Hibernate.orgCommunity Documentation

Chapter 2. Architecture

2.1. Overview
2.2. Back end
2.2.1. Lucene
2.2.2. JMS
2.2.3. JGroups
2.3. Reader strategy
2.3.1. shared
2.3.2. not-shared
2.3.3. Custom

Hibernate Search consists of an indexing component as well as an index search component. Both are backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps track of this event (through the Hibernate event system) and schedules an index update. All these updates are handled without you having to interact with the Apache Lucene APIs directly (see Section 3.1, “Enabling Hibernate Search and automatic indexing”). Instead, the interaction with the underlying Lucene indexes is handled via so called IndexManagers.

Each Lucene index is managed by one index manager which is uniquely identified by name. In most cases there is also a one to one relationship between an indexed entity and a single IndexManager. The exceptions are the use cases of index sharding and index sharing. The former can be applied when the index for a single entity becomes too big and indexing operations are slowing down the application. In this case a single entity is indexed into multiple indexes each with its own index manager (see Section 10.4, “Sharding indexes”). The latter, index sharing, is the ability to index multiple entities into the same Lucene index (see Section 10.5, “Sharing indexes”).

The index manager abstracts from the specific index configuration. In the case of the default index manager this includes details about the selected backend, the configured reader strategy and the chosen DirectoryProvider. These components will be discussed in greater detail later on. It is recommended that you start with the default index manager which uses different Lucene Directory types to manage the indexes (see Section 3.3, “Directory configuration”). You can, however, also provide your own IndexManager implementation (see Section 3.2, “Configuring the IndexManager”).

Once the index is created, you can search for entities and return lists of managed entities saving you the tedious object to Lucene Document mapping. The same persistence context is shared between Hibernate and Hibernate Search. As a matter of fact, the FullTextSession is built on top of the Hibernate Session so that the application code can use the unified org.hibernate.Query or javax.persistence.Query APIs exactly the same way a HQL, JPA-QL or native query would do.

To be more efficient Hibernate Search batches the write interactions with the Lucene index. This batching is the responsibility of the Worker. There are currently two types of batching. Outside a transaction, the index update operation is executed right after the actual database operation. This is really a no batching setup. In the case of an ongoing transaction, the index update operation is scheduled for the transaction commit phase and discarded in case of transaction rollback. The batching scope is the transaction. There are two immediate benefits:

  • Performance: Lucene indexing works better when operation are executed in batch.
  • ACIDity: The work executed has the same scoping as the one executed by the database transaction and is executed if and only if the transaction is committed. This is not ACID in the strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can be rebuilt from the source at any time.

You can think of those two batch modes (no scope vs transactional) as the equivalent of the (infamous) autocommit vs transactional behavior. From a performance perspective, the in transaction mode is recommended. The scoping choice is made transparently. Hibernate Search detects the presence of a transaction and adjust the scoping (see Section 3.4, “Worker configuration”).

Tip

It is recommended - for both your database and Hibernate Search - to execute your operations in a transaction, be it JDBC or JTA.

Note

Hibernate Search works perfectly fine in the Hibernate / EntityManager long conversation pattern aka. atomic conversation.

Hibernate Search offers the ability to let the batched work being processed by different back ends. Several back ends are provided out of the box and you have the option to plugin your own. It is important to understand that in this context back end encompasses more than just the configuration option hibernate.search.default.worker.backend. This property just specifies a implementation of the BackendQueueProcessor interface which is a part of a back end configuration. In most cases, however, additional configuration settings are needed to successfully configure a specific backend setup, like for example the JMS back end.

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent updates, read mostly, asynchronous index update etc). See also Section 3.5, “Reader strategy configuration”