Hibernate.orgCommunity Documentation

Chapitre 5. Mappage O/R de base

5.1. Déclaration de mappage
5.1.1. Entity
5.1.2. Identifiers
5.1.3. Optimistic locking properties (optional)
5.1.4. Property
5.1.5. Embedded objects (aka components)
5.1.6. Inheritance strategy
5.1.7. Mapping one to one and one to many associations
5.1.8. Natural-id
5.1.9. Any
5.1.10. Propriétés
5.1.11. Some hbm.xml specificities
5.2. Types Hibernate
5.2.1. Entités et valeurs
5.2.2. Types valeurs de base
5.2.3. Types de valeur personnalisés
5.3. Mapper une classe plus d'une fois
5.4. SQL quoted identifiers
5.5. Propriétés générées
5.6. Column transformers: read and write expressions
5.7. Objets auxiliaires de la base de données

Object/relational mappings can be defined in three approaches:

Annotations are split in two categories, the logical mapping annotations (describing the object model, the association between two entities etc.) and the physical mapping annotations (describing the physical schema, tables, columns, indexes, etc). We will mix annotations from both categories in the following code examples.

JPA annotations are in the javax.persistence.* package. Hibernate specific extensions are in org.hibernate.annotations.*. You favorite IDE can auto-complete annotations and their attributes for you (even without a specific "JPA" plugin, since JPA annotations are plain Java 5 annotations).

Here is an example of mapping

package eg;


@Entity 
@Table(name="cats") @Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorValue("C") @DiscriminatorColumn(name="subclass", discriminatorType=CHAR)
public class Cat {
   
   @Id @GeneratedValue
   public Integer getId() { return id; }
   public void setId(Integer id) { this.id = id; }
   private Integer id;
   public BigDecimal getWeight() { return weight; }
   public void setWeight(BigDecimal weight) { this.weight = weight; }
   private BigDecimal weight;
   @Temporal(DATE) @NotNull @Column(updatable=false)
   public Date getBirthdate() { return birthdate; }
   public void setBirthdate(Date birthdate) { this.birthdate = birthdate; }
   private Date birthdate;
   @org.hibernate.annotations.Type(type="eg.types.ColorUserType")
   @NotNull @Column(updatable=false)
   public ColorType getColor() { return color; }
   public void setColor(ColorType color) { this.color = color; }
   private ColorType color;
   @NotNull @Column(updatable=false)
   public String getSex() { return sex; }
   public void setSex(String sex) { this.sex = sex; }
   private String sex;
   @NotNull @Column(updatable=false)
   public Integer getLitterId() { return litterId; }
   public void setLitterId(Integer litterId) { this.litterId = litterId; }
   private Integer litterId;
   @ManyToOne @JoinColumn(name="mother_id", updatable=false)
   public Cat getMother() { return mother; }
   public void setMother(Cat mother) { this.mother = mother; }
   private Cat mother;
   @OneToMany(mappedBy="mother") @OrderBy("litterId")
   public Set<Cat> getKittens() { return kittens; }
   public void setKittens(Set<Cat> kittens) { this.kittens = kittens; }
   private Set<Cat> kittens = new HashSet<Cat>();
}
@Entity @DiscriminatorValue("D")
public class DomesticCat extends Cat {
   public String getName() { return name; }
   public void setName(String name) { this.name = name }
   private String name;
}
@Entity
public class Dog { ... }

The legacy hbm.xml approach uses an XML schema designed to be readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed around persistent class declarations and not table declarations.

Remarquez que même si beaucoup d'utilisateurs de Hibernate préfèrent écrire les fichiers de mappages XML à la main, plusieurs outils existent pour générer ce document, notamment XDoclet, Middlegen et AndroMDA.

Commençons avec un exemple de mappage :


<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
      "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
          "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

        <class name="Cat"
            table="cats"
            discriminator-value="C">

                <id name="id">
                        <generator class="native"/>
                </id>

                <discriminator column="subclass"
                     type="character"/>

                <property name="weight"/>

                <property name="birthdate"
                    type="date"
                    not-null="true"
                    update="false"/>

                <property name="color"
                    type="eg.types.ColorUserType"
                    not-null="true"
                    update="false"/>

                <property name="sex"
                    not-null="true"
                    update="false"/>

                <property name="litterId"
                    column="litterId"
                    update="false"/>

                <many-to-one name="mother"
                    column="mother_id"
                    update="false"/>

                <set name="kittens"
                    inverse="true"
                    order-by="litter_id">
                        <key column="mother_id"/>
                        <one-to-many class="Cat"/>
                </set>

                <subclass name="DomesticCat"
                    discriminator-value="D">

                        <property name="name"
                            type="string"/>

                </subclass>

        </class>

        <class name="Dog">
                <!-- mapping for Dog could go here -->
        </class>

</hibernate-mapping>

We will now discuss the concepts of the mapping documents (both annotations and XML). We will only describe, however, the document elements and attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional attributes and elements that affect the database schemas exported by the schema export tool (for example, the not-null attribute).

An entity is a regular Java object (aka POJO) which will be persisted by Hibernate.

To mark an object as an entity in annotations, use the @Entity annotation.

@Entity

public class Flight implements Serializable {
    Long id;
    @Id
    public Long getId() { return id; }
    public void setId(Long id) { this.id = id; }
}         

That's pretty much it, the rest is optional. There are however any options to tweak your entity mapping, let's explore them.

@Table lets you define the table the entity will be persisted into. If undefined, the table name is the unqualified class name of the entity. You can also optionally define the catalog, the schema as well as unique constraints on the table.

@Entity

@Table(name="TBL_FLIGHT", 
       schema="AIR_COMMAND", 
       uniqueConstraints=
           @UniqueConstraint(
               name="flight_number", 
               columnNames={"comp_prefix", "flight_number"} ) )
public class Flight implements Serializable {
    @Column(name="comp_prefix")
    public String getCompagnyPrefix() { return companyPrefix; }
    @Column(name="flight_number")
    public String getNumber() { return number; }
}

The constraint name is optional (generated if left undefined). The column names composing the constraint correspond to the column names as defined before the Hibernate NamingStrategy is applied.

@Entity.name lets you define the shortcut name of the entity you can used in JP-QL and HQL queries. It defaults to the unqualified class name of the class.

Hibernate goes beyond the JPA specification and provide additional configurations. Some of them are hosted on @org.hibernate.annotations.Entity:

Some entities are not mutable. They cannot be updated or deleted by the application. This allows Hibernate to make some minor performance optimizations.. Use the @Immutable annotation.

You can also alter how Hibernate deals with lazy initialization for this class. On @Proxy, use lazy=false to disable lazy fetching (not recommended). You can also specify an interface to use for lazy initializing proxies (defaults to the class itself): use proxyClass on @Proxy. Hibernate will initially return proxies (Javassist or CGLIB) that implement the named interface. The persistent object will load when a method of the proxy is invoked. See "Initializing collections and proxies" below.

@BatchSize specifies a "batch size" for fetching instances of this class by identifier. Not yet loaded instances are loaded batch-size at a time (default 1).

You can specific an arbitrary SQL WHERE condition to be used when retrieving objects of this class. Use @Where for that.

In the same vein, @Check lets you define an SQL expression used to generate a multi-row check constraint for automatic schema generation.

There is no difference between a view and a base table for a Hibernate mapping. This is transparent at the database level, although some DBMS do not support views properly, especially with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e. with a legacy schema). In this case, you can map an immutable and read-only entity to a given SQL subselect expression using @org.hibernate.annotations.Subselect:

@Entity

@Subselect("select item.name, max(bid.amount), count(*) "
        + "from item "
        + "join bid on bid.item_id = item.id "
        + "group by item.name")
@Synchronize( {"item", "bid"} ) //tables impacted
public class Summary {
    @Id
    public String getId() { return id; }
    ...
}

Déclarez les tables à synchroniser avec cette entité pour assurer que le flush automatique se produise correctement, et pour que les requêtes sur l'entité dérivée ne renvoient pas des données périmées. Le <subselect> est disponible comme attribut ou comme élément de mappage imbriqué.

We will now explore the same options using the hbm.xml structure. You can declare a persistent class using the class element. For example:

<class
        name="(1)ClassName"
        table=(2)"tableName"
        discri(3)minator-value="discriminator_value"
        mutabl(4)e="true|false"
        schema(5)="owner"
        catalo(6)g="catalog"
        proxy=(7)"ProxyInterface"
        dynami(8)c-update="true|false"
        dynami(9)c-insert="true|false"
        select(10)-before-update="true|false"
        polymo(11)rphism="implicit|explicit"
        where=(12)"arbitrary sql where condition"
        persis(13)ter="PersisterClass"
        batch-(14)size="N"
        optimi(15)stic-lock="none|version|dirty|all"
        lazy="(16)true|false"
        entity(17)-name="EntityName"
        check=(18)"arbitrary sql check condition"
        rowid=(19)"rowid"
        subsel(20)ect="SQL expression"
        abstra(21)ct="true|false"
        node="element-name"
/>

1

name (optionnel) : le nom Java complet de la classe (ou interface) persistante. Si cet attribut est absent, nous supposons que ce mappage ne se rapporte pas à une entité POJO.

2

table (optionnel - par défaut le nom non-qualifié de la classe) : le nom de sa table en base de données.

3

discriminator-value (optionnel - par défaut le nom de la classe) : une valeur permettant de distinguer les différentes sous-classes utilisées dans le comportement polymorphique. Les valeurs null et not null sont autorisées.

4

mutable (optionnel, vaut true par défaut) : spécifie que des instances de la classe sont (ou non) immuables.

5

schema (optionnel) : surcharge le nom de schéma spécifié par l'élément racine <hibernate-mappage>.

6

catalog (optionnel) : surcharge le nom du catalogue spécifié par l'élément racine <hibernate-mappage>.

7

proxy (optionnel) : spécifie une interface à utiliser pour l'initialisation différée (lazy loading) des proxies. Vous pouvez indiquer le nom de la classe elle-même.

8

dynamic-update (optionnel, par défaut à false) : spécifie que les SQL UPDATE doivent être générés à l'exécution et contenir uniquement les colonnes dont les valeurs ont été modifiées.

9

dynamic-insert (optionnel, par défaut à false) : spécifie que les SQL INSERT doivent être générés à l'exécution et ne contenir que les colonnes dont les valeurs sont non nulles.

10

select-before-update (optionnel, par défaut à false): spécifie que Hibernate ne doit jamais exécuter un SQL UPDATE sans être certain qu'un objet a été réellement modifié. Dans certains cas, (en réalité, seulement quand un objet transient a été associé à une nouvelle session par update()), cela signifie que Hibernate exécutera un SQL SELECT pour déterminer si un SQL UPDATE est véritablement nécessaire.

11

polymorphisms (optional - defaults to implicit): determines whether implicit or explicit query polymorphisms is used.

12

where (optionnel) spécifie une clause SQL WHERE à utiliser lorsque l'on récupère des objets de cette classe.

13

persister (optionnel) : spécifie un ClassPersister particulier.

14

batch-size (optionnel, par défaut = 1) : spécifie une "taille de lot" pour remplir les instances de cette classe par identifiant en une seule requête.

15

optimistic-lock (optionnel, par défaut = version) : détermine la stratégie de verrouillage optimiste.

(16)

lazy (optionnel) : l'extraction différée (lazy fetching) peut être totalement désactivée en configurant lazy="false".

(17)

entity-name (optional - defaults to the class name): Hibernate3 allows a class to be mapped multiple times, potentially to different tables. It also allows entity mappings that are represented by Maps or XML at the Java level. In these cases, you should provide an explicit arbitrary name for the entity. See Section 4.4, « Modèles dynamiques » and Chapitre 20, Mappage XML for more information.

(18)

check (optionnel) : expression SQL utilisée pour générer une contrainte de vérification check multi-lignes pour la génération automatique de schéma.

(19)

rowid (optionnel) : Hibernate peut utiliser des ROWID sur les bases de données qui utilisent ce mécanisme. Par exemple avec Oracle, Hibernate peut utiliser la colonne additionnelle rowid pour des mise à jour rapides si cette option vaut rowid. Un ROWID est un détail d'implémentation et représente la localisation physique d'un uplet enregistré.

(20)

subselect (optionnel) : permet de mapper une entité immuable en lecture-seule sur un sous-select de base de données. Utile pour avoir une vue au lieu d'une table de base, mais à éviter. Voir plus bas pour plus d'informations.

(21)

abstract (optionnel) : utilisé pour marquer des superclasses abstraites dans des hiérarchies de <union-subclass>.

Il est tout à fait possible d'utiliser une interface comme nom de classe persistante. Vous devez alors déclarer les classes implémentant cette interface en utilisant l'élément <subclass>. Vous pouvez faire persister toute classe interne static. Vous devez alors spécifier le nom de la classe par la notation habituelle des classes internes, c'est à dire eg.Foo$Bar.

Here is how to do a virtual view (subselect) in XML:


<class name="Summary">
    <subselect>
        select item.name, max(bid.amount), count(*)
        from item
        join bid on bid.item_id = item.id
        group by item.name
    </subselect>
    <synchronize table="item"/>
    <synchronize table="bid"/>
    <id name="name"/>
    ...
</class>

The <subselect> is available both as an attribute and a nested mapping element.

Mapped classes must declare the primary key column of the database table. Most classes will also have a JavaBeans-style property holding the unique identifier of an instance.

Mark the identifier property with @Id.

@Entity

public class Person {
   @Id Integer getId() { ... }
   ...
}

In hbm.xml, use the <id> element which defines the mapping from that property to the primary key column.

<id
        name="(1)propertyName"
        type="(2)typename"
        column(3)="column_name"
        unsave(4)d-value="null|any|none|undefined|id_value"
        access(5)="field|property|ClassName">
        node="element-name|@attribute-name|element/@attribute|."

        <generator class="generatorClass"/>
</id>

1

name (optionnel) : nom de la propriété de l'identifiant.

2

type (optionnel) : nom indiquant le type Hibernate.

3

column (optionnel - le nom de la propriété est pris par défaut) : nom de la colonne de la clé primaire.

4

unsaved-value (optionnel - devient par défaut une valeur "sensible") : une valeur de propriété d'identifiant qui indique que l'instance est nouvellement instanciée (non sauvegardée), et qui la distingue des instances détachées qui ont été sauvegardées ou chargées dans une session précédente.

5

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

Si l'attribut name est absent, Hibernate considère que la classe ne possède pas de propriété d'identifiant.

The unsaved-value attribute is almost never needed in Hibernate3 and indeed has no corresponding element in annotations.

You can also declare the identifier as a composite identifier. This allows access to legacy data with composite keys. Its use is strongly discouraged for anything else.

You can define a composite primary key through several syntaxes:

As you can see the last case is far from obvious. It has been inherited from the dark ages of EJB 2 for backward compatibilities and we recommend you not to use it (for simplicity sake).

Let's explore all three cases using examples.

Here is a simple example of @EmbeddedId.

@Entity

class User {
   @EmbeddedId
   @AttributeOverride(name="firstName", column=@Column(name="fld_firstname")
   UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
}

You can notice that the UserId class is serializable. To override the column mapping, use @AttributeOverride.

An embedded id can itself contains the primary key of an associated entity.

@Entity

class Customer {
   @EmbeddedId CustomerId id;
   boolean preferredCustomer;
   @MapsId("userId")
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   })
   @OneToOne User user;
}
@Embeddable
class CustomerId implements Serializable {
   UserId userId;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

In the embedded id object, the association is represented as the identifier of the associated entity. But you can link its value to a regular association in the entity via the @MapsId annotation. The @MapsId value correspond to the property name of the embedded id object containing the associated entity's identifier. In the database, it means that the Customer.user and the CustomerId.userId properties share the same underlying column (user_fk in this case).

In practice, your code only sets the Customer.user property and the user id value is copied by Hibernate into the CustomerId.userId property.

While not supported in JPA, Hibernate lets you place your association directly in the embedded id component (instead of having to use the @MapsId annotation).

@Entity

class Customer {
   @EmbeddedId CustomerId id;
   boolean preferredCustomer;
}
@Embeddable
class CustomerId implements Serializable {
   @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   }) 
   User user;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

Let's now rewrite these examples using the hbm.xml syntax.


<composite-id
        name="propertyName"
        class="ClassName"
        mapped="true|false"
        access="field|property|ClassName"
        node="element-name|.">

        <key-property name="propertyName" type="typename" column="column_name"/>
        <key-many-to-one name="propertyName" class="ClassName" column="column_name"/>
        ......
</composite-id>

First a simple example:


<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName" column="fld_firstname"/>
      <key-property name="lastName"/>
   </composite-id>
</class>

Then an example showing how an association can be mapped.


<class name="Customer">
   <composite-id name="id" class="CustomerId">
      <key-property name="firstName" column="userfirstname_fk"/>
      <key-property name="lastName" column="userfirstname_fk"/>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>

   <many-to-one name="user">
      <column name="userfirstname_fk" updatable="false" insertable="false"/>
      <column name="userlastname_fk" updatable="false" insertable="false"/>
   </many-to-one>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

Notice a few things in the previous example:

The last example shows how to map association directly in the embedded id component.


<class name="Customer">
   <composite-id name="id" class="CustomerId">
      <key-many-to-one name="user">
         <column name="userfirstname_fk"/>
         <column name="userlastname_fk"/>
      </key-many-to-one>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

This is the recommended approach to map composite identifier. The following options should not be considered unless some constraint are present.

Another, arguably more natural, approach is to place @Id on multiple properties of your entity. This approach is only supported by Hibernate (not JPA compliant) but does not require an extra embeddable component.

@Entity

class Customer implements Serializable {
   @Id @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   })
   User user;
  
   @Id String customerNumber;
   boolean preferredCustomer;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

In this case Customer is its own identifier representation: it must implement Serializable and must implement equals() and hashCode().

In hbm.xml, the same mapping is:


<class name="Customer">
   <composite-id>
      <key-many-to-one name="user">
         <column name="userfirstname_fk"/>
         <column name="userlastname_fk"/>
      </key-many-to-one>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

@IdClass on an entity points to the class (component) representing the identifier of the class. The properties marked @Id on the entity must have their corresponding property on the @IdClass. The return type of search twin property must be either identical for basic properties or must correspond to the identifier class of the associated entity for an association.

@Entity

@IdClass(CustomerId.class)
class Customer implements Serializable {
   @Id @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   }) 
   User user;
  
   @Id String customerNumber;
   boolean preferredCustomer;
}
class CustomerId implements Serializable {
   UserId user;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
   //implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

Customer and CustomerId do have the same properties customerNumber as well as user. CustomerId must be Serializable and implement equals() and hashCode().

While not JPA standard, Hibernate let's you declare the vanilla associated property in the @IdClass.

@Entity

@IdClass(CustomerId.class)
class Customer implements Serializable {
   @Id @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   }) 
   User user;
  
   @Id String customerNumber;
   boolean preferredCustomer;
}
class CustomerId implements Serializable {
   @OneToOne User user;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
   //implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
  String firstName;
  String lastName;
}

This feature is of limited interest though as you are likely to have chosen the @IdClass approach to stay JPA compliant or you have a quite twisted mind.

Here are the equivalent on hbm.xml files:


<class name="Customer">
   <composite-id class="CustomerId" mapped="true">
      <key-many-to-one name="user">
         <column name="userfirstname_fk"/>
         <column name="userlastname_fk"/>
      </key-many-to-one>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

Hibernate can generate and populate identifier values for you automatically. This is the recommended approach over "business" or "natural" id (especially composite ids).

Hibernate offers various generation strategies, let's explore the most common ones first that happens to be standardized by JPA:

To mark an id property as generated, use the @GeneratedValue annotation. You can specify the strategy used (default to AUTO) by setting strategy.

@Entity

public class Customer {
   @Id @GeneratedValue
   Integer getId() { ... };
}
@Entity 
public class Invoice {
   @Id @GeneratedValue(strategy=GenerationType.IDENTITY)
   Integer getId() { ... };
}

SEQUENCE and TABLE require additional configurations that you can set using @SequenceGenerator and @TableGenerator:

  • name: name of the generator

  • table / sequenceName: name of the table or the sequence (defaulting respectively to hibernate_sequences and hibernate_sequence)

  • catalog / schema:

  • initialValue: the value from which the id is to start generating

  • allocationSize: the amount to increment by when allocating id numbers from the generator

In addition, the TABLE strategy also let you customize:

  • pkColumnName: the column name containing the entity identifier

  • valueColumnName: the column name containing the identifier value

  • pkColumnValue: the entity identifier

  • uniqueConstraints: any potential column constraint on the table containing the ids

To link a table or sequence generator definition with an actual generated property, use the same name in both the definition name and the generator value generator as shown below.

@Id 

@GeneratedValue(
    strategy=GenerationType.SEQUENCE, 
    generator="SEQ_GEN")
@javax.persistence.SequenceGenerator(
    name="SEQ_GEN",
    sequenceName="my_sequence",
    allocationSize=20
)
public Integer getId() { ... }        

The scope of a generator definition can be the application or the class. Class-defined generators are not visible outside the class and can override application level generators. Application level generators are defined in JPA's XML deployment descriptors (see XXXXXX ???):

<table-generator name="EMP_GEN"

            table="GENERATOR_TABLE"
            pk-column-name="key"
            value-column-name="hi"
            pk-column-value="EMP"
            allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.TableGenerator(
    name="EMP_GEN",
    table="GENERATOR_TABLE",
    pkColumnName = "key",
    valueColumnName = "hi"
    pkColumnValue="EMP",
    allocationSize=20
)
<sequence-generator name="SEQ_GEN" 
    sequence-name="my_sequence"
    allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.SequenceGenerator(
    name="SEQ_GEN",
    sequenceName="my_sequence",
    allocationSize=20
)
         

If a JPA XML descriptor (like META-INF/orm.xml) is used to define the generators, EMP_GEN and SEQ_GEN are application level generators.

Note

Package level definition is not supported by the JPA specification. However, you can use the @GenericGenerator at the package level (see ???).

These are the four standard JPA generators. Hibernate goes beyond that and provide additional generators or additional options as we will see below. You can also write your own custom identifier generator by implementing org.hibernate.id.IdentifierGenerator.

To define a custom generator, use the @GenericGenerator annotation (and its plural counter part @GenericGenerators) that describes the class of the identifier generator or its short cut name (as described below) and a list of key/value parameters. When using @GenericGenerator and assigning it via @GeneratedValue.generator, the @GeneratedValue.strategy is ignored: leave it blank.

@Id @GeneratedValue(generator="system-uuid")

@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {
@Id @GeneratedValue(generator="trigger-generated")
@GenericGenerator(
    name="trigger-generated", 
    strategy = "select",
    parameters = @Parameter(name="key", value = "socialSecurityNumber")
)
public String getId() {

The hbm.xml approach uses the optional <generator> child element inside <id>. If any parameters are required to configure or initialize the generator instance, they are passed using the <param> element.


<id name="id" type="long" column="cat_id">
        <generator class="org.hibernate.id.TableHiLoGenerator">
                <param name="table">uid_table</param>
                <param name="column">next_hi_value_column</param>
        </generator>
</id>

Tous les générateurs implémentent l'interface org.hibernate.id.IdentifierGenerator. C'est une interface très simple ; certaines applications peuvent proposer leurs propres implémentations spécialisées. Cependant, Hibernate propose une série d'implémentations intégrées. Il existe des noms raccourcis pour les générateurs intégrés :

increment

génère des identifiants de type long, short ou int qui ne sont uniques que si aucun autre processus n'insère de données dans la même table. Ne pas utiliser en environnement clusterisé.

identity

prend en charge les colonnes d'identité dans DB2, MySQL, MS SQL Server, Sybase et HypersonicSQL. L'identifiant renvoyé est de type long, short ou int.

sequence

utilise une séquence dans DB2, PostgreSQL, Oracle, SAP DB, McKoi ou un générateur dans Interbase. L'identifiant renvoyé est de type long, short ou int

hilo

utilise un algorithme hi/lo pour générer de façon efficace des identifiants de type long, short ou int, en prenant comme source de valeurs "hi" une table et une colonne (par défaut hibernate_unique_key et next_hi respectivement). L'algorithme hi/lo génère des identifiants uniques pour une base de données particulière seulement.

seqhilo

utilise un algorithme hi/lo pour générer efficacement des identifiants de type long, short ou int, en prenant une séquence en base nommée.

uuid

Generates a 128-bit UUID based on a custom algorithm. The value generated is represented as a string of 32 hexidecimal digits. Users can also configure it to use a separator (config parameter "separator") which separates the hexidecimal digits into 8{sep}8{sep}4{sep}8{sep}4. Note specifically that this is different than the IETF RFC 4122 representation of 8-4-4-4-12. If you need RFC 4122 compliant UUIDs, consider using "uuid2" generator discussed below.

uuid2

Generates a IETF RFC 4122 compliant (variant 2) 128-bit UUID. The exact "version" (the RFC term) generated depends on the pluggable "generation strategy" used (see below). Capable of generating values as java.util.UUID, java.lang.String or as a byte array of length 16 (byte[16]). The "generation strategy" is defined by the interface org.hibernate.id.UUIDGenerationStrategy. The generator defines 2 configuration parameters for defining which generation strategy to use:

Out of the box, comes with the following strategies:

guid

utilise une chaîne GUID générée par la base pour MS SQL Server et MySQL.

native

choisit identity, sequence ou hilo selon les possibilités offertes par la base de données sous-jacente.

assigned

permet à l'application d'affecter un identifiant à l'objet avant que la méthode save() soit appelée. Il s'agit de la stratégie par défaut si aucun <generator> n'est spécifié.

select

récupère une clé primaire assignée par un déclencheur (trigger) de base de données en sélectionnant la ligne par une clé unique quelconque et en extrayant la valeur de la clé primaire.

foreign

utilise l'identifiant d'un autre objet associé. Habituellement utilisé en conjonction avec une association <one-to-one> sur la clé primaire.

sequence-identity

Une stratégie de génération de séquence spécialisée qui utilise une séquence de base de données pour la génération réelle de valeurs, tout en utilisant JDBC3 getGeneratedKeys pour retourner effectivement la valeur d'identifiant générée, comme faisant partie de l'exécution de la déclaration insert. Cette stratégie est uniquement prise en charge par les pilotes Oracle 10g pour JDK 1.4. Notez que les commentaires sur ces déclarations insert sont désactivés à cause d'un bogue dans les pilotes d'Oracle.

A partir de la version 3.2.3, 2 générateurs représentent une nouvelle conception de 2 aspects séparés de la génération d'identifiants. Le premier aspect est la portabilité de la base de données; le second est l'optimization, c'est à dire que vous n'avez pas à interroger la base de données pour chaque requête de valeur d'identifiant. Ces deux nouveaux générateurs sont sensés prendre la place de générateurs décrits ci-dessus, ayant pour préfixe 3.3.x. Cependant, ils sont inclus dans les versions actuelles, et peuvent être référencés par FQN.

Le premier de ces nouveaux générateurs est org.Hibernate.ID.Enhanced.SequenceStyleGenerator qui est destiné, tout d'abord, comme un remplacement pour le générateur séquence et, deuxièmement, comme un générateur de portabilité supérieur à natif. C'est parce que natif a généralement le choix entre identité et séquence qui ont des sémantiques largement différentes, ce qui peut entraîner des problèmes subtils en observant la portabilité des applications. org.Hibernate.ID.Enhanced SequenceStyleGenerator., cependant, réalise la portabilité d'une manière différente. Il choisit entre une table ou une séquence dans la base de données pour stocker ses valeurs s'incrémentant, selon les capacités du dialecte utilisé. La différence avec natif c'est que de stockage basé sur les tables ou basé sur la séquence ont la même sémantique. En fait, les séquences sont exactement ce qu'Hibernate essaie d'émuler avec ses générateurs basée sur les tables. Ce générateur a un certain nombre de paramètres de configuration :

Le deuxième de ces nouveaux générateurs est org.Hibernate.ID.Enhanced.TableGenerator, qui est destiné, tout d'abord, comme un remplacement pour le générateur de la table, même si elle fonctionne effectivement beaucoup plus comme org.Hibernate.ID.MultipleHiLoPerTableGeneratoret deuxièmement, comme une remise en œuvre de org.Hibernate.ID.MultipleHiLoPerTableGenerator, qui utilise la notion d'optimizers enfichables. Essentiellement ce générateur définit une table susceptible de contenir un certain nombre de valeurs d'incrément différents simultanément à l'aide de plusieurs lignes distinctement masquées. Ce générateur a un certain nombre de paramètres de configuration :

  • table_name (en optin - valeur par défaut = hibernate_sequences): le nom de la table à utiliser.

  • value_column_name (en option - valeur par défaut =next_val): le nom de la colonne contenue dans la table utilisée pour la valeur.

  • segment_column_name (en option - par défaut = sequence_name): le nom de la colonne de la table qui est utilisée pour contenir la "segment key". Il s'agit de la valeur qui identifie la valeur d'incrément à utiliser.

  • segment_value (en option - par défaut = par défaut): La "segment key"valeur pour le segment à partir de laquelle nous voulons extraire des valeurs d'incrémentation pour ce générateur.

  • segment_value_length (en option - par défaut = 255): Utilisée pour la génération de schéma ; la taille de la colonne pour créer cette colonne de clé de segment.

  • initial_value (en option - par défaut est 1 : La valeur initiale à récupérer à partir de la table.

  • increment_size (en option - par défaut = 1): La valeur par laquelle les appels à la table, qui suivent, devront différer.

  • optimizer (optional - defaults to ??): See Section 5.1.2.3.1, « Optimisation du générateur d'identifiants ».

For identifier generators that store values in the database, it is inefficient for them to hit the database on each and every call to generate a new identifier value. Instead, you can group a bunch of them in memory and only hit the database when you have exhausted your in-memory value group. This is the role of the pluggable optimizers. Currently only the two enhanced generators (Section 5.1.2.3, « La méthode getter de l'identifiant  » support this operation.

  • aucun (en général il s'agit de la valeur par défaut si aucun optimizer n'a été spécifié): n'effectuera pas d'optimisations et n'interrogera pas la base de données à chaque demande.

  • hilo: applique un algorithme hi/lo autour des valeurs extraites des base de données. Les valeurs de la base de données de cet optimizer sont censées être séquentielles. Les valeurs extraites de la structure des base de données pour cet optimizer indique le "numéro de groupe". Le increment_size est multiplié par cette valeur en mémoire pour définir un groupe de "hi value".

  • mise en commun: tout comme dans le cas de hilo, cet optimizer tente de réduire le nombre d'interrogations vers la base de données. Ici, cependant, nous avons simplement stocké la valeur de départ pour le "prochain groupe"dans la structure de la base de données plutôt qu'une valeur séquentielle en combinaison avec un algorithme de regroupement en mémoire. Ici, increment_size fait référence aux valeurs provenant de la base de données.

When using long transactions or conversations that span several database transactions, it is useful to store versioning data to ensure that if the same entity is updated by two conversations, the last to commit changes will be informed and not override the other conversation's work. It guarantees some isolation while still allowing for good scalability and works particularly well in read-often write-sometimes situations.

You can use two approaches: a dedicated version number or a timestamp.

Une propriété de version ou un timestamp ne doit jamais être null pour une instance détachée, ainsi Hibernate pourra détecter toute instance ayant une version ou un timestamp null comme transient, quelles que soient les stratégies unsaved-value spécifiées. Déclarer un numéro de version ou un timestamp "nullable" est un moyen pratique d'éviter tout problème avec les ré-attachements transitifs dans Hibernate, particulièrement utile pour ceux qui utilisent des identifiants assignés ou des clés composées .

You can add optimistic locking capability to an entity using the @Version annotation:

@Entity

public class Flight implements Serializable {
...
    @Version
    @Column(name="OPTLOCK")
    public Integer getVersion() { ... }
}           

The version property will be mapped to the OPTLOCK column, and the entity manager will use it to detect conflicting updates (preventing lost updates you might otherwise see with the last-commit-wins strategy).

The version column may be a numeric. Hibernate supports any kind of type provided that you define and implement the appropriate UserVersionType.

The application must not alter the version number set up by Hibernate in any way. To artificially increase the version number, check in Hibernate Entity Manager's reference documentation LockModeType.OPTIMISTIC_FORCE_INCREMENT or LockModeType.PESSIMISTIC_FORCE_INCREMENT.

If the version number is generated by the database (via a trigger for example), make sure to use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).

To declare a version property in hbm.xml, use:

<version
        column(1)="version_column"
        name="(2)propertyName"
        type="(3)typename"
        access(4)="field|property|ClassName"
        unsave(5)d-value="null|negative|undefined"
        genera(6)ted="never|always"
        insert(7)="true|false"
        node="element-name|@attribute-name|element/@attribute|."
/>

1

column (optionnel - par défaut égal au nom de la propriété) : le nom de la colonne contenant le numéro de version.

2

name : le nom d'un attribut de la classe persistante.

3

type (optionnel - par défaut à integer) : le type du numéro de version.

4

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

5

unsaved-value (optionnel - par défaut à undefined) : une valeur de la propriété d'identifiant qui indique que l'instance est nouvellement instanciée (non sauvegardée), et qui la distingue des instances détachées qui ont été sauvegardées ou chargées dans une session précédente. Undefined indique que la valeur de la propritété identifiant devrait être utilisée.

6

generated (optional - defaults to never): specifies that this version property value is generated by the database. See the discussion of generated properties for more information.

7

insert (optionnel - par défaut à true) : indique si la colonne de version doit être incluse dans les ordres SQL insert. Peut être configuré à false si et seulement si la colonne de la base de données est définie avec une valeur par défaut égale à 0.

Alternatively, you can use a timestamp. Timestamps are a less safe implementation of optimistic locking. However, sometimes an application might use the timestamps in other ways as well.

Simply mark a property of type Date or Calendar as @Version.

@Entity

public class Flight implements Serializable {
...
    @Version
    public Date getLastUpdate() { ... }
}           

When using timestamp versioning you can tell Hibernate where to retrieve the timestamp value from - database or JVM - by optionally adding the @org.hibernate.annotations.Source annotation to the property. Possible values for the value attribute of the annotation are org.hibernate.annotations.SourceType.VM and org.hibernate.annotations.SourceType.DB. The default is SourceType.DB which is also used in case there is no @Source annotation at all.

Like in the case of version numbers, the timestamp can also be generated by the database instead of Hibernate. To do that, use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).

In hbm.xml, use the <timestamp> element:

<timestamp
        column(1)="timestamp_column"
        name="(2)propertyName"
        access(3)="field|property|ClassName"
        unsave(4)d-value="null|undefined"
        source(5)="vm|db"
        genera(6)ted="never|always"
        node="element-name|@attribute-name|element/@attribute|."
/>

1

column (optionnel - par défaut devient le nom de la propriété) : le nom d'une colonne contenant le timestamp.

2

name : le nom d'une propriété au sens JavaBean de type Java Date ou Timestamp de la classe persistante.

3

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

4

unsaved-value (optionnel - par défaut à null) : propriété dont la valeur est un numéro de version qui indique que l'instance est nouvellement instanciée (non sauvegardée), et qui la distingue des instances détachées qui ont été sauvegardées ou chargées dans une session précédente. (undefined indique que la valeur de propriété identifiant devrait être utilisée).

5

source (optionnel - par défaut à vm) : d'où Hibernate doit-il récupérer la valeur du timestamp? Depuis la base de données ou depuis la JVM d'exécution? Les valeurs de timestamp de la base de données provoquent une surcharge puisque Hibernate doit interroger la base pour déterminer la prochaine valeur mais cela est plus sûr lorsque vous fonctionnez dans un cluster. Remarquez aussi que certains des Dialect s ne supportent pas cette fonction, et que d'autres l'implémentent mal, à cause d'un manque de précision (Oracle 8 par exemple).

6

generated (optional - defaults to never): specifies that this timestamp property value is actually generated by the database. See the discussion of generated properties for more information.

You need to decide which property needs to be made persistent in a given entity. This differs slightly between the annotation driven metadata and the hbm.xml files.

In the annotations world, every non static non transient property (field or method depending on the access type) of an entity is considered persistent, unless you annotate it as @Transient. Not having an annotation for your property is equivalent to the appropriate @Basic annotation.

The @Basic annotation allows you to declare the fetching strategy for a property. If set to LAZY, specifies that this property should be fetched lazily when the instance variable is first accessed. It requires build-time bytecode instrumentation, if your classes are not instrumented, property level lazy loading is silently ignored. The default is EAGER. You can also mark a property as not optional thanks to the @Basic.optional attribute. This will ensure that the underlying column are not nullable (if possible). Note that a better approach is to use the @NotNull annotation of the Bean Validation specification.

Let's look at a few examples:

public transient int counter; //transient property


private String firstname; //persistent property
@Transient
String getLengthInMeter() { ... } //transient property
String getName() {... } // persistent property
@Basic
int getLength() { ... } // persistent property
@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property
@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property           
@Enumerated(EnumType.STRING)
Starred getNote() { ... } //enum persisted as String in database

counter, a transient field, and lengthInMeter, a method annotated as @Transient, and will be ignored by the Hibernate. name, length, and firstname properties are mapped persistent and eagerly fetched (the default for simple properties). The detailedComment property value will be lazily fetched from the database once a lazy property of the entity is accessed for the first time. Usually you don't need to lazy simple properties (not to be confused with lazy association fetching). The recommended alternative is to use the projection capability of JP-QL (Java Persistence Query Language) or Criteria queries.

JPA support property mapping of all basic types supported by Hibernate (all basic Java types , their respective wrappers and serializable classes). Hibernate Annotations supports out of the box enum type mapping either into a ordinal column (saving the enum ordinal) or a string based column (saving the enum string representation): the persistence representation, defaulted to ordinal, can be overridden through the @Enumerated annotation as shown in the note property example.

In plain Java APIs, the temporal precision of time is not defined. When dealing with temporal data you might want to describe the expected precision in database. Temporal data can have DATE, TIME, or TIMESTAMP precision (ie the actual date, only the time, or both). Use the @Temporal annotation to fine tune that.

@Lob indicates that the property should be persisted in a Blob or a Clob depending on the property type: java.sql.Clob, Character[], char[] and java.lang.String will be persisted in a Clob. java.sql.Blob, Byte[], byte[] and Serializable type will be persisted in a Blob.

@Lob

public String getFullText() {
    return fullText;
}
@Lob
public byte[] getFullCode() {
    return fullCode;
}

If the property type implements java.io.Serializable and is not a basic type, and if the property is not annotated with @Lob, then the Hibernate serializable type is used.

You can also manually specify a type using the @org.hibernate.annotations.Type and some parameters if needed. @Type.type could be:

If you do not specify a type, Hibernate will use reflection upon the named property and guess the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the property getter using, in order, rules 2, 3, and 4.

@org.hibernate.annotations.TypeDef and @org.hibernate.annotations.TypeDefs allows you to declare type definitions. These annotations can be placed at the class or package level. Note that these definitions are global for the session factory (even when defined at the class level). If the type is used on a single entity, you can place the definition on the entity itself. Otherwise, it is recommended to place the definition at the package level. In the example below, when Hibernate encounters a property of class PhoneNumer, it delegates the persistence strategy to the custom mapping type PhoneNumberType. However, properties belonging to other classes, too, can delegate their persistence strategy to PhoneNumberType, by explicitly using the @Type annotation.

@TypeDef(

   name = "phoneNumber",
   defaultForType = PhoneNumber.class,
   typeClass = PhoneNumberType.class
)
@Entity
public class ContactDetails {
   [...]
   private PhoneNumber localPhoneNumber;
   @Type(type="phoneNumber")
   private OverseasPhoneNumber overseasPhoneNumber;
   [...]
}

The following example shows the usage of the parameters attribute to customize the TypeDef.

//in org/hibernate/test/annotations/entity/package-info.java

@TypeDefs(
    {
    @TypeDef(
        name="caster",
        typeClass = CasterStringType.class,
        parameters = {
            @Parameter(name="cast", value="lower")
        }
    )
    }
)
package org.hibernate.test.annotations.entity;
//in org/hibernate/test/annotations/entity/Forest.java
public class Forest {
    @Type(type="caster")
    public String getSmallText() {
    ...
}      

When using composite user type, you will have to express column definitions. The @Columns has been introduced for that purpose.

@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")

@Columns(columns = {
    @Column(name="r_amount"),
    @Column(name="r_currency")
})
public MonetaryAmount getAmount() {
    return amount;
}
public class MonetaryAmount implements Serializable {
    private BigDecimal amount;
    private Currency currency;
    ...
}

By default the access type of a class hierarchy is defined by the position of the @Id or @EmbeddedId annotations. If these annotations are on a field, then only fields are considered for persistence and the state is accessed via the field. If there annotations are on a getter, then only the getters are considered for persistence and the state is accessed via the getter/setter. That works well in practice and is the recommended approach.

However in some situations, you need to:

The best use case is an embeddable class used by several entities that might not use the same access type. In this case it is better to force the access type at the embeddable class level.

To force the access type on a given class, use the @Access annotation as showed below:

@Entity

public class Order {
   @Id private Long id;
   public Long getId() { return id; }
   public void setId(Long id) { this.id = id; }
   @Embedded private Address address;
   public Address getAddress() { return address; }
   public void setAddress() { this.address = address; }
}
@Entity
public class User {
   private Long id;
   @Id public Long getId() { return id; }
   public void setId(Long id) { this.id = id; }
   private Address address;
   @Embedded public Address getAddress() { return address; }
   public void setAddress() { this.address = address; }
}
@Embeddable
@Access(AcessType.PROPERTY)
public class Address {
   private String street1;
   public String getStreet1() { return street1; }
   public void setStreet1() { this.street1 = street1; }
   private hashCode; //not persistent
}

You can also override the access type of a single property while keeping the other properties standard.

@Entity

public class Order {
   @Id private Long id;
   public Long getId() { return id; }
   public void setId(Long id) { this.id = id; }
   @Transient private String userId;
   @Transient private String orderId;
   @Access(AccessType.PROPERTY)
   public String getOrderNumber() { return userId + ":" + orderId; }
   public void setOrderNumber() { this.userId = ...; this.orderId = ...; }
}

In this example, the default access type is FIELD except for the orderNumber property. Note that the corresponding field, if any must be marked as @Transient or transient.

The column(s) used for a property mapping can be defined using the @Column annotation. Use it to override default values (see the JPA specification for more information on the defaults). You can use this annotation at the property level for properties that are:

@Entity

public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false, length=50)
public String getName() { ... }
            

The name property is mapped to the flight_name column, which is not nullable, has a length of 50 and is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @Id or @Version properties.

@Column(
    name="colu(1)mnName";
    boolean un(2)ique() default false;
    boolean nu(3)llable() default true;
    boolean in(4)sertable() default true;
    boolean up(5)datable() default true;
    String col(6)umnDefinition() default "";
    String tab(7)le() default "";
    int length(8)() default 255;
    int precis(9)ion() default 0; // decimal precision
    int scale((10)) default 0; // decimal scale

1

name (optional): the column name (default to the property name)

2

unique (optional): set a unique constraint on this column or not (default false)

3

nullable (optional): set the column as nullable (default true).

4

insertable (optional): whether or not the column will be part of the insert statement (default true)

5

updatable (optional): whether or not the column will be part of the update statement (default true)

6

columnDefinition (optional): override the sql DDL fragment for this particular column (non portable)

7

table (optional): define the targeted table (default primary table)

8

length (optional): column length (default 255)

8

precision (optional): column decimal precision (default 0)

10

scale (optional): column decimal scale if useful (default 0)

L'élément <property> déclare une propriété persistante de la classe au sens JavaBean.

<property
        name="(1)propertyName"
        column(2)="column_name"
        type="(3)typename"
        update(4)="true|false"
        insert(4)="true|false"
        formul(5)a="arbitrary SQL expression"
        access(6)="field|property|ClassName"
        lazy="(7)true|false"
        unique(8)="true|false"
        not-nu(9)ll="true|false"
        optimi(10)stic-lock="true|false"
        genera(11)ted="never|insert|always"
        node="element-name|@attribute-name|element/@attribute|."
        index="index_name"
        unique_key="unique_key_id"
        length="L"
        precision="P"
        scale="S"
/>

1

name : nom de la propriété, avec une lettre initiale en minuscule.

2

column (optionnel - par défaut au nom de la propriété) : le nom de la colonne mappée. Cela peut aussi être indiqué dans le(s) sous-élément(s) <column> imbriqués.

3

type (optionnel) : nom indiquant le type Hibernate.

4

update, insert (optionnel - par défaut à true) : indique que les colonnes mappées devraient être incluses dans des déclarations SQL UPDATE et/ou des INSERT. Mettre les deux à false autorise une propriété pure dérivée dont la valeur est initialisée de quelque autre propriété qui mappe à la même colonne(s) ou par un trigger ou une autre application. (utile si vous savez qu'un trigger affectera la valeur à la colonne).

5

formula (optionnel) : une expression SQL qui définit la valeur pour une propriété calculée. Les propriétés calculées ne possèdent pas leur propre mappage.

6

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

7

lazy (optionnel - par défaut à false) : indique que cette propriété devrait être chargée en différé (lazy loading) quand on accède à la variable d'instance pour la première fois (nécessite une instrumentation du bytecode lors de la phase de construction).

8

unique (optionnel) : génère le DDL d'une contrainte d'unicité pour les colonnes. Permet aussi d'en faire la cible d'une property-ref.

9

not-null (optionnel) : génère le DDL d'une contrainte de nullité pour les colonnes.

10

optimistic-lock (optionnel - par défaut à true) : indique si les mise à jour de cette propriété nécessitent ou non l'acquisition d'un verrou optimiste. En d'autres termes, cela détermine s'il est nécessaire d'incrémenter un numéro de version quand cette propriété est marquée obsolète (dirty).

11

generated (optional - defaults to never): specifies that this property value is actually generated by the database. See the discussion of generated properties for more information.

typename peut être :

Si vous n'indiquez pas un type, Hibernate utilisera la réflexion sur le nom de la propriété pour tenter de trouver le type Hibernate correct. Hibernate essayera d'interprêter le nom de la classe retournée par le getter de la propriété en utilisant les règles 2, 3, 4 dans cet ordre. Dans certains cas vous aurez encore besoin de l'attribut type. (Par exemple, pour distinguer Hibernate.DATE et Hibernate.TIMESTAMP, ou pour préciser un type personnalisé).

L'attribut access permet de contrôler comment Hibernate accédera à la propriété à l'exécution. Par défaut, Hibernate utilisera les méthodes set/get. Si vous indiquez access="field", Hibernate ignorera les getter/setter et accédera à la propriété directement en utilisant la réflexion. Vous pouvez spécifier votre propre stratégie d'accès aux propriétés en nommant une classe qui implémente l'interface org.hibernate.propertexige une instrumentation de code d'octets build-timey.PropertyAccessor.

Les propriétés dérivées représentent une fonctionnalité particulièrement intéressante. Ces propriétés sont par définition en lecture seule, la valeur de la propriété est calculée au chargement. Le calcul est déclaré comme une expression SQL, qui se traduit par une sous-requête SELECT dans la requête SQL qui charge une instance :


<property name="totalPrice"
    formula="( SELECT SUM (li.quantity*p.price) FROM LineItem li, Product p
                WHERE li.productId = p.productId
                AND li.customerId = customerId
                AND li.orderNumber = orderNumber )"/>

Remarquez que vous pouvez référencer la propre table des entités en ne déclarant pas un alias sur une colonne particulière (customerId dans l'exemple donné). Notez aussi que vous pouvez utiliser le sous-élément de mappage <formula> plutôt que d'utiliser l'attribut si vous le souhaitez.

Embeddable objects (or components) are objects whose properties are mapped to the same table as the owning entity's table. Components can, in turn, declare their own properties, components or collections

It is possible to declare an embedded component inside an entity and even override its column mapping. Component classes have to be annotated at the class level with the @Embeddable annotation. It is possible to override the column mapping of an embedded object for a particular entity using the @Embedded and @AttributeOverride annotation in the associated property:

@Entity

public class Person implements Serializable {
    // Persistent component using defaults
    Address homeAddress;
    @Embedded
    @AttributeOverrides( {
            @AttributeOverride(name="iso2", column = @Column(name="bornIso2") ),
            @AttributeOverride(name="name", column = @Column(name="bornCountryName") )
    } )
    Country bornIn;
    ...
}          
@Embeddable

public class Address implements Serializable {
    String city;
    Country nationality; //no overriding here
}            
@Embeddable

public class Country implements Serializable {
    private String iso2;
    @Column(name="countryName") private String name;
    public String getIso2() { return iso2; }
    public void setIso2(String iso2) { this.iso2 = iso2; }
    
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }
    ...
}            

An embeddable object inherits the access type of its owning entity (note that you can override that using the @Access annotation).

The Person entity has two component properties, homeAddress and bornIn. homeAddress property has not been annotated, but Hibernate will guess that it is a persistent component by looking for the @Embeddable annotation in the Address class. We also override the mapping of a column name (to bornCountryName) with the @Embedded and @AttributeOverride annotations for each mapped attribute of Country. As you can see, Country is also a nested component of Address, again using auto-detection by Hibernate and JPA defaults. Overriding columns of embedded objects of embedded objects is through dotted expressions.

@Embedded

    @AttributeOverrides( {
            @AttributeOverride(name="city", column = @Column(name="fld_city") ),
            @AttributeOverride(name="nationality.iso2", column = @Column(name="nat_Iso2") ),
            @AttributeOverride(name="nationality.name", column = @Column(name="nat_CountryName") )
            //nationality columns in homeAddress are overridden
    } )
    Address homeAddress;

Hibernate Annotations supports something that is not explicitly supported by the JPA specification. You can annotate a embedded object with the @MappedSuperclass annotation to make the superclass properties persistent (see @MappedSuperclass for more informations).

You can also use association annotations in an embeddable object (ie @OneToOne, @ManyToOne, @OneToMany or @ManyToMany). To override the association columns you can use @AssociationOverride.

If you want to have the same embeddable object type twice in the same entity, the column name defaulting will not work as several embedded objects would share the same set of columns. In plain JPA, you need to override at least one set of columns. Hibernate, however, allows you to enhance the default naming mechanism through the NamingStrategy interface. You can write a strategy that prevent name clashing in such a situation. DefaultComponentSafeNamingStrategy is an example of this.

If a property of the embedded object points back to the owning entity, annotate it with the @Parent annotation. Hibernate will make sure this property is properly loaded with the entity reference.

In XML, use the <component> element.

<component
        name="(1)propertyName"
        class=(2)"className"
        insert(3)="true|false"
        update(4)="true|false"
        access(5)="field|property|ClassName"
        lazy="(6)true|false"
        optimi(7)stic-lock="true|false"
        unique(8)="true|false"
        node="element-name|."
>

        <property ...../>
        <many-to-one .... />
        ........
</component>

1

name : le nom de la propriété.

2

class (optionnel - par défaut au type de la propriété déterminé par réflexion) : le nom de la classe (enfant) du composant.

3

insert : les colonnes mappées apparaissent-elles dans les SQL INSERT s ?

4

update: les colonnes mappées apparaissent-elles dans les SQL UPDATE s ?

5

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

6

lazy (optionnel - par défaut à false) : indique que ce composant doit être chargé en différé au premier accès à la variable d'instance (nécessite une instrumentation du bytecode lors de la phase de construction).

7

optimistic-lock (optionnel - par défaut à true) : spécifie si les mise à jour sur ce composant nécessitent ou non l'acquisition d'un verrou optimiste. En d'autres termes, cela détermine si une incrémentation de version doit avoir lieu quand la propriété est marquée obsolète (dirty).

8

unique (optionnel - par défaut à false) : Indique qu'une contrainte d'unicité existe sur toutes les colonnes mappées de ce composant.

Les balises enfant <property> mappent les propriétés de la classe enfant sur les colonnes de la table.

L'élément <component> permet de déclarer un sous-élément <parent> qui associe une propriété de la classe composant comme une référence arrière vers l'entité contenante.

The <dynamic-component> element allows a Map to be mapped as a component, where the property names refer to keys of the map. See Section 9.5, « Les composants dynamiques » for more information. This feature is not supported in annotations.

Java is a language supporting polymorphism: a class can inherit from another. Several strategies are possible to persist a class hierarchy:

With this approach the properties of all the subclasses in a given mapped class hierarchy are stored in a single table.

Each subclass declares its own persistent properties and subclasses. Version and id properties are assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique discriminator value. If this is not specified, the fully qualified Java class name is used.

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
    name="planetype",
    discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }          

In hbm.xml, for the table-per-class-hierarchy mapping strategy, the <subclass> declaration is used. For example:

<subclass
        name="(1)ClassName"
        discri(2)minator-value="discriminator_value"
        proxy=(3)"ProxyInterface"
        lazy="(4)true|false"
        dynamic-update="true|false"
        dynamic-insert="true|false"
        entity-name="EntityName"
        node="element-name"
        extends="SuperclassName">

        <property .... />
        .....
</subclass>

1

name : le nom de classe complet de la sous-classe.

2

discriminator-value (optionnel - par défaut le nom de la classe) : une valeur qui distingue les différentes sous-classes.

3

proxy (optionnel) : indique une classe ou interface à utiliser pour l'initialisation différée des proxies.

4

lazy (optionnel, par défaut à true) : spécifier lazy="false" désactive l'utilisation de l'extraction différée.

For information about inheritance mappings see Chapitre 10, Mapping d'héritage de classe .

Discriminators are required for polymorphic persistence using the table-per-class-hierarchy mapping strategy. It declares a discriminator column of the table. The discriminator column contains marker values that tell the persistence layer what subclass to instantiate for a particular row. Hibernate Core supports the follwoing restricted set of types as discriminator column: string, character, integer, byte, short, boolean, yes_no, true_false.

Use the @DiscriminatorColumn to define the discriminator column as well as the discriminator type.

You can also use @DiscriminatorFormula to express in SQL a virtual discriminator column. This is particularly useful when the discriminator value can be extracted from one or more columns of the table. Both @DiscriminatorColumn and @DiscriminatorFormula are to be set on the root entity (once per persisted hierarchy).

@org.hibernate.annotations.DiscriminatorOptions allows to optionally specify Hibernate specific discriminator options which are not standardized in JPA. The available options are force and insert. The force attribute is useful if the table contains rows with "extra" discriminator values that are not mapped to a persistent class. This could for example occur when working with a legacy database. If force is set to true Hibernate will specify the allowed discriminator values in the SELECT query, even when retrieving all instances of the root class. The second option - insert - tells Hibernate whether or not to include the discriminator column in SQL INSERTs. Usually the column should be part of the INSERT statement, but if your discriminator column is also part of a mapped composite identifier you have to set this option to false.

Finally, use @DiscriminatorValue on each class of the hierarchy to specify the value stored in the discriminator column for a given entity. If you do not set @DiscriminatorValue on a class, the fully qualified class name is used.

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
    name="planetype",
    discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }          

In hbm.xml, the <discriminator> element is used to define the discriminator column or formula:

<discriminator
        column(1)="discriminator_column"
        type="(2)discriminator_type"
        force=(3)"true|false"
        insert(4)="true|false"
        formul(5)a="arbitrary sql expression"
/>

1

column (optionnel - par défaut à class), le nom de la colonne discriminante.

2

type (optionnel - par défaut à string) un nom indiquant le type Hibernate.

3

force (optionnel - par défaut à false) "oblige" Hibernate à spécifier une valeur discriminante autorisée même quand on récupère toutes les instances de la classe de base.

4

insert (optionnel - par défaut à true) à passer à false si la colonne discriminante fait aussi partie d'un identifiant composé mappé (Indique à Hibernate de ne pas inclure la colonne dans les SQL INSERT s).

5

formula (optionnel) une expression SQL arbitraire qui est exécutée quand un type doit être évalué. Permet la discrimination basée sur le contenu.

Les véritables valeurs de la colonne discriminante sont spécifiées par l'attribut discriminator-value des éléments <class> et <subclass>.

En utilisant l'attribut formula vous pouvez déclarer une expression SQL arbitraire qui sera utilisée pour évaluer le type d'une ligne :


<discriminator
    formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
    type="integer"/>

Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping strategy. An inherited state is retrieved by joining with the table of the superclass. A discriminator column is not required for this mapping strategy. Each subclass must, however, declare a table column holding the object identifier. The primary key of this table is also a foreign key to the superclass table and described by the @PrimaryKeyJoinColumns or the <key> element.

@Entity @Table(name="CATS")

@Inheritance(strategy=InheritanceType.JOINED)
public class Cat implements Serializable { 
    @Id @GeneratedValue(generator="cat-uuid") 
    @GenericGenerator(name="cat-uuid", strategy="uuid")
    String getId() { return id; }
    ...
}
@Entity @Table(name="DOMESTIC_CATS")
@PrimaryKeyJoinColumn(name="CAT")
public class DomesticCat extends Cat { 
    public String getName() { return name; }
}            

In hbm.xml, use the <joined-subclass> element. For example:

<joined-subclass
        name="(1)ClassName"
        table=(2)"tablename"
        proxy=(3)"ProxyInterface"
        lazy="(4)true|false"
        dynamic-update="true|false"
        dynamic-insert="true|false"
        schema="schema"
        catalog="catalog"
        extends="SuperclassName"
        persister="ClassName"
        subselect="SQL expression"
        entity-name="EntityName"
        node="element-name">

        <key .... >

        <property .... />
        .....
</joined-subclass>

1

name : le nom de classe complet de la sous-classe.

2

table: le nom de la table de la sous-classe.

3

proxy (optionnel) : indique une classe ou interface à utiliser pour l'initialisation différée des proxies.

4

lazy (optionnel, par défaut à true) : spécifier lazy="false" désactive l'utilisation de l'extraction différée.

Use the <key> element to declare the primary key / foreign key column. The mapping at the start of the chapter would then be re-written as:


<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
        "-//Hibernate/Hibernate Mapping DTD//EN"
        "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

        <class name="Cat" table="CATS">
                <id name="id" column="uid" type="long">
                        <generator class="hilo"/>
                </id>
                <property name="birthdate" type="date"/>
                <property name="color" not-null="true"/>
                <property name="sex" not-null="true"/>
                <property name="weight"/>
                <many-to-one name="mate"/>
                <set name="kittens">
                        <key column="MOTHER"/>
                        <one-to-many class="Cat"/>
                </set>
                <joined-subclass name="DomesticCat" table="DOMESTIC_CATS">
                    <key column="CAT"/>
                    <property name="name" type="string"/>
                </joined-subclass>
        </class>

        <class name="eg.Dog">
                <!-- mapping for Dog could go here -->
        </class>

</hibernate-mapping>

For information about inheritance mappings see Chapitre 10, Mapping d'héritage de classe .

A third option is to map only the concrete classes of an inheritance hierarchy to tables. This is called the table-per-concrete-class strategy. Each table defines all persistent states of the class, including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance hierarchies. You can map each class as a separate entity root. However, if you wish use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need to use the union subclass mapping.

@Entity

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable { ... }            

Or in hbm.xml:

<union-subclass
        name="(1)ClassName"
        table=(2)"tablename"
        proxy=(3)"ProxyInterface"
        lazy="(4)true|false"
        dynamic-update="true|false"
        dynamic-insert="true|false"
        schema="schema"
        catalog="catalog"
        extends="SuperclassName"
        abstract="true|false"
        persister="ClassName"
        subselect="SQL expression"
        entity-name="EntityName"
        node="element-name">

        <property .... />
        .....
</union-subclass>

1

name : le nom de classe complet de la sous-classe.

2

table: le nom de la table de la sous-classe.

3

proxy (optionnel) : indique une classe ou interface à utiliser pour l'initialisation différée des proxies.

4

lazy (optionnel, par défaut à true) : spécifier lazy="false" désactive l'utilisation de l'extraction différée.

Aucune colonne discriminante ou colonne clé n'est requise pour cette stratégie de mappage.

For information about inheritance mappings see Chapitre 10, Mapping d'héritage de classe .

This is sometimes useful to share common properties through a technical or a business superclass without including it as a regular mapped entity (ie no specific table for this entity). For that purpose you can map them as @MappedSuperclass.

@MappedSuperclass

public class BaseEntity {
    @Basic
    @Temporal(TemporalType.TIMESTAMP)
    public Date getLastUpdate() { ... }
    public String getLastUpdater() { ... }
    ...
}
@Entity class Order extends BaseEntity {
    @Id public Integer getId() { ... }
    ...
}

In database, this hierarchy will be represented as an Order table having the id, lastUpdate and lastUpdater columns. The embedded superclass property mappings are copied into their entity subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.

You can override columns defined in entity superclasses at the root entity level using the @AttributeOverride annotation.

@MappedSuperclass

public class FlyingObject implements Serializable {
    public int getAltitude() {
        return altitude;
    }
    @Transient
    public int getMetricAltitude() {
        return metricAltitude;
    }
    @ManyToOne
    public PropulsionType getPropulsion() {
        return metricAltitude;
    }
    ...
}
@Entity
@AttributeOverride( name="altitude", column = @Column(name="fld_altitude") )
@AssociationOverride( 
   name="propulsion", 
   joinColumns = @JoinColumn(name="fld_propulsion_fk") 
)
public class Plane extends FlyingObject {
    ...
}

The altitude property will be persisted in an fld_altitude column of table Plane and the propulsion association will be materialized in a fld_propulsion_fk foreign key column.

You can define @AttributeOverride(s) and @AssociationOverride(s) on @Entity classes, @MappedSuperclass classes and properties pointing to an @Embeddable object.

In hbm.xml, simply map the properties of the superclass in the <class> element of the entity that needs to inherit them.

While not recommended for a fresh schema, some legacy databases force your to map a single entity on several tables.

Using the @SecondaryTable or @SecondaryTables class level annotations. To express that a column is in a particular table, use the table parameter of @Column or @JoinColumn.

@Entity

@Table(name="MainCat")
@SecondaryTables({
    @SecondaryTable(name="Cat1", pkJoinColumns={
        @PrimaryKeyJoinColumn(name="cat_id", referencedColumnName="id")
    ),
    @SecondaryTable(name="Cat2", uniqueConstraints={@UniqueConstraint(columnNames={"storyPart2"})})
})
public class Cat implements Serializable {
    private Integer id;
    private String name;
    private String storyPart1;
    private String storyPart2;
    @Id @GeneratedValue
    public Integer getId() {
        return id;
    }
    public String getName() {
        return name;
    }
    
    @Column(table="Cat1")
    public String getStoryPart1() {
        return storyPart1;
    }
    @Column(table="Cat2")
    public String getStoryPart2() {
        return storyPart2;
    }
}

In this example, name will be in MainCat. storyPart1 will be in Cat1 and storyPart2 will be in Cat2. Cat1 will be joined to MainCat using the cat_id as a foreign key, and Cat2 using id (ie the same column name, the MainCat id column has). Plus a unique constraint on storyPart2 has been set.

There is also additional tuning accessible via the @org.hibernate.annotations.Table annotation:

Make sure to use the secondary table name in the appliesto property

@Entity

@Table(name="MainCat")
@SecondaryTable(name="Cat1")
@org.hibernate.annotations.Table(
   appliesTo="Cat1",
   fetch=FetchMode.SELECT,
   optional=true)
public class Cat implements Serializable {
    private Integer id;
    private String name;
    private String storyPart1;
    private String storyPart2;
    @Id @GeneratedValue
    public Integer getId() {
        return id;
    }
    public String getName() {
        return name;
    }
    
    @Column(table="Cat1")
    public String getStoryPart1() {
        return storyPart1;
    }
    @Column(table="Cat2")
    public String getStoryPart2() {
        return storyPart2;
    }
}

In hbm.xml, use the <join> element.

<join
        table=(1)"tablename"
        schema(2)="owner"
        catalo(3)g="catalog"
        fetch=(4)"join|select"
        invers(5)e="true|false"
        option(6)al="true|false">

        <key ... />

        <property ... />
        ...
</join>

1

table : le nom de la table jointe.

2

schema (optionnel) : surcharge le nom de schéma spécifié par l'élément racine <hibernate-mappage>.

3

catalog (optionnel) : surcharge le nom du catalogue spécifié par l'élément racine <hibernate-mappage>.

4

fetch (optionnel - par défaut à join) : si positionné à join, Hibernate utilisera une jointure interne pour charger une jointure définie par une classe ou ses super-classes et une jointure externe pour une <jointure> définie par une sous-classe. Si positionné à select, Hibernate utilisera un select séquentiel pour une <jointure> définie sur une sous-classe, qui ne sera délivrée que si une ligne représente une instance de la sous-classe. Les jointures internes seront quand même utilisées pour charger une <jointure> définie par une classe et ses super-classes.

5

inverse (optionnel - par défaut à false) : si positionné à true, Hibernate n'essaiera pas d'insérer ou de mettre à jour les propriétés définies par cette jointure.

6

optionnel (optionnel - par défaut à false) : si positionné à true, Hibernate insèrera une ligne seulement si les propriétés définies par cette jointure sont non-nulles et utilisera toujours une jointure externe pour extraire les propriétés.

Par exemple, les informations d'adresse pour une personne peuvent être mappées vers une table séparée (tout en préservant des sémantiques de type valeur pour toutes ses propriétés) :


<class name="Person"
    table="PERSON">

    <id name="id" column="PERSON_ID">...</id>

    <join table="ADDRESS">
        <key column="ADDRESS_ID"/>
        <property name="address"/>
        <property name="zip"/>
        <property name="country"/>
    </join>
    ...

Cette fonctionnalité est souvent seulement utile pour les modèles de données hérités d'anciens systèmes, nous recommandons d'utiliser moins de tables que de classes et un modèle de domaine à granularité fine. Cependant, c'est utile pour passer d'une stratégie de mappage d'héritage à une autre dans une hiérarchie simple, comme nous le verrons plus tard.

To link one entity to an other, you need to map the association property as a to one association. In the relational model, you can either use a foreign key or an association table, or (a bit less common) share the same primary key value between the two entities.

To mark an association, use either @ManyToOne or @OnetoOne.

@ManyToOne and @OneToOne have a parameter named targetEntity which describes the target entity name. You usually don't need this parameter since the default value (the type of the property that stores the association) is good in almost all cases. However this is useful when you want to use interfaces as the return type instead of the regular entity.

Setting a value of the cascade attribute to any meaningful value other than nothing will propagate certain operations to the associated object. The meaningful values are divided into three categories.

By default, single point associations are eagerly fetched in JPA 2. You can mark it as lazily fetched by using @ManyToOne(fetch=FetchType.LAZY) in which case Hibernate will proxy the association and load it when the state of the associated entity is reached. You can force Hibernate not to use a proxy by using @LazyToOne(NO_PROXY). In this case, the property is fetched lazily when the instance variable is first accessed. This requires build-time bytecode instrumentation. lazy="false" specifies that the association will always be eagerly fetched.

With the default JPA options, single-ended associations are loaded with a subsequent select if set to LAZY, or a SQL JOIN is used for EAGER associations. You can however adjust the fetching strategy, ie how data is fetched by using @Fetch. FetchMode can be SELECT (a select is triggered when the association needs to be loaded) or JOIN (use a SQL JOIN to load the association while loading the owner entity). JOIN overrides any lazy attribute (an association loaded through a JOIN strategy cannot be lazy).

An ordinary association to another persistent class is declared using a

and a foreign key in one table is referencing the primary key column(s) of the target table.

@Entity

public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
    @JoinColumn(name="COMP_ID")
    public Company getCompany() {
        return company;
    }
    ...
}            

The @JoinColumn attribute is optional, the default value(s) is the concatenation of the name of the relationship in the owner side, _ (underscore), and the name of the primary key column in the owned side. In this example company_id because the property name is company and the column id of Company is id.

@Entity

public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE}, targetEntity=CompanyImpl.class )
    @JoinColumn(name="COMP_ID")
    public Company getCompany() {
        return company;
    }
    ...
}
public interface Company {
    ...
}

You can also map a to one association through an association table. This association table described by the @JoinTable annotation will contains a foreign key referencing back the entity table (through @JoinTable.joinColumns) and a a foreign key referencing the target entity table (through @JoinTable.inverseJoinColumns).

@Entity

public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
    @JoinTable(name="Flight_Company",
        joinColumns = @JoinColumn(name="FLIGHT_ID"),
        inverseJoinColumns = @JoinColumn(name="COMP_ID")
    )
    public Company getCompany() {
        return company;
    }
    ...
}       

You can mark an association as mandatory by using the optional=false attribute. We recommend to use Bean Validation's @NotNull annotation as a better alternative however. As a consequence, the foreign key column(s) will be marked as not nullable (if possible).

When Hibernate cannot resolve the association because the expected associated element is not in database (wrong id on the association column), an exception is raised. This might be inconvenient for legacy and badly maintained schemas. You can ask Hibernate to ignore such elements instead of raising an exception using the @NotFound annotation.


Sometimes you want to delegate to your database the deletion of cascade when a given entity is deleted. In this case Hibernate generates a cascade delete constraint at the database level.


Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can override the constraint name using @ForeignKey.


Sometimes, you want to link one entity to an other not by the target entity primary key but by a different unique key. You can achieve that by referencing the unique key column(s) in @JoinColumn.referenceColumnName.

@Entity

class Person {
   @Id Integer personNumber;
   String firstName;
   @Column(name="I")
   String initial;
   String lastName;
}
@Entity
class Home {
   @ManyToOne
   @JoinColumns({
      @JoinColumn(name="first_name", referencedColumnName="firstName"),
      @JoinColumn(name="init", referencedColumnName="I"),
      @JoinColumn(name="last_name", referencedColumnName="lastName"),
   })
   Person owner
}

This is not encouraged however and should be reserved to legacy mappings.

In hbm.xml, mapping an association is similar. The main difference is that a @OneToOne is mapped as <many-to-one unique="true"/>, let's dive into the subject.

<many-to-one
        name="(1)propertyName"
        column(2)="column_name"
        class=(3)"ClassName"
        cascad(4)e="cascade_style"
        fetch=(5)"join|select"
        update(6)="true|false"
        insert(6)="true|false"
        proper(7)ty-ref="propertyNameFromAssociatedClass"
        access(8)="field|property|ClassName"
        unique(9)="true|false"
        not-nu(10)ll="true|false"
        optimi(11)stic-lock="true|false"
        lazy="(12)proxy|no-proxy|false"
        not-fo(13)und="ignore|exception"
        entity(14)-name="EntityName"
        formul(15)a="arbitrary SQL expression"
        node="element-name|@attribute-name|element/@attribute|."
        embed-xml="true|false"
        index="index_name"
        unique_key="unique_key_id"
        foreign-key="foreign_key_name"
/>

1

name : le nom de la propriété.

2

column (optionnel) : le nom de la colonne de la clé étrangère. Cela peut être aussi spécifié par un ou des sous-élément(s) <column>.

3

class (optionnel - par défaut, le type de la propriété déterminé par réflexion) : le nom de la classe associée.

4

cascade (optionnel) : indique quelles opérations doivent être cascadées de l'objet parent vers l'objet associé.

5

fetch (optionnel - par défaut à select) : choisit entre le chargement de type jointure externe (outer-join) ou le chargement par select successifs.

6

update, insert (optionnel - par défaut à true) : indique que les colonnes mappées devraient être incluses dans des SQL UPDATE et/ou des déclarations INSERT. Mettre les deux à false, permet une association pure dérivée dont la valeur est initialisée à partir d'une autre propriété qui mappe à une ou plusieurs mêmes colonnes, ou par un trigger ou une autre application.

7

property-ref (optionnel) : le nom d'une propriété de la classe associée qui est jointe à cette clé étrangère. Si non-spécifiée, la clé primaire de la classe associée est utilisée.

8

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

9

unique (optionnel) : génère le DDL d'une contrainte unique pour la clé étrangère. Permet aussi d'en faire la cible d'une property-ref. Cela permet de créer une véritable association un-à-un.

10

not-null (optionnel) : active le DDL d'une contrainte de nullité pour les colonnes de clés étrangères.

11

optimistic-lock (optionnel - par défaut à true) : indique si les mise à jour de cette propriété nécessitent ou non l'acquisition d'un verrou optimiste. En d'autres termes, cela détermine s'il est nécessaire d'incrémenter un numéro de version quand cette propriété est marquée obsolète (dirty).

12

lazy (optionnel - par défaut à proxy) : par défaut, les associations de point uniques utilisent des proxies. lazy="no-proxy" indique que cette propriété doit être chargée en différé au premier accès à la variable d'instance (nécessite une instrumentation du bytecode lors de la phase de construction). lazy="false" indique que l'association sera toujours chargée.

13

not-found (optionnel - par défaut = exception) : spécifie comment les clés étrangères qui référencent des lignes manquantes seront gérées : ignore traitera une ligne manquante comme une association nulle.

14

entity-name (optionnel) : le nom de l'entité de la classe associée.

15

formula (optionnel) : une expression SQL qui définit la valeur pour une clé étrangère calculée.

Setting a value of the cascade attribute to any meaningful value other than none will propagate certain operations to the associated object. The meaningful values are divided into three categories. First, basic operations, which include: persist, merge, delete, save-update, evict, replicate, lock and refresh; second, special values: delete-orphan; and third,all comma-separated combinations of operation names: cascade="persist,merge,evict" or cascade="all,delete-orphan". See Section 11.11, « Persistance transitive » for a full explanation. Note that single valued, many-to-one and one-to-one, associations do not support orphan delete.

Une déclaration many-to-one typique est aussi simple que :


<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

L'attribut property-ref devrait être utilisé pour mapper seulement des données provenant d'un ancien système où les clés étrangères font référence à une clé unique de la table associée et qui n'est pas la clé primaire. C'est un cas de mauvaise conception relationnelle. Par exemple, supposez que la classe Product ait un numéro de série unique qui n'est pas la clé primaire. L'attribut unique contrôle la génération DDL par Hibernate avec l'outil SchemaExport.


<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

Ainsi le mappage pour OrderItem peut utiliser :


<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>

Bien que ce ne soit certainement pas encouragé.

Si la clé unique référencée comprend des propriétés multiples de l'entité associée, vous devez mapper ces propriétés à l'intérieur d'un élément nommé <properties>.

Si la clé unique référencée est la propriété d'un composant, vous pouvez spécifier le chemin de propriété :


<many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN"/>

The second approach is to ensure an entity and its associated entity share the same primary key. In this case the primary key column is also a foreign key and there is no extra column. These associations are always one to one.


Note

Many people got confused by these primary key based one to one associations. They can only be lazily loaded if Hibernate knows that the other side of the association is always present. To indicate to Hibernate that it is the case, use @OneToOne(optional=false).

In hbm.xml, use the following mapping.

<one-to-one
        name="(1)propertyName"
        class=(2)"ClassName"
        cascad(3)e="cascade_style"
        constr(4)ained="true|false"
        fetch=(5)"join|select"
        proper(6)ty-ref="propertyNameFromAssociatedClass"
        access(7)="field|property|ClassName"
        formul(8)a="any SQL expression"
        lazy="(9)proxy|no-proxy|false"
        entity(10)-name="EntityName"
        node="element-name|@attribute-name|element/@attribute|."
        embed-xml="true|false"
        foreign-key="foreign_key_name"
/>

1

name : le nom de la propriété.

2

class (optionnel - par défaut, le type de la propriété déterminé par réflexion) : le nom de la classe associée.

3

cascade (optionnel) : indique quelles opérations doivent être cascadées de l'objet parent vers l'objet associé.

4

constrained (optionnel) : indique qu'une contrainte de clé étrangère sur la clé primaire de la table mappée référence la table de la classe associée. Cette option affecte l'ordre dans lequel chaque save() et chaque delete() est cascadé et détermine si l'association peut utiliser un proxy (aussi utilisé par l'outil SchemaExport).

5

fetch (optionnel - par défaut à select) : choisit entre le chargement de type jointure externe (outer-join) ou le chargement par select successifs.

6

property-ref (optionnel) : le nom de la propriété de la classe associée qui est jointe à la clé primaire de cette classe. Si ce n'est pas spécifié, la clé primaire de la classe associée est utilisée.

7

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

8

formula (optionnel) : presque toutes les associations un-à-un pointent sur la clé primaire de l'entité propriétaire. Dans les rares cas différents, vous devez donner une ou plusieurs autres colonnes ou expression à joindre par une formule SQL . Voir org.hibernate.test.onetooneformula pour un exemple.

9

lazy (optionnel - par défaut proxy) : par défaut, les associations simples sont soumises à proxy. lazy="no-proxy" spécifie que la propriété doit être chargée en différé au premier accès à l'instance. (nécessite l'instrumentation du bytecode à la construction). lazy="false" indique que l'association sera toujours chargée agressivement. . Notez que si constrained="false", l'utilisation de proxy est impossible et Hibernate chargera automatiquement l'association .

10

entity-name (optionnel) : le nom de l'entité de la classe associée.

Les associations par clé primaire ne nécessitent pas une colonne supplémentaire en table ; si deux lignes sont liées par l'association alors les deux lignes de la table partagent la même valeur de clé primaire. Donc si vous voulez que deux objets soient liés par une association par clé primaire, vous devez faire en sorte qu'on leur assigne la même valeur d'identifiant.

Pour une association par clé primaire, ajoutez les mappages suivants à Employee et Person, respectivement :


<one-to-one name="person" class="Person"/>

<one-to-one name="employee" class="Employee" constrained="true"/>

Maintenant, vous devez faire en sorte que les clés primaires des lignes liées dans les tables PERSON et EMPLOYEE sont égales. On utilise une stratégie Hibernate spéciale de génération d'identifiants appelée foreign :


<class name="person" table="PERSON">
    <id name="id" column="PERSON_ID">
        <generator class="foreign">
            <param name="property">employee</param>
        </generator>
    </id>
    ...
    <one-to-one name="employee"
        class="Employee"
        constrained="true"/>
</class>

Une instance fraîchement enregistrée de Person se voit alors assignée la même valeur de clé primaire que l'instance de Employee référencée par la propriété employee de cette Person.

Although we recommend the use of surrogate keys as primary keys, you should try to identify natural keys for all entities. A natural key is a property or combination of properties that is unique and non-null. It is also immutable. Map the properties of the natural key as @NaturalId or map them inside the <natural-id> element. Hibernate will generate the necessary unique key and nullability constraints and, as a result, your mapping will be more self-documenting.

@Entity

public class Citizen {
    @Id
    @GeneratedValue
    private Integer id;
    private String firstname;
    private String lastname;
    
    @NaturalId
    @ManyToOne
    private State state;
    @NaturalId
    private String ssn;
    ...
}
//and later on query
List results = s.createCriteria( Citizen.class )
                .add( Restrictions.naturalId().set( "ssn", "1234" ).set( "state", ste ) )
                .list();

Or in XML,


<natural-id mutable="true|false"/>
        <property ... />
        <many-to-one ... />
        ......
</natural-id>

Nous vous recommandons fortement d'implémenter equals() et hashCode() pour comparer les propriétés clés naturelles de l'entité.

Ce mappage n'est pas destiné à être utilisé avec des entités qui ont des clés naturelles.

There is one more type of property mapping. The @Any mapping defines a polymorphic association to classes from multiple tables. This type of mapping requires more than one column. The first column contains the type of the associated entity. The remaining columns contain the identifier. It is impossible to specify a foreign key constraint for this kind of association. This is not the usual way of mapping polymorphic associations and you should use this only in special cases. For example, for audit logs, user session data, etc.

The @Any annotation describes the column holding the metadata information. To link the value of the metadata information and an actual entity type, The @AnyDef and @AnyDefs annotations are used. The metaType attribute allows the application to specify a custom type that maps database column values to persistent classes that have identifier properties of the type specified by idType. You must specify the mapping from values of the metaType to class names.

@Any( metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )

@AnyMetaDef( 
    idType = "integer", 
    metaType = "string", 
    metaValues = {
        @MetaValue( value = "S", targetEntity = StringProperty.class ),
        @MetaValue( value = "I", targetEntity = IntegerProperty.class )
    } )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
    return mainProperty;
}

Note that @AnyDef can be mutualized and reused. It is recommended to place it as a package metadata in this case.

//on a package

@AnyMetaDef( name="property" 
    idType = "integer", 
    metaType = "string", 
    metaValues = {
        @MetaValue( value = "S", targetEntity = StringProperty.class ),
        @MetaValue( value = "I", targetEntity = IntegerProperty.class )
    } )
package org.hibernate.test.annotations.any;
//in a class
    @Any( metaDef="property", metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
    @JoinColumn( name = "property_id" )
    public Property getMainProperty() {
        return mainProperty;
    }

The hbm.xml equivalent is:


<any name="being" id-type="long" meta-type="string">
    <meta-value value="TBL_ANIMAL" class="Animal"/>
    <meta-value value="TBL_HUMAN" class="Human"/>
    <meta-value value="TBL_ALIEN" class="Alien"/>
    <column name="table_name"/>
    <column name="id"/>
</any>
<any
        name="(1)propertyName"
        id-typ(2)e="idtypename"
        meta-t(3)ype="metatypename"
        cascad(4)e="cascade_style"
        access(5)="field|property|ClassName"
        optimi(6)stic-lock="true|false"
>
        <meta-value ... />
        <meta-value ... />
        .....
        <column .... />
        <column .... />
        .....
</any>

1

name : le nom de la propriété.

2

id-type : le type identifiant.

3

meta-type (optionnel - par défaut à string) : tout type permis pour un mappage par discriminateur.

4

cascade (optionnel - par défaut à none) : le style de cascade.

5

access (optionnel - par défaut property) : la stratégie que doit utiliser Hibernate pour accéder aux valeurs des propriétés.

6

optimistic-lock (optionnel - par défaut à true) : indique si les mise à jour sur cette propriété nécessitent ou non l'acquisition d'un verrou optimiste. En d'autres termes, définit si un incrément de version doit avoir lieu quand cette propriété est marquée dirty.

L'élément <properties> permet la définition d'un groupement logique nommé des propriétés d'une classe. L'utilisation la plus importante de cette construction est la possibilité pour une combinaison de propriétés d'être la cible d'un property-ref. C'est aussi un moyen pratique de définir une contrainte d'unicité multi-colonnes. Par exemple :

<properties
        name="(1)logicalName"
        insert(2)="true|false"
        update(3)="true|false"
        optimi(4)stic-lock="true|false"
        unique(5)="true|false"
>

        <property ...../>
        <many-to-one .... />
        ........
</properties>

1

name : le nom logique d'un regroupement et non le véritable nom d'une propriété.

2

insert : les colonnes mappées apparaissent-elles dans les SQL INSERT s ?

3

update: les colonnes mappées apparaissent-elles dans les SQL UPDATE s ?

4

optimistic-lock (optionnel - par défaut à true) : indique si les mise à jour sur ce composant nécessitent ou non l'acquisition d'un verrou optimiste. En d'autres termes, cela détermine si une incrémentation de version doit avoir lieu quand la propriété est marquée obsolète (dirty).

5

unique (optionnel - par défaut à false) : Indique qu'une contrainte d'unicité existe sur toutes les colonnes mappées de ce composant.

Par exemple, si nous avons le mappage de <properties> suivant :


<class name="Person">
    <id name="personNumber"/>

    ...
    <properties name="name"
            unique="true" update="false">
        <property name="firstName"/>
        <property name="initial"/>
        <property name="lastName"/>
    </properties>
</class>

Alors nous pourrions avoir une association sur des données d'un ancien système qui font référence à cette clé unique de la table Person au lieu de la clé primaire :


<many-to-one name="owner"
         class="Person" property-ref="name">
    <column name="firstName"/>
    <column name="initial"/>
    <column name="lastName"/>
</many-to-one>

Nous ne recommandons pas une telle utilisation, en dehors du contexte de mappage de données héritées d'anciens systèmes.

The hbm.xml structure has some specificities naturally not present when using annotations, let's describe them briefly.

Tous les mappages XML devraient utiliser le doctype indiqué. En effet vous trouverez le fichier DTD à l'URL ci-dessus, dans le répertoire hibernate-x.x.x/src/org/hibernate ou dans hibernate3.jar. Hibernate va toujours chercher la DTD dans son classpath en premier lieu. Si vous constatez des recherches de la DTD sur Internet, vérifiez votre déclaration de DTD par rapport au contenu de votre classpath.

Comme mentionné précédemment, Hibernate tentera en premier lieu de résoudre les DTD dans leur classpath. Il réussit à le faire en enregistrant une implémentation personnalisée de org.xml.sax.EntityResolver avec le SAXReader qu'il utilise pour lire les fichiers xml. Cet EntityResolver personnalisé reconnaît deux espaces de nommage systemId différents :

Un exemple d'utilisation de l'espace de nommage utilisateur:


<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
        "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
        "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" [
    <!ENTITY types SYSTEM "classpath://your/domain/types.xml">
]>

<hibernate-mapping package="your.domain">
    <class name="MyEntity">
        <id name="id" type="my-custom-id-type">
            ...
        </id>
    <class>
    &types;
</hibernate-mapping>

Where types.xml is a resource in the your.domain package and contains a custom typedef.

Cet élément a plusieurs attributs optionnels. Les attributs schema et catalog indiquent que les tables mentionnées dans ce mappage appartiennent au schéma nommé et/ou au catalogue. S'ils sont spécifiés, les noms de tables seront qualifiés par les noms de schéma et de catalogue. L'attribut default-cascade indique quel type de cascade sera utilisé par défaut pour les propriétés et collections qui ne précisent pas l'attribut cascade. L'attribut auto-import nous permet d'utiliser par défaut des noms de classes non qualifiés dans le langage de requête, par défaut.

<hibernate-mapping
         schem(1)a="schemaName"
         catal(2)og="catalogName"
         defau(3)lt-cascade="cascade_style"
         defau(4)lt-access="field|property|ClassName"
         defau(5)lt-lazy="true|false"
         auto-(6)import="true|false"
         packa(7)ge="package.name"
 />

1

schema (optionnel) : le nom d'un schéma de base de données.

2

catalog (optionnel) : le nom d'un catalogue de base de données.

3

default-cascade (optionnel - par défaut vaut : none) : un type de cascade par défaut.

4

default-access (optionnel - par défaut vaut : property) : Comment hibernate accèdera aux propriétés. On peut aussi redéfinir sa propre implémentation de PropertyAccessor.

5

default-lazy (optionnel - par défaut vaut : true) : Valeur par défaut pour des attributs lazy non spécifiés des mappages de classe et de collection.

6

auto-import (optionnel - par défaut vaut : true) : spécifie si l'on peut utiliser des noms de classes non qualifiés (de classes de ce mappage) dans le langage de requête.

7

package (optionnel) : préfixe de paquetage par défaut pour les noms de classe non qualifiés du document de mappage.

Si deux classes persistantes possèdent le même nom de classe (non qualifié), vous devez configurer auto-import="false". Hibernate lancera une exception si vous essayez d'assigner le même nom "importé" à deux classes.

Notez que l'élément hibernate-mappage vous permet d'imbriquer plusieurs mappages de <class> persistantes, comme dans l'exemple ci-dessus. Cependant il est recommandé (et c'est parfois une exigence de certains outils) de mapper une seule classe persistante (ou une seule hiérarchie de classes) par fichier de mappage et de nommer ce fichier d'après le nom de la superclasse persistante, par exemple Cat.hbm.xml, Dog.hbm.xml, ou en cas d'héritage, Animal.hbm.xml.

The <key> element is featured a few times within this guide. It appears anywhere the parent mapping element defines a join to a new table that references the primary key of the original table. It also defines the foreign key in the joined table:

<key
        column(1)="columnname"
        on-del(2)ete="noaction|cascade"
        proper(3)ty-ref="propertyName"
        not-nu(4)ll="true|false"
        update(5)="true|false"
        unique(6)="true|false"
/>

1

column (optionnel) : le nom de la colonne de la clé étrangère. Cela peut être aussi spécifié par un ou des sous-élément(s) <column>.

2

on-delete (optionnel, par défaut à noaction) : indique si la contrainte de clé étrangère possède la possibilité au niveau base de données de suppression en cascade.

3

property-ref (optionnel) : indique que la clé étrangère fait référence à des colonnes qui ne sont pas la clé primaire de la table d'origine (Pour les données d'anciens systèmes).

4

not-null (optionnel) : indique que les colonnes des clés étrangères ne peuvent pas être nulles (c'est implicite si la clé étrangère fait partie de la clé primaire).

5

update (optionnel) : indique que la clé étrangère ne devrait jamais être mise à jour (implicite si celle-ci fait partie de la clé primaire).

6

unique (optionnel) : indique que la clé étrangère doit posséder une contrainte d'unicité (implicite si la clé étrangère est aussi la clé primaire).

Là où les suppressions doivent être performantes, nous recommandons pour les systèmes de définir toutes les clés on-delete="cascade", ainsi Hibernate utilisera une contrainte ON CASCADE DELETE au niveau base de données, plutôt que de nombreux DELETE individuels. Attention, cette fonctionnalité court-circuite la stratégie habituelle de verrou optimiste pour les données versionnées.

Les attributs not-null et update sont utiles pour mapper une association un-à-plusieurs unidirectionnelle. Si vous mappez un un-à-plusieurs unidirectionnel vers une clé étrangère non nulle, vous devez déclarer la colonne de la clé en utilisant <key not-null="true">.

Pour le service de persistance, les objets sont classés en deux groupes au niveau langage Java :

Une entité existe indépendamment de tout autre objet possédant des références vers l'entité. Comparez cela avec le modèle Java habituel où un objet est supprimé par le garbage collector dès qu'il n'est plus référencé. Les entités doivent être explicitement enregistrées et supprimées (sauf dans les cas où sauvegardes et suppressions sont cascadées d'une entité parent vers ses enfants). C'est différent du modèle ODMG de persistance par atteignabilité - et correspond mieux à la façon dont les objets sont habituellement utilisés dans des grands systèmes. Les entités permettent les références circulaires et partagées. Elles peuvent aussi être versionnées.

L'état persistant d'une entité consiste en des références vers d'autres entités et instances de types valeurs. Ces valeurs sont des types primitifs, des collections (et non le contenu d'une collection), des composants de certains objets immuables. Contrairement aux entités, les valeurs (et en particulier les collections et composants) sont persistées et supprimées par atteignabiliité. Comme les valeurs (et types primitifs) sont persistées et supprimées avec l'entité qui les contient, ils ne peuvent pas posséder leurs propres versions. Les valeurs n'ont pas d'identité indépendantes, ainsi elles ne peuvent pas être partagées par deux entités ou collections.

Jusqu'à présent nous avons utilisé le terme "classe persistante" pour parler d'entités. Nous allons continuer à faire ainsi. Cependant, au sens strict, toutes les classes définies par un utilisateur possédant un état persistant ne sont pas des entités. Un composant est une classe définie par un utilisateur avec la sémantique d'une valeur. Une propriété Java de type java.lang.String a aussi les caractéristiques d'une valeur. Selon cette définition, nous sommes en mesure de déclarer que tous les types (classes) fournis par JDK possèdent la sémantique d'une valeur dans Java, alors que les types définis par un utilisateur pourront être mappés avec des sémantiques entités ou valeur type. Cette décision est prise par le développeur d'application. Un bon conseil pour une classe entité dans un modèle de domaine sont des références partagées à une instance unique de cette classe, alors que la composition ou l'agrégation se traduit en général par une valeur type.

Nous nous pencherons sur ces deux concepts tout au long de la documentation.

Le défi est de mapper les types Javas (et la définition des développeurs des entités et valeurs types) sur les types du SQL ou des bases de données. Le pont entre les deux systèmes est proposé par Hibernate : pour les entités nous utilisons <class>, <subclass> et ainsi de suite. Pour les types valeurs nous utilisons <property>, <component>, etc., habituellement avec un attribut type. La valeur de cet attribut est le nom d'un type de mappage Hibernate. Hibernate propose de nombreux mappages prêts à l'utilisation (pour les types de valeurs standards du JDK). Vous pouvez écrire vos propres types de mappages et implémenter aussi vos propres stratégies de conversion comme nous le verrons plus tard.

Tous les types proposés Hibernate à part les collections autorisent les sémantiques null.

Les types de mappage de base peuvent être classés de la façon suivante :

integer, long, short, float, double, character, byte, boolean, yes_no, true_false

Les mappages de type des primitives Java ou leurs classes wrappers (ex : Integer pour int) vers les types de colonne SQL (propriétaires) appropriés. boolean, yes_noet true_false sont tous des alternatives pour les types Java boolean ou java.lang.Boolean.

string

Mappage de type de java.lang.String vers VARCHAR (ou le VARCHAR2 Oracle).

date, time, timestamp

mappages de type pour java.util.Date et ses sous-classes vers les types SQL DATE, TIME et TIMESTAMP (ou équivalent).

calendar, calendar_date

mappages de type pour java.util.Calendar vers les types SQL TIMESTAMP et DATE (ou équivalent).

big_decimal, big_integer

mappages de type de java.math.BigDecimal et java.math.BigInteger vers NUMERIC (ou le NUMBER Oracle).

locale, timezone, currency

mappages de type pour java.util.Locale, java.util.TimeZone et java.util.Currency vers VARCHAR (ou le VARCHAR2 Oracle). Les instances de Locale et Currency sont mappées sur leurs codes ISO. Les instances de TimeZone sont mappées sur leur ID.

class

Un type de mappage de java.lang.Class vers VARCHAR (ou le VARCHAR2 Oracle). Un objet Class est mappé sur son nom Java complet.

binary

Mappe les tableaux de bytes vers le type binaire SQL approprié.

text

Maps long Java strings to a SQL LONGVARCHAR or TEXT type.

image

Maps long byte arrays to a SQL LONGVARBINARY.

serializable

Mappe les types Java sérialisables vers le type SQL binaire approprié. Vous pouvez aussi indiquer le type Hibernate serializable avec le nom d'une classe Java sérialisable ou une interface qui ne soit pas par défaut un type de base.

clob, blob

Mappages de type pour les classes JDBC java.sql.Clob et java.sql.Blob. Ces types peuvent ne pas convenir pour certaines applications car un objet blob ou clob peut ne pas être réutilisable en dehors d'une transaction (de plus l'implémentation par les pilotes comporte des lacunes).

materialized_clob

Maps long Java strings to a SQL CLOB type. When read, the CLOB value is immediately materialized into a Java string. Some drivers require the CLOB value to be read within a transaction. Once materialized, the Java string is available outside of the transaction.

materialized_blob

Maps long Java byte arrays to a SQL BLOB type. When read, the BLOB value is immediately materialized into a byte array. Some drivers require the BLOB value to be read within a transaction. Once materialized, the byte array is available outside of the transaction.

imm_date, imm_time, imm_timestamp, imm_calendar, imm_calendar_date, imm_serializable, imm_binary

Mappages de type pour ceux qui sont habituellement considérés comme des types Java modifiables, et pour lesquels Hibernate effectue certaines optimisations convenant seulement aux types Java immuables. L'application les traite comme immuables. Par exemple, vous ne devriez pas appeler Date.setTime() sur une instance mappée sur un imm_timestamp. Pour changer la valeur de la propriété, et faire en sorte que cette modification soit persistée, l'application doit assigner un nouvel (non identique) objet à la propriété.

Les identifiants uniques des entités et collections peuvent être de n'importe quel type de base excepté binary, blob et clob (les identifiants composites sont aussi permis, voir plus bas).

Les types de base des valeurs ont des Type constants correspondants et définis dans org.hibernate.Hibernate. Par exemple, Hibernate.STRING représente le type string.

Il est assez facile pour les développeurs de créer leurs propres types de valeurs. Par exemple, vous aimeriez persister des propriétés du type java.lang.BigInteger dans des colonnes VARCHAR. Hibernate ne procure pas de type par défaut à cet effet. Toutefois, les types personnalisés ne se limitent pas à mapper des propriétés (ou élément collection) à une simple colonne de table. Donc, par exemple, vous pourriez avoir une propriété Java getName()/setName() de type java.lang.String persistée dans les colonnes FIRST_NAME, INITIAL, SURNAME.

Pour implémenter votre propre type, vous pouvez soit implémenter org.hibernate.UserType soit org.hibernate.CompositeUserType et déclarer des propriétés utilisant des noms de classes complets du type. Consultez org.hibernate.test.DoubleStringType pour étudier les possibilités.


<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
    <column name="first_string"/>
    <column name="second_string"/>
</property>

Remarquez l'utilisation des balises <column> pour mapper une propriété sur des colonnes multiples.

Les interfaces CompositeUserType, EnhancedUserType, UserCollectionType, et UserVersionType prennent en charge des utilisations plus spécialisées.

Vous pouvez même fournir des paramètres en indiquant UserType dans le fichier de mappage. À cet effet, votre UserType doit implémenter l'interface org.hibernate.usertype.ParameterizedType. Pour spécifier des paramètres dans votre type propre, vous pouvez utiliser l'élément <type> dans vos fichiers de mappage.


<property name="priority">
    <type name="com.mycompany.usertypes.DefaultValueIntegerType">
        <param name="default">0</param>
    </type>
</property>

Le UserType permet maintenant de récupérer la valeur pour le paramètre nommé default à partir de l'objet Properties qui lui est passé.

Si vous utilisez fréquemment un UserType, il est utile de lui définir un nom plus court. Vous pouvez l'effectuer, en utilisant l'élément <typedef>. Les typedefs permettent d'assigner un nom à votre type propre et peuvent aussi contenir une liste de valeurs de paramètres par défaut si ce type est paramétré.


<typedef class="com.mycompany.usertypes.DefaultValueIntegerType" name="default_zero">
    <param name="default">0</param>
</typedef>

<property name="priority" type="default_zero"/>

Il est également possible de redéfinir les paramètres par défaut du typedef au cas par cas en utilisant des paramètres type sur le mappage de la propriété.

Alors que Hibernate offre une riche variété de types, et la prise en charge des composants, vous aurez très rarement besoin d'utiliser un type personnalisé, il est néanmoins recommandé d'utiliser des types personnalisés pour les classes (non entités) qui apparaissent fréquemment dans votre application. Par exemple, une classe MonetaryAmount est un bon candidat pour un CompositeUserType même si elle pourrait facilement être mappée en tant que composant. Une motivation pour cela est l'abstraction. Avec un type personnalisé, vos documents de mappage sont à l'abri des changements futurs dans votre façon de représenter des valeurs monétaires.

Il est possible de fournir plus d'un mappage par classe persistante. Dans ce cas, vous devez spécifier un nom d'entité pour lever l'ambiguité entre les instances des entités mappées (par défaut, le nom de l'entité est celui de la classe). Hibernate vous permet de spécifier le nom de l'entité lorsque vous utilisez des objets persistants, lorsque vous écrivez des requêtes ou quand vous mappez des associations vers les entités nommées.

<class name="Contract" table="Contracts"
        entity-name="CurrentContract">
    ...
    <set name="history" inverse="true"
            order-by="effectiveEndDate desc">
        <key column="currentContractId"/>
        <one-to-many entity-name="HistoricalContract"/>
    </set>
</class>

<class name="Contract" table="ContractHistory"
        entity-name="HistoricalContract">
    ...
    <many-to-one name="currentContract"
            column="currentContractId"
            entity-name="CurrentContract"/>
</class>

Remarquez comment les associations sont désormais spécifiées en utilisant entity-name au lieu de class.

Vous pouvez forcer Hibernate à mettre un identifiant entre quotes dans le SQL généré en mettant le nom de la table ou de la colonne entre backticks dans le document de mappage. Hibernate utilisera les bons styles de quotes pour le SQL Dialect (habituellement des doubles quotes, mais des parenthèses pour SQL Server et des backticks pour MySQL).


@Entity @Table(name="`Line Item`")
class LineItem {
   @id @Column(name="`Item Id`") Integer id;
   @Column(name="`Item #`") int itemNumber
}

<class name="LineItem" table="`Line Item`">
    <id name="id" column="`Item Id`"/><generator class="assigned"/></id>
    <property name="itemNumber" column="`Item #`"/>
    ...
</class>

Les propriétés générées sont des propriétés dont les valeurs sont générées par la base de données. Typiquement, les applications Hibernate avaient besoin d'invoquer refresh sur les instances qui contenaient des propriétés pour lesquelles la base de données générait des valeurs. Marquer les propriétés comme générées, permet à l'application de déléguer cette responsabilité à Hibernate. Principalement, à chaque fois que Hibernate réalise un SQL INSERT ou UPDATE en base de données pour une entité marquée comme telle, cela provoque immédiatement un select pour récupérer les valeurs générées.

Properties marked as generated must additionally be non-insertable and non-updateable. Only versions, timestamps, and simple properties, can be marked as generated.

never (par défaut) - indique que la valeur donnée de la propriété n'est pas générée dans la base de données.

insert: the given property value is generated on insert, but is not regenerated on subsequent updates. Properties like created-date fall into this category. Even though version and timestamp properties can be marked as generated, this option is not available.

always - indique que la valeur de la propriété est générée à l'insertion comme aux mise à jour.

To mark a property as generated, use @Generated.

Hibernate allows you to customize the SQL it uses to read and write the values of columns mapped to simple properties. For example, if your database provides a set of data encryption functions, you can invoke them for individual columns like this:

@Entity

class CreditCard {
   @Column(name="credit_card_num")
   @ColumnTransformer(
      read="decrypt(credit_card_num)", 
      write="encrypt(?)")
   public String getCreditCardNumber() { return creditCardNumber; }
   public void setCreditCardNumber(String number) { this.creditCardNumber = number; }
   private String creditCardNumber;
}

or in XML


<property name="creditCardNumber">
        <column 
          name="credit_card_num"
          read="decrypt(credit_card_num)"
          write="encrypt(?)"/>
</property>

Note

You can use the plural form @ColumnTransformers if more than one columns need to define either of these rules.

If a property uses more that one column, you must use the forColumn attribute to specify which column, the expressions are targeting.

@Entity

class User {
   @Type(type="com.acme.type.CreditCardType")
   @Columns( {
      @Column(name="credit_card_num"),
      @Column(name="exp_date") } )
   @ColumnTransformer(
      forColumn="credit_card_num", 
      read="decrypt(credit_card_num)", 
      write="encrypt(?)")
   public CreditCard getCreditCard() { return creditCard; }
   public void setCreditCard(CreditCard card) { this.creditCard = card; }
   private CreditCard creditCard;
}

Hibernate applies the custom expressions automatically whenever the property is referenced in a query. This functionality is similar to a derived-property formula with two differences:

  • The property is backed by one or more columns that are exported as part of automatic schema generation.

  • The property is read-write, not read-only.

The write expression, if specified, must contain exactly one '?' placeholder for the value.

Permettent les ordres CREATE et DROP d'objets arbitraire de la base de données, en conjonction avec les outils Hibernate d'évolutions de schéma, pour permettre de définir complètement un schéma utilisateur au sein des fichiers de mappage Hibernate. Bien que conçu spécifiquement pour créer et supprimer des objets tels que les triggers et les procédures stockées, en réalité toute commande pouvant être exécutée via une méthode de java.sql.Statement.execute() (ALTERs, INSERTS, etc) est valable à cet endroit. Il y a principalement deux modes pour définir les objets auxiliaires de base de données :

Le premier mode est de lister explicitement les commandes CREATE et DROP dans le fichier de mappage :


<hibernate-mapping>
    ...
    <database-object>
        <create>CREATE TRIGGER my_trigger ...</create>
        <drop>DROP TRIGGER my_trigger</drop>
    </database-object>
</hibernate-mapping>

Le second mode est de fournir une classe personnalisée qui sait comment construire les commandes CREATE et DROP. Cette classe personnalisée doit implémenter l'interface org.hibernate.mappage.AuxiliaryDatabaseObject.


<hibernate-mapping>
    ...
    <database-object>
        <definition class="MyTriggerDefinition"/>
    </database-object>
</hibernate-mapping>

De plus, ces objets de base de données peuvent être optionnellement traités selon l'utilisation de dialectes particuliers.


<hibernate-mapping>
    ...
    <database-object>
        <definition class="MyTriggerDefinition"/>
        <dialect-scope name="org.hibernate.dialect.Oracle9iDialect"/>
        <dialect-scope name="org.hibernate.dialect.Oracle10gDialect"/>
    </database-object>
</hibernate-mapping>