Diving into the Weld examples
It’s time to pull the covers back and dive into the internals of Weld
example applications. Let’s start with the simpler of the two examples,
weld-numberguess
.
The numberguess example in depth
In the numberguess application you get 10 attempts to guess a number between 1 and 100. After each attempt, you’re told whether your guess was too high or too low.
The numberguess example is comprised of a number of beans, configuration files and Facelets (JSF) views, packaged as a war module. Let’s start by examining the configuration files.
All the configuration files for this example are located in WEB-INF/
,
which can be found in the src/main/webapp
directory of the example.
First, we have the JSF 4.0 version of faces-config.xml
. A standardized
version of Facelets is the default view handler in JSF, so there’s
really nothing that we have to configure. Thus, the configuration
consists of only the root element.
<faces-config xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/web-facesconfig_4_0.xsd"
version="4.0">
</faces-config>
There’s also an empty beans.xml
file, which tells the container to
look for beans in this archive and to activate the CDI services.
Finally, some supported servers also need a web.xml
which is located in src/main/webapp-[server]/WEB-INF
.
Note
|
This demo uses JSF as the view framework, but you can use Weld with any servlet-based web framework. |
TODO continue here
Let’s take a look at the main JSF view, src/main/webapp/home.xhtml
.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="jakarta.faces.facelets"
xmlns:h="jakarta.faces.html"
xmlns:f="jakarta.faces.core">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>numberguess</title>
</head>
<body>
<div id="content">
<h1>Guess a number...</h1>
<h:form id="numberGuess">
<!-- Feedback for the user on their guess -->
<div style="color: red">
<h:messages id="messages" globalOnly="false" /><!--(1)-->
<h:outputText id="Higher" value="Higher!"
rendered="#{game.number gt game.guess and game.guess ne 0}" />
<h:outputText id="Lower" value="Lower!"
rendered="#{game.number lt game.guess and game.guess ne 0}" />
</div>
<!-- Instructions for the user -->
<div>
I'm thinking of a number between <span
id="numberGuess:smallest">#{game.smallest}</span> and <span
id="numberGuess:biggest">#{game.biggest}</span>. You have
#{game.remainingGuesses} guesses remaining.<!--(2)-->
</div>
<!-- Input box for the users guess, plus a button to submit, and reset -->
<!-- These are bound using EL to our CDI beans -->
<div>
Your guess:
<h:inputText id="inputGuess" value="#{game.guess}"
required="true" size="3"
disabled="#{game.number eq game.guess}"
validator="#{game.validateNumberRange}" /><!--(3)--><!--(4)-->
<h:commandButton id="guessButton" value="Guess"
action="#{game.check}"
disabled="#{game.number eq game.guess}" /><!--(5)-->
</div>
<div>
<h:commandButton id="restartButton" value="Reset"
action="#{game.reset}" immediate="true" />
</div>
</h:form>
</div>
<br style="clear: both" />
</body>
</html>
-
There are a number of messages which can be sent to the user, "Higher!", "Lower!" and "Correct!"
-
As the user guesses, the range of numbers they can guess gets smaller - this sentence changes to make sure they know the number range of a valid guess.
-
This input field is bound to a bean property using a value expression.
-
A validator binding is used to make sure the user doesn’t accidentally input a number outside of the range in which they can guess - if the validator wasn’t here, the user might use up a guess on an out of bounds number.
-
And, of course, there must be a way for the user to send their guess to the server. Here we bind to an action method on the bean.
The example consists of 4 classes, two of which are qualifiers.
First, there is the @Random
qualifier, used for injecting a random number:
@Qualifier
@Target( { TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)
public @interface Random {}
There is also the @MaxNumber
qualifier, used for injecting the maximum
number that can be injected:
@Qualifier
@Target( { TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)
public @interface MaxNumber {}
The application-scoped Generator
class is responsible for creating the
random number, via a producer method. It also exposes the maximum
possible number via a producer method:
@ApplicationScoped
public class Generator implements Serializable {
private java.util.Random random = new java.util.Random(System.currentTimeMillis());
private static final int MAX_NUMBER = 100;
java.util.Random getRandom() {
return random;
}
@Produces
@Random
int next() {
//a number between 1 and 100
return getRandom().nextInt(MAX_NUMBER - 1) + 1;
}
@Produces
@MaxNumber
int getMaxNumber() {
return MAX_NUMBER;
}
}
The Generator
is application scoped, so we don’t get a different
random each time.
Note
|
The package declaration and imports have been excluded from these listings. The complete listing is available in the example source code. |
The final bean in the application is the session-scoped Game
class.
This is the primary entry point of the application. It’s responsible for
setting up or resetting the game, capturing and validating the user’s
guess and providing feedback to the user with a FacesMessage
. We’ve
used the post-construct lifecycle method to initialize the game by
retrieving a random number from the @Random
Instance<Integer>
bean.
You’ll notice that we’ve also added the @Named
annotation to this
class. This annotation is only required when you want to make the bean
accessible to a JSF view via EL (i.e., #{game}
).
import jakarta.enterprise.inject.Instance;
@Named
@SessionScoped
public class Game implements Serializable {
private static final int DEFAULT_REMAINING_GUESSES = 10;
private int number;
private int guess;
private int smallest;
private int biggest;
private int remainingGuesses;
@Inject
@MaxNumber
private int maxNumber;
@Inject
@Random
private Instance<Integer> randomNumber;
public Game() {
}
public int getNumber() {
return number;
}
public int getGuess() {
return guess;
}
public void setGuess(int guess) {
this.guess = guess;
}
public int getSmallest() {
return smallest;
}
public int getBiggest() {
return biggest;
}
public int getRemainingGuesses() {
return remainingGuesses;
}
public void check() {
if (guess > number) {
biggest = guess - 1;
} else if (guess < number) {
smallest = guess + 1;
} else if (guess == number) {
FacesContext.getCurrentInstance().addMessage(null, new FacesMessage("Correct!"));
}
remainingGuesses--;
}
@PostConstruct
public void reset() {
this.smallest = 0;
this.guess = 0;
this.remainingGuesses = DEFAULT_REMAINING_GUESSES;
this.biggest = maxNumber;
this.number = randomNumber.get();
}
public void validateNumberRange(FacesContext context, UIComponent toValidate, Object value) {
if (remainingGuesses <= 0) {
FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientId(context), message);
((UIInput) toValidate).setValid(false);
return;
}
int input = (Integer) value;
if (input < smallest || input > biggest) {
((UIInput) toValidate).setValid(false);
FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage(toValidate.getClientId(context), message);
}
}
public boolean isGuessHigher() {
return guess != 0 && guess > number;
}
public boolean isGuessLower() {
return guess != 0 && guess < number;
}
public boolean isGuessCorrect() {
return guess == number;
}
}
The numberguess example in Apache Tomcat or Jetty
A couple of modifications must be made to the numberguess artifact in
order to deploy it to Tomcat or Jetty. First, Weld must be deployed as a
Web Application library under WEB-INF/lib
since the servlet container
does not provide the CDI services. For your convenience we provide a
single jar suitable for running Weld in any servlet container (including
Jetty), weld-servlet-shaded
.
Note
|
You must also include the jars for JSF, EL, and the common annotations, all of which are provided by the Java EE platform (a Jakarta EE application server). |
Second, we need to explicitly specify the servlet listener in web.xml
,
again because the container isn’t doing this stuff for you. The servlet
listener boots Weld and controls its interaction with requests.
<listener>
<listener-class>org.jboss.weld.environment.servlet.Listener</listener-class>
</listener>
When Weld boots, it places the
jakarta.enterprise.inject.spi.BeanManager
, the portable SPI for
obtaining bean instances, in the ServletContext
under a variable name
equal to the fully-qualified interface name. You generally don’t need to
access this interface, but Weld makes use of it.
The numberguess example for Java SE with Swing
This example shows how to use the Weld SE extension in a Java SE based
Swing application with no EJB or servlet dependencies. This example can
be found in the examples/se/numberguess
folder of the Weld
distribution.
Running the example from the command line
-
Ensure that Maven 3 is installed and in your PATH
-
Ensure that the
JAVA_HOME
environment variable is pointing to your JDK installation -
Open a command line or terminal window in the
examples/se/numberguess
directory -
Execute the following command
mvn -Drun
Understanding the code
Let’s have a look at the significant code and configuration files that make up this example.
There is an empty beans.xml
file in the root package
(src/main/resources/META-INF/beans.xml
), which marks this application
as a CDI application.
Note
|
The beans.xml file is no longer required for CDI enablement as of CDI
1.1. CDI is automatically enabled for archives which don’t contain
beans.xml but contain one or more bean classes with a bean defining
annotation, as described in section
Implicit bean archive
.
|
The game’s main logic is located in Game.java
. Here is the code for
that class, highlighting the ways in which this differs from the web
application version:
@ApplicationScoped // (1)
public class Game { // (2)
public static final int MAX_NUM_GUESSES = 10;
private Integer number;
private int guess = 0;
private int smallest = 0;
@Inject
@MaxNumber
private int maxNumber;
private int biggest;
private int remainingGuesses = MAX_NUM_GUESSES;
private boolean validNumberRange = true;
@Inject
Generator rndGenerator;
public Game() {
}
public int getNumber() {
return number;
}
public int getGuess() {
return guess;
}
public void setGuess(int guess) {
this.guess = guess;
}
public int getSmallest() {
return smallest;
}
public int getBiggest() {
return biggest;
}
public int getRemainingGuesses() {
return remainingGuesses;
}
public boolean isValidNumberRange() { // (3)
return validNumberRange;
}
public boolean isGameWon() {
return guess == number;
}
public boolean isGameLost() {
return guess != number && remainingGuesses <= 0;
}
public boolean check() { // (4)
boolean result = false;
if (checkNewNumberRangeIsValid()) {
if (guess > number) {
biggest = guess - 1;
}
if (guess < number) {
smallest = guess + 1;
}
if (guess == number) {
result = true;
}
remainingGuesses--;
}
return result;
}
private boolean checkNewNumberRangeIsValid() {
return validNumberRange = ((guess >= smallest) && (guess <= biggest));
}
@PostConstruct
public void reset() { (5)
this.smallest = 0;
this.guess = 0;
this.remainingGuesses = 10;
this.biggest = maxNumber;
this.number = rndGenerator.next();
System.out.println("psst! the number is " + this.number);
}
}
-
The bean is application scoped rather than session scoped, since an instance of a Swing application typically represents a single 'session'.
-
Notice that the bean is not named, since it doesn’t need to be accessed via EL.
-
In Java SE there is no JSF
FacesContext
to which messages can be added. Instead theGame
class provides additional information about the state of the current game including:-
If the game has been won or lost
-
If the most recent guess was invalid
This allows the Swing UI to query the state of the game, which it does indirectly via a class called
MessageGenerator
, in order to determine the appropriate messages to display to the user during the game.
-
-
Since there is no dedicated validation phase, validation of user input is performed during the
check()
method. -
The
reset()
method makes a call to the injectedrndGenerator
in order to get the random number at the start of each game. Note that it can’t useInstance.get()
like the JSF example does because there will not be any active contexts like there are during a JSF request.
The MessageGenerator
class depends on the current instance of Game
and queries its state in order to determine the appropriate messages to
provide as the prompt for the user’s next guess and the response to the
previous guess. The code for MessageGenerator
is as follows:
public class MessageGenerator {
@Inject // (1)
private Game game;
public String getChallengeMessage() { // (2)
StringBuilder challengeMsg = new StringBuilder("I'm thinking of a number between ");
challengeMsg.append(game.getSmallest());
challengeMsg.append(" and ");
challengeMsg.append(game.getBiggest());
challengeMsg.append(". Can you guess what it is?");
return challengeMsg.toString();
}
public String getResultMessage() { // (3)
if (game.isGameWon()) {
return "You guessed it! The number was " + game.getNumber();
} else if (game.isGameLost()) {
return "You are fail! The number was " + game.getNumber();
} else if (!game.isValidNumberRange()) {
return "Invalid number range!";
} else if (game.getRemainingGuesses() == Game.MAX_NUM_GUESSES) {
return "What is your first guess?";
} else {
String direction = null;
if (game.getGuess() < game.getNumber()) {
direction = "Higher";
} else {
direction = "Lower";
}
return direction + "! You have " + game.getRemainingGuesses() + " guesses left.";
}
}
}
-
The instance of
Game
for the application is injected here. -
The `Game’s state is interrogated to determine the appropriate challenge message …
-
… and again to determine whether to congratulate, console or encourage the user to continue.
Finally we come to the NumberGuessFrame
class which provides the Swing
front end to our guessing game.
import jakarta.enterprise.event.Observes;
public class NumberGuessFrame extends javax.swing.JFrame {
@Inject
private Game game; // (1)
@Inject
private MessageGenerator msgGenerator; // (2)
public void start(@Observes ContainerInitialized event) { // (3)
java.awt.EventQueue.invokeLater(new Runnable() {
public void run() {
initComponents();
setVisible(true);
}
});
}
private void initComponents() { // (4)
borderPanel = new javax.swing.JPanel();
gamePanel = new javax.swing.JPanel();
inputsPanel = new javax.swing.JPanel();
buttonPanel = new javax.swing.JPanel();
guessButton = new javax.swing.JButton();
...
mainLabel.setText(msgGenerator.getChallengeMessage());
mainMsgPanel.add(mainLabel);
messageLabel.setText(msgGenerator.getResultMessage());
mainMsgPanel.add(messageLabel);
...
}
private void guessButtonActionPerformed(java.awt.event.ActionEvent evt) { // (5)
int guess = -1;
try {
guess = Integer.parseInt(guessText.getText());
} catch (NumberFormatException nfe) {
// noop
}
game.setGuess(guess);
game.check();
refreshUI();
if (game.isGameWon() || game.isGameLost()) {
switchButtons();
}
}
private void replayBtnActionPerformed(java.awt.event.ActionEvent evt) { // (6)
game.reset();
refreshUI();
switchButtons();
}
private void switchButtons() {
CardLayout buttonLyt = (CardLayout) buttonPanel.getLayout();
buttonLyt.next(buttonPanel);
}
private void refreshUI() {
mainLabel.setText(msgGenerator.getChallengeMessage());
messageLabel.setText(msgGenerator.getResultMessage());
guessText.setText("");
guessesLeftBar.setValue(game.getRemainingGuesses());
guessText.requestFocus();
}
// swing components
private javax.swing.JPanel borderPanel;
...
private javax.swing.JButton replayBtn;
}
-
The injected instance of the game (logic and state).
-
The injected message generator for UI messages.
-
This application is started in the prescribed Weld SE way, by observing the
ContainerInitialized
event. -
This method initializes all the Swing components. Note the use of the
msgGenerator
here. -
guessButtonActionPerformed
is called when the 'Guess' button is clicked, and it does the following:-
Gets the guess entered by the user and sets it as the current guess in the
Game
-
Calls
game.check()
to validate and perform one 'turn' of the game -
Calls
refreshUI
. If there were validation errors with the input, this will have been captured duringgame.check()
and as such will be reflected in the messages returned byMessageGenerator
and subsequently presented to the user. If there are no validation errors then the user will be told to guess again (higher or lower) or that the game has ended either in a win (correct guess) or a loss (ran out of guesses). -
Sets the button’s label based on the game state.
-
-
replayBtnActionPerformed
simply callsgame.reset()
to start a new game, refreshes the messages in the UI and sets the button’s label based on the game state.
That concludes our short tour of the Weld starter examples. For more information on Weld, please visit http://weld.cdi-spec.org/.
If you want to browse more Jakarta EE examples which leverage CDI technologies, there is a fair amount of them among WildFly Quickstarts.