ModeShape Distribution 3.0.0.Beta4

## org.modeshape.common.math Class DoubleOperations

```java.lang.Object org.modeshape.common.math.DoubleOperations
```
All Implemented Interfaces:
Comparator<Double>, MathOperations<Double>

```@Immutable
public class DoubleOperationsextends Objectimplements MathOperations<Double>, Comparator<Double>```

The `math operations` for double numbers.

Constructor Summary
`DoubleOperations()`

Method Summary
` Double` ```add(Double value1, Double value2)```
Add the two operands and return the sum.
` BigDecimal` `asBigDecimal(Double value)`
Create a `BigDecimal` representation of the supplied value.
` int` ```compare(Double value1, Double value2)```
Compare the two operands and return an integer that describes whether the first value is larger, smaller or the same as the second value.
` Double` `create(double value)`
Convert the double representation into the natural object representation.
` Double` `create(int value)`
Convert the integer representation into the natural object representation.
` Double` `create(long value)`
Convert the long representation into the natural object representation.
` Double` `createZeroValue()`
Create the object form of the "zero value".
` double` ```divide(Double value1, Double value2)```
Divide the first operand by the second, and return the result.
` double` `doubleValue(Double value)`
Convert the value to a double.
` float` `floatValue(Double value)`
Convert the value to a float.
` Double` `fromBigDecimal(BigDecimal value)`
Convert the `BigDecimal` representation into the natural object representation.
` Comparator<Double>` `getComparator()`
Return a `Comparator` for this `operand class`.
` int` `getExponentInScientificNotation(Double value)`
Get the exponent if the number were written in exponential form.
` Class<Double>` `getOperandClass()`
Return the class that these operations operate upon.
` Double` `increment(Double value)`
Increment the supplied operand by 1.
` int` `intValue(Double value)`
Convert the value to an integer.
` Double` ```keepSignificantFigures(Double value, int numSigFigs)```

` long` `longValue(Double value)`
Convert the value to a long integer.
` Double` ```maximum(Double value1, Double value2)```
Compare the two operands and return the one that is larger.
` Double` ```minimum(Double value1, Double value2)```
Compare the two operands and return the one that is smaller.
` Double` ```multiply(Double value1, Double value2)```
Multiply the two operands and return the product.
` Double` `negate(Double value)`
Negate the supplied operand.
` Double` ```random(Double minimum, Double maximum, Random rng)```
Generate a random instance within the specified range.
` Double` ```roundDown(Double value, int decimalShift)```
Round down the supplied value to the desired scale.
` Double` ```roundUp(Double value, int decimalShift)```
Round up the supplied value to the desired scale.
` short` `shortValue(Double value)`
Convert the value to a short.
` double` `sqrt(Double value)`
Return the square root of the supplied operand.
` Double` ```subtract(Double value1, Double value2)```
Subtract the second operand from the first, and return the difference.

Methods inherited from class java.lang.Object
`clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait`

Methods inherited from interface java.util.Comparator
`equals`

Constructor Detail

### DoubleOperations

`public DoubleOperations()`
Method Detail

### getOperandClass

`public Class<Double> getOperandClass()`
Description copied from interface: `MathOperations`
Return the class that these operations operate upon.

Specified by:
`getOperandClass` in interface `MathOperations<Double>`
Returns:
the class

```public Double add(Double value1,
Double value2)```
Description copied from interface: `MathOperations`
Add the two operands and return the sum. The `zero value` is used in place of any operand that is null.

Specified by:
`add` in interface `MathOperations<Double>`
Parameters:
`value1` - the first operand
`value2` - the second operand
Returns:
the sum of the two operands.

### subtract

```public Double subtract(Double value1,
Double value2)```
Description copied from interface: `MathOperations`
Subtract the second operand from the first, and return the difference. The `zero value` is used in place of any operand that is null.

Specified by:
`subtract` in interface `MathOperations<Double>`
Parameters:
`value1` - the first operand
`value2` - the second operand
Returns:
the difference between the two operands.

### multiply

```public Double multiply(Double value1,
Double value2)```
Description copied from interface: `MathOperations`
Multiply the two operands and return the product. The `zero value` is used in place of any operand that is null.

Specified by:
`multiply` in interface `MathOperations<Double>`
Parameters:
`value1` - the first operand
`value2` - the second operand
Returns:
the product of the two operands.

### divide

```public double divide(Double value1,
Double value2)```
Description copied from interface: `MathOperations`
Divide the first operand by the second, and return the result. The `zero value` is used in place of any operand that is null.

Specified by:
`divide` in interface `MathOperations<Double>`
Parameters:
`value1` - the first operand
`value2` - the second operand
Returns:
the result of the division

### negate

`public Double negate(Double value)`
Description copied from interface: `MathOperations`
Negate the supplied operand. The `zero value` is used in place of any operand that is null.

Specified by:
`negate` in interface `MathOperations<Double>`
Parameters:
`value` - the value that is to be negated
Returns:
the result of the negation

### increment

`public Double increment(Double value)`
Description copied from interface: `MathOperations`
Increment the supplied operand by 1. (Note, the exact meaning of "1" is dependent upon the particular `operand class`. The `zero value` is used in place of any operand that is null.

Specified by:
`increment` in interface `MathOperations<Double>`
Parameters:
`value` - the value that is to be incremented
Returns:
the incremented value

### maximum

```public Double maximum(Double value1,
Double value2)```
Description copied from interface: `MathOperations`
Compare the two operands and return the one that is larger. A null value is considered smaller than non-null values (including 0).

Specified by:
`maximum` in interface `MathOperations<Double>`
Parameters:
`value1` - the first operand
`value2` - the second operand
Returns:
the larger of the two operands

### minimum

```public Double minimum(Double value1,
Double value2)```
Description copied from interface: `MathOperations`
Compare the two operands and return the one that is smaller. A null value is considered larger than non-null values (including 0).

Specified by:
`minimum` in interface `MathOperations<Double>`
Parameters:
`value1` - the first operand
`value2` - the second operand
Returns:
the smaller of the two operands

### compare

```public int compare(Double value1,
Double value2)```
Description copied from interface: `MathOperations`
Compare the two operands and return an integer that describes whether the first value is larger, smaller or the same as the second value. The semantics are identical to those of `Comparable`. The `zero value` is used in place of any operand that is null.

Specified by:
`compare` in interface `Comparator<Double>`
Specified by:
`compare` in interface `MathOperations<Double>`
Parameters:
`value1` - the first operand
`value2` - the second operand
Returns:
-1 if the first value is smaller than the second, 1 if the first value is larger than the second, or 0 if they are equal.

### asBigDecimal

`public BigDecimal asBigDecimal(Double value)`
Description copied from interface: `MathOperations`
Create a `BigDecimal` representation of the supplied value.

Specified by:
`asBigDecimal` in interface `MathOperations<Double>`
Parameters:
`value` - the value that is to be converted to a BigDecimal
Returns:
the BigDecimal representation, or null if `value` is null

### fromBigDecimal

`public Double fromBigDecimal(BigDecimal value)`
Description copied from interface: `MathOperations`
Convert the `BigDecimal` representation into the natural object representation. This may result in loss of some data (e.g., converting a decimal to an integer results in the loss of the fractional part of the number).

Specified by:
`fromBigDecimal` in interface `MathOperations<Double>`
Parameters:
`value` - the BigDecimal value
Returns:
the natural representation, or null if `value` is null

### createZeroValue

`public Double createZeroValue()`
Description copied from interface: `MathOperations`
Create the object form of the "zero value". This is often used to create an uninitialized object.

Specified by:
`createZeroValue` in interface `MathOperations<Double>`
Returns:
the object that represents zero.

### create

`public Double create(int value)`
Description copied from interface: `MathOperations`
Convert the integer representation into the natural object representation.

Specified by:
`create` in interface `MathOperations<Double>`
Parameters:
`value` - the integer value
Returns:
the object representation of the integer

### create

`public Double create(long value)`
Description copied from interface: `MathOperations`
Convert the long representation into the natural object representation.

Specified by:
`create` in interface `MathOperations<Double>`
Parameters:
`value` - the long value
Returns:
the object representation of the long integer

### create

`public Double create(double value)`
Description copied from interface: `MathOperations`
Convert the double representation into the natural object representation.

Specified by:
`create` in interface `MathOperations<Double>`
Parameters:
`value` - the double value
Returns:
the object representation of the floating point number

### sqrt

`public double sqrt(Double value)`
Description copied from interface: `MathOperations`
Return the square root of the supplied operand.

Specified by:
`sqrt` in interface `MathOperations<Double>`
Parameters:
`value` - the value whose root is to be found; may not be null or 0
Returns:
the square root of the value

### getComparator

`public Comparator<Double> getComparator()`
Description copied from interface: `MathOperations`
Return a `Comparator` for this `operand class`. The implementation is free to return the same comparator instance from multiple invocations of this method.

Specified by:
`getComparator` in interface `MathOperations<Double>`
Returns:
a comparator

### random

```public Double random(Double minimum,
Double maximum,
Random rng)```
Description copied from interface: `MathOperations`
Generate a random instance within the specified range.

Specified by:
`random` in interface `MathOperations<Double>`
Parameters:
`minimum` - the minimum value, or null if the `zero-value` should be used for the minimum
`maximum` - the maximum value, or null if the `zero-value` should be used for the maximum
`rng` - the random number generator to use
Returns:
an instance of the `operand class` placed within the desired range using a random distribution, or null if this class does not support generating random instances

### doubleValue

`public double doubleValue(Double value)`
Description copied from interface: `MathOperations`
Convert the value to a double. This may result in a loss of information depending upon the `operand class`.

Specified by:
`doubleValue` in interface `MathOperations<Double>`
Parameters:
`value` - the value
Returns:
the representation as a double

### floatValue

`public float floatValue(Double value)`
Description copied from interface: `MathOperations`
Convert the value to a float. This may result in a loss of information depending upon the ```operand class```.

Specified by:
`floatValue` in interface `MathOperations<Double>`
Parameters:
`value` - the value
Returns:
the representation as a float

### intValue

`public int intValue(Double value)`
Description copied from interface: `MathOperations`
Convert the value to an integer. This may result in a loss of information depending upon the `operand class`.

Specified by:
`intValue` in interface `MathOperations<Double>`
Parameters:
`value` - the value
Returns:
the representation as an integer

### longValue

`public long longValue(Double value)`
Description copied from interface: `MathOperations`
Convert the value to a long integer. This may result in a loss of information depending upon the `operand class`.

Specified by:
`longValue` in interface `MathOperations<Double>`
Parameters:
`value` - the value
Returns:
the representation as a long

### shortValue

`public short shortValue(Double value)`
Description copied from interface: `MathOperations`
Convert the value to a short. This may result in a loss of information depending upon the ```operand class```.

Specified by:
`shortValue` in interface `MathOperations<Double>`
Parameters:
`value` - the value
Returns:
the representation as a short

### getExponentInScientificNotation

`public int getExponentInScientificNotation(Double value)`
Description copied from interface: `MathOperations`
Get the exponent if the number were written in exponential form.

Specified by:
`getExponentInScientificNotation` in interface `MathOperations<Double>`
Parameters:
`value` - the value
Returns:
the scale

### roundUp

```public Double roundUp(Double value,
int decimalShift)```
Description copied from interface: `MathOperations`
Round up the supplied value to the desired scale. This process works (conceptually) by shifting the decimal point of the value by `decimalShift` places, rounding, and then shifting the decimal point of the rounded value by `-decimalShift`

For example, consider the number 10.000354. This can be rounded to 10.0004 by calling this method and supplying the value and an "exponentToKeep" value of -4.

Specified by:
`roundUp` in interface `MathOperations<Double>`
Parameters:
`value` - the value to be rounded
`decimalShift` - the number of places the decimal point should be shifted before rounding
Returns:
the rounded value

### roundDown

```public Double roundDown(Double value,
int decimalShift)```
Description copied from interface: `MathOperations`
Round down the supplied value to the desired scale. This process works (conceptually) by shifting the decimal point of the value by `decimalShift` places, rounding, and then shifting the decimal point of the rounded value by `-decimalShift`

For example, consider the number 10.000354. This can be rounded to 10.0003 by calling this method and supplying the value and an "exponentToKeep" value of -4.

Specified by:
`roundDown` in interface `MathOperations<Double>`
Parameters:
`value` - the value to be rounded
`decimalShift` - the number of places the decimal point should be shifted before rounding
Returns:
the rounded value

### keepSignificantFigures

```public Double keepSignificantFigures(Double value,
int numSigFigs)```
Specified by:
`keepSignificantFigures` in interface `MathOperations<Double>`

ModeShape Distribution 3.0.0.Beta4