Hibernate.orgCommunity Documentation

Chapter 5. Querying

5.1. Building queries
5.1.1. Building a Lucene query
5.1.2. Building a Hibernate Search query
5.2. Retrieving the results
5.2.1. Performance considerations
5.2.2. Result size
5.2.3. ResultTransformer
5.2.4. Understanding results
5.3. Filters
5.3.1. Using filters in a sharded environment
5.4. Optimizing the query process
5.5. Native Lucene Queries

The second most important capability of Hibernate Search is the ability to execute a Lucene query and retrieve entities managed by an Hibernate session, providing the power of Lucene without leaving the Hibernate paradigm, and giving another dimension to the Hibernate classic search mechanisms (HQL, Criteria query, native SQL query). Preparing and executing a query consists of four simple steps:

To access the querying facilities, you have to use an FullTextSession. This Search specific session wraps a regular org.hibernate.Session to provide query and indexing capabilities.

Example 5.1. Creating a FullTextSession

Session session = sessionFactory.openSession();
...
FullTextSession fullTextSession = Search.getFullTextSession(session);    

The actual search facility is built on native Lucene queries which the following example illustrates.

Example 5.2. Creating a Lucene query

org.apache.lucene.queryParser.QueryParser parser = 
    new QueryParser("title", new StopAnalyzer() );

org.apache.lucene.search.Query luceneQuery = parser.parse( "summary:Festina Or brand:Seiko" );
org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery( luceneQuery );
        
List result = fullTextQuery.list(); //return a list of managed objects    

The Hibernate query built on top of the Lucene query is a regular org.hibernate.Query, which means you are in the same paradigm as the other Hibernate query facilities (HQL, Native or Criteria). The regular list() , uniqueResult(), iterate() and scroll() methods can be used.

In case you are using the Java Persistence APIs of Hibernate (aka EJB 3.0 Persistence), the same extensions exist:

Example 5.3. Creating a Search query using the JPA API

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager = 
    org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

...
org.apache.lucene.queryParser.QueryParser parser = 
    new QueryParser("title", new StopAnalyzer() );

org.apache.lucene.search.Query luceneQuery = parser.parse( "summary:Festina Or brand:Seiko" );
javax.persistence.Query fullTextQuery = fullTextEntityManager.createFullTextQuery( luceneQuery );

List result = fullTextQuery.getResultList(); //return a list of managed objects  

The following examples we will use the Hibernate APIs but the same example can be easily rewritten with the Java Persistence API by just adjusting the way the FullTextQuery is retrieved.

Hibernate Search queries are built on top of Lucene queries which gives you total freedom on the type of Lucene query you want to execute. However, once built, Hibernate Search wraps further query processing using org.hibernate.Query as your primary query manipulation API.

For some use cases, returning the domain object (graph) is overkill. Only a small subset of the properties is necessary. Hibernate Search allows you to return a subset of properties:


Hibernate Search extracts the properties from the Lucene index and convert them back to their object representation, returning a list of Object[]. Projections avoid a potential database round trip (useful if the query response time is critical), but has some constraints:

  • the properties projected must be stored in the index (@Field(store=Store.YES)), which increase the index size

  • the properties projected must use a FieldBridge implementing org.hibernate.search.bridge.TwoWayFieldBridge or org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version. All Hibernate Search built-in types are two-way.

  • you can only project simple properties of the indexed entity or its embedded associations. This means you cannot project a whole embedded entity.

  • projection does not work on collections or maps which are indexed via @IndexedEmbedded

Projection is useful for another kind of use cases. Lucene provides some metadata information to the user about the results. By using some special placeholders, the projection mechanism can retrieve them:


You can mix and match regular fields and special placeholders. Here is the list of available placeholders:

  • FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query would have done).

  • FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

  • FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

  • FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare one result against an other for a given query but are useless when comparing the result of different queries.

  • FullTextQuery.ID: the id property value of the projected object.

  • FullTextQuery.DOCUMENT_ID: the Lucene document id. Careful, Lucene document id can change overtime between two different IndexReader opening (this feature is experimental).

  • FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching object/document in the given query. Do not use if you retrieve a lot of data. Running explanation typically is as costly as running the whole Lucene query per matching element. Make sure you use projection!

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL or Criteria query. The same paradigm and object semantic applies. All the common operations are available: list(), uniqueResult(), iterate(), scroll().

You will find yourself sometimes puzzled by a result showing up in a query or a result not showing up in a query. Luke is a great tool to understand those mysteries. However, Hibernate Search also gives you access to the Lucene Explanation object for a given result (in a given query). This class is considered fairly advanced to Lucene users but can provide a good understanding of the scoring of an object. You have two ways to access the Explanation object for a given result:

The first approach takes a document id as a parameter and return the Explanation object. The document id can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.

The second approach let's you project the Explanation object using the FullTextQuery.EXPLANATION constant.


Be careful, building the explanation object is quite expensive, it is roughly as expensive as running the Lucene query again. Don't do it if you don't need the object

Apache Lucene has a powerful feature that allows to filter query results according to a custom filtering process. This is a very powerful way to apply additional data restrictions, especially since filters can be cached and reused. Some interesting use cases are:

Hibernate Search pushes the concept further by introducing the notion of parameterizable named filters which are transparently cached. For people familiar with the notion of Hibernate Core filters, the API is very similar:


In this example we enabled two filters on top of the query. You can enable (or disable) as many filters as you like.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on any @Indexed entity regardless of the query the filter is later applied to. This implies that filter definitions are global and their names must be unique. A SearchException is thrown in case two different @FullTextFilterDef annotations with the same name are defined. Each named filter has to specify its actual filter implementation.


BestDriversFilter is an example of a simple Lucene filter which reduces the result set to drivers whose score is 5. In this example the specified filter implements the org.apache.lucene.search.Filter directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-arg constructor, you can use the factory pattern:


Hibernate Search will look for a @Factory annotated method and use it to build the filter instance. The factory must have a no-arg constructor. For people familiar with JBoss Seam, this is similar to the component factory pattern, but the annotation is different!

Named filters come in handy where parameters have to be passed to the filter. For example a security filter might want to know which security level you want to apply:


Each parameter name should have an associated setter on either the filter or filter factory of the targeted named filter definition.


Note the method annotated @Key returning a FilterKey object. The returned object has a special contract: the key object must implement equals() / hashCode() so that 2 keys are equal if and only if the given Filter types are the same and the set of parameters are the same. In other words, 2 filter keys are equal if and only if the filters from which the keys are generated can be interchanged. The key object is used as a key in the cache mechanism.

@Key methods are needed only if:

  • you enabled the filter caching system (enabled by default)

  • your filter has parameters

In most cases, using the StandardFilterKey implementation will be good enough. It delegates the equals() / hashCode() implementation to each of the parameters equals and hashcode methods.

As mentioned before the defined filters are per default cached and the cache uses a combination of hard and soft references to allow disposal of memory when needed. The hard reference cache keeps track of the most recently used filters and transforms the ones least used to SoftReferences when needed. Once the limit of the hard reference cache is reached additional filters are cached as SoftReferences. To adjust the size of the hard reference cache, use hibernate.search.filter.cache_strategy.size (defaults to 128). For advanced use of filter caching, you can implement your own FilterCachingStrategy. The classname is defined by hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter results. In Lucene it is common practice to wrap filters using the IndexReader around a CachingWrapperFilter. The wrapper will cache the DocIdSet returned from the getDocIdSet(IndexReader reader) method to avoid expensive recomputation. It is important to mention that the computed DocIdSet is only cachable for the same IndexReader instance, because the reader effectively represents the state of the index at the moment it was opened. The document list cannot change within an opened IndexReader. A different/new IndexReader instance, however, works potentially on a different set of Documents (either from a different index or simply because the index has changed), hence the cached DocIdSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag of @FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which will automatically cache the filter instance as well as wrap the specified filter around a Hibernate specific implementation of CachingWrapperFilter (org.hibernate.search.filter.CachingWrapperFilter). In contrast to Lucene's version of this class SoftReferences are used together with a hard reference count (see discussion about filter cache). The hard reference count can be adjusted using hibernate.search.filter.cache_docidresults.size (defaults to 5). The wrapping behaviour can be controlled using the @FullTextFilterDef.cache parameter. There are three different values for this parameter:

ValueDefinition
FilterCacheModeType.NONENo filter instance and no result is cached by Hibernate Search. For every filter call, a new filter instance is created. This setting might be useful for rapidly changing data sets or heavily memory constrained environments.
FilterCacheModeType.INSTANCE_ONLYThe filter instance is cached and reused across concurrent Filter.getDocIdSet() calls. DocIdSet results are not cached. This setting is useful when a filter uses its own specific caching mechanism or the filter results change dynamically due to application specific events making DocIdSet caching in both cases unnecessary.
FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTSBoth the filter instance and the DocIdSet results are cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

  • the system does not update the targeted entity index often (in other words, the IndexReader is reused a lot)

  • the Filter's DocIdSet is expensive to compute (compared to the time spent to execute the query)

It is possible, in a sharded environment to execute queries on a subset of the available shards. This can be done in two steps:

Let's first look at an example of sharding strategy that query on a specific customer shard if the customer filter is activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

	// stored DirectoryProviders in a array indexed by customerID
	private DirectoryProvider<?>[] providers;
	
	public void initialize(Properties properties, DirectoryProvider<?>[] providers) {
		this.providers = providers;
	}

	public DirectoryProvider<?>[] getDirectoryProvidersForAllShards() {
		return providers;
	}

	public DirectoryProvider<?> getDirectoryProviderForAddition(Class<?> entity, Serializable id, String idInString, Document document) {
		Integer customerID = Integer.parseInt(document.getField("customerID").stringValue());
		return providers[customerID];
	}

	public DirectoryProvider<?>[] getDirectoryProvidersForDeletion(Class<?> entity, Serializable id, String idInString) {
		return getDirectoryProvidersForAllShards();
	}

	/**
	 * Optimization; don't search ALL shards and union the results; in this case, we 
	 * can be certain that all the data for a particular customer Filter is in a single
	 * shard; simply return that shard by customerID.
	 */
	public DirectoryProvider<?>[] getDirectoryProvidersForQuery(FullTextFilterImplementor[] filters) {
		FFullTextFilter filter = getCustomerFilter(filters, "customer");
		if (filter == null) {
			return getDirectoryProvidersForAllShards();
		}
		else {
			return new DirectoryProvider[] { providers[Integer.parseInt(filter.getParameter("customerID").toString())] };
		}
	}

	private FullTextFilter getFilter(FullTextFilterImplementor[] filters, String name) {
		for (FullTextFilterImplementor filter: filters) {
			if (filter.getName().equals(name)) return filter;
		}
		return null;
	}

}

In this example, if the filter named customer is present, we make sure to only use the shard dedicated to this customer. Otherwise, we return all shards. A given Sharding strategy can react to one or more filters and depends on their parameters.

The second step is simply to activate the filter at query time. While the filter can be a regular filter (as defined in Section 5.3, “Filters”) which also filters Lucene results after the query, you can make use of a special filter that will only be passed to the sharding strategy and otherwise ignored for the rest of the query. Simply use the ShardSensitiveOnlyFilter class when declaring your filter.

@Entity @Indexed
@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)
public class Customer {
   ...
}


FullTextQuery query = ftEm.createFullTextQuery(luceneQuery, Customer.class);
query.enableFulltextFilter("customer").setParameter("CustomerID", 5);
@SuppressWarnings("unchecked")
List<Customer> results = query.getResultList();

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene filter. Using filters and sharding strategy reacting to these filters is recommended to speed up queries in a sharded environment.

Query performance depends on several criteria:

If you wish to use some specific features of Lucene, you can always run Lucene specific queries. Check Chapter 8, Advanced features for more information.