Hibernate.orgCommunity Documentation

Chapitre 7. Mapper une collection

7.1. Collections persistantes
7.2. How to map collections
7.2.1. Les clés étrangères d'une collection
7.2.2. Collections indexées
7.2.3. Collections of basic types and embeddable objects
7.3. Mappages de collection avancés
7.3.1. Collections triées
7.3.2. Associations bidirectionnelles
7.3.3. Associations bidirectionnelles avec des collections indexées
7.3.4. Associations ternaires
7.3.5. Using an <idbag>
7.4. Exemples de collections

Naturally Hibernate also allows to persist collections. These persistent collections can contain almost any other Hibernate type, including: basic types, custom types, components and references to other entities. The distinction between value and reference semantics is in this context very important. An object in a collection might be handled with "value" semantics (its life cycle fully depends on the collection owner), or it might be a reference to another entity with its own life cycle. In the latter case, only the "link" between the two objects is considered to be a state held by the collection.

As a requirement persistent collection-valued fields must be declared as an interface type (see Exemple 7.2, « Collection mapping using @OneToMany and @JoinColumn »). The actual interface might be java.util.Set, java.util.Collection, java.util.List, java.util.Map, java.util.SortedSet, java.util.SortedMap or anything you like ("anything you like" means you will have to write an implementation of org.hibernate.usertype.UserCollectionType).

Notice how in Exemple 7.2, « Collection mapping using @OneToMany and @JoinColumn » the instance variable parts was initialized with an instance of HashSet. This is the best way to initialize collection valued properties of newly instantiated (non-persistent) instances. When you make the instance persistent, by calling persist(), Hibernate will actually replace the HashSet with an instance of Hibernate's own implementation of Set. Be aware of the following error:


Les collections persistantes injectées par Hibernate se comportent de la même manière que HashMap, HashSet, TreeMap, TreeSet ou ArrayList, selon le type de l'interface.

Les instances des collections ont le comportement habituel des types de valeurs. Elles sont automatiquement persistées quand elles sont référencées par un objet persistant et automatiquement effacées quand elles sont déréférencées. Si une collection est passée d'un objet persistant à un autre, ses éléments peuvent être déplacés d'une table à une autre. Deux entités ne peuvent pas partager une référence vers une même instance de collection. Dû au modèle relationnel sous-jacent, les propriétés contenant des collections ne supportent pas la sémantique de la valeur null ; Hibernate ne fait pas de distinction entre une référence de collection nulle et une collection vide.

Using annotations you can map Collections, Lists, Maps and Sets of associated entities using @OneToMany and @ManyToMany. For collections of a basic or embeddable type use @ElementCollection. In the simplest case a collection mapping looks like this:


Product describes a unidirectional relationship with Part using the join column PART_ID. In this unidirectional one to many scenario you can also use a join table as seen in Exemple 7.3, « Collection mapping using @OneToMany and @JoinTable ».


Without describing any physical mapping (no @JoinColumn or @JoinTable), a unidirectional one to many with join table is used. The table name is the concatenation of the owner table name, _, and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the owner table, _, and the owner primary key column(s) name. The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s) name. A unique constraint is added to the foreign key referencing the other side table to reflect the one to many.

Lets have a look now how collections are mapped using Hibernate mapping files. In this case the first step is to chose the right mapping element. It depends on the type of interface. For example, a <set> element is used for mapping properties of type Set.


In Exemple 7.4, « Mapping a Set using <set> » a one-to-many association links the Product and Part entities. This association requires the existence of a foreign key column and possibly an index column to the Part table. This mapping loses certain semantics of normal Java collections:

  • Une instance de la classe de l'entité contenue ne peut pas appartenir à plus d'une instance de la collection.

  • Une instance de la classe de l'entité contenue peut ne pas apparaître à plus plus d'une valeur d'index de la collection.

Looking closer at the used <one-to-many> tag we see that it has the following options.


Notez que l'élément <one-to-many> n'a pas besoin de déclarer de colonnes. Il n'est pas non plus nécessaire de spécifier le nom de la table à aucun endroit.

Apart from the <set> tag as shown in Exemple 7.4, « Mapping a Set using <set> », there is also <list>, <map>, <bag>, <array> and <primitive-array> mapping elements. The <map> element is representative:

Exemple 7.6. Elements of the <map> mapping

<map
    name="prop(1)ertyName"
    table="tab(2)le_name"
    schema="sc(3)hema_name"
    lazy="true(4)|extra|false"
    inverse="t(5)rue|false"
    cascade="a(6)ll|none|save-update|delete|all-delete-orphan|delete-orphan"
    sort="unso(7)rted|natural|comparatorClass"
    order-by="(8)column_name asc|desc"
    where="arb(9)itrary sql where condition"
    fetch="joi(10)n|select|subselect"
    batch-size(11)="N"
    access="fi(12)eld|property|ClassName"
    optimistic(13)-lock="true|false"
    mutable="t(14)rue|false"
    node="element-name|."
    embed-xml="true|false"
>

    <key .... />
    <map-key .... />
    <element .... />
</map>

1

name : le nom de la propriété contenant la collection

2

table (optionnel - par défaut = nom de la propriété) : le nom de la table de la collection (non utilisé pour les associations un-à-plusieurs)

3

schema (optionnel) : le nom du schéma pour surcharger le schéma déclaré dans l'élément racine

4

lazy (optionnel - par défaut = true) : peut être utilisé pour désactiver l'initialisation tardive et spécifier que l'association est toujours rapportée, ou pour activer la récupération extra-paresseuse (extra-lazy) où la plupart des opérations n'initialisent pas la collection (approprié pour de très grosses collections).

5

inverse (optionnel - par défaut = false) : définit cette collection comme l'extrémité "inverse" de l'association bidirectionnelle.

6

cascade (optionnel - par défaut = none) : active les opérations de cascade vers les entités filles.

7

sort (optionnel) : spécifie une collection triée via un ordre de tri naturel, ou via une classe comparateur donnée.

8

order-by (optional): specifies a table column or columns that define the iteration order of the Map, Set or bag, together with an optional asc or desc.

9

where (optionnel) : spécifie une condition SQL arbitraire WHERE à utiliser au chargement ou à la suppression d'une collection (utile si la collection ne doit contenir qu'un sous ensemble des données disponibles).

10

fetch (optionnel, par défaut = select) : à choisir entre récupération par jointures externes, récupération par selects séquentiels, et récupération par sous-selects séquentiels.

11

batch-size (optionnel, par défaut = 1) : une "taille de batch" utilisée pour charger plusieurs instances de cette collection.

12

access (optionnel - par défaut = property) : la stratégie que Hibernate doit utiliser pour accéder à la valeur de la propriété.

13

optimistic-lock (optionnel - par défaut = true) : spécifie que changer l'état des résultats de la collection entraîne l'incrémentation de la version appartenant à l'entité (Pour une association un-à-plusieurs, il est souvent raisonnable de désactiver ce paramètre).

14

mutable (optionnel - par défaut = true) : une valeur à false spécifie que les éléments de la collection ne changent jamais (une optimisation mineure dans certains cas).


After exploring the basic mapping of collections in the preceding paragraphs we will now focus details like physical mapping considerations, indexed collections and collections of value types.

In the following paragraphs we have a closer at the indexed collections List and Map how the their index can be mapped in Hibernate.

Lists can be mapped in two different ways:

To order lists in memory, add @javax.persistence.OrderBy to your property. This annotation takes as parameter a list of comma separated properties (of the target entity) and orders the collection accordingly (eg firstname asc, age desc), if the string is empty, the collection will be ordered by the primary key of the target entity.


To store the index value in a dedicated column, use the @javax.persistence.OrderColumn annotation on your property. This annotations describes the column name and attributes of the column keeping the index value. This column is hosted on the table containing the association foreign key. If the column name is not specified, the default is the name of the referencing property, followed by underscore, followed by ORDER (in the following example, it would be orders_ORDER).


Note

We recommend you to convert the legacy @org.hibernate.annotations.IndexColumn usages to @OrderColumn unless you are making use of the base property. The base property lets you define the index value of the first element (aka as base index). The usual value is 0 or 1. The default is 0 like in Java.

Looking again at the Hibernate mapping file equivalent, the index of an array or list is always of type integer and is mapped using the <list-index> element. The mapped column contains sequential integers that are numbered from zero by default.


Si votre table n'a pas de colonne d'index, et que vous souhaitez tout de même utiliser List comme type de propriété, vous devriez mapper la propriété comme un <bag> Hibernate. Un sac (bag) ne garde pas son ordre quand il est récupéré de la base de données, mais il peut être optionnellement trié ou ordonné.

The question with Maps is where the key value is stored. There are everal options. Maps can borrow their keys from one of the associated entity properties or have dedicated columns to store an explicit key.

To use one of the target entity property as a key of the map, use @MapKey(name="myProperty"), where myProperty is a property name in the target entity. When using @MapKey without the name attribuate, the target entity primary key is used. The map key uses the same column as the property pointed out. There is no additional column defined to hold the map key, because the map key represent a target property. Be aware that once loaded, the key is no longer kept in sync with the property. In other words, if you change the property value, the key will not change automatically in your Java model.


Alternatively the map key is mapped to a dedicated column or columns. In order to customize the mapping use one of the following annotations:

  • @MapKeyColumn if the map key is a basic type. If you don't specify the column name, the name of the property followed by underscore followed by KEY is used (for example orders_KEY).

  • @MapKeyEnumerated / @MapKeyTemporal if the map key type is respectively an enum or a Date.

  • @MapKeyJoinColumn/@MapKeyJoinColumns if the map key type is another entity.

  • @AttributeOverride/@AttributeOverrides when the map key is a embeddable object. Use key. as a prefix for your embeddable object property names.

You can also use @MapKeyClass to define the type of the key if you don't use generics.

Exemple 7.11. Map key as basic type using @MapKeyColumn

@Entity

public class Customer {
   @Id @GeneratedValue public Integer getId() { return id; }
   public void setId(Integer id) { this.id = id; }
   private Integer id;
   @OneToMany @JoinTable(name="Cust_Order")
   @MapKeyColumn(name="orders_number")
   public Map<String,Order> getOrders() { return orders; }
   public void setOrders(Map<String,Order> orders) { this.orders = orders; }
   private Map<String,Order> orders;
}
@Entity
public class Order {
   @Id @GeneratedValue public Integer getId() { return id; }
   public void setId(Integer id) { this.id = id; }
   private Integer id;
   public String getNumber() { return number; }
   public void setNumber(String number) { this.number = number; }
   private String number;
   @ManyToOne
   public Customer getCustomer() { return customer; }
   public void setCustomer(Customer customer) { this.customer = customer; }
   private Customer number;
}
-- Table schema
|-------------| |----------| |---------------|
| Order       | | Customer | | Cust_Order    |
|-------------| |----------| |---------------|
| id          | | id       | | customer_id   |
| number      | |----------| | order_id      |
| customer_id |              | orders_number |
|-------------|              |---------------|

Note

We recommend you to migrate from @org.hibernate.annotations.MapKey / @org.hibernate.annotation.MapKeyManyToMany to the new standard approach described above

Using Hibernate mapping files there exists equivalent concepts to the descibed annotations. You have to use <map-key>, <map-key-many-to-many> and <composite-map-key>. <map-key> is used for any basic type, <map-key-many-to-many> for an entity reference and <composite-map-key> for a composite type.



In some situations you don't need to associate two entities but simply create a collection of basic types or embeddable objects. Use the @ElementCollection for this case.


The collection table holding the collection data is set using the @CollectionTable annotation. If omitted the collection table name defaults to the concatenation of the name of the containing entity and the name of the collection attribute, separated by an underscore. In our example, it would be User_nicknames.

The column holding the basic type is set using the @Column annotation. If omitted, the column name defaults to the property name: in our example, it would be nicknames.

But you are not limited to basic types, the collection type can be any embeddable object. To override the columns of the embeddable object in the collection table, use the @AttributeOverride annotation.


Such an embeddable object cannot contains a collection itself.

Note

in @AttributeOverride, you must use the value. prefix to override properties of the embeddable object used in the map value and the key. prefix to override properties of the embeddable object used in the map key.

@Entity

public class User {
   @ElementCollection
   @AttributeOverrides({
      @AttributeOverride(name="key.street1", column=@Column(name="fld_street")),
      @AttributeOverride(name="value.stars", column=@Column(name="fld_note"))
   })
   public Map<Address,Rating> getFavHomes() { ... }

Note

We recommend you to migrate from @org.hibernate.annotations.CollectionOfElements to the new @ElementCollection annotation.

Using the mapping file approach a collection of values is mapped using the <element> tag. For example:


Hibernate supports collections implementing java.util.SortedMap and java.util.SortedSet. With annotations you declare a sort comparator using @Sort. You chose between the comparator types unsorted, natural or custom. If you want to use your own comparator implementation, you'll also have to specify the implementation class using the comparator attribute. Note that you need to use either a SortedSet or a SortedMap interface.


Using Hibernate mapping files you specify a comparator in the mapping file with <sort>:


Les valeurs permises pour l'attribut sort sont unsorted, natural et le nom d'une classe implémentant java.util.Comparator.

Astuce

Les collections triées se comportent réellement comme java.util.TreeSet ou java.util.TreeMap.

If you want the database itself to order the collection elements, use the order-by attribute of set, bag or map mappings. This solution is implemented using LinkedHashSet or LinkedHashMap and performs the ordering in the SQL query and not in the memory.


Note

Notez que la valeur de l'attribut order-by est un ordre SQL, et non pas un ordre HQL.

Les associations peuvent même être triées sur des critères arbitraires à l'exécution en utilisant un filter() de collection :


Une association bidirectionnelle permet la navigation à partir des deux extrémités de l'association. Deux types d'associations bidirectionnelles sont supportées :

Often there exists a many to one association which is the owner side of a bidirectional relationship. The corresponding one to many association is in this case annotated by @OneToMany(mappedBy=...)


Troop has a bidirectional one to many relationship with Soldier through the troop property. You don't have to (must not) define any physical mapping in the mappedBy side.

To map a bidirectional one to many, with the one-to-many side as the owning side, you have to remove the mappedBy element and set the many to one @JoinColumn as insertable and updatable to false. This solution is not optimized and will produce additional UPDATE statements.


How does the mappping of a bidirectional mapping look like in Hibernate mapping xml? There you define a bidirectional one-to-many association by mapping a one-to-many association to the same table column(s) as a many-to-one association and declaring the many-valued end inverse="true".


Mapper une extrémité d'une association avec inverse="true" n'affecte pas l'opération de cascades, ce sont des concepts orthogonaux.

A many-to-many association is defined logically using the @ManyToMany annotation. You also have to describe the association table and the join conditions using the @JoinTable annotation. If the association is bidirectional, one side has to be the owner and one side has to be the inverse end (ie. it will be ignored when updating the relationship values in the association table):


In this example @JoinTable defines a name, an array of join columns, and an array of inverse join columns. The latter ones are the columns of the association table which refer to the Employee primary key (the "other side"). As seen previously, the other side don't have to (must not) describe the physical mapping: a simple mappedBy argument containing the owner side property name bind the two.

As any other annotations, most values are guessed in a many to many relationship. Without describing any physical mapping in a unidirectional many to many the following rules applied. The table name is the concatenation of the owner table name, _ and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the owner table name, _ and the owner primary key column(s). The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s). These are the same rules used for a unidirectional one to many relationship.


A Store_City is used as the join table. The Store_id column is a foreign key to the Store table. The implantedIn_id column is a foreign key to the City table.

Without describing any physical mapping in a bidirectional many to many the following rules applied. The table name is the concatenation of the owner table name, _ and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the other side property name, _, and the owner primary key column(s). The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s). These are the same rules used for a unidirectional one to many relationship.


A Store_Customer is used as the join table. The stores_id column is a foreign key to the Store table. The customers_id column is a foreign key to the Customer table.

Using Hibernate mapping files you can map a bidirectional many-to-many association by mapping two many-to-many associations to the same database table and declaring one end as inverse.

Note

You cannot select an indexed collection.

Exemple 7.27, « Many to many association using Hibernate mapping files » shows a bidirectional many-to-many association that illustrates how each category can have many items and each item can be in many categories:


Les changements faits uniquement sur l'extrémité inverse de l'association ne sont pas persistés. Ceci signifie qu'Hibernate a deux représentations en mémoire pour chaque association bidirectionnelle, un lien de A vers B et un autre de B vers A. Ceci est plus facile à comprendre si vous pensez au modèle objet de Java et à la façon dont nous créons une relation plusieurs-à-plusieurs dans Java :


La partie non-inverse est utilisée pour sauvegarder la représentation en mémoire dans la base de données.

There are some additional considerations for bidirectional mappings with indexed collections (where one end is represented as a <list> or <map>) when using Hibernate mapping files. If there is a property of the child class that maps to the index column you can use inverse="true" on the collection mapping:


Mais, si il n'y a pas de telle propriété sur la classe enfant, nous ne pouvons pas considérer l'association comme vraiment bidirectionnelle (il y a des informations disponibles à une extrémité de l'association qui ne sont pas disponibles à l'autre extrémité). Dans ce cas, nous ne pouvons pas mapper la collection inverse="true". Par contre, nous utiliserons le mappage suivant :


Note that in this mapping, the collection-valued end of the association is responsible for updates to the foreign key.

The majority of the many-to-many associations and collections of values shown previously all map to tables with composite keys, even though it has been suggested that entities should have synthetic identifiers (surrogate keys). A pure association table does not seem to benefit much from a surrogate key, although a collection of composite values might. For this reason Hibernate provides a feature that allows you to map many-to-many associations and collections of values to a table with a surrogate key.

L'élément <idbag> vous laisse mapper une List (ou une Collection) avec une sémantique de sac. Par exemple :


<idbag name="lovers" table="LOVERS">
    <collection-id column="ID" type="long">
        <generator class="sequence"/>
    </collection-id>
    <key column="PERSON1"/>
    <many-to-many column="PERSON2" class="Person" fetch="join"/>
</idbag>

Comme vous pouvez le constater, un <idbag> a un générateur d'id artificiel, exactement comme une classe d'entité ! Une clé subrogée différente est assignée à chaque ligne de la collection. Cependant, Hibernate ne fournit pas de mécanisme pour découvrir la valeur d'une clé subrogée d'une ligne particulière.

Notez que les performances de la mise à jour d'un <idbag> sont bien meilleures qu'un <bag> ordinaire ! Hibernate peut localiser des lignes individuelles efficacement et les mettre à jour ou les effacer individuellement, comme une liste, une map ou un ensemble.

Dans l'implémentation actuelle, la stratégie de la génération de l'identifiant native n'est pas supportée pour les identifiants de collection <idbag>.

Exemples de collections

La classe suivante possède une collection d'instances Child(filles) :


Si chaque instance fille a au plus un parent, le mappage le plus naturel est une association un-à-plusieurs :



Ceci mappe les définitions de tables suivantes :


Si le parent est requis, utilisez une association bidirectionnelle un-à-plusieurs :



Notez la contrainte NOT NULL :


Alternatively, if this association must be unidirectional you can enforce the NOT NULL constraint.



On the other hand, if a child has multiple parents, a many-to-many association is appropriate.



Définitions des tables :


For more examples and a complete explanation of a parent/child relationship mapping, see Chapitre 24, Exemple : père/fils for more information. Even more complex association mappings are covered in the next chapter.