Weld - CDI Reference Implementation

CDI: Contexts and
Dependency Injection
for the Java EE platform

Gavin King
Pete Muir
Jozef Hartinger
Dan Allen

David Allen
Italian Translation: Nicola Benaglia, Francesco Milesi
Spanish Translation: Gladys Guerrero
Korean Translation: Eun-Ju Ki,
Traditional Chinese Translation: Terry Chuang
Simplified Chinese Translation: Sean Wu

A note about naming and NOMENCIATUIEouiiei e e vii

LI =TT PPN 1
L INTEOTUCTION ottt ettt et 3
1.1, What 1S @ DEaNT? .o 3

1.2, GettiNg OUI fEOE WT ...ttt e 3

2. MOTE ADOUL DEANS ... s 7
2.1. The anatomy Of @ DEAN ... 7

2.1.1. Bean types, qualifiers and dependency injectioncooiiiiiiiiiii i 8

0 s T o o1 10

20130 EL NAME Lo 10

2,04, ARREINALIVES ...ttt ettt et 11

2.1.5. Interceptor biNAING tYPES ...t 11

2.2. What Kinds Of Classes are DEaNS?c.iiiiriiiii i 12

2.2.1. MaNAged DBANS ...ttt 12

2.2.2. SESSION DBANSuitiii e 13

2.2.3. Producer Methodsoeiiii e 14

2.2.4. ProducCer fIeldSouieii i 16

3. JSF web application eXample ... 17
4. Dependency injection and programmatic I00KUPuiuiiiiiiii e 21
o I o =Tt 1o I oo 1] £ PP 21

4.2. What getsS INJECIEA ...t e e 22

4.3. Qualifier anNOtAtiONS e 23

4.4, The built-in qualifiers @ef aul t and @ANYoooiiiiiii 24

4.5. Qualifiers With MEMDEIS e e e 25

4.6. MURIPIE QUAITIEIS ...t 25

A7, ALBINALIVES ...ttt e 26

4.8. Fixing unsatisfied and ambiguous dependenciesooviiiiiiiiii i 26

e R O [1=T o) o] £)= T P 27

4.10. Obtaining a contextual instance by programmatic l0OKUPcoviiviiiiiiiiiiiiiieieanns 28

4.11. The I nj ecti 0nPOi Nt 0DJECEeeee e 29

B, SCOPES ANU COMEEXES .ttt ettt et et ettt et ettt e e et e et et 33
LT S Tele] oL 1Y/ o 1T S PP 33

5.2, BUII-IN SCOPES vttt ittt et 33

5.3. The CONVEISAtION SCOPEuutiiti ettt ettt et ea et e e e e e aaeaas 34

5.3.1. Conversation demarCationououiiirinit e 34

5.3.2. Conversation Propagationc.ooeeiee e 35

5.3.3. CoNVErsation tIMEOULc.uuiitiiitit ettt eas 36

5.3.4. CDI Conversation filtero 36

5.3.5. Lazy and eager conversation context initializationcooii 37

5.4. The Singleton PSEUAO-SCOPEuinii ettt e e e e aeeanens 38

5.5. The dependent PSEUAO-SCOPEutuuiuit ettt ettt e eenens 39

5.6. The @NEW qUAIITIET ... e e 39

1. Getting Start with Weld, the CDI Reference Implementationooiiiiiiiii e 41
6. Getting started With Weld ... e aaes 43
6.1, PrEIEOUISIEES ...ttt ettt e et 43

6.2. Deploying t0 WIIAFIY e 43

6.3. Deploying t0 GIasSFISh ... 45

6.4. Deploying to APache TOMCALoiuii i e e e e 46

6.5. DEPIOYING 10 JOIY . ouvttt ittt e e 47

7. Diving into the Weld exXamples ... e 49
7.1. The numberguess example in depth ... e 49

7.1.1. The numberguess example in Apache Tomcat or Jettycooiiiiiiiiiiiiienn. 53

7.2. The numberguess example for Java SE with SWiNgcoooiiiiiiiiiiiiee 54

Weld - CDI Reference Implemen...

7.2.1. Creating the EClPSE PrOJECEouiiei it 54

7.2.2. Running the example from EClPSe ..o 54

7.2.3. Running the example from the command linecooviiiiiii i 57

7.2.4. Understanding the COOE ..ot 57

7.3. The translator example in depth ... 62

IIl. Loose coupling With StrONG tYPINGuueei e et e e e 67
8. Producer MethOOS ... e e 69
8.1. Scope of a producer MEthOMoiiuiii e e e e 70

8.2. Injection into producer MEtNOASoiii i 70

8.3. Use of @New with producer methodsc.oiiiiiiii e 71

8.4. DiSPOSEr METNOAS ...\ttt e 71

L A (a1 (o] =] o) (o] &< T TN 73
9.1, INtErceptor DINAINGSot e e 73

9.2. Implementing INTEICEPLOLSttt e e aaens 74

Lo O = o= Lo [T o T) (=T (o1=Y o (o] £ 74

9.4. Interceptor bindings With MEMDEIS ... e 75

9.5. Multiple interceptor binding annotationscoiiiiiii 76

9.6. Interceptor binding type INhertanCeo e 77

9.7. USE Of @ N I COPL OF S 1ottt e e 77

O B =T od o] = o] 2= PRI 79
10.1. DEIEGALE ODJECL ...ttt et 80

O =g = o] [T To e [=Toto] =1 (o] £ P 81

BT =Y o | 83
110, EVENE PAYIOA ..ot e 83

11.2. EVENE ODSEIVEIS ...t 83

R T YT o | o] o To [F o= £ 84

11.4. Conditional observer Methodsoviiiriii e 85

11.5. Event qualifiers With MembErsS ... e 85

11.6. Multiple event qQUAlIfIErS ... e 86

11.7. Transactional ODSEIVEISttt 87

S (=T =0 1Y/ 0 1= 89
12.1. Default SCOPE fOr @ StEIEOLYPE it eeeaaens 89

12.2. Interceptor bindings fOr STErEOtYPESviei i 90

12.3. Name defaulting with StEreotyPesSo.uiieii e 90

12,4, ARREINALIVE SEEIEOLYPES ..ottt ettt e ettt e ans 90

12.5. Stereotype SLACKINGottt et 91

12.6. BUI-IN St EIEO Y PES ettt ettt e 91

13. Specialization, inheritance and alterNatives 93
13.1. Using alternative StEIrEOLYPESuiti ittt e e 93

13.2. A minor problem with alternativeso 94

13.3. USING SPECIALIZALIONuiei it 95

14. Java EE component enVirONMENT FESOUICES ...ttt ittt e ite et e et e e e eaaeans 97
I T =Y T o = T =0T o = 97

14.2. Typesafe reSOUrCe INJECHIONt et et e aeanens 98

IV. CDI and the Java EE ©COSYSIEIMttt et et ae e e 101
15. Java EE INterationo..oi ittt ettt et ettt e 103
15.1. BUIE-IN DEANS ..ot 103

15.2. Injecting Java EE resources into @ beanccoiiiiiiiiii 103

15.3. Calling @ bean from @ Servleto 104

15.4. Calling a bean from a message-driven bean 104

15.5. IMS ENUPOINTS ..ttt et et 105

15.6. Packaging and deployment ... 106
15.6.1. EXplicit bean arChivecoiiiiiii e 106

15.6.2. Implicit bean archiveo 107

15.6.3. What archive is not a bean archive ... 107

15.6.4. Embeddable EJB CONAINETouiiitiiiii e 107

16. POrtable @XEENSIONS .ottt e e 109
16.1. Creating @an EXt @NST ON ..ouiuirii e 109

16.2. Container lifeCYCle BVENLS 110

16.3. The BeanManager ODJECEc.oiuiii i e 111

16.4. THE CDl ClaSS ...ttt e et e e e 112

16.5. The I nj ecti onTar get iNterfaceoceuiririririiii e 112

16.6. The BeaAN INEITACEo.eieii i e 113

16.7. RegIiStering @ BeaN ..o 114

16.8. Wrapping an ANNOt at @A TY P ...ouiiinii i 116

16.9. Overriding attributes of a bean by wrapping BeanAttributesocooin. 119
16.10. Wrapping an | Nj @Ct i ONTaAr get ... i 120
16.11. Overriding | Nj €Cti ONPOI Nt ..o 122
16.12. Manipulating interceptors, decorators and alternatives enabled for an application 123
16.13. The Cont ext and Al t er abl eCont ext interfacesccccocoviviiiiiiiiiiniienninnn. 123

B Lo] 1= o1 P 125
V. Weld REfErENCE GUILE ... vttt et 127
18. Application servers and environments supported by Weld ... 129
18.1. Using Weld with WIIAFIY ... e 129

18.2. GlasSSFISN .t e 129

18.3. Servlet containers (such as Tomcat Or JEttY)couiiriiiiiii i 129
L18.3.0. TOMCAL ..ttt 130

18,32, JEY ettt 130

18.3.3. Bean Archive ISOlIationo 132

18.3.4. Implicit Bean Archive SUPPOIT ...ttt 132

18.4. JAVA SE ..ottt 132
18.4.1. CDI SE MOUUIE .. .iuititii e e e 133

18.4.2. Bootstrapping CDI SE ... 133

18.4.3. Thread CONEXEttt ettt ens 135

18.4.4. Setting the Classpatho 135

18.4.5. Bean Archive ISOIationcouiuiiiiitii e 136

18.4.6. Implicit Bean Archive SUPPOIt ...t e 136

L85, O S G ittt e 136

S o] o 1To [0 1= 141] o H 137
19.1. Weld CONFIQUIALION ...ttt et ettt e r e e naenaens 137
19.1.1. Concurrent deployment configuration ..o 137

19.1.2. Thread pool CONfIQUIALIONi.ei e 138

19.1.3. Non-portable mode during application initialization ..o, 139

19.1.4. Bounding the cache size for resolved injection pointscccovvviiiiiiiieennns 139

19.1.5. Debugging generated byteCOdeoiuuiiiiiii i 139

19.1.6. Injectable reference l0okup OptiMIZationccooiviiiiiiiiiii e 139

19.2. Excluding classes from scanning and deployment ... 140

19.3. Mapping CDI contexts t0 HTTP reQUESESouiiriitiiiie i 141

20. CoNteXt MaNAgEMIENT ...t ettt ettt et et 143
20.1. Managing the DUIlt iN CONEXIS ...o.uiei e 143

A. Integrating Weld into other enVIFONMENLS i e 147
AL The Weld SPI ..o e 147
A.L.1. DeploymMENt SIUCTUIE ...ttt et ettt e e e et e e e aeanees 148

NN S o1~ od o] = 149

A.1.3. EE resource injection and resolution SErviCescooviiiiiiiiiiiii i aiaean 149

ALA. EJB SEIVICES ...uitiiititiit et et 150

Weld - CDI Reference Implemen...

AL, JPA SEIVICES ..ttt e 151
A.L.6. TranSACON SEIVICESuetitiitt ittt et eeenens 151
ALT7. RESOUICE SEIVICES ...ttt ettt et 151
A.1.8. Web Service INJECHION SEIVICESot 152
A.L.9. INJECHION SEIVICES .. uiiitt ittt e e ettt e eeneas 152
ALL10. SECUNLY SEIVICES ...ttt et ettt et e e e e te e aneanes 153
A.1.11. Initialization and ShUtdOWNoiiiii e 153
A.1.12. ReSOUICe 10adiNgueieiiii e e e 153
A.1.13. ANNOAtIONDISCOVEIY ...ttt et enees 154
A L14. ClIasSFIlESEIVICESttt et 154
A.1.15. REQISIENNG SEIVICES ...utitt ittt ettt a e e eaeaans 155
A.2. The contract with the container e 155
A.2.1. Classloader iSOIationouiiitii i 155
AL 2. SV et 155
A.2.3. CDI Conversation Filterc.ouiuiiiii e 155
A2, IS s 156
A2 D, ISP 156
A.2.6. SESSION Bean INterCEPLOr ... it 157
A2.7. The Wel d- COT €. [A& ..ot 157
A.2.8. Binding the manager in INDI ... e 157
A2.9. CDl PrOVI GO o 158
A.2.10. Performing CDI injection on Java EE component classescccoovviiiviannn.. 158
NG T Y o = Lo T o (=P 159
A.3.1. Migration from Weld 1.X 10 2.0 ..ot 159
A.3.2. Migration from Weld 2.0 10 2.0ouiiiiii i 159
A.3.3. Migration from Weld 2.1 10 2.2 ...t 160

vi

A note about naming and nomenclature

Throughout this document, mentions of JSR-299 and JSR-346 appear. JSR is a document of a proposed
specification used in the Java Community Process (JCP). JSRs are somewhat analogous to RFCs used by IETF.
JSR-299 and JSR-346 are the JCP specification names for the 1.0 and 1.1 versions of CDI, respectively.

Shortly before the final draft of JSSR-299 was submitted, the specification changed its name from "Web Beans" to
"Java Contexts and Dependency Injection for the Java EE platform", abbreviated CDI. For a brief period after the
renaming, the reference implementation adopted the name "Web Beans". However, this ended up causing more
confusion than it solved and Red Hat decided to change the name of the reference implementation to "Weld".
You may still find other documentation, blogs, forum posts, etc. that use the old nomenclature. Please update any
references you can. The naming game is over.

You'll also find that some of the functionality that once existed in the specification is now missing, such as defining
beans in XML. These features will be available as portable extensions.

Note that this reference guide was started while changes were still being made to the specification. We've done our
best to update it for accuracy. If you discover a conflict between what is written in this guide and the specification,
the specification is the authority—assume it is correct. If you believe you have found an error in the specification,
please report it to the CDI EG.

Vii

viii

Part |. Beans

The CDI [http://jcp.org/en/jsr/detail ?id=346] specification defines a set of complementary services that help improve
the structure of application code. CDI layers an enhanced lifecycle and interaction model over existing Java
component types, including managed beans and Enterprise Java Beans. The CDI services provide:

» an improved lifecycle for stateful objects, bound to well-defined contexts,

» atypesafe approach to dependency injection,

* object interaction via an event naotification facility,

* a better approach to binding interceptors to objects, along with a new kind of interceptor, called a decorator, that
is more appropriate for use in solving business problems, and

» an SPI for developing portable extensions to the container.

The CDI services are a core aspect of the Java EE platform and include full support for Java EE modularity and the
Java EE component architecture. But the specification does not limit the use of CDI to the Java EE environment.
In the Java SE environment, the services might be provided by a standalone CDI implementation like Weld (see
Section 18.4.1, “CDI SE Module”), or even by a container that also implements the subset of EJB defined for
embedded usage by the EJB 3.2 specification. CDlI is especially useful in the context of web application development,
but the problems it solves are general development concerns and it is therefore applicable to a wide variety of
application.

An object bound to a lifecycle context is called a bean. CDI includes built-in support for several different kinds of
bean, including the following Java EE component types:

* managed beans, and

» EJB session beans.

Both managed beans and EJB session beans may inject other beans. But some other objects, which are not
themselves beans in the sense used here, may also have beans injected via CDI. In the Java EE platform, the
following kinds of component may have beans injected:

* message-driven beans,

* interceptors,

» servlets, servlet filters and servlet event listeners,

* JAX-WS service endpoints and handlers,

» JAX-RS resources, providers and j avax. Wws. r s. cor e. Appl i cat i on subclasses, and

» JSP tag handlers and tag library event listeners.

CDl relieves the user of an unfamiliar API of the need to answer the following questions:

* What is the lifecycle of this object?
* How many simultaneous clients can it have?

* |s it multithreaded?

http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=346

Part I. Beans

* How do | get access to it from a client?

« Do | need to explicitly destroy it?

* Where should | keep the reference to it when I'm not currently using it?

* How can | define an alternative implementation, so that the implementation can vary at deployment time?
» How should | go about sharing this object between other objects?

CDl is more than a framework. It's a whole, rich programming model. The theme of CDI is loose-coupling with strong
typing. Let's study what that phrase means.

A bean specifies only the type and semantics of other beans it depends upon. It need not be aware of the actual
lifecycle, concrete implementation, threading model or other clients of any bean it interacts with. Even better, the
concrete implementation, lifecycle and threading model of a bean may vary according to the deployment scenario,
without affecting any client. This loose-coupling makes your code easier to maintain.

Events, interceptors and decorators enhance the loose-coupling inherent in this model:

 event notifications decouple event producers from event consumers,
« interceptors decouple technical concerns from business logic, and
* decorators allow business concerns to be compartmentalized.

What's even more powerful (and comforting) is that CDI provides all these facilities in a typesafe way. CDI never
relies on string-based identifiers to determine how collaborating objects fit together. Instead, CDI uses the typing
information that is already available in the Java object model, augmented using a new programming pattern, called
qualifier annotations, to wire together beans, their dependencies, their interceptors and decorators, and their event
consumers. Usage of XML descriptors is minimized to truly deployment-specific information.

But CDI isn't a restrictive programming model. It doesn't tell you how you should to structure your application into
layers, how you should handle persistence, or what web framework you have to use. You'll have to decide those
kinds of things for yourself.

CDI even provides a comprehensive SPI, allowing other kinds of object defined by future Java EE specifications or
by third-party frameworks to be cleanly integrated with CDI, take advantage of the CDI services, and interact with
any other kind of bean.

CDI was influenced by a number of existing Java frameworks, including Seam, Guice and Spring. However, CDI has
its own, very distinct, character: more typesafe than Seam, more stateful and less XML-centric than Spring, more
web and enterprise-application capable than Guice. But it couldn’t have been any of these without inspiration from
the frameworks mentioned and lots of collaboration and hard work by the JSR-299 and JSR-346 Expert Groups (EG).

Finally, CDI is a Java Community Process [http://jcp.org] (JCP) standard. Java EE 7 requires that all compliant
application servers provide support for JSR-346 (even in the web profile).

http://jcp.org
http://jcp.org

Chapter 1.

Introduction

So you're keen to get started writing your first bean? Or perhaps you're skeptical, wondering what kinds of hoops
the CDI specification will make you jump through! The good news is that you've probably already written and used
hundreds, perhaps thousands of beans. CDI just makes it easier to actually use them to build an application!

1.1. What is a bean?

A bean is exactly what you think it is. Only now, it has a true identity in the container environment.

Prior to Java EE 6, there was no clear definition of the term "bean" in the Java EE platform. Of course, we've been
calling Java classes used in web and enterprise applications "beans" for years. There were even a couple of different
kinds of things called "beans" in EE specifications, including EJB beans and JSF managed beans. Meanwhile, other
third-party frameworks such as Spring and Seam introduced their own ideas of what it meant to be a "bean". What
we've been missing is a common definition.

Java EE 6 finally laid down that common definition in the Managed Beans specification. Managed Beans are defined
as container-managed objects with minimal programming restrictions, otherwise known by the acronym POJO (Plain
Old Java Object). They support a small set of basic services, such as resource injection, lifecycle callbacks and
interceptors. Companion specifications, such as EJB and CDI, build on this basic model. But, at last, there’s a uniform
concept of a bean and a lightweight component model that's aligned across the Java EE platform.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters (or a
constructor designated with the annotation @ nj ect) is a bean. This includes every JavaBean and every EJB
session bean. If you've already got some JavaBeans or session beans lying around, they're already beans—you
won't need any additional special metadata.

The JavaBeans and EJBs you've been writing every day, up until now, have not been able to take advantage of the
new services defined by the CDI specification. But you'll be able to use every one of them with CDI—allowing the
container to create and destroy instances of your beans and associate them with a designated context, injecting them
into other beans, using them in EL expressions, specializing them with qualifier annotations, even adding interceptors
and decorators to them—uwithout modifying your existing code. At most, you'll need to add some annotations.

Now let’s see how to create your first bean that actually uses CDI.

1.2. Getting our feet wet

Suppose that we have two existing Java classes that we've been using for years in various applications. The first
class parses a string into a list of sentences:

public class SentenceParser {
public List<String> parse(String text) { ... }

The second existing class is a stateless session bean front-end for an external system that is able to translate
sentences from one language to another:

@t at el ess

public class SentenceTransl ator inplenents Translator {
public String translate(String sentence) { ... }

}

Chapter 1. Introduction

Where Tr ansl at or is the EJB local interface:

@ocal
public interface Translator {
public String translate(String sentence);

Unfortunately, we don’t have a class that translates whole text documents. So let's write a bean for this job:

public class TextTranslator {
private SentenceParser sentenceParser;
private Transl ator sentenceTransl ator;

@ nj ect

Text Transl at or (Sent encePar ser sentenceParser, Translator sentenceTranslator) {
this.sentenceParser = sentenceParser;
t hi s. sentenceTransl ator = sent enceTransl at or;

public String translate(String text) {
StringBuilder sb = new StringBuilder();
for (String sentence: sentenceParser.parse(text)) {
sbh. append(sent enceTransl ator. transl at e(sent ence)) ;

}
return sh.toString();

But wait! Text Tr ans| at or does not have a constructor with no parameters! Is it still a bean? If you remember,
a class that does not have a constructor with no parameters can still be a bean if it has a constructor annotated
@ nj ect.

As you've guessed, the @ nj ect annotation has something to do with dependency injection! @ nj ect may be
applied to a constructor or method of a bean, and tells the container to call that constructor or method when
instantiating the bean. The container will inject other beans into the parameters of the constructor or method.

We may obtain an instance of Text Tr ansl| at or by injecting it into a constructor, method or field of a bean, or a
field or method of a Java EE component class such as a servlet. The container chooses the object to be injected
based on the type of the injection point, not the name of the field, method or parameter.

Let's create a Ul controller bean that uses field injection to obtain an instance of the Text Tr ansl| at or, translating
the text entered by a user:

@Nanmed @Request Scoped
public class TranslateController {

@nj ect TextTransl ator textTranslator; 1

private String inputText;
private String translation;

/1 JSF action nethod, perhaps
public void translate() {

Getting our feet wet

translation = textTransl ator.transl ate(i nput Text);

public String getlnputText() {
return inputText;

public void setlnputText(String text) {
this.inputText = text;

public String getTranslation() {
return translation;

‘11 Field injection of Text Tr ansl at or instance

Tip

Notice the controller bean is request-scoped and named. Since this combination is so common in
web applications, there’s a built-in annotation for it in CDI that we could have used as a shorthand.
When the (stereotype) annotation @bdel is declared on a class, it creates a request-scoped
and named bean.

Alternatively, we may obtain an instance of Text Tr ansl at or programmatically from an injected instance of
| nst ance, parameterized with the bean type:

inport javax.enterprise.inject.!|nstance;
import javax.inject.Inject;

@nj ect | nstance<Text Transl ator> text Transl at orl nstance;

public void translate() {
text Transl at or | nst ance. get ().transl at e(i nput Text);

Notice that it isn’'t necessary to create a getter or setter method to inject one bean into another. CDI can access an
injected field directly (even if it's private!), which sometimes helps eliminate some wasteful code. The name of the
field is arbitrary. It's the field’s type that determines what is injected.

At system initialization time, the container must validate that exactly one bean exists which satisfies each injection
point. In our example, if no implementation of Tr ansl at or is available—if the Sent enceTr ansl at or EJB was
not deployed—the container would inform us of an unsatisfied dependency. If more than one implementation of
Tr ansl at or were available, the container would inform us of the ambiguous dependency.

Before we get too deep in the details, let's pause and examine a bean’s anatomy. What aspects of the bean are
significant, and what gives it its identity? Instead of just giving examples of beans, we're going to define what makes
something a bean.

Chapter 2.

More about beans

A bean is usually an application class that contains business logic. It may be called directly from Java code, or it
may be invoked via the Unified EL. A bean may access transactional resources. Dependencies between beans are
managed automatically by the container. Most beans are stateful and contextual. The lifecycle of a bean is managed
by the container.

Let's back up a second. What does it really mean to be contextual? Since beans may be stateful, it matters which
bean instance | have. Unlike a stateless component model (for example, stateless session beans) or a singleton
component model (such as servlets, or singleton beans), different clients of a bean see the bean in different states.
The client-visible state depends upon which instance of the bean the client has a reference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does not control the lifecycle
of the instance by explicitly creating and destroying it. Instead, the scope of the bean determines:

« the lifecycle of each instance of the bean and
» which clients share a reference to a particular instance of the bean.

For a given thread in a CDI application, there may be an active context associated with the scope of the bean. This
context may be unique to the thread (for example, if the bean is request scoped), or it may be shared with certain
other threads (for example, if the bean is session scoped) or even all other threads (if it is application scoped).

Clients (for example, other beans) executing in the same context will see the same instance of the bean. But clients
in a different context may see a different instance (depending on the relationship between the contexts).

One great advantage of the contextual model is that it allows stateful beans to be treated like services! The client
need not concern itself with managing the lifecycle of the bean it's using, nor does it even need to know what that
lifecycle is. Beans interact by passing messages, and the bean implementations define the lifecycle of their own
state. The beans are loosely coupled because:

* they interact via well-defined public APIs
« their lifecycles are completely decoupled

We can replace one bean with another different bean that implements the same interface and has a different lifecycle
(a different scope) without affecting the other bean implementation. In fact, CDI defines a simple facility for overriding
bean implementations at deployment time, as we will see in Section 4.7, “Alternatives”.

Note that not all clients of a bean are beans themselves. Other objects such as servlets or message-driven beans
—uwhich are by nature not injectable, contextual objects—may also obtain references to beans by injection.

2.1. The anatomy of a bean

Enough hand-waving. More formally, the anatomy of a bean, according to the spec:

A bean comprises the following attributes:

* A (nonempty) set of bean types

* A (nonempty) set of qualifiers

Chapter 2. More about beans

« Ascope

« Optionally, a bean EL name

« A set of interceptor bindings

« A bean implementation

Furthermore, a bean may or may not be an alternative.

Let's see what all this new terminology means.

2.1.1. Bean types, qualifiers and dependency injection

Beans usually acquire references to other beans via dependency injection. Any injected attribute specifies a
"contract" that must be satisfied by the bean to be injected. The contract is:

« abean type, together with
« a set of qualifiers.

A bean type is a user-defined class or interface; a type that is client-visible. If the bean is an EJB session bean, the
bean type is the @.ocal interface or bean-class local view. A bean may have multiple bean types. For example,
the following bean has four bean types:

public class BookShop
ext ends Busi ness
i npl enents Shop<Book> {

The bean types are Book Shop, Busi ness and Shop<Book>, as well as the implicit type j ava. | ang. Obj ect .
(Notice that a parameterized type is a legal bean type).

Meanwhile, this session bean has only the local interfaces Book Shop, Audi t abl e and j ava. | ang. Qbj ect
as bean types, since the bean class, BookShopBean is not a client-visible type.

@t at ef ul
public class BookShopBean
ext ends Busi ness
i npl enents BookShop, Auditable {

Chapter 14, Java EE

component environment resources

Bean types, qualifiers and dependency injection

Bean types may be restricted to an explicit set by annotating the bean with the @y ped annotation and listing the
classes that should be bean types. For instance, the bean types of this bean have been restricted to Shop<Book>,
together with j ava. | ang. Obj ect :

@vyped(Shop. cl ass)
public class BookShop
ext ends Busi ness
i npl enent s Shop<Book> {

Sometimes, a bean type alone does not provide enough information for the container to know which
bean to inject. For instance, suppose we have two implementations of the Paynent Processor
interface: Cr edi t Car dPaynment Processor and Debit Paynent Processor. Injecting a field of type
Payment Pr ocessor introduces an ambiguous condition. In these cases, the client must specify some additional
quality of the implementation it is interested in. We model this kind of "quality" using a qualifier.

A qualifier is a user-defined annotation that is itself annotated @ual i f i er . A qualifier annotation is an extension of
the type system. It lets us disambiguate a type without having to fall back to string-based names. Here’'s an example
of a qualifier annotation:

@ualifier

@ar get ({ TYPE, METHOD, PARANVETER, FlELD})
@Ret ent i on(RUNTI VE)

public @nterface CreditCard {}

You may not be used to seeing the definition of an annotation. In fact, this might be the first time you've encountered
one. With CDI, annotation definitions will become a familiar artifact as you’ll be creating them from time to time.

Note

)

Pay attention to the names of the built-in annotations in CDI and EJB. You'll notice that they
are often adjectives. We encourage you to follow this convention when creating your custom
annotations, since they serve to describe the behaviors and roles of the class.

Now that we have defined a qualifier annotation, we can use it to disambiguate an injection point. The following
injection point has the bean type Paynent Pr ocessor and qualifier @r edi t Car d:

@nject @reditCard Paynent Processor payment Processor

For each injection point, the container searches for a bean which satisfies the contract, one which has the bean
type and all the qualifiers. If it finds exactly one matching bean, it injects an instance of that bean. If it doesn't, it
reports an error to the user.

How do we specify that qualifiers of a bean? By annotating the bean class, of course! The following bean has the
qualifier @r edi t Car d and implements the bean type Payment Pr ocessor . Therefore, it satisfies our qualified
injection point:

Chapter 2. More about beans

@reditCard
public class CreditCardPaynent Processor
i npl enents Payment Processor { ... }

That's not quite the end of the story. CDI also defines a simple resolution rule that helps the container decide what
to do if there is more than one bean that satisfies a particular contract. We'll get into the details in Chapter 4,
Dependency injection and programmatic lookup.

2.1.2. Scope

The scope of a bean defines the lifecycle and visibility of its instances. The CDI context model is extensible,
accommodating arbitrary scopes. However, certain important scopes are built into the specification, and provided
by the container. Each scope is represented by an annotation type.

For example, any web application may have session scoped bean:

publ i c @bessi onScoped
cl ass ShoppingCart inplenents Serializable { ... }

An instance of a session-scoped bean is bound to a user session and is shared by all requests that execute in the
context of that session.

If a scope is not explicitly specified, then the bean belongs to a special scope called the dependent pseudo-scope.
Beans with this scope live to serve the object into which they were injected, which means their lifecycle is bound
to the lifecycle of that object.

We'll talk more about scopes in Chapter 5, Scopes and contexts.

2.1.3. EL name

If you want to reference a bean in non-Java code that supports Unified EL expressions, for example, in a JSP or
JSF page, you must assign the bean an EL name.

The EL name is specified using the @Named annotation, as shown here:

public @Bessi onScoped @aned("cart")

Alternatives

cl ass Shoppi ngCart inplenents Serializable { ... }
Now we can easily use the bean in any JSF or JSP page:

<h: dat aTabl e value="#{cart.lineltens}" var="item'>

</ h: dat aTabl e>

° Note

The @Nanmed annotation is not what makes the class a bean. Most classes in a bean archive are
already recognized as beans. The @\aned annotation just makes it possible to reference the bean
from the EL, most commonly from a JSF view.

We can let CDI choose a name for us by leaving off the value of the @Nanmed annotation:

public @essi onScoped @aned
cl ass ShoppingCart inplenments Serializable { ... }

The name defaults to the unqualified class name, decapitalized; in this case, shoppi ngCart .

2.1.4. Alternatives

We've already seen how qualifiers let us choose between multiple implementations of an interface at development
time. But sometimes we have an interface (or other bean type) whose implementation varies depending upon the
deployment environment. For example, we may want to use a mock implementation in a testing environment. An
alternative may be declared by annotating the bean class with the @Al t er nat i ve annotation.

public @\ ternative
cl ass MobckPaynent Processor extends Paynent Processorlinmpl { ... }

We normally annotate a bean @Al t er nat i ve only when there is some other implementation of an interface it
implements (or of any of its bean types). We can choose between alternatives at deployment time by selecting an
alternative in the CDI deployment descriptor META- | NF/ beans. xm of the jar or Java EE module that uses it.
Different modules can specify that they use different alternatives.

We cover alternatives in more detail in Section 4.7, “Alternatives”.

2.1.5. Interceptor binding types

You might be familiar with the use of interceptors in EJB 3. Since Java EE 6, this functionality has been generalized
to work with other managed beans. That's right, you no longer have to make your bean an EJB just to intercept
its methods. Holler. So what does CDI have to offer above and beyond that? Well, quite a lot actually. Let's cover
some background.

The way that interceptors were defined in Java EE 5 was counter-intuitive. You were required to specify the
implementation of the interceptor directly on the implementation of the EJB, either in the @ nt erceptors

11

Chapter 2. More about beans

annotation or in the XML descriptor. You might as well just put the interceptor code in the implementation! Second,
the order in which the interceptors are applied is taken from the order in which they are declared in the annotation
or the XML descriptor. Perhaps this isn’t so bad if you're applying the interceptors to a single bean. But, if you are
applying them repeatedly, then there’s a good chance that you'll inadvertently define a different order for different
beans. Now that's a problem.

CDI provides a new approach to binding interceptors to beans that introduces a level of indirection (and thus control).
We must define an interceptor binding type to describe the behavior implemented by the interceptor.

An interceptor binding type is a user-defined annotation that is itself annotated @ nt er cept or Bi ndi ng. It lets
us bind interceptor classes to bean classes with no direct dependency between the two classes.

@ nt er cept or Bi ndi ng

@ nherited

@rarget({ TYPE, METHOD })

@ret ent i on(RUNTI ME)

public @nterface Transactional {}

The interceptor that implements transaction management declares this annotation:

public @ransacti onal @ nterceptor
class Transactionlnterceptor { ... }

We can apply the interceptor to a bean by annotating the bean class with the same interceptor binding type:

public @bessi onScoped @ransacti onal
cl ass ShoppingCart inplenents Serializable { ... }

Notice that Shoppi ngCart and Tr ansact i onl nt er cept or don't know anything about each other.

Interceptors are deployment-specific. (We don't need a Tr ansacti onl nt er cept or in our unit tests!) By
default, an interceptor is disabled. We can enable an interceptor using the CDI deployment descriptor META- | NF/
beans. xm of the jar or Java EE module. This is also where we specify the interceptor ordering.

We'll discuss interceptors, and their cousins, decorators, in Chapter 9, Interceptors and Chapter 10, Decorators.

2.2. What kinds of classes are beans?

We've already seen two types of beans: JavaBeans and EJB session beans. Is that the whole story? Actually, it's
just the beginning. Let’s explore the various kinds of beans that CDI implementations must support out-of-the-box.

2.2.1. Managed beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by the Managed
Beans specification. You can explicitly declare a managed bean by annotating the bean class @/anagedBean,
but in CDI you don’t need to. According to the specification, the CDI container treats any class that satisfies the
following conditions as a managed bean:

It is not a non-static inner class.

12

Session beans

« |tis a concrete class, or is annotated @ecor at or .

« It is not annotated with an EJB component-defining annotation or declared as an EJB bean class in ej b-
jar.xm.

It does not implement j avax. ent er pri se. i nj ect. spi . Ext ensi on.
« It has an appropriate constructor—either:

« the class has a constructor with no parameters, or

« the class declares a constructor annotated @ nj ect .

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all interfaces
it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @ependent .
Managed beans support the @ost Const ruct and @ eDest r oy lifecycle callbacks.

Session beans are also, technically, managed beans. However, since they have their own special lifecycle and take
advantage of additional enterprise services, the CDI specification considers them to be a different kind of bean.

2.2.2. Session beans

Session beans belong to the EJB specification. They have a special lifecycle, state management and concurrency
model that is different to other managed beans and non-managed Java objects. But session beans participate in
CDl just like any other bean. You can inject one session bean into another session bean, a managed bean into a
session bean, a session bean into a managed bean, have a managed bean observe an event raised by a session
bean, and so on.

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and their
superinterfaces. If the session bean has a bean class local view, the unrestricted set of bean types contains the bean
class and all superclasses. In addition, j ava. | ang. Qbj ect is a bean type of every session bean. But remote
interfaces are not included in the set of bean types.

There’s no reason to explicitly declare the scope of a stateless session bean or singleton session bean. The EJB
container controls the lifecycle of these beans, according to the semantics of the @5t at el ess or @i ngl et on
declaration. On the other hand, a stateful session bean may have any scope.

Chapter 2. More about beans

Stateful session beans may define a remove method, annotated @Renove, that is used by the application to indicate
that an instance should be destroyed. However, for a contextual instance of the bean—an instance under the control
of CDI—this method may only be called by the application if the bean has scope @ependent . For beans with
other scopes, the application must let the container destroy the bean.

So, when should we use a session bean instead of a plain managed bean? Whenever we need the advanced
enterprise services offered by EJB, such as:

» method-level transaction management and security,

* concurrency management,

« instance-level passivation for stateful session beans and instance-pooling for stateless session beans,
* remote or web service invocation, or

« timers and asynchronous methods,

When we don’t need any of these things, an ordinary managed bean will serve just fine.

Many beans (including any @essi onScoped or @\ppl i cat i onScoped beans) are available for concurrent
access. Therefore, the concurrency management provided by EJB 3.2 is especially useful. Most session and
application scoped beans should be EJBs.

Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit from the advanced
container-managed lifecycle defined by the EJB stateless/stateful/singleton model, with its support for passivation
and instance pooling.

Finally, it's usually obvious when method-level transaction management, method-level security, timers, remote
methods or asynchronous methods are needed.

The point we're trying to make is: use a session bean when you need the services it provides, not just because
you want to use dependency injection, lifecycle management, or interceptors. Java EE 7 provides a graduated
programming model. It's usually easy to start with an ordinary managed bean, and later turn it into an EJB just by
adding one of the following annotations: @t at el ess, @bt at ef ul or @i ngl et on.

On the other hand, don't be scared to use session beans just because you've heard your friends say they're
"heavyweight". It's nothing more than superstition to think that something is "heavier" just because it's hosted natively
within the Java EE container, instead of by a proprietary bean container or dependency injection framework that runs
as an additional layer of obfuscation. And as a general principle, you should be skeptical of folks who use vaguely
defined terminology like "heavyweight".

2.2.3. Producer methods

Not everything that needs to be injected can be boiled down to a bean class instantiated by the container using
new. There are plenty of cases where we need additional control. What if we need to decide at runtime which
implementation of a type to instantiate and inject? What if we need to inject an object that is obtained by querying
a service or transactional resource, for example by executing a JPA query?

A producer method is a method that acts as a source of bean instances. The method declaration itself describes
the bean and the container invokes the method to obtain an instance of the bean when no instance exists in the
specified context. A producer method lets the application take full control of the bean instantiation process.

A producer method is declared by annotating a method of a bean class with the @r oduces annotation.

i mport javax.enterprise.inject.Produces;

14

Producer methods

@\ppl i cati onScoped
public class RandomNunber Gener at or {

private java.util.Random random = new java.util.Random(SystemcurrentTineMIlis());

@r oduces @aned @andom i nt get RandomNunber () {
return random next | nt (100);

We can't write a bean class that is itself a random number. But we can certainly write a method that returns a
random number. By making the method a producer method, we allow the return value of the method—in this case
an | nt eger —to be injected. We can even specify a qualifier—in this case @andom a scope—which in this
case defaults to @ependent , and an EL name—which in this case defaults to r andonNunber according to the
JavaBeans property name convention. Now we can get a random number anywhere:

@nj ect @andom int randomNurber ;
Even in a Unified EL expression:
<p>Your raffle nunber is #{random\unber}. </ p>

A producer method must be a non-abstract method of a managed bean class or session bean class. A producer
method may be either static or non-static. If the bean is a session bean, the producer method must be either a
business method of the EJB or a static method of the bean class.

The bean types of a producer method depend upon the method return type:

« Ifthe return type is an interface, the unrestricted set of bean types contains the return type, all interfaces it extends
directly or indirectly and j ava. | ang. Qbj ect .

« If a return type is primitive or is a Java array type, the unrestricted set of bean types contains exactly two types:
the method return type and j ava. | ang. Obj ect .

« If the return type is a class, the unrestricted set of bean types contains the return type, every superclass and all
interfaces it implements directly or indirectly.

i Note

Producer methods and fields may have a primitive bean type. For the purpose of resolving
dependencies, primitive types are considered to be identical to their corresponding wrapper types
inj ava. | ang.

If the producer method has method parameters, the container will look for a bean that satisfies the type and qualifiers
of each parameter and pass it to the method automatically—another form of dependency injection.

@°r oduces Set <Rol es> get Rol es(User user) {

15

Chapter 2. More about beans

return user.getRol es();

We'll talk much more about producer methods in Chapter 8, Producer methods.

2.2.4. Producer fields

A producer field is a simpler alternative to a producer method. A producer field is declared by annotating a field of a
bean class with the @°r oduces annotation—the same annotation used for producer methods.

inmport javax.enterprise.inject.Produces;

public class Shop {
@r oduces Paynent Processor paynent Processor =;
@r oduces @rat al og List<Product> products =;

The rules for determining the bean types of a producer field parallel the rules for producer methods.

A producer field is really just a shortcut that lets us avoid writing a useless getter method. However, in addition to
convenience, producer fields serve a specific purpose as an adaptor for Java EE component environment injection,
but to learn more about that, you'll have to wait until Chapter 14, Java EE component environment resources.
Because we can’t wait to get to work on some examples.

16

Chapter 3.

JSF web application example

Let’s illustrate these ideas with a full example. We're going to implement user login/logout for an application that
uses JSF. First, we'll define a request-scoped bean to hold the username and password entered during login, with
constraints defined using annotations from the Bean Validation specification:

@Nanmed @Request Scoped

public class Credentials {
private String usernane;
private String password,;

@ot Nul I @engt h(m n=3, max=25)
public String getUsernane() { return usernane; }
public void setUsernane(String usernane) { this.usernane = usernane; }

@\ot Nul I @engt h(m n=6, max=20)
public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

This bean is bound to the login prompt in the following JSF form:

<h: for mp
<h: panel Gid col ums="2" rendered="#{!1o0gin. | oggedl n}">
<f:val i dat eBean>
<h: out put Label for="user nane">User nane: </ h: out put Label >
<h:input Text id="usernanme" val ue="#{credential s.usernanme}"/>
<h: out put Label for="password">Password: </ h: out put Label >
<h:input Secret id="password" val ue="#{credential s. password}"/>
</f:val i dat eBean>
</ h: panel Gri d>
<h: commandBut t on val ue="Logi n" action="#{l ogin.login}" rendered="#{!|ogin.|oggedln}"/>
<h: cormandBut t on val ue="Logout" action="#{l ogin.|ogout}" rendered="#{l ogi n. | oggedln}"/>
</ h:forne

Users are represented by a JPA entity:

@ntity

public class User {
private @otNull @ength(m n=3, nax=25) @d String usernamne;
private @lot Null @ength(m n=6, max=20) String password;

public String getUsernanme() { return usernane; }
public void setUsername(String usernane) { this.username = usernane; }
public String setPassword(String password) { this.password = password; }

(Note that we're also going to need a per si st ence. xmi file to configure the JPA persistence unit containing
User.)

17

Chapter 3. JSF web applicatio...

The actual work is done by a session-scoped bean that maintains information about the currently logged-in user and
exposes the User entity to other beans:

@essi onScoped @\anmed
public class Login inplenments Serializable {

@nject Credentials credentials;
@nj ect @IserDat abase EntityManager user Dat abase;

private User user;

public void login() {
Li st<User> results = userDat abase. cr eat eQuery(
"select u fromUser u where u.usernane = :usernane and u.password = :password")
. set Paranet er ("usernane”, credential s. getUsernane())
. set Paraneter ("password", credential s. get Password())
.getResul tList();

if (lresults.isEmty()) {
user = results.get(0);

}
el se {

/1 perhaps add code here to report a failed login
}

public void logout() {
user = null;

publ i c bool ean isLoggedln() {
return user != null;

@r oduces @uoggedln User getCurrentUser() {
return user;

@.oggedl n and @Jser Dat abase are custom qualifier annotations:

@ualifier

@Ret ent i on(RUNTI VE)

@arget ({ TYPE, METHOD, PARAMETER, FIELD})
public @nterface Loggedln {}

@ualifier

@Ret ent i on(RUNTI VE)

@ar get ({ METHOD, PARAMVETER, FI ELD})
public @nterface UserDatabase {}

18

We need an adaptor bean to expose our typesafe Ent i t yManager :

cl ass User Dat abaseProducer {
@°r oduces @Jser Dat abase @Persi st enceCont ext
static EntityManager user Dat abase;

Now Docurnent Edi t or, or any other bean, can easily inject the current user:

public class Docunent Editor {
@ nj ect Docunment docunent;
@nj ect @oggedln User currentUser;
@ nj ect @ocunent Dat abase EntityManager docDat abase;

public void save() {
docunent . set Creat edBy(current User) ;
docDat abase. per si st (docunent) ;

Or we can reference the current user in a JSF view:

<h: panel Group rendered="#{l ogi n. | oggedl n}">
signed in as #{currentUser.usernane}
</ h: panel G oup>

Hopefully, this example gave you a taste of the CDI programming model. In the next chapter, we'll explore
dependency injection in greater depth.

19

20

Chapter 4.

Dependency injection and
programmatic lookup

One of the most significant features of CDI—certainly the most recognized—is dependency injection; excuse me,
typesafe dependency injection.

4.1. Injection points

The @ nj ect annotation lets us define an injection point that is injected during bean instantiation. Injection can
occur via three different mechanisms.

Bean constructor parameter injection:

public class Checkout {
private final ShoppingCart cart;
@ nj ect

publ i ¢ Checkout (Shoppi ngCart cart) {
this.cart = cart;

A bean can only have one injectable constructor.

Initializer method parameter injection:

public class Checkout {
private ShoppingCart cart;
@ nj ect

voi d set Shoppi ngCart (Shoppi ngCart cart) {
this.cart = cart;

And direct field injection:

21

Chapter 4. Dependency injecti...

public class Checkout {

private @nject ShoppingCart cart;

—

Dependency injection always occurs when the bean instance is first instantiated by the container. Simplifying just
a little, things happen in this order:

« First, the container calls the bean constructor (the default constructor or the one annotated @ nj ect), to obtain
an instance of the bean.

Next, the container initializes the values of all injected fields of the bean.

Next, the container calls all initializer methods of bean (the call order is not portable, don't rely on it).

Finally, the @Post Const r uct method, if any, is called.

(The only complication is that the container might call initializer methods declared by a superclass before initializing
injected fields declared by a subclass.)

CDI also supports parameter injection for some other methods that are invoked by the container. For instance,
parameter injection is supported for producer methods:

@r oduces Checkout createCheckout (ShoppingCart cart) {
return new Checkout (cart);

—~

This is a case where the @ nj ect annotation is not required at the injection point. The same is true for observer
methods (which we’ll meet in Chapter 11, Events) and disposer methods.

4.2. What gets injected

The CDI specification defines a procedure, called typesafe resolution, that the container follows when identifying the
bean to inject to an injection point. This algorithm looks complex at first, but once you understand it, it's really quite
intuitive. Typesafe resolution is performed at system initialization time, which means that the container will inform
the developer immediately if a bean’s dependencies cannot be satisfied.

The purpose of this algorithm is to allow multiple beans to implement the same bean type and either:

Qualifier annotations

« allow the client to select which implementation it requires using a qualifier or

« allow the application deployer to select which implementation is appropriate for a particular deployment, without
changes to the client, by enabling or disabling an alternative, or

« allow the beans to be isolated into separate modules.

Obviously, if you have exactly one bean of a given type, and an injection point with that same type, then bean A
is going to go into slot A. That's the simplest possible scenario. When you first start your application, you'll likely
have lots of those.

But then, things start to get complicated. Let's explore how the container determines which bean to inject in more
advanced cases. We'll start by taking a closer look at qualifiers.

4.3. Qualifier annotations

If we have more than one bean that implements a particular bean type, the injection point can specify exactly
which bean should be injected using a qualifier annotation. For example, there might be two implementations of
Payment Processor:

@ynchronous
public class SynchronousPaynent Processor inplements Paynent Processor {

public void process(Paynent paynment) { ... }

}

@\synchronous

public class AsynchronousPaynent Processor inplenents Payment Processor {
public void process(Paynment paynment) { ... }

}

Where @ynchr onous and @\synchr onous are qualifier annotations:

@ualifier

@Ret ent i on(RUNTI ME)

@arget ({ TYPE, METHOD, FIELD, PARAMETER})
public @nterface Synchronous {}

@ualifier

@Ret ent i on(RUNTI ME)

@ar get ({ TYPE, METHOD, FlELD, PARANMETER})
public @nterface Asynchronous {}

A client bean developer uses the qualifier annotation to specify exactly which bean should be injected.

Using field injection:

@ nj ect @ynchronous Paynent Processor syncPayment Processor;

23

Chapter 4. Dependency injecti...

@nj ect @synchronous Paynent Processor asyncPaynment Processor ;
Using initializer method injection:

@ nj ect
public void setPaynment Processor s(@ynchronous Paynment Processor syncPaynent Processor,
@synchronous Paynent Processor asyncPaynent Processor) {
thi s. syncPaynent Processor = syncPayment Processor;
t hi s. asyncPaynent Processor = asyncPaynent Processor;

Using constructor injection:

@ nj ect
publ i ¢ Checkout (@ynchronous Payment Processor syncPaynent Processor,
@\ synchronous Paynent Processor asyncPaynent Processor) {
thi s. syncPaynent Processor = syncPayment Processor;
t hi s. asyncPaynent Processor = asyncPaynent Processor;

Qualifier annotations can also qualify method arguments of producer, disposer and observer methods. Combining
qualified arguments with producer methods is a good way to have an implementation of a bean type selected at
runtime based on the state of the system:

@r oduces
Paynent Processor get Paynent Processor (@ynchronous Paynent Processor syncPaynent Processor,
@\synchronous Paynent Processor asyncPaynent Processor) {
return i sSynchronous() ? syncPaynent Processor : asyncPaynent Processor;

If an injected field or a parameter of a bean constructor or initializer method is not explicitly annotated with a qualifier,
the default qualifier,@ef aul t , is assumed.

Now, you may be thinking, "What's the different between using a qualifier and just specifying the exact
implementation class you want?" It's important to understand that a qualifier is like an extension of the interface.
It does not create a direct dependency to any particular implementation. There may be multiple alternative
implementations of @\synchr onous Paynent Processor!

4.4. The built-in qualifiers aefaut and any

Whenever a bean or injection point does not explicitly declare a qualifier, the container assumes the qualifier
@ef aul t . From time to time, you'll need to declare an injection point without specifying a qualifier. There's a
qualifier for that too. All beans have the qualifier” @Any". Therefore, by explicitly specifying @\ny at an injection
point, you suppress the default qualifier, without otherwise restricting the beans that are eligible for injection.

This is especially useful if you want to iterate over all beans with a certain bean type. For example:

i mport javax.enterprise.inject.|nstance;

24

Qualifiers with members

@ nj ect
void initServices(@ny |nstance<Service> services) {
for (Service service: services) {
service.init();

4.5. Qualifiers with members

Java annotations can have members. We can use annotation members to further discriminate a qualifier. This
prevents a potential explosion of new annotations. For example, instead of creating several qualifiers representing
different payment methods, we could aggregate them into a single annotation with a member:

@ualifier
@Ret ent i on(RUNTI MVE)
@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynment Met hod val ue();

Then we select one of the possible member values when applying the qualifier:
private @nject @ayBy(CHECK) Paynent Processor checkPaynent;
We can force the container to ignore a member of a qualifier type by annotating the member @Nonbi ndi ng.

@ualifier
@ret ent i on(RUNTI ME)
@ar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynment Met hod val ue();
@Nonbi nding String comrent () default "";

4.6. Multiple qualifiers

An injection point may specify multiple qualifiers:
@nj ect @ynchronous @rel i abl e Paynment Processor syncPaynent Processor;

Then only a bean which has both qualifier annotations would be eligible for injection.

25

Chapter 4. Dependency injecti...

@ynchronous @=el i abl e
public class SynchronousRel i abl ePaynment Processor inpl enents Payment Processor {
public void process(Paynent paynent) { ... }

4.7. Alternatives

Alternatives are beans whose implementation is specific to a particular client module or deployment scenario. This
alternative defines a mock implementation of both @y nchr onous Paymnent Processor and @\synchr onous
Paynent Processor, all in one:

@\ ternative @ynchronous @synchronous
public class MdyckPaynent Processor inplenments Payment Processor {
public void process(Paynment paynent) { ... }

By default, @\l t er nat i ve beans are disabled. We need to enable an alternative in the beans. xm descriptor of
a bean archive to make it available for instantiation and injection. However, this activation only applies to the beans
in that archive. From CDI 1.1 onwards the alternative can be enabled for the whole application using @r i ority
annotation.

<beans
xm ns="http://xmns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://xm ns.jcp.org/ xm/ns/javaee
http://xmns.jcp.org/ xm/ns/javaeel/ beans_1_1. xsd" >
<alternatives>
<cl ass>or g. nyconpany. nock. MockPaynent Processor </ cl ass>
</alternatives>
</ beans>

When an ambiguous dependency exists at an injection point, the container attempts to resolve the ambiguity by
looking for an enabled alternative among the beans that could be injected. If there is exactly one enabled alternative,
that's the bean that will be injected. If there are more beans with priority, the one with the highest priority value is
selected.

4.8. Fixing unsatisfied and ambiguous dependencies

The typesafe resolution algorithm fails when, after considering the qualifier annotations on all beans that implement
the bean type of an injection point and filtering out disabled beans (@Al t er nat i ve beans which are not explicitly
enabled), the container is unable to identify exactly one bean to inject. The container will abort deployment, informing
us of the unsatisfied or ambiguous dependency.

During the course of your development, you're going to encounter this situation. Let’s learn how to resolve it.

To fix an unsatisfied dependency, either:

* create a bean which implements the bean type and has all the qualifier types of the injection point,

26

Client proxies

* make sure that the bean you already have is in the classpath of the module with the injection point, or

« explicitly enable an @Al t er nat i ve bean that implements the bean type and has the appropriate qualifier types,
using beans. xm .

« enable an @\l t er nat i ve bean that implements the bean type and has the appropriate qualifier types, using
@pri ority annotation.

To fix an ambiguous dependency, either:

* introduce a qualifier to distinguish between the two implementations of the bean type,

» exclude one of the beans from discovery (either by means of @Vetoed [http://docs.jboss.org/cdi/api/l.1/javax/
enterprise/inject/Vetoed.html] or beans. xm),

- disable one of the beans by annotating it @\l t er nati ve,
* move one of the implementations to a module that is not in the classpath of the module with the injection point, or
« disable one of two @Al t er nat i ve beans that are trying to occupy the same space, using beans. xni ,

« change priority value of one of two @\ t er nat i ve beans with the @r i ori ty if they have the same highest
priority value.

Just remember: "There can be only one."

On the other hand, if you really do have an optional or multivalued injection point, you should change the type of your
injection pointto | nst ance, as we'll see in Section 4.10, “Obtaining a contextual instance by programmatic lookup”.

Now there’s one more issue you need to be aware of when using the dependency injection service.

4.9. Client proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance, unless the bean is a dependent
object (scope @ependent).

Imagine that a bean bound to the application scope held a direct reference to a bean bound to the request scope. The
application-scoped bean is shared between many different requests. However, each request should see a different
instance of the request scoped bean—the current one!

Now imagine that a bean bound to the session scope holds a direct reference to a bean bound to the application
scope. From time to time, the session context is serialized to disk in order to use memory more efficiently. However,
the application scoped bean instance should not be serialized along with the session scoped bean! It can get that
reference any time. No need to hoard it!

Therefore, unless a bean has the default scope @ependent , the container must indirect all injected references to
the bean through a proxy object. This client proxy is responsible for ensuring that the bean instance that receives
a method invocation is the instance that is associated with the current context. The client proxy also allows beans
bound to contexts such as the session context to be serialized to disk without recursively serializing other injected
beans.

Unfortunately, due to limitations of the Java language, some Java types cannot be proxied by the container. If an
injection point declared with one of these types resolves to a bean with any scope other than @ependent , the
container will abort deployment, informing us of the problem.

The following Java types cannot be proxied by the container:

27

http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html
http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html
http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/Vetoed.html

Chapter 4. Dependency injecti...

¢ classes which don’t have a non-private constructor with no parameters, and

« classes which are declared f i nal or have afi nal method,

« arrays and primitive types.

It's usually very easy to fix an unproxyable dependency problem. If an injection point of type X results in an
unproxyable dependency, simply:

¢ add a constructor with no parameters to X,

« change the type of the injection point to’Instance<X>",

« introduce an interface Y, implemented by the injected bean, and change the type of the injection point to Y, or

« if all else fails, change the scope of the injected bean to @ependent .

4.10. Obtaining a contextual instance by programmatic
lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For example, it may
not be used when:

« the bean type or qualifiers vary dynamically at runtime, or
« depending upon the deployment, there may be no bean which satisfies the type and qualifiers, or
< we would like to iterate over all beans of a certain type.

In these situations, the application may obtain an instance of the interface | nst ance, parameterized for the bean
type, by injection:

@ nj ect | nstance<Paynment Processor > paynent Processor Sour ce;

The get () method of | nst ance produces a contextual instance of the bean.

Paynent Processor p = paynent Processor Sour ce. get () ;

28

The | nj ect i onPoi nt object

Qualifiers can be specified in one of two ways:

* by annotating the | nst ance injection point, or
* by passing qualifiers to the sel ect () of Event.

Specifying the qualifiers at the injection point is much, much easier:
@ nj ect @synchronous | nstance<Paynent Processor> paynent Processor Sour ce;

Now, the Paymnent Pr ocessor returned by get () will have the qualifier @\synchr onous.

Alternatively, we can specify the qualifier dynamically. First, we add the @\ny qualifier to the injection point, to
suppress the default qualifier. (All beans have the qualifier @GAny .)

i nport javax.enterprise.inject.|nstance;

@nj ect @ny | nstance<Paynent Processor> paynment Processor Sour ce;

Next, we need to obtain an instance of our qualifier type. Since annotations are interfaces, we can't just write new
Asynchr onous() . It's also quite tedious to create a concrete implementation of an annotation type from scratch.
Instead, CDI lets us obtain a qualifier instance by subclassing the helper class Annot ati onLi teral .

cl ass AsynchronousQualifier
ext ends Annot ati onLiteral <Asynchronous> i npl enents Asynchronous {}

In some cases, we can use an anonymous class:

Paynment Processor p = paynent Processor Sour ce
.sel ect (new Annot ati onLiteral <Asynchronous>() {});

However, we can't use an anonymous class to implement a qualifier type with members.

Now, finally, we can pass the qualifier to the sel ect () method of | nst ance.

Annotati on qualifier = synchronously ?
new SynchronousQualifier() : new AsynchronousQualifier();
Paynent Processor p = anyPaynent Processor. sel ect (qualifier).get().process(paynent);

4.11. The nj ect i onPoi nt ObjeCt

There are certain kinds of dependent objects (beans with scope @ependent) that need to know something about
the object or injection point into which they are injected in order to be able to do what they do. For example:

29

Chapter 4. Dependency injecti...

» The log category for a Logger depends upon the class of the object that owns it.

« Injection of a HTTP parameter or header value depends upon what parameter or header name was specified at
the injection point.

* Injection of the result of an EL expression evaluation depends upon the expression that was specified at the
injection point.

A bean with scope @ependent may inject an instance of | nj ecti onPoi nt and access metadata relating to
the injection point to which it belongs.

Let's look at an example. The following code is verbose, and vulnerable to refactoring problems:

Logger | og = Logger. getLogger (Myd ass. cl ass. get Nare());

This clever little producer method lets you inject a JDK Logger without explicitly specifying the log category:

i nport javax.enterprise.inject.spi.lnjectionPoint;
i mport javax.enterprise.inject.Produces;

cl ass LogFactory {

@r oduces Logger createLogger(|njectionPoint injectionPoint) {
return Logger. getLogger (injectionPoint.getMenber (). getDeclaringC ass().getNane());

We can now write:

@nj ect Logger |og;

Not convinced? Then here’s a second example. To inject HTTP parameters, we need to define a qualifier type:

@ualifier
@Ret ent i on(RUNTI MVE)
@arget ({ TYPE, METHOD, FIELD, PARAMETER})
public @nterface HtpParam {
@Nonbi ndi ng public String value();

We would use this qualifier type at injection points as follows:

@Ht t pParanm("usernanme") @nject String usernane;
@t t pParam(" password") @nject String password;

The following producer method does the work:

30

The | nj ect i onPoi nt object

i nport javax.enterprise.inject.Produces;
import javax.enterprise.inject.spi.lnjectionPoint;

class HttpParans

@°r oduces @t t pParan("")

String get ParanVal ue(|l njectionPoint ip) {
Servl et Request request = (Servl et Request) FacesContext.get Currentlnstance(). get External Cont ext (). get Request
return request.getParaneter (i p.getAnnot ated().get Annotati on(HttpParam cl ass).value());

Note that acquiring of the request in this example is JSF-centric. For a more generic solution you could write your
own producer for the request and have it injected as a method parameter.

Note also that the val ue() member of the Ht t pPar amannotation is ignored by the container since it is annotated
@\onbi ndi ng.

The container provides a built-in bean that implements the | nj ect i onPoi nt interface:

public interface InjectionPoint {
public Type get Type();
publ i c Set <Annot ati on> getQualifiers();

publ i ¢ Bean<?> get Bean();

public Menber get Menber();
public Annot ated get Annot ated();
publ i c bool ean isDel egate();
publ i c bool ean isTransient();

31

32

Chapter 5.

Scopes and contexts

So far, we've seen a few examples of scope type annotations. The scope of a bean determines the lifecycle of
instances of the bean. The scope also determines which clients refer to which instances of the bean. According to
the CDI specification, a scope determines:

* When a new instance of any bean with that scope is created
* When an existing instance of any bean with that scope is destroyed

* Which injected references refer to any instance of a bean with that scope

For example, if we have a session-scoped bean, Cur r ent User , all beans that are called in the context of the same
Ht t pSessi on will see the same instance of Cur r ent User . This instance will be automatically created the first
time a Cur r ent User is needed in that session, and automatically destroyed when the session ends.

i Note

JPA entities aren't a great fit for this model. Entities have their whole own lifecycle and identity
model which just doesn’t map naturally to the model used in CDI. Therefore, we recommend
against treating entities as CDI beans. You're certainly going to run into problems if you try to give
an entity a scope other than the default scope @ependent . The client proxy will get in the way
if you try to pass an injected instance to the JPA Ent i t yManager .

5.1. Scope types

CDI features an extensible context model. It's possible to define new scopes by creating a new scope type annotation:
@copeType

@Ret ent i on(RUNTI VE)

@arget ({ TYPE, METHOD})
public @nterface O usterScoped {}

Of course, that's the easy part of the job. For this scope type to be useful, we will also need to define a Cont ext
object that implements the scope! Implementing a Cont ext is usually a very technical task, intended for framework
development only.

We can apply a scope type annotation to a bean implementation class to specify the scope of the bean:

@l ust er Scoped
public class SecondLevel Cache { ... }

Usually, you'll use one of CDI's built-in scopes.

5.2. Built-in scopes

CDI defines four built-in scopes:

33

Chapter 5. Scopes and contexts

« @Request Scoped

e @essi onScoped

e @\pplicationScoped
e @onver sati onScoped

For a web application that uses CDI, any servlet request has access to active request, session and application
scopes. Furthermore, since CDI 1.1 the conversation context is active during every servlet request.

The request and application scopes are also active:

* during invocations of EJB remote methods,
 during invocations of EJB asynchronous methods,
 during EJB timeouts,

» during message delivery to a message-driven bean,
 during web service invocations, and

* during @ost Const r uct callback of any bean

If the application tries to invoke a bean with a scope that does not have an active context, a
Cont ext Not Act i veExcept i on is thrown by the container at runtime.

Managed beans with scope @essi onScoped or @onver sat i onScoped must be serializable, since the
container passivates the HTTP session from time to time.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so let’'s not waste time
discussing them here. One of the scopes, however, is new.

5.3. The conversation scope

The conversation scope is a bit like the traditional session scope in that it holds state associated with a user of the
system, and spans multiple requests to the server. However, unlike the session scope, the conversation scope:

* is demarcated explicitly by the application, and

* holds state associated with a particular web browser tab in a web application (browsers tend to share domain
cookies, and hence the session cookie, between tabs, so this is not the case for the session scope).

A conversation represents a task—a unit of work from the point of view of the user. The conversation context holds
state associated with what the user is currently working on. If the user is doing multiple things at the same time,
there are multiple conversations.

The conversation context is active during any servlet request (since CDI 1.1). Most conversations are destroyed at
the end of the request. If a conversation should hold state across multiple requests, it must be explicitly promoted
to a long-running conversation.

5.3.1. Conversation demarcation

CDI provides a built-in bean for controlling the lifecycle of conversations in a CDI application. This bean may be
obtained by injection:

34

Conversation propagation

@nj ect Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation, call the begi n()
method from application code. To schedule the current long-running conversation context for destruction at the end
of the current request, call end() .

In the following example, a conversation-scoped bean controls the conversation with which it is associated:

i mport javax.enterprise.inject.Produces;
i nport javax.inject.lnject;
i nport javax. persi stence. Persi st enceCont ext Type. EXTENDED;

@Conver sat i onScoped @3t at ef ul
public class OrderBuilder {
private Order order;
private @nject Conversation conversation;
private @PersistenceContext(type = EXTENDED) EntityManager em

@r oduces public Oder getOder() {
return order;

public Order createOder() {
order = new Order();
conver sati on. begi n();
return order;

public void addLi nelten{Product product, int quantity) {
order. add(new Linelten(product, quantity));

public void saveOrder(Order order) {
em persi st (order);
conversation. end();

@Renove
public void destroy() {}

This bean is able to control its own lifecycle through use of the Conver sat i on API. But some other beans have
a lifecycle which depends completely upon another object.

5.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form submission) or redirect.
It does not automatically propagate with non-faces requests, for example, navigation via a link.

We can force the conversation to propagate with a non-faces request by including the unique identifier of the
conversation as a request parameter. The CDI specification reserves the request parameter named ci d for this
use. The unique identifier of the conversation may be obtained from the Conver sat i on object, which has the EL
bean name j avax. ent er pri se. cont ext. conversati on.

35

Chapter 5. Scopes and contexts

Therefore, the following link propagates the conversation:

Add Product

It's probably better to use one of the link components in JSF 2:

<h:1ink outconme="/addProduct.xhtnm" val ue="Add Product">
<f:param nane="ci d" val ue="#{j avax. enterpri se. context.conversation.id}"/>
</ h:link>

Tip

The conversation context propagates across redirects, making it very easy to implement the
common POST-then-redirect pattern, without resort to fragile constructs such as a "flash" object.
The container automatically adds the conversation id to the redirect URL as a request parameter.

In certain scenarios it may be desired to suppress propagation of a long-running conversation. The
conver sat i onPropagat i on request parameter (introduced in CDI 1.1) may be used for this purpose. If the
conver sati onPropagat i on request parameter has the value none , the container will not reassociate the
existing conversation but will instead associate the request with a new transient conversation even though the
conversation id was propagated.

5.3.3. Conversation timeout

The container is permitted to destroy a conversation and all state held in its context at any time in order to conserve
resources. A CDI implementation will normally do this on the basis of some kind of timeout—though this is not
required by the specification. The timeout is the period of inactivity before the conversation is destroyed (as opposed
to the amount of time the conversation is active).

The Conver sat i on object provides a method to set the timeout. This is a hint to the container, which is free to
ignore the setting.

conversation. set Ti neout (ti meoutInMI1is);

5.3.4. CDI Conversation filter

The conversation management is not always smooth. For example, if the propagated conversation
cannot be restored, the | avax.enterprise.context.NonexistentConversati onException
is thrown. Or if there are concurrent requests for a one long-running conversation,
‘javax.enterprise.context.BusyConversationException " is thrown. For such cases, developer has no opportunity
to deal with the exception by default, as the conversation associated with a Servlet request is determined at the
beginning of the request before calling any service() method of any servlet in the web application, even before calling
any of the filters in the web application and before the container calls any ServletRequestListener or AsyncListener
in the web application.

To be allowed to handle the exceptions, a filter defined in the CDI 1.1 with the name ~ CDI Conversation Filter *
can be used. By mapping the * CDI Conversation Filter * in the web.xml just after some other filters, we are able

36

Lazy and eager conversation context initialization

to catch the exceptions in them since the ordering in the web.xml specifies the ordering in which the filters will be
called (described in the servlet specification).

In the following example, a filter MyFilter checks for the BusyConversationException thrown during the conversation
association. In the web.xml example, the filter is mapped before the CDI Conversation Filter.

public class MyFilter inplenments Filter {

@verride
public void doFilter(Servl et Request request, ServletResponse response, FilterChain chain)
throws | OException, ServletException {

try {
chai n. doFil ter(request, response);

} catch (BusyConversati onException e) {
response. set Cont ent Type("text/plain");
response. get Witer().print("BusyConversationException");

To make it work, we need to map our MyFilter before the CDI Conversation Filter in the web.xml file.

<filter-mpping>
<filter-name>My Filter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

<filter-nmappi ng>
<filter-nane>CDl Conversation Filter</filter-nane>
<url-pattern>/*</url-pattern>

</filter-nmappi ng>

Tip

The mapping of the CDI Conversation Filter determines when Weld reads the ci d
request parameter. This process forces request body parsing. If your application relies on setting
a custom character encoding for the request or parsing the request body itself by reading an
| nput St r eamor Reader, make sure that this is performed in a filter that executes before
the CDI Conversation Filter is executed. See this FAQ page for details [http://weld.cdi-spec.org/
documentation/#3]. Alternatively, the lazy conversation context initialization (see below) may be
used.

5.3.5. Lazy and eager conversation context initialization

Conversation context may be initialized lazily or eagerly.

When initialized lazily, the conversation context (no matter if transient or long-running) is only initialized when
a @onver sati onScoped bean is accessed for the first time. At that point, the ci d parameter is read

37

http://weld.cdi-spec.org/documentation/#3
http://weld.cdi-spec.org/documentation/#3
http://weld.cdi-spec.org/documentation/#3

Chapter 5. Scopes and contexts

and the conversation is restored. The conversation context may not be initialized at all throughout the request
processing if no conversation state is accessed. Note that if a problem occurs during this delayed initialization,
the conversation state access (bean method invocation) may result in BusyConver sat i onExcepti on or
Nonexi st ent Conver sati onExcept i on being thrown.

When initialized eagerly, the conversation context is initialized at a predefined time. Either at the beginning of the
request processing before any listener, filter or servlet is invoked or, if the CDI Conversation Filter is
mapped, during execution of this filter.

Conversation context initialization mode may be configured using the
org. j boss. wel d. cont ext. conversati on. | azy init parameter.

<cont ext - par an»
<par am name>or g. j boss. wel d. cont ext . conversati on. | azy</ par am nane>
<par am val ue>t rue</ par am val ue>

</ cont ext - par an>

If the init parameter is not set, the following default behavior applies:

« Ifthe CDI Conversation Filter is mapped, the conversation context is initialized eagerly within this filter

o If an observer for @nitialized(ConversationScoped. cl ass) or
@est royed(Conversati onScoped. cl ass) event exists in the application, the conversation context is
initialized eagerly

» Otherwise, the conversation context is initialized lazily

5.4. The singleton pseudo-scope

In addition to the four built-in scopes, CDI also supports two pseudo-scopes. The first is the singleton pseudo-scope,
which we specify using the annotation @i ngl et on.

° Note

Unlike the other scopes, which belong to the package j avax. ent er pri se. cont ext, the
@i ngl et on annotation is defined in the package j avax. i nj ect .

You can guess what "singleton” means here. It means a bean that is instantiated once. Unfortunately, there’s a little
problem with this pseudo-scope. Beans with scope @5i ngl et on don’'t have a proxy object. Clients hold a direct
reference to the singleton instance. So we need to consider the case of a client that can be serialized, for example,
any bean with scope @essi onScoped or @onver sat i onScoped, any dependent object of a bean with scope
@Bessi onScoped or @onver sat i onScoped, or any stateful session bean.

Now, if the singleton instance is a simple, immutable, serializable object like a string, a number or a date, we probably
don’t mind too much if it gets duplicated via serialization. However, that makes it no stop being a true singleton, and
we may as well have just declared it with the default scope.

There are several ways to ensure that the singleton bean remains a singleton when its client gets serialized:

* have the singleton bean implement writ eResol ve() and readRepl ace() (as defined by the Java
serialization specification),

« make sure the client keeps only a transient reference to the singleton bean, or

38

The dependent pseudo-scope

« give the client a reference of type | nst ance<X> where X is the bean type of the singleton bean.

A fourth, better solution is to instead use @\pp! i cat i onScoped, allowing the container to proxy the bean, and
take care of serialization problems automatically.

5.5. The dependent pseudo-scope

Finally, CDI features the so-called dependent pseudo-scope. This is the default scope for a bean which does not
explicitly declare a scope type.

For example, this bean has the scope type @ependent :

public class Calculator { ... }

An instance of a dependent bean is never shared between different clients or different injection points. It is strictly
a dependent object of some other object. It is instantiated when the object it belongs to is created, and destroyed
when the object it belongs to is destroyed.

If a Unified EL expression refers to a dependent bean by EL name, an instance of the bean is instantiated every
time the expression is evaluated. The instance is not reused during any other expression evaluation.

Beans with scope @ependent don’t need a proxy object. The client holds a direct reference to its instance.

CDI makes it easy to obtain a dependent instance of a bean, even if the bean is already declared as a bean with
some other scope type.

5.6. The eew qualifier

The built-in qualifier @New allows us to obtain a dependent object of a specified class.

@nj ect @New Cal cul ator cal cul ator;

The class must be a valid managed bean or session bean, but need not be an enabled bean.

This works even if Cal cul at or is already declared with a different scope type, for example:

@Conver sat i onScoped
public class Calculator { ... }

39

Chapter 5. Scopes and contexts

So the following injected attributes each get a different instance of Cal cul at or:

public class PaymentCal c {
@nj ect Calculator cal cul ator;
@nj ect @ew Cal cul ator newCal cul at or;

The cal cul at or field has a conversation-scoped instance of Cal cul at or injected. The newCal cul at or field
has a new instance of Cal cul at or injected, with a lifecycle that is bound to the owning Paynent Cal c.

This feature is particularly useful with producer methods, as we’ll see in Chapter 8, Producer methods.

Warning

The @New qualifier was deprecated in CDI 1.1. CDI applications are encouraged to inject
@Dependent scoped beans instead.

40

Part Il. Getting Start with Weld,
the CDI Reference Implementation

Weld, the CDI Reference Implementation (RI), can be downloaded from the download page [http://weld.cdi-spec.org/
download]. Information about the Weld source code repository and instructions about how to obtain and build the
source can be found on the same page.

Weld provides a complete SPI allowing Java EE containers such as WildFly, GlassFish and WebLogic to use Weld
as their built-in CDI implementation. Weld also runs in servlet engines like Tomcat and Jetty, or even in a plain Java
SE environment.

Weld comes with an extensive library of examples, which are a great starting point from which to learn CDI. In
addition, a number of quickstarts featuring CDI can be found at the JBoss Developer site [http://www.jboss.org/
developer/quickstarts.html]

http://weld.cdi-spec.org/download
http://weld.cdi-spec.org/download
http://weld.cdi-spec.org/download
http://www.jboss.org/developer/quickstarts.html
http://www.jboss.org/developer/quickstarts.html
http://www.jboss.org/developer/quickstarts.html

Chapter 6.

Getting started with Weld

Weld comes with a number of examples. We recommend you start with exanpl es/ j sf/ nunber guess and
exanpl es/j sf/transl at or. Numberguess is a web (war) example containing only non-transactional managed
beans. This example can be run on a wide range of servers, including WildFly , GlassFish, Apache Tomcat, Jetty,
Google App Engine, and any compliant Java EE 7 container. Translator is an enterprise (ear) example that contains
session beans. This example must be run on WildFly 8 or better, GlassFish 4 or better, or any compliant Java EE
7 container.

Both examples use JSF 2.2 as the web framework and, as such, can be found in the exanpl es/ j sf directory
of the Weld distribution.

6.1. Prerequisites
To run the examples with the provided build scripts, you'll need the following:

« the latest release of Weld, which contains the examples
* Maven 3, to build and deploy the examples
* a supported runtime environment (minimum versions shown)
* WildFly 8.0.0.Final,
» GlassFish 4.0,
« Apache Tomcat 7 or better (war example only), or
» Jetty 7 or better (war example only)

In the next few sections, you'll be using the Maven command (v n) to invoke the Maven project file in each example
to compile, assemble and deploy the example to WildFly and, for the war example, Apache Tomcat. You can also
deploy the generated artifact (war or ear) to any other container that supports Java EE 7, such as GlassFish 4.

The sections below cover the steps for deploying with Maven in detail. Let's start with WildFly.

6.2. Deploying to WildFly

To deploy the examples to WildFly, you'll need WildFly 8.0.0.Final [http://wildfly.org/downloads/] or above. The good
news is that there are no additional modifications you have to make to the server. It's ready to go!

After you have downloaded WildFly, extract it. (We recommended renaming the folder to include the as qualifier so
it's clear that it's the application server). You can move the extracted folder anywhere you like. Wherever it lays to
rest, that's what we’'ll call the WildFly installation directory, or JBOSS_HOME.

$> unzip wildfly-8.0.0.Final.zip
$> nv wildfly-8.%/ wildfly-8

In order for the build scripts to know where to deploy the example, you have to tell them where to find your WildFly
installation. Set the JBOSS_HOVE environment variable to point to the WildFly installation, e.g.:

$> export JBOSS_HOVE=/path/to/wi | dfly-8

43

http://wildfly.org/downloads/
http://wildfly.org/downloads/

Chapter 6. Getting started wi...

You're now ready to run your first example!

Switch to the exanpl es/j sf/ nunber guess directory and execute the Maven depl oy target:

$> cd exanpl es/j sf/ nunber guess
$> nvn j boss-as:run

JBoss Tools

Wait a few seconds for the application to deploy (or the application server to start) and see if you can determine the
most efficient approach to pinpoint the random number at the local URL http://localhost:8080/weld-numberguess.

plugin documentation

You can also run functional tests to verify that the example works as expected. Run:

$> nvn verify -Darquillian=wil|dfly-nanaged-8

You should see the following output:

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

The second starter example, wel d- t r ansl at or, will translate your text into Latin. (Well, not really, but the stub is
there for you to implement, at least. Good luck!) To try it out, switch to the translator example directory and execute
the deploy target:

$> cd exanpl es/jsf/translator/ear
$> nvn jboss-as:run

44

http://www.jboss.org/tools
http://www.jboss.org/tools
http://www.jboss.org/tools
http://localhost:8080/weld-numberguess
https://docs.jboss.org/wildfly/plugins/maven/latest/
https://docs.jboss.org/wildfly/plugins/maven/latest/
https://docs.jboss.org/wildfly/plugins/maven/latest/

Deploying to GlassFish

° Note

The translator uses session beans, which are packaged in an EJB module within an ear. Java EE
7 allows session beans to be deployed in war modules, but that's a topic for a later chapter.

Again, wait a few seconds for the application to deploy (if you're really bored, read the log messages), and visit http://
localhost:8080/weld-translator to begin pseudo-translating.

Again, functional tests can be running by executing:

$> cd exanples/jsf/translator/ftest
$> nvn verify -Darquillian=w |dfly-nanaged-8

6.3. Deploying to GlassFish

Deploying to GlassFish should be easy and familiar, right? After all, it's the Java EE 7 reference implementation
and Weld is the CDI reference implementation, meaning Weld gets bundled with GlassFish. So yes, it's all quite
easy and familiar.

To deploy the examples to GlassFish, you'll need a GlassFish 4.0 [https://glassfish.java.net/download.html] release.
Select the release that ends in either - uni x. sh or - wi ndows. exe depending on your platform. After the
download is complete, execute the installer. On Linux/Unix, you'll need to first make the script executable.

$> chnod 755 gl assfi sh-4.0-unix. sh
$> ./ gl assfish-4.0-unix. sh

On Windows you can just click on the executable. Follow the instructions in the installer. It will create a single domain
named donai nl. You'll use that domain to deploy the example. We recommend that you choose 7070 as the main
HTTP port to avoid conflicts with a running instance of WildFly (or Apache Tomcat).

Next, make sure the GLASSFI SH_HOVE environment variable is set to point to the GlassFish installation.

Now switch to the example directory again and create a new GlassFish domain for the example.

$> cd exanpl es/j sf/nunberguess
$> nmvn gl assfish: create-domain

You are now ready to deploy the example by running:
$> nvn package gl assfi sh: depl oy

Once the command completes the application is available at http://localhost:7070/weld-numberguess

The example is deployed using the maven- gl assfi sh- pl ugi n. For more information about the plugin see the
plugin documentation [http://maven-glassfish-plugin.java.net/]

45

http://localhost:8080/weld-translator
http://localhost:8080/weld-translator
https://glassfish.java.net/download.html
https://glassfish.java.net/download.html
http://localhost:7070/weld-numberguess
http://maven-glassfish-plugin.java.net/
http://maven-glassfish-plugin.java.net/

Chapter 6. Getting started wi...

There are alternative ways of,deploying applications to GlassFish either by using the GlassFish Admin Console
[http://localhost:4848] or the asadni n command.

The reason the same artifact can be deployed to both WildFly and GlassFish, without any modifications, is because
all of the features being used are part of the standard platform. And what a capable platform it has become!

6.4. Deploying to Apache Tomcat

Servlet containers are not required to support Java EE services like CDI. However, you can use CDI in a servlet
container like Tomcat by embedding a standalone CDI implementation such as Weld.

Weld comes with servlet integration extension which bootstraps the CDI environment and provides injection into
servlets components. Basically, it emulates some of the work done by the Java EE container, but you don't get the
enterprise features such as session beans and container-managed transactions.

Note

e

Note that due to limitations of servlet containers (e.g. read-only JNDI) your application might require
some additional configuration as well (see and
for more info).

Let’s give the Weld servlet extension a spin on Apache Tomcat. First, you’ll need to download Tomcat 7.0.50 or later
from tomcat.apache.org [http://tomcat.apache.org/download-70.cgi] and extract it.

$> unzi p apache-tontat-7.0.53.zip

The Maven plugin communicates with Tomcat over HTTP, so it doesn't care where you have installed Tomcat.
However, the plugin configuration assumes you are running Tomcat in its default configuration, with a hostname of
localhost and port 8080. The r eadne. t xt file in the example directory has information about how to modify the
Maven settings to accommodate a different setup.

To allow Maven to communicate with Tomcat over HTTP, edit the conf / t ontat - user s. xm file in your Tomcat
installation. For Tomcat 7 and higher add the following line:

<user usernane="adm n" password="" rol es="nanager-script"/>

Next, start Tomcat. You can either start Tomcat from a Linux shell:

$> cd /path/to/apache-tontat-7
$> ./bin/start.sh

a Windows command window:

$> cd c:\path\to\apache-tontat-7\bin
$> start

46

http://localhost:4848
http://localhost:4848
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi

Deploying to Jetty

or you can start the server using an IDE, like Eclipse.
Now you're ready to deploy the numberguess example to Tomcat!

Change to the exanpl es/ j sf/ nunber guess directory again and run the following Maven command:

$> cd exanpl es/j sf/ nunber guess
$> nvn cl ean conpil e war: expl oded tontat 7: depl oy - Ptontat

Once the application is deployed, you can redeploy it using this command:

$> nvn toncat 7:redepl oy -Ptontat

The - Pt ontat argument activates thet ontat profile defined in the Maven POM (pom xm). Among other things,
this profile activates the Tomcat plugin.

Rather than shipping the container off to a standalone Tomcat installation, you can also execute the application in
an embedded Tomcat 6 container:

$> nvn war:inplace tontat7:run -Ptontat

The advantage of using the embedded server is that changes to assets in src/ mai n/ webapp take effect
immediately. If a change to a webapp configuration file is made, the application may automatically redeploy
(depending on the plugin configuration). If you make a change to a classpath resource, you need to execute a build:

$> nvn conpile war:inplace -Ptontat

Finally, you can run the functional tests:

$> nvn verify -Darquillian=tontat-enbedded-7 -Ptontat

There are several other Maven goals that you can use if you are hacking on the example, which are documented
in the example’s READMVE. nd file.

6.5. Deploying to Jetty

E Warning

Jetty Maven plugin is temporarily unsupported in Weld examples.

If you've read through the entire Tomcat section, then you're all ready to go. The Maven build parallels the embedded
Tomcat deployment. If not, don’t worry. We'll still go over everything that you need to know again in this section.

47

Chapter 6. Getting started wi...

The Maven POM (pom xml) includes a profile named j et t y that activates the Maven Jetty plugin, which you can
use to start Jetty in embedded mode and deploy the application in place. You don't need anything else installed
except to have the Maven command (mvn) on your path. The rest will be downloaded from the internet when the
build is run.

To run the wel d- nunber guess example on Jetty, switch to the example directory and execute the i npl ace
goal of the Maven war plugin followed by the r un goal of the Maven Jetty plugin with the j et t y profile enabled,
as follows:

$> cd exanpl es/j sf/ nunber guess
$> nvn war:inplace jetty:run -Pjetty

The log output of Jetty will be shown in the console. Once Jetty reports that the application has deployed, you can
access it at the following local URL: http://localhost:9090/weld-numberguess. The port is defined in the Maven Jetty
plugin configuration within the j et t y profile.

Any changes to assets in src/ mai n/ webapp take effect immediately. If a change to a webapp configuration
file is made, the application may automatically redeploy. The redeploy behavior can be fined-tuned in the plugin
configuration. If you make a change to a classpath resource, you need to execute a build and the i npl ace goal
of the Maven war plugin, again with the j et t y profile enabled.

$> mvn conpile war:inplace -Pjetty

The war : i npl ace goal copies the compiled classes and jars inside sr ¢/ mai n/ webapp, under VEB- | NF/
cl asses and VEEB- | NF/ | i b, respectively, mixing source and compiled files. However, the build does work around
these temporary files by excluding them from the packaged war and cleaning them during the Maven clean phase.

Finally, you can run the functional tests:

$> nvn verify -Darquillian=jetty-enbedded-7 -Pjetty

Now that you have gotten the starter applications deployed on the server of your choice, you probably want to know
a little bit about how they actually work.

48

http://localhost:9090/weld-numberguess

Chapter 7.

Diving into the Weld examples

It's time to pull the covers back and dive into the internals of Weld example applications. Let's start with the simpler
of the two examples, wel d- nunber guess.

7.1. The numberguess example in depth

In the numberguess application you get 10 attempts to guess a number between 1 and 100. After each attempt,
you're told whether your guess was too high or too low.

The numberguess example is comprised of a number of beans, configuration files and Facelets (JSF) views,
packaged as a war module. Let's start by examining the configuration files.

All the configuration files for this example are located in WEB- | NF/ , which can be found in the sr ¢/ mai n/ webapp
directory of the example. First, we have the JSF 2.2 version of f aces- confi g. xm . A standardized version
of Facelets is the default view handler in JSF 2.2, so there’s really nothing that we have to configure. Thus, the
configuration consists of only the root element.

<faces-config version="2. 2"
xm ns="http://xmns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://xmns.jcp.org/xm/ns/javaee
http://xm ns.jcp.org/ xm/ns/javaeel/ web-facesconfig_2_2.xsd">

<nanme>nunber guess</ nane>

</ faces-config>

There’s also an empty beans. xni file, which tells the container to look for beans in this archive and to activate
the CDI services.

Finally, some of the supported servers also need a web. xm which is located in src/ mai n/ webapp-
[server]/VEB- | NF.

° Note

This demo uses JSF 2 as the view framework, but you can use Weld with any servlet-based web
framework, such as JSF 1.2 or Wicket.

Let's take a look at the main JSF view, sr ¢/ mai n/ webapp/ hore. xht i .

<I DOCTYPE htnl PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional //EN'
"http://ww. w3. org/ TR/ xht ml 1/ DTD/ xht m 1-transi tional . dtd">
<html xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: ui ="http://java. sun.conijsf/facel ets
xm ns: h="http://java. sun.conjsf/htm"
xm ns: f="http://java. sun. conljsf/core">

<ui : conposi tion tenplate="/tenplate. xhtm "> 1

49

Chapter 7. Diving into the We...

<ui : define name="content">
<hl>Quess a nunber...</hl>
<h: f or m i d="nunber Guess" >
<div style="color: red">

<h: nessages i d="messages" gl obal Onl y="fal se"/> 2

<h: out put Text id="Hi gher" val ue="Hi gher!" rendered="#{gane. guessLower}"/>

<h: out put Text id="Lower" val ue="Lower!" rendered="#{gane. guessHi gher}"/>
</div>

<di v>
1" mthinking of a nunber between
#{ gane. snmal | est} </ span>
and #{ gane. bi ggest } </ span>.

You have #{gane.rengi ni ngGuesses} guesses remnai ni ng. 3
</ di v>

<di v>
Your guess:
<h:input Text id="inputGuess" val ue="#{gane. guess}"
requi red="true" size="3" disabl ed="#{gane. guessCorrect}"

val i dat or =" #{ gane. val i dat eNunber Range} "/ > 4 5
<h: commandBut t on i d="guessButton" val ue="CGuess" action="#{gane. check}"

di sabl ed="#{gane. guessCorrect}"/> 8
</div>
<di v>

<h: conmandBut ton i d="restartButton" val ue="Reset" action="#{gane.reset}" imedi ate="true"/>
</div>
</ h:fornp
</ ui: define>
</ ui : conposi ti on>
</htm >

1, Facelets is the built-in templating language for JSF. Here we are wrapping our page in a template which defines
the layout.
2. There are a number of messages which can be sent to the user, "Higher!", "Lower!" and "Correct!"

a As the user guesses, the range of numbers they can guess gets smaller - this sentence changes to make sure
they know the number range of a valid guess.
4 This input field is bound to a bean property using a value expression.

5 A validator binding is used to make sure the user doesn’t accidentally input a number outside of the range in
which they can guess - if the validator wasn’t here, the user might use up a guess on an out of bounds number.

& And, of course, there must be a way for the user to send their guess to the server. Here we bind to an action
method on the bean.

The example consists of 4 classes, the first two of which are qualifiers. First, there is the @andomaqualifier, used
for injecting a random number:

@ualifier

@rarget({ TYPE, METHOD, PARAMETER, FIELD })
@Ret ent i on(RUNTI VE)

public @nterface Random {}

50

The numberguess example in depth

There is also the @vaxNunber qualifier, used for injecting the maximum number that can be injected:

@ualifier

@arget({ TYPE, METHOD, PARAMETER, FIELD })
@Ret ent i on(RUNTI ME)

public @nterface MaxNunber {}

The application-scoped Gener at or class is responsible for creating the random number, via a producer method.
It also exposes the maximum possible number via a producer method:

@\ppl i cati onScoped
public class Generator inplenents Serializable {

private java.util.Random random = new java.util.Random(SystemcurrentTineMIlis());
private static final int MAX_NUMBER = 100;

java.util.Random get Randon() {
return random

@°r oduces
@Random
int next() {
//a nunber between 1 and 100
return get Randon().next|nt (MAX_NUMBER - 1) + 1;

@°r oduces

@mbxNunber

int get MaxNunber () {
return MAX_NUMBER;

The Gener at or is application scoped, so we don't get a different random each time.

° Note

The package declaration and imports have been excluded from these listings. The complete listing
is available in the example source code.

The final bean in the application is the session-scoped Gane class. This is the primary entry point of the application.
It's responsible for setting up or resetting the game, capturing and validating the user’s guess and providing feedback
to the user with a Faces Message. We've used the post-construct lifecycle method to initialize the game by retrieving
a random number from the @Random | nst ance<I| nt eger > bean.

You'll notice that we've also added the @Naned annotation to this class. This annotation i