SeamFramework.orgCommunity Documentation

Capitolo 4. Il modello a componenti contestuali

4.1. Contesti di Seam
4.1.1. Contesto Stateless
4.1.2. Contesto Evento
4.1.3. Contesto Pagina
4.1.4. Contesto Conversazione
4.1.5. Contesto Sessione
4.1.6. Contesto processo di Business
4.1.7. Contesto Applicazione
4.1.8. Variabili di contesto
4.1.9. Priorità di ricerca del contesto
4.1.10. Modello di concorrenza
4.2. Componenti di Seam
4.2.1. Bean di sessione stateless
4.2.2. Bean di sessione stateful
4.2.3. Entity bean
4.2.4. JavaBeans
4.2.5. Message-driven bean
4.2.6. Intercettazione
4.2.7. Nomi dei componenti
4.2.8. Definire lo scope di un componente
4.2.9. Componenti con ruoli multipli
4.2.10. Componenti predefiniti
4.3. Bijection
4.4. Metodi del ciclo di vita
4.5. Installazione condizionale
4.6. Logging
4.7. L'interfaccia Mutable e @ReadOnly
4.8. Componenti factory e manager

I due concetti di base in Seam sono la nozione di contesto e la nozione di componente. I componenti sono oggetti stateful, solitamente EJB, e un'istanza di un componente viene associata al contesto, con un nome in tale contesto. La bijection fornisce un meccanismo per dare un alias ai nomi dei componenti interni (variabili d'istanza) associati ai nomi dei contesti, consentendo agli alberi dei componenti di essere dinamicamente assemblati e riassemblati da Seam.

Segue ora la descrizione dei contesti predefiniti in Seam.

I contesti di Seam vengono creati e distrutti dal framework. L'applicazione non controlla la demarcazione dei contesti tramite esplicite chiamate dell'API Java. I contesti sono solitamente impliciti. In alcuni casi, comunque, i contesti sono demarcati tramite annotazioni.

I contesti base di Seam sono:

Si riconosceranno alcuni di questi contesti dai servlet e dalle relative specifiche. Comunque due di questi potrebbero risultare nuovi: conversation context, e business process context. La gestione dello stato nelle applicazioni web è così fragile e propenso all'errore che i tre contesti predefiniti (richiesta, sessione ed applicazione) non sono significativi dal punto di vista della logica di business. Una sessione utente di login, per esempio, è praticamente un costrutto arbitrario in termini di workflow dell'applicazione. Quindi la maggior parte dei componenti Seam hanno scope nei contesti di conversazione e business process, poiché sono i contesti più significativi in termini di applicazione.

Ora si analizza ciascun contesto.

Il contesto conversazione è un concetto fondamentale in Seam. Una conversazione è una unità di lavoro dal punto di vista dell'utente. Può dar vita a diverse interazioni con l'utente, diverse richieste, e diverse transazioni di database. Ma per l'utente, una conversazione risolve un singolo problema. Per esempio, "Prenota hotel", "Approva contratto", "Crea ordine" sono tutte conversazioni. Si può pensare alla conversazione come all'implementazione di un singolo "caso d'uso" o "user story", ma la relazione non è esattamente uguale.

Una conversazione mantiene lo stato associato a "cosa l'utente sta facendo adesso, in questa finestra". Un singolo utente potrebbe avere più conversazioni in corso in ogni momento, solitamente in più finestre. Il contesto conversazione assicura che lo stato delle diverse conversazioni non collida e non causi problemi.

Potrebbe volerci un pò di tempo prima di abituarsi a pensare applicazioni in termini di conversazione, ma una volta abituati, pensiamo che ci si appassionerà e non si riuscirà più a non pensare in altri termini!

Alcune conversazioni durano solo una singola richiesta. Le conversazioni che si prolungano attraverso più richieste devono essere marcate usando le annotazioni previste da Seam.

Alcune conversazioni sono anche task. Un task è una conversazione che è significativa in termini di processo di business long-running, ed ha il potenziale per lanciare una transizione di stato per il processo di business quando completa con successo. Seam fornisce uno speciale set di annotazioni per la demarcazione dei task.

Le conversazioni possono essere inestate, con una conversazione che ha posto "dentro" una conversazione più ampia. Questa è una caretteristica avanzata.

Solitamente lo stato della conversazione è mantenuto da Seam in una sessione servlet tra le richieste. Seam implementa dei timeout di conversazione configurabili, che automaticamente distruggono le conversazioni inattive, e quindi assicurano che lo stato mantenuto da una singola sessione utente non cresca senza limiti se l'utente abbandona le conversazioni.

Seam serializza il processo delle richieste concorrenti che prendono posto nello stesso contesto di conversazione long-running, nello stesso processo.

In alternativa Seam può essere configurato per mantenere lo stato conversazionale nel browser.

Né il servlet né le specifiche EJB definiscono dei modi per gestire le richieste correnti originate dallo stesso client. Il servlet container semplicemente lascia girare tutti i thread in modo concorrente e lascia la gestione della sicurezza dei thread al codice dell'applicazione. Il container EJB consente di accedere ai componenti stateless e lancia un'eccezione se dei thread multipli accedono ad un bean di sessione stateful.

Questo comportamento potrebbe risultare corretto nel vecchio stile delle applicazioni web, che erano basate su richieste sincrone con granularità fine. Ma per le moderne applicazioni che fanno ampio uso di molte richieste asincrone (AJAX) a granularità fine, la concorrenza è un fattore vitale e deve essere supportato dal modello di programmazione. Seam possiede un layer per la gestione della concorrenza nel suo modello di contesto.

I contesti Seam di sessione e applicazione sono multithread. Seam lascia le richieste concorrenti in un contesto che verrà processato in modo concorrente. I contesti evento e pagina sono per natura a singolo thread. Il contesto business è strettamente multithread, ma in pratica la concorenza è abbastanza rara e questo fatto può essere ignorato per la maggior parte delle volte. Infine Seam forza un modello a singolo thread per conversazione per processo per il contesto conversazione, serializzando le richieste concorrenti nello stesso contesto di conversazione long-running.

Poiché il contesto sessione è multithread, e spesso contiene uno stato volatile, i componenti con scope sessione sono sempre protetti da Seam verso accessi concorrenti fintantoché gli interceptor Seam non vengano disabilitati per quel componente. Se gli interceptor sono disabilitati, allora ogni sicurezza di thread che viene richiesta deve essere implementata dal componente stesso. Seam serializza di default le richieste a bean con scope sessione e JavaBean (e rileva e rompe ogni deadlock che sopravviene). Questo non è il comportamento di default per i componenti con scope applicazione, poiché tali componenti solitamente non mantengono uno stato volatile e poiché la sincronizzazione a livello globale è estremamente dispensiosa. Comunque si può forzare il modello di thread serializzato su un qualsiasi session bean o componente JavaBean aggiungendo l'annotazione @Synchronized.

Questo modello di concorrenza signifca che i client AJAX possono usare in modo sicuro le sessioni volatili e lo stato conversazionale, senza il bisogno di alcun lavoro speciale da parte dello sviluppatore.

I componenti Seam sono POJO (Plain Old Java Objects). In particolare sono JavaBean o bean enterprise EJB 3.0. Mentre Seam non richiede che i componenti siano EJB e possono anche essere usati senza un container EJB 3.0, Seam è stato progettato con EJB 3.0 in mente ed realizza una profonda integrazione con EJB 3.0. Seam supporta i seguenti tipi di componenti.

Gli entity bean possono essere associati ad una variabile di contesto e funzionare come componenti Seam. Poiché gli entity hanno un'identità persistente in aggiunta alla loro identità contestuale, le istanze entity sono solitamente associate esplicitamente nel codice Java, piuttosto che essere istanziate implicitamente da Seam.

I componenti entity bean non supportano la bijection o la demarcazione di contesto. E neppure l'invocazione della validazione dell'entity bean (trigger).

Gli entity bean non sono solitamente usati come action listener JSF, ma spesso funzionano come backing bean che forniscono proprietà ai componenti JSF per la visualizzazione o la sottomissione di una form. In particolare è comune usare un entity come backing bean, assieme ad un action listener bean di sessione stateless per implementare funzionalità di tipo crea/aggiorna/cancella.

Di default gli entity bean sono associati al contesto conversazione. Non possono mai essere associati al contesto stateless.

Si noti che in un ambiente cluster è meno efficiente associare un entity bean direttamente ad una variabile di contesto con scope conversazione o sessione rispetto a come sarebbe mantenere un riferimento all'entity bean in un bean di sessione stateful. PEr questa ragione non tutte le applicazioni Seam definiscono entity bean come componenti Seam.

I componenti entity bean di Seam possono essere istanziati usando Component.getInstance(), @In(create=true) o direttamente usando l'operatore new.

Tutti i componenti Seam devono avere un nome. Si può assegnare un nome al componente usando l'annotazione @Name:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    ... 
}

Questo nome è il nome del componente Seam e non è relazionato a nessun altro nome definito dalla specifica EJB. Comunque i nomi dei componenti Seam funzionano solo come nomi per i bean gestiti da JSF e si possono ritenere questi due concetti come identici.

@Name non è il solo modo per definire un nome di componente, ma occorre sempre specificare il nome da qualche parte. Altrimenti nessun'altra annotazione di Seam funzionerà.

Whenever Seam instantiates a component, it binds the new instance to a variable in the scope configured for the component that matches the component name. This behavior is identical to how JSF managed beans work, except that Seam allows you to configure this mapping using annotations rather than XML. You can also programmatically bind a component to a context variable. This is useful if a particular component serves more than one role in the system. For example, the currently logged in User might be bound to the currentUser session context variable, while a User that is the subject of some administration functionality might be bound to the user conversation context variable. Be careful, though, because through a programmatic assignment, it's possible to overwrite a context variable that has a reference to a Seam component, potentially confusing matters.

Per applicazioni estese e per i componenti predefiniti di seam, vengono spesso impiegati i nomi qualificati dei componenti per evitare conflitti di nome.

@Name("com.jboss.myapp.loginAction")

@Stateless
public class LoginAction implements Login { 
    ... 
}

We may use the qualified component name both in Java code and in JSF's expression language:


<h:commandButton type="submit" value="Login"
                 action="#{com.jboss.myapp.loginAction.login}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name. Add a line like this to the components.xml file:


<factory name="loginAction" scope="STATELESS" value="#{com.jboss.myapp.loginAction}"/>

All of the built-in Seam components have qualified names but can be accessed through their unqualified names due to the namespace import feature of Seam. The components.xml file included in the Seam JAR defines the following namespaces.

<components xmlns="http://jboss.com/products/seam/components">
    
    <import>org.jboss.seam.core</import>
    <import>org.jboss.seam.cache</import>
    <import>org.jboss.seam.transaction</import>
    <import>org.jboss.seam.framework</import>
    <import>org.jboss.seam.web</import>
    <import>org.jboss.seam.faces</import>
    <import>org.jboss.seam.international</import>
    <import>org.jboss.seam.theme</import>
    <import>org.jboss.seam.pageflow</import>
    <import>org.jboss.seam.bpm</import>
    <import>org.jboss.seam.jms</import>
    <import>org.jboss.seam.mail</import>
    <import>org.jboss.seam.security</import>
    <import>org.jboss.seam.security.management</import>  
    <import>org.jboss.seam.security.permission</import>
    <import>org.jboss.seam.captcha</import>
    <import>org.jboss.seam.excel.exporter</import>
    <!-- ... --->
</components>

When attempting to resolve an unqualified name, Seam will check each of those namespaces, in order. You can include additional namespaces in your application's components.xml file for application-specific namespaces.

Dependency injection or inversion of control is by now a familiar concept to most Java developers. Dependency injection allows a component to obtain a reference to another component by having the container "inject" the other component to a setter method or instance variable. In all dependency injection implementations that we have seen, injection occurs when the component is constructed, and the reference does not subsequently change for the lifetime of the component instance. For stateless components, this is reasonable. From the point of view of a client, all instances of a particular stateless component are interchangeable. On the other hand, Seam emphasizes the use of stateful components. So traditional dependency injection is no longer a very useful construct. Seam introduces the notion of bijection as a generalization of injection. In contrast to injection, bijection is:

In essence, bijection lets you alias a context variable to a component instance variable, by specifying that the value of the instance variable is injected, outjected, or both. Of course, we use annotations to enable bijection.

The @In annotation specifies that a value should be injected, either into an instance variable:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    @In User user;
    ... 
}

o nel metodo setter:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    User user;
    
    @In
    public void setUser(User user) {
        this.user=user;
    }
    
    ... 
}

By default, Seam will do a priority search of all contexts, using the name of the property or instance variable that is being injected. You may wish to specify the context variable name explicitly, using, for example, @In("currentUser").

If you want Seam to create an instance of the component when there is no existing component instance bound to the named context variable, you should specify @In(create=true). If the value is optional (it can be null), specify @In(required=false).

For some components, it can be repetitive to have to specify @In(create=true) everywhere they are used. In such cases, you can annotate the component @AutoCreate, and then it will always be created, whenever needed, even without the explicit use of create=true.

Si può anche iniettare il valore di un'espressione:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    @In("#{user.username}") String username;
    ... 
}

I valori iniettati sono disiniettati (cioè impostati a null) immediatamente dopo il completamento del metodo e dell'outjection.

(There is much more information about component lifecycle and injection in the next chapter.)

L'annotazione @Out specifica che occorre eseguire l'outjection di un attributo, oppure da una variabile d'istanza:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    @Out User user;
    ... 
}

o dal metodo getter:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    User user;
    
    @Out
    public User getUser() {
        return user;
    }
    
    ... 
}

Di un attributo si può fare sia l'injection sia l'outjection:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    @In @Out User user;
    ... 
}

o:

@Name("loginAction")

@Stateless
public class LoginAction implements Login { 
    User user;
    
    @In
    public void setUser(User user) {
        this.user=user;
    }
    
    @Out
    public User getUser() {
        return user;
    }
    
    ... 
}

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle callback (@PostConstruct, @PreDestroy, etc). But Seam also supports the use of any of these callbacks with JavaBean components. However, since these annotations are not available in a J2EE environment, Seam defines two additional component lifecycle callbacks, equivalent to @PostConstruct and @PreDestroy.

The @Create method is called after Seam instantiates a component. Components may define only one @Create method.

The @Destroy method is called when the context that the Seam component is bound to ends. Components may define only one @Destroy method.

In addition, stateful session bean components must define a method with no parameters annotated @Remove. This method is called by Seam when the context ends.

Finally, a related annotation is the @Startup annotation, which may be applied to any application or session scoped component. The @Startup annotation tells Seam to instantiate the component immediately, when the context begins, instead of waiting until it is first referenced by a client. It is possible to control the order of instantiation of startup components by specifying @Startup(depends={....}).

The @Install annotation lets you control conditional installation of components that are required in some deployment scenarios and not in others. This is useful if:

@Install works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to install when there are multiple classes with the same component name in the classpath. Seam will choose the component with the higher precendence. There are some predefined precedence values (in ascending order):

Suppose we have a component named messageSender that talks to a JMS queue.

@Name("messageSender") 

public class MessageSender {
    public void sendMessage() {
        //do something with JMS
    }
}

In our unit tests, we don't have a JMS queue available, so we would like to stub out this method. We'll create a mock component that exists in the classpath when unit tests are running, but is never deployed with the application:

@Name("messageSender") 

@Install(precedence=MOCK)
public class MockMessageSender extends MessageSender {
    public void sendMessage() {
        //do nothing!
    }
}

The precedence helps Seam decide which version to use when it finds both components in the classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing a reusable framework with many dependecies, I don't want to have to break that framework across many jars. I want to be able to decide which components to install depending upon what other components are installed, and upon what classes are available in the classpath. The @Install annotation also controls this functionality. Seam uses this mechanism internally to enable conditional installation of many of the built-in components. However, you probably won't need to use it in your application.

Chi non è nauseato dal vedere codice incasinato come questo?

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

        
public Order createOrder(User user, Product product, int quantity) {
    if ( log.isDebugEnabled() ) {
        log.debug("Creating new order for user: " + user.username() + 
            " product: " + product.name() 
            + " quantity: " + quantity);
    }
    return new Order(user, product, quantity);
}

It is difficult to imagine how the code for a simple log message could possibly be more verbose. There is more lines of code tied up in logging than in the actual business logic! I remain totally astonished that the Java community has not come up with anything better in 10 years.

Seam fornisce un'API per il logging che semplifica in modo significativo questo codice:

@Logger private Log log;

        
public Order createOrder(User user, Product product, int quantity) {
    log.debug("Creating new order for user: #0 product: #1 quantity: #2", user.username(), product.name(), quantity);
    return new Order(user, product, quantity);
}

Non importa se si dichiara la variabile log statica o no — funzionerà in entrambi i modi, tranne per i componenti entity bean che richiedono la variabile log statica.

Note that we don't need the noisy if ( log.isDebugEnabled() ) guard, since string concatenation happens inside the debug() method. Note also that we don't usually need to specify the log category explicitly, since Seam knows what component it is injecting the Log into.

If User and Product are Seam components available in the current contexts, it gets even better:

@Logger private Log log;

        
public Order createOrder(User user, Product product, int quantity) {
    log.debug("Creating new order for user: #{user.username} product: #{product.name} quantity: #0", quantity);
    return new Order(user, product, quantity);
}

Seam logging automagically chooses whether to send output to log4j or JDK logging. If log4j is in the classpath, Seam with use it. If it is not, Seam will use JDK logging.

Many application servers feature an amazingly broken implementation of HttpSession clustering, where changes to the state of mutable objects bound to the session are only replicated when the application calls setAttribute() explicitly. This is a source of bugs that can not effectively be tested for at development time, since they will only manifest when failover occurs. Furthermore, the actual replication message contains the entire serialized object graph bound to the session attribute, which is inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of mutable state and a sophisticated EJB container can introduce optimizations such as attribute-level replication. Unfortunately, not all Seam users have the good fortune to be working in an environment that supports EJB 3.0. So, for session and conversation scoped JavaBean and entity bean components, Seam provides an extra layer of cluster-safe state management over the top of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication to occur by calling setAttribute() once in every request that the component was invoked by the application. Of course, this strategy is inefficient for read-mostly components. You can control this behavior by implementing the org.jboss.seam.core.Mutable interface, or by extending org.jboss.seam.core.AbstractMutable, and writing your own dirty-checking logic inside the component. For example,

@Name("account")

public class Account extends AbstractMutable
{
    private BigDecimal balance;
    
    public void setBalance(BigDecimal balance)
    {
        setDirty(this.balance, balance);
        this.balance = balance;
    }
    
    public BigDecimal getBalance()
    {
        return balance;
    }
    
    ...
    
}

O si può usare l'annotazione @ReadOnly per ottenere un effetto simile:

@Name("account")

public class Account
{
    private BigDecimal balance;
    
    public void setBalance(BigDecimal balance)
    {
        this.balance = balance;
    }
    
    @ReadOnly
    public BigDecimal getBalance()
    {
        return balance;
    }
    
    ...
    
}

For session or conversation scoped entity bean components, Seam automatically forces replication to occur by calling setAttribute() once in every request, unless the (conversation-scoped) entity is currently associated with a Seam-managed persistence context, in which case no replication is needed. This strategy is not necessarily efficient, so session or conversation scope entity beans should be used with care. You can always write a stateful session bean or JavaBean component to "manage" the entity bean instance. For example,

@Stateful

@Name("account")
public class AccountManager extends AbstractMutable
{
    private Account account; // an entity bean
    
    @Unwrap
    public Account getAccount()
    {
        return account;
    }
    
    ...
    
}

Note that the EntityHome class in the Seam Application Framework provides a great example of managing an entity bean instance using a Seam component.

We often need to work with objects that are not Seam components. But we still want to be able to inject them into our components using @In and use them in value and method binding expressions, etc. Sometimes, we even need to tie them into the Seam context lifecycle (@Destroy, for example). So the Seam contexts can contain objects which are not Seam components, and Seam provides a couple of nice features that make it easier to work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component object. A factory method will be called when a context variable is referenced but has no value bound to it. We define factory methods using the @Factory annotation. The factory method binds a value to the context variable, and determines the scope of the bound value. There are two styles of factory method. The first style returns a value, which is bound to the context by Seam:

@Factory(scope=CONVERSATION)

public List<Customer
> getCustomerList() { 
    return ... ;
} 

Il secondo stile è un metodo di tipo void che associa il valore alla variabile di contesto stessa:

@DataModel List<Customer

> customerList;
@Factory("customerList")
public void initCustomerList() { 
    customerList = ...  ;
} 

In both cases, the factory method is called when we reference the customerList context variable and its value is null, and then has no further part to play in the lifecycle of the value. An even more powerful pattern is the manager component pattern. In this case, we have a Seam component that is bound to a context variable, that manages the value of the context variable, while remaining invisible to clients.

A manager component is any component with an @Unwrap method. This method returns the value that will be visable to clients, and is called every time a context variable is referenced.

@Name("customerList")

@Scope(CONVERSATION)
public class CustomerListManager
{
    ...
    
    @Unwrap
    public List<Customer
> getCustomerList() { 
        return ... ;
    }
}

The manager component pattern is especially useful if we have an object where you need more control over the lifecycle of the component. For example, if you have a heavyweight object that needs a cleanup operation when the context ends you could @Unwrap the object, and perform cleanup in the @Destroy method of the manager component.

@Name("hens")

@Scope(APPLICATION) 
public class HenHouse
{
    Set<Hen
> hens;
    
    @In(required=false) Hen hen;
    
    @Unwrap
    public List<Hen
> getHens()
    {
        if (hens == null)
        {
            // Setup our hens
        }
        return hens;
    }
    
    @Observer({"chickBorn", "chickenBoughtAtMarket"})
    public addHen()
    {
        hens.add(hen);
    }
    
    @Observer("chickenSoldAtMarket")
    public removeHen()
    {
        hens.remove(hen);
    }
    
    @Observer("foxGetsIn")
    public removeAllHens()
    {
        hens.clear();
    }
    ...
} 

Here the managed component observes many events which change the underlying object. The component manages these actions itself, and because the object is unwrapped on every access, a consistent view is provided.