Weld 4.0.3.Final - CDI Reference
Implementation

Table of Contents

Beans

1.

Introduction
1.1. What is a bean?

1.2. Getting our feet wet

. More about beans

2.1. The anatomy of a bean
2.1.1. Bean types, qualifiers and dependency injection
2.1.2. Scope
2.1.3. EL name
2.1.4. Alternatives
2.1.5. Interceptor binding types
2.2. What kinds of classes are beans?
2.2.1. Managed beans
2.2.2. Session beans
2.2.3. Producer methods
2.2.4. Producer fields

3. JSF web application example

4.

Dependency injection and programmatic lookup

4.1. Injection points

4.2. What gets injected

4.3. Qualifier annotations

4.4. The built-in qualifiers @Defaultand @Any

4.5. Qualifiers with members

4.6. Multiple qualifiers

4.7. Alternatives

4.8. Fixing unsatisfied and ambiguous dependencies

4.9. Client proxies

4.10. Obtaining a contextual instance by programmatic lookup
4.10.1. Enhanced version of jakarta.enterprise.inject.Instance

4.11. The InjectionPoint object

. Scopes and contexts

5.1. Scope types

5.2. Built-in scopes

5.3. The conversation scope
5.3.1. Conversation demarcation
5.3.2. Conversation propagation
5.3.3. Conversation timeout
5.3.4. CDI Conversation filter

o o N W W w R

40
41
41
42
43
43
14
45
a7
48
22
22
23
24
26
26
27
27
28
29
30
31
33
36
36
37
37
38
39
40
40

5.3.5. Lazy and eager conversation context initialization
5.4. The singleton pseudo-scope
5.5. The dependent pseudo-scope
Getting Start with Weld, the CDI Reference Implementation
6. Getting started with Weld
6.1. Prerequisites
6.2. First try
6.3. Deploying to WildFly
6.4. Deploying to GlassFish
6.5. Deploying to Apache Tomcat
7. Diving into the Weld examples

7.1. The numberguess example in depth

7.1.1. The numberguess example in Apache Tomcat or Jetty

7.2. The numberguess example for Java SE with Swing
7.2.1. Creating the Eclipse project
7.2.2. Running the example from Eclipse
7.2.3. Running the example from the command line
7.2.4. Understanding the code
7.3. The translator example in depth
Loose coupling with strong typing
8. Producer methods
8.1. Scope of a producer method
8.2. Injection into producer methods
8.3. Disposer methods
9. Interceptors
9.1. Interceptor bindings
9.2. Implementing interceptors
9.3. Enabling interceptors
9.4. Interceptor bindings with members
9.5. Multiple interceptor binding annotations
9.6. Interceptor binding type inheritance

9.7. Use of @Interceptors

9.8. Enhanced version of jakarta.interceptor.InvocationContext

9.9. Loosening the limitations of InterceptionFactory
10. Decorators

10.1. Delegate object

10.2. Enabling decorators
11. Events

11.1. Event payload

11.2. Event observers

11.3. Event producers

42
42
43
45
46
46
46
a7
48
49
51
51
56
b7
57
58
59
60
65
71
73
A4
{4
45
A7
A7
78
78
80
80
81
82
82
84
86
87
88
90
90
90
91

11.3.1. Synchronous event producers
11.3.2. Asynchronous event producers
11.3.3. Applying qualifiers to event
11.4. Conditional observer methods
11.5. Event qualifiers with members
11.6. Multiple event qualifiers
11.7. Transactional observers
11.8. Enhanced version of jakarta.enterprise.event.Event
12. Stereotypes
12.1. Default scope for a stereotype
12.2. Interceptor bindings for stereotypes
12.3. Name defaulting with stereotypes
12.4. Alternative stereotypes
12.5. Stereotype stacking
12.6. Built-in stereotypes
13. Specialization, inheritance and alternatives
13.1. Using alternative stereotypes
13.2. A minor problem with alternatives
13.3. Using specialization
14. Java EE component environment resources
14.1. Defining a resource
14.2. Typesafe resource injection
CDI and the Java EE ecosystem
15. Java EE integration
15.1. Built-in beans
15.2. Injecting Java EE resources into a bean
15.3. Calling a bean from a servlet
15.4. Calling a bean from a message-driven bean
15.5. JMS endpoints
15.6. Packaging and deployment
15.6.1. Explicit bean archive
15.6.2. Implicit bean archive
15.6.3. Which archive is not a bean archive
15.6.4. Embeddable EJB container
16. Portable extensions
16.1. Creating an Extension
16.2. Container lifecycle events
16.2.1. Configurators
16.2.2. Weld-enriched container lifecycle events
16.3. The BeanManageobject
16.4. The CDlIclass

91

92

93

93

94

95

95

97

99

99
100
100
101
101
101
103
103
105
105
107
107
108
110
411
411
111
112
112
113
115
115
116
116
116
117
417
118
120
120
120
121

16.5. The InjectionTarget interface 121

16.6. The Beaninterface 122
16.7. Registering a Bean 123
16.8. Configuring an AnnotatedType 124
16.9. Overriding attributes of a bean 126
16.10. Wrapping an InjectionTarget 127
16.11. Overriding InjectionPoint 130
16.12. Manipulating interceptors, decorators and alternatives enabled for an application 130
16.13. The Context and AlterableContext interfaces 130
17. Next steps 132
Weld Reference Guide 133
18. Application servers and environments supported by Weld 134
18.1. Using Weld with WildFly 134
18.2. GlassFish 134
18.3. Servlet containers (such as Tomcat or Jetty) 134
18.3.1. Tomcat 135
18.3.2. Jetty 137
18.3.3. Undertow 140
18.3.4. WildFly Web 141
18.3.5. Bean Archive Isolation 142
18.3.6. Implicit Bean Archive Support 142
18.3.7. Servlet Container Detection 142
18.4. Java SE 142
18.4.1. CDI SE Module 143
18.4.2. Bootstrapping CDI SE 144
18.4.3. Request Context 147
18.4.4. Thread Context 148
18.4.5. Setting the Classpath 148
18.4.6. Bean Archive Isolation 149
18.4.7. Implicit Bean Archive Support 149
18.4.8. Extending Bean Defining Annotations 150
18.5. Weld SE and Weld Servlet cooperation 150
18.6. OSGi 151
19. Configuration 152
19.1. Weld configuration 152
19.1.1. Relaxed construction 152
19.1.2. Concurrent deployment configuration 152
19.1.3. Thread pool configuration 153
19.1.4. Non-portable mode during application initialization 154
19.1.5. Proxying classes with final methods 155

19.1.6. Bounding the cache size for resolved injection points 155

19.1.7. Debugging generated bytecode

19.1.8. Injectable reference lookup optimization
19.1.9. Bean identifier index optimization
19.1.10. Rolling upgrades ID delimiter

19.1.11. Development Mode

19.1.12. Conversation timeout and Conversation concurrent access timeout

19.1.13. Veto types without bean defining annotation

19.1.14. Memory consumption optimization - removing unused beans

19.2. Defining external configuration
19.3. Excluding classes from scanning and deployment
19.4. Mapping CDI contexts to HTTP requests
20. Logging
20.1. Java EE containers
20.2. Servlet containers
20.3. Weld SE
21. WeldManageinterface
22. Development Mode
22.1. How to enable the development mode
22.1.1. Web application
22.1.2. Weld SE
22.1.3. Is The Development Mode Enabled?
22.2. Development Tools
22.2.1. Probe
22.2.2. Validation Report
23. Context Management
23.1. Managing the built in contexts
23.2. Propagating built-in contexts
23.2.1. New API methods supporting context propagation
23.2.2. Example of context propagation
23.2.3. Pitfalls and drawbacks
Appendix A: Integrating Weld into other environments
A.l. The Weld SPI
A.1.1. Deployment structure
A.1.2. EJB descriptors
A.1.3. EE resource injection and resolution services
A.1.4. EJB services
A.1.5. JPA services
A.1.6. Transaction Services
A.1.7. Resource Services
A.1.8. Web Service Injection Services

A.1.9. Injection Services

155
155
156
156
157
158
158
159
160
161
163
164
164
164
164
166
167
167
167
167
168
168
168
168
170
170
175
175
176
178
180
180
181
183
183
184
184
185
185
186
186

A.1.10. Security Services
A.1.11. Initialization and shutdown
A.1.12. Resource loading
A.1.13. ClassFileServices
A.1.14. Registering services
A.2. The contract with the container
A.2.1. Classloader isolation
A.2.2. Servlet
A.2.3. CDI Conversation Filter
A.2.4. JSF
A.2.5. JSP
A.2.6. Session Bean Interceptor
A.2.7. The weld-core.jar
A.2.8. Binding the manager in JNDI
A.2.9. CDIProvider
A.2.10. Performing CDI injection on Java EE component classes
A.2.11. Around-construct interception
A.2.12. Probe Development Tool (Optional)
A.2.13. Optimized cleanup after bootstrap
A.3. Migration notes
A.3.1. Migration from Weld 1.x to 2.0
A.3.2. Migration from Weld 2.0 to 2.1
A.3.3. Migration from Weld 2.1 to 2.2
A.3.4. Migration from Weld 2.2 to 2.3
A.3.5. Migration from Weld 2.3 to 2.4
A.3.6. Migration from Weld 2.4 to 3.0

187
187
188
188
189
189
189
190
190
190
191
191
192
192
192
192
195
195
195
196
196
196
197
197
198
198

Beans

The CDI specification defines a set of complementary services that help improve the structure of
application code. CDI layers an enhanced lifecycle and interaction model over existing Java
component types, including managed beans and Enterprise Java Beans. The CDI services provide:

¥ an improved lifecycle for stateful objects, bound to well-defined contexts,,

¥ a typesafe approach to dependency injection ,

¥ object interaction via an event notification facility

¥ a better approach to binding interceptors to objects, along with a new kind of interceptor, called
a decorator , that is more appropriate for use in solving business problems, and

¥ an SPIfor developing portable extensions to the container.
The CDI services are a core aspect of the Jakarta EE platform and include full support for Jakarta EE
modularity and the Jakarta EE component architecture. But the specification does not limit the use
of CDI to the Jakarta EE environment. Starting with CDI 2.0, the specification covers the use of CDI
in the Java SE environment as well. In Java SE, the services might be provided by a standalone CDI
implementation like Weld (see CDI SE Module), or even by a container that also implements the
subset of EJB defined for embedded usage by the EJB 3.2 specification. CDI is especially useful in the

context of web application development, but the problems it solves are general development
concerns and it is therefore applicable to a wide variety of application.

An object bound to a lifecycle context is called a bean. CDI includes built-in support for several
different kinds of bean, including the following Java EE component types:

¥ managed beans, and

¥ EJB session beans.
Both managed beans and EJB session beans may inject other beans. But some other objects, which
are not themselves beans in the sense used here, may also have beans injected via CDI. In the Java
EE platform, the following kinds of component may have beans injected:

¥ message-driven beans,

¥ interceptors,

¥ servlets, servlet filters and servlet event listeners,

¥ JAX-WS service endpoints and handlers,

¥ JAX-RS resources, providers and jakarta.ws.rs.core.Application subclasses, and

¥ JSP tag handlers and tag library event listeners.
CDI relieves the user of an unfamiliar API of the need to answer the following questions:

¥ What is the lifecycle of this object?
¥ How many simultaneous clients can it have?

¥ |s it multithreaded?

https://jakarta.ee/specifications/cdi

¥ How do | get access to it from a client?
¥ Do | need to explicitly destroy it?
¥ Where should | keep the reference to it when IOm not currently using it?

¥ How can | define an alternative implementation, so that the implementation can vary at
deployment time?

¥ How should I go about sharing this object between other objects?

CDI is more than a framework. 1tOs a whole, rich programming model. The theme of CDI is loose-
coupling with strong typing . LetOs study what that phrase means.

A bean specifies only the type and semantics of other beans it depends upon. It need not be aware
of the actual lifecycle, concrete implementation, threading model or other clients of any bean it
interacts with. Even better, the concrete implementation, lifecycle and threading model of a bean
may vary according to the deployment scenario, without affecting any client. This loose-coupling
makes your code easier to maintain.

Events, interceptors and decorators enhance the loose-coupling inherent in this model:

¥ event notifications decouple event producers from event consumers,
¥ interceptors decouple technical concerns from business logic, and

¥ decorators allow business concerns to be compartmentalized.

WhatOs even more powerful (and comforting) is that CDI provides all these facilities in a typesafe
way. CDI never relies on string-based identifiers to determine how collaborating objects fit together.
Instead, CDI uses the typing information that is already available in the Java object model,
augmented using a new programming pattern, called qualifier annotations , to wire together beans,
their dependencies, their interceptors and decorators, and their event consumers. Usage of XML
descriptors is minimized to truly deployment-specific information.

But CDI isnOt a restrictive programming model. It doesnOt tell you how you should to structure your
application into layers, how you should handle persistence, or what web framework you have to
use. YouOll have to decide those kinds of things for yourself.

CDI even provides a comprehensive SPI, allowing other kinds of object defined by future Jakarta EE
specifications or by third-party frameworks to be cleanly integrated with CDI, take advantage of the
CDI services, and interact with any other kind of bean.

Chapter 1. Introduction

So youQre keen to get started writing your first bean? Or perhaps youQOre skeptical, wondering what
kinds of hoops the CDI specification will make you jump through! The good news is that youOve
probably already written and used hundreds, perhaps thousands of beans. CDI just makes it easier
to actually use them to build an application!

1.1. What is a bean?

A bean is exactly what you think it is. Only now, it has a true identity in the container environment.

Prior to Java EE 6, there was no clear definition of the term "bean" in the Java EE platform. Of
course, weOve been calling Java classes used in web and enterprise applications "beans" for years.
There were even a couple of different kinds of things called "beans" in EE specifications, including
EJB beans and JSF managed beans. Meanwhile, other third-party frameworks such as Spring and
Seam introduced their own ideas of what it meant to be a "bean". What weOve been missing is a
common definition.

Java EE 6 finally laid down that common definition in the Managed Beans specification. Managed
Beans are defined as container-managed objects with minimal programming restrictions, otherwise
known by the acronym POJO (Plain Old Java Object). They support a small set of basic services, such

as resource injection, lifecycle callbacks and interceptors. Companion specifications, such as EJB
and CDI, build on this basic model. But, at last, thereOs a uniform concept of a bean and a
lightweight component model thatOs aligned across the Java EE platform.

With very few exceptions, almost every concrete Java class that has a constructor with no
parameters (or a constructor designated with the annotation @Inject) is a bean. This includes every
JavaBean and every EJB session bean. If youOve already got some JavaBeans or session beans lying
around, theyOre already beansNyou wonOt need any additional special metadata.

The JavaBeans and EJBs youOve been writing every day, up until now, have not been able to take
advantage of the new services defined by the CDI specification. But youOll be able to use every one
of them with CDINallowing the container to create and destroy instances of your beans and
associate them with a designated context, injecting them into other beans, using them in EL
expressions, specializing them with qualifier annotations, even adding interceptors and decorators

to themNwithout modifying your existing code. At most, youOll need to add some annotations.

Now letOs see how to create your first bean that actually uses CDI.

1.2. Getting our feet wet

Suppose that we have two existing Java classes that weOve been using for years in various
applications. The first class parses a string into a list of sentences:

public class SentenceParser {
E public List<String> parse(String text) { ... }
}

The second existing class is a stateless session bean front-end for an external system that is able to
translate sentences from one language to another:

@Stateless
public class SentenceTranslator implements Translator {
E public String translate(String sentence) { ... }

}

Where Translator is the EJB local interface:

@Local
public interface Translator {
E public String translate(String sentence):

}

Unfortunately, we donOt have a class that translates whole text documents. So letOs write a bean for
this job:

public class TextTranslator {
private SentenceParser sentenceParser;
private Translator sentenceTranslator;

m

m

@Inject

TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {
this.sentenceParser = sentenceParser;
this.sentenceTranslator = sentenceTranslator;

}

T [T [T [T [T

public String translate(String text) {
StringBuilder sb = new StringBuilder();
for (String sentence: sentenceParser.parse(text)) {
sb.append(sentenceTranslator.translate(sentence));

}
return sb.toString();

}

> [T> TP [T> IT» M M [mp

But wait! TextTranslator does not have a constructor with no parameters! Is it still a bean? If you
remember, a class that does not have a constructor with no parameters can still be a bean if it has a
constructor annotated @Inject.

As youOve guessed, the@Inject annotation has something to do with dependency injection! @Inject
may be applied to a constructor or method of a bean, and tells the container to call that constructor

or method when instantiating the bean. The container will inject other beans into the parameters of

the constructor or method.

We may obtain an instance of TextTranslator by injecting it into a constructor, method or field of a

bean, or a field or method of a Java EE component class such as a servlet. The container chooses the
object to be injected based on the type of the injection point, not the name of the field, method or
parameter.

LetOs create a Ul controller bean that uses field injection to obtain an instance of the TextTranslator ,
translating the text entered by a user:

@Named @RequestScoped
public class TranslateController {
@Inject TextTranslator textTranslator; !

m

private String inputText;
private String translation;

m [m»

/I JSF action method, perhaps
public void translate() {
translation = textTranslator.translate(inputText);

}

T [T [T [T

public String getinputText() {
return inputText;

}

™™ [T [T

public void setlnputText(String text) {
this.inputText = text;

}

T [T TP

public String getTranslation() {
return translation;

}

> 1> [T» mp

I Field injection of TextTranslator instance

Notice the controller bean is request-scoped and named. Since this combination is
I so common in web applications, thereOs a built-in annotation for it in CDI that we
could have used as a shorthand. When the (stereotype) annotation @Models
declared on a class, it creates a request-scoped and named bean.

Alternatively, we may obtain an instance of TextTranslator programmatically from an injected
instance of Instance, parameterized with the bean type:

import jakarta.enterprise.inject.Instance;
import jakarta.inject.Inject;

@Inject Instance<TextTranslator> textTranslatorinstance;

public void translate() {
E textTranslatorinstance.get().translate(inputText);

}

Notice that it isnOt necessary to create a getter or setter method to inject one bean into another. CDI
can access an injected field directly (even if itOs private!), which sometimes helps eliminate some
wasteful code. The name of the field is arbitrary. 1tOs the fieldOs type that determines what is
injected.

At system initialization time, the container must validate that exactly one bean exists which
satisfies each injection point. In our example, if no implementation of Translator is availableNif the
SentenceTranslator EJB was not deployedNthe container would inform us of an unsatisfied
dependency. If more than one implementation of Translator were available, the container would
inform us of the ambiguous dependency .

Before we get too deep in the details, letOs pause and examine a beanOs anatomy. What aspects of the
bean are significant, and what gives it its identity? Instead of just giving examples of beans, weOre
going to define what makes something a bean.

Chapter 2. More about beans

A bean is usually an application class that contains business logic. It may be called directly from

Java code, or it may be invoked via the Unified EL. A bean may access transactional resources.
Dependencies between beans are managed automatically by the container. Most beans are stateful
and contextual . The lifecycle of a bean is managed by the container.

LetOs back up a second. What does it really mean to be contextual ? Since beans may be stateful, it
matters which bean instance | have. Unlike a stateless component model (for example, stateless
session beans) or a singleton component model (such as servlets, or singleton beans), different
clients of a bean see the bean in different states. The client-visible state depends upon which
instance of the bean the client has a reference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does not
control the lifecycle of the instance by explicitly creating and destroying it. Instead, the scope of the
bean determines:

¥ the lifecycle of each instance of the bean and

¥ which clients share a reference to a particular instance of the bean.

For a given thread in a CDI application, there may be an active context associated with the scope of
the bean. This context may be unique to the thread (for example, if the bean is request scoped), or it

may be shared with certain other threads (for example, if the bean is session scoped) or even all
other threads (if it is application scoped).

Clients (for example, other beans) executing in the same context will see the same instance of the
bean. But clients in a different context may see a different instance (depending on the relationship
between the contexts).

One great advantage of the contextual model is that it allows stateful beans to be treated like
services! The client need not concern itself with managing the lifecycle of the bean itOs using, nor
does it even need to know what that lifecycle is. Beans interact by passing messages, and the bean
implementations define the lifecycle of their own state. The beans are loosely coupled because:

¥ they interact via well-defined public APIs

¥ their lifecycles are completely decoupled

We can replace one bean with another different bean that implements the same interface and has a
different lifecycle (a different scope) without affecting the other bean implementation. In fact, CDI
defines a simple facility for overriding bean implementations at deployment time, as we will see in
Alternatives

Note that not all clients of a bean are beans themselves. Other objects such as servlets or message-
driven beansNwhich are by nature not injectable, contextual objectsNmay also obtain references
to beans by injection.

2.1. The anatomy of a bean

Enough hand-waving. More formally, the anatomy of a bean, according to the spec:
A bean comprises the following attributes:

¥ A (nonempty) set of bean types
¥ A (nonempty) set of qualifiers
¥ A scope

¥ Optionally, a bean EL name

¥ A set of interceptor bindings

¥ A bean implementation
Furthermore, a bean may or may not be an alternative.

LetOs see what all this new terminology means.

2.1.1. Bean types, qualifiers and dependency injection

Beans usually acquire references to other beans via dependency injection. Any injected attribute
specifies a "contract” that must be satisfied by the bean to be injected. The contract is:

¥ a bean type, together with
¥ a set of qualifiers.
A bean type is a user-defined class or interface; a type that is client-visible. If the bean is an EJB

session bean, the bean type is the @Localinterface or bean-class local view. A bean may have
multiple bean types. For example, the following bean has four bean types:

public class BookShop
E extends Business
implements Shop<Book> {

=~ [T M

The bean types are BookShopBusiness and Shop<Book>as well as the implicit type java.lang.Object .
(Notice that a parameterized type is a legal bean type).

Meanwhile, this session bean has only the local interfaces BookShopAuditable and java.lang.Object
as bean types, since the bean class, BookShopBeais not a client-visible type.

@ Stateful

public class BookShopBean

extends Business

implements BookShop, Auditable {

=~ T [T m

The bean types of a session bean include local interfaces and the bean class local
view (if any). EJB remote interfaces are not considered bean types of a session
bean. You canOt inject an EJB using its remote interface unless you define a
resource , which weOll meet in Java EE component environment resources

Bean types may be restricted to an explicit set by annotating the bean with the @Type@nnotation
and listing the classes that should be bean types. For instance, the bean types of this bean have
been restricted to Shop<Book>together with java.lang.Object

@Typed(Shop.class)

public class BookShop
extends Business
implements Shop<Book> {

=~ I [T m

Sometimes, a bean type alone does not provide enough information for the container to know

which bean to inject. For instance, suppose we have two implementations of the PaymentProcessor
interface: CreditCardPaymentProcessor and DebitPaymentProcessor Injecting a field of type
PaymentProcessorintroduces an ambiguous condition. In these cases, the client must specify some
additional quality of the implementation it is interested in. We model this kind of "quality” using a

qualifier.

A qualifier is a user-defined annotation that is itself annotated @0Qualifier . A qualifier annotation is
an extension of the type system. It lets us disambiguate a type without having to fall back to string-
based names. HereOs an example of a qualifier annotation:

@Quialifier
@Target({TYPE, METHOD, PARAMETER, FIELD})

@Retention(RUNTIME)
public @interface CreditCard {}

You may not be used to seeing the definition of an annotation. In fact, this might be the first time
youOve encountered one. With CDI, annotation definitions will become a familiar artifact as youOll
be creating them from time to time.

Pay attention to the names of the built-in annotations in CDI and EJB. YouQll notice
that they are often adjectives. We encourage you to follow this convention when
creating your custom annotations, since they serve to describe the behaviors and
roles of the class.

Now that we have defined a qualifier annotation, we can use it to disambiguate an injection point.
The following injection point has the bean type PaymentProcessorand qualifier @CreditCard

@Inject @CreditCard PaymentProcessor paymentProcessor

For each injection point, the container searches for a bean which satisfies the contract, one which
has the bean type and all the qualifiers. If it finds exactly one matching bean, it injects an instance
of that bean. If it doesnOt, it reports an error to the user.

How do we specify that qualifiers of a bean? By annotating the bean class, of course! The following
bean has the qualifier ~@¢CreditCardand implements the bean type PaymentProcessor Therefore, it
satisfies our qualified injection point:

@CreditCard
public class CreditCardPaymentProcessor
E implements PaymentProcessor { ... }

I If a bean or an injection point does not explicitly specify a qualifier, it has the
. default qualifier, @Default

ThatOs not quite the end of the story. CDI also defines a simple resolution rule that helps the
container decide what to do if there is more than one bean that satisfies a particular contract. WeOll
get into the details in Dependency injection and programmatic lookup

2.1.2. Scope

The scope of a bean defines the lifecycle and visibility of its instances. The CDI context model is
extensible, accommodating arbitrary scopes. However, certain important scopes are built into the
specification, and provided by the container. Each scope is represented by an annotation type.

For example, any web application may have session scoped bean:

public @SessionScoped
class ShoppingCart implements Serializable { ... }

An instance of a session-scoped bean is bound to a user session and is shared by all requests that
execute in the context of that session.

10

Keep in mind that once a bean is bound to a context, it remains in that context
until the context is destroyed. There is no way to manually remove a bean from a
context. If you donOt want the bean to sit in the session indefinitely, consider using
another scope with a shorted lifespan, such as the request or conversation scope.

If a scope is not explicitly specified, then the bean belongs to a special scope called the dependent

pseudo-scope. Beans with this scope live to serve the object into which they were injected, which
means their lifecycle is bound to the lifecycle of that object.

WeOll talk more about scopes in Scopes and contexts .

2.1.3. EL name

If you want to reference a bean in non-Java code that supports Unified EL expressions, for example,
in a JSP or JSF page, you must assign the bean an EL name.

The EL name is specified using the @Namaahnotation, as shown here:

public @SessionScoped @Named("cart")
class ShoppingCart implements Serializable { ... }

Now we can easily use the bean in any JSF or JSP page:

<h:dataTable value="#{cart.lineltems}" var="item">
E ..
</h:dataTable>

The @Namehnotation is not what makes the class a bean. Most classes in a bean
archive are already recognized as beans. The @Nameannotation just makes it
possible to reference the bean from the EL, most commonly from a JSF view.

We can let CDI choose a name for us by leaving off the value of the @Nameahnotation:

public @SessionScoped @Named
class ShoppingCart implements Serializable { ... }

The name defaults to the unqualified class name, decapitalized; in this case, shoppingCart.

2.1.4. Alternatives

WeOve already seen how qualifiers let us choose between multiple implementations of an interface
at development time. But sometimes we have an interface (or other bean type) whose
implementation varies depending upon the deployment environment. For example, we may want

to use a mock implementation in a testing environment. An alternative may be declared by

annotating the bean class with the ~ @Alternative annotation.

11

public @Alternative
class MockPaymentProcessor extends PaymentProcessorimpl { ... }

We normally annotate a bean ~ @Alternative only when there is some other implementation of an
interface it implements (or of any of its bean types). We can choose between alternatives at
deployment time by selecting an alternative in the CDI deployment descriptor META-INF/beans.xmbf
the jar or Java EE module that uses it. Different modules can specify that they use different
alternatives. The other way to enable an alternative is to annotate the bean with @Priority
annotation. This will enable it globally.

We cover alternatives in more detail in Alternatives

2.1.5. Interceptor binding types

You might be familiar with the use of interceptors in EJB 3. Since Java EE 6, this functionality has
been generalized to work with other managed beans. ThatOs right, you no longer have to make your
bean an EJB just to intercept its methods. Holler. So what does CDI have to offer above and beyond
that? Well, quite a lot actually. LetOs cover some background.

The way that interceptors were defined in Java EE 5 was counter-intuitive. You were required to
specify the implementation of the interceptor directly on the implementation of the EJB, either in the
@Interceptors annotation or in the XML descriptor. You might as well just put the interceptor code

in the implementation! Furthermore, the order in which the interceptors are applied is taken from

the order in which they are declared in the annotation or the XML descriptor. Perhaps this isnOt so

bad if youOre applying the interceptors to a single bean. But, if you are applying them repeatedly,

then thereOs a good chance that youOll inadvertently define a different order for different beans.
Now thatOs a problem.

CDI provides a new approach to binding interceptors to beans that introduces a level of indirection
(and thus control). We must define an interceptor binding type to describe the behavior
implemented by the interceptor.

An interceptor binding type is a user-defined annotation that is itself annotated
@InterceptorBinding . It lets us bind interceptor classes to bean classes with no direct dependency
between the two classes.

@InterceptorBinding

@Inherited

@Target({ TYPE, METHOD })
@Retention(RUNTIME)

public @interface Transactional {}

The interceptor that implements transaction management declares this annotation:

public @Transactional @Interceptor
class TransactionInterceptor { ... }

12

We can apply the interceptor to a bean by annotating the bean class with the same interceptor
binding type:

public @SessionScoped @Transactional
class ShoppingCart implements Serializable { ... }

Notice that ShoppingCartand Transactioninterceptor donOt know anything about each other.

Interceptors are deployment-specific. (We donOt need a TransactionInterceptor in our unit tests!) By

default, an interceptor is disabled. We can enable an interceptor using the CDI deployment
descriptor META-INF/beans.xmlof the jar or Java EE module. This is also where we specify the
interceptor ordering. Better still, we can use @Priority annotation to enable the interceptor and
define itOs ordering at the same time.

WeOll discuss interceptors, and their cousins, decorators, in Interceptors and Decorators
Interceptors and Decorators .

2.2. What kinds of classes are beans?

WeOve already seen two types of beans: JavaBeans and EJB session beans. Is that the whole story?
Actually, itOs just the beginning. LetOs explore the various kinds of beans that CDI implementations
must support out-of-the-box.

2.2.1. Managed beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by
the Managed Beans specification. You can explicitly declare a managed bean by annotating the
bean class @ManagedBedout in CDI you donOt need to. According to the specification, the CDI
container treats any class that satisfies the following conditions as a managed bean:

¥ It is not a non-static inner class.

¥ It is a concrete class, or is annotated @ Decorator

¥ It is not annotated with an EJB component-defining annotation or declared as an EJB bean class
in ejb-jar.xml

¥ It does not implement jakarta.enterprise.inject.spi.Extension
¥ It has an appropriate constructorNeither:
I the class has a constructor with no parameters, or

I the class declares a constructor annotated ~ @Inject.

According to this definition, JPA entities are technically managed beans. However,
entities have their own special lifecycle, state and identity model and are usually
instantiated by JPA or using new Therefore we donOt recommend directly injecting
an entity class. We especially recommend against assigning a scope other than
@Dependertb an entity class, since JPA is not able to persist injected CDI proxies.

13

The unrestricted set of bean types for a managed bean contains the bean class, every superclass
and all interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent
Managed beans support the @PostConstructand @PreDestroyifecycle callbacks.

Session beans are also, technically, managed beans. However, since they have their own special
lifecycle and take advantage of additional enterprise services, the CDI specification considers them
to be a different kind of bean.

2.2.2. Session beans

Session beans belong to the EJB specification. They have a special lifecycle, state management and
concurrency model that is different to other managed beans and non-managed Java objects. But
session beans participate in CDI just like any other bean. You can inject one session bean into
another session bean, a managed bean into a session bean, a session bean into a managed bean,
have a managed bean observe an event raised by a session bean, and so on.

Message-driven and entity beans are by nature non-contextual objects and may
not be injected into other objects. However, message-driven beans can take
advantage of some CDI functionality, such as dependency injection, interceptors
and decorators. In fact, CDI will perform injection into any session or message-
driven bean, even those which are not contextual instances.

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and

their superinterfaces. If the session bean has a bean class local view, the unrestricted set of bean
types contains the bean class and all superclasses. In addition, java.lang.Object is a bean type of
every session bean. But remote interfaces are not included in the set of bean types.

ThereOs no reason to explicitly declare the scope of a stateless session bean or singleton session
bean. The EJB container controls the lifecycle of these beans, according to the semantics of the
@Stateless or @Singleton declaration. On the other hand, a stateful session bean may have any
scope.

Stateful session beans may define a remove method, annotated @Remavehat is used by the
application to indicate that an instance should be destroyed. However, for a contextual instance of

the beanNan instance under the control of CDINthis method may only be called by the application

if the bean has scope @DependenFor beans with other scopes, the application must let the container
destroy the bean.

So, when should we use a session bean instead of a plain managed bean? Whenever we need the
advanced enterprise services offered by EJB, such as:

¥ method-level transaction management and security,

¥ concurrency management,

¥ instance-level passivation for stateful session beans and instance-pooling for stateless session
beans,

14

¥ remote or web service invocation, or

¥ timers and asynchronous methods,
When we donOt need any of these things, an ordinary managed bean will serve just fine.

Many beans (including any @SessionScopedor @ApplicationScoped beans) are available for
concurrent access. Therefore, the concurrency management provided by EJB 3.2 is especially
useful. Most session and application scoped beans should be EJBs.

Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit from
the advanced container-managed lifecycle defined by the EJB stateless/stateful/singleton model,
with its support for passivation and instance pooling.

Finally, itOs usually obvious when method-level transaction management, method-level security,
timers, remote methods or asynchronous methods are needed.

The point weQre trying to make is: use a session bean when you need the services it provides, not

just because you want to use dependency injection, lifecycle management, or interceptors. Java EE

7 provides a graduated programming model. 1tOs usually easy to start with an ordinary managed

bean, and later turn it into an EJB just by adding one of the following annotations: @Stateless,
@Stateful or @Singleton

On the other hand, donOt be scared to use session beans just because youOve heard your friends say
theyOre "heavyweight". 1tOs nothing more than superstition to think that something is "heavier" just
because itOs hosted natively within the Java EE container, instead of by a proprietary bean
container or dependency injection framework that runs as an additional layer of obfuscation. And

as a general principle, you should be skeptical of folks who use vaguely defined terminology like
"heavyweight".

2.2.3. Producer methods

Not everything that needs to be injected can be boiled down to a bean class instantiated by the
container using new There are plenty of cases where we need additional control. What if we need to
decide at runtime which implementation of a type to instantiate and inject? What if we need to
inject an object that is obtained by querying a service or transactional resource, for example by
executing a JPA query?

A producer method is a method that acts as a source of bean instances. The method declaration
itself describes the bean and the container invokes the method to obtain an instance of the bean
when no instance exists in the specified context. A producer method lets the application take full
control of the bean instantiation process.

A producer method is declared by annotating a method of a bean class with the @Produces
annotation.

15

import jakarta.enterprise.inject.Produces;

@ApplicationScoped
public class RandomNumberGenerator {

E private java.uti.Random random = new java.util. Random(System.currentTimeMillis());
E @Produces @Named @Random int getRandomNumber() {

E return random.nextint(100);

E }

}

We canOt write a bean class that is itself a random number. But we can certainly write a method
that returns a random number. By making the method a producer method, we allow the return
value of the methodNin this case an Integer Nto be injected. We can even specify a qualifierNin
this case @Random scoperhich in this case defaultsto ~ @Dependenand an EL nameRNwhich in this
case defaults to randomNumbeaccording to the JavaBeans property name convention. Now we can
get a random number anywhere:

@Inject @Random int randomNumber;
Even in a Unified EL expression:
<p>Your raffle number is #{randomNumber}.</p>

A producer method must be a non-abstract method of a managed bean class or session bean class.
A producer method may be either static or non-static. If the bean is a session bean, the producer
method must be either a business method of the EJB or a static method of the bean class.

The bean types of a producer method depend upon the method return type:

¥ If the return type is an interface, the unrestricted set of bean types contains the return type, all
interfaces it extends directly or indirectly and java.lang.Object

¥ If a return type is primitive or is a Java array type, the unrestricted set of bean types contains
exactly two types: the method return type and java.lang.Object

¥ If the return type is a class, the unrestricted set of bean types contains the return type, every
superclass and all interfaces it implements directly or indirectly.

Producer methods and fields may have a primitive bean type. For the purpose of
resolving dependencies, primitive types are considered to be identical to their
corresponding wrapper types in java.lang .

If the producer method has method parameters, the container will look for a bean that satisfies the
type and qualifiers of each parameter and pass it to the method automaticallyNanother form of

16

dependency injection.

@Produces Set<Roles> getRoles(User user) {
E return user.getRoles();

}

WeOll talk much more about producer methods in Producer methods

2.2.4. Producer fields

A producer field is a simpler alternative to a producer method. A producer field is declared by
annotating a field of a bean class with the @ProduceannotationNthe same annotation used for
producer methods.

import jakarta.enterprise.inject.Produces;

public class Shop {
E @Produces PaymentProcessor paymentProcessor =;
E @Produces @Catalog List<Product> products =;

}

The rules for determining the bean types of a producer field parallel the rules for producer
methods.

A producer field is really just a shortcut that lets us avoid writing a useless getter method. However,

in addition to convenience, producer fields serve a specific purpose as an adaptor for Java EE
component environment injection, but to learn more about that, youOll have to wait until Java EE
component environment resources . Because we canOt wait to get to work on some examples.

17

Chapter 3. JSF web application example

LetOs illustrate these ideas with a full example. WeQOre going to implement user login/logout for an
application that uses JSF. First, weOll define a request-scoped bean to hold the username and
password entered during login, with constraints defined using annotations from the Bean
Validation specification:

@Named @RequestScoped
public class Credentials {

E private String username;
private String password;

m m

@NotNull @Length(min=3, max=25)
public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

™ [T [T

@NotNull @Length(min=6, max=20)
public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

> ITV> [TD> [TD>

This bean is bound to the login prompt in the following JSF form:

<h:form>
E <h:panelGrid columns="2" rendered="#{!login.loggedIn}">
<f.validateBean>
<h:outputLabel for="username">Username:</h:outputLabel>
<h:inputText id="username" value="#{credentials.username}"/>
<h:outputLabel for="password">Password:</h:outputLabel>
<h:inputSecret id="password" value="#{credentials.password}"/>
</f.validateBean>
</h:panelGrid>
E <h:commandButton value="Login" action="#{login.login}"
rendered="#{!login.loggedIn}"/>
E <h:commandButton value="Logout" action="#{login.logout}"
rendered="#{login.loggedIn}"/>
</h:form>

> TP TP TP TP TP TP TP

Users are represented by a JPA entity:

18

@Entity

public class User {

private @NotNull @Length(min=3, max=25) @Id String username;
private @NotNull @Length(min=6, max=20) String password;

[T» TP

public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }
public String setPassword(String password) { this.password = password; }

=~ 1> [Tp [T

(Note that weOre also going to need a persistence.xml file to configure the JPA persistence unit
containing User.)

The actual work is done by a session-scoped bean that maintains information about the currently
logged-in user and exposes the User entity to other beans:

19

@SessionScoped @Named
public class Login implements Serializable {

E @Inject Credentials credentials;

E @Inject @UserDatabase EntityManager userDatabase;

E private User user;

E public void login() {

E List<User> results = userDatabase.createQuery(

E "select u from User u where u.username = :username and u.password =
:password")

E .setParameter("username”, credentials.getUsername())
E .setParameter("password", credentials.getPassword())
E .getResultList();

E if (lresults.isEmpty()) {

E user = results.get(0);

E }

E else{

E /I perhaps add code here to report a failed login

E }

E }

E public void logout() {

E user =null;

E }

E public boolean isLoggedIn() {

E return user != null;

E }

E @Produces @Loggedin User getCurrentUser() {

E return user:

E }

—

@Loggedliand @UserDatabasare custom qualifier annotations:

@Qualifier

@Retention(RUNTIME)

@Target{TYPE, METHOD, PARAMETER, FIELD})
public @interface Loggedin {}

20

@Qualifier

@Retention(RUNTIME)
@Target{METHOD, PARAMETER, FIELD})
public @interface UserDatabase {}

We need an adaptor bean to expose our typesafe EntityManager:

class UserDatabaseProducer {
E @Produces @UserDatabase @PersistenceContext
E static EntityManager userDatabase;

}

Now DocumentEditor, or any other bean, can easily inject the current user:

public class DocumentEditor {

E @Inject Document document;

E @Inject @LoggedIn User currentUser;

@Inject @DocumentDatabase EntityManager docDatabase;

m

public void save() {
document.setCreatedBy(currentUser);
docDatabase.persist(document);

}

~ T M mp mp

Or we can reference the current user in a JSF view:

<h:panelGroup rendered="#{login.loggedin}">
E signed in as #{currentUser.username}
</h:panelGroup>

Hopefully, this example gave you a taste of the CDI programming model. In the next chapter, weOll
explore dependency injection in greater depth.

21

Chapter 4. Dependency injection and
programmatic lookup

One of the most significant features of CDINcertainly the most recognizedNis dependency
injection; excuse me, typesafe dependency injection.

4.1. Injection points

The @Inject annotation lets us define an injection point that is injected during bean instantiation.
Injection can occur via three different mechanisms.

Bean constructor parameter injection:

public class Checkout {

T

private final ShoppingCart cart;
E @Inject

E public Checkout(ShoppingCart cart) {
E this.cart = cart;

E }

}

A bean can only have one injectable constructor.

Initializer method parameter injection:

public class Checkout {

T

private ShoppingCart cart;

E @Inject
E void setShoppingCart(ShoppingCart cart) {
E this.cart = cart;

E }

}

A bean can have multiple initializer methods. If the bean is a session bean, the
initializer method is not required to be a business method of the session bean.

And direct field injection:

22

public class Checkout {

E private @Inject ShoppingCart cart;

Getter and setter methods are not required for field injection to work (unlike with
. JSF managed beans).

Dependency injection always occurs when the bean instance is first instantiated by the container.
Simplifying just a little, things happen in this order:

¥ First, the container calls the bean constructor (the default constructor or the one annotated
@Inject), to obtain an instance of the bean.
¥ Next, the container initializes the values of all injected fields of the bean.

¥ Next, the container calls all initializer methods of bean (the call order is not portable, donOt rely
on it).

¥ Finally, the @PostConstructmethod, if any, is called.

(The only complication is that the container might call initializer methods declared by a superclass
before initializing injected fields declared by a subclass.)

One major advantage of constructor injection is that it allows the bean to be
immutable.

CDI also supports parameter injection for some other methods that are invoked by the container.
For instance, parameter injection is supported for producer methods:

@Produces Checkout createCheckout(ShoppingCart cart) {
E return new Checkout(cart);

}

This is a case where the @Inject annotation is not required at the injection point. The same is true
for observer methods (which weOll meetin Events) and disposer methods.

4.2. What gets injected

The CDI specification defines a procedure, called typesafe resolution , that the container follows
when identifying the bean to inject to an injection point. This algorithm looks complex at first, but

once you understand it, itOs really quite intuitive. Typesafe resolution is performed at system
initialization time, which means that the container will inform the developer immediately if a
beanOs dependencies cannot be satisfied.

The purpose of this algorithm is to allow multiple beans to implement the same bean type and
either:

23

¥ allow the client to select which implementation it requires using a qualifier or

¥ allow the application deployer to select which implementation is appropriate for a particular
deployment, without changes to the client, by enabling or disabling an alternative , or

¥ allow the beans to be isolated into separate modules.

Obviously, if you have exactly one bean of a given type, and an injection point with that same type,
then bean A is going to go into slot A. ThatOs the simplest possible scenario. When you first start
your application, youOll likely have lots of those.

But then, things start to get complicated. LetOs explore how the container determines which bean to
inject in more advanced cases. WeOll start by taking a closer look at qualifiers.

4.3. Qualifier annotations

If we have more than one bean that implements a particular bean type, the injection point can
specify exactly which bean should be injected using a qualifier annotation. For example, there
might be two implementations of ~ PaymentProcessor

@Synchronous
public class SynchronousPaymentProcessor implements PaymentProcessor {
E public void process(Payment payment) { ... }

}

@Asynchronous
public class AsynchronousPaymentProcessor implements PaymentProcessor {
E public void process(Payment payment) { ... }

}

Where @Synchronouand @Asynchronouare qualifier annotations:

@Quialifier

@Retention(RUNTIME)

@Target{TYPE, METHOD, FIELD, PARAMETER})
public @interface Synchronous {}

@Qualifier

@Retention(RUNTIME)

@Target{TYPE, METHOD, FIELD, PARAMETER})
public @interface Asynchronous {}

A client bean developer uses the qualifier annotation to specify exactly which bean should be
injected.

Using field injection:

24

@Inject @Synchronous PaymentProcessor syncPaymentProcessor;
@Inject @Asynchronous PaymentProcessor asyncPaymentProcessor;

Using initializer method injection:

@Inject
public void setPaymentProcessors(@Synchronous PaymentProcessor syncPaymentProcessor,
@Asynchronous PaymentProcessor asyncPaymentProcessor)

m ™ [T

this.syncPaymentProcessor = syncPaymentProcessor;
E this.asyncPaymentProcessor = asyncPaymentProcessor;

}

Using constructor injection:

@Inject
public Checkout(@Synchronous PaymentProcessor syncPaymentProcessor,
E @Asynchronous PaymentProcessor asyncPaymentProcessor) {

E this.syncPaymentProcessor = syncPaymentProcessor;
E this.asyncPaymentProcessor = asyncPaymentProcessor;

}

Qualifier annotations can also qualify method arguments of producer, disposer and observer
methods. Combining qualified arguments with producer methods is a good way to have an
implementation of a bean type selected at runtime based on the state of the system:

@Produces

PaymentProcessor getPaymentProcessor(@ Synchronous PaymentProcessor
syncPaymentProcessor,

E @Asynchronous PaymentProcessor
asyncPaymentProcessor) {

E return isSynchronous() ? syncPaymentProcessor : asyncPaymentProcessor;

}

If an injected field or a parameter of a bean constructor or initializer method is not explicitly
annotated with a qualifier, the default qualifier, @Default is assumed.

Now, you may be thinking, "WhatOs the different between using a qualifier and just specifying the
exact implementation class you want?" 1tOs important to understand that a qualifier is like an
extension of the interface. It does not create a direct dependency to any particular implementation.
There may be multiple alternative implementations of @Asynchronous PaymentProcesdor

25

4.4. The built-in qualifiers @Defaultand @Any

Whenever a bean or injection point does not explicitly declare a qualifier, the container assumes

the qualifier @Default From time to time, youOll need to declare an injection point without
specifying a qualifier. ThereOs a qualifier for that too. All beans have the qualifier @AnyTherefore,
by explicitly specifying ~ @Anyat an injection point, you suppress the default qualifier, without
otherwise restricting the beans that are eligible for injection.

This is especially useful if you want to iterate over all beans with a certain bean type. For example:

import jakarta.enterprise.inject.Instance;

@Inject
void initServices(@Any Instance<Service> services) {
for (Service service: services) {

service.init();

}

> 1> [T» m»

4.5. Qualifiers with members

Java annotations can have members. We can use annotation members to further discriminate a
qualifier. This prevents a potential explosion of new annotations. For example, instead of creating

several qualifiers representing different payment methods, we could aggregate them into a single

annotation with a member:

@Qualifier

@Retention(RUNTIME)

@Target{METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

E PaymentMethod value();

}

Then we select one of the possible member values when applying the qualifier:
private @Inject @PayBy(CHECK) PaymentProcessor checkPayment;

We can force the container to ignore a member of a qualifier type by annotating the member
@Nonbinding

26

@Qualifier

@Retention(RUNTIME)

@Target{METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

E PaymentMethod value():

E @Nonbinding String comment() default "";

}

4.6. Multiple qualifiers

An injection point may specify multiple qualifiers:
@Inject @Synchronous @Reliable PaymentProcessor syncPaymentProcessor;
Then only a bean which has both qualifier annotations would be eligible for injection.

@Synchronous @Reliable
public class SynchronousReliablePaymentProcessor implements PaymentProcessor {
E public void process(Payment payment) { ... }

}

4.7. Alternatives

Alternatives are beans whose implementation is specific to a particular client module or
deployment scenario. This alternative defines a mock implementation of both @Synchronous
PaymentProcessorand @Asynchronous PaymentProcessaall in one:

@Alternative @Synchronous @Asynchronous
public class MockPaymentProcessor implements PaymentProcessor {
E public void process(Payment payment) { ... }

}

By default, @Alternative beans are disabled. We need to enable an alternative in the beans.xml
descriptor of a bean archive to make it available for instantiation and injection. However, this
activation only applies to the beans in that archive.

27

<beans

E xmlns="http://xmIns.jcp.org/xml/ns/javaee"

E xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

E xsi:schemaLocation="

E http://xmins.jcp.org/xml/ns/javaee

E http://xmins.jcp.org/xmi/ns/javaee/beans_1_1.xsd">

E <alternatives>

E <class>org.mycompany.mock.MockPaymentProcessor</class>
E </alternatives>

</beans>

From CDI 1.1 onwards the alternative can be enabled for the whole application using @Priority
annotation.

@Priority(100) @Alternative @Synchronous @Asynchronous
public class MockPaymentProcessor implements PaymentProcessor {
E public void process(Payment payment) { ... }

}

When an ambiguous dependency exists at an injection point, the container attempts to resolve the
ambiguity by looking for an enabled alternative among the beans that could be injected. If there is
exactly one enabled alternative, thatOs the bean that will be injected. If there are more beans with
priority, the one with the highest priority value is selected.

4.8. Fixing unsatisfied and ambiguous dependencies

The typesafe resolution algorithm fails when, after considering the qualifier annotations on all

beans that implement the bean type of an injection point and filtering out disabled beans
(@Alternative beans which are not explicitly enabled), the container is unable to identify exactly
one bean to inject. The container will abort deployment, informing us of the unsatisfied or
ambiguous dependency.

During the course of your development, youOre going to encounter this situation. LetOs learn how to
resolve it.

To fix an unsatisfied dependency , either:

¥ create a bean which implements the bean type and has all the qualifier types of the injection
point,

¥ make sure that the bean you already have is in the classpath of the module with the injection
point, or

¥ explicitly enable an @Alternative bean that implements the bean type and has the appropriate
qualifier types, using beans.xml.

¥ enable an @Alternative bean that implements the bean type and has the appropriate qualifier
types, using @Priority annotation.

28

To fix an ambiguous dependency, either:

¥ introduce a qualifier to distinguish between the two implementations of the bean type,
¥ exclude one of the beans from discovery (either by means of @Vetoed or beans.xml),
¥ disable one of the beans by annotating it ~ @Alternative ,

¥ move one of the implementations to a module that is not in the classpath of the module with the
injection point, or

¥ disable one of two @Alternative beans that are trying to occupy the same space, using beans.xmli,

¥ change priority value of one of two @Alternative beans with the @Periority if they have the same

highest priority value.
Just remember: "There can be only one."”

On the other hand, if you really do have an optional or multivalued injection point, you should
change the type of your injection point to Instance , as weOll see inObtaining a contextual instance
by programmatic lookup

Now thereOs one more issue you need to be aware of when using the dependency injection service.

4.9. Client proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance, unless the bean
is a dependent object (scope @Dependent

Imagine that a bean bound to the application scope held a direct reference to a bean bound to the
request scope. The application-scoped bean is shared between many different requests. However,
each request should see a different instance of the request scoped beanNthe current one!

Now imagine that a bean bound to the session scope holds a direct reference to a bean bound to the
application scope. From time to time, the session context is serialized to disk in order to use
memory more efficiently. However, the application scoped bean instance should not be serialized
along with the session scoped bean! It can get that reference any time. No need to hoard it!

Therefore, unless a bean has the default scope @Dependenthe container must indirect all injected
references to the bean through a proxy object. This client proxy is responsible for ensuring that the
bean instance that receives a method invocation is the instance that is associated with the current
context. The client proxy also allows beans bound to contexts such as the session context to be
serialized to disk without recursively serializing other injected beans.

Unfortunately, due to limitations of the Java language, some Java types cannot be proxied by the
container. If an injection point declared with one of these types resolves to a bean with any scope
other than @Dependenthe container will abort deployment, informing us of the problem.

The following Java types cannot be proxied by the container:

¥ classes which donOt have a non-private constructor with no parameters, and

¥ classes which are declared final or have a final method,

29

http://docs.jboss.org/cdi/api/1.2/javax/enterprise/inject/Vetoed.html

¥ arrays and primitive types.

ItOs usually very easy to fix an unproxyable dependency problem. If an injection point of type
results in an unproxyable dependency, simply:

¥ add a constructor with no parameters to X

¥ change the type of the injection point to Instance<X>",

¥ introduce an interface Y, implemented by the injected bean, and change the type of the injection
pointto Y, or

¥ if all else fails, change the scope of the injected beanto ~ @Dependent

Weld also supports a non-standard workaround for this limitation. See the
Configuration chapter for more information.

4.10. Obtaining a contextual instance by programmatic
lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For
example, it may not be used when:

¥ the bean type or qualifiers vary dynamically at runtime, or

¥ depending upon the deployment, there may be no bean which satisfies the type and qualifiers,
or

¥ we would like to iterate over all beans of a certain type.

In these situations, the application may obtain an instance of the interface Instance , parameterized
for the bean type, by injection:

@Inject Instance<PaymentProcessor> paymentProcessorSource;
The get() method of Instance produces a contextual instance of the bean.
PaymentProcessor p = paymentProcessorSource.get();

Qualifiers can be specified in one of two ways:

¥ by annotating the Instance injection point, or

¥ by passing qualifiers to the select() of Event

Specifying the qualifiers at the injection point is much, much easier:

@Inject @Asynchronous Instance<PaymentProcessor> paymentProcessorSource;

30

Now, the PaymentProcessoreturned by get() will have the qualifier ~ @Asynchronous

Alternatively, we can specify the qualifier dynamically. First, we add the @Anygualifier to the
injection point, to suppress the default qualifier. (All beans have the qualifier @AnNy)

import jakarta.enterprise.inject.Instance;

@Inject @Any Instance<PaymentProcessor> paymentProcessorSource;

Next, we need to obtain an instance of our qualifier type. Since annotations are interfaces, we canOt
just write new Asynchronous(). 1tOs also quite tedious to create a concrete implementation of an
annotation type from scratch. Instead, CDI lets us obtain a qualifier instance by subclassing the
helper class AnnotationLiteral

class AsynchronousQualifier
extends AnnotationLiteral<Asynchronous> implements Asynchronous {}

In some cases, we can use an anonymous class:

PaymentProcessor p = paymentProcessorSource
E .select(new AnnotationLiteral<Asynchronous>() {});

However, we canOt use an anonymous class to implement a qualifier type with members.

Now, finally, we can pass the qualifier to the select() method of Instance.

Annotation qualifier = synchronously ?
E new SynchronousQualifier() : new AsynchronousQualifier();
PaymentProcessor p = anyPaymentProcessor.select(qualifier).get().process(payment);

Since CDI 2.0, most annotations from jakarta.enterprise package have their
AnnotationLiteral implementations. Therefore, in order to programmatically
obtain (for instance) @Angnnotation, you can simply do Any.Literal.INSTANCE.

4.10.1. Enhanced version of jakarta.enterprise.inject.Instance

Weld also provides org.jboss.weld.inject. Weldinstance - an enhanced version of
jakarta.enterprise.inject.Instance . There are three additional methods. The first one -
getHandler() - allows to obtain a contextual reference handler which not only holds the contextual
reference but also allows to inspect the metadata of the relevant bean and to destroy the
underlying contextual instance. Moreover, the handler implements AutoCloseable:

31

import org.jboss.weld.inject.WeldInstance;
class Foo {

E @Inject
E WeldInstance<Bar> instance;

E void doWork() {

E try (Handler<Bar> barHandler = instance.getHandler()) {

E barHandler.get().doBusiness();

E /I Note that Bar will be automatically destroyed at the end of the try-with-
resources statement

E }

E Handler<Bar> barHandler = instance.getHandler()
E barHandler.get().doBusiness();

E // Calls Instance.destroy()

E barHandler.destroy();

E}

}

The next method - handlers() - returns an lIterable which allows to iterate over handlers for all the
beans that have the required type and required qualifiers and are eligible for injection. This might
be useful if you need more control inside the loop:

@ApplicationScoped
class OrderService {

E @Inject
E @Any
E WeldInstance<OrderProcessor> instance;

void create(Order order) {
for (Handler<OrderProcessor> handler : instance.handlers()) {
handler.get().process(order);
if (Dependent.class.equals(handler.getBean().getScope()) {
// Destroy only dependent processors
handler.destroy();
}
}
}
}

T [T [T e e [Ty my mp my mp

Third method is a twist on the select() method, but it accepts java.lang.reflect. Type as parameter
and optionally qualifier(s). This allows for generic selection of instances which can be handy while
dealing with third party beans through extensions. However, in order to stay type-safe, this method

has a limitation - it can only be invoked on Weldlnstance<Object>. Invocation on any other type than
Object will result in an lllegalStateException . Please note that the return value if such select will

32

always be WeldInstance<Object> unless you specify it further using <SomeTypebefore invoking this
select() . LetOs look at actual code:

class MyCustomExtension implements Extension {

E @Inject
E @Any
E WeldInstance<Object> instance;

E private Set<Type> allTypes = new HashSet<>();

E public void observe(@Observes ProcessBean<?> bean) {
E // gather all bean types, even those that we do not own
E allTypes.add(bean.getAnnotated().getBaseType());

E}

public void doWorkWithBeans(@Observes AfterDeploymentValidation adv) {
for (Type t: allTypes) {
/l now we can select based on Type once we are sure all beans are initialized
instance.select(t).isResolvable() ? logValidBeanFound(t) :
loglnvalidBeanFound(t);
E }
E}

T [T [T [T

WeldInstance is automatically available in Weld SE and Weld Servlet where the Weld API is always
on the class path. It is also available in Weld-powered EE containers. In this case, users would have
to compile their application against the Weld API and exclude the Weld API artifact from the
deployment (e.g. use provided scope in Maven).

4.11. The InjectionPoint object

There are certain kinds of dependent objects (beans with scope @Dependentthat need to know
something about the object or injection point into which they are injected in order to be able to do
what they do. For example:

¥ The log category for a Logger depends upon the class of the object that owns it.

¥ Injection of a HTTP parameter or header value depends upon what parameter or header name
was specified at the injection point.

¥ Injection of the result of an EL expression evaluation depends upon the expression that was
specified at the injection point.

A bean with scope @Dependemhay inject an instance of InjectionPoint and access metadata relating
to the injection point to which it belongs.

LetOs look at an example. The following code is verbose, and vulnerable to refactoring problems:

Logger log = Logger.getLogger(MyClass.class.getName());

33

This clever little producer method lets you inject a JDK Logger without explicitly specifying the log
category:

import jakarta.enterprise.inject.spi.lnjectionPoint;
import jakarta.enterprise.inject.Produces;

class LogFactory {

E @Produces Logger createLogger(InjectionPoint injectionPoint) {

E return
Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());
E }

}

We can now write:
@Inject Logger log;

Not convinced? Then hereOs a second example. To inject HTTP parameters, we need to define a
qualifier type:

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETERY})
public @interface HttpParam {

E @Nonbinding public String value();

}

We would use this qualifier type at injection points as follows:

@HttpParam("username") @Inject String username;
@HttpParam("password") @Inject String password;

The following producer method does the work:

34

import jakarta.enterprise.inject.Produces;
import jakarta.enterprise.inject.spi.lnjectionPoint;

class HttpParams

@Produces @HttpParam("")
String getParamValue(InjectionPoint ip) {

ServletRequest request = (ServletRequest)
FacesContext.getCurrentinstance().getExternalContext().getRequest();
E return
request.getParameter(ip.getAnnotated().getAnnotation(HttpParam.class).value());

E}

m [Ty [T

Note that acquiring of the request in this example is JSF-centric. For a more generic solution you
could write your own producer for the request and have it injected as a method parameter.

Note also that the value() member of the HttpParamannotation is ignored by the container since it is
annotated @Nonbinding.

The container provides a built-in bean that implements the InjectionPoint interface:

public interface InjectionPoint {

= public Type getType();

public Set<Annotation> getQualifiers();
public Bean<?> getBean();

public Member getMember();

public Annotated getAnnotated();
public boolean isDelegate();

public boolean isTransient();

== [Th [T [T> [T > TP M

35

Chapter 5. Scopes and contexts

So far, weOve seen a few examples of scope type annotations . The scope of a bean determines the
lifecycle of instances of the bean. The scope also determines which clients refer to which instances
of the bean. According to the CDI specification, a scope determines:

¥ When a new instance of any bean with that scope is created
¥ When an existing instance of any bean with that scope is destroyed

¥ Which injected references refer to any instance of a bean with that scope

For example, if we have a session-scoped bean, CurrentUser, all beans that are called in the context

of the same HttpSession will see the same instance of CurrentUser. This instance will be
automatically created the first time a CurrentUser is needed in that session, and automatically

destroyed when the session ends.

JPA entities arenOt a great fit for this model. Entities have their whole own lifecycle
and identity model which just doesnOt map naturally to the model used in CDI.
Therefore, we recommend against treating entities as CDI beans. YouOre certainly
going to run into problems if you try to give an entity a scope other than the
default scope @Dependenihe client proxy will get in the way if you try to pass an
injected instance to the JPA EntityManager.

5.1. Scope types

CDI features an extensible context model . 1tOs possible to define new scopes by creating a new scope
type annotation:

@ScopeType
@Retention(RUNTIME)
@Target({TYPE, METHOD})
public @interface ClusterScoped {}

Of course, thatOs the easy part of the job. For this scope type to be useful, we will also need to define
a Context object that implements the scope! Implementing a Context is usually a very technical task,
intended for framework development only.

We can apply a scope type annotation to a bean implementation class to specify the scope of the
bean:

@ClusterScoped
public class SecondLevelCache { ... }

Usually, youOll use one of CDIOs built-in scopes.

36

5.2. Built-in scopes

CDI defines four built-in scopes:

¥ @RequestScoped
¥ @SessionScoped
¥ @ApplicationScoped
¥ @ConversationScoped
For a web application that uses CDI, any servlet request has access to active request, session and

application scopes. Furthermore, since CDI 1.1 the conversation context is active during every
servlet request.

The request and application scopes are also active:

¥ during invocations of EJB remote methods,

¥ during invocations of EJB asynchronous methods,
¥ during EJB timeouts,

¥ during message delivery to a message-driven bean,
¥ during web service invocations, and

¥ during @PostConstructcallback of any bean

If the application tries to invoke a bean with a scope that does not have an active context, a
ContextNotActiveException is thrown by the container at runtime.

Managed beans with scope @SessionScopedr @ConversationScopednust be serializable, since the

container passivates the HTTP session from time to time.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so letOs
not waste time discussing them here. One of the scopes, however, is new.

5.3. The conversation scope

The conversation scope is a bit like the traditional session scope in that it holds state associated
with a user of the system, and spans multiple requests to the server. However, unlike the session
scope, the conversation scope:

¥ is demarcated explicitly by the application, and

¥ holds state associated with a particular web browser tab in a web application (browsers tend to
share domain cookies, and hence the session cookie, between tabs, so this is not the case for the

session scope).

A conversation represents a taskNa unit of work from the point of view of the user. The
conversation context holds state associated with what the user is currently working on. If the user
is doing multiple things at the same time, there are multiple conversations.

37

The conversation context is active during any servlet request (since CDI 1.1). Most conversations
are destroyed at the end of the request. If a conversation should hold state across multiple requests,
it must be explicitly promoted to a long-running conversation

5.3.1. Conversation demarcation

CDI provides a built-in bean for controlling the lifecycle of conversations in a CDI application. This
bean may be obtained by injection:

@Inject Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation,
call the begin() method from application code. To schedule the current long-running conversation
context for destruction at the end of the current request, call end() .

In the following example, a conversation-scoped bean controls the conversation with which it is
associated:

38

import jakarta.enterprise.inject.Produces;
import jakarta.inject.Inject;
import jakarta.persistence.PersistenceContextType.EXTENDED;

@ConversationScoped @ Stateful

public class OrderBuilder {

private Order order;

private @Inject Conversation conversation;

T T TP

@Produces public Order getOrder() {
return order;

}

T [T [T

public Order createOrder() {
order = new Order();
conversation.begin();
return order;

}

™ > Ty mp mp

public void addLineltem(Product product, int quantity) {
order.add(new Lineltem(product, quantity));

}

T [T TP

public void saveOrder(Order order) {
em.persist(order);
conversation.end();

}

[T [T [T [T

@Remove
public void destroy() {}

~ T M

This bean is able to control its own lifecycle through use of the
beans have a lifecycle which depends completely upon another object.

5.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form
submission) or redirect. It does not automatically propagate with non-faces requests, for example,

navigation via a link.

We can force the conversation to propagate with a non-faces request by including the unique
identifier of the conversation as a request parameter. The CDI specification reserves the request
parameter named cid for this use. The unique identifier of the conversation may be obtained from
the Conversation object, which has the EL bean name jakarta.enterprise.context.conversation

Therefore, the following link propagates the conversation:

private @PersistenceContext(type = EXTENDED) EntityManager em;

Conversation API. But some other

39

Add
Product

1tOs probably better to use one of the link components in JSF 2:

<h:link outcome="/addProduct.xhtml" value="Add Product">
E <f:param name="cid" value="#{jakarta.enterprise.context.conversation.id}"/>
</h:link>

The conversation context propagates across redirects, making it very easy to
implement the common POST-then-redirect pattern, without resort to fragile
constructs such as a "flash" object. The container automatically adds the
conversation id to the redirect URL as a request parameter.

In certain scenarios it may be desired to suppress propagation of a long-running conversation. The
conversationPropagation request parameter (introduced in CDI 1.1) may be used for this purpose. If
the conversationPropagation request parameter has the value none , the container will not
reassociate the existing conversation but will instead associate the request with a new transient
conversation even though the conversation id was propagated.

5.3.3. Conversation timeout

The container is permitted to destroy a conversation and all state held in its context at any time in
order to conserve resources. A CDI implementation will normally do this on the basis of some kind
of timeoutNthough this is not required by the specification. The timeout is the period of inactivity

before the conversation is destroyed (as opposed to the amount of time the conversation is active).

The Conversation object provides a method to set the timeout. This is a hint to the container, which
is free to ignore the setting.

conversation.setTimeout(timeoutinMillis);

Another option how to set conversation timeout is to provide configuration property defining the

new time value. See Conversation timeout and Conversation concurrent access timeout . However
note that any conversation might be destroyed any time sooner when HTTP session invalidation or
timeout occurs.

5.3.4. CDI Conversation filter

The conversation management is not always smooth. For example, if the propagated conversation
cannot be restored, the jakarta.enterprise.context.NonexistentConversationException is thrown. Or
if there are concurrent requests for a one long-running conversation,
“jakarta.enterprise.context.BusyConversationException " is thrown. For such cases, developer has

no opportunity to deal with the exception by default, as the conversation associated with a Servlet
request is determined at the beginning of the request before calling any service() method of any

40

servlet in the web application, even before calling any of the filters in the web application and
before the container calls any ServletRequestListener or AsyncListener in the web application.

To be allowed to handle the exceptions, a filter defined in the CDI 1.1 with the name ~ CDI
Conversation Filter * can be used. By mapping the * CDI Conversation Filter ~ in the web.xml just

after some other filters, we are able to catch the exceptions in them since the ordering in the
web.xml specifies the ordering in which the filters will be called (described in the servlet

specification).

In the following example, a filter MyFilter checks for the BusyConversationException thrown
during the conversation association. In the web.xml example, the filter is mapped before the CDI
Conversation Filter.

public class MyFilter implements Filter {

@Override

E public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain)

E throws IOException, ServletException {

E try{

E chain.doFilter(request, response);

E } catch (BusyConversationException e) {

E response.setContentType("text/plain®);

E response.getWriter().print("BusyConversationException");
E }

E }

To make it work, we need to map our MyFilter before the CDI Conversation Filter in the web.xml
file.

<filter-mapping>
<filter-name>My Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

™ [T [T

<filter-mapping>
<filter-name>CDI Conversation Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

m [T [Ty [mp

41

The mapping of the CDI Conversation Filter determines when Weld reads the cid
request parameter. This process forces request body parsing. If your application
relies on setting a custom character encoding for the request or parsing the
request body itself by reading an InputStream or Reader make sure that this is
performed in a filter that executes before the CDI Conversation Filter is executed.

See this FAQ page for details . Alternatively, the lazy conversation context
initialization (see below) may be used.

5.3.5. Lazy and eager conversation context initialization
Conversation context may be initialized lazily or eagerly.

When initialized lazily, the conversation context (no matter if transient or long-running) is only
initialized when a @ConversationScopedyean is accessed for the first time. At that point, the cid
parameter is read and the conversation is restored. The conversation context may not be initialized

at all throughout the request processing if no conversation state is accessed. Note that if a problem
occurs during this delayed initialization, the conversation state access (bean method invocation)

may result in BusyConversationException or NonexistentConversationException being thrown.

When initialized eagerly, the conversation context is initialized at a predefined time. Either at the
beginning of the request processing before any listener, filter or servlet is invoked or, if the CDI
Conversation Filter is mapped, during execution of this filter.

Conversation context initialization mode may be configured using the
org.jboss.weld.context.conversation.lazy init parameter.

<context-param>

E <param-name>org.jboss.weld.context.conversation.lazy</param-name>
E <param-value>true</param-value>

</context-param>

If the init parameter is not set, the following default behavior applies:

¥ If the CDI Conversation Filter is mapped, the conversation context is initialized eagerly within
this filter

¥ Otherwise, the conversation context is initialized lazily

5.4. The singleton pseudo-scope

In addition to the four built-in scopes, CDI also supports two pseudo-scopes. The first is the singleton
pseudo-scope, which we specify using the annotation ~ @Singleton

Unlike the other scopes, which belong to the package jakarta.enterprise.context
. the @Singletonannotation is defined in the package jakarta.inject

You can guess what "singleton® means here. It means a bean that is instantiated once.
Unfortunately, thereOs a little problem with this pseudo-scope. Beans with scope @Singleton donOt

42

http://weld.cdi-spec.org/documentation/#3

have a proxy object. Clients hold a direct reference to the singleton instance. So we need to consider

the case of a client that can be serialized, for example, any bean with scope @SessionScopeodr
@ConversationScoped any dependent object of a bean with scope @SessionScoped or
@ConversationScopeddr any stateful session bean.

Now, if the singleton instance is a simple, immutable, serializable object like a string, a number or a
date, we probably donOt mind too much if it gets duplicated via serialization. However, that makes it
stop being a true singleton, and we may as well have just declared it with the default scope.

There are several ways to ensure that the singleton bean remains a singleton when its client gets
serialized:

¥ have the singleton bean implement writeResolve() and readReplace() (as defined by the Java
serialization specification),

¥ make sure the client keeps only a transient reference to the singleton bean, or

¥ give the client a reference of type Instance<X>where Xis the bean type of the singleton bean.

A fourth, better solution is to instead use @ApplicationScoped allowing the container to proxy the
bean, and take care of serialization problems automatically.

5.5. The dependent pseudo-scope

Finally, CDI features the so-called dependent pseudo-scope. This is the default scope for a bean which
does not explicitly declare a scope type.

For example, this bean has the scope type @Dependent
public class Calculator { ... }

An instance of a dependent bean is never shared between different clients or different injection
points. It is strictly a dependent object of some other object. It is instantiated when the object it
belongs to is created, and destroyed when the object it belongs to is destroyed.

If a Unified EL expression refers to a dependent bean by EL name, an instance of the bean is
instantiated every time the expression is evaluated. The instance is not reused during any other
expression evaluation.

If you need to access a bean directly by EL name in a JSF page, you probably need

to give it a scope other than @DependenODtherwise, any value that gets set to the
bean by a JSF input will be lost immediately. ThatOs why CDI features the @Model
stereotype; it lets you give a bean a name, and set its scope to =~ @RequestScoped one
stroke. If you need to access a bean that really has to have the scope @Dependent
from a JSF page, inject it into a different bean, and expose it to EL via a getter
method.

Beans with scope @DependerdonOt need a proxy object. The client holds a direct reference to its
instance.

43

CDI makes it easy to obtain a dependent instance of a bean, even if the bean is already declared as a
bean with some other scope type.

44

Getting Start with Weld, the CDI
Reference Implementation

Weld, the CDI Reference Implementation (RI), can be downloaded from the download page .
Information about the Weld source code repository and instructions about how to obtain and build
the source can be found on the same page.

Weld provides a complete SPI allowing Java EE containers such as WildFly, GlassFish and WebLogic
to use Weld as their built-in CDI implementation. Weld also runs in servlet engines like Tomcat and
Jetty, or even in a plain Java SE environment.

Weld comes with an extensive library of examples, which are a great starting point from which to
learn CDI. In addition, a number of quickstarts featuring CDI can be found at the JBoss Developer
site

45

http://weld.cdi-spec.org/download
http://www.jboss.org/developer/quickstarts.html
http://www.jboss.org/developer/quickstarts.html

Chapter 6. Getting started with Weld

Weld comes with a number of examples. We recommend you start with examples/jsf/numberguess
and examples/jsf/translator . Numberguess is a web (war) example containing only non-
transactional managed beans. This example can be run on a wide range of servers, including
WildFly, GlassFish, Apache Tomcat, Jetty, and any compliant Java EE 8 container. Translator is an
enterprise (ear) example that contains session beans. This example must be run on WildFly 14 or
better, GlassFish 5.1 or better, or any compliant Java EE 8 container.

Both examples use JSF 2.3 as the web framework and, as such, can be found in the examples/jsf
directory of the Weld distribution.

6.1. Prerequisites

To run the examples with the provided build scripts, youOll need the following:

¥ the latest release of Weld, which contains the examples
¥ Maven 3, to build and deploy the examples
¥ optionally, a supported runtime environment (minimum versions shown)
I WildFly 14 (14.0.1.Final recommended),
I GlassFish 5.1.0 or better,
I Apache Tomcat 9 or better (war example only), or
I Jetty 9 or better (war example only)
In the next few sections, youOll be using the Maven command (mvn to invoke the Maven project file
in each example to compile, assemble and deploy the example to WildFly and, for the war example,

Apache Tomcat. You can also deploy the generated artifact (war or ear) to any other container that
supports Java EE 8, such as GlassFish 5.

The sections below cover the steps for deploying with Maven in detail.

6.2. First try

If you simply want to run the numberguess example without the requirement of a specific runtime
you can start with the following commands:

$> cd examples/jsfilnumberguess
$> mvn wildfly:run

The Maven WildFly plugin will run WildFly and deploy the example and the server will be
automatically downloaded in the target directory. The numberguess application is available at
http://localhost:8080/weld-numberguess

46

https://docs.jboss.org/wildfly/plugins/maven/latest/
http://localhost:8080/weld-numberguess

6.3. Deploying to WildFly

To deploy the examples to a WildFly instance, youOll need to download WildFly first. The good news
is that there are no additional modifications you have to make to the server. 1tOs ready to go!

After you have downloaded WildFly, extract it. You can move the extracted folder anywhere you

like. Wherever it lays to rest, thatOs what weOll call the WildFly installation directory, or JBOSS_HQOME

$> unzip wildfly-14.0.1.Final.zip
$> mv wildfly-14.*/ wildfly-14

In order for the build scripts to know where to deploy the example, you have to tell them where to
find your WildFly installation. Set the JBOSS_HOMIRvironment variable to point to the WildFly
installation, e.g.:

$> export IBOSS HOME-=/path/to/wildfly-14

YouOre now ready to run your first example!
Switch to the examples/jsf/numberguess directory and execute the Maven deploy target:

$> cd examples/jsf/numberguess
$> mvn wildfly:deploy

If you are using Eclipse, you should seriously consider installing the JBoss Tools
| add-ons, which include a wide variety of tooling for CDI and Java EE development,
as well as an enhanced WildFly server view.

Wait a few seconds for the application to deploy (or the application server to start) and see if you
can determine the most efficient approach to pinpoint the random number at the local URL
http://localhost:8080/weld-numberguess

The Maven WildFly plugin includes additional goals for WildFly to deploy and
undeploy the archive.

¥ mvn wildfly:deploy - deploy the example to a running WildFly instance

¥ mvn wildfly:undeploy - undeploy the example from a running WildFly instance

¥ mvn wildfly:redeploy - redeploys the example

For more information on the WildFly Maven plugin see the plugin documentation

You can also run functional tests to verify that the example works as expected. Run:

$> mvn verify -Darquillian=wildfly-managed

a7

http://wildfly.org/downloads/
http://tools.jboss.org
http://localhost:8080/weld-numberguess
https://docs.jboss.org/wildfly/plugins/maven/latest/

You should see the following output:

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

The second starter example, weld-translator , will translate your text into Latin. (Well, not really,
but the stub is there for you to implement, at least. Good luck!) To try it out, switch to the translator
example directory and execute the deploy target:

$> cd examplesl/jsf/translator/ear
$> mvn wildfly:run

The translator uses session beans, which are packaged in an EJB module within an
ear. Java EE 8 allows session beans to be deployed in war modules, but thatOs a
topic for a later chapter.

Again, wait a few seconds for the application to deploy (if youOre really bored, read the log
messages), and visit http://localhost:8080/weld-translator to begin pseudo-translating.

Again, functional tests can be running by executing:

$> cd examples/jsf/translator/ftest
$> mvn verify -Darquillian=wildfly-managed

6.4. Deploying to GlassFish

Deploying to GlassFish should be easy and familiar, right? After all, itOs the Jakarta EE compatible
implementation and Weld is the CDI compatible implementation, meaning Weld gets bundled with
GlassFish. So yes, itOs all quite easy and familiar.

To deploy the examples to GlassFish, youOll need a GlassFish 5.1.0 release. Extract the zip to a
directory of your choice and set the GLASSFISH_HOBMvironment variable. Switch to the
GLASSFISH_Ha@liriéctory and start the server:

$> ./bin/asadmin start-domain
Now you can deploy the example.
$> ./bin/fasadmin deploy /path/examples/jsf/numberguess/target/weld-numberguess.war

Once the command completes the application is available at http://localhost:8080/weld-
numberguess

The reason the same artifact can be deployed to both WildFly and GlassFish, without any

48

http://localhost:8080/weld-translator
http://localhost:8080/weld-numberguess
http://localhost:8080/weld-numberguess

modifications, is because all of the features being used are part of the standard platform. And what
a capable platform it has become!

6.5. Deploying to Apache Tomcat

Servlet containers are not required to support Java EE services like CDI. However, you can use CDI
in a servlet container like Tomcat by embedding a standalone CDI implementation such as Weld.

Weld comes with servlet integration extension which bootstraps the CDI environment and provides
injection into servlets components. Basically, it emulates some of the work done by the Java EE
container, but you donOt get the enterprise features such as session beans and container-managed
transactions.

Note that due to limitations of servlet containers (e.g. read-only JNDI) your
| application might require some additional configuration as well (see Tomcat and

Jetty for more info).

LetOs give the Weld servlet extension a spin on Apache Tomcat. First, youOll need to download
Tomcat 9.0.11 or later from tomcat.apache.org and extract it.

$> unzip apache-tomcat-9.0.11.zip

The Maven plugin communicates with Tomcat over HTTP, so it doesnOt care where you have
installed Tomcat. However, the plugin configuration assumes you are running Tomcat in its default

configuration, with a hostname of localhost and port 8080 The readme.txt file in the example

directory has information about how to modify the Maven settings to accommodate a different
setup.

You can either start Tomcat from a Linux shell:

$> cd /path/to/apache-tomcat-9
$> ./bin/startup.sh

a Windows command window:

$> cd c:\path\to\apache-tomcat-9\bin
$> start

or you can start the server using an IDE, like Eclipse.

Change to the examples/jsfinumberguess directory again and run the following Maven command:

$> cd examples/jsfinumberguess
$> mvn clean package -Ptomcat

49

http://tomcat.apache.org/download-90.cgi

Now youOre ready to deploy the numberguess example to Tomcat!

$> cp examples/jsf/numberguess/target/weld-numberguess.war apache-tomcat/webapps/

50

Chapter 7. Diving into the Weld examples

ItOs time to pull the covers back and dive into the internals of Weld example applications. LetOs start
with the simpler of the two examples, weld-numberguess

7.1. The numberguess example in depth

In the numberguess application you get 10 attempts to guess a number between 1 and 100. After
each attempt, youOre told whether your guess was too high or too low.

The numberguess example is comprised of a number of beans, configuration files and Facelets (JSF)
views, packaged as a war module. LetOs start by examining the configuration files.

All the configuration files for this example are located in WEB-INF/ which can be found in the
src/main/webapp directory of the example. First, we have the JSF 2.2 version of faces-config.xml . A
standardized version of Facelets is the default view handler in JSF 2.2, so thereOs really nothing that

we have to configure. Thus, the configuration consists of only the root element.

<faces-config version="2.2"
xmins="http://xmins.jcp.org/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://xmIns.jcp.org/xml/ns/javaee
http://xmIns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

[T T [T [T [T

E <name>numberguess</name>

</faces-config>

ThereOs also an empty beans.xml file, which tells the container to look for beans in this archive and
to activate the CDI services.

Finally, some of the supported servers also need a web.xml which is located in src/main/webapp-
[server]/WEB-INF.

This demo uses JSF 2 as the view framework, but you can use Weld with any
servlet-based web framework, such as JSF 1.2 or Wicket.

LetOs take a look at the main JSF view, src/main/webapp/home.xhtml.

51

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
E "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtml"
xmlins:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/html"
xmlins:f="http://java.sun.com/jsf/core">

T [Ty [T

E <ui:composition template="/template.xhtm|"> !

E <ui:define name="content">

E <h1>Guess a number...</h1>

E <h:form id="numberGuess">

E <div style="color: red">

E <h:messages id="messages" globalOnly="false"/>

E <h:outputText id="Higher" value="Higher!"
rendered="#{game.guessLower}"/>

E <h:outputText id="Lower" value="Lower!"
rendered="#{game.guessHigher}"/>

E </div>

E <div>

E I'm thinking of a number between

E #{game.smallest}
E and #{game.biggest}.
E You have #{game.remainingGuesses} guesses remaining. #
E </div>

E <div>

E Your guess:

E <h:inputText id="inputGuess" value="#{game.guess}"

E required="true" size="3" disabled="#{game.guessCorrect}"

E validator="#{game.validateNumberRange}"/> $ %
E <h:commandButton id="guessButton" value="Guess" action="#{game.check}"
E disabled="#{game.guessCorrect}"/> &

E </div>

E <div>

E <h:commandButton id="restartButton" value="Reset"
action="#{game.reset}" immediate="true"/>

E </div>

E </h:form>

E </uidefine>

E </ui:composition>

</html|>

Facelets is the built-in templating language for JSF. Here we are wrapping our page in a template
which defines the layout.

There are a number of messages which can be sent to the user, "Higher!", "Lower!" and
"Correct!"

As the user guesses, the range of numbers they can guess gets smaller - this sentence changes to
make sure they know the number range of a valid guess.

$ This input field is bound to a bean property using a value expression.

% A validator binding is used to make sure the user doesnOt accidentally input a number outside of
the range in which they can guess - if the validator wasnOt here, the user might use up a guess on
an out of bounds number.

& And, of course, there must be a way for the user to send their guess to the server. Here we bind
to an action method on the bean.

The example consists of 4 classes, the first two of which are qualifiers. First, there is the @Random
qualifier, used for injecting a random number:

@Qualifier

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)

public @interface Random {}

There is also the @MaxNumilwpralifier, used for injecting the maximum number that can be injected:

@Qualifier

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)

public @interface MaxNumber {}

The application-scoped Generator class is responsible for creating the random number, via a
producer method. It also exposes the maximum possible number via a producer method:

53

@ApplicationScoped
public class Generator implements Serializable {

E private java.util. Random random = new
java.util.Random(System.currentTimeMillis());

m

private static final int MAX_NUMBER = 100;

java.util. Random getRandom() {
return random;

T [T [T

}

@Produces
@Random
int next() {
/la number between 1 and 100
return getRandom().nextint(MAX_NUMBER - 1) + 1;

[T [T [T [T [Ty [T

}

@Produces

@MaxNumber

int getMaxNumber() {
return MAX_NUMBER,;

}

~ [T> [T mp mp rmp

The Generator is application scoped, so we donOt get a different random each time.

The package declaration and imports have been excluded from these listings. The
complete listing is available in the example source code.

The final bean in the application is the session-scoped Gamelass. This is the primary entry point of

the application. 1tOs responsible for setting up or resetting the game, capturing and validating the

userOs guess and providing feedback to the user with a FacesMessageWeOve used the post-construct
lifecycle method to initialize the game by retrieving a random number from the @Random
Instance<Integer> bean.

YouOll notice that weOve also added the @Nameahnotation to this class. This annotation is only
required when you want to make the bean accessible to a JSF view via EL (i.e., #{game}).

import jakarta.enterprise.inject.Instance;
@Named
@SessionScoped

public class Game implements Serializable {

E private static final int DEFAULT_REMAINING_GUESSES = 10;

54

private int number;

private int guess;

private int smallest;

private int biggest;

private int remainingGuesses;

[T [T [T TP [T

@Inject
@MaxNumber
private int maxNumber;

m [T [T

@Inject
@Random
private Instance<Integer> randomNumber;

T T [TP

public Game() {
}

m m»

public int getNumber() {
return number;

T [T TP

}

public int getGuess() {
return guess;

T [Ty [T

}

public void setGuess(int guess) {
this.guess = guess;

™ [T [T

}

public int getSmallest() {
return smallest;

T [T TP

}

public int getBiggest() {
return biggest;

T [Ty [T

}

public int getRemainingGuesses() {
return remainingGuesses;

™ [T [T

}

public void check() {
if (guess > number) {
biggest = guess - 1;
} else if (Quess < number) {
smallest = guess + 1;
} else if (Quess == number) {
FacesContext.getCurrentinstance().addMessage(null, new
FacesMessage("Correct!"));

}

E remainingGuesses--;

T [T [T [T [Ty [Ty mp

m

T

}

@PostConstruct
public void reset() {
this.smallest = O;
this.guess = 0;
this.remainingGuesses = DEFAULT _REMAINING_ GUESSES;
this.biggest = maxNumber;
this.number = randomNumber.get();

[T [T [T [T e [Ty my [mp

}

E public void validateNumberRange(FacesContext context, UIComponent toValidate,
Object value) {
if (remainingGuesses <= 0) {
FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientld(context), message);
((Ullnput) toValidate).setValid(false);
return;

}

int input = (Integer) value;

[T [T [T [T [Ty [T [T

if (input < smallest || input > biggest) {
((Ullnput) toValidate).setValid(false);

m m»

FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage(toValidate.getClientld(context), message);

}

m [T [T [T

}

public boolean isGuessHigher() {
return guess !'= 0 && guess > number;

T [T TP

}

public boolean isGuessLower() {
return guess != 0 && guess < number;

T [Ty [T

}

public boolean isGuessCorrect() {
return guess == number;

}

~ T M mp

7.1.1. The numberguess example in Apache Tomcat or Jetty

A couple of modifications must be made to the numberguess artifact in order to deploy it to Tomcat

or Jetty. First, Weld must be deployed as a Web Application library under WEB-INF/lib since the
servlet container does not provide the CDI services. For your convenience we provide a single jar
suitable for running Weld in any servlet container (including Jetty), weld-servlet-shaded .

56

You must also include the jars for JSF, EL, and the common annotations, all of
which are provided by the Java EE platform (a Java EE application server).

Second, we need to explicitly specify the servlet listener in web.xml again because the container
isnOt doing this stuff for you. The servlet listener boots Weld and controls itOs interaction with
requests.

<listener>
E <listener-class>org.jboss.weld.environment.servlet.Listener</listener-class>
</listener>

When Weld boots, it places the jakarta.enterprise.inject.spi.BeanManager , the portable SPI for
obtaining bean instances, in the ServletContext under a variable name equal to the fully-qualified
interface name. You generally donOt need to access this interface, but Weld makes use of it.

7.2. The numberguess example for Java SE with Swing

This example shows how to use the Weld SE extension in a Java SE based Swing application with no
EJB or servlet dependencies. This example can be found in the examples/se/numberguesdolder of the
Weld distribution.

7.2.1. Creating the Eclipse project

To use the Weld SE numberguess example in Eclipse, you can either import it as a Maven project if
you have the m2eclipse plugin installed, or generate an Eclipse project and import it.

With m2eclipse installed, you can open any Maven project directly. From within Eclipse, select File
-> ImportE -> Existing Maven Projects . Then, browse to the location of the Weld SE numberguess
example. You should see that Eclipse recognizes the Maven project.

Without m2eclipse plugin, you first have to generate an Eclipse project. Switch into the Weld SE
numberguess example folder, then execute the Maven Eclipse plugin, as follows:

mvn eclipse:configure-workspace -Declipse.workspace=/path/to/your/eclipse/workspace
and then
mvn eclipse:eclipse

Then from within Eclipse, select File -> ImportE -> Existing Projects into Workspace and browse to
the location of the Weld SE numberguess example.

In both cases, you should now see a project in your workspace called weld-se-numberguess

ItOs time to get the example running!

57

http://m2eclipse.sonatype.org/

7.2.2. Running the example from Eclipse

Disable m2eclipseOs Workspace Resolution , to make sure that Eclipse can find ~ StartMain . Right click
on the project, and choose Properties -> Maven , and uncheck Resolve dependencies from Workspace
projects :

Properties for weld-se-numberguess

Maven A v w

Resource
Builders Active Maven Profiles (comma separated):
CDI Settings
DCrools
FindBugs [Resolve dependencies from Workspace projects
FreeMarker Context

FCoogle
Hibernate Settings
JAutodoc
Java Build Path

b Java Code Style

P Java Compiler

I Java Editor
Javadoc Location

I Mawven
Module Assembly
Project Archives
Project References
Run/Debug Settings
Seam Settings
Server

b Task Repository
Task Tags
TestNG

Validation
WikiText

f: Restore Defaults :l f: Apply :l

@ I': Cancel :l I': QK :l

Right click on the project, and choose Run As -> Java Application :

4 '_3 > JBOSS - WELD @ Convert to Drools Project I - -
» Tef examples 6128 [JBoss 4 Run As ¥ | ;5 1Runon Server Alt+Shift+X, R
Debug As » | E 2Java Applet Alt+Shift+X, A
» 5% sre/mainfjava 5059 Profile As » | [T] 3 Java Application Alt+Shift+X, J
s _", srq‘main;‘resource; Validate m2 4 Maven assemblyassembl
: o i
(& sreftest/java 2394 €Y Generate rebelxml m2 5 Maven build Alt+Shift+X, M

Locate the StartMain class:

58

