Hibernate.orgCommunity Documentation

Chapter 2. Architecture

2.1. Overview
2.2. Back end
2.2.1. Back end types
2.2.2. Work execution
2.3. Reader strategy
2.3.1. Shared
2.3.2. Not-shared
2.3.3. Custom

Hibernate Search consists of an indexing and an index search component. Both are backed by Apache Lucene.

Each time an entity is inserted, updated or removed in/from the database, Hibernate Search keeps track of this event (through the Hibernate event system) and schedules an index update. All the index updates are handled without you having to use the Apache Lucene APIs (see Section 3.1, “Enabling Hibernate Search and automatic indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion of DirectoryProviders. A directory provider will manage a given Lucene Directory type. You can configure directory providers to adjust the directory target (see Section 3.2, “Directory configuration”).

Hibernate Search uses the Lucene index to search an entity and return a list of managed entities saving you the tedious object to Lucene document mapping. The same persistence context is shared between Hibernate and Hibernate Search. As a matter of fact, the FullTextSession is built on top of the Hibernate Session so that the application code can use the unified org.hibernate.Query or javax.persistence.Query APIs exactly the same way a HQL, JPA-QL or native query would do.

To be more efficient Hibernate Search batches the write interactions with the Lucene index. There are currently two types of batching. Outside a transaction, the index update operation is executed right after the actual database operation. This is really a no batching setup. In the case of an ongoing transaction, the index update operation is scheduled for the transaction commit phase and discarded in case of transaction rollback. The batching scope is the transaction. There are two immediate benefits:

  • Performance: Lucene indexing works better when operation are executed in batch.

  • ACIDity: The work executed has the same scoping as the one executed by the database transaction and is executed if and only if the transaction is committed. This is not ACID in the strict sense of it, but ACID behavior is rarely useful for full text search indexes since they can be rebuilt from the source at any time.

You can think of those two batch modes (no scope vs transactional) as the equivalent of the (infamous) autocommit vs transactional behavior. From a performance perspective, the in transaction mode is recommended. The scoping choice is made transparently. Hibernate Search detects the presence of a transaction and adjust the scoping.

Tip

It is recommended - for both your database and Hibernate Search - to execute your operations in a transaction, be it JDBC or JTA.

Note

Hibernate Search works perfectly fine in the Hibernate / EntityManager long conversation pattern aka. atomic conversation.

Note

Depending on user demand, additional scoping will be considered, the pluggability mechanism being already in place.

Hibernate Search offers the ability to let the batched work being processed by different back ends. Three back ends are provided out of the box and you have the option to plugin in your own implementation.

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a reader strategy. Choosing a reader strategy will depend on the profile of the application (frequent updates, read mostly, asynchronous index update etc). See also Section 3.9, “Reader strategy configuration”