Hibernate.orgCommunity Documentation
Object/relational mappings can be defined in three approaches:
using Java 5 annotations (via the Java Persistence 2 annotations)
using JPA 2 XML deployment descriptors (described in chapter XXX)
using the Hibernate legacy XML files approach known as hbm.xml
Annotations are split in two categories, the logical mapping annotations (describing the object model, the association between two entities etc.) and the physical mapping annotations (describing the physical schema, tables, columns, indexes, etc). We will mix annotations from both categories in the following code examples.
JPA annotations are in the javax.persistence.*
package. Hibernate specific extensions are in org.hibernate.annotations.*
. You favorite IDE can auto-complete annotations and their attributes for you (even without a specific "JPA" plugin, since JPA annotations are plain Java 5 annotations).
Here is an example of mapping
package eg;
@Entity
@Table(name="cats") @Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorValue("C") @DiscriminatorColumn(name="subclass", discriminatorType=CHAR)
public class Cat {
@Id @GeneratedValue
public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
public BigDecimal getWeight() { return weight; }
public void setWeight(BigDecimal weight) { this.weight = weight; }
private BigDecimal weight;
@Temporal(DATE) @NotNull @Column(updatable=false)
public Date getBirthdate() { return birthdate; }
public void setBirthdate(Date birthdate) { this.birthdate = birthdate; }
private Date birthdate;
@org.hibernate.annotations.Type(type="eg.types.ColorUserType")
@NotNull @Column(updatable=false)
public ColorType getColor() { return color; }
public void setColor(ColorType color) { this.color = color; }
private ColorType color;
@NotNull @Column(updatable=false)
public String getSex() { return sex; }
public void setSex(String sex) { this.sex = sex; }
private String sex;
@NotNull @Column(updatable=false)
public Integer getLitterId() { return litterId; }
public void setLitterId(Integer litterId) { this.litterId = litterId; }
private Integer litterId;
@ManyToOne @JoinColumn(name="mother_id", updatable=false)
public Cat getMother() { return mother; }
public void setMother(Cat mother) { this.mother = mother; }
private Cat mother;
@OneToMany(mappedBy="mother") @OrderBy("litterId")
public Set<Cat> getKittens() { return kittens; }
public void setKittens(Set<Cat> kittens) { this.kittens = kittens; }
private Set<Cat> kittens = new HashSet<Cat>();
}
@Entity @DiscriminatorValue("D")
public class DomesticCat extends Cat {
public String getName() { return name; }
public void setName(String name) { this.name = name }
private String name;
}
@Entity
public class Dog { ... }
The legacy hbm.xml approach uses an XML schema designed to be readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed around persistent class declarations and not table declarations.
Please note that even though many Hibernate users choose to write the XML by hand, a number of tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.
Here is an example mapping:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat"
table="cats"
discriminator-value="C">
<id name="id">
<generator class="native"/>
</id>
<discriminator column="subclass"
type="character"/>
<property name="weight"/>
<property name="birthdate"
type="date"
not-null="true"
update="false"/>
<property name="color"
type="eg.types.ColorUserType"
not-null="true"
update="false"/>
<property name="sex"
not-null="true"
update="false"/>
<property name="litterId"
column="litterId"
update="false"/>
<many-to-one name="mother"
column="mother_id"
update="false"/>
<set name="kittens"
inverse="true"
order-by="litter_id">
<key column="mother_id"/>
<one-to-many class="Cat"/>
</set>
<subclass name="DomesticCat"
discriminator-value="D">
<property name="name"
type="string"/>
</subclass>
</class>
<class name="Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping>
We will now discuss the concepts of the mapping documents (both annotations and XML). We will only describe, however, the document elements and attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional attributes and elements that affect the database schemas exported by the schema export tool (for example, the not-null
attribute).
An entity is a regular Java object (aka POJO) which will be persisted by Hibernate.
To mark an object as an entity in annotations, use the @Entity
annotation.
@Entity
public class Flight implements Serializable {
Long id;
@Id
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
}
That's pretty much it, the rest is optional. There are however any options to tweak your entity mapping, let's explore them.
@Table
lets you define the table the entity will be persisted into. If undefined, the table name is the unqualified class name of the entity. You can also optionally define the catalog, the schema as well as unique constraints on the table.
@Entity
@Table(name="TBL_FLIGHT",
schema="AIR_COMMAND",
uniqueConstraints=
@UniqueConstraint(
name="flight_number",
columnNames={"comp_prefix", "flight_number"} ) )
public class Flight implements Serializable {
@Column(name="comp_prefix")
public String getCompagnyPrefix() { return companyPrefix; }
@Column(name="flight_number")
public String getNumber() { return number; }
}
The constraint name is optional (generated if left undefined). The column names composing the constraint correspond to the column names as defined before the Hibernate NamingStrategy
is applied.
@Entity.name
lets you define the shortcut name of the entity you can used in JP-QL and HQL queries. It defaults to the unqualified class name of the class.
Hibernate goes beyond the JPA specification and provide additional configurations. Some of them are hosted on @org.hibernate.annotations.Entity
:
dynamicInsert
/ dynamicUpdate
(defaults to false): specifies that INSERT
/ UPDATE
SQL should be generated at runtime and contain only the columns whose values are not null. The dynamic-update
and dynamic-insert
settings are not inherited by subclasses. Although these settings can increase performance in some cases, they can actually decrease performance in others.
selectBeforeUpdate
(defaults to false): specifies that Hibernate should never perform an SQL UPDATE
unless it is certain that an object is actually modified. Only when a transient object has been associated with a new session using update()
, will Hibernate perform an extra SQL SELECT
to determine if an UPDATE
is actually required. Use of select-before-update
will usually decrease performance. It is useful to prevent a database update trigger being called unnecessarily if you reattach a graph of detached instances to a Session
.
polymorphisms
(defaults to IMPLICIT
): determines whether implicit or explicit query polymorphisms is used. Implicit polymorphisms means that instances of the class will be returned by a query that names any superclass or implemented interface or class, and that instances of any subclass of the class will be returned by a query that names the class itself. Explicit polymorphisms means that class instances will be returned only by queries that explicitly name that class. Queries that name the class will return only instances of subclasses mapped. For most purposes, the default polymorphisms=IMPLICIT
is appropriate. Explicit polymorphisms is useful when two different classes are mapped to the same table This allows a "lightweight" class that contains a subset of the table columns.
persister
: specifies a custom ClassPersister
. The persister
attribute lets you customize the persistence strategy used for the class. You can, for example, specify your own subclass of org.hibernate.persister.EntityPersister
, or you can even provide a completely new implementation of the interface org.hibernate.persister.ClassPersister
that implements, for example, persistence via stored procedure calls, serialization to flat files or LDAP. See org.hibernate.test.CustomPersister
for a simple example of "persistence" to a Hashtable
.
optimisticLock
(defaults to VERSION
): determines the optimistic locking strategy. If you enable dynamicUpdate
, you will have a choice of optimistic locking strategies:
version
: check the version/timestamp columns
all
: check all columns
dirty
: check the changed columns, allowing some concurrent updates
none
: do not use optimistic locking
It is strongly recommended that you use version/timestamp columns for optimistic locking with Hibernate. This strategy optimizes performance and correctly handles modifications made to detached instances (i.e. when Session.merge()
is used).
Be sure to import @javax.persistence.Entity
to mark a class as an entity. It's a common mistake to import @org.hibernate.annotations.Entity
by accident.
Some entities are not mutable. They cannot be updated or deleted by the application. This allows Hibernate to make some minor performance optimizations.. Use the @Immutable
annotation.
You can also alter how Hibernate deals with lazy initialization for this class. On @Proxy
, use lazy
=false to disable lazy fetching (not recommended). You can also specify an interface to use for lazy initializing proxies (defaults to the class itself): use proxyClass
on @Proxy
. Hibernate will initially return proxies (Javassist or CGLIB) that implement the named interface. The persistent object will load when a method of the proxy is invoked. See "Initializing collections and proxies" below.
@BatchSize
specifies a "batch size" for fetching instances of this class by identifier. Not yet loaded instances are loaded batch-size at a time (default 1).
You can specific an arbitrary SQL WHERE condition to be used when retrieving objects of this class. Use @Where
for that.
In the same vein, @Check
lets you define an SQL expression used to generate a multi-row check constraint for automatic schema generation.
There is no difference between a view and a base table for a Hibernate mapping. This is transparent at the database level, although some DBMS do not support views properly, especially with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e. with a legacy schema). In this case, you can map an immutable and read-only entity to a given SQL subselect expression using @org.hibernate.annotations.Subselect
:
@Entity
@Subselect("select item.name, max(bid.amount), count(*) "
+ "from item "
+ "join bid on bid.item_id = item.id "
+ "group by item.name")
@Synchronize( {"item", "bid"} ) //tables impacted
public class Summary {
@Id
public String getId() { return id; }
...
}
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and that queries against the derived entity do not return stale data. The <subselect>
is available both as an attribute and a nested mapping element.
We will now explore the same options using the hbm.xml structure. You can declare a persistent class using the class
element. For example:
<class name="ClassName" table=
"tableName" discri
minator-value="discriminator_value" mutabl
e="true|false" schema
="owner" catalo
g="catalog" proxy=
"ProxyInterface" dynami
c-update="true|false" dynami
c-insert="true|false" select
-before-update="true|false" polymo
rphism="implicit|explicit" where=
"arbitrary sql where condition" persis
ter="PersisterClass" batch-
size="N" optimi
stic-lock="none|version|dirty|all" lazy="(16)true|false" entity(17)-name="EntityName" check=(18)"arbitrary sql check condition" rowid=(19)"rowid" subsel(20)ect="SQL expression" abstra(21)ct="true|false" node="element-name" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
(16) |
|
(17) |
|
(18) |
|
(19) |
|
(20) |
|
(21) |
|
It is acceptable for the named persistent class to be an interface. You can declare implementing classes of that interface using the <subclass>
element. You can persist any static inner class. Specify the class name using the standard form i.e. e.g.Foo$Bar
.
Here is how to do a virtual view (subselect) in XML:
<class name="Summary">
<subselect>
select item.name, max(bid.amount), count(*)
from item
join bid on bid.item_id = item.id
group by item.name
</subselect>
<synchronize table="item"/>
<synchronize table="bid"/>
<id name="name"/>
...
</class>
The <subselect>
is available both as an attribute and a nested mapping element.
Mapped classes must declare the primary key column of the database table. Most classes will also have a JavaBeans-style property holding the unique identifier of an instance.
Mark the identifier property with @Id
.
@Entity
public class Person {
@Id Integer getId() { ... }
...
}
In hbm.xml, use the <id>
element which defines the mapping from that property to the primary key column.
<id name="propertyName" type="
typename" column
="column_name" unsave
d-value="null|any|none|undefined|id_value" access
="field|property|ClassName"> node="element-name|@attribute-name|element/@attribute|." <generator class="generatorClass"/> </id>
| |
| |
| |
| |
|
Falls das name
-Attribut fehlt, wird davon ausgegangen, dass die Klasse keine Bezeichner-Property besitzt.
The unsaved-value
attribute is almost never needed in Hibernate3 and indeed has no corresponding element in annotations.
You can also declare the identifier as a composite identifier. This allows access to legacy data with composite keys. Its use is strongly discouraged for anything else.
You can define a composite primary key through several syntaxes:
use a component type to represent the identifier and map it as a property in the entity: you then annotated the property as @EmbeddedId
. The component type has to be Serializable
.
map multiple properties as @Id
properties: the identifier type is then the entity class itself and needs to be Serializable
. This approach is unfortunately not standard and only supported by Hibernate.
map multiple properties as @Id
properties and declare an external class to be the identifier type. This class, which needs to be Serializable
, is declared on the entity via the @IdClass
annotation. The identifier type must contain the same properties as the identifier properties of the entity: each property name must be the same, its type must be the same as well if the entity property is of a basic type, its type must be the type of the primary key of the associated entity if the entity property is an association (either a @OneToOne
or a @ManyToOne
).
As you can see the last case is far from obvious. It has been inherited from the dark ages of EJB 2 for backward compatibilities and we recommend you not to use it (for simplicity sake).
Let's explore all three cases using examples.
Here is a simple example of @EmbeddedId
.
@Entity
class User {
@EmbeddedId
@AttributeOverride(name="firstName", column=@Column(name="fld_firstname")
UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
}
You can notice that the UserId
class is serializable. To override the column mapping, use @AttributeOverride
.
An embedded id can itself contains the primary key of an associated entity.
@Entity
class Customer {
@EmbeddedId CustomerId id;
boolean preferredCustomer;
@MapsId("userId")
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
@OneToOne User user;
}
@Embeddable
class CustomerId implements Serializable {
UserId userId;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
In the embedded id object, the association is represented as the identifier of the associated entity. But you can link its value to a regular association in the entity via the @MapsId
annotation. The @MapsId
value correspond to the property name of the embedded id object containing the associated entity's identifier. In the database, it means that the Customer.user
and the CustomerId.userId
properties share the same underlying column (user_fk
in this case).
The component type used as identifier must implement equals()
and hashCode()
.
In practice, your code only sets the Customer.user
property and the user id value is copied by Hibernate into the CustomerId.userId
property.
The id value can be copied as late as flush time, don't rely on it until after flush time.
While not supported in JPA, Hibernate lets you place your association directly in the embedded id component (instead of having to use the @MapsId
annotation).
@Entity
class Customer {
@EmbeddedId CustomerId id;
boolean preferredCustomer;
}
@Embeddable
class CustomerId implements Serializable {
@OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
Let's now rewrite these examples using the hbm.xml syntax.
<composite-id
name="propertyName"
class="ClassName"
mapped="true|false"
access="field|property|ClassName"
node="element-name|.">
<key-property name="propertyName" type="typename" column="column_name"/>
<key-many-to-one name="propertyName" class="ClassName" column="column_name"/>
......
</composite-id>
First a simple example:
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName" column="fld_firstname"/>
<key-property name="lastName"/>
</composite-id>
</class>
Then an example showing how an association can be mapped.
<class name="Customer">
<composite-id name="id" class="CustomerId">
<key-property name="firstName" column="userfirstname_fk"/>
<key-property name="lastName" column="userfirstname_fk"/>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
<many-to-one name="user">
<column name="userfirstname_fk" updatable="false" insertable="false"/>
<column name="userlastname_fk" updatable="false" insertable="false"/>
</many-to-one>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
Notice a few things in the previous example:
the order of the properties (and column) matters. It must be the same between the association and the primary key of the associated entity
the many to one uses the same columns as the primary key and thus must be marked as read only (insertable
and updatable
to false).
unlike with @MapsId
, the id value of the associated entity is not transparently copied, check the foreign
id generator for more information.
The last example shows how to map association directly in the embedded id component.
<class name="Customer">
<composite-id name="id" class="CustomerId">
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
This is the recommended approach to map composite identifier. The following options should not be considered unless some constraint are present.
Another, arguably more natural, approach is to place @Id
on multiple properties of your entity. This approach is only supported by Hibernate (not JPA compliant) but does not require an extra embeddable component.
@Entity
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
In this case Customer
is its own identifier representation: it must implement Serializable
and must implement equals()
and hashCode()
.
In hbm.xml, the same mapping is:
<class name="Customer">
<composite-id>
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
@IdClass
on an entity points to the class (component) representing the identifier of the class. The properties marked @Id
on the entity must have their corresponding property on the @IdClass
. The return type of search twin property must be either identical for basic properties or must correspond to the identifier class of the associated entity for an association.
This approach is inherited from the EJB 2 days and we recommend against its use. But, after all it's your application and Hibernate supports it.
@Entity
@IdClass(CustomerId.class)
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
}
class CustomerId implements Serializable {
UserId user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
//implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}
Customer
and CustomerId
do have the same properties customerNumber
as well as user
. CustomerId
must be Serializable
and implement equals()
and hashCode()
.
While not JPA standard, Hibernate let's you declare the vanilla associated property in the @IdClass
.
@Entity
@IdClass(CustomerId.class)
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
}
class CustomerId implements Serializable {
@OneToOne User user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
//implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
}
This feature is of limited interest though as you are likely to have chosen the @IdClass
approach to stay JPA compliant or you have a quite twisted mind.
Here are the equivalent on hbm.xml files:
<class name="Customer">
<composite-id class="CustomerId" mapped="true">
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class>
Hibernate can generate and populate identifier values for you automatically. This is the recommended approach over "business" or "natural" id (especially composite ids).
Hibernate offers various generation strategies, let's explore the most common ones first that happens to be standardized by JPA:
IDENTITY: supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned identifier is of type long
, short
or int
.
SEQUENCE (called seqhilo
in Hibernate): uses a hi/lo algorithm to efficiently generate identifiers of type long
, short
or int
, given a named database sequence.
TABLE (called MultipleHiLoPerTableGenerator
in Hibernate) : uses a hi/lo algorithm to efficiently generate identifiers of type long
, short
or int
, given a table and column as a source of hi values. The hi/lo algorithm generates identifiers that are unique only for a particular database.
AUTO: selects IDENTITY
, SEQUENCE
or TABLE
depending upon the capabilities of the underlying database.
We recommend all new projects to use the new enhanced identifier generators. They are deactivated by default for entities using annotations but can be activated using hibernate.id.new_generator_mappings=true
. These new generators are more efficient and closer to the JPA 2 specification semantic.
However they are not backward compatible with existing Hibernate based application (if a sequence or a table is used for id generation). See XXXXXXX ??? for more information on how to activate them.
To mark an id property as generated, use the @GeneratedValue
annotation. You can specify the strategy used (default to AUTO
) by setting strategy
.
@Entity
public class Customer {
@Id @GeneratedValue
Integer getId() { ... };
}
@Entity
public class Invoice {
@Id @GeneratedValue(strategy=GenerationType.IDENTITY)
Integer getId() { ... };
}
SEQUENCE
and TABLE
require additional configurations that you can set using @SequenceGenerator
and @TableGenerator
:
name
: name of the generator
table
/ sequenceName
: name of the table or the sequence (defaulting respectively to hibernate_sequences
and hibernate_sequence
)
catalog
/ schema
:
initialValue
: the value from which the id is to start generating
allocationSize
: the amount to increment by when allocating id numbers from the generator
In addition, the TABLE
strategy also let you customize:
pkColumnName
: the column name containing the entity identifier
valueColumnName
: the column name containing the identifier value
pkColumnValue
: the entity identifier
uniqueConstraints
: any potential column constraint on the table containing the ids
To link a table or sequence generator definition with an actual generated property, use the same name in both the definition name
and the generator value generator
as shown below.
@Id
@GeneratedValue(
strategy=GenerationType.SEQUENCE,
generator="SEQ_GEN")
@javax.persistence.SequenceGenerator(
name="SEQ_GEN",
sequenceName="my_sequence",
allocationSize=20
)
public Integer getId() { ... }
The scope of a generator definition can be the application or the class. Class-defined generators are not visible outside the class and can override application level generators. Application level generators are defined in JPA's XML deployment descriptors (see XXXXXX ???):
<table-generator name="EMP_GEN"
table="GENERATOR_TABLE"
pk-column-name="key"
value-column-name="hi"
pk-column-value="EMP"
allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.TableGenerator(
name="EMP_GEN",
table="GENERATOR_TABLE",
pkColumnName = "key",
valueColumnName = "hi"
pkColumnValue="EMP",
allocationSize=20
)
<sequence-generator name="SEQ_GEN"
sequence-name="my_sequence"
allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.SequenceGenerator(
name="SEQ_GEN",
sequenceName="my_sequence",
allocationSize=20
)
If a JPA XML descriptor (like META-INF/orm.xml
) is used to define the generators, EMP_GEN
and SEQ_GEN
are application level generators.
Package level definition is not supported by the JPA specification. However, you can use the @GenericGenerator
at the package level (see ???).
These are the four standard JPA generators. Hibernate goes beyond that and provide additional generators or additional options as we will see below. You can also write your own custom identifier generator by implementing org.hibernate.id.IdentifierGenerator
.
To define a custom generator, use the @GenericGenerator
annotation (and its plural counter part @GenericGenerators
) that describes the class of the identifier generator or its short cut name (as described below) and a list of key/value parameters. When using @GenericGenerator
and assigning it via @GeneratedValue.generator
, the @GeneratedValue.strategy
is ignored: leave it blank.
@Id @GeneratedValue(generator="system-uuid")
@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {
@Id @GeneratedValue(generator="trigger-generated")
@GenericGenerator(
name="trigger-generated",
strategy = "select",
parameters = @Parameter(name="key", value = "socialSecurityNumber")
)
public String getId() {
The hbm.xml approach uses the optional <generator>
child element inside <id>
. If any parameters are required to configure or initialize the generator instance, they are passed using the <param>
element.
<id name="id" type="long" column="cat_id">
<generator class="org.hibernate.id.TableHiLoGenerator">
<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>
</generator>
</id>
All generators implement the interface org.hibernate.id.IdentifierGenerator
. This is a very simple interface. Some applications can choose to provide their own specialized implementations, however, Hibernate provides a range of built-in implementations. The shortcut names for the built-in generators are as follows:
increment
generiert Bezeichner des Typs long
, short
oder int
, die nur eindeutig sind, wenn kein anderer Vorgang Daten derselben Tabelle hinzufügt. Nicht in einem Cluster zu verwenden.
identity
unterstützt die Identitätsspalten in DB2, MySQL, MS SQL Server, Sybase und HypersonicSQL. Der zurückgesendete Bezeichner ist vom Typ long
, short
oder int
.
sequence
verwendet eine Sequenz in DB2, PostgreSQL, Oracle, SAP DB, McKoi oder einen Generator in Interbase. Der zurückgeschickte Bezeichner ist vom Typ long
, short
oder int
hilo
verwendet einen hi/lo Algorithmus um effizient Bezeichner des Typs long
, short
oder int
zu generieren, bei gegebener Tabelle und Spalte (Standardeinstellung lautet hibernate_unique_key
bzw. next_hi
) als Quelle der hi-Werte. Der hi/lo-Algorithmus generiert Bezeichner, die für eine bestimmte Datenbank eindeutig sind.
seqhilo
verwendet einen hi/lo-Algorithmus um effizient Bezeichner des Typs long
, short
oder int
zu generieren, bei einer vorgegebenen und benannten Datenbanksequenz.
uuid
Generates a 128-bit UUID based on a custom algorithm. The value generated is represented as a string of 32 hexidecimal digits. Users can also configure it to use a separator (config parameter "separator") which separates the hexidecimal digits into 8{sep}8{sep}4{sep}8{sep}4. Note specifically that this is different than the IETF RFC 4122 representation of 8-4-4-4-12. If you need RFC 4122 compliant UUIDs, consider using "uuid2" generator discussed below.
uuid2
Generates a IETF RFC 4122 compliant (variant 2) 128-bit UUID. The exact "version" (the RFC term) generated depends on the pluggable "generation strategy" used (see below). Capable of generating values as java.util.UUID
, java.lang.String
or as a byte array of length 16 (byte[16]
). The "generation strategy" is defined by the interface org.hibernate.id.UUIDGenerationStrategy
. The generator defines 2 configuration parameters for defining which generation strategy to use:
uuid_gen_strategy_class
Names the UUIDGenerationStrategy class to use
uuid_gen_strategy
Names the UUIDGenerationStrategy instance to use
Out of the box, comes with the following strategies:
org.hibernate.id.uuid.StandardRandomStrategy
(the default) - generates "version 3" (aka, "random") UUID values via the randomUUID
method of java.util.UUID
org.hibernate.id.uuid.CustomVersionOneStrategy
- generates "version 1" UUID values, using IP address since mac address not available. If you need mac address to be used, consider leveraging one of the existing third party UUID generators which sniff out mac address and integrating it via the org.hibernate.id.UUIDGenerationStrategy
contract. Two such libraries known at time of this writing include http://johannburkard.de/software/uuid/ and http://commons.apache.org/sandbox/id/uuid.html
guid
verwendet einen von der Datenbank generierten GUID-String auf dem MS SQL Server und MySQL.
native
selects identity
, sequence
or hilo
depending upon the capabilities of the underlying database.
assigned
lets the application assign an identifier to the object before save()
is called. This is the default strategy if no <generator>
element is specified.
select
retrieves a primary key, assigned by a database trigger, by selecting the row by some unique key and retrieving the primary key value.
foreign
uses the identifier of another associated object. It is usually used in conjunction with a <one-to-one>
primary key association.
sequence-identity
a specialized sequence generation strategy that utilizes a database sequence for the actual value generation, but combines this with JDBC3 getGeneratedKeys to return the generated identifier value as part of the insert statement execution. This strategy is only supported on Oracle 10g drivers targeted for JDK 1.4. Comments on these insert statements are disabled due to a bug in the Oracle drivers.
The hilo
and seqhilo
generators provide two alternate implementations of the hi/lo algorithm. The first implementation requires a "special" database table to hold the next available "hi" value. Where supported, the second uses an Oracle-style sequence.
<id name="id" type="long" column="cat_id">
<generator class="hilo">
<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>
</generator>
</id>
<id name="id" type="long" column="cat_id">
<generator class="seqhilo">
<param name="sequence">hi_value</param>
<param name="max_lo">100</param>
</generator>
</id>
Unfortunately, you cannot use hilo
when supplying your own Connection
to Hibernate. When Hibernate uses an application server datasource to obtain connections enlisted with JTA, you must configure the hibernate.transaction.manager_lookup_class
.
The UUID contains: IP address, startup time of the JVM that is accurate to a quarter second, system time and a counter value that is unique within the JVM. It is not possible to obtain a MAC address or memory address from Java code, so this is the best option without using JNI.
For databases that support identity columns (DB2, MySQL, Sybase, MS SQL), you can use identity
key generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you can use sequence
style key generation. Both of these strategies require two SQL queries to insert a new object. For example:
<id name="id" type="long" column="person_id">
<generator class="sequence">
<param name="sequence">person_id_sequence</param>
</generator>
</id>
<id name="id" type="long" column="person_id" unsaved-value="0">
<generator class="identity"/>
</id>
For cross-platform development, the native
strategy will, depending on the capabilities of the underlying database, choose from the identity
, sequence
and hilo
strategies.
If you want the application to assign identifiers, as opposed to having Hibernate generate them, you can use the assigned
generator. This special generator uses the identifier value already assigned to the object's identifier property. The generator is used when the primary key is a natural key instead of a surrogate key. This is the default behavior if you do not specify @GeneratedValue
nor <generator>
elements.
The assigned
generator makes Hibernate use unsaved-value="undefined"
. This forces Hibernate to go to the database to determine if an instance is transient or detached, unless there is a version or timestamp property, or you define Interceptor.isUnsaved()
.
Hibernate does not generate DDL with triggers. It is for legacy schemas only.
<id name="id" type="long" column="person_id">
<generator class="select">
<param name="key">socialSecurityNumber</param>
</generator>
</id>
In the above example, there is a unique valued property named socialSecurityNumber
. It is defined by the class, as a natural key and a surrogate key named person_id
, whose value is generated by a trigger.
Finally, you can ask Hibernate to copy the identifier from another associated entity. In the Hibernate jargon, it is known as a foreign generator but the JPA mapping reads better and is encouraged.
@Entity
class MedicalHistory implements Serializable {
@Id @OneToOne
@JoinColumn(name = "person_id")
Person patient;
}
@Entity
public class Person implements Serializable {
@Id @GeneratedValue Integer id;
}
Or alternatively
@Entity
class MedicalHistory implements Serializable {
@Id Integer id;
@MapsId @OneToOne
@JoinColumn(name = "patient_id")
Person patient;
}
@Entity
class Person {
@Id @GeneratedValue Integer id;
}
In hbm.xml use the following approach:
<class name="MedicalHistory">
<id name="id">
<generator class="foreign">
<param name="property">patient</param>
</generator>
</id>
<one-to-one name="patient" class="Person" constrained="true"/>
</class>
Starting with release 3.2.3, there are 2 new generators which represent a re-thinking of 2 different aspects of identifier generation. The first aspect is database portability; the second is optimization Optimization means that you do not have to query the database for every request for a new identifier value. These two new generators are intended to take the place of some of the named generators described above, starting in 3.3.x. However, they are included in the current releases and can be referenced by FQN.
The first of these new generators is org.hibernate.id.enhanced.SequenceStyleGenerator
which is intended, firstly, as a replacement for the sequence
generator and, secondly, as a better portability generator than native
. This is because native
generally chooses between identity
and sequence
which have largely different semantics that can cause subtle issues in applications eyeing portability. org.hibernate.id.enhanced.SequenceStyleGenerator
, however, achieves portability in a different manner. It chooses between a table or a sequence in the database to store its incrementing values, depending on the capabilities of the dialect being used. The difference between this and native
is that table-based and sequence-based storage have the same exact semantic. In fact, sequences are exactly what Hibernate tries to emulate with its table-based generators. This generator has a number of configuration parameters:
sequence_name
(optional, defaults to hibernate_sequence
): the name of the sequence or table to be used.
initial_value
(optional, defaults to 1
): the initial value to be retrieved from the sequence/table. In sequence creation terms, this is analogous to the clause typically named "STARTS WITH".
increment_size
(optional - defaults to 1
): the value by which subsequent calls to the sequence/table should differ. In sequence creation terms, this is analogous to the clause typically named "INCREMENT BY".
force_table_use
(optional - defaults to false
): should we force the use of a table as the backing structure even though the dialect might support sequence?
value_column
(optional - defaults to next_val
): only relevant for table structures, it is the name of the column on the table which is used to hold the value.
optimizer
(optional - defaults to none
): See Abschnitt 5.1.2.3.1, „Identifier generator optimization“
The second of these new generators is org.hibernate.id.enhanced.TableGenerator
, which is intended, firstly, as a replacement for the table
generator, even though it actually functions much more like org.hibernate.id.MultipleHiLoPerTableGenerator
, and secondly, as a re-implementation of org.hibernate.id.MultipleHiLoPerTableGenerator
that utilizes the notion of pluggable optimizers. Essentially this generator defines a table capable of holding a number of different increment values simultaneously by using multiple distinctly keyed rows. This generator has a number of configuration parameters:
table_name
(optional - defaults to hibernate_sequences
): the name of the table to be used.
value_column_name
(optional - defaults to next_val
): the name of the column on the table that is used to hold the value.
segment_column_name
(optional - defaults to sequence_name
): the name of the column on the table that is used to hold the "segment key". This is the value which identifies which increment value to use.
segment_value
(optional - defaults to default
): The "segment key" value for the segment from which we want to pull increment values for this generator.
segment_value_length
(optional - defaults to 255
): Used for schema generation; the column size to create this segment key column.
initial_value
(optional - defaults to 1
): The initial value to be retrieved from the table.
increment_size
(optional - defaults to 1
): The value by which subsequent calls to the table should differ.
optimizer
(optional - defaults to ??
): See Abschnitt 5.1.2.3.1, „Identifier generator optimization“.
For identifier generators that store values in the database, it is inefficient for them to hit the database on each and every call to generate a new identifier value. Instead, you can group a bunch of them in memory and only hit the database when you have exhausted your in-memory value group. This is the role of the pluggable optimizers. Currently only the two enhanced generators (Abschnitt 5.1.2.3, „Enhanced identifier generators“ support this operation.
none
(generally this is the default if no optimizer was specified): this will not perform any optimizations and hit the database for each and every request.
hilo
: applies a hi/lo algorithm around the database retrieved values. The values from the database for this optimizer are expected to be sequential. The values retrieved from the database structure for this optimizer indicates the "group number". The increment_size
is multiplied by that value in memory to define a group "hi value".
pooled
: as with the case of hilo
, this optimizer attempts to minimize the number of hits to the database. Here, however, we simply store the starting value for the "next group" into the database structure rather than a sequential value in combination with an in-memory grouping algorithm. Here, increment_size
refers to the values coming from the database.
Hibernate supports the automatic generation of some of the identifier properties. Simply use the @GeneratedValue
annotation on one or several id properties.
The Hibernate team has always felt such a construct as fundamentally wrong. Try hard to fix your data model before using this feature.
@Entity
public class CustomerInventory implements Serializable {
@Id
@TableGenerator(name = "inventory",
table = "U_SEQUENCES",
pkColumnName = "S_ID",
valueColumnName = "S_NEXTNUM",
pkColumnValue = "inventory",
allocationSize = 1000)
@GeneratedValue(strategy = GenerationType.TABLE, generator = "inventory")
Integer id;
@Id @ManyToOne(cascade = CascadeType.MERGE)
Customer customer;
}
@Entity
public class Customer implements Serializable {
@Id
private int id;
}
You can also generate properties inside an @EmbeddedId
class.
When using long transactions or conversations that span several database transactions, it is useful to store versioning data to ensure that if the same entity is updated by two conversations, the last to commit changes will be informed and not override the other conversation's work. It guarantees some isolation while still allowing for good scalability and works particularly well in read-often write-sometimes situations.
You can use two approaches: a dedicated version number or a timestamp.
A version or timestamp property should never be null for a detached instance. Hibernate will detect any instance with a null version or timestamp as transient, irrespective of what other unsaved-value
strategies are specified. Declaring a nullable version or timestamp property is an easy way to avoid problems with transitive reattachment in Hibernate. It is especially useful for people using assigned identifiers or composite keys.
You can add optimistic locking capability to an entity using the @Version
annotation:
@Entity
public class Flight implements Serializable {
...
@Version
@Column(name="OPTLOCK")
public Integer getVersion() { ... }
}
The version property will be mapped to the OPTLOCK
column, and the entity manager will use it to detect conflicting updates (preventing lost updates you might otherwise see with the last-commit-wins strategy).
The version column may be a numeric. Hibernate supports any kind of type provided that you define and implement the appropriate UserVersionType
.
The application must not alter the version number set up by Hibernate in any way. To artificially increase the version number, check in Hibernate Entity Manager's reference documentation LockModeType.OPTIMISTIC_FORCE_INCREMENT
or LockModeType.PESSIMISTIC_FORCE_INCREMENT
.
If the version number is generated by the database (via a trigger for example), make sure to use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).
To declare a version property in hbm.xml, use:
<version column="version_column" name="
propertyName" type="
typename" access
="field|property|ClassName" unsave
d-value="null|negative|undefined" genera
ted="never|always" insert
="true|false" node="element-name|@attribute-name|element/@attribute|." />
| |
| |
| |
| |
| |
| |
|
Alternatively, you can use a timestamp. Timestamps are a less safe implementation of optimistic locking. However, sometimes an application might use the timestamps in other ways as well.
Simply mark a property of type Date
or Calendar
as @Version
.
@Entity
public class Flight implements Serializable {
...
@Version
public Date getLastUpdate() { ... }
}
When using timestamp versioning you can tell Hibernate where to retrieve the timestamp value from - database or JVM - by optionally adding the @org.hibernate.annotations.Source
annotation to the property. Possible values for the value attribute of the annotation are org.hibernate.annotations.SourceType.VM
and org.hibernate.annotations.SourceType.DB
. The default is SourceType.DB
which is also used in case there is no @Source
annotation at all.
Like in the case of version numbers, the timestamp can also be generated by the database instead of Hibernate. To do that, use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).
In hbm.xml, use the <timestamp>
element:
<timestamp column="timestamp_column" name="
propertyName" access
="field|property|ClassName" unsave
d-value="null|undefined" source
="vm|db" genera
ted="never|always" node="element-name|@attribute-name|element/@attribute|." />
| |
| |
| |
| |
| |
|
<Timestamp>
is equivalent to <version type="timestamp">
. And <timestamp source="db">
is equivalent to <version type="dbtimestamp">
You need to decide which property needs to be made persistent in a given entity. This differs slightly between the annotation driven metadata and the hbm.xml files.
In the annotations world, every non static non transient property (field or method depending on the access type) of an entity is considered persistent, unless you annotate it as @Transient
. Not having an annotation for your property is equivalent to the appropriate @Basic
annotation.
The @Basic
annotation allows you to declare the fetching strategy for a property. If set to LAZY
, specifies that this property should be fetched lazily when the instance variable is first accessed. It requires build-time bytecode instrumentation, if your classes are not instrumented, property level lazy loading is silently ignored. The default is EAGER
. You can also mark a property as not optional thanks to the @Basic.optional
attribute. This will ensure that the underlying column are not nullable (if possible). Note that a better approach is to use the @NotNull
annotation of the Bean Validation specification.
Let's look at a few examples:
public transient int counter; //transient property
private String firstname; //persistent property
@Transient
String getLengthInMeter() { ... } //transient property
String getName() {... } // persistent property
@Basic
int getLength() { ... } // persistent property
@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property
@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property
@Enumerated(EnumType.STRING)
Starred getNote() { ... } //enum persisted as String in database
counter
, a transient field, and lengthInMeter
, a method annotated as @Transient
, and will be ignored by the Hibernate. name
, length
, and firstname
properties are mapped persistent and eagerly fetched (the default for simple properties). The detailedComment
property value will be lazily fetched from the database once a lazy property of the entity is accessed for the first time. Usually you don't need to lazy simple properties (not to be confused with lazy association fetching). The recommended alternative is to use the projection capability of JP-QL (Java Persistence Query Language) or Criteria queries.
JPA support property mapping of all basic types supported by Hibernate (all basic Java types , their respective wrappers and serializable classes). Hibernate Annotations supports out of the box enum type mapping either into a ordinal column (saving the enum ordinal) or a string based column (saving the enum string representation): the persistence representation, defaulted to ordinal, can be overridden through the @Enumerated
annotation as shown in the note
property example.
In plain Java APIs, the temporal precision of time is not defined. When dealing with temporal data you might want to describe the expected precision in database. Temporal data can have DATE
, TIME
, or TIMESTAMP
precision (ie the actual date, only the time, or both). Use the @Temporal
annotation to fine tune that.
@Lob
indicates that the property should be persisted in a Blob or a Clob depending on the property type: java.sql.Clob
, Character[]
, char[]
and java.lang.String
will be persisted in a Clob. java.sql.Blob
, Byte[]
, byte[]
and Serializable
type will be persisted in a Blob.
@Lob
public String getFullText() {
return fullText;
}
@Lob
public byte[] getFullCode() {
return fullCode;
}
If the property type implements java.io.Serializable
and is not a basic type, and if the property is not annotated with @Lob
, then the Hibernate serializable
type is used.
You can also manually specify a type using the @org.hibernate.annotations.Type
and some parameters if needed. @Type.type
could be:
The name of a Hibernate basic type: integer, string, character, date, timestamp, float, binary, serializable, object, blob
etc.
The name of a Java class with a default basic type: int, float, char, java.lang.String, java.util.Date, java.lang.Integer, java.sql.Clob
etc.
Der Name einer serialisierbaren Java-Klasse.
The class name of a custom type: com.illflow.type.MyCustomType
etc.
If you do not specify a type, Hibernate will use reflection upon the named property and guess the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the property getter using, in order, rules 2, 3, and 4.
@org.hibernate.annotations.TypeDef
and @org.hibernate.annotations.TypeDefs
allows you to declare type definitions. These annotations can be placed at the class or package level. Note that these definitions are global for the session factory (even when defined at the class level). If the type is used on a single entity, you can place the definition on the entity itself. Otherwise, it is recommended to place the definition at the package level. In the example below, when Hibernate encounters a property of class PhoneNumer
, it delegates the persistence strategy to the custom mapping type PhoneNumberType
. However, properties belonging to other classes, too, can delegate their persistence strategy to PhoneNumberType
, by explicitly using the @Type
annotation.
Package level annotations are placed in a file named package-info.java
in the appropriate package. Place your annotations before the package declaration.
@TypeDef(
name = "phoneNumber",
defaultForType = PhoneNumber.class,
typeClass = PhoneNumberType.class
)
@Entity
public class ContactDetails {
[...]
private PhoneNumber localPhoneNumber;
@Type(type="phoneNumber")
private OverseasPhoneNumber overseasPhoneNumber;
[...]
}
The following example shows the usage of the parameters
attribute to customize the TypeDef.
//in org/hibernate/test/annotations/entity/package-info.java
@TypeDefs(
{
@TypeDef(
name="caster",
typeClass = CasterStringType.class,
parameters = {
@Parameter(name="cast", value="lower")
}
)
}
)
package org.hibernate.test.annotations.entity;
//in org/hibernate/test/annotations/entity/Forest.java
public class Forest {
@Type(type="caster")
public String getSmallText() {
...
}
When using composite user type, you will have to express column definitions. The @Columns
has been introduced for that purpose.
@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")
@Columns(columns = {
@Column(name="r_amount"),
@Column(name="r_currency")
})
public MonetaryAmount getAmount() {
return amount;
}
public class MonetaryAmount implements Serializable {
private BigDecimal amount;
private Currency currency;
...
}
By default the access type of a class hierarchy is defined by the position of the @Id
or @EmbeddedId
annotations. If these annotations are on a field, then only fields are considered for persistence and the state is accessed via the field. If there annotations are on a getter, then only the getters are considered for persistence and the state is accessed via the getter/setter. That works well in practice and is the recommended approach.
The placement of annotations within a class hierarchy has to be consistent (either field or on property) to be able to determine the default access type. It is recommended to stick to one single annotation placement strategy throughout your whole application.
However in some situations, you need to:
force the access type of the entity hierarchy
override the access type of a specific entity in the class hierarchy
override the access type of an embeddable type
The best use case is an embeddable class used by several entities that might not use the same access type. In this case it is better to force the access type at the embeddable class level.
To force the access type on a given class, use the @Access
annotation as showed below:
@Entity
public class Order {
@Id private Long id;
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
@Embedded private Address address;
public Address getAddress() { return address; }
public void setAddress() { this.address = address; }
}
@Entity
public class User {
private Long id;
@Id public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
private Address address;
@Embedded public Address getAddress() { return address; }
public void setAddress() { this.address = address; }
}
@Embeddable
@Access(AcessType.PROPERTY)
public class Address {
private String street1;
public String getStreet1() { return street1; }
public void setStreet1() { this.street1 = street1; }
private hashCode; //not persistent
}
You can also override the access type of a single property while keeping the other properties standard.
@Entity
public class Order {
@Id private Long id;
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
@Transient private String userId;
@Transient private String orderId;
@Access(AccessType.PROPERTY)
public String getOrderNumber() { return userId + ":" + orderId; }
public void setOrderNumber() { this.userId = ...; this.orderId = ...; }
}
In this example, the default access type is FIELD
except for the orderNumber
property. Note that the corresponding field, if any must be marked as @Transient
or transient
.
The annotation @org.hibernate.annotations.AccessType
should be considered deprecated for FIELD and PROPERTY access. It is still useful however if you need to use a custom access type.
It is sometimes useful to avoid increasing the version number even if a given property is dirty (particularly collections). You can do that by annotating the property (or collection) with @OptimisticLock(excluded=true)
.
More formally, specifies that updates to this property do not require acquisition of the optimistic lock.
The column(s) used for a property mapping can be defined using the @Column
annotation. Use it to override default values (see the JPA specification for more information on the defaults). You can use this annotation at the property level for properties that are:
not annotated at all
annotated with @Basic
annotated with @Version
annotated with @Lob
annotated with @Temporal
@Entity
public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false, length=50)
public String getName() { ... }
The name
property is mapped to the flight_name
column, which is not nullable, has a length of 50 and is not updatable (making the property immutable).
This annotation can be applied to regular properties as well as @Id
or @Version
properties.
@Column( name="columnName"; boolean un
ique() default false; boolean nu
llable() default true; boolean in
sertable() default true; boolean up
datable() default true; String col
umnDefinition() default ""; String tab
le() default ""; int length
() default 255; int precis
ion() default 0; // decimal precision int scale(
) default 0; // decimal scale
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Sometimes, you want the Database to do some computation for you rather than in the JVM, you might also create some kind of virtual column. You can use a SQL fragment (aka formula) instead of mapping a property into a column. This kind of property is read only (its value is calculated by your formula fragment).
@Formula("obj_length * obj_height * obj_width")
public long getObjectVolume()
The SQL fragment can be as complex as you want and even include subselects.
If a property is not annotated, the following rules apply:
If the property is of a single type, it is mapped as @Basic
Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as @Embedded
Otherwise, if the type of the property is Serializable
, it is mapped as @Basic
in a column holding the object in its serialized version
Otherwise, if the type of the property is java.sql.Clob
or java.sql.Blob
, it is mapped as @Lob
with the appropriate LobType
The <property>
element declares a persistent JavaBean style property of the class.
<property name="propertyName" column
="column_name" type="
typename" update
="true|false" insert
="true|false" formul
a="arbitrary SQL expression" access
="field|property|ClassName" lazy="
true|false" unique
="true|false" not-nu
ll="true|false" optimi
stic-lock="true|false" genera
ted="never|insert|always" node="element-name|@attribute-name|element/@attribute|." index="index_name" unique_key="unique_key_id" length="L" precision="P" scale="S" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
typename könnte sein:
The name of a Hibernate basic type: integer, string, character, date, timestamp, float, binary, serializable, object, blob
etc.
The name of a Java class with a default basic type: int, float, char, java.lang.String, java.util.Date, java.lang.Integer, java.sql.Clob
etc.
Der Name einer serialisierbaren Java-Klasse.
The class name of a custom type: com.illflow.type.MyCustomType
etc.
If you do not specify a type, Hibernate will use reflection upon the named property and guess the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the property getter using, in order, rules 2, 3, and 4. In certain cases you will need the type
attribute. For example, to distinguish between Hibernate.DATE
and Hibernate.TIMESTAMP
, or to specify a custom type.
The access
attribute allows you to control how Hibernate accesses the property at runtime. By default, Hibernate will call the property get/set pair. If you specify access="field"
, Hibernate will bypass the get/set pair and access the field directly using reflection. You can specify your own strategy for property access by naming a class that implements the interface org.hibernate.property.PropertyAccessor
.
A powerful feature is derived properties. These properties are by definition read-only. The property value is computed at load time. You declare the computation as an SQL expression. This then translates to a SELECT
clause subquery in the SQL query that loads an instance:
<property name="totalPrice"
formula="( SELECT SUM (li.quantity*p.price) FROM LineItem li, Product p
WHERE li.productId = p.productId
AND li.customerId = customerId
AND li.orderNumber = orderNumber )"/>
You can reference the entity table by not declaring an alias on a particular column. This would be customerId
in the given example. You can also use the nested <formula>
mapping element if you do not want to use the attribute.
Embeddable objects (or components) are objects whose properties are mapped to the same table as the owning entity's table. Components can, in turn, declare their own properties, components or collections
It is possible to declare an embedded component inside an entity and even override its column mapping. Component classes have to be annotated at the class level with the @Embeddable
annotation. It is possible to override the column mapping of an embedded object for a particular entity using the @Embedded
and @AttributeOverride
annotation in the associated property:
@Entity
public class Person implements Serializable {
// Persistent component using defaults
Address homeAddress;
@Embedded
@AttributeOverrides( {
@AttributeOverride(name="iso2", column = @Column(name="bornIso2") ),
@AttributeOverride(name="name", column = @Column(name="bornCountryName") )
} )
Country bornIn;
...
}
@Embeddable
public class Address implements Serializable {
String city;
Country nationality; //no overriding here
}
@Embeddable
public class Country implements Serializable {
private String iso2;
@Column(name="countryName") private String name;
public String getIso2() { return iso2; }
public void setIso2(String iso2) { this.iso2 = iso2; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }
...
}
An embeddable object inherits the access type of its owning entity (note that you can override that using the @Access
annotation).
The Person
entity has two component properties, homeAddress
and bornIn
. homeAddress
property has not been annotated, but Hibernate will guess that it is a persistent component by looking for the @Embeddable
annotation in the Address class. We also override the mapping of a column name (to bornCountryName
) with the @Embedded
and @AttributeOverride
annotations for each mapped attribute of Country
. As you can see, Country
is also a nested component of Address
, again using auto-detection by Hibernate and JPA defaults. Overriding columns of embedded objects of embedded objects is through dotted expressions.
@Embedded
@AttributeOverrides( {
@AttributeOverride(name="city", column = @Column(name="fld_city") ),
@AttributeOverride(name="nationality.iso2", column = @Column(name="nat_Iso2") ),
@AttributeOverride(name="nationality.name", column = @Column(name="nat_CountryName") )
//nationality columns in homeAddress are overridden
} )
Address homeAddress;
Hibernate Annotations supports something that is not explicitly supported by the JPA specification. You can annotate a embedded object with the @MappedSuperclass
annotation to make the superclass properties persistent (see @MappedSuperclass
for more informations).
You can also use association annotations in an embeddable object (ie @OneToOne
, @ManyToOne
, @OneToMany
or @ManyToMany
). To override the association columns you can use @AssociationOverride
.
If you want to have the same embeddable object type twice in the same entity, the column name defaulting will not work as several embedded objects would share the same set of columns. In plain JPA, you need to override at least one set of columns. Hibernate, however, allows you to enhance the default naming mechanism through the NamingStrategy
interface. You can write a strategy that prevent name clashing in such a situation. DefaultComponentSafeNamingStrategy
is an example of this.
If a property of the embedded object points back to the owning entity, annotate it with the @Parent
annotation. Hibernate will make sure this property is properly loaded with the entity reference.
In XML, use the <component>
element.
<component name="propertyName" class=
"className" insert
="true|false" update
="true|false" access
="field|property|ClassName" lazy="
true|false" optimi
stic-lock="true|false" unique
="true|false" node="element-name|." > <property ...../> <many-to-one .... /> ........ </component>
| |
| |
| |
| |
| |
| |
| |
|
Die untergeordneten <property>
-Tags mappen Properties der untergeordneten Klasse zu den Spalten der Tabelle.
Das <component>
-Element ermöglicht ein <parent>
-Subelement, das eine Property der Komponentenklasse als Rückreferenz zur enthaltenden Entity mappt.
The <dynamic-component>
element allows a Map
to be mapped as a component, where the property names refer to keys of the map. See Abschnitt 9.5, „Dynamische Komponenten“ for more information. This feature is not supported in annotations.
Java is a language supporting polymorphism: a class can inherit from another. Several strategies are possible to persist a class hierarchy:
Single table per class hierarchy strategy: a single table hosts all the instances of a class hierarchy
Joined subclass strategy: one table per class and subclass is present and each table persist the properties specific to a given subclass. The state of the entity is then stored in its corresponding class table and all its superclasses
Table per class strategy: one table per concrete class and subclass is present and each table persist the properties of the class and its superclasses. The state of the entity is then stored entirely in the dedicated table for its class.
With this approach the properties of all the subclasses in a given mapped class hierarchy are stored in a single table.
Each subclass declares its own persistent properties and subclasses. Version and id properties are assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique discriminator value. If this is not specified, the fully qualified Java class name is used.
@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
name="planetype",
discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }
In hbm.xml, for the table-per-class-hierarchy mapping strategy, the <subclass>
declaration is used. For example:
<subclass name="ClassName" discri
minator-value="discriminator_value" proxy=
"ProxyInterface" lazy="
true|false" dynamic-update="true|false" dynamic-insert="true|false" entity-name="EntityName" node="element-name" extends="SuperclassName"> <property .... /> ..... </subclass>
| |
| |
| |
|
For information about inheritance mappings see Kapitel 10, Inheritance mapping.
Discriminators are required for polymorphic persistence using the table-per-class-hierarchy mapping strategy. It declares a discriminator column of the table. The discriminator column contains marker values that tell the persistence layer what subclass to instantiate for a particular row. Hibernate Core supports the follwoing restricted set of types as discriminator column: string
, character
, integer
, byte
, short
, boolean
, yes_no
, true_false
.
Use the @DiscriminatorColumn
to define the discriminator column as well as the discriminator type.
The enum DiscriminatorType
used in javax.persitence.DiscriminatorColumn
only contains the values STRING
, CHAR
and INTEGER
which means that not all Hibernate supported types are available via the @DiscriminatorColumn
annotation.
You can also use @DiscriminatorFormula
to express in SQL a virtual discriminator column. This is particularly useful when the discriminator value can be extracted from one or more columns of the table. Both @DiscriminatorColumn
and @DiscriminatorFormula
are to be set on the root entity (once per persisted hierarchy).
@org.hibernate.annotations.DiscriminatorOptions
allows to optionally specify Hibernate specific discriminator options which are not standardized in JPA. The available options are force
and insert
. The force
attribute is useful if the table contains rows with "extra" discriminator values that are not mapped to a persistent class. This could for example occur when working with a legacy database. If force
is set to true
Hibernate will specify the allowed discriminator values in the SELECT
query, even when retrieving all instances of the root class. The second option - insert
- tells Hibernate whether or not to include the discriminator column in SQL INSERTs
. Usually the column should be part of the INSERT
statement, but if your discriminator column is also part of a mapped composite identifier you have to set this option to false
.
There is also a @org.hibernate.annotations.ForceDiscriminator
annotation which is deprecated since version 3.6. Use @DiscriminatorOptions
instead.
Finally, use @DiscriminatorValue
on each class of the hierarchy to specify the value stored in the discriminator column for a given entity. If you do not set @DiscriminatorValue
on a class, the fully qualified class name is used.
@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
name="planetype",
discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }
In hbm.xml, the <discriminator>
element is used to define the discriminator column or formula:
<discriminator column="discriminator_column" type="
discriminator_type" force=
"true|false" insert
="true|false" formul
a="arbitrary sql expression" />
| |
| |
| |
| |
|
Die tatsächlichen Werte der Diskriminatorspalte werden durch das discriminator-value
-Attribut der <class>
und <subclass>
-Elemente spezifiziert.
The formula
attribute allows you to declare an arbitrary SQL expression that will be used to evaluate the type of a row. For example:
<discriminator
formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/>
Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping strategy. An inherited state is retrieved by joining with the table of the superclass. A discriminator column is not required for this mapping strategy. Each subclass must, however, declare a table column holding the object identifier. The primary key of this table is also a foreign key to the superclass table and described by the @PrimaryKeyJoinColumn
s or the <key>
element.
@Entity @Table(name="CATS")
@Inheritance(strategy=InheritanceType.JOINED)
public class Cat implements Serializable {
@Id @GeneratedValue(generator="cat-uuid")
@GenericGenerator(name="cat-uuid", strategy="uuid")
String getId() { return id; }
...
}
@Entity @Table(name="DOMESTIC_CATS")
@PrimaryKeyJoinColumn(name="CAT")
public class DomesticCat extends Cat {
public String getName() { return name; }
}
The table name still defaults to the non qualified class name. Also if @PrimaryKeyJoinColumn
is not set, the primary key / foreign key columns are assumed to have the same names as the primary key columns of the primary table of the superclass.
In hbm.xml, use the <joined-subclass>
element. For example:
<joined-subclass name="ClassName" table=
"tablename" proxy=
"ProxyInterface" lazy="
true|false" dynamic-update="true|false" dynamic-insert="true|false" schema="schema" catalog="catalog" extends="SuperclassName" persister="ClassName" subselect="SQL expression" entity-name="EntityName" node="element-name"> <key .... > <property .... /> ..... </joined-subclass>
| |
| |
| |
|
Use the <key>
element to declare the primary key / foreign key column. The mapping at the start of the chapter would then be re-written as:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat" table="CATS">
<id name="id" column="uid" type="long">
<generator class="hilo"/>
</id>
<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>
<property name="weight"/>
<many-to-one name="mate"/>
<set name="kittens">
<key column="MOTHER"/>
<one-to-many class="Cat"/>
</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">
<key column="CAT"/>
<property name="name" type="string"/>
</joined-subclass>
</class>
<class name="eg.Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping>
For information about inheritance mappings see Kapitel 10, Inheritance mapping.
A third option is to map only the concrete classes of an inheritance hierarchy to tables. This is called the table-per-concrete-class strategy. Each table defines all persistent states of the class, including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance hierarchies. You can map each class as a separate entity root. However, if you wish use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need to use the union subclass mapping.
@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable { ... }
Or in hbm.xml:
<union-subclass name="ClassName" table=
"tablename" proxy=
"ProxyInterface" lazy="
true|false" dynamic-update="true|false" dynamic-insert="true|false" schema="schema" catalog="catalog" extends="SuperclassName" abstract="true|false" persister="ClassName" subselect="SQL expression" entity-name="EntityName" node="element-name"> <property .... /> ..... </union-subclass>
| |
| |
| |
|
Für diese Mapping-Strategie ist keine Diskriminatorspalte oder Schlüsselspalte erforderlich.
For information about inheritance mappings see Kapitel 10, Inheritance mapping.
This is sometimes useful to share common properties through a technical or a business superclass without including it as a regular mapped entity (ie no specific table for this entity). For that purpose you can map them as @MappedSuperclass
.
@MappedSuperclass
public class BaseEntity {
@Basic
@Temporal(TemporalType.TIMESTAMP)
public Date getLastUpdate() { ... }
public String getLastUpdater() { ... }
...
}
@Entity class Order extends BaseEntity {
@Id public Integer getId() { ... }
...
}
In database, this hierarchy will be represented as an Order
table having the id
, lastUpdate
and lastUpdater
columns. The embedded superclass property mappings are copied into their entity subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.
Properties from superclasses not mapped as @MappedSuperclass
are ignored.
The default access type (field or methods) is used, unless you use the @Access
annotation.
The same notion can be applied to @Embeddable
objects to persist properties from their superclasses. You also need to use @MappedSuperclass
to do that (this should not be considered as a standard EJB3 feature though)
It is allowed to mark a class as @MappedSuperclass
in the middle of the mapped inheritance hierarchy.
Any class in the hierarchy non annotated with @MappedSuperclass
nor @Entity
will be ignored.
You can override columns defined in entity superclasses at the root entity level using the @AttributeOverride
annotation.
@MappedSuperclass
public class FlyingObject implements Serializable {
public int getAltitude() {
return altitude;
}
@Transient
public int getMetricAltitude() {
return metricAltitude;
}
@ManyToOne
public PropulsionType getPropulsion() {
return metricAltitude;
}
...
}
@Entity
@AttributeOverride( name="altitude", column = @Column(name="fld_altitude") )
@AssociationOverride(
name="propulsion",
joinColumns = @JoinColumn(name="fld_propulsion_fk")
)
public class Plane extends FlyingObject {
...
}
The altitude
property will be persisted in an fld_altitude
column of table Plane
and the propulsion association will be materialized in a fld_propulsion_fk
foreign key column.
You can define @AttributeOverride
(s) and @AssociationOverride
(s) on @Entity
classes, @MappedSuperclass
classes and properties pointing to an @Embeddable
object.
In hbm.xml, simply map the properties of the superclass in the <class>
element of the entity that needs to inherit them.
While not recommended for a fresh schema, some legacy databases force your to map a single entity on several tables.
Using the @SecondaryTable
or @SecondaryTables
class level annotations. To express that a column is in a particular table, use the table
parameter of @Column
or @JoinColumn
.
@Entity
@Table(name="MainCat")
@SecondaryTables({
@SecondaryTable(name="Cat1", pkJoinColumns={
@PrimaryKeyJoinColumn(name="cat_id", referencedColumnName="id")
),
@SecondaryTable(name="Cat2", uniqueConstraints={@UniqueConstraint(columnNames={"storyPart2"})})
})
public class Cat implements Serializable {
private Integer id;
private String name;
private String storyPart1;
private String storyPart2;
@Id @GeneratedValue
public Integer getId() {
return id;
}
public String getName() {
return name;
}
@Column(table="Cat1")
public String getStoryPart1() {
return storyPart1;
}
@Column(table="Cat2")
public String getStoryPart2() {
return storyPart2;
}
}
In this example, name
will be in MainCat
. storyPart1
will be in Cat1
and storyPart2
will be in Cat2
. Cat1
will be joined to MainCat
using the cat_id
as a foreign key, and Cat2
using id
(ie the same column name, the MainCat
id column has). Plus a unique constraint on storyPart2
has been set.
There is also additional tuning accessible via the @org.hibernate.annotations.Table
annotation:
fetch
: If set to JOIN, the default, Hibernate will use an inner join to retrieve a secondary table defined by a class or its superclasses and an outer join for a secondary table defined by a subclass. If set to SELECT
then Hibernate will use a sequential select for a secondary table defined on a subclass, which will be issued only if a row turns out to represent an instance of the subclass. Inner joins will still be used to retrieve a secondary defined by the class and its superclasses.
inverse
: If true, Hibernate will not try to insert or update the properties defined by this join. Default to false.
optional
: If enabled (the default), Hibernate will insert a row only if the properties defined by this join are non-null and will always use an outer join to retrieve the properties.
foreignKey
: defines the Foreign Key name of a secondary table pointing back to the primary table.
Make sure to use the secondary table name in the appliesto
property
@Entity
@Table(name="MainCat")
@SecondaryTable(name="Cat1")
@org.hibernate.annotations.Table(
appliesTo="Cat1",
fetch=FetchMode.SELECT,
optional=true)
public class Cat implements Serializable {
private Integer id;
private String name;
private String storyPart1;
private String storyPart2;
@Id @GeneratedValue
public Integer getId() {
return id;
}
public String getName() {
return name;
}
@Column(table="Cat1")
public String getStoryPart1() {
return storyPart1;
}
@Column(table="Cat2")
public String getStoryPart2() {
return storyPart2;
}
}
In hbm.xml, use the <join>
element.
<join table="tablename" schema
="owner" catalo
g="catalog" fetch=
"join|select" invers
e="true|false" option
al="true|false"> <key ... /> <property ... /> ... </join>
| |
| |
| |
| |
| |
|
For example, address information for a person can be mapped to a separate table while preserving value type semantics for all properties:
<class name="Person"
table="PERSON">
<id name="id" column="PERSON_ID">...</id>
<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</join>
...
This feature is often only useful for legacy data models. We recommend fewer tables than classes and a fine-grained domain model. However, it is useful for switching between inheritance mapping strategies in a single hierarchy, as explained later.
To link one entity to an other, you need to map the association property as a to one association. In the relational model, you can either use a foreign key or an association table, or (a bit less common) share the same primary key value between the two entities.
To mark an association, use either @ManyToOne
or @OnetoOne
.
@ManyToOne
and @OneToOne
have a parameter named targetEntity
which describes the target entity name. You usually don't need this parameter since the default value (the type of the property that stores the association) is good in almost all cases. However this is useful when you want to use interfaces as the return type instead of the regular entity.
Setting a value of the cascade
attribute to any meaningful value other than nothing will propagate certain operations to the associated object. The meaningful values are divided into three categories.
basic operations, which include: persist, merge, delete, save-update, evict, replicate, lock and refresh
;
special values: delete-orphan
or all
;
comma-separated combinations of operation names: cascade="persist,merge,evict"
or cascade="all,delete-orphan"
. See Abschnitt 11.11, „Transitive Persistenz“ for a full explanation. Note that single valued many-to-one associations do not support orphan delete.
By default, single point associations are eagerly fetched in JPA 2. You can mark it as lazily fetched by using @ManyToOne(fetch=FetchType.LAZY)
in which case Hibernate will proxy the association and load it when the state of the associated entity is reached. You can force Hibernate not to use a proxy by using @LazyToOne(NO_PROXY)
. In this case, the property is fetched lazily when the instance variable is first accessed. This requires build-time bytecode instrumentation. lazy="false" specifies that the association will always be eagerly fetched.
With the default JPA options, single-ended associations are loaded with a subsequent select if set to LAZY
, or a SQL JOIN is used for EAGER
associations. You can however adjust the fetching strategy, ie how data is fetched by using @Fetch
. FetchMode
can be SELECT
(a select is triggered when the association needs to be loaded) or JOIN
(use a SQL JOIN to load the association while loading the owner entity). JOIN
overrides any lazy attribute (an association loaded through a JOIN
strategy cannot be lazy).
An ordinary association to another persistent class is declared using a
@ManyToOne
if several entities can point to the the target entity
@OneToOne
if only a single entity can point to the the target entity
and a foreign key in one table is referencing the primary key column(s) of the target table.
@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
@JoinColumn(name="COMP_ID")
public Company getCompany() {
return company;
}
...
}
The @JoinColumn
attribute is optional, the default value(s) is the concatenation of the name of the relationship in the owner side, _ (underscore), and the name of the primary key column in the owned side. In this example company_id
because the property name is company
and the column id of Company is id
.
@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE}, targetEntity=CompanyImpl.class )
@JoinColumn(name="COMP_ID")
public Company getCompany() {
return company;
}
...
}
public interface Company {
...
}
You can also map a to one association through an association table. This association table described by the @JoinTable
annotation will contains a foreign key referencing back the entity table (through @JoinTable.joinColumns
) and a a foreign key referencing the target entity table (through @JoinTable.inverseJoinColumns
).
@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
@JoinTable(name="Flight_Company",
joinColumns = @JoinColumn(name="FLIGHT_ID"),
inverseJoinColumns = @JoinColumn(name="COMP_ID")
)
public Company getCompany() {
return company;
}
...
}
You can use a SQL fragment to simulate a physical join column using the @JoinColumnOrFormula
/ @JoinColumnOrformulas
annotations (just like you can use a SQL fragment to simulate a property column via the @Formula
annotation).
@Entity
public class Ticket implements Serializable {
@ManyToOne
@JoinColumnOrFormula(formula="(firstname + ' ' + lastname)")
public Person getOwner() {
return person;
}
...
}
You can mark an association as mandatory by using the optional=false
attribute. We recommend to use Bean Validation's @NotNull
annotation as a better alternative however. As a consequence, the foreign key column(s) will be marked as not nullable (if possible).
When Hibernate cannot resolve the association because the expected associated element is not in database (wrong id on the association column), an exception is raised. This might be inconvenient for legacy and badly maintained schemas. You can ask Hibernate to ignore such elements instead of raising an exception using the @NotFound
annotation.
Beispiel 5.1. @NotFound annotation
@Entity
public class Child {
...
@ManyToOne
@NotFound(action=NotFoundAction.IGNORE)
public Parent getParent() { ... }
...
}
Sometimes you want to delegate to your database the deletion of cascade when a given entity is deleted. In this case Hibernate generates a cascade delete constraint at the database level.
Beispiel 5.2. @OnDelete annotation
@Entity
public class Child {
...
@ManyToOne
@OnDelete(action=OnDeleteAction.CASCADE)
public Parent getParent() { ... }
...
}
Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can override the constraint name using @ForeignKey
.
Beispiel 5.3. @ForeignKey annotation
@Entity
public class Child {
...
@ManyToOne
@ForeignKey(name="FK_PARENT")
public Parent getParent() { ... }
...
}
alter table Child add constraint FK_PARENT foreign key (parent_id) references Parent
Sometimes, you want to link one entity to an other not by the target entity primary key but by a different unique key. You can achieve that by referencing the unique key column(s) in @JoinColumn.referenceColumnName
.
@Entity
class Person {
@Id Integer personNumber;
String firstName;
@Column(name="I")
String initial;
String lastName;
}
@Entity
class Home {
@ManyToOne
@JoinColumns({
@JoinColumn(name="first_name", referencedColumnName="firstName"),
@JoinColumn(name="init", referencedColumnName="I"),
@JoinColumn(name="last_name", referencedColumnName="lastName"),
})
Person owner
}
This is not encouraged however and should be reserved to legacy mappings.
In hbm.xml, mapping an association is similar. The main difference is that a @OneToOne
is mapped as <many-to-one unique="true"/>
, let's dive into the subject.
<many-to-one name="propertyName" column
="column_name" class=
"ClassName" cascad
e="cascade_style" fetch=
"join|select" update
="true|false" insert
="true|false" proper
ty-ref="propertyNameFromAssociatedClass" access
="field|property|ClassName" unique
="true|false" not-nu
ll="true|false" optimi
stic-lock="true|false" lazy="
proxy|no-proxy|false" not-fo
und="ignore|exception" entity
-name="EntityName" formul
a="arbitrary SQL expression" node="element-name|@attribute-name|element/@attribute|." embed-xml="true|false" index="index_name" unique_key="unique_key_id" foreign-key="foreign_key_name" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Setting a value of the cascade
attribute to any meaningful value other than none
will propagate certain operations to the associated object. The meaningful values are divided into three categories. First, basic operations, which include: persist, merge, delete, save-update, evict, replicate, lock and refresh
; second, special values: delete-orphan
; and third,all
comma-separated combinations of operation names: cascade="persist,merge,evict"
or cascade="all,delete-orphan"
. See Abschnitt 11.11, „Transitive Persistenz“ for a full explanation. Note that single valued, many-to-one and one-to-one, associations do not support orphan delete.
Here is an example of a typical many-to-one
declaration:
<many-to-one name="product" class="Product" column="PRODUCT_ID"/>
The property-ref
attribute should only be used for mapping legacy data where a foreign key refers to a unique key of the associated table other than the primary key. This is a complicated and confusing relational model. For example, if the Product
class had a unique serial number that is not the primary key. The unique
attribute controls Hibernate's DDL generation with the SchemaExport tool.
<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>
Dann könnte das Mapping für OrderItem
folgendes verwenden:
<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>
This is not encouraged, however.
Wenn der eindeutige Schlüssel, auf den verwiesen wird, mehrere Properties der zugehörigen Entity enthält, so sollten die Properties, auf die verwiesen wird, in einem benannten <properties>
-Element gemappt werden.
If the referenced unique key is the property of a component, you can specify a property path:
<many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN"/>
The second approach is to ensure an entity and its associated entity share the same primary key. In this case the primary key column is also a foreign key and there is no extra column. These associations are always one to one.
Beispiel 5.4. One to One association
@Entity
public class Body {
@Id
public Long getId() { return id; }
@OneToOne(cascade = CascadeType.ALL)
@MapsId
public Heart getHeart() {
return heart;
}
...
}
@Entity
public class Heart {
@Id
public Long getId() { ...}
}
Many people got confused by these primary key based one to one associations. They can only be lazily loaded if Hibernate knows that the other side of the association is always present. To indicate to Hibernate that it is the case, use @OneToOne(optional=false)
.
In hbm.xml, use the following mapping.
<one-to-one name="propertyName" class=
"ClassName" cascad
e="cascade_style" constr
ained="true|false" fetch=
"join|select" proper
ty-ref="propertyNameFromAssociatedClass" access
="field|property|ClassName" formul
a="any SQL expression" lazy="
proxy|no-proxy|false" entity
-name="EntityName" node="element-name|@attribute-name|element/@attribute|." embed-xml="true|false" foreign-key="foreign_key_name" />
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Primary key associations do not need an extra table column. If two rows are related by the association, then the two table rows share the same primary key value. To relate two objects by a primary key association, ensure that they are assigned the same identifier value.
For a primary key association, add the following mappings to Employee
and Person
respectively:
<one-to-one name="person" class="Person"/>
<one-to-one name="employee" class="Employee" constrained="true"/>
Ensure that the primary keys of the related rows in the PERSON and EMPLOYEE tables are equal. You use a special Hibernate identifier generation strategy called foreign
:
<class name="person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="foreign">
<param name="property">employee</param>
</generator>
</id>
...
<one-to-one name="employee"
class="Employee"
constrained="true"/>
</class>
A newly saved instance of Person
is assigned the same primary key value as the Employee
instance referred with the employee
property of that Person
.
Although we recommend the use of surrogate keys as primary keys, you should try to identify natural keys for all entities. A natural key is a property or combination of properties that is unique and non-null. It is also immutable. Map the properties of the natural key as @NaturalId
or map them inside the <natural-id>
element. Hibernate will generate the necessary unique key and nullability constraints and, as a result, your mapping will be more self-documenting.
@Entity
public class Citizen {
@Id
@GeneratedValue
private Integer id;
private String firstname;
private String lastname;
@NaturalId
@ManyToOne
private State state;
@NaturalId
private String ssn;
...
}
//and later on query
List results = s.createCriteria( Citizen.class )
.add( Restrictions.naturalId().set( "ssn", "1234" ).set( "state", ste ) )
.list();
Or in XML,
<natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />
......
</natural-id>
It is recommended that you implement equals()
and hashCode()
to compare the natural key properties of the entity.
This mapping is not intended for use with entities that have natural primary keys.
mutable
(optional - defaults to false
): by default, natural identifier properties are assumed to be immutable (constant).
There is one more type of property mapping. The @Any
mapping defines a polymorphic association to classes from multiple tables. This type of mapping requires more than one column. The first column contains the type of the associated entity. The remaining columns contain the identifier. It is impossible to specify a foreign key constraint for this kind of association. This is not the usual way of mapping polymorphic associations and you should use this only in special cases. For example, for audit logs, user session data, etc.
The @Any
annotation describes the column holding the metadata information. To link the value of the metadata information and an actual entity type, The @AnyDef
and @AnyDefs
annotations are used. The metaType
attribute allows the application to specify a custom type that maps database column values to persistent classes that have identifier properties of the type specified by idType
. You must specify the mapping from values of the metaType
to class names.
@Any( metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
@AnyMetaDef(
idType = "integer",
metaType = "string",
metaValues = {
@MetaValue( value = "S", targetEntity = StringProperty.class ),
@MetaValue( value = "I", targetEntity = IntegerProperty.class )
} )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
return mainProperty;
}
Note that @AnyDef
can be mutualized and reused. It is recommended to place it as a package metadata in this case.
//on a package
@AnyMetaDef( name="property"
idType = "integer",
metaType = "string",
metaValues = {
@MetaValue( value = "S", targetEntity = StringProperty.class ),
@MetaValue( value = "I", targetEntity = IntegerProperty.class )
} )
package org.hibernate.test.annotations.any;
//in a class
@Any( metaDef="property", metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
return mainProperty;
}
The hbm.xml equivalent is:
<any name="being" id-type="long" meta-type="string">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>
</any>
You cannot mutualize the metadata in hbm.xml as you can in annotations.
<any name="propertyName" id-typ
e="idtypename" meta-t
ype="metatypename" cascad
e="cascade_style" access
="field|property|ClassName" optimi
stic-lock="true|false" > <meta-value ... /> <meta-value ... /> ..... <column .... /> <column .... /> ..... </any>
| |
| |
| |
| |
| |
|
The <properties>
element allows the definition of a named, logical grouping of the properties of a class. The most important use of the construct is that it allows a combination of properties to be the target of a property-ref
. It is also a convenient way to define a multi-column unique constraint. For example:
<properties name="logicalName" insert
="true|false" update
="true|false" optimi
stic-lock="true|false" unique
="true|false" > <property ...../> <many-to-one .... /> ........ </properties>
| |
| |
| |
| |
|
Nehmen wir etwa das folgende <properties>
-Mapping:
<class name="Person">
<id name="personNumber"/>
...
<properties name="name"
unique="true" update="false">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</properties>
</class>
You might have some legacy data association that refers to this unique key of the Person
table, instead of to the primary key:
<many-to-one name="owner"
class="Person" property-ref="name">
<column name="firstName"/>
<column name="initial"/>
<column name="lastName"/>
</many-to-one>
When using annotations as a mapping strategy, such construct is not necessary as the binding between a column and its related column on the associated table is done directly
@Entity
class Person {
@Id Integer personNumber;
String firstName;
@Column(name="I")
String initial;
String lastName;
}
@Entity
class Home {
@ManyToOne
@JoinColumns({
@JoinColumn(name="first_name", referencedColumnName="firstName"),
@JoinColumn(name="init", referencedColumnName="I"),
@JoinColumn(name="last_name", referencedColumnName="lastName"),
})
Person owner
}
The use of this outside the context of mapping legacy data is not recommended.
The hbm.xml structure has some specificities naturally not present when using annotations, let's describe them briefly.
All XML mappings should declare the doctype shown. The actual DTD can be found at the URL above, in the directory hibernate-x.x.x/src/org/hibernate
, or in hibernate3.jar
. Hibernate will always look for the DTD in its classpath first. If you experience lookups of the DTD using an Internet connection, check the DTD declaration against the contents of your classpath.
Hibernate will first attempt to resolve DTDs in its classpath. It does this is by registering a custom org.xml.sax.EntityResolver
implementation with the SAXReader it uses to read in the xml files. This custom EntityResolver
recognizes two different systemId namespaces:
a hibernate namespace
is recognized whenever the resolver encounters a systemId starting with http://www.hibernate.org/dtd/
. The resolver attempts to resolve these entities via the classloader which loaded the Hibernate classes.
a user namespace
is recognized whenever the resolver encounters a systemId using a classpath://
URL protocol. The resolver will attempt to resolve these entities via (1) the current thread context classloader and (2) the classloader which loaded the Hibernate classes.
The following is an example of utilizing user namespacing:
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" [
<!ENTITY types SYSTEM "classpath://your/domain/types.xml">
]>
<hibernate-mapping package="your.domain">
<class name="MyEntity">
<id name="id" type="my-custom-id-type">
...
</id>
<class>
&types;
</hibernate-mapping>
Where types.xml
is a resource in the your.domain
package and contains a custom typedef.
This element has several optional attributes. The schema
and catalog
attributes specify that tables referred to in this mapping belong to the named schema and/or catalog. If they are specified, tablenames will be qualified by the given schema and catalog names. If they are missing, tablenames will be unqualified. The default-cascade
attribute specifies what cascade style should be assumed for properties and collections that do not specify a cascade
attribute. By default, the auto-import
attribute allows you to use unqualified class names in the query language.
<hibernate-mapping schema="schemaName" catal
og="catalogName" defau
lt-cascade="cascade_style" defau
lt-access="field|property|ClassName" defau
lt-lazy="true|false" auto-
import="true|false" packa
ge="package.name" />
| |
| |
| |
| |
| |
| |
|
If you have two persistent classes with the same unqualified name, you should set auto-import="false"
. An exception will result if you attempt to assign two classes to the same "imported" name.
The hibernate-mapping
element allows you to nest several persistent <class>
mappings, as shown above. It is, however, good practice (and expected by some tools) to map only a single persistent class, or a single class hierarchy, in one mapping file and name it after the persistent superclass. For example, Cat.hbm.xml
, Dog.hbm.xml
, or if using inheritance, Animal.hbm.xml
.
The <key>
element is featured a few times within this guide. It appears anywhere the parent mapping element defines a join to a new table that references the primary key of the original table. It also defines the foreign key in the joined table:
<key column="columnname" on-del
ete="noaction|cascade" proper
ty-ref="propertyName" not-nu
ll="true|false" update
="true|false" unique
="true|false" />
| |
| |
| |
| |
| |
|
For systems where delete performance is important, we recommend that all keys should be defined on-delete="cascade"
. Hibernate uses a database-level ON CASCADE DELETE
constraint, instead of many individual DELETE
statements. Be aware that this feature bypasses Hibernate's usual optimistic locking strategy for versioned data.
The not-null
and update
attributes are useful when mapping a unidirectional one-to-many association. If you map a unidirectional one-to-many association to a non-nullable foreign key, you must declare the key column using <key not-null="true">
.
If your application has two persistent classes with the same name, and you do not want to specify the fully qualified package name in Hibernate queries, classes can be "imported" explicitly, rather than relying upon auto-import="true"
. You can also import classes and interfaces that are not explicitly mapped:
<import class="java.lang.Object" rename="Universe"/>
<import class="ClassName" rename
="ShortName" />
| |
|
This feature is unique to hbm.xml and is not supported in annotations.
Mapping elements which accept a column
attribute will alternatively accept a <column>
subelement. Likewise, <formula>
is an alternative to the formula
attribute. For example:
<column
name="column_name"
length="N"
precision="N"
scale="N"
not-null="true|false"
unique="true|false"
unique-key="multicolumn_unique_key_name"
index="index_name"
sql-type="sql_type_name"
check="SQL expression"
default="SQL expression"
read="SQL expression"
write="SQL expression"/>
<formula>SQL expression</formula>
Most of the attributes on column
provide a means of tailoring the DDL during automatic schema generation. The read
and write
attributes allow you to specify custom SQL that Hibernate will use to access the column's value. For more on this, see the discussion of column read and write expressions.
The column
and formula
elements can even be combined within the same property or association mapping to express, for example, exotic join conditions.
<many-to-one name="homeAddress" class="Address"
insert="false" update="false">
<column name="person_id" not-null="true" length="10"/>
<formula>'MAILING'</formula>
</many-to-one>
In relation to the persistence service, Java language-level objects are classified into two groups:
An entity exists independently of any other objects holding references to the entity. Contrast this with the usual Java model, where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted. Saves and deletions, however, can be cascaded from a parent entity to its children. This is different from the ODMG model of object persistence by reachability and corresponds more closely to how application objects are usually used in large systems. Entities support circular and shared references. They can also be versioned.
An entity's persistent state consists of references to other entities and instances of value types. Values are primitives: collections (not what is inside a collection), components and certain immutable objects. Unlike entities, values in particular collections and components, are persisted and deleted by reachability. Since value objects and primitives are persisted and deleted along with their containing entity, they cannot be independently versioned. Values have no independent identity, so they cannot be shared by two entities or collections.
Until now, we have been using the term "persistent class" to refer to entities. We will continue to do that. Not all user-defined classes with a persistent state, however, are entities. A component is a user-defined class with value semantics. A Java property of type java.lang.String
also has value semantics. Given this definition, all types (classes) provided by the JDK have value type semantics in Java, while user-defined types can be mapped with entity or value type semantics. This decision is up to the application developer. An entity class in a domain model will normally have shared references to a single instance of that class, while composition or aggregation usually translates to a value type.
We will revisit both concepts throughout this reference guide.
The challenge is to map the Java type system, and the developers' definition of entities and value types, to the SQL/database type system. The bridge between both systems is provided by Hibernate. For entities, <class>
, <subclass>
and so on are used. For value types we use <property>
, <component>
etc., that usually have a type
attribute. The value of this attribute is the name of a Hibernate mapping type. Hibernate provides a range of mappings for standard JDK value types out of the box. You can write your own mapping types and implement your own custom conversion strategies.
With the exception of collections, all built-in Hibernate types support null semantics.
The built-in basic mapping types can be roughly categorized into the following:
integer, long, short, float, double, character, byte, boolean, yes_no, true_false
Typen-Mappings von Java-"Primitives" oder "Wrapper-Klassen" zu passenden (Anbieter-spezifischen) SQL-Spaltentypen. boolean, yes_no
und true_false
sind alternative Verschlüsselungen für einen Java boolean
oder java.lang.Boolean
.
string
Ein "Type-Mapping" von java.lang.String
zu VARCHAR
(oder Oracle VARCHAR2
).
date, time, timestamp
Type-Mappings von java.util.Date
und dessen Subklassen zu SQL-Typen DATE
, TIME
und TIMESTAMP
(oder äquivalent).
calendar, calendar_date
Type-Mappings von java.util.Calendar
zu SQL-Typen TIMESTAMP
und DATE
(oder äquivalent).
big_decimal, big_integer
Type-Mappings von java.math.BigDecimal
und java.math.BigInteger
zu NUMERIC
(oder Oracle NUMBER
).
locale, timezone, currency
Type-Mappings von java.util.Locale
, java.util.TimeZone
und java.util.Currency
zuVARCHAR
(oder Oracle VARCHAR2
). Instanzen von Locale
und Currency
werden zu ihren ISO-Codes gemappt. Instanzen von TimeZone
werden zu ihrer ID
gemappt.
class
Ein Type-Mapping von java.lang.Class
zu VARCHAR
(oder Oracle VARCHAR2
). Eine Class
wird zu ihrem vollständigen Namen gemappt.
binary
Mappt Byte-Arrays zum zugehörigen SQL-Binärtyp.
text
Maps long Java strings to a SQL LONGVARCHAR
or TEXT
type.
image
Maps long byte arrays to a SQL LONGVARBINARY
.
serializable
Maps serializable Java types to an appropriate SQL binary type. You can also indicate the Hibernate type serializable
with the name of a serializable Java class or interface that does not default to a basic type.
clob, blob
Type mappings for the JDBC classes java.sql.Clob
and java.sql.Blob
. These types can be inconvenient for some applications, since the blob or clob object cannot be reused outside of a transaction. Driver support is patchy and inconsistent.
materialized_clob
Maps long Java strings to a SQL CLOB
type. When read, the CLOB
value is immediately materialized into a Java string. Some drivers require the CLOB
value to be read within a transaction. Once materialized, the Java string is available outside of the transaction.
materialized_blob
Maps long Java byte arrays to a SQL BLOB
type. When read, the BLOB
value is immediately materialized into a byte array. Some drivers require the BLOB
value to be read within a transaction. Once materialized, the byte array is available outside of the transaction.
imm_date, imm_time, imm_timestamp, imm_calendar, imm_calendar_date, imm_serializable, imm_binary
Type mappings for what are considered mutable Java types. This is where Hibernate makes certain optimizations appropriate only for immutable Java types, and the application treats the object as immutable. For example, you should not call Date.setTime()
for an instance mapped as imm_timestamp
. To change the value of the property, and have that change made persistent, the application must assign a new, nonidentical, object to the property.
Unique identifiers of entities and collections can be of any basic type except binary
, blob
and clob
. Composite identifiers are also allowed. See below for more information.
Die grundlegenden Wertetypen haben entsprechende Type
-Konstanten, die auf org.hibernate.Hibernate
definiert sind. So repräsentiert Hibernate.STRING
zum Beispiel den string
-Typ.
It is relatively easy for developers to create their own value types. For example, you might want to persist properties of type java.lang.BigInteger
to VARCHAR
columns. Hibernate does not provide a built-in type for this. Custom types are not limited to mapping a property, or collection element, to a single table column. So, for example, you might have a Java property getName()
/setName()
of type java.lang.String
that is persisted to the columns FIRST_NAME
, INITIAL
, SURNAME
.
To implement a custom type, implement either org.hibernate.UserType
or org.hibernate.CompositeUserType
and declare properties using the fully qualified classname of the type. View org.hibernate.test.DoubleStringType
to see the kind of things that are possible.
<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<column name="first_string"/>
<column name="second_string"/>
</property>
Beachten Sie die Verwendung von <column>
-Tags beim Mappen einer Property zu mehreren Spalten.
Die CompositeUserType
, EnhancedUserType
, UserCollectionType
und UserVersionType
Interfaces unterstützen auch speziellere Einsatzmöglichkeiten.
You can even supply parameters to a UserType
in the mapping file. To do this, your UserType
must implement the org.hibernate.usertype.ParameterizedType
interface. To supply parameters to your custom type, you can use the <type>
element in your mapping files.
<property name="priority">
<type name="com.mycompany.usertypes.DefaultValueIntegerType">
<param name="default">0</param>
</type>
</property>
Der UserType
kann jetzt den Wert für den Parameter mit Namen default
von dem an ihn geleiteten Properties
-Objekt abrufen.
If you regularly use a certain UserType
, it is useful to define a shorter name for it. You can do this using the <typedef>
element. Typedefs assign a name to a custom type, and can also contain a list of default parameter values if the type is parameterized.
<typedef class="com.mycompany.usertypes.DefaultValueIntegerType" name="default_zero">
<param name="default">0</param>
</typedef>
<property name="priority" type="default_zero"/>
Es ist auch möglich, die in einer "typedef" bereitgestellten Parameter von Fall zu Fall unter Verwendung der Typ-Parameter des Property-Mappings außer Kraft zu setzen.
Even though Hibernate's rich range of built-in types and support for components means you will rarely need to use a custom type, it is considered good practice to use custom types for non-entity classes that occur frequently in your application. For example, a MonetaryAmount
class is a good candidate for a CompositeUserType
, even though it could be mapped as a component. One reason for this is abstraction. With a custom type, your mapping documents would be protected against changes to the way monetary values are represented.
It is possible to provide more than one mapping for a particular persistent class. In this case, you must specify an entity name to disambiguate between instances of the two mapped entities. By default, the entity name is the same as the class name. Hibernate lets you specify the entity name when working with persistent objects, when writing queries, or when mapping associations to the named entity.
<class name="Contract" table="Contracts" entity-name="CurrentContract"> ... <set name="history" inverse="true" order-by="effectiveEndDate desc"> <key column="currentContractId"/> <one-to-many entity-name="HistoricalContract"/> </set> </class> <class name="Contract" table="ContractHistory" entity-name="HistoricalContract"> ... <many-to-one name="currentContract" column="currentContractId" entity-name="CurrentContract"/> </class>
Associations are now specified using entity-name
instead of class
.
This feature is not supported in Annotations
You can force Hibernate to quote an identifier in the generated SQL by enclosing the table or column name in backticks in the mapping document. Hibernate will use the correct quotation style for the SQL Dialect
. This is usually double quotes, but the SQL Server uses brackets and MySQL uses backticks.
@Entity @Table(name="`Line Item`")
class LineItem {
@id @Column(name="`Item Id`") Integer id;
@Column(name="`Item #`") int itemNumber
}
<class name="LineItem" table="`Line Item`">
<id name="id" column="`Item Id`"/><generator class="assigned"/></id>
<property name="itemNumber" column="`Item #`"/>
...
</class>
Generated properties are properties that have their values generated by the database. Typically, Hibernate applications needed to refresh
objects that contain any properties for which the database was generating values. Marking properties as generated, however, lets the application delegate this responsibility to Hibernate. When Hibernate issues an SQL INSERT or UPDATE for an entity that has defined generated properties, it immediately issues a select afterwards to retrieve the generated values.
Properties marked as generated must additionally be non-insertable and non-updateable. Only versions, timestamps, and simple properties, can be marked as generated.
never
(the default): the given property value is not generated within the database.
insert
: the given property value is generated on insert, but is not regenerated on subsequent updates. Properties like created-date fall into this category. Even though version and timestamp properties can be marked as generated, this option is not available.
always
: the property value is generated both on insert and on update.
To mark a property as generated, use @Generated
.
Hibernate allows you to customize the SQL it uses to read and write the values of columns mapped to simple properties. For example, if your database provides a set of data encryption functions, you can invoke them for individual columns like this:
@Entity
class CreditCard {
@Column(name="credit_card_num")
@ColumnTransformer(
read="decrypt(credit_card_num)",
write="encrypt(?)")
public String getCreditCardNumber() { return creditCardNumber; }
public void setCreditCardNumber(String number) { this.creditCardNumber = number; }
private String creditCardNumber;
}
or in XML
<property name="creditCardNumber">
<column
name="credit_card_num"
read="decrypt(credit_card_num)"
write="encrypt(?)"/>
</property>
You can use the plural form @ColumnTransformers
if more than one columns need to define either of these rules.
If a property uses more that one column, you must use the forColumn
attribute to specify which column, the expressions are targeting.
@Entity
class User {
@Type(type="com.acme.type.CreditCardType")
@Columns( {
@Column(name="credit_card_num"),
@Column(name="exp_date") } )
@ColumnTransformer(
forColumn="credit_card_num",
read="decrypt(credit_card_num)",
write="encrypt(?)")
public CreditCard getCreditCard() { return creditCard; }
public void setCreditCard(CreditCard card) { this.creditCard = card; }
private CreditCard creditCard;
}
Hibernate applies the custom expressions automatically whenever the property is referenced in a query. This functionality is similar to a derived-property formula
with two differences:
The property is backed by one or more columns that are exported as part of automatic schema generation.
The property is read-write, not read-only.
The write
expression, if specified, must contain exactly one '?' placeholder for the value.
Auxiliary database objects allow for the CREATE and DROP of arbitrary database objects. In conjunction with Hibernate's schema evolution tools, they have the ability to fully define a user schema within the Hibernate mapping files. Although designed specifically for creating and dropping things like triggers or stored procedures, any SQL command that can be run via a java.sql.Statement.execute()
method is valid (for example, ALTERs, INSERTS, etc.). There are essentially two modes for defining auxiliary database objects:
The first mode is to explicitly list the CREATE and DROP commands in the mapping file:
<hibernate-mapping>
...
<database-object>
<create>CREATE TRIGGER my_trigger ...</create>
<drop>DROP TRIGGER my_trigger</drop>
</database-object>
</hibernate-mapping>
The second mode is to supply a custom class that constructs the CREATE and DROP commands. This custom class must implement the org.hibernate.mapping.AuxiliaryDatabaseObject
interface.
<hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
</database-object>
</hibernate-mapping>
Additionally, these database objects can be optionally scoped so that they only apply when certain dialects are used.
<hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
<dialect-scope name="org.hibernate.dialect.Oracle9iDialect"/>
<dialect-scope name="org.hibernate.dialect.Oracle10gDialect"/>
</database-object>
</hibernate-mapping>
This feature is not supported in Annotations
Copyright © 2004 Red Hat, Inc.