Hibernate.orgCommunity Documentation

Kapitel 11. Das Arbeiten mit Objekten

11.1. Statusarten von Hibernate Objekten
11.2. Objekte persistent machen
11.3. Das Laden eines Objekts
11.4. Anfragen
11.4.1. Ausführen von Anfragen
11.4.2. Das Filtern von Collections
11.4.3. Kriterienanfragen
11.4.4. Anfragen in nativer SQL
11.5. Änderungen an persistenten Objekten vornehmen
11.6. Änderungen an abgesetzten Objekten
11.7. Automatische Statuserkennung
11.8. Das Löschen persistenter Objekte
11.9. Objektreplikation zwischen zwei verschiedenen Datenspeichern
11.10. Das Räumen der Session
11.11. Transitive Persistenz
11.12. Die Verwendung von Metadata

Hibernate is a full object/relational mapping solution that not only shields the developer from the details of the underlying database management system, but also offers state management of objects. This is, contrary to the management of SQL statements in common JDBC/SQL persistence layers, a natural object-oriented view of persistence in Java applications.

Mit anderen Worten - Hibernate Anwendungsentwickler sollten sich stets über den Status Ihrer Objekte Gedanken machen und nicht unbedingt über die Ausführung von SQL-Anweisungen. Dieser Teil wird von Hibernate übernommen und ist nur dann für den Anwendungsentwickler von Bedeutung, wenn die Performance des Systems eingestellt wird.

Hibernate definiert und unterstützt die folgenden Arten des Objektstatus:

We will now discuss the states and state transitions (and the Hibernate methods that trigger a transition) in more detail.

Newly instantiated instances of a persistent class are considered transient by Hibernate. We can make a transient instance persistent by associating it with a session:

DomesticCat fritz = new DomesticCat();

fritz.setColor(Color.GINGER);
fritz.setSex('M');
fritz.setName("Fritz");
Long generatedId = (Long) sess.save(fritz);

If Cat has a generated identifier, the identifier is generated and assigned to the cat when save() is called. If Cat has an assigned identifier, or a composite key, the identifier should be assigned to the cat instance before calling save(). You can also use persist() instead of save(), with the semantics defined in the EJB3 early draft.

Alternatively, you can assign the identifier using an overloaded version of save().

DomesticCat pk = new DomesticCat();

pk.setColor(Color.TABBY);
pk.setSex('F');
pk.setName("PK");
pk.setKittens( new HashSet() );
pk.addKitten(fritz);
sess.save( pk, new Long(1234) );

If the object you make persistent has associated objects (e.g. the kittens collection in the previous example), these objects can be made persistent in any order you like unless you have a NOT NULL constraint upon a foreign key column. There is never a risk of violating foreign key constraints. However, you might violate a NOT NULL constraint if you save() the objects in the wrong order.

Usually you do not bother with this detail, as you will normally use Hibernate's transitive persistence feature to save the associated objects automatically. Then, even NOT NULL constraint violations do not occur - Hibernate will take care of everything. Transitive persistence is discussed later in this chapter.

The load() methods of Session provide a way of retrieving a persistent instance if you know its identifier. load() takes a class object and loads the state into a newly instantiated instance of that class in a persistent state.

Cat fritz = (Cat) sess.load(Cat.class, generatedId);
// you need to wrap primitive identifiers

long id = 1234;
DomesticCat pk = (DomesticCat) sess.load( DomesticCat.class, new Long(id) );

Alternativ können Sie den Status in eine beliebige Instanz laden:

Cat cat = new DomesticCat();

// load pk's state into cat
sess.load( cat, new Long(pkId) );
Set kittens = cat.getKittens();

Be aware that load() will throw an unrecoverable exception if there is no matching database row. If the class is mapped with a proxy, load() just returns an uninitialized proxy and does not actually hit the database until you invoke a method of the proxy. This is useful if you wish to create an association to an object without actually loading it from the database. It also allows multiple instances to be loaded as a batch if batch-size is defined for the class mapping.

If you are not certain that a matching row exists, you should use the get() method which hits the database immediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);

if (cat==null) {
    cat = new Cat();
    sess.save(cat, id);
}
return cat;

You can even load an object using an SQL SELECT ... FOR UPDATE, using a LockMode. See the API documentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMode.UPGRADE);

Any associated instances or contained collections will not be selected FOR UPDATE, unless you decide to specify lock or all as a cascade style for the association.

Es ist mittels der refresh()-Methode jederzeit möglich, ein Objekt und alle seine Collections erneut zu laden. Dies ist insbesondere dann von Nutzen, wenn Datenbank-Trigger zur Initialisierung der Objekt-Properties verwendet werden.

sess.save(cat);

sess.flush(); //force the SQL INSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

How much does Hibernate load from the database and how many SQL SELECTs will it use? This depends on the fetching strategy. This is explained in Abschnitt 21.1, „Abrufstrategien“.

If you do not know the identifiers of the objects you are looking for, you need a query. Hibernate supports an easy-to-use but powerful object oriented query language (HQL). For programmatic query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC and QBE). You can also express your query in the native SQL of your database, with optional support from Hibernate for result set conversion into objects.

HQL und native SQL-Anfragen werden durch eine Instanz von org.hibernate.Query repräsentiert. Dieses Interface bietet Methoden zur Parameter-Bindung, Handhabung von Ergebnissätzen (sog. "result sets") und für das Ausführen der tatsächlichen Anfrage. Sie können mittels der Session immer eine Query erhalten:

List cats = session.createQuery(

    "from Cat as cat where cat.birthdate < ?")
    .setDate(0, date)
    .list();
List mothers = session.createQuery(
    "select mother from Cat as cat join cat.mother as mother where cat.name = ?")
    .setString(0, name)
    .list();
List kittens = session.createQuery(
    "from Cat as cat where cat.mother = ?")
    .setEntity(0, pk)
    .list();
Cat mother = (Cat) session.createQuery(
    "select cat.mother from Cat as cat where cat = ?")
    .setEntity(0, izi)
    .uniqueResult();]]
Query mothersWithKittens = (Cat) session.createQuery(
    "select mother from Cat as mother left join fetch mother.kittens");
Set uniqueMothers = new HashSet(mothersWithKittens.list());

A query is usually executed by invoking list(). The result of the query will be loaded completely into a collection in memory. Entity instances retrieved by a query are in a persistent state. The uniqueResult() method offers a shortcut if you know your query will only return a single object. Queries that make use of eager fetching of collections usually return duplicates of the root objects, but with their collections initialized. You can filter these duplicates through a Set.

Queries can also be configured as so called named queries using annotations or Hibernate mapping documents. @NamedQuery and @NamedQueries can be defined at the class level as seen in Beispiel 11.1, „Defining a named query using @NamedQuery“ . However their definitions are global to the session factory/entity manager factory scope. A named query is defined by its name and the actual query string.


Using a mapping document can be configured using the <query> node. Remember to use a CDATA section if your query contains characters that could be interpreted as markup.


Parameter binding and executing is done programatically as seen in Beispiel 11.3, „Parameter binding of a named query“.


The actual program code is independent of the query language that is used. You can also define native SQL queries in metadata, or migrate existing queries to Hibernate by placing them in mapping files.

Also note that a query declaration inside a <hibernate-mapping> element requires a global unique name for the query, while a query declaration inside a <class> element is made unique automatically by prepending the fully qualified name of the class. For example eg.Cat.ByNameAndMaximumWeight.

Transactional persistent instances (i.e. objects loaded, saved, created or queried by the Session) can be manipulated by the application, and any changes to persistent state will be persisted when the Session is flushed. This is discussed later in this chapter. There is no need to call a particular method (like update(), which has a different purpose) to make your modifications persistent. The most straightforward way to update the state of an object is to load() it and then manipulate it directly while the Session is open:

DomesticCat cat = (DomesticCat) sess.load( Cat.class, new Long(69) );

cat.setName("PK");
sess.flush();  // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient, as it requires in the same session both an SQL SELECT to load an object and an SQL UPDATE to persist its updated state. Hibernate offers an alternate approach by using detached instances.

Zahlreiche Anwendungen müssen ein Objekt in einer Transaktion abrufen, dieses für Modifizierungen an die UI-Schicht schicken und die Änderungen anschließend in einer neuen Transaktion speichern. Anwendungen, die diese Herangehensweise in einer Umgebung mit hoher Nebenläufigkeit (d.h. häufigem gleichzeitigen Zugriff) benutzen, verwenden in der Regel versionierte Daten, um die Isolation der "langen" Arbeitseinheit zu gewährleisten.

Hibernate unterstützt dieses Modell, indem es mittels der Session.update() oder Session.merge()-Methoden die Möglichkeit der Wiederanbindung abgesetzter Instanzen bietet:

// in the first session

Cat cat = (Cat) firstSession.load(Cat.class, catId);
Cat potentialMate = new Cat();
firstSession.save(potentialMate);
// in a higher layer of the application
cat.setMate(potentialMate);
// later, in a new session
secondSession.update(cat);  // update cat
secondSession.update(mate); // update mate

Wäre Cat mit Bezeichner catId bereits durch secondSession geladen worden, wenn die Anwendung die Wiederanbindung durchzuführen versucht hätte, so wäre eine Ausnahme gemeldet worden.

Use update() if you are certain that the session does not contain an already persistent instance with the same identifier. Use merge() if you want to merge your modifications at any time without consideration of the state of the session. In other words, update() is usually the first method you would call in a fresh session, ensuring that the reattachment of your detached instances is the first operation that is executed.

The application should individually update() detached instances that are reachable from the given detached instance only if it wants their state to be updated. This can be automated using transitive persistence. See Abschnitt 11.11, „Transitive Persistenz“ for more information.

The lock() method also allows an application to reassociate an object with a new session. However, the detached instance has to be unmodified.

//just reassociate:

sess.lock(fritz, LockMode.NONE);
//do a version check, then reassociate:
sess.lock(izi, LockMode.READ);
//do a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.lock(pk, LockMode.UPGRADE);

Note that lock() can be used with various LockModes. See the API documentation and the chapter on transaction handling for more information. Reattachment is not the only usecase for lock().

Other models for long units of work are discussed in Abschnitt 13.3, „Optimistische Nebenläufigkeitskontrolle“.

Benutzer von Hibernate haben den Wunsch nach einer allgemeinen Methode geäußert, die entweder eine transiente Instanz durch Generierung eines neuen Bezeichners speichert oder die dem aktuellen Bezeichner zugehörigen abgesetzten Instanzen aktualisiert/erneut hinzufügt. Die saveOrUpdate()-Methode implementiert diese Funktionalität.

// in the first session

Cat cat = (Cat) firstSession.load(Cat.class, catID);
// in a higher tier of the application
Cat mate = new Cat();
cat.setMate(mate);
// later, in a new session
secondSession.saveOrUpdate(cat);   // update existing state (cat has a non-null id)
secondSession.saveOrUpdate(mate);  // save the new instance (mate has a null id)

Gebrauch und Semantik von saveOrUpdate() scheinen neue Benutzer manchmal zu überfordern. So lange Sie nicht versuchen, diese Instanzen von einer Session in einer neuen Session zu verwenden, sollten Sie update(), saveOrUpdate() oder merge() ohnehin nicht benutzen müssen. Manchmal kommen ganze Anwendungen ohne irgendeine dieser Methoden aus.

In der Regel kommen update() oder saveOrUpdate() in folgenden Situationen zum Einsatz:

saveOrUpdate() tut folgendes:

und merge() ist völlig anders:

Session.delete() will remove an object's state from the database. Your application, however, can still hold a reference to a deleted object. It is best to think of delete() as making a persistent instance, transient.

sess.delete(cat);

You can delete objects in any order, without risk of foreign key constraint violations. It is still possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong order, e.g. if you delete the parent, but forget to delete the children.

It is sometimes useful to be able to take a graph of persistent instances and make them persistent in a different datastore, without regenerating identifier values.

//retrieve a cat from one database

Session session1 = factory1.openSession();
Transaction tx1 = session1.beginTransaction();
Cat cat = session1.get(Cat.class, catId);
tx1.commit();
session1.close();
//reconcile with a second database
Session session2 = factory2.openSession();
Transaction tx2 = session2.beginTransaction();
session2.replicate(cat, ReplicationMode.LATEST_VERSION);
tx2.commit();
session2.close();

The ReplicationMode determines how replicate() will deal with conflicts with existing rows in the database:

Anwendungsfälle dieses Features beinhalten die Abstimmung von in verschiedenen Datenbankinstanzen eingegebenen Daten, das Upgrade von Systemkonfigurationsinformationen während Produkt-Upgrades, die Wiederholung von während nicht-ACID Transaktionen gemachten Änderungen und mehr.

Sometimes the Session will execute the SQL statements needed to synchronize the JDBC connection's state with the state of objects held in memory. This process, called flush, occurs by default at the following points:

The SQL statements are issued in the following order:

An exception is that objects using native ID generation are inserted when they are saved.

Except when you explicitly flush(), there are absolutely no guarantees about when the Session executes the JDBC calls, only the order in which they are executed. However, Hibernate does guarantee that the Query.list(..) will never return stale or incorrect data.

It is possible to change the default behavior so that flush occurs less frequently. The FlushMode class defines three different modes: only flush at commit time when the Hibernate Transaction API is used, flush automatically using the explained routine, or never flush unless flush() is called explicitly. The last mode is useful for long running units of work, where a Session is kept open and disconnected for a long time (see Abschnitt 13.3.2, „Erweiterte Session und automatische Versionierung“).

sess = sf.openSession();

Transaction tx = sess.beginTransaction();
sess.setFlushMode(FlushMode.COMMIT); // allow queries to return stale state
Cat izi = (Cat) sess.load(Cat.class, id);
izi.setName(iznizi);
// might return stale data
sess.find("from Cat as cat left outer join cat.kittens kitten");
// change to izi is not flushed!
...
tx.commit(); // flush occurs
sess.close();

During flush, an exception might occur (e.g. if a DML operation violates a constraint). Since handling exceptions involves some understanding of Hibernate's transactional behavior, we discuss it in Kapitel 13, Transactions and Concurrency.

Es ist recht mühselig, einzelne Objekte zu speichern, zu löschen und erneut hinzuzufügen, insbesondere dann, wenn man es mit einem Diagramm assoziierter Objekte zu tun hat. Ein gängiger Fall ist die Beziehung zwischen übergeordneten und untergeordneten Objekten (sog. "parent/child"-Beziehung). Sehen Sie sich das folgende Beispiel an:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or strings), their life cycle would depend on the parent and no further action would be required for convenient "cascading" of state changes. When the parent is saved, the value-typed child objects are saved and when the parent is deleted, the children will be deleted, etc. This works for operations such as the removal of a child from the collection. Since value-typed objects cannot have shared references, Hibernate will detect this and delete the child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g. categories and items, or parent and child cats). Entities have their own life cycle and support shared references. Removing an entity from the collection does not mean it can be deleted), and there is by default no cascading of state from one entity to any other associated entities. Hibernate does not implement persistence by reachability by default.

Für jeden Grundvorgang der Hibernate Session - einschließlich persist(), merge(), saveOrUpdate(), delete(), lock(), refresh(), evict(), replicate() - gibt es eine entsprechende Art der Weitergabe. Die Arten sind dem entsprechend create, merge, save-update, delete, lock, refresh, evict, replicate benannt. Falls Sie möchten, dass ein Vorgang entlang einer Assoziation weitergegeben wird, so müssen Sie dass im Mapping-Dokument angeben. Zum Beispiel wie folgt aussehen:


<one-to-one name="person" cascade="persist"/>

Die Arten der Weitergabe (sog. "Cascade Styles") können kombiniert werden:


<one-to-one name="person" cascade="persist,delete,lock"/>

You can even use cascade="all" to specify that all operations should be cascaded along the association. The default cascade="none" specifies that no operations are to be cascaded.

In case you are using annotatons you probably have noticed the cascade attribute taking an array of CascadeType as a value. The cascade concept in JPA is very is similar to the transitive persistence and cascading of operations as described above, but with slightly different semantics and cascading types:

A special cascade style, delete-orphan, applies only to one-to-many associations, and indicates that the delete() operation should be applied to any child object that is removed from the association. Using annotations there is no CascadeType.DELETE-ORPHAN equivalent. Instead you can use the attribute orphanRemoval as seen in Beispiel 11.4, „@OneToMany with orphanRemoval“. If an entity is removed from a @OneToMany collection or an associated entity is dereferenced from a @OneToOne association, this associated entity can be marked for deletion if orphanRemoval is set to true.


Empfehlungen:

  • It does not usually make sense to enable cascade on a many-to-one or many-to-many association. In fact the @ManyToOne and @ManyToMany don't even offer a orphanRemoval attribute. Cascading is often useful for one-to-one and one-to-many associations.

  • If the child object's lifespan is bounded by the lifespan of the parent object, make it a life cycle object by specifying cascade="all,delete-orphan"(@OneToMany(cascade=CascadeType.ALL, orphanRemoval=true)).

  • Andernfalls wird keine Weitergabe benötigt. Wenn Sie jedoch glauben, dass Sie oft mit über- und untergeordneten Objekten in derselben Transaktion arbeiten werden und Sie sich etwas Tipparbeit sparen möchten, so können Sie cascade="persist,merge,save-update" verwenden.

Das Mappen einer Assoziation (entweder einer einwertigen Assoziation oder einer Collection) unter Verwendung von cascade="all" kennzeichnet die Assoziation als zum Parent/Child-Beziehungstyp gehörig, bei dem Speichern/Aktualisieren/Löschen des übergeordneten Objekts zum Speichern/Aktualisieren/Löschen des untergeordneten Objekts (oder Objekte) führt.

Furthermore, a mere reference to a child from a persistent parent will result in save/update of the child. This metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automatically deleted, except in the case of a one-to-many association mapped with cascade="delete-orphan". The precise semantics of cascading operations for a parent/child relationship are as follows:

  • Falls für einen "Parent" persist() gilt, so gilt für sämtliche "Children" ebenfalls persist()

  • Falls für einen "Parent" merge() gilt, so gilt für sämtliche "Children" ebenfalls merge()

  • Falls für einen "Parent" save(), update() oder saveOrUpdate() gilt, so gilt für sämtliche "Children" ebenfalls saveOrUpdate()

  • Falls auf ein transientes oder abgesetztes "Child" durch einen persistenten "Parent" verwiesen wird, so gilt dafür saveOrUpdate()

  • Falls ein "Parent" gelöscht wird, so gilt für alle "Children" delete()

  • Falls der Verweis auf ein "Child" von einem persistenten "Parent" entfällt, passiert nicht besonderes - die Anwendung sollte das "Child" explizit löschen falls nötig - außer es gilt cascade="delete-orphan", in welchem Fall das "verwaiste" Child gelöscht wird.

Finally, note that cascading of operations can be applied to an object graph at call time or at flush time. All operations, if enabled, are cascaded to associated entities reachable when the operation is executed. However, save-update and delete-orphan are transitive for all associated entities reachable during flush of the Session.

Hibernate requires a rich meta-level model of all entity and value types. This model can be useful to the application itself. For example, the application might use Hibernate's metadata to implement a "smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value types) and which objects that should not (e.g. immutable value types and, possibly, associated entities).

Hibernate exposes metadata via the ClassMetadata and CollectionMetadata interfaces and the Type hierarchy. Instances of the metadata interfaces can be obtained from the SessionFactory.

Cat fritz = ......;

ClassMetadata catMeta = sessionfactory.getClassMetadata(Cat.class);
Object[] propertyValues = catMeta.getPropertyValues(fritz);
String[] propertyNames = catMeta.getPropertyNames();
Type[] propertyTypes = catMeta.getPropertyTypes();
// get a Map of all properties which are not collections or associations
Map namedValues = new HashMap();
for ( int i=0; i<propertyNames.length; i++ ) {
    if ( !propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType() ) {
        namedValues.put( propertyNames[i], propertyValues[i] );
    }
}