRef er enceFact ory
which it then uses at runtime for creating resource references.

public interface ResourceReferenceFactory<T> {
Resour ceRef er ence<T> cr eat eResource() ;

A Resour ceRef er ence provides access to the resource reference to be injected. Furthermore,
Resour ceRef er ence allows resource to be release once the bean that received resource injection
is destroyed.

public interface ResourceReference<T> {
T getlnstance();
void rel ease();

A.1.4. EJB services

EJB services are split between two interfaces which are both per-BDA.

Ej bServi ces is used to resolve local EJBs used to back session beans, and must always be
provided in an EE environment. Ej bSer vi ces. resol veEj b(Ej bDescri pt or ej bDescri ptor)
returns a wrapper—Sessi onQbj ect Ref er ence—around the EJB reference. This wrapper allows
Weld to request a reference that implements the given business interface, and, in the case of
SFSBs, both request the removal of the EJB from the container and query whether the EJB has
been previously removed.

Ej bl nj ecti onServi ces. regi st er Ej bl nj ecti onPoi nt (I nj ecti onPoi nt i nj ecti onPoi nt)
registers an @JB injection point (on a managed bean) and returns a Resour ceRef er enceFact ory
as explained above. This service is not required if the implementation of Section A.1.9, “Injection
Services” takes care of @JB injection.

@ Note

EJBI nj ecti onSer vi ces. resol veEj b(I nj ecti onPoi nt ij), which allows @JB
injection point to be resolved without prior registration was deprecated in Weld 2
and should no longer be used. An injection point should be registered properly
using Ej bl nj ecti onSer vi ces. regi st er Ej bl nj ecti onPoi nt (I nj ecti onPoi nt
i nj ecti onPoi nt) instead.

186

JPA services

A.1.5. JPA services

Just as EJB resolution is delegated to the container, resolution of @er si st enceCont ext for
injection into managed beans (with the | nj ect i onPoi nt provided), is delegated to the container.

To allow JPA integration, the JpaServices interface should be implemented. This service
is not required if the implementation of Section A.1.9, “Injection Services” takes care of
@er si st enceCont ext injection.

onPoi nt

0i nt

A.1.6. Transaction Services

Weld delegates JTA activities to the container. The SPI provides a couple hooks to easily achieve
this with the Tr ansacti onSer vi ces interface.

Any javax.transaction. Synchroni zati on implementation may be passed to the
regi st er Synchroni zati on() method and the SPI implementation should immediately register
the synchronization with the JTA transaction manager used for the EJBs.

To make it easier to determine whether or not a transaction is currently active for the requesting
thread, the i sTransacti onActi ve() method can be used. The SPI implementation should query
the same JTA transaction manager used for the EJBs.

A.1.7. Resource Services

The resolution of @Resour ce (for injection into managed beans) is delegated to the container.
You must provide an implementation of Resour cel nj ecti onServi ces which provides these
operations. This service is not required if the implementation of Section A.1.9, “Injection Services”
takes care of @esour ce injection.

187

Appendix A. Integrating Weld ...

A.1.8. Web Service Injection Services

The resolution of @ebServi ceRef (for injection into managed beans) is delegated to the
container. An integrator must provide an implementation of Jaxwsl nj ecti onServi ces. This
service is not required if the implementation of Section A.1.9, “Injection Services” takes care of
@ebSer vi ceRef injection.

A.1.9. Injection Services

An integrator may wish to use | nj ect i onSer vi ces to provide additional field or method injection
over-and-above that provided by Weld. An integration into a Java EE environment may use
I nj ectionSer vi ces to provide EE resource injection for managed beans.

I nj ectionServi ces provides a very simple contract, the
I nj ectionServices. aroundl nj ect (1 nj ecti onCont ext ic); interceptor will be called for every
instance that CDI injects, whether it is a contextual instance, or a non-contextual instance injected
by I nj ectionTarget.inject().

The I nj ecti onCont ext can be used to discover additional information about the injection being
performed, including the t ar get being injected. i c. proceed() should be called to perform CDI-
style injection, and call initializer methods.

A.1.9.1. Resource injection point validation

For each

» @Resource injection point

188

Security Services

* @PersistenceContext injection point

@PersistenceUnit injection point
* @EJB injection point
* @WebServiceRef injection point

Weld calls the I njectionServices.registerlnjectionTarget() method. That allows the
integrator to validate resource injection points before the application is deployed.

A.1.10. Security Services

In order to obtain the Pri nci pal representing the current caller identity, the container should
provide an implementation of Securi t ySer vi ces.

A.1.11. Initialization and shutdown

The org. j boss. wel d. boot strap. api . Boot st rap interface defines the initialization for Weld,
bean deployment and bean validation. To boot Weld, you must create an instance of
org.j boss. wel d. boot st r ap. Wl dBeansBoot st r ap (which implements Boot st r ap), tell it about
the services in use, and then request the container start.

public interface Bootstrap {

publ i c Bootstrap start Contai ner (Envi ronnent environment, Deploynent depl oynent);
public Bootstrap startlnitialization();
publ i c Bootstrap depl oyBeans();
public Bootstrap validateBeans();
public Bootstrap endlnitialization();
public void shutdown();
publi c Wel dvanager get Manager (BeanDepl oynent Ar chi ve beanDepl oynent Ar chi ve) ;
public BeansXm parse(URL url);
publ i c BeansXm parse(lterabl e<URL> urls);
public BeansXm parse(lterabl e<URL> urls, bool ean renmoveDuplicates);

public Iterabl e<Met adat a<Ext ensi on>> | oadExt ensi ons(C assLoader cl assLoader);

The bootstrap is split into phases, container initialization, bean deployment, bean validation
and shutdown. Initialization will create a manager, and add the built-in contexts, and examine
the deployment structure. Bean deployment will deploy any beans (defined using annotations,
programmatically, or built in). Bean validation will validate all beans.

To initialize the container, you call Bootstrap.startinitialization().
Before calling startlnitialization(), you must register any services
required by the environment. You can do this by calling, for
example, boot st rap. get Manager (). get Servi ces(). add(JpaServi ces. cl ass, new

MyJpaSer vi ces()) . You must also provide the application context bean store.

189

Appendix A. Integrating Weld ...

Having called startiInitialization(), the Manager for each BDA can be obtained by calling
Boot st r ap. get Manager (BeanDepl oynment Archi ve bda) .

To deploy the discovered beans, call Boot st r ap. depl oyBeans() .
To validate the deployed beans, call Boot st r ap. val i dat eBeans() .

To place the container into a state where it can service requests, call
Boot strap. endlnitialization()

To shutdown the container you call Boot st r ap. shut down() . This allows the container to perform
any cleanup operations needed.

A.1.12. Resource loading

Weld needs to load classes and resources from the classpath at various times. By default, they
are loaded from the Thread Context ClassLoader if available, if not the same classloader that was
used to load Weld, however this may not be correct for some environments. If this is case, you

can implement or g. j boss. wel d. resour ces. spi . Resour ceLoader .

i mport org.jboss.wel d. bootstrap. api. Servi ce;

public interface ResourcelLoader extends Service {
public C ass<?> cl assForName(String nane);
public URL get Resource(String nane);
public Col |l ecti on<URL> get Resources(String nane);

A.1.13. AnnotationDiscovery

The optional Annot at i onDi scovery service has been deprecated and is not used by Weld since
Weld 2.2. Integrators are encouraged to implement Cl assFi | eSer vi ces instead.

A.1.14. ClassFileServices

Integrators with bytecode-scanning capabilities may implement an optional G assFi | eSer vi ces
service.

Bytecode-scanning is used by some application servers to speed up deployment. Compared to
loading a class using C assLoader , bytecode-scanning allows to obtain only a subset of the Java
class file metadata (e.g. annotations, class hierarchy, etc.) which is usually loaded much faster.
This allows the container to scan all classes initially by a bytecode scanner and then use this
limited information to decide which classes need to be fully loaded using C assLoader . Jandex
[https://github.com/wildfly/jandex] is an example of a bytecode-scanning utility.

O assFi | eServi ces may be used by an integrator to provide container's bytecode-scanning
capabilities to Weld. If present, Weld will try to use the service to avoid loading of classes that do
not need to be loaded. These are classes that:

190

https://github.com/wildfly/jandex
https://github.com/wildfly/jandex

Registering services

e are not CDI managed beans [http://docs.jboss.org/cdi/spec/1.1/cdi-
spec.html#what_classes_are beans] and

 are not assignable to any ProcessAnnotatedType observer

This usually yields improved bootstrap performance especially in large deployments with a lot of
classes in explicit bean archives.

public interface O assFil eServi ces extends BootstrapService {
Cl assFilelnfo getd assFilelnfo(String cl assNane);

public interface C assFilelnfo {
String getd assName();
String get Supercl assNanme() ;
bool ean i sAnnot ati onDecl ared(Cl ass<? extends Annotati on> annotati onType);
bool ean cont ai nsAnnot ati on(C ass<? extends Annotati on> annotati onType);
int getMWddifiers();
bool ean hasCdi Constructor();
bool ean i sAssi gnabl eFrom O ass<?> j avaC ass);
bool ean i sAssi gnabl eTo(d ass<?> javaC ass);
bool ean i sVet oed();
bool ean i sTopLevel C ass();

See the JavaDoc for more details.

A.1.15. Registering services

The standard way for an integrator to provide Service implementations is via the
deployment structure. Alternatively, services may be registered using the ServiceLoader
[http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html] mechanism. This is useful
e.g. for a library running in wel d-servlet environment. Such library may provide
Transact i onSer vi ces implementation which would not otherwise be provided by wel d- ser vl et .

A service implementation should be listed in a file named META-1NF/ services/
org.j boss. wel d. boot st rap. api . Servi ce

A service implementation can override another service implementation. The priority of a
service implementation is determined from the j avax. annot ati on. Pri ori t y annotation. Service
implementations with higher priority have precedence. A service implementation that does not
define priority explicitly is given implicit priority of 4500.

A.2. The contract with the container

There are a number of requirements that Weld places on the container for correct functioning that
fall outside implementation of APIs.

191

http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#what_classes_are_beans
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#what_classes_are_beans
http://docs.jboss.org/cdi/spec/1.1/cdi-spec.html#what_classes_are_beans
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html

Appendix A. Integrating Weld ...

A.2.1. Classloader isolation

If you are integrating Weld into an environment that supports deployment of multiple applications,
you must enable, automatically, or through user configuration, classloader isolation for each CDI
application.

A.2.2. Servlet
If you are integrating Weld into a Servlet environment
you must register org.j boss.wel d.servlet. Wl dlnitialListener and

org.j boss. wel d. servl et. Wl dTer i nal Li st ener as Servlet listeners, either automatically, or
through user configuration, for each CDI application which uses Servlet.

You must ensure that Wl dLi st ener is called before any other application-defined listener is
called and that Wl dTer ni nal Li st ener is called only after all application-defined listeners have
been called.

You must ensure that Wl dLi st ener. context I nitialized() is called after beans are deployed
is complete (Boot st r ap. depl oyBeans() has been called).

A.2.3. CDI Conversation Filter

A CDI implementation is required to provide a Servlet filter named “CDI Conversation Filter”. The
filter may be mapped by an application in the web descriptor. That allows application to place
another filter around the CDI filter for dealing with exceptions.

Weld provides this filter with a fully qualified class name
of org.jboss.weld.servlet.ConversationFilter".

If the application contains a filter mapping for a filter named “CDI Conversation Filter”, the
integrator is required to register org.j boss. wel d. servl et. ConversationFilter as a filter
with “CDI Conversation Filter” as its filter name. If no such mapping exists in the application,
the integrator is not required to register the filter. In that case, WeldListener will take care of
conversation context activation/deactivation at the beginning of HTTP request processing.

A.2.4. JSF

If you are integrating Weld into a JSF environment you must register
org.j boss. wel d. el . Wl dELCont ext Li st ener as an EL Context listener.

If you are integrating Weld into a JSF environment you must register
org.jboss.wel d.jsf.Conversati onAwar eVi ewHandl er as a delegating view handler.

If you are integrating Weld into a JSF environment you must obtain the bean
manager for the module and then call BeanManager. w apExpressi onFactory(), passing
Appl i cati on. get Expr essi onFact ory() asthe argument. The wrapped expression factory must
be used in all EL expression evaluations performed by JSF in this web application.

192

JSP

If you are integrating Weld into a JSF environment you must obtain the bean manager for
the module and then call BeanManager . get ELResol ver (), The returned EL resolver should be
registered with JSF for this web application.

Tip

There are a number of ways you can obtain the bean manager for the module.
You could call Boot st rap. get Manager (), passing in the BDA for this module.
Alternatively, you could use the injection into Java EE component classes, or look
up the bean manager in JNDI.

If you are integrating Weld into a JSF environment you must register
org.j boss.wel d. servl et. Conver sati onPropagationFilter as a Servlet listener, either
automatically, or through user configuration, for each CDI application which uses JSF. This filter
can be registered for all Servlet deployment safely.

A.2.5.JSP

If you are integrating Weld into a JSP environment you must register
org.j boss. wel d. el . Wl dELCont ext Li st ener as an EL Context listener.

If you are integrating Weld into a JSP environment you must obtain the bean
manager for the module and then call BeanManager.w apExpressi onFactory(), passing
Appl i cati on. get Expressi onFact ory() asthe argument. The wrapped expression factory must
be used in all EL expression evaluations performed by JSP.

193

Appendix A. Integrating Weld ...

If you are integrating Weld into a JSP environment you must obtain the bean manager for
the module and then call BeanManager . get ELResol ver (), The returned EL resolver should be
registered with JSP for this web application.

Tip

There are a number of ways you can obtain the bean manager for the module.
You could call Boot st rap. get Manager (), passing in the BDA for this module.
Alternatively, you could use the injection into Java EE component classes, or look
up the bean manager in JNDI.

A.2.6. Session Bean Interceptor

org.j boss. wel d. ej b. Sessi onBeanl nt er cept or takes care of activating the request scope
around EJB method invocations in a non-servlet environment, such as message-driven bean
invocation, @synchronous invocation or @i meout . If you are integrating Weld into an EJB
environment you must register the ar oundl nvoke method of Sessi onBeanl nt er cept or as a EJB
around-invoke interceptor for all EJBs in the application, either automatically, or through user
configuration, for each CDI application which uses enterprise beans.

If you are running in a EJB 3.2 environment, you should register this as an around-timeout
interceptor as well.

In addition, since CDI 1.1 the ar oundl nvoke method of Sessi onBeanl nt er cept or should be
invoked around @Post Const ruct callbacks of EJBs.

Important

You must register the Sessi onBeanl nt er cept or as the outer most interceptor in
the stack for all EJBs.

A.2.7. The wel d-core.jar

Weld can reside on an isolated classloader, or on a shared classloader. If you choose to use an
isolated classloader, the default Si ngl et onPr ovi der, | sol at edSt ati ¢Si ngl et onProvi der, can
be used. If you choose to use a shared classloader, then you will need to choose another strategy.

You can provide your own implementation of Si ngl et on and Si ngl et onPr ovi der and register it
for use using Si ngl et onProvi der.initialize(SingletonProvider provider).

Weld also provides an implementation of Thread Context Classloader per application strategy,
via the TCCLSi ngl et onPr ovi der .

194

Binding the manager in JNDI

A.2.8. Binding the manager in JNDI

You should bind the bean manager for the bean deployment archive into JNDI at
j ava: conp/ BeanManager . The type should be j avax. enterpri se. i nj ect. spi . BeanVanager .
To obtain the correct bean manager for the bean deployment archive, you may call
boot strap. get BeanManager (beanDepl oynent Ar chi ve)

A29 CDI Provi der

CDI 1.1 provides a simplified approach to accessing the BeanManager / CDI container from
components that do not support injection. This is done by the CDI class API. The integrating part
can either use or g. j boss. wel d. Abst ract CDI ororg.j boss. wel d. Si npl eCDI provided by Weld
core and register it using j avax. ent er pri se. i nj ect . spi . CDl Provi der file that is visible to the
CDI API classes or use the CDI . set CDI Pr ovi der (CDI Provi der provi der) method method early
in the deployment.

Alternatively, an integrating part may provide a specialized implementation such as the one
provided by WildFly integration [https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/
org/jboss/as/weld/WeldProvider.javal.

A.2.10. Performing CDI injection on Java EE component
classes

The CDI specification requires the container to provide injection into non-contextual resources
for all Java EE component classes. Weld delegates this responsibility to the container. This
can be achieved using the CDI defined | nj ecti onTar get SPI. Furthermore, you must perform
this operation on the correct bean manager for the bean deployment archive containing the EE
component class.

The CDI specification also requires that a ProcesslnjectionTarget event is
fired for every Java EE component class. Furthermore, if an observer calls
Processl nj ecti onTarget. setlnjectionTarget() the container must use the specified
injection target to perform injection.

To help the integrator, Weld provides Wel dvanager . fireProcessl njectionTarget () which
returns the I nj ecti onTar get to use.

/'l Fire ProcesslnjectionTarget, returning the |njectionTarget
/'l to use
InjectionTarget it = wel dBeanManager.fireProcesslnjectionTarget(clazz);

/1l Per instance required, create the creational context
Creati onal Cont ext <?> cc = beanManager. creat eCreati onal Context (null);

/1 Produce the instance, perform ng any constructor injection required
hj ect instance = it.produce();

195

https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/org/jboss/as/weld/WeldProvider.java
https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/org/jboss/as/weld/WeldProvider.java
https://github.com/wildfly/wildfly/blob/master/weld/src/main/java/org/jboss/as/weld/WeldProvider.java

Appendix A. Integrating Weld ...

/[l Performinjection and call initializers
it.inject(instance, cc);

/1 Call the post-construct call back
i t.postConstruct(instance);

/1 Call the pre-destroy call back
it.preDestroy(instance);

/1l Clean up the instance
i t.di spose(instance);
cc.rel ease();

The container may intersperse other operations between these calls. Further, the integrator may
choose to implement any of these calls in another manner, assuming the contract is fulfilled.

When performing injections on EJBs you must use the Weld-defined SPI, Wl dvanager .
Furthermore, you must perform this operation on the correct bean manager for the bean
deployment archive containing the EJB.

/] Cbtain the Ej bDescriptor for the EJB
/'l You may choose to use this utility nethod to get the descriptor
Ej bDescri pt or<T> ej bDescri ptor = beanManager . <T>get Ej bDescri pt or (ej bNane) ;

/1l Get an the Bean obj ect
Bean<T> bean = beanManager . get Bean(ej bDescri ptor);

/]l Create the injection target
I njectionTarget<T> it = beanManager. creat el nj ecti onTarget (ej bDescri ptor);

/1l Per instance required, create the creational context
Wl dCr eat i onal Cont ext <T> cc = beanManager. cr eat eCr eat i onal Cont ext (bean) ;

/'l register an AroundConstructCal |l back if needed
cc.setConstructorlntercepti onSuppressed(true);
cc. regi ster AroundConst ruct Cal | back(new AroundConst ruct Cal | back<T>() {
public T aroundConstruct (Constructi onHandl e<T> handl e, Annotat edConstructor<T> construct or,
Map<String, Object> data) throws Exception {
/1 TODO invoke @\roundConstruct interceptors
return handl e. proceed(paraneters, data);

1)

/'l Produce the instance, perform ng any constructor injection required
T instance = it.produce(cc);

196

Around-construct interception

/1 Performinjection and call initializers
it.inject(instance, cc);

/1 You may choose to have CDI call the post construct and pre destroy
/1 lifecycle callbacks

/1 Call the post-construct call back

it.postConstruct (i nstance);

/1 Call the pre-destroy call back
it.preDestroy(instance);

/1 Cean up the instance
i t.di spose(instance);
cc.rel ease();

A.2.11. Around-construct interception

Weld implements support for constructor call interception and invokes interceptors that are
associated with the particular component either using an interceptor binding orthe @ nt er cept or s
annotation.

This can be suppressed by calling
Wl dCr eat i onal Cont ext . set Constructor|nterceptionSuppressed(true)

In addition, an integrator may register a callback in which it performs additional operations around
the constructor call. This way an integrator may for example implement support for additional
interceptors (e.g. those bound using the deployment descriptor).

See AroundConstructCallback [http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/
construction/api/AroundConstructCallback.html] and
WeldCreationalContext.registerAroundConstructCallback() [http://docs.jboss.org/weld/
javadoc/2.2/weld-spi/org/jboss/weld/construction/api/
WeldCreationalContext.html#registerAroundConstructCallback-
org.jboss.weld.construction.api.AroundConstructCallback-] for more details.

A.2.12. Probe Development Tool (Optional)
Optionally, an integrator may register the following Probe Development Tool components in

order to enable its functionality. Note that these components should only be registered if the
development mode is enabled - see also Section 21.1, “How to enable the development mode”.

Table A.1. Probe components

Description

org. j boss. wel d. pr obeSendetfiter er An integrator is required to register this filter
for every web application which should be a

197

http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/AroundConstructCallback.html
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/AroundConstructCallback.html
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/AroundConstructCallback.html
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/WeldCreationalContext.html#registerAroundConstructCallback-org.jboss.weld.construction.api.AroundConstructCallback-
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/WeldCreationalContext.html#registerAroundConstructCallback-org.jboss.weld.construction.api.AroundConstructCallback-
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/WeldCreationalContext.html#registerAroundConstructCallback-org.jboss.weld.construction.api.AroundConstructCallback-
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/WeldCreationalContext.html#registerAroundConstructCallback-org.jboss.weld.construction.api.AroundConstructCallback-
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/construction/api/WeldCreationalContext.html#registerAroundConstructCallback-org.jboss.weld.construction.api.AroundConstructCallback-

Appendix A. Integrating Weld ...

Class Type Description

subject of inspection. The filter should only be
mapped to a single URL pattern of value / *.

or g.j boss. wel d. pr obeCBi @x¢Ersiomsi on An integrator is required to register this
extension for every application which should
be a subject of inspection.

A.3. Migration notes

This part of the appendix documents the changes in Weld across major and minor releases that an
integrator should be aware of. These changes mostly touch changes in the SPI or in the container
contract.

A.3.1. Migration from Weld 1.x to 2.0

All the changes are documented in this external migration document [https://community.jboss.org/
wiki/WeldIntegratorGuide-ChangesForWeld20].

A.3.2. Migration from Weld 2.0to 2.1

A.3.2.1. Logging

Weld no longer uses sl f 4j for logging. Instead, jboss-logging [http://search.maven.org/#search
%7Cga%7C1%7Cjboss-logging] is now used as a logging facade.

A.3.2.2. HttpContextActivationFilter

A new service named HttpContextActivationFilter [http://docs.jboss.org/weld/javadoc/2.1/weld-
spi/org/jboss/weld/servlet/spi/HttpContextActivationFilter.html] was added to the Weld SPI. This

https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
https://community.jboss.org/wiki/WeldIntegratorGuide-ChangesForWeld20
http://search.maven.org/#search%7Cga%7C1%7Cjboss-logging
http://search.maven.org/#search%7Cga%7C1%7Cjboss-logging
http://search.maven.org/#search%7Cga%7C1%7Cjboss-logging
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/servlet/spi/HttpContextActivationFilter.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/servlet/spi/HttpContextActivationFilter.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/servlet/spi/HttpContextActivationFilter.html

Migration from Weld 2.1 to 2.2

optional service allows an integrator to decide if CDI contexts should be activated or not for a given
HTTP request. By default, CDI contexts are always active but this hook allows an integrator to
eliminate the overhead of CDI context activation for certain types of requests where CDI is known
not to be needed (e.g. request for a static resource).

Note that when the service is provided, user configuration [#context.mapping] is overriden.

A.3.2.3. Non-portable mode

The BootstrapConfiguration [http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/
bootstrap/spi/BootstrapConfiguration.html#isNonPortableModeEnabled%28%29] service now
allows the non-portable mode [#non-portable.mode] to be enabled by the integrator.

A.3.2.4. Singleton SPI

Since Weld 2.1 the Singleton SPI [http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/
bootstrap/api/Singleton.html] requires the singleton to be identified by a String cont ext i d. This
allows multiple Weld containers to run at the same time in environments where the TCCL cannot
be used to distinguish the containers (e.g. OSGi environment).

The integrator should:

« implement the new methods

« use WeldBootstrap.startContainer(String contextld, Environment environment, Deployment
deployment) to start Weld

« eliminate all Container.instance() calls and replace them with Container.instance(String
contextld)

A.3.2.5. Weld-OSGi bundle

The Weld-OSGi bundle does no include Weld's runtime dependencies anymore. Therefore, it is
possible to deploy the following artifacts in order to satisfy Weld's dependencies:

group id artifact id version
org.jboss.logging jboss-logging 3.1.3.GA
javax.enterprise cdi-api 1.1-20130918
javax.annotation javax.annotation-api 1.2
javax.interceptor javax.interceptor-api 1.2
org.apache.geronimo.specs geronimo-el_2.2_spec 1.0.3

A.3.3. Migration from Weld 2.1 to 2.2

« The definition of a bean defining annotation was altered in CDI 1.2. See the specification [http://
cdi-spec.org] for more information.

199

#context.mapping
#context.mapping
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/spi/BootstrapConfiguration.html#isNonPortableModeEnabled%28%29
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/spi/BootstrapConfiguration.html#isNonPortableModeEnabled%28%29
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/spi/BootstrapConfiguration.html#isNonPortableModeEnabled%28%29
#non-portable.mode
#non-portable.mode
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/api/Singleton.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/api/Singleton.html
http://docs.jboss.org/weld/javadoc/2.1/weld-spi/org/jboss/weld/bootstrap/api/Singleton.html
http://cdi-spec.org
http://cdi-spec.org
http://cdi-spec.org

Appendix A. Integrating Weld ...

« A new WeldlnjectionTargetBuilder [http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/
weld/manager/api/WeldInjectionTargetBuilder.html] SPI was added. The SPI allows an
integrator to obtain a customized | nj ecti onTar get implementation using the builder pattern.

e The AnnotationDiscovery service [#annotationDiscovery] was deprecated in favor of
ClassFileServices [#classFileServices].

» CDIBootstrap.startContainer() [http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/
bootstrap/api/CDI11Bootstrap.html#startContainer%28java.lang.String,
%200rg.jboss.weld.bootstrap.api.Environment,%20org.jboss.weld.bootstrap.spi.Deployment
%29] method, which allows a container identifier to be passed as a parameter, was added.

« The contract of the SessionObjectReference.getBusinessObiject() [http://docs.jboss.org/weld/
javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject
%28java.lang.Class%29] method was altered. Weld may now call this method passing in a
remote view of a session bean.

» The CDI provider implementation [#cdiProvider] was reimplemented and is no longer compatible
with the previous version.

A.3.4. Migration from Weld 2.2 to 2.3

e The jboss-classfilewiter dependency, which is used by Weld for runtime bytecode
generation, is no longer bundled within the Weld OSGi bundle. Instead, this dependency needs
to be deployed separately to the OSGi container.

group id artifact id version

‘ org.jboss.classfilewriter ‘ jboss-classfilewriter 1.1.2.Final ‘

* EEMbdul eDescri pt or which describes Java EE modules has been introduced and is now
required as part of deployment structure metadata. See Section A.1.1.1, “EE Modules” for
details.

« Java 6 support was dropped. Java 7 or newer is now required for both compile time and runtime.

e An observer for @nitialized(ConversationScoped. cl ass) or
@est royed(Conver sat i onScoped. cl ass) event no longer forces eager conversation context
initialization. See also Section 5.3.5, “Lazy and eager conversation context initialization”.

» Schedul edExecut or Ser vi ceFact ory is deprecated and no default implementation is provided
by default. This service has not been used by Weld internals at least since version 1.1.0.Final.

200

http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/manager/api/WeldInjectionTargetBuilder.html
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/manager/api/WeldInjectionTargetBuilder.html
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/manager/api/WeldInjectionTargetBuilder.html
#annotationDiscovery
#annotationDiscovery
#classFileServices
#classFileServices
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/bootstrap/api/CDI11Bootstrap.html#startContainer%28java.lang.String,%20org.jboss.weld.bootstrap.api.Environment,%20org.jboss.weld.bootstrap.spi.Deployment%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/bootstrap/api/CDI11Bootstrap.html#startContainer%28java.lang.String,%20org.jboss.weld.bootstrap.api.Environment,%20org.jboss.weld.bootstrap.spi.Deployment%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/bootstrap/api/CDI11Bootstrap.html#startContainer%28java.lang.String,%20org.jboss.weld.bootstrap.api.Environment,%20org.jboss.weld.bootstrap.spi.Deployment%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/bootstrap/api/CDI11Bootstrap.html#startContainer%28java.lang.String,%20org.jboss.weld.bootstrap.api.Environment,%20org.jboss.weld.bootstrap.spi.Deployment%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/bootstrap/api/CDI11Bootstrap.html#startContainer%28java.lang.String,%20org.jboss.weld.bootstrap.api.Environment,%20org.jboss.weld.bootstrap.spi.Deployment%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject%28java.lang.Class%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject%28java.lang.Class%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject%28java.lang.Class%29
http://docs.jboss.org/weld/javadoc/2.2/weld-spi/org/jboss/weld/ejb/api/SessionObjectReference.html#getBusinessObject%28java.lang.Class%29
#cdiProvider
#cdiProvider

	Weld 3.0.0.Alpha15 - CDI Reference Implementation
	Table of Contents
	A note about naming and nomenclature
	Part I. Beans
	Chapter 1. Introduction
	1.1. What is a bean?
	1.2. Getting our feet wet

	Chapter 2. More about beans
	2.1. The anatomy of a bean
	2.1.1. Bean types, qualifiers and dependency injection
	2.1.2. Scope
	2.1.3. EL name
	2.1.4. Alternatives
	2.1.5. Interceptor binding types

	2.2. What kinds of classes are beans?
	2.2.1. Managed beans
	2.2.2. Session beans
	2.2.3. Producer methods
	2.2.4. Producer fields

	Chapter 3. JSF web application example
	Chapter 4. Dependency injection and programmatic lookup
	4.1. Injection points
	4.2. What gets injected
	4.3. Qualifier annotations
	4.4. The built-in qualifiers @Default and @Any
	4.5. Qualifiers with members
	4.6. Multiple qualifiers
	4.7. Alternatives
	4.8. Fixing unsatisfied and ambiguous dependencies
	4.9. Client proxies
	4.10. Obtaining a contextual instance by programmatic lookup
	4.11. The InjectionPoint object

	Chapter 5. Scopes and contexts
	5.1. Scope types
	5.2. Built-in scopes
	5.3. The conversation scope
	5.3.1. Conversation demarcation
	5.3.2. Conversation propagation
	5.3.3. Conversation timeout
	5.3.4. CDI Conversation filter
	5.3.5. Lazy and eager conversation context initialization

	5.4. The singleton pseudo-scope
	5.5. The dependent pseudo-scope
	5.6. The @New qualifier

	Part II. Getting Start with Weld, the CDI Reference Implementation
	Chapter 6. Getting started with Weld
	6.1. Prerequisites
	6.2. Deploying to WildFly
	6.3. Deploying to GlassFish
	6.4. Deploying to Apache Tomcat
	6.5. Deploying to Jetty

	Chapter 7. Diving into the Weld examples
	7.1. The numberguess example in depth
	7.1.1. The numberguess example in Apache Tomcat or Jetty

	7.2. The numberguess example for Java SE with Swing
	7.2.1. Creating the Eclipse project
	7.2.2. Running the example from Eclipse
	7.2.3. Running the example from the command line
	7.2.4. Understanding the code

	7.3. The translator example in depth

	Part III. Loose coupling with strong typing
	Chapter 8. Producer methods
	8.1. Scope of a producer method
	8.2. Injection into producer methods
	8.3. Use of @New with producer methods
	8.4. Disposer methods

	Chapter 9. Interceptors
	9.1. Interceptor bindings
	9.2. Implementing interceptors
	9.3. Enabling interceptors
	9.4. Interceptor bindings with members
	9.5. Multiple interceptor binding annotations
	9.6. Interceptor binding type inheritance
	9.7. Use of @Interceptors

	Chapter 10. Decorators
	10.1. Delegate object
	10.2. Enabling decorators

	Chapter 11. Events
	11.1. Event payload
	11.2. Event observers
	11.3. Event producers
	11.4. Conditional observer methods
	11.5. Event qualifiers with members
	11.6. Multiple event qualifiers
	11.7. Transactional observers

	Chapter 12. Stereotypes
	12.1. Default scope for a stereotype
	12.2. Interceptor bindings for stereotypes
	12.3. Name defaulting with stereotypes
	12.4. Alternative stereotypes
	12.5. Stereotype stacking
	12.6. Built-in stereotypes

	Chapter 13. Specialization, inheritance and alternatives
	13.1. Using alternative stereotypes
	13.2. A minor problem with alternatives
	13.3. Using specialization

	Chapter 14. Java EE component environment resources
	14.1. Defining a resource
	14.2. Typesafe resource injection

	Part IV. CDI and the Java EE ecosystem
	Chapter 15. Java EE integration
	15.1. Built-in beans
	15.2. Injecting Java EE resources into a bean
	15.3. Calling a bean from a servlet
	15.4. Calling a bean from a message-driven bean
	15.5. JMS endpoints
	15.6. Packaging and deployment
	15.6.1. Explicit bean archive
	15.6.2. Implicit bean archive
	15.6.3. What archive is not a bean archive
	15.6.4. Embeddable EJB container

	Chapter 16. Portable extensions
	16.1. Creating an Extension
	16.2. Container lifecycle events
	16.3. The BeanManager object
	16.4. The CDI class
	16.5. The InjectionTarget interface
	16.6. The Bean interface
	16.7. Registering a Bean
	16.8. Wrapping an AnnotatedType
	16.9. Overriding attributes of a bean by wrapping BeanAttributes
	16.10. Wrapping an InjectionTarget
	16.11. Overriding InjectionPoint
	16.12. Manipulating interceptors, decorators and alternatives enabled for an application
	16.13. The Context and AlterableContext interfaces

	Chapter 17. Next steps

	Part V. Weld Reference Guide
	Chapter 18. Application servers and environments supported by Weld
	18.1. Using Weld with WildFly
	18.2. GlassFish
	18.3. Servlet containers (such as Tomcat or Jetty)
	18.3.1. Tomcat
	18.3.1.1. Binding BeanManager to JNDI
	18.3.1.2. Embedded Tomcat

	18.3.2. Jetty
	18.3.2.1. Class Loading
	18.3.2.2. Binding BeanManager to JNDI
	18.3.2.3. Embedded Jetty

	18.3.3. Undertow
	18.3.4. WildFly Web
	18.3.5. Bean Archive Isolation
	18.3.6. Implicit Bean Archive Support

	18.4. Java SE
	18.4.1. CDI SE Module
	18.4.2. Bootstrapping CDI SE
	18.4.2.1. The ContainerInitialized Event
	18.4.2.2. Programmatic Bootstrap API

	18.4.3. Thread Context
	18.4.4. Setting the Classpath
	18.4.5. Bean Archive Isolation
	18.4.6. Implicit Bean Archive Support

	18.5. OSGi

	Chapter 19. Configuration
	19.1. Weld configuration
	19.1.1. Relaxed construction
	19.1.2. Concurrent deployment configuration
	19.1.3. Thread pool configuration
	19.1.4. Non-portable mode during application initialization
	19.1.5. Bounding the cache size for resolved injection points
	19.1.6. Debugging generated bytecode
	19.1.7. Injectable reference lookup optimization
	19.1.8. Bean identifier index optimization
	19.1.9. Development Mode

	19.2. Excluding classes from scanning and deployment
	19.3. Mapping CDI contexts to HTTP requests

	Chapter 20. Logging
	20.1. Java EE containers
	20.2. Servlet containers
	20.3. Weld SE

	Chapter 21. Development Mode
	21.1. How to enable the development mode
	21.1.1. Web application
	21.1.2. Weld SE
	21.1.3. Is The Development Mode Enabled?

	21.2. Development Tools
	21.2.1. Probe

	Chapter 22. Context Management
	22.1. Managing the built in contexts

	Appendix A. Integrating Weld into other environments
	A.1. The Weld SPI
	A.1.1. Deployment structure
	A.1.1.1. EE Modules

	A.1.2. EJB descriptors
	A.1.3. EE resource injection and resolution services
	A.1.4. EJB services
	A.1.5. JPA services
	A.1.6. Transaction Services
	A.1.7. Resource Services
	A.1.8. Web Service Injection Services
	A.1.9. Injection Services
	A.1.9.1. Resource injection point validation

	A.1.10. Security Services
	A.1.11. Initialization and shutdown
	A.1.12. Resource loading
	A.1.13. AnnotationDiscovery
	A.1.14. ClassFileServices
	A.1.15. Registering services

	A.2. The contract with the container
	A.2.1. Classloader isolation
	A.2.2. Servlet
	A.2.3. CDI Conversation Filter
	A.2.4. JSF
	A.2.5. JSP
	A.2.6. Session Bean Interceptor
	A.2.7. The weld-core.jar
	A.2.8. Binding the manager in JNDI
	A.2.9. CDIProvider
	A.2.10. Performing CDI injection on Java EE component classes
	A.2.11. Around-construct interception
	A.2.12. Probe Development Tool (Optional)

	A.3. Migration notes
	A.3.1. Migration from Weld 1.x to 2.0
	A.3.2. Migration from Weld 2.0 to 2.1
	A.3.2.1. Logging
	A.3.2.2. HttpContextActivationFilter
	A.3.2.3. Non-portable mode
	A.3.2.4. Singleton SPI
	A.3.2.5. Weld-OSGi bundle

	A.3.3. Migration from Weld 2.1 to 2.2
	A.3.4. Migration from Weld 2.2 to 2.3

