Hibernate.orgCommunity Documentation
Hibernate unterstützt drei grundlegende Mapping-Strategien der Vererbung:
"Tabelle-pro-Klasse"-Hierarchie
table per subclass
"Tabelle-pro-konkrete-Klasse"
Desweiteren unterstützt Hibernate eine vierte, etwas andere Art der Polymorphie:
implizite Polymorphie
It is possible to use different mapping strategies for different branches of the same inheritance hierarchy. You can then make use of implicit polymorphism to achieve polymorphism across the whole hierarchy. However, Hibernate does not support mixing <subclass>
, <joined-subclass>
and <union-subclass>
mappings under the same root <class>
element. It is possible to mix together the table per hierarchy and table per subclass strategies under the the same <class>
element, by combining the <subclass>
and <join>
elements (see below for an example).
It is possible to define subclass
, union-subclass
, and joined-subclass
mappings in separate mapping documents directly beneath hibernate-mapping
. This allows you to extend a class hierarchy by adding a new mapping file. You must specify an extends
attribute in the subclass mapping, naming a previously mapped superclass. Previously this feature made the ordering of the mapping documents important. Since Hibernate3, the ordering of mapping files is irrelevant when using the extends keyword. The ordering inside a single mapping file still needs to be defined as superclasses before subclasses.
<hibernate-mapping>
<subclass name="DomesticCat" extends="Cat" discriminator-value="D">
<property name="name" type="string"/>
</subclass>
</hibernate-mapping
>
Suppose we have an interface Payment
with the implementors CreditCardPayment
, CashPayment
, and ChequePayment
. The table per hierarchy mapping would display in the following way:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<property name="creditCardType" column="CCTYPE"/>
...
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class
>
Exactly one table is required. There is a limitation of this mapping strategy: columns declared by the subclasses, such as CCTYPE
, cannot have NOT NULL
constraints.
A table per subclass mapping looks like this:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
</class
>
Four tables are required. The three subclass tables have primary key associations to the superclass table so the relational model is actually a one-to-one association.
Hibernate's implementation of table per subclass does not require a discriminator column. Other object/relational mappers use a different implementation of table per subclass that requires a type discriminator column in the superclass table. The approach taken by Hibernate is much more difficult to implement, but arguably more correct from a relational point of view. If you want to use a discriminator column with the table per subclass strategy, you can combine the use of <subclass>
and <join>
, as follows:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
<join table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
<join table="CHEQUE_PAYMENT" fetch="select">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
</class
>
Durch die optionale fetch="select"
-Deklaration ruft Hibernate die ChequePayment
-Subklassendaten unter Verwendung eines äußeren Verbunds (sog. "outer Join") bei Anfragen an die Superklasse nicht auf.
You can even mix the table per hierarchy and table per subclass strategies using the following approach:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class
>
Bei allen diesen Mapping-Strategien wird eine polymorphe Assoziation zur Stamm-Payment
-Klasse mittels <many-to-one>
gemappt.
<many-to-one name="payment" column="PAYMENT_ID" class="Payment"/>
There are two ways we can map the table per concrete class strategy. First, you can use <union-subclass>
.
<class name="Payment">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="sequence"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">
...
</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
...
</union-subclass>
</class
>
Drei Tabellen sind für die Subklassen involviert. Jede Tabelle definiert Spalten für alle Properties der Klasse, einschließlich vererbter Properties.
The limitation of this approach is that if a property is mapped on the superclass, the column name must be the same on all subclass tables. The identity generator strategy is not allowed in union subclass inheritance. The primary key seed has to be shared across all unioned subclasses of a hierarchy.
If your superclass is abstract, map it with abstract="true"
. If it is not abstract, an additional table (it defaults to PAYMENT
in the example above), is needed to hold instances of the superclass.
Alternativ kann implizite Polymorphie angewendet werden:
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CREDIT_AMOUNT"/>
...
</class>
<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CASH_AMOUNT"/>
...
</class>
<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</class
>
Notice that the Payment
interface is not mentioned explicitly. Also notice that properties of Payment
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities (for example, [ <!ENTITY allproperties SYSTEM "allproperties.xml"> ]
in the DOCTYPE
declaration and &allproperties;
in the mapping).
The disadvantage of this approach is that Hibernate does not generate SQL UNION
s when performing polymorphic queries.
Bei dieser Mapping-Strategie wird in der Regel eine polymorphe Assoziation zu Payment
mittels <any>
gemappt.
<any name="payment" meta-type="string" id-type="long">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>
</any
>
Since the subclasses are each mapped in their own <class>
element, and since Payment
is just an interface), each of the subclasses could easily be part of another inheritance hierarchy. You can still use polymorphic queries against the Payment
interface.
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>
</class>
<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="id" type="long" column="TXN_ID">
<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CASH_AMOUNT"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</joined-subclass>
</class
>
Once again, Payment
is not mentioned explicitly. If we execute a query against the Payment
interface, for example from Payment
, Hibernate automatically returns instances of CreditCardPayment
(and its subclasses, since they also implement Payment
), CashPayment
and ChequePayment
, but not instances of NonelectronicTransaction
.
There are limitations to the "implicit polymorphism" approach to the table per concrete-class mapping strategy. There are somewhat less restrictive limitations to <union-subclass>
mappings.
The following table shows the limitations of table per concrete-class mappings, and of implicit polymorphism, in Hibernate.
Tabelle 9.1. Features von Vererbungsmappings
Vererbungsstrategie | Polymorphic many-to-one | Polymorphes "One-to-One" | Polymorphes "One-to-Many" | Polymorphes "Many-to-Many" | Polymorphes load()/get() | Polymorphe Anfragen | Polymorphe Verknüpfungen | Outer join fetching |
---|---|---|---|---|---|---|---|---|
table per class-hierarchy | <many-to-one> | <one-to-one> | <one-to-many> | <many-to-many> | s.get(Payment.class, id) | from Payment p | from Order o join o.payment p | supported |
table per subclass | <many-to-one> | <one-to-one> | <one-to-many> | <many-to-many> | s.get(Payment.class, id) | from Payment p | from Order o join o.payment p | supported |
Tabelle-pro-konkrete-Klasse (Union-Subklasse) | <many-to-one> | <one-to-one> | <one-to-many> (for inverse="true" only) | <many-to-many> | s.get(Payment.class, id) | from Payment p | from Order o join o.payment p | supported |
table per concrete class (implicit polymorphism) | <any> | not supported | not supported | <many-to-any> | s.createCriteria(Payment.class).add( Restrictions.idEq(id) ).uniqueResult() | from Payment p | not supported | not supported |
Copyright © 2004 Red Hat, Inc.